Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Near-zero Emissions Oxy-combustion Flue Gas Purification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Near-zero Emissions Oxy-combustion Near-zero Emissions Oxy-combustion Flue Gas Purification Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) R&D Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D Program portfolio of post- and

2

Flue Gas Purification Utilizing SOx/NOx Reactions During Compressin of CO2 Derived from Oxyfuel Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flue Gas Purification Flue Gas Purification Utilizing SO X /NO X Reactions During Compression of CO 2 Derived from Oxyfuel Combustion Background Oxy-combustion in a pulverized coal-fired power station produces a raw carbon dioxide (CO 2 ) product containing contaminants such as water vapor, oxygen, nitrogen, and argon from impurities in the oxygen used and any air leakage into the system. Acid gases are also produced as combustion products, such as sulfur oxides (SO

3

Near-Zero Emissions Oxy-Combustion Flue Gas Purification  

SciTech Connect (OSTI)

The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plants burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by-product sulfuric and nitric acids that meet the commercial product specifications. The sulfuric acid will have to be disposed of by neutralization, thus lowering the value of the technology to same level as that of the activated carbon process. Therefore, it was decided to discontinue any further efforts on sulfuric acid process. Because of encouraging results on the activated carbon process, it was decided to add a new subtask on testing this process in a dual bed continuous unit. A 40 days long continuous operation test confirmed the excellent SOx/NOx removal efficiencies achieved in the batch operation. This test also indicated the need for further efforts on optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level. The VPSA process was tested in a pilot unit. It achieved CO{sub 2} recovery of > 95% and CO{sub 2} purity of >80% (by vol.) from simulated cold box feed streams. The overall CO{sub 2} recovery from the cold box VPSA hybrid process was projected to be >99% for plants with low air ingress (2%) and >97% for plants with high air ingress (10%). Economic analysis was performed to assess value of the NZE CPU. The advantage of NZE CPU over conventional CPU is only apparent when CO{sub 2} capture and avoided costs are compared. For greenfield plants, cost of avoided CO{sub 2} and cost of captured CO{sub 2} are generally about 11-14% lower using the NZE CPU compared to using a conventional CPU. For older plants with high air intrusion, the cost of avoided CO{sub 2} and capture CO{sub 2} are about 18-24% lower using the NZE CPU. Lower capture costs for NZE CPU are due to lower capital investment in FGD/SCR and higher CO{sub 2} capture efficiency. In summary, as a result of this project, we now have developed one technology option for NZE CPU based on the activated carbon process and coldbox-VPSA hybrid process. This technology is projected to work for both low and high sulfur coal plants. The NZE CPU technology is projected to achieve near zero stack emissions

Minish Shah; Nich Degenstein; Monica Zanfir; Rahul Solunke; Ravi Kumar; Jennifer Bugayong; Ken Burgers

2012-06-30T23:59:59.000Z

4

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal  

SciTech Connect (OSTI)

The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

Nick Degenstein; Minish Shah; Doughlas Louie

2012-05-01T23:59:59.000Z

5

Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance  

SciTech Connect (OSTI)

A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ÂşF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

Andrew Seltzer; Zhen Fan

2011-03-01T23:59:59.000Z

6

Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO{sub 2} Derived from Oxyfuel Combustion  

SciTech Connect (OSTI)

The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO{sub 2} stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO{sub 2} derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

Fogash, Kevin

2010-09-30T23:59:59.000Z

7

Final Flue Gas Cleaning (FFGC)  

E-Print Network [OSTI]

Final Flue Gas Cleaning (FFGC) Pilot Plant. The pilot plant (FFGC-PP) will be used to test and evaluate removal of air pollution constituents from the flue gas of a 160 MW, Houston-area power plant operating on 100% petcoke. The two-week long test.... TABLE III FLUE GAS COMPOSITION PETCOKE FIRED POWER PLANT H 2 O 3.2 % O 2 4.9 % CO 2 17.7 % HCl 10 ppm SO 2 6800 ppm SO 3 300 ppm H2SO4 mist 690 ppm NOx 260 ppm...

Stinger, D. H.; Romero, M. H.

2006-01-01T23:59:59.000Z

8

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal  

SciTech Connect (OSTI)

The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbonâ??s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

Monica Zanfir; Rahul Solunke; Minish Shah

2012-06-01T23:59:59.000Z

9

Mercury sorbent delivery system for flue gas  

DOE Patents [OSTI]

The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

Klunder; ,Edgar B. (Bethel Park, PA)

2009-02-24T23:59:59.000Z

10

Recovery of Water from Boiler Flue Gas  

SciTech Connect (OSTI)

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

11

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

12

Control of scale in flue gas scrubbers  

SciTech Connect (OSTI)

This patent describes a flue gas desulfurization system in which sulfur dioxide-containing flue gas is passed in countercurrent flow with an aqueous calcium-bearing scrubbing liquor whereby the sulfur dioxide is removed from the flue gas by being absorbed by the scrubbing liquor and converted to calcium sulfite and/or calcium sulfate. The improvement of minimizing the formation of calcium scale on the surfaces of the system comprises maintaining in the scrubbing liquor about 0.1-25 ppm of a 1:1 diisobutylene-maleic anhydride copolymer having an average molecular weight of 11000. The copolymer is incorporated in the scrubbing liquor as a 10-15% aqueous dispersion.

Thomas, P.A.; Dewitt-Dick, D.B.

1987-06-02T23:59:59.000Z

13

Ammonia synthesis gas purification  

SciTech Connect (OSTI)

This patent describes the purification of a reformed gas mixture following water gas shift conversion to produce a purified ammonia synthesis gas stream. The improved processing sequence consisting essentially of: (A) Selectively catalytically oxidizing the residual carbon monoxide content of the gas mixture to carbon dioxide so as to reduce the carbon monoxide content of the gas mixture to less than about 20 ppm, the selective catalytic oxidation being carried out with an excess of air, with the excess oxygen being catalytically reacted with a small amount of hydrogen so that the residual oxygen level is reduced to less than about 3 ppm; (B) removing the bulk of the carbon dioxide content of the gas mixture by liquid absorption; (C) Removing residual amounts of carbon monoxide, carbon dioxide and water by selective adsorption on the fixed beds of a thermal swing adsorption system, a dry, purified ammonia ammonia synthesis gas stream containing less than a total of 10 ppm of carbon monoxide and carbon dioxide being recovered from the thermal swing adsorption system; (D) Passing the resulting dry, purified ammonia synthesis gas stream having a low content of methane to an ammonia production operation without intermediate passage of the ammonia synthesis gas stream to a methanation unit or to a cryogenic unit for removal of carbon monoxide and carbon dioxide therefrom; whereby the efficiency of the overall purification operation and the effective utilization of hydrogen are enhanced.

Fuderer, A.

1986-02-25T23:59:59.000Z

14

Catalysts for Oxidation of Mercury in Flue Gas - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

those for selective catalytic reduction (SCR)), scrubbing liquors, flue gas or coal additives, combustion modifications, barrier discharges, and ultraviolet radiation....

15

Fundamental mechanisms in flue gas conditioning  

SciTech Connect (OSTI)

The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ask properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

Bush, P.V.; Snyder, T.R.

1992-01-09T23:59:59.000Z

16

Recovery of Water from Boiler Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RecoveRy of WateR fRom BoileR flue Gas RecoveRy of WateR fRom BoileR flue Gas Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

17

Catalysts for Oxidation of Mercury in Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalysts for Oxidation of Mercury in Flue Gas Catalysts for Oxidation of Mercury in Flue Gas Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,776,780 entitled "Catalysts for Oxidation of Mercury in Flue Gas." Disclosed in this patent are catalysts for the oxidation of elemental mercury in flue gas. These novel catalysts include iridium (Ir), platinum/iridium (Pt/Ir), and Thief carbons. The catalyst materials will adsorb the oxidizing agents HCl, Cl 2 , and other halogen species in the flue gas stream that are produced when fuel is combusted. These adsorbed oxidizing agents can then react with elemental mercury in the stream, which is difficult to capture, and oxidize it to form Hg (II) species,

18

Multi-component Removal in Flue Gas by Aqua Ammonia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

component Removal in Flue Gas by Aqua Ammonia component Removal in Flue Gas by Aqua Ammonia Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,255,842 entitled "Multi-component Removal in Flue Gas by Aqua Ammonia." This patent discloses a method for the removal of potential environmental-impacting compounds from flue gas streams. The method oxidizes some or all of the acid precursors such as sulfur dioxide (SO 2 ) and nitric oxides (NO x ) into sulfur trioxide and nitrogen dioxide, respectively. Following this step, the gas stream is then treated with aqua ammonia or ammonium hydroxide to capture the compounds via chemical absorption through acid-base or neutralization reactions where a fertilizer is formed.

19

Thief Process Removal of Mercury from Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Process for the Removal of Mercury from Flue Gas Process for the Removal of Mercury from Flue Gas Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 6,521,021 entitled "Thief Process for the Removal of Mercury from Flue Gas." Disclosed in this patent is a novel process in which partially combusted coal is removed from the combustion chamber of a power plant using a lance (called a "thief"). This partially combusted coal acts as a thermally activated adsorbent for mercury. When it is in- jected into the duct work of the power plant downstream from the exit port of the combustion chamber, mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury

20

Flue gas desulfurization: Physicochemical and biotechnological approaches  

SciTech Connect (OSTI)

Various flue gas desulfurization processes - physicochemical, biological, and chemobiological - for the reduction of emission of SO{sub 2} with recovery of an economic by-product have been reviewed. The physicochemical processes have been categorized as 'once-through' and 'regenerable.' The prominent once-through technologies include wet and dry scrubbing. The wet scrubbing technologies include wet limestone, lime-inhibited oxidation, limestone forced oxidation, and magnesium-enhanced lime and sodium scrubbing. The dry scrubbing constitutes lime spray drying, furnace sorbent injection, economizer sorbent injection, duct sorbent injection, HYPAS sorbent injection, and circulating fluidized bed treatment process. The regenerable wet and dry processes include the Wellman Lord's process, citrate process, sodium carbonate eutectic process, magnesium oxide process, amine process, aqueous ammonia process, Berglau Forchung's process, and Shell's process. Besides these, the recently developed technologies such as the COBRA process, the OSCAR process, and the emerging biotechnological and chemobiological processes are also discussed. A detailed outline of the chemistry, the advantages and disadvantages, and the future research and development needs for each of these commercially viable processes is also discussed.

Pandey, R.A.; Biswas, R.; Chakrabarti, T.; Devotta, S. [National Environmental Engineering Research Institute, Nagpur (India)

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Flue gas desulfurization/denitrification using metal-chelate additives  

DOE Patents [OSTI]

A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

1985-08-05T23:59:59.000Z

22

Construction and testing of a flue-gas corrosion probe  

SciTech Connect (OSTI)

The selection of suitable materials for industrial, waste-heat- recovery systems requires assessment of corrosion of materials in various flue-gas environments. Such assessments involve exposing candidate materials to high-temperature flue gases and analyzing the effects of the exposure conditions. Because corrosion is related to flue-gas chemical composition and temperature, variations in temperature complicate the determination of corrosion rates and corrosion mechanisms. Conversely, a relatively constant temperature allows a more accurate determination of the effects of exposure conditions. For this reason, controlled-temperature flue-gas corrosion probes were constructed and tested for exposure tests of materials. A prototype probe consisted of a silicon carbide tube specimen, supporting hardware, and instrumentation for controlling temperature by internal heating and cooling. An advanced probe included other tubular specimens. Testing of the probes in an industrial-type furnace at a nominal flue-gas temperature of 1200{degree}C revealed that temperature control was inadequate. The cooling mode imposed a substantial axial-temperature gradient on the specimens; while the heating mode imposed a smaller gradient, the heating capacity was very limited. 10 refs., 10 figs., 2 tabs.

Federer, J.I.; McEvers, J.A.

1990-08-01T23:59:59.000Z

23

Oxidation of No to No2 in Flue Gas Plumes of Power Stations  

Science Journals Connector (OSTI)

The oxidation of NO to NO2 in flue gas plumes takes place after release in the ... function of the turbulent mixing rate of flue gas plume and atmospheric air. The effects of ... are illustrated with the measurin...

A. J. Elshout; Dr. S. Beilke

1984-01-01T23:59:59.000Z

24

Evaluation of the Energy Saving Potential from Flue Gas Pressurization  

E-Print Network [OSTI]

details the impact of providing a can be recovered at .1 inch wc. The work of com 500 r----------------------, FLUE GAS TEMPERATURES 200 COUNTER FLOW 100 50 _~,,_ CO-FLOW RECUPERATORS 20 10 SPECIFIC ENERGY, Btu/IbM AIR rl'-h~A:--WORK OF 5... consideration for a convective heat flue gas is entrained, the two are mixed in a exchanger is l600?F for the convective portion of the mixing section, and pressure is then recovered in recuperation equipment. It is significant that for a a diffuser...

Stanton, E. H.

1980-01-01T23:59:59.000Z

25

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas. How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature? Links: The technology of Condensing Flue Gas Heat Recovery natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building

26

Workshop on sulfur chemistry in flue gas desulfurization  

SciTech Connect (OSTI)

The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

Wallace, W.E. Jr.

1980-05-01T23:59:59.000Z

27

Rubber linings as surface protection in flue gas desulfurization plants  

SciTech Connect (OSTI)

The manufacturers of the German rubber lining industry have executed the rubber lining of over 1 million m{sup 2} of steel surfaces in over 150 scrubbers of flue gas desulfurization (FGD) plants, thereby effectively protecting them against corrosion. The application of rubber linings as surface protection in FGD plants has proven effective.

Fenner, J.

1997-04-01T23:59:59.000Z

28

Direct fired absorption machine flue gas recuperator  

DOE Patents [OSTI]

A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1985-01-01T23:59:59.000Z

29

Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents  

SciTech Connect (OSTI)

This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

2006-09-30T23:59:59.000Z

30

CO2 Capture Membrane Process for Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

31

Biominetic Membrane for Co2 Capture from Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomimetic Membrane for CO Biomimetic Membrane for CO 2 Capture from Flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport, and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post

32

Alternative formulations of regenerable flue gas cleanup catalysts  

SciTech Connect (OSTI)

The major source of man-made SO{sub 2} in the atmosphere is the burning of coal for electric power generation. Coal-fired utility plants are also large sources of NO{sub x} pollution. Regenerable flue gas desulfurization/NO{sub x} abatement catalysts provide one mechanism of simultaneously removing SO{sub 2} and NO{sub x} species from flue gases released into the atmosphere. The purpose of this project is to examine routes of optimizing the adsorption efficiency, the adsorption capacity, and the ease of regeneration of regenerable flue gas cleanup catalysts. We are investigating two different mechanisms for accomplishing this goal. The first involves the use of different alkali and alkaline earth metals as promoters for the alumina sorbents to increase the surface basicity of the sorbent and thus adjust the number and distribution of adsorption sites. The second involves investigation of non-aqueous impregnation, as opposed to aqueous impregnation, as a method to obtain an evenly dispersed monolayer of the promoter on the surface.

Mitchell, M.B.; White, M.G.

1991-01-01T23:59:59.000Z

33

Thief process for the removal of mercury from flue gas  

DOE Patents [OSTI]

A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

Pennline, Henry W. (Bethel Park, PA); Granite, Evan J. (Wexford, PA); Freeman, Mark C. (South Park Township, PA); Hargis, Richard A. (Canonsburg, PA); O'Dowd, William J. (Charleroi, PA)

2003-02-18T23:59:59.000Z

34

E-Print Network 3.0 - advanced flue gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(WTERT) Collection: Renewable Energy 5 INNOVATIVE TECHNOLOGY FOR THE CONTROL OF AIR POLLUTION AT WASTE-TO-ENERGY Summary: -Beam process is applied to flue gas compositions...

35

Analysis of a pilot-scale constructed wetland treatment system for flue gas desulfurization wastewater.  

E-Print Network [OSTI]

??Coal-fired generation accounts for 45% of the United States electricity and generates harmful emissions, such as sulfur dioxide. With the implementation of Flue Gas Desulfurization… (more)

Talley, Mary Katherine

2012-01-01T23:59:59.000Z

36

Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum  

SciTech Connect (OSTI)

Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

Hensman, Carl, E., P.h.D; Baker, Trevor

2008-06-16T23:59:59.000Z

37

The Beckett System Recovery and Utilization of Low Grade Waste Heat From Flue Gas  

E-Print Network [OSTI]

. During low demand periods, the unit is gas-fired and produces 150 psi steam at high efficiency. In the fall, the heat exchanger is converted to accept flue gas from the large original water tube boilers. The flue gas heats water, which preheats make...

Henderson, W. R.; DeBiase, J. F.

1983-01-01T23:59:59.000Z

38

Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas  

Science Journals Connector (OSTI)

...library generation, and high-throughput...year, coal-fired power plants are...natural-gas–fired power...1. Flue gas from a coal-fired power plant is piped...depleted flue gas is released into...strategy for the generation of very large...

Oscar Alvizo; Luan J. Nguyen; Christopher K. Savile; Jamie A. Bresson; Satish L. Lakhapatri; Earl O. P. Solis; Richard J. Fox; James M. Broering; Michael R. Benoit; Sabrina A. Zimmerman; Scott J. Novick; Jack Liang; James J. Lalonde

2014-01-01T23:59:59.000Z

39

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

40

Fundamentals of Mercury Oxidation in Flue Gas  

SciTech Connect (OSTI)

The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 2 results for the experimental and modeling tasks. Experiments in the mercury reactor are underway and interesting results suggested that a more comprehensive look at catalyzed surface reactions was needed. Therefore, much of the work has focused on the heterogeneous reactions. In addition, various chemical kinetic models have been explored in an attempt to explain some discrepancies between this modeling effort and others.

JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble; Balaji Krishnakumar

2005-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS  

SciTech Connect (OSTI)

The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report.

Unknown

2001-06-01T23:59:59.000Z

42

Re-lining of scrubbers in flue gas desulfurization plants  

SciTech Connect (OSTI)

Rubber lining is used as corrosion protection material in scrubbers, tanks, pipe systems etc of European flue gas desulfurization plants. Although these rubber linings show in cases more than 15 years life, re-rubber lining is still necessary. Due to the expected higher availability of the power station units the time scale of such replacement must be kept to a minimum. As an efficient method for removal of the old lining the high pressure water systems has proven successful. Based on one such case of re-lining the working steps and time scale are demonstrated.

Fenner, J. [Keramchemie GmbH, Siershahn (Germany)

1999-11-01T23:59:59.000Z

43

Relining of scrubbers in flue gas desulfurization plants  

SciTech Connect (OSTI)

Rubber lining is used as a corrosion protection material in European flue gas desulfurization plants, for scrubbers, tanks, pipe systems, etc. Although these rubber linings can last more than 15 years, relining still is necessary. The difficulty of shutting down power station units requires that the time scale of this replacement be kept to a minimum. High-pressure water systems have proven successful as an efficient method for removal of the old lining. The working steps and time scale are demonstrated for one such relining case.

Fenner, J. [Keramchemie GmbH (Germany)

1999-09-01T23:59:59.000Z

44

Membrane-based carbon capture from flue gas: A review  

Science Journals Connector (OSTI)

Abstract There has been an increasing interest in the application of membranes to flue gas separation, primarily driven by the need of carbon capture for significantly reducing greenhouse gas emissions. Historically, there has not been general consensus about the advantage of membranes against other methods such as liquid solvents for carbon capture. However, recent research indicates that advances in materials and process designs could significantly improve the separation performance of membrane capture systems, which make membrane technology competitive with other technologies for carbon capture. This paper mainly reviews membrane separation for the application to post-combustion CO2 capture with a focus on the developments and breakthroughs in membrane material design, process engineering, and engineering economics.

Rajab Khalilpour; Kathryn Mumford; Haibo Zhai; Ali Abbas; Geoff Stevens; Edward S. Rubin

2014-01-01T23:59:59.000Z

45

Separation of CO2 from flue gas using electrochemical cells  

SciTech Connect (OSTI)

ABSTRACT Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation, However, the presence of trace contaminants, i.e" sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area, Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/ bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO 2 and 02 is produced, the possibility exists to use this stream in oxy-firing of additional fuel. From this research, a novel concept for efficiently producing a carbon dioxide rich effiuent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossilfuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide, A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.

Pennline, H.W; Granite, E.J.; Luebke, D.R; Kitchin, J.R; Landon, J.; Weiland, L.M.

2010-06-01T23:59:59.000Z

46

OpenEI Community - natural gas+ condensing flue gas heat recovery+ water  

Open Energy Info (EERE)

Increase Natural Gas Increase Natural Gas Energy Efficiency http://en.openei.org/community/group/increase-natural-gas-energy-efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas.How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature?gas-energy-efficiency" target="_blank">read more natural gas+ condensing flue gas heat

47

Advanced separation technology for flue gas cleanup. Topical report  

SciTech Connect (OSTI)

The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regenerating spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub 2} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. The process will generate only marketable by-products. Our approach is to reduce the capital cost by using high-efficiency hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. We will also introduce new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. Our novel chemistry for scrubbing NO{sub x} will consist of water-soluble phthalocyanine compounds invented by SRI as well as polymeric forms of Fe{sup ++} complexes similar to traditional NO{sub x} scrubbing media. The final novelty of our approach is the arrangement of the absorbers in cassette (stackable) form so that the NO{sub x} absorber can be on top of the SO{sub x} absorber. This arrangement is possible only because of the high efficiency of the hollow fiber scrubbing devices, as indicated by our preliminary laboratory data. This arrangement makes it possible for the SO{sub 2} and NO{sub x} scrubbing chambers to be separate without incurring the large ducting and gas pressure drop costs necessary if a second conventional absorber vessel were used. Because we have separate scrubbers, we will have separate liquor loops and simplify the chemical complexity of simultaneous SO{sub 2}/NO{sub x} scrubbing.

Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S. [and others

1995-01-01T23:59:59.000Z

48

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

SciTech Connect (OSTI)

Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

2007-06-30T23:59:59.000Z

49

Biomimetric Membrane for CO2 Capture from Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomimetic memBrane for co Biomimetic memBrane for co 2 capture from flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post combustion applications - absorption, adsorption, reaction and membranes chemically facilitated absorption promises to be the most cost-effective membrane solution for post combustion application. The Carbozyme technology extracts CO 2 from low concentration, low pressure sources by means of chemical facilitation of a polymer membrane. The chemical

50

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Advanced Flue Gas Desulfurization (AFGD) Demonstration Project A DOE Assessment August 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

51

Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas  

SciTech Connect (OSTI)

An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.

Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.

2004-01-01T23:59:59.000Z

52

Multi-component removal in flue gas by aqua ammonia  

DOE Patents [OSTI]

A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

Yeh, James T. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA)

2007-08-14T23:59:59.000Z

53

Biomimetic Membrane for CO2 Capture from Flue Gas  

SciTech Connect (OSTI)

These Phase III experiments successfully addressed several issues needed to characterize a permeator system for application to a pulverized coal (PC) burning furnace/boiler assuming typical post-combustion cleanup devices in place. We completed key laboratory stage optimization and modeling efforts needed to move towards larger scale testing. The SOPO addressed six areas. Task 1--Post-Combustion Particle Cleanup--The first object was to determine if the Carbozyme permeator performance was likely to be reduced by particles (materials) in the flue gas stream that would either obstruct the mouth of the hollow fibers (HF) or stick to the HF bore wall surface. The second, based on the Acceptance Standards (see below), was to determine whether it would be preferable to clean the inlet gas stream (removing acid gases and particulates) or to develop methods to clean the Carbozyme permeator if performance declined due to HF block. We concluded that condensation of particle and particulate emissions, in the heat exchanger, could result in the formation of very sticky sulfate aerosols with a strong likelihood of obtruding the HF. These must be managed carefully and minimized to near-zero status before entering the permeator inlet stream. More extensive post-combustion cleanup is expected to be a necessary expense, independent of CO{sub 2} capture technology This finding is in agreement with views now emerging in the literature for a variety of CO{sub 2} capture methods. Task 2--Water Condensation--The key goal was to monitor and control temperature distributions within the permeator and between the permeator and its surroundings to determine whether water condensation in the pores or the HF bore would block flow, decreasing performance. A heat transfer fluid and delivery system were developed and employed. The result was near isothermal performance that avoided all instances of flow block. Direct thermocouple measurements provided the basis for developing a heat transfer model that supports prediction of heat transfer profiles for larger permeators Tasks 3. 4.1, 4.2--Temperature Range of Enzymes--The goal was to determine if the enzyme operating temperature would limit the range of thermal conditions available to the capture system. We demonstrated the ability of various isozymes (enzyme variants) to operate from 4-85 C. Consequently, the operating characteristics of the enzyme are not a controlling factor. Further, any isozyme whose upper temperature bound is at least 10 C greater than that of the planned inlet temperature will be stable under unanticipated, uncontrolled 'hiccups' in power plant operation. Task 4.4, 4.4--Examination of the Effects of SOx and NOx on Enzyme Activity (Development of Flue Gas Composition Acceptance Standards)--The purpose was to define the inlet gas profile boundaries. We examined the potential adverse effects of flue gas constituents including different acids from to develop an acceptance standard and compared these values to actual PC flue gas composition. Potential issues include changes in pH, accumulation of specific inhibitory anions and cations. A model was developed and validated by test with a SO{sub 2}-laden stream. The predicted and actual data very largely coincided. The model predicted feed stream requirements to allow continuous operation in excess of 2500 hours. We developed operational (physical and chemical) strategies to avoid or ameliorate these effects. Avoidance, the preferred strategy (noted above), is accomplished by more extensive cleanup of the flue gas stream. Task 5--Process Engineering Model--We developed a process-engineering model for two purposes. The first was to predict the physical and chemical status at each test point in the design as a basis for scale-up. The second was to model the capital and operating cost of the apparatus. These were accomplished and used to predict capex, opex and cost of energy. Task 6--Preliminary Commercialization Plan--We carried out analyses of the market and the competition by a variety of parameters. The conclusion was that there is a l

Michael C. Trachtenberg

2007-05-31T23:59:59.000Z

54

Membrane Process to Sequester CO2 from Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MeMbrane Process to sequester co MeMbrane Process to sequester co 2 froM Power Plant flue Gas Background Carbon dioxide emissions from coal-fired power plants are believed to contribute significantly to global warming climate change. The direct approach to address this problem is to capture the carbon dioxide in flue gas and sequester it underground. However, the high cost of separating and capturing CO 2 with conventional technologies prevents the adoption of this approach. This project investigates the technical and economic feasibility of a new membrane process to capture CO 2 from power plant flue gas. Description Direct CO 2 capture from power plant flue gas has been the subject of many studies. Currently, CO 2 capture with amine absorption seems to be the leading candidate technology-although membrane processes have been suggested. The principal

55

Flue gas desulfurization : cost and functional analysis of large-scale and proven plants  

E-Print Network [OSTI]

Flue Gas Desulfurization is a method of controlling the emission of sulfurs, which causes the acid rain. The following study is based on 26 utilities which burn coal, have a generating capacity of at least 50 Megawatts ...

Tilly, Jean

1983-01-01T23:59:59.000Z

56

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc) Previous Next List Thomas M. McDonald, Woo Ram Lee, Jarad A....

57

New Developments in Closed Loop Combustion Control Using Flue Gas Analysis  

E-Print Network [OSTI]

New developments in closed loop combustion control are causing radical changes in the way combustion control systems are implemented. The recent availability of in line flue gas analyzers and microprocessor technology are teaming up to produce...

Nelson, R. L.

1981-01-01T23:59:59.000Z

58

Cost-Effective Abatement of Acidifying Emissions with Flue Gas Cleaning Vs. Fuel Switching in Finland  

Science Journals Connector (OSTI)

Acidifying emissions from energy production and industry have decreased considerably during the...e.g. flue gas desulphurization. In this study the Finnish cost curves for SO2 and NOx...were first calculated to p...

N. Karvosenoja; P. Hillukkala; M. Johansson; S. Syril

2001-01-01T23:59:59.000Z

59

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network [OSTI]

removal from flue gas of coal-fired power plants. Environ.Speciation in a 100-MW Coal-Fired Boiler with Low-NOxControl Technologies for Coal-Fired Power Plants, DOE/NETL

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

60

CO2 Capture from Flue Gas Using SOlid Molecular Basket Sorbents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Flue Gas Using Solid from Flue Gas Using Solid Molecular Basket Sorbents Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CO2 Removal from Flue Gas Using MIcroporous Metal Organic Frameworks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Removal from Flue Gas Using Removal from Flue Gas Using Microporous Metal Organic Frameworks Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D

62

Analysis of Halogen-Mercury Reactions in Flue Gas  

SciTech Connect (OSTI)

Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

2010-01-01T23:59:59.000Z

63

PRODUCTION OF CONSTRUCTION AGGREGATES FROM FLUE GAS DESULFURIZATION SLUDGE  

SciTech Connect (OSTI)

Through a cooperative agreement with DOE, the Research and Development Department of CONSOL Inc. (CONSOL R and D) is teaming with SynAggs, Inc. and Duquesne Light to design, construct, and operate a 500 lb/h continuous pilot plant to produce road construction aggregate from a mixture of wet flue gas desulfurization (FGD) sludge, fly ash, and other components. The proposed project is divided into six tasks: (1) Project Management; (2) Mix Design Evaluation; (3) Process Design; (4) Construction; (5) Start-Up and Operation; and (6) Reporting. In this quarter, Tasks 1 and 2 were completed. A project management plan (Task 1) was issued to DOE on October 22, 1998 . The mix design evaluation (Task 2) with Duquesne Light Elrama Station FGD sludge and Allegheny Power Hatfields Ferry Station fly ash was completed. Eight semi-continuous bench-scale tests were conducted to examine the effects of mix formulation on aggregate properties. A suitable mix formulation was identified to produce aggregates that meet specifications of the American Association of State High Transport Officials (AASHTO) as Class A aggregate for use in highway construction. The mix formulation was used in designing the flow sheet of the pilot plant. The process design (Task 3) is approximately 80% completed. Equipment was evaluated to comply with design requirements. The design for the curing vessel was completed by an outside engineering firm. All major equipment items for the pilot plant, except the curing vessel, were ordered. Pilot plant construction (Task 4) was begun in October. The Hazardous Substance Plan was issued to DOE. The Allegheny County (PA) Heat Department determined that an air emission permit is not required for operation of the pilot plant.

NONE

1998-12-01T23:59:59.000Z

64

Dynamic Tests and Results in an Oxy-fuel Circulating Fluidized Bed Combustor with Warm Flue Gas Recycle  

Science Journals Connector (OSTI)

Dynamic Tests and Results in an Oxy-fuel Circulating Fluidized Bed Combustor with Warm Flue Gas Recycle ... Dynamic step change tests concerning the coal feed rate and coal type were conducted. ... In the dynamic tests, the oxygen concentration in the flue gas fluctuates in the form of a sinusoidal wave because of the fast volatile combustion and the delay in the char ignition. ...

Jian-xin Zhou; Zhuang Shao; Feng-qi Si; Zhi-gao Xu

2014-11-17T23:59:59.000Z

65

Effect of connate water on miscible displacement of reservoir oil by flue gas  

E-Print Network [OSTI]

Average Reservoir Fluid Pro erties Before Break- Through Ultimate Economic Re cover Fraction OIP 1(a) (b) (c) 2(a) (b) (c) 3(a) (b) (c) (b) (c) (d) 5(*) (b) (c} 6(a) (b) (c) 3800 4200 4600 3800 4200 4600 3800 4ZOO 4600 3000...-through recovery of 75 per cent. Nitrogen resulted in an 81 per cent break- through recovery, after reaching miscibility at 4160 psi. Although nitrogen gave a higher break-through recovery than flue gas, flue gas 25 0. 80 4600 psi 4200 psi f4 0 0 0 'g 4...

Maxwell, H. D.

2012-06-07T23:59:59.000Z

66

Integrated flue gas treatment for simulataneous emission control and heat rate improvement - demonstration project at Ravenswood  

SciTech Connect (OSTI)

Results are presented for electric-utility, residual-oil fired, field demonstration testing of advanced-design, heat-recovery type, flue gas sub-coolers that incorporate sulfite-alkali-based wet scrubbing for efficient removal of volatile and semi-volatile trace elements, sub-micron solid particulate matter, SO{sub 2} and SO{sub 3}. By innovative adaptation of wet collector system operation with methanol injection into the rear boiler cavity to convert flue-gas NO to No{sub 2}, simultaneous removal of NO{sub x} is also achieved. The focus of this integrated flue gas treatment (IFGT) technology development and demonstration-scale, continuous performance testing is an upward-gas-flow, indirectly water-cooled, condensing heat exchanger fitted with acid-proof, teflon-covered tubes and tubesheets and that provides a unique condensing (non-evaporative) wet-scrubbing mode to address air toxics control objectives of new Clean Air Act, Title III. Advantageous trace-metal condensation/nucleation/agglomeration along with substantially enhanced boiler efficiency is accomplished in the IFGT system by use of boiler makeup water as a heat sink in indirectly cooling boiler flue gas to a near-ambient-temperature, low-absolute-humidity, water-saturated state. Moreover, unique, innocuous, stack systems design encountered with conventional high-humidity, wet-scrubber operations. The mechanical design of this advanced flue-gas cooling/scrubbing equipment is based on more than ten years of commercial application of such units is downward-gas-flow design/operation for energy recovery, e.g. in preheating of makeup water, in residual-oil and natural-gas fired boiler operations.

Heaphy, J.; Carbonara, J.; Cressner, A. [Consolidated Edison Company, New York, NY (United States)] [and others

1995-06-01T23:59:59.000Z

67

Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas  

DOE Patents [OSTI]

Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

2012-11-06T23:59:59.000Z

68

Flue gas carbon dioxide sequestration during water softening with ion-exchange fibers  

SciTech Connect (OSTI)

This study examines the use of ion-exchange fibers (IX fibers) to permanently sequester carbon dioxide present in flue gas into an aqueous phase as calcium or magnesium alkalinity while concurrently softening hard water. The only process inputs besides carbon dioxide (or flue gas) are snowmelt (or rainwater); no other chemicals are required for the regeneration of the IX fibers. Importantly, the process is not energy intensive and carbon dioxide does not need to be compressed to excessive pressures (>150 psi) for efficient use. Sources of carbon dioxide do not require concentration and, therefore, the use of raw flue gas (similar to 17% CO{sub 2}) is feasible with the rate of sequestration governed only by the partial pressure of carbon dioxide. While valid for flue gas obtained from any combustion process (e.g., coal, oil, natural gas, etc.), emissions from oil or gas combustion may be more appropriate for use in the described process due to the absence of mercury and particulates. It should also be noted that the presence of sulfur dioxide in flue gas would not adversely affect the process and may even enhance regeneration efficiency. The only product of the proposed process is an environmentally benign regenerant stream containing calcium and/or magnesium alkalinity. The unique property of IX fibers that makes the proposed process both environmentally sustainable and economically feasible is amenability to efficient regeneration with carbon dioxide and harvested snowmelt. Low intraparticle diffusional resistance is the underlying reason why IX fibers are amenable to efficient regeneration using snowmelt sparged with carbon dioxide; 95% calcium recovery was attained at a CO{sub 2} partial pressure of 6.8 atm. The energy balance for a typical electric utility shows that up to 1% of carbon dioxide emitted during combustion would be sequestered in the softening process.

Greenleaf, J.E.; SenGupta, A.K. [Lafayette College, Easton, PA (United States). Dept. of Civil & Environmental Engineering

2009-06-15T23:59:59.000Z

69

Combined Flue Gas Heat Recovery and Pollution Control Systems  

E-Print Network [OSTI]

in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

Zbikowski, T.

1979-01-01T23:59:59.000Z

70

Separation of flue-gas scrubber sludge into marketable products. Second year, second quarterly technical progress report, Quarter No. 6, December 1, 1994--February 28, 1995  

SciTech Connect (OSTI)

To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{sm_bullet}0.5H{sub 2}O), gypsum (CaSO{sub 4}{sm_bullet}2H{sub 2}O), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH){sub 2}), with miscellaneous objectionable impurities such as iron oxides, silica, and magnesium, sodium, and potassium oxides or salts. These impurities prevent many sludges from being utilized as a replacement for natural gypsum, and as a result they must be disposed of in landfills, which presents a serious disposal problem. This project is studying the characteristics of flue-gas scrubber sludges from several sources, which is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather than landfilling them. This purification will consist of minimal-reagent froth flotation, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product.

KAwatra, S.K.; Eisele, T.C.

1995-03-01T23:59:59.000Z

71

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dexin Wang Dexin Wang Principal Investigator Gas Technology Institute 1700 South Mount Prospect Rd Des Plaines, Il 60018 847-768-0533 dexin.wang@gastechnology.org TransporT MeMbrane Condenser for WaTer and energy reCovery froM poWer planT flue gas proMIs/projeCT no.: nT0005350 Background One area of the U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program's research is being performed to develop advanced technologies to reuse power plant cooling water and associated waste heat and to investigate methods to recover water from power plant flue gas. Considering the quantity of water withdrawn and consumed by power plants, any recovery or reuse of this water can significantly reduce the plant's water requirements. Coal occurs naturally with water present (3-60 weight %), and the combustion

72

MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS  

SciTech Connect (OSTI)

The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

2009-03-31T23:59:59.000Z

73

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

74

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

75

Life cycle considerations of the flue gas desulphurization system at a lignite-fired power plant in Thailand  

Science Journals Connector (OSTI)

The Flue Gas Desulphurization (FGD) system has been installed at the biggest lignite-fired power generation plant in Thailand to reduce the large...2...emission. In order to understand the costs and benefits, bot...

Sate Sampattagul; Seizo Kato…

2004-11-01T23:59:59.000Z

76

Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas  

SciTech Connect (OSTI)

The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This topical report covers Phase 2b, which is the construction phase of pilot demonstration subsystems that make up the integrated plant. The subsystems included are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant is now capable of capturing CO2 from various sources (gas and coal) and mineralizing into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The topical report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. At the end of Phase 2b, the CCMP pilot demonstration is fully ready for testing.

Devenney, Martin; Gilliam, Ryan; Seeker, Randy

2014-06-01T23:59:59.000Z

77

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sorbent InjectIon for Small eSP Sorbent InjectIon for Small eSP mercury control In low Sulfur eaStern bItumInouS coal flue GaS Background Full-scale field testing has demonstrated the effectiveness of activated carbon injection (ACI) as a mercury-specific control technology for certain coal-fired power plants, depending on the plant's coal feedstock and existing air pollution control device configuration. In a typical configuration, powdered activated carbon (PAC) is injected downstream of the plant's air heater and upstream of the existing particulate control device - either an electrostatic precipitator (ESP) or a fabric filter (FF). The PAC adsorbs the mercury from the combustion flue gas and is subsequently captured along with the fly ash in the ESP or FF. ACI can have some negative side

78

The Flakt-Hydro process: flue gas desulfurisation by use of seawater  

Science Journals Connector (OSTI)

ABB's seawater scrubbing process (the Flakt-Hydro process) for flue gas desulfurisation has recently triggered much interest among power producers because of its simple operating principle and high reliability. The process uses seawater to absorb and neutralise sulfur dioxide in flue gases. The absorbed gas is oxidised and returned to the ocean in the form it originated in the first place, namely as dissolved sulfate salts. The process uses the seawater downstream of the power plant condensers. This paper gives an introduction to the basic principle of the process and presents some of the recent power plant applications, namely at the Paiton Private Power Project, Phase 1 (2 ? 670 Mwe) in Indonesia and at the Shenzhen West Power Plant, Unit 2 (300 MWe) in China.

Wu Zhao Xia

1999-01-01T23:59:59.000Z

79

Membrane Process to Capture CO2 from Power Plant Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membrane Process to Capture CO Membrane Process to Capture CO 2 from Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

80

Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal  

SciTech Connect (OSTI)

This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

Eric P. Robertson

2007-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Corrosion protection by means of rubber linings in a flue gas scrubber made of concrete  

SciTech Connect (OSTI)

Rubber linings have been applied as a corrosion protection measure for steel surfaces, particularly in the absorbers, in the flue gas desulfurization plants of a large number of power stations in Europe and have decidedly proven their effectiveness. The rubber linings applied consist of either precured and/or cold-curing rubber sheets. In the course of the past five to seven years, the eastern European states have also begun retro-fitting their existing power stations with flue gas desulfurization plants. As the first of its kind, a scrubber in the flue gas desulfurization plant of the Konin Power Station in Poland, which operates on the basis of the limestone-gypsum process, was constructed of concrete. In this case also, the corrosion protection measures implemented consisted in the application of a precured rubber lining on the basis of butyl rubber. A surface area measuring 1,500 m{sup 2} of the concrete absorber was protected by means of this corrosion protection system.

Fenner, J.; Matos, A.; Seiffert, W. [Keramchemie GmbH, Siershahn (Germany)

1998-12-31T23:59:59.000Z

82

Flue Gas Perification Utilizing SOx/NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion  

SciTech Connect (OSTI)

The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO2 stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO2 derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

Kevin Fogash

2010-09-30T23:59:59.000Z

83

Alternative formulations of regenerable flue gas cleanup catalysts. Progress report, September 1, 1990--August 31, 1991  

SciTech Connect (OSTI)

The major source of man-made SO{sub 2} in the atmosphere is the burning of coal for electric power generation. Coal-fired utility plants are also large sources of NO{sub x} pollution. Regenerable flue gas desulfurization/NO{sub x} abatement catalysts provide one mechanism of simultaneously removing SO{sub 2} and NO{sub x} species from flue gases released into the atmosphere. The purpose of this project is to examine routes of optimizing the adsorption efficiency, the adsorption capacity, and the ease of regeneration of regenerable flue gas cleanup catalysts. We are investigating two different mechanisms for accomplishing this goal. The first involves the use of different alkali and alkaline earth metals as promoters for the alumina sorbents to increase the surface basicity of the sorbent and thus adjust the number and distribution of adsorption sites. The second involves investigation of non-aqueous impregnation, as opposed to aqueous impregnation, as a method to obtain an evenly dispersed monolayer of the promoter on the surface.

Mitchell, M.B.; White, M.G.

1991-12-31T23:59:59.000Z

84

Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators  

Science Journals Connector (OSTI)

Fossil fuel combustion leads to acidic pollutants like SO2 NOx HCl emission. Different control technologies are proposed however the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First using lime or limestone slurry leads to SO2 capture and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan the USA Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world nowadays. Description of the plant and results obtained has been presented in the paper.

Andrzej G. Chmielewski; Bogdan Tyminski; Zbigniew Zimek; Andrzej Pawelec; Janusz Licki

2003-01-01T23:59:59.000Z

85

Coagulation/Flocculation Treatments for Flue-Gas-Derived Water from Oxyfuel Power Production with CO2 Capture  

Science Journals Connector (OSTI)

Coagulation/Flocculation Treatments for Flue-Gas-Derived Water from Oxyfuel Power Production with CO2 Capture ... The buffered solution is then sent back to the top of the tower, where it is sprayed into the upflowing oxyfuel gas stream, condensing and cleaning the ash-laden gas. ...

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen Gerdemann; John Clark; Cathy Summers

2011-08-02T23:59:59.000Z

86

Compression Stripping of Flue Gas with Energy Recovery  

DOE Patents [OSTI]

A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SOX and NOX and CO2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO2, SO2, and H2O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

Ochs, Thomas L.; O'Connor, William K.

2005-05-31T23:59:59.000Z

87

Compression stripping of flue gas with energy recovery  

DOE Patents [OSTI]

A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SO.sub.X and NO.sub.X and CO.sub.2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO.sub.2, SO.sub.2, and H.sub.2 O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

2005-05-31T23:59:59.000Z

88

Flue-gas sulfur-recovery plant for a multifuel boiler  

SciTech Connect (OSTI)

In October 1991, a Finnish fluting mill brought on stream a flue-gas desulfurization plant with an SO{sub 2} reduction capacity of 99%. The desulfurization plant enabled the mill to discontinue the use of its sulfur burner for SO{sub 2} production. The required makeup sulfur is now obtained in the form of sulfuric acid used by the acetic acid plant, which operates in conjunction with the evaporating plant. The mill`s sulfur consumption has decreased by about 6,000 tons/year (13.2 million lb/year) because of sulfur recycling.

Miettunen, J. [Tampella Power Inc., Tampere (Finland); Aitlahti, S. [Savon Sellu Oy, Kuopio (Finland)

1993-12-01T23:59:59.000Z

89

Advanced separation technology for flue gas cleanup. Quarterly technical report No. 8, [January--March 1994  

SciTech Connect (OSTI)

During the first quarter of 1994, we continued work on Tasks 2, 3, 4, 5, and 6. We also began work on Task 7. In Task 2, we incorporated 4.5% O{sub 2} into our simulated flue gas stream during this quarter`s NO{sub x}-absorption experiments. We also ran experiments using Cobalt (II)-phthalocyanine as an absorbing agent We observed higher absorption capacities when using this solution with the simulated flue gas containing O{sub 2}. In Task 3, we synthesized a few EDTA polymer analogs. We also began scaled up synthesis of Co(II)-phthalocyanine for use in Task 5. In Task 4, we performed experiments for measuring distribution coefficients (m{sub i}) Of SO{sub 2} between aqueous and organic phases. This was done using the liquor regenerating apparatus described in Task 6. In Task 5, we began working with Co(II)-phthalocyanine in the 301 fiber hollow fiber contactor. We also calculated mass transfer coefficients (K{sub olm}) for these runs, and we observed that the gas side resistance dominates mass transfer. In Task 6, in the liquor regeneration apparatus, we observed 90% recovery of SO{sub 2} by DMA from water used as the scrubbing solution. We also calculated the distribution of coefficients (m{sub i}). In Task 7, we established and began implementing a methodology for completing this task.

Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S. [SRI International, Menlo Park, CA (United States)] [SRI International, Menlo Park, CA (United States); Sirkar, K.K.; Majumdar, S.; Bhaumick, D. [New Jersey Inst. of Tech., Newark, NJ (United States)] [New Jersey Inst. of Tech., Newark, NJ (United States)

1994-03-01T23:59:59.000Z

90

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

SciTech Connect (OSTI)

Oxidation of Hg0 with any oxidant or converting it to a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg0 by gas phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas phase reaction rate constants between Hg0 and the sulfur/chlorine compounds were determined, and the effects of temperature and the main components in flue gases were studied. The gas phase reaction between Hg0 and SCl2 is shown to be more rapid than the gas phase reaction with chlorine, and the second order rate constant was 9.1(+-0.5) x 10-18 mL-molecules-1cdots-1 at 373oK. Nitric oxide (NO) inhibited the gas phase reaction of Hg0 with sulfur-chlorine compounds. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg0 removal is about 90percent with 5 ppm SCl2 or S2Cl2 and 40 g/m3 of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that co-injection of 3-5 ppm of SCl2 (or S2Cl2) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90percent of Hg0 can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3percent of SCl2 or S2Cl2 is used. Unlike gas phase reactions, NO exhibited little effect on Hg0 reactions with SCl2 or S2Cl2 on flyash or activated carbon. Mercuric sulfide was identified as one of the principal products of the Hg0/SCl2 or Hg0/S2Cl2 reactions. Additionally, about 8percent of SCl2 or S2Cl2 in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution.

Chang, Shih-Ger; Yan, Nai-Qiang; Qu, Zan; Chi, Yao; Qiao, Shao-Hua; Dod, Ray; Chang, Shih-Ger; Miller, Charles

2008-07-02T23:59:59.000Z

91

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

Kenneth E. Baldrey

2003-01-01T23:59:59.000Z

92

Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks  

SciTech Connect (OSTI)

UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary building units bound by DOBDC resulting in 1D hexagonal pores about 11 angstroms in diameter. Surface areas range from 800 to 1500 sq m/g for the different MOFs. Mg/DOBDC outperformed all MOF and zeolite materials evaluated to date, with about 25 wt% CO{sub 2} captured by this MOF at flue gas conditions ({approx}0.13 atm CO{sub 2} pressure, 311K). In simulated flue gas without oxygen, the zero-length (ZLC) system was very useful in quickly simulating the effect of long term exposure to impurities on the MOFs. Detailed adsorption studies on MOF pellets have shown that water does not inhibit CO{sub 2} adsorption for MOFs as much as it does for typical zeolites. Moreover, some MOFs retain a substantial CO{sub 2} capacity even with a modest water loading at room temperature. Molecular modeling was a key activity in three areas of our earlier DOE/NETL-sponsored MOF-based research on CC. First, the team was able to effectively simulate CO{sub 2} and other gas adsorption isotherms for more than 20 MOFs, and the knowledge obtained was used to help predict new MOF structures that should be effective for CO{sub 2} adsorption at low pressure. The team also showed that molecular modeling could be utilized to predict the hydrothermal stability of a given MOF. Finally, the team showed that low moisture level exposure actually enhanced the CO{sub 2} adsorption performance of a particular MOF, HKUST-1.

David A Lesch

2010-06-30T23:59:59.000Z

93

Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains  

SciTech Connect (OSTI)

Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant, and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.

DeSutter, T.M.; Cihacek, L.J. [North Dakota State University, Fargo, ND (United States). Department of Soil Science

2009-07-15T23:59:59.000Z

94

Flue gas cleaning with ammonia reduces SO{sub 2} emission  

SciTech Connect (OSTI)

This paper describes the technical and commercial development and basis for application in North America for wet flue gas desulfurization (FGD) of the AMASOX{reg_sign} (i.e. Ammonia Absorbs Sulfur Oxides) Process of Krupp Uhde (Germany) employing ammonia reagent. This process technology has been emerging slowly and stepwise over a twenty-year period in reaching the present stage of commercial applicability. The discussion herein considers the need for accommodating to and advantageously addressing the increasing number of applications with high and ultra-high flue-gas concentrations of SO{sub 2} at the boiler outlet accompanied by significant levels of other pollutants. Key measures in accomplishing this include use of important process innovations. This, as well, calls for the effective use, when applicable, of wet electrostatic precipitator mist-elimination means to gain low/minimum-opacity stack plume trailoff in wet scrubber use together with reduction of air toxics to low concentrations. With cost-effectiveness in electric utility service, detailed herein, superior to FGD processes commonly used to date in high-sulfur service, utilization of this technology is expanding. Important, potentially trend-setting types of powerplant applications of ammonia FGD are reviewed to identify foreseen market sectors and procurement trends that will at the same time serve to substantially broaden lowest-cost coal utilization.

Emish, G.J. [Krupp Wilputte Corp., Bridgeville, PA (United States); Schulte, W. [Krupp Uhde GmbH, Dortmund (Germany); Ellison, W. [Ellison Consultants, Monrovia, MD (United States)

1997-12-31T23:59:59.000Z

95

Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas  

SciTech Connect (OSTI)

The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA. This topical report covers Subphase 2a which is the design phase of pilot demonstration subsystems. Materials of construction have been selected and proven in both lab scale and prototype testing to be acceptable for the reagent conditions of interest. The target application for the reactive carbonate material has been selected based upon small-scale feasibility studies and the design of a continuous fiber board production line has been completed. The electrochemical cell architecture and components have been selected based upon both lab scale and prototype testing. The appropriate quality control and diagnostic techniques have been developed and tested along with the required instrumentation and controls. Finally the demonstrate site infrastructure, NEPA categorical exclusion, and permitting is all ready for the construction and installation of the new units and upgrades.

Devenney, Martin; Gilliam, Ryan; Seeker, Randy

2013-08-01T23:59:59.000Z

96

SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report  

SciTech Connect (OSTI)

Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

NONE

1995-09-01T23:59:59.000Z

97

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-05-01T23:59:59.000Z

98

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was completed at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. The product was effective as a flue gas conditioner. However, ongoing problems with in-duct deposition resulting from the flue gas conditioning were not entirely resolved. Primarily these problems were the result of difficulties encountered with retrofit of an existing spray humidification system. Eventually it proved necessary to replace all of the original injection lances and to manually bypass the PLC-based air/liquid feed control. This yielded substantial improvement in spray atomization and system reliability. However, the plant opted not to install a permanent system. Also in this quarter, preparations continued for a test of the cohesivity additives at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-07-01T23:59:59.000Z

99

Management of dry flue gas dsulfurization by-products in underground mines - an update  

SciTech Connect (OSTI)

In 1993, the U.S. produced about 100 million tons of coal combustion by-products (CCBs) primarily from conventional coal-fired boilers. The requirement to reduce SO{sub x} and NO{sub x} emissions to comply with the 1990 Clean Air Act Amendments (CAAA) force utilities to adopt advanced combustion and flue gas desulfurization (FGD) technologies, such as wet scrubbers, fluidized bed combustion (FBC), dry sorbent duct or furnace injection. These technologies will double to triple the amount of FGD by-products while only slightly increasing the amounts of conventional combustion residues, such as fly ash, bottom ash and boiler slag. This paper describes a program concerned with the underground disposal of combustion products in abandoned underground coal mines.

Chugh, Y.P.; Thomasson, E.M. [Southern Illinois Univ., Carbondale, IL (United States)

1996-09-01T23:59:59.000Z

100

The desulfurization of flue gas at the Mae Moh Power Plant Units 12 and 13  

SciTech Connect (OSTI)

As pollution of air, water and ground increasingly raises worldwide concern, the responsible national and international authorities establish and issue stringent regulations in order to maintain an acceptable air quality in the environment. In Thailand, the Electricity Generating Authority of Thailand (EGAT) takes full responsibility in environmental protection matters as well as in generating the electricity needed to supply the country`s very rapid power demand growth. Due to the rapidly increasing electricity demand of the country, EGAT had decided to install two further lignite-fired units of 300 MW each (Units 12 and 13) at the Mae Moh power generation station and they are now under construction. The arrangement and the capacity of all the power plant units are as shown. In 1989, EGAT started the work on the flue gas desulfurization system of Mae Moh power plant units 12 and 13 as planned. A study has been conducted to select the most suitable and most economical process for flue gas desulfurization. The wet scrubbing limestone process was finally selected for the two new units. Local limestone will be utilized in the process, producing a by-product of gypsum. Unfortunately, natural gypsum is found in abundance in Thailand, so the produced gypsum will be treated as landfill by mixing it with ash from the boilers of the power plants and then carrying it to the ash dumping area. The water from the waste ash water lake is utilized in the process as much as possible to minimize the requirement of service water, which is a limited resource. The Mae Moh power generation station is situated in the northern region of Thailand, 600 km north of Bangkok and about 30 km east of the town of Lampang, close to the Mae Moh lignite mine. Three lignite-fired units (Units 1-3) of 75 MW each, four units (Units 4-7) of 150 MW each and four units (Units 8-11) of 300 MW each are in operation.

Haemapun, C.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report  

SciTech Connect (OSTI)

The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

NONE

1995-09-01T23:59:59.000Z

102

CO2 separation from flue gas using hollow fiber membrane contactors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research on CO Research on CO 2 Separation from Flue Gas Prof. Mengxiang Fang State Key Laboratory of Clean Energy Utilization, Zhejiang University, China Global CO 2 Emissions Country CO 2 Emission (MtCO2) 1990 2003 2004 2010 USA 4,989 5,800 5,923 6,156 China 2,241 3,898 4,707 6,432 Russia 2,334 1,602 1,685 1,840 Japan 1,015 1,244 1,262 1,260 World 21,246 25,508 26,922 30,670 Source: Energy Information Administration/International Energy Outlook 2004 with High Oil Price Case CO 2 Emission in China Year Total Coal Petroleum Natural Gas Mt CO2 Mtc % Mtc % Mtc % 1990 2,241 1,886 84.2 325 14.5 30 1.34 2003 3,898 3,117 80.0 711 18.2 70 1.80 2004 4,707 3,809 80.9 816 17.3 83 1.76 2010 6,432 5,103 79.3 1,151 17.9 178 2.76 2015 7,376 5,946 80.6 1,184 16.1 246 3.33 Source: Energy Information Administration/International Energy Outlook 2004 with High Oil Price Case.

103

JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas  

SciTech Connect (OSTI)

The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

Robert Patton

2006-12-31T23:59:59.000Z

104

Innovative Carbon Dioxide Sequestration from Flue Gas Using an In-Duct Scrubber Coupled with Alkaline Clay Mineralization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovative Carbon Dioxide Sequestration Innovative Carbon Dioxide Sequestration from Flue Gas Using an In-Duct Scrubber Coupled with Alkaline Clay Mineralization Background The United States Department of Energy (DOE) is leading an effort to find novel approaches to reduce carbon dioxide (CO 2 ) emissions from industrial sources. The Industrial Carbon Capture and Sequestration (ICCS) program is funded by the American Recovery and Reinvestment Act (ARRA) to encourage development of processes that

105

Separation of Fine Particles from Gases in Wet Flue Gas Desulfurization System Using a Cascade of Double Towers  

Science Journals Connector (OSTI)

Separation of Fine Particles from Gases in Wet Flue Gas Desulfurization System Using a Cascade of Double Towers ... The authors thank the High-Tech Research and Development Program of China (No. 2008AA05Z306), the Natural Science Foundation of Jiangsu Province (No. BK2008283), and the Scientific Research Foundation of Graduate School of Southeast University for their financial support. ... with high performance by cascading packed columns. ...

Jingjing Bao; Linjun Yang; Shijuan Song; Guilong Xiong

2012-02-15T23:59:59.000Z

106

JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas  

SciTech Connect (OSTI)

This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

Ye Zhuang; Christopher Martin; John Pavlish

2009-03-31T23:59:59.000Z

107

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a flue gas conditioning system was completed at PacifiCorp Jim Bridger Power Plant. Performance testing was underway. Results will be detailed in the next quarterly and subsequent technical summary reports. Also in this quarter, discussions were initiated with a prospective long-term candidate plant. This plant fires a bituminous coal and has opacity performance issues related to fly ash re-entrainment. Ammonia conditioning has been proposed here, but there is interest in liquid additives as a safer alternative.

Kenneth E. Baldrey

2002-01-01T23:59:59.000Z

108

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

Kenneth E. Baldrey

2003-07-30T23:59:59.000Z

109

Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process  

SciTech Connect (OSTI)

Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

2011-10-16T23:59:59.000Z

110

Separation of the components of flue-gas scrubber sludge by froth flotation  

SciTech Connect (OSTI)

To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. Currently, the major markets for scrubber sludge are for manufacture of gypsum products, such as wallboard and plaster, and for cement. However, the quality of the raw sludge is often not high enough or consistent enough to satisfy manufacturers, and so the material is difficult to sell. Other markets, such as paper manufacture and plastics fillers, have even more stringent quality requirements and will not accept raw sludge at all. In the work described in this paper, several reagents have been examined to determine their ability to selectively improve the flotation of the unreacted limestone contaminant away from the desirable products (calcium sulfite and gypsum). The most success has been achieved using a cationic collector, which shows a higher selectivity between calcium sulfite and calcium carbonate than do the anionic collectors that were studied.

Kawatra, S.K.; Eisele, T.C. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Metallurgical and Materials Engineering

1995-12-31T23:59:59.000Z

111

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams .  

E-Print Network [OSTI]

??An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue… (more)

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

112

Using coke-battery flue gas to dry coal batch before coking  

Science Journals Connector (OSTI)

The utilization of heat from coke-battery flue gases and other potential secondary energy resources in drying coal batch prior to coking is considered. The main factors that influence ... . The reduction in moist...

A. Ya. Eremin; V. G. Mishchikhin; S. G. Stakheev; R. R. Gilyazetdinov…

2011-03-01T23:59:59.000Z

113

Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation  

SciTech Connect (OSTI)

The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis found a number of modifications and adjustments that could provide higher efficiency and better use of available work. Conclusions from this analysis will help guide the analyses and CFD modeling in future process development. The MBB technology has the potential to be a disruptive technology that will enable coal combustion power plants to be built and operated in a cost effective way, cleanly with no carbon dioxide emissions. A large amount of work is needed to quantify and confirm the great promise of the MBB technology. A Phase 2 proposal was submitted to DOE and other sponsors to address the most critical MBB process technical gaps. The Phase 2 proposal was not accepted for current DOE support.

Rue, David

2013-09-30T23:59:59.000Z

114

CO{sub 2} Capture from Flue Gas Using Solid Molecular Basket Sorbents  

SciTech Connect (OSTI)

The objective of this project is to develop a new generation of solid, regenerable polymeric molecular basket sorbent (MBS) for more cost-efficient capture and separation of CO{sub 2} from flue gas of coal-fired power plants. The primary goal is to develop a cost-effective MBS sorbent with better thermal stability. To improve the cost-effectiveness of MBS, we have explored commercially available and inexpensive support to replace the more expensive mesoporous molecular sieves like MCM-41 and SBA- 15. In addition, we have developed some advanced sorbent materials with 3D pore structure such as hexagonal mesoporous silica (HMS) to improve the CO{sub 2} working capacity of MBS, which can also reduce the cost for the whole CO{sub 2} capture process. During the project duration, the concern regarding the desorption rate of MBS sorbents has been raised, because lower desorption rate increases the desorption time for complete regeneration of the sorbent which in turn leads to a lower working capacity if the regeneration time is limited. Thus, the improvement in the thermal stability of MBS became a vital task for later part of this project. The improvement in the thermal stability was performed via increasing the polymer density either using higher molecular weight PEI or PEI cross-linking with an organic compound. Moreover, we have used the computational approach to estimate the interaction of CO{sub 2} with different MBSs for the fundamental understanding of CO{sub 2} sorption, which may benefit the development, design and modification of the sorbents and the process.

Fillerup, Eric; Zhang, Zhonghua; Peduzzi, Emanuela; Wang, Dongxiang; Guo, Jiahua; Ma, Xiaoliang; Wang, Xiaoxing; Song, Chunshan

2012-08-31T23:59:59.000Z

115

Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system  

SciTech Connect (OSTI)

Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO{sub 2}) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO{sub 2} will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO{sub 2} is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs.

Bolinsky, F.T. (Pure Air, Allentown, PA (United States)); Ross, J. (Northern Indiana Public Service Co., Hammond, IN (United States)); Dennis, D.S. (United Engineers and Constructors, Inc., Denver, CO (United States). Stearns-Roger Div.); Huston, J.S. (Environmental Alternatives, Inc., Warren NJ (USA))

1991-01-01T23:59:59.000Z

116

Current status of MHI CO2 capture plant technology, large scale demonstration project and road map to commercialization for coal fired flue gas application  

Science Journals Connector (OSTI)

(1) It is becoming increasingly evident that the prolonged utilization of fossil fuels for primary energy production, especially coal which is relatively cheap and abundant, is inevitable and that Carbon Capture and Storage (CCS) technology can significantly reduce CO2 emissions from this sector thus allowing the continued environmentally sustainable use of this important energy commodity on a global basis. (2) MHI has co-developed the Kansai Mitsubishi Carbon Dioxide Recovery Process (KM-CDR Process™) and KS-1™ absorbent, which has been deployed in seven CO2 capture plants, now under commercial operation operating at a CO2 capture capacity of 450 metric tons per day (tpd). In addition, a further two commercial plants are now under construction all of which capture CO2 from natural gas fired flue gas boilers and steam reformers. Accordingly this technology is now available for commercial scale CO2 capture for gas boiler and gas turbine application. (3) However before offering commercial CO2 capture plants for coal fired flue gas application, it is necessary to verify the influence of, and develop countermeasures for, related impurities contained in coal fired flue gas. This includes the influence on both the absorbent and the entire system of the CO2 capture plant to achieve high operational reliability and minimize maintenance requirements. (4) Preventing the accumulation of impurities, especially the build up of dust, is very important when treating coal fired flue gas and MHI has undertaken significant work to understand the impact of impurities in order to achieve reliable and stable operating conditions and to efficiently optimize integration between the CO2 capture plant, the coal fired power plant and the flue gas clean up equipment. (5) To achieve this purpose, MHI constructed a 10 tpd CO2 capture demonstration plant at the Matsushima 1000 MW Power Station and confirmed successful, long term demonstration following ?5000 hours of operation in 2006–07 with 50% financial support by RITE, as a joint program to promote technological development with the private sector, and cooperation from J-POWER. (6) Following successful demonstration testing at Matsushima, additional testing was undertaken in 2008 to examine the impact of entrainment of higher levels of flue gas impurities (primarily \\{SOx\\} and dust by bypassing the existing FGD) and to determine which components of the CO2 recovery process are responsible for the removal of these impurities. Following an additional 1000 demonstration hours, results indicated stable operational performance in relation to the following impurities; (1) SO2: Even at higher SO2 concentrations were almost completely removed from the flue gas before entering the CO2 absorber. (2) Dust: The accumulation of dust in the absorbent was higher, leading to an advanced understanding of the behavior of dust in the CO2 capture plant and the dust removal efficiency of each component within the CO2 recovery system. The data obtained is useful for the design of large-scale units and confirms the operating robustness of the CO2 capture plant accounting for wide fluctuations in impurity concentrations. (7) This important coal fired flue gas testing showed categorically that minimizing the accumulation of large concentrations of impurities, and to suppress dust concentrations below a prescribed level, is important to achieve long-term stable operation and to minimize maintenance work for the CO2 capture plant. To comply with the above requirement, various countermeasures have been developed which include the optimization of the impurity removal technology, flue gas pre treatment and improved optimization with the flue gas desulfurization facility. (8) In case of a commercial scale CO2 capture plant applied for coal fired flue gas, its respective size will be several thousand tpd which represents a considerable scale-up from the 10 tpd demonstration plant. In order to ensure the operational reliability and to accurately confirm the influence and the behavior of the impurities in coal fired fl

Takahiko Endo; Yoshinori Kajiya; Hiromitsu Nagayasu; Masaki Iijima; Tsuyoshi Ohishi; Hiroshi Tanaka; Ronald Mitchell

2011-01-01T23:59:59.000Z

117

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

Kenneth E. Baldrey

2001-09-01T23:59:59.000Z

118

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, two cohesivity-specific additive formulations, ADA-44C and ADA-51, were evaluated in a full-scale trial at the American Electric Power Conesville plant. Ammonia conditioning was also evaluated for comparison. ADA-51 and ammonia conditioning significantly reduced rapping and non-rapped particulate re-entrainment based on stack opacity monitor data. Based on the successful tests to date, ADA-51 will be evaluated in a long-term test.

Kenneth E. Baldrey

2003-02-01T23:59:59.000Z

119

Energy and Economic Analysis of the CO2 Capture from Flue Gas of Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Abstract Carbon capture and storage is considered as one of the key strategies for reducing the emissions of carbon dioxide from power generation facilities. Although post-combustion capture via chemical absorption is now a mature technology, the separation of CO2 from flue gases shows many issues, including the solvent degradation and the high regeneration energy requirement, that in turn reduces the power plant performances. Focusing on a triple pressure and reheat combined cycle with exhaust gas recirculation, this paper aims to evaluate the potential impacts of integrating a post-combustion capture system, based on an absorption process with monoethanolamine solvent. Energy and economic performances of the integrated system are evaluated varying the exhaust gas recirculation fraction and the CO2 capture ratio. The different configurations examined are then compared in terms of efficiency and rated capacity of the integrated system, as well as considering the cost of electricity generated and the cost of CO2 avoided.

Maura Vaccarelli; Roberto Carapellucci; Lorena Giordano

2014-01-01T23:59:59.000Z

120

Purification of Natural Gases with High CO2 Content Using Gas Hydrates  

Science Journals Connector (OSTI)

Purification of Natural Gases with High CO2 Content Using Gas Hydrates ... The feed was separated using a cascade of continuously stirred tank crystallizer vessels, which can also be regarded as an ideal crystallizer column resembling a gas-hydrate-based scrubbing process. ... Pressurized gas scrubbing, pressure swing adsorption, chemical absorption, and membrane and cryogenic processes are some examples of well-established technologies for the removal of CO2 from gaseous products. ...

Nena Dabrowski; Christoph Windmeier; Lothar R. Oellrich

2009-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc)  

E-Print Network [OSTI]

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine- Appended Metal-Organic Framework, stationary sources like coal-fired power plants, carbon capture and sequestration (CCS) has been proposed.4 viable absorbents for carbon capture under the aforementioned conditions, and they are presently used

122

Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems  

SciTech Connect (OSTI)

A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2009-09-15T23:59:59.000Z

123

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers ProMIS/Project No.: DE-NT0005648  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edward Levy Edward Levy Principal Investigator Director, Lehigh University Energy Research Center RecoveRy of WateR fRom BoileR flue Gas usinG condensinG Heat excHanGeRs PRomis/PRoject no.: de-nt0005648 Background As the United States' population grows and demand for electricity and water increases, power plants located in some parts of the country will find it increasingly difficult to obtain the large quantities of water needed to maintain operations. Most of the water used in a thermoelectric power plant is used for cooling, and the U.S. Department of Energy (DOE) has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. Many coal-fired power plants operate with stack temperatures in the 300 °F range to minimize fouling and corrosion problems due to sulfuric acid condensation and to

124

Flue gas desulfurization sludge: establishment of vegetation on ponded and soil-applied waste. Final report January 1977-September 1981  

SciTech Connect (OSTI)

The report gives results of research to identify and evaluate forms of vegetation and methods of their establishment for reclaiming retired flue gas desulfurization sludge ponds. Also studied were the soil liming value of limestone scrubber sludge (LSS) and plant uptake and percolation losses of some chemical nutrients in the sludge. Several vegetation schemes were evaluated between 1977 and 1982 for covering and stabilizing LSS at Colbert Steam Plant, Cherokee, AL, and Shawnee Steam Plant, Paducah, KY. Eleven tree and 10 grass or legume species were tested for adaptability and survival when planted directly in LSS or in LSS amended with soil, municipal sewage sludge, or standard potting mix. Other studies indicated that LSS apparently has sufficient unreacted limestone to be a satisfactory soil liming agent.

Giordano, P.M.; Mays, D.A.; Soileau, J.M.

1984-01-01T23:59:59.000Z

125

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

C. Jean Bustard

2003-12-01T23:59:59.000Z

126

Recycling of Flue Gas Desulfurization residues in gneiss based hot mix asphalt: Materials characterization and performances evaluation  

Science Journals Connector (OSTI)

Abstract On the one hand, huge amount of Flue Gas Desulfurization (FGD) residues, produced during scrubbing flue gas, is discarded as solid waste. Such solid waste would cause serious environmental problems. One the other hand, high quality aggregates, such as limestone and basalt, are running out due to the rapid development of highway construction. Ungraded aggregates such as gneiss are therefore considered in China to replace the high quality aggregates. The application of FGD residues as a filler in gneiss based asphalt mixture has benefits both in environmental and economic sides. The main objective of this research was to visualize the raw materials characterization and evaluate the effect of FGD residues on the performance of gneiss based asphalt mixture. X-ray diffraction (XRD), X-ray fluorescence (XRF), Scanning Electron Microscope (SEM), Differential Scanning Calorimetric & Thermal gravimetric (DSC–TG) were used to investigate the features of raw materials. The performance of gneiss based asphalt mixture including high-temperature deformation resistance, low-temperature crack resistance and moisture-induced damage resistance were evaluated. Dynamic creep test, three-point bending test, Retained Marshall Stability (RMS), Tensile Strength Ratio (TSR), Indirect Tensile (IDT) strength and Resilient Modulus (MR) test were conducted and analyzed. Dissipated Creep Strain Energy to fracture (DCSEf) ratio, fracture energy and model analysis were also used to evaluate moisture resistance, crack resistance and deformation resistance of asphalt mixture respectively. Research results indicate that FGD residues can partly improve the moisture resistance and crack resistance of gneiss asphalt mixture, while it might worse the high-temperature deformation resistance.

Zongwu Chen; Shaopeng Wu; Fuzhou Li; Juyong Chen; Zhehuan Qin; Ling Pang

2014-01-01T23:59:59.000Z

127

Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants  

SciTech Connect (OSTI)

This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

2003-12-31T23:59:59.000Z

128

Adsorption separation of CO2 from simulated flue gas mixtures by novel CO2 ''molecular basket'' adsorbents  

Science Journals Connector (OSTI)

Adsorption separation of CO2 from simulated flue gas mixtures containing CO2, O2, and N2 by using a novel CO2 ''molecular basket'' adsorbent was investigated in a flow adsorption separation system. The novel CO2 ''molecular basket'' adsorbents were developed by synthesising mesoporous molecular sieve MCM-41 and modifying it with polyethylenimine (PEI). The influence of operation conditions, including feed flow rate, temperature, feed CO2 concentration, and sweep gas flow rate, on the CO2 adsorption/desorption separation performance and CO2 breakthrough were examined. The CO2 adsorption capacity was 91.0 ml (STP)/g-PEI, which was 27 times higher than that of the MCM-41 alone. Further, the adsorbent showed separation selectivity of greater than 1000 for CO2/N2 ratio and approximately 180 for CO2/O2, which are significantly higher than those of the MCM-41, zeolites, and activated carbons. Cyclic adsorption/desorption measurements showed that the CO2 ''molecular basket'' adsorbent was stable at 75°C. However, the CO2 ''molecular basket'' adsorbent was not stable when the operation temperature was higher than 100°C.

Xiaochun Xu; Chunshan Song; John M. Andresen; Bruce G. Miller; Alan W. Scaroni

2004-01-01T23:59:59.000Z

129

Separation of flue-gas scrubber sludge into marketable products. Second quarterly technical progress report, December 1, 1993--February 28, 1994 (Quarter No. 2)  

SciTech Connect (OSTI)

To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{lg_bullet}0.5H{sub 2}0), gypsum (CaSO{sub 4}{lg_bullet}2H{sub 2}0), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH){sub 2}), with miscellaneous objectionable impurities such as iron oxides; silica; and magnesium, sodium, and potassium oxides or salts. Currently, the only market for scrubber sludge is for manufacture of gypsum products, such as wallboard and plaster, and for cement. However, the quality of the raw sludge is often not high enough or consistent enough to satisfy manufacturers, and so the material is difficult to sell. This project is developing a process that can produce a high-quality calcium sulfite or gypsum product while keeping process costs low enough that the material produced will be competitive with that from other, more conventional sources. This purification will consist of minimal-reagent froth flotation, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified gypsum or calcium sulfite product. The separated limestone will be a useful by-product, as it can be recycled to the scrubber, thus boosting the limestone utilization and improving process efficiency. Calcium sulfite will then be oxidized to gypsum, or separated as a salable product in its own right from sludges where it is present in sufficient quantity. The main product of the process will be either gypsum or calcium sulfite, depending on the characteristics of the sludge being processed. These products will be sufficiently pure to be easily marketed, rather that being landfilled.

Kawatra, S.K.; Eisele, T.C.

1994-03-01T23:59:59.000Z

130

Fundamental mechanisms in flue gas conditioning. Topical report No. 2, Literature review and assembly of theories on the interactions of ash and conditioning agents  

SciTech Connect (OSTI)

The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ask properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

Bush, P.V.; Snyder, T.R.

1992-01-09T23:59:59.000Z

131

Development and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO2 Removal from Coal-Fired Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Demonstration of and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO 2 Removal from Coal-Fired Flue Gas Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-

132

Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator  

SciTech Connect (OSTI)

This paper describes the experimental study of dioxins removal from flue gas from a co-combustion municipal solid waste and coal incinerator by means of a fluidized absorption tower and a fabric filter. A test rig has been set up. The flow rate of flue gas of the test rig is 150-2000 m{sup 3}/h. The system was composed of a humidification and cooling system, an absorption tower, a demister, a slurry make-up tank, a desilter, a fabric filter and a measurement system. The total height of the absorption tower was 6.5 m, and the diameter of the reactor pool was 1.2 m. When the absorbent was 1% limestone slurry, the recirculation ratio was 3, the jet rate was 5-15 m/s and the submerged depth of the bubbling pipe under the slurry was 0.14 m, the removal efficiency for dioxins was 99.35%. The concentration of dioxins in the treated flue gas was 0.1573 x 10{sup -13} kg/Nm{sup 3} and the concentration of oxygen was 11%. This concentration is comparable to the emission standards of other developed countries.

Zhong Zhaoping [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China)]. E-mail: zzhong@seu.edu.cn; Jin Baosheng [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Huang Yaji [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Zhou Hongcang [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Lan Jixiang [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China)

2006-07-01T23:59:59.000Z

133

Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant  

Science Journals Connector (OSTI)

This paper presents a case study of recovering the waste heat of the exhaust flue gas before entering a flue gas desulphurizer (FGD) in a 600 MW power plant. This waste heat can be recovered by installing a low pressure economizer (LPE) to heat the condensed water which can save the steam extracted from the steam turbine for heating the condensed water and then extra work can be obtained. The energy and water savings and the reduction of CO2 emission resulted from the LPE installation are assessed for three cases in a 600 MW coal-fired power plant with wet stack. Serpentine pipes with quadrate finned extensions are selected for the LPE heat exchanger which has an overall coefficient of heat transfer of 37 W/m2·K and the static pressure loss of 781 Pa in the optimized case. Analysis results show that it is feasible to install \\{LPEs\\} in the exhaust flue gas system between the pressurizing fan and the FGD, which has little negative impacts on the unit. The benefits generated include saving of standard coal equivalent (SCE) at 2–4 g/(kW·h) and saving of water at 25–35 t/h under full load operation with corresponding reduction of CO2 emission.

Chaojun Wang; Boshu He; Shaoyang Sun; Ying Wu; Na Yan; Linbo Yan; Xiaohui Pei

2012-01-01T23:59:59.000Z

134

Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization  

Science Journals Connector (OSTI)

Abstract The wet flue gas desulfurization process (FGD) in fossil fired power plants offers the advantage of simultaneously removing SO2 and other water soluble pollutants, such as certain oxidized mercury compounds (Hg2+). In order to maximize SO2 removal efficiency of installed FGD units, organic additives can be utilized. In the context of multi-pollutant control by wet FGD, the effect of formic and adipic acid on redox reactions of dissolved mercury compounds is investigated with a continuously operated lab-scale test-rig. For sulfite ( SO 3 2 - ) concentrations above a certain critical value, their potential as reducing agent leads to rapidly increasing formation and re-emission of elemental mercury (Hg0). Increasing chloride concentration and decreasing pH and slurry temperature have been identified as key factors for depressing Hg0 re-emissions. Both organic additives have a negative impact on Hg-retention and cause increased Hg0 re-emissions in the wet FGD process, with formic acid being the significantly stronger reducing agent. Different pathways of Hg2+ reduction were identified by qualitative interpretation of the pH-dependence and by comparison of activation enthalpies and activation entropies. While the first mechanism proposed identifies SO 3 2 - as reducing agent and is therefore relevant for any FGD process, the second mechanism involves the formate anion, thus being exclusively relevant for \\{FGDs\\} utilizing formic acid as additive.

Barna Heidel; Melanie Hilber; Günter Scheffknecht

2014-01-01T23:59:59.000Z

135

Optimization and heat integration of hollow fiber based thermal swing adsorption process for CO2 capture from flue gas  

Science Journals Connector (OSTI)

Abstract This work studies the optimization of a hollow fiber contactor operated in a rapid temperature swing adsorption (RTSA) mode for CO2 capture from flue gas. A hollow fiber contactor enables rapid heat and mass transfer and an efficient heat integration whereby parasitic loads on power plants can be reduced significantly compared to the traditional thermal swing adsorption processes. In this paper we employ a dynamic optimization strategy to predict the optimal operating conditions of a hollow fiber RTSA process for different process design objectives. The objective function considered was to maximize the feed throughput of the process with constraints for the required CO2 purity and recovery. Furthermore, the external heat and cold utilities must be minimized. The optimization requires a dynamic heat integration i.e. redistributing the hot and cold stream outlet between different parts of a cycle which is challenging and unconventional. This has been performed using a binary decision variable which switches the outlet water stream between hot and cold tanks. We also show that a multi- objective optimization approach can be employed to determine the optimal trade-off between heat duty and process throughput. Optimization was performed using a single discretization approach within gPROMS.

Subramanian Swernath; Fateme Rezaei; Jayashree Kalyanaraman; Ryan. P. Lively; Matthew J. Realff; Yoshiaki Kawajiri

2014-01-01T23:59:59.000Z

136

Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, April 1--June 30, 1996  

SciTech Connect (OSTI)

On September 30, 1993, the US Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate two technologies for the placement of coal combustion residues in abandoned underground coal mines, and will assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement, using virtually dry materials, and (2) hydraulic placement, using a {open_quotes}paste{close_quotes} mixture of materials with about 70% solids. Phase II of the overall program began April 1, 1996. The principal objective of Phase II is to develop and fabricate the equipment for placing the coal combustion by-products underground, and to conduct a demonstration of the technologies on the surface. Therefore, this quarter has been largely devoted to developing specifications for equipment components, visiting fabrication plants throughout Southern Illinois to determine their capability for building the equipment components in compliance with the specifications, and delivering the components in a timely manner.

NONE

1997-05-01T23:59:59.000Z

137

Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas  

DOE Patents [OSTI]

The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

2014-10-07T23:59:59.000Z

138

Advances of flue gas desulfurization technology for coal-fired boilers and strategies for sulfur dioxide pollution prevention in China  

SciTech Connect (OSTI)

Coal is one of the most important kinds of energy resources at the present time and in the immediate future in China. Sulfur dioxide resulting from combustion of coal is one of the principle pollutants in the air. Control of SO{sub 2} discharge is still a major challenge for environmental protection in developing China. In this paper, research, development and application of technology of flue gas desulfurization (FGD) for coal-fired boilers in China will be reviewed with emphasis on cost-effective technology, and the development trends of FGD technology, as well as the strategy for SO{sub 2} discharge control in China, will be analyzed. A practical technology for middle-small-sized boilers developed by the primary author and the field investigation results will also be presented. At present, there are four major kinds of FGD technologies that are practical to be applied in China for their cost-effectiveness and efficiency to middle-small-sized boilers. An important development trend of the FGD technology for middle-small-sized boilers for the next decade is improvement of the existing cost-effective wet-type FGD technology, and in the future it will be the development of dry-type FGD technology. For middle-sized generating boilers, the development direction of the FGD technology is the spraying and drying process. For large-sized generating boilers, the wet-type limestone-plaster process will still be applied in the immediate future, and dry-type FGD technologies, such as ammonia with electron beam irradiation, will be developed in the future. State strategies for the control of SO{sub 2} discharge will involve the development and popularization of efficient coal-fired devices, extension of gas coal and liquefied coal, spreading coal washing, and centralized heating systems.

Yang, C.; Zeng, G.; Li, G.; Qiu, J.

1999-07-01T23:59:59.000Z

139

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents [OSTI]

The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

Yang, Wen-Ching (Murrysville, PA); Newby, Richard A. (Pittsburgh, PA); Lippert, Thomas E. (Murrysville, PA)

1997-01-01T23:59:59.000Z

140

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents [OSTI]

The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

Yang, W.C.; Newby, R.A.; Lippert, T.E.

1997-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Aminosilane-Grafted Polymer/Silica Hollow Fiber Adsorbents for CO2 Capture from Flue Gas  

Science Journals Connector (OSTI)

In this approach, polymeric hollow fibers similar to those already prepared on commercial scales for membrane gas separations are prepared and loaded with large volumes of solid CO2 adsorbing materials. ... In this regard, the hollow fiber RTSA process is ideally suited for application of typical silica amine adsorbents, as it (i) allows for effective heat integration,(11) (ii) gives fast cycle times (expected to be on the order of 2–4 min),(8) and (iii) minimizes contact of aminosilica-adsorbents with high-temperature steam, which can degrade the adsorbent. ... The moles of CO2 adsorbed were calculated by integration of the area bounded by the CO2 breakthrough front and the He breakthrough front from the initial concentration to the final equilibration concentration. ...

Fateme Rezaei; Ryan P. Lively; Ying Labreche; Grace Chen; Yanfang Fan; William J. Koros; Christopher W. Jones

2013-03-29T23:59:59.000Z

142

Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs  

E-Print Network [OSTI]

Previous experiments - injecting pure CO2 into carbonate cores - showed that the process is a win-win technology, sequestrating CO2 while recovering a significant amount of hitherto unrecoverable natural gas that could help defray the cost of CO2...

Nogueira de Mago, Marjorie Carolina

2005-11-01T23:59:59.000Z

143

Flue gas conditioning for improved particle collection in electrostatic precipitators. Quarterly technical report, October 1--December 31, 1993  

SciTech Connect (OSTI)

The initial pilot-scale testing of two additives was completed at CONSOL`s research coal combustor. The results and conclusions from this test series and subsequent analysis of the data are presented in this report. Table 1 summarizes the conditions tested. During the tests, the research combustor was firing a medium-sulfur coal. The combustor had recently been retrofitted with low-NOx burners for a DOE Clean Coal test program. Operation of the low-NOx burners required a reduced flow rate in the combustor, resulting in lower flow and velocity in the ESP. A comprehensive baseline condition was tested, followed by initial screening runs for several additives. It was discovered that the flyash exhibited properties characteristic of a high-resistivity ash. In-situ measurements at the ESP inlet confirmed that the resistivity was in the 10{sup 10} -- 10{sup 12} ohm-cm range. In addition, the ESP plate rappers were not able to remove ash buildup on the first section during normal operation. Power off rapping was periodically required to fully clean the plates; this is a clear indication of high-resistivity conditions. Since the major benefit of ESP additives will be to reduce reentrainment at low to midrange resistivity, this operating condition was undesirable for performance testing. It was decided to continue the program with SO{sub 3} conditioning of the flue gas to reduce particle resistivity. It was also decided to operate with two rather than three electrical fields energized. By reducing the ESP collection area, it was hoped that it would be easier to measure changes in ESP performance and to see an immediate indication of the effectiveness Of SO{sub 3} conditioning. The ESP was reconfigured with two electrical sections energized and SO{sub 3} conditioning at a rate of approximately 20 ppM. An additional baseline was run, followed by extended tests with two additives referred to in this report as Additive ``C`` and Additive ``D.``

Durham, M.D.; Baldrey, K.E.

1994-01-12T23:59:59.000Z

144

Adsorption and desorption of sulfur dioxide on novel adsorbents for flue gas desulfurization. Final report, September 1, 1994--February 29, 1996  

SciTech Connect (OSTI)

A sol-gel granulation method was developed to prepare spherical {gamma}-alumina granular supports and supported CuO granular sorbents for flue gas desulfurization. The prepared {gamma}-alumina supported CuO sorbents exhibit desirable pore structure and excellent mechanical properties. The sorbents contain higher loading (30-40 wt. %) of CuO dispersed in the monolayer or sub-monolayer form, giving rise to a larger SO{sub 2} sorption capacity ({gt}20 wt.%) and a faster sorption rate as compared to similar sorbents reported in the literature. With these excellent sulfation and mechanical properties, the sol-gel derived {gamma}-alumina supported CuO granular sorbents offer great potential for use in the dry, regenerative flue gas desulfurization process. Research efforts were also made to prepare DAY zeolite supported sorbents with various CuO contents by the microwave and conventional thermal dispersion methods at different conditions. Monolayer or sub-monolayer coating of Cu(NO{sub 3})sub 2 or CuO was achieved on several DAY supported sorbents by the microwave heating method but not by the conventional thermal dispersion method. The DAY zeolite supported CuO sorbents prepared by the microwave heating method can adsorb up to 15 wt.% of SO{sub 2}. The results obtained have demonstrated the feasibility of effective preparation of zeolite supported CuO sorbents by the microwave heating method.

Lin, Y.S.; Deng, S.G.

1996-08-05T23:59:59.000Z

145

Thermal-destruction products of coal in the blast-furnace gas-purification system  

SciTech Connect (OSTI)

The lean, poorly clinkering coal and anthracite used to replace coke in blast furnaces has a considerable content of volatile components (low-molecular thermaldestruction products), which enter the water and sludge of the blast-furnace gas-purification system as petroleum products. Therefore, it is important to study the influence of coal on the petroleum-product content in the water and sludge within this system. The liberation of primary thermal-destruction products is investigated for anthracite with around 4 wt % volatiles, using a STA 449C Jupiter thermoanalyzer equipped with a QMC 230 mass spectrometer. The thermoanalyzer determines small changes in mass and thermal effects with high accuracy (weighing accuracy 10{sup -8} g; error in measuring thermal effects 1 mV). This permits experiments with single layers of coal particles, eliminating secondary reactions of its thermal-destruction products.

A.M. Amdur; M.V. Shibanova; E.V. Ental'tsev [Russian Academy of Sciences, Yekaterinburg (Russian Federation). Russia Institute of Metallurgy

2008-10-15T23:59:59.000Z

146

Packed-Bed Reactor Study of NETL Sample 196c for the Removal of Carbon Dioxide from Simulated Flue Gas Mixture  

SciTech Connect (OSTI)

An amine-based solid sorbent process to remove CO2 from flue gas has been investigated. The sorbent consists of polyethylenimine (PEI) immobilized onto silica (SiO2) support. Experiments were conducted in a packed-bed reactor and exit gas composition was monitored using mass spectrometry. The effects of feed gas composition (CO2 and H2O), temperature, and simulated steam regeneration were examined for both the silica support as well as the PEI-based sorbent. The artifact of the empty reactor was also quantified. Sorbent CO2 capacity loading was compared to thermogravimetric (TGA) results to further characterize adsorption isotherms and better define CO2 working capacity. Sorbent stability was monitored by periodically repeating baseline conditions throughout the parametric testing and replacing with fresh sorbent as needed. The concept of the Basic Immobilized Amine Sorbent (BIAS) Process using this sorbent within a system where sorbent continuously flows between the absorber and regenerator was introduced. The basic tenet is to manipulate or control the level of moisture on the sorbent as it travels around the sorbent circulation path between absorption and regeneration stages to minimize its effect on regeneration heat duty.

Hoffman, James S.; Hammache, Sonia; Gray, McMahan L.; Fauth Daniel J.; Pennline, Henry W.

2012-04-24T23:59:59.000Z

147

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-01-29T23:59:59.000Z

148

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-06-04T23:59:59.000Z

149

Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide  

Science Journals Connector (OSTI)

Flue gases from coal, gas, or oil-fired power stations, as well as from several heavy industries, such as the production of iron, lime and cement, are major anthropogenic sources of global CO2 emissions. The newly proposed process for syngas production based on the tri-reforming of such flue gases with natural gas could be an important route for CO2 emission avoidance. In addition, by combining the carbothermic reduction of iron oxide with the partial oxidation of the carbon source, an overall thermoneutral process can be designed for the co-production of iron and syngas rich in CO. Water-gas shift (WGS) of CO to H2 enables the production of useful syngas. The reaction process heat, or the conditions for thermoneutrality, are derived by thermochemical equilibrium calculations. The thermodynamic constraints are determined for the production of syngas suitable for methanol, hydrogen, or ammonia synthesis. The environmental and economic consequences are assessed for large-scale commercial production of these chemical commodities. Preliminary evaluations with natural gas, coke, or coal as carbon source indicate that such combined processes should be economically competitive, as well as promising significant fuel saving and CO2 emission avoidance. The production of ammonia in the above processes seems particularly attractive, as it consumes the nitrogen in the flue gases.

M. Halmann; A. Steinfeld

2006-01-01T23:59:59.000Z

150

Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No. 13, March 1, 1994--May 31, 1994  

SciTech Connect (OSTI)

The NOXSO process is a dry, post-combustion flue gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from the flue gas of a coal-fired utility boiler. In the process, the SO{sub 2} is converted to a sulfur by-product and the NO{sub x} is converted to nitrogen and oxygen. It is predicted that the process can economically remove 90% of the acid rain precursor gases from the flue gas stream in a retrofit or new facility. The objective of the NOXSO Demonstration Project is to design, construct, and operate a flue gas treatment system utilizing the NOXSO process. The effectiveness of the process will be demonstrated by achieving significant reductions in emissions of sulfur and nitrogen oxides. In addition, sufficient operating data will be obtained to confirm the process economics and provide a basis to guarantee performance on a commercial scale. The project is presently in the project definition and preliminary design phase. Data obtained during pilot plant testing which was completed on July 30, 1993 is being incorporated in the design of the commercial size plant. A suitable host site to demonstrate the NOXSO process on a commercial scale is presently being sought. Preliminary engineering activities involved evaluating various design options for the major process vessels with the principal focus being on the sorbent heater vessel, which is operated at the highest temperature. Additionally, the impact of the NOXSO system on power plant particulate emissions and opacity was estimated. It is predicted that particulate emissions will decrease slightly while opacity will increase slightly. Neither change will be significant enough to have an impact on emissions compliance. Advertised performance of the proposed adsorber separator is being verified by laboratory testing. Process studies activities included POC equipment inspection and materials evaluations.

NONE

1994-12-31T23:59:59.000Z

151

Steam Reactivation and Separation of Limestone Sorbents for High Temperature Post-combustion CO2 Capture from Flue Gas.  

E-Print Network [OSTI]

?? Increasing global population and demand for energy has raised concerns of excessive anthropogenic greenhouse gas emissions from consumption of fossil fuels. Coal, in particular,… (more)

Wang, Alan Yao

2012-01-01T23:59:59.000Z

152

Simulation study on lignite-fired power system integrated with flue gas drying and waste heat recovery – Performances under variable power loads coupled with off-design parameters  

Science Journals Connector (OSTI)

Abstract Lignite is a kind of low rank coal with high moisture content and low net heating value, which is mainly used for electric power generation. However, the thermal efficiency of power plants firing lignite directly is very low. Pre-drying is a proactive option, dehydrating raw lignite to raise its heating value, to improve the power plant thermal efficiency. A pre-dried lignite-fired power system integrated with boiler flue gas drying and waste heat recovery was proposed in this paper. The plant thermal efficiency could be improved by 1.51% at benchmark condition due to pre-drying and waste heat recovery. The main system performances under variable power loads were simulated and analyzed. Simulation results show that the improvement of plant thermal efficiency reduced to 1.36% at 50% full load. Moreover, the influences of drying system off-design parameters were simulated coupled with power loads. The variation tendencies of main system parameters were obtained. The influence of pre-drying degree (including moisture content of pre-dried lignite and raw lignite) on the plant thermal efficiency diminishes gradually with the decreasing power load. The dryer thermal efficiency and dryer exhaust temperature are also main factors and the influences on system parameters have been quantitatively analyzed.

Xiaoqu Han; Ming Liu; Jinshi Wang; Junjie Yan; Jiping Liu; Feng Xiao

2014-01-01T23:59:59.000Z

153

FASTCHEM/trademark/ (Fly Ash and Flue Gas Desulfurization Sludge Transport and Geochemistry) package: Volume 2, User's guide to the EFLOW groundwater flow code  

SciTech Connect (OSTI)

This report documents a two-dimensional finite element code, EFLOW, developed to simulate water flow in fully or variably saturated porous media. This code is one component in the FASTCHEM/trademark/ (Fly Ash and Flue Gas Desulfurization Sludge Transport and Geochemistry) package. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. For variably saturated flow problems, nonlinearities caused by unsaturated soil properties, atmospheric boundary conditions (e.g., infiltration, evaporation and seepage faces), and water uptake by plant roots are treated using Picard or Newton-Raphson methods. For fully saturated unconfined flow problems, the governing equations are formulated in an areal plane, and nonlinear water-table boundary conditions are treated using the Picard method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. 24 refs., 39 figs., 27 tabs.

Not Available

1988-09-01T23:59:59.000Z

154

Chapter 26 - The Oxyfuel Baseline: Revamping Heaters and Boilers to Oxyfiring by Cryogenic Air Separation and Flue Gas Recycle  

Science Journals Connector (OSTI)

This feasibility study involves the potential application of oxyfuel technology on a refinery-wide basis at the BP Grangemouth unit in Scotland. A total of seven boilers and 13 process heaters of various types, burning a mixture of refinery fuel gas and fuel oil resulting in the production of approximately 2.0 million tonnes per annum of CO2, form the basis of this study.

Rodney Allam; Vince White; Neil Ivens; Mark Simmonds

2005-01-01T23:59:59.000Z

155

Improved high efficiency third stage separator cyclones for separation of fines from fluid catalytic cracking flue gas  

SciTech Connect (OSTI)

Stairmand type small diameter (0.254 m) multicyclones were cold flow tested for fluid catalytic cracking third stage separator application. The gas discharge from the cyclone dust outlet into the common collection hopper was found to far exceed the hopper bleed rate (underflow). The excess gas reentrained dust from the hopper back into cyclones, which lowered collection efficiencies. Vortex {open_quotes}stabilization{close_quotes} using apex cones was unsuccessful whereas a Mobil proprietary cyclone modification was successful in minimizing excess gas discharge and dust reentrainment at the cyclone-hopper boundary. In tests at 700 {degrees}C, the modified cyclones captured all particles above 4 {mu}m. Mobil-Kellogg incorporated the modified cyclones in a new third stage separator design which is targeted for achieving lowest opacity and <50 mg/Nm{sup 3} emissions at the stack. The first such unit will be commercialized in Mobil`s newest catalytic cracker (M.W. Kellogg design) under construction in Altona, Australia in late 1996. 5 refs., 4 figs., 2 tabs.

Chitnis, G.K.; Schatz, K.W. [Mobil Technology Co., Paulsboro, NJ (United States); Bussey, B.K. [M.W. Kellogg Co., Houston, TX (United States)

1996-12-31T23:59:59.000Z

156

Novel technologies for SO{sub x}/NO{sub x} removal from flue gas; Technical report, September 1--November 30, 1993  

SciTech Connect (OSTI)

The goal of this research is to develop a low temperature deNO{sub x} catalyst with activity high enough for boiler retrofit applications. Cu-ZrO{sub 2} is a promising low temperature catalyst for the selective reduction of No by propene. At NO = 1000 ppm, propene (C{sub 3}H{sub 6}) = 1000 ppm and 0{sub 2} = 1% and a space velocity of 13,000 h{sup {minus}1}, the NO conversion to N{sub 2} is 64% at 265{degrees}C. The performance of the catalyst, however, does not fulfill the requirement when used for flue gas clean up where the feed is composed of 4% O{sub 2} and 10% H{sub 2}O, and the temperature is 150{degrees}C. Methods to improve the performance of the catalyst are being sought. These include modification of the preparation method such as varying the aging time of the gel after precipitation, and addition of promoters like Pd and Nd to increase the catalytic activity at lower temperatures and higher 0{sub 2} concentrations. Using ethanol (C{sub 2}H{sub 5}OH) instead of C{sub 3}H{sub 6} as a reductant improves the performance of the catalyst when H{sub 2}O is present. Interestingly, methanol is not an effective reductant. Some modified carbon catalysts are also tested. Results on Cu impregnated ASC whetlerite carbon catalyst show 100% N{sub 2} selectivity and 35 % NO conversion at 200{degrees}C. However, the catalyst is unstable and deactivates rapidly. Work planned for the next quarter is to continue to investigate methods to improve the catalytic activity.

Kung, M.; Yang, B. [Northwestern Univ., Chicago, IL (United States); Spivey, J.J.; Agarwal, S.K.; Jang, B.W. [Research Triangle Inst., Durham, NC (United States)

1993-12-31T23:59:59.000Z

157

Tri-reforming of Natural Gas Using CO2 in Flue Gas of Power Plants without CO2 Pre-separation for Production of Synthesis Gas with Desired H2/CO Ratios  

Science Journals Connector (OSTI)

Most existing CO2 conversion processes use pure CO2 that comes from CO2 recovery, separation and subsequent purification, which are all energy- consuming steps that add up the cost and can lead to additional CO2 ...

Chunshan Song; Wei Pan; Srinivas T. Srimat

2002-01-01T23:59:59.000Z

158

Post-combustion Carbon Capture with a Gas Separation Membrane: Parametric Study, Capture Cost, and Exergy Analysis  

Science Journals Connector (OSTI)

Post-combustion Carbon Capture with a Gas Separation Membrane: Parametric Study, Capture Cost, and Exergy Analysis ... (5) In a post-combustion CO2 capture process, the purity of the captured CO2 in the permeate stream mainly depends upon the selectivity of CO2 over the other gas species, such as N2 and O2. ... Capturing CO2 from flue gases in a power plant is not like traditional gas processing or purification, there are no strict requirements on the decarbonized sweet gas, which means no strict requirement on the CO2 concentration in the sweet gas or CO2 capture ratio. ...

Xiangping Zhang; Xuezhong He; Truls Gundersen

2013-03-04T23:59:59.000Z

159

Oxyfuel CO2 compression: The gas phase reaction of elemental mercury and \\{NOx\\} at high pressure and absorption into nitric acid  

Science Journals Connector (OSTI)

Abstract Oxyfuel combustion is a technology which combusts coal in oxygen and recycled flue gas, producing a carbon dioxide rich flue gas for sequestration. Oxyfuel flue gas contains trace amounts of elemental mercury, which may corrode brazed aluminium heat exchangers used in the carbon dioxide purification system. International gas vendors have tested the use of the compression system to remove other flue gas impurities such as NOx; however, the reaction mechanism of mercury and its reaction products with \\{NOx\\} and nitric acid formed with condensed water vapour are unclear. This study used lab scale experiments to study the absorption of gaseous elemental mercury into nitric acid and the gas phase reaction between mercury and nitrogen dioxide formed from oxidised NO at pressures up to 25 bar. It was observed that mercury has limited absorption into nitric acid and may partially desorb out of solution after depressurisation. On the other hand, mercury reacted readily with nitrogen dioxide (formed from nitric oxide oxidation at high pressure) in the gas phase. These gas phase reactions from the oxidation of nitric oxide to nitrogen dioxide to the subsequent oxidation of elemental mercury by nitrogen dioxide were predicted using existing global kinetic equations. The limited absorption of gaseous elemental mercury in nitric acid and significant oxidation of gaseous elemental mercury by nitrogen dioxide suggests that the primary removal step for elemental mercury is through the gas phase reaction. Oxyfuel compression circuits should therefore allow sufficient residence time for this gas phase reaction to occur.

Timothy Ting; Rohan Stanger; Terry Wall

2014-01-01T23:59:59.000Z

160

Antibody Purification AntibodyPurification  

E-Print Network [OSTI]

in academic laboratories and small-scale production facilities affinity-purify antibodies using one of severalAntibody Purification AntibodyPurification 24 Overview Antibodies are proteins; therefore, methods of purification from biological samples (serum,ascites fluid or culture super- natant) are really specialized

Lebendiker, Mario

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

HD gas purification for polarized HDice targets production at Jefferson Lab  

SciTech Connect (OSTI)

Solid, frozen-spin targets of molecular HD were #12;rst developed for nuclear physics by a collaboration between Syracuse University and Brookhaven National Lab. They have been successfully used in measurements with photon beams, #12;rst at the Laser-Electron-Gamma-Source [1] and most recently at Je#11;erson Lab during the running of the E06-101 (g14) experiment [2]. Preparations are underway to utilize the targets in future electron experiments after the completion of the 12 GeV JLab upgrade [3]. HD is an attractive target since all of the material is polarizable, of low Z, and requires only modest holding #12;elds. At the same time, the small contributions from the target cell can be subtracted from direct measurements. Reaching the frozen-spin state with both high polarization and a signi#12;cant spin relaxation time requires careful control of H2 and D2 impurities. Commercially available HD contains 0.5 - 2% concentrations of H2 and D2. Low-temperature distillation is required to reduce these concentrations to the 10􀀀4 level to enable useful target production. This distillation is done using a column #12;lled with heli-pack C [4] to give good separation e#14;ciency. Approximately 12 moles of commercial HD is condensed into the mechanically refrigerated system at the base temperature of 11K. The system is then isolated and the temperature stabilized at 18K producing liquid HD, which is boiled by a resistive heater. The circulation established by the boil-o#11; condensing throughout the column then #12;ltering back down produces a steady-state isotopic separation permitting the extraction of HD gas with very low H2 and D2 content. A residual gas analyzer initially monitors distillation. Once the H2 concentration falls below its useful operating range, samples are periodically collected for analysis using gas chromatography [5] and Raman scattering. Where the measurement techniques overlap, good agreement is obtained. The operation of the distillery and results of gas analysis will be discussed. References [1] Phy. Rev. Lett. 101 (2009) 172002. [2] www.jlab.org/exp_prog/proposals/06/PR-06-101.pdf [3] www.jlab.org/exp_prog/proposals/12/PR12-12-009.pdf, www.jlab.org/exp_prog/proposals/12/PR12-12-010.pdf, and www.jlab.org/exp_prog/proposals/11/PR12-11-111.pdf [4] Nucl. Inst. Meth. 664 (2012) 347, www.wilmad-labglass.com/Products/LG-6730-104/ [5] Rev. Sci. Instrum. 82, 024101 (2011).

Whisnant, Charles; D'Angelo, Annalisa; Colaneri, Luca; Devilbiss, J.; Kageya, Tsuneo; Loving, D.A.; Lowry, Michael; Rizzo, Alessandro; Sandorfi, Andrew; Schaerf, Carlo; Storey, J.D.; Wallace, C.M.; Wei, Xiangdong; Zonta, Irene

2014-06-01T23:59:59.000Z

162

Reducing the cost of CO{sub 2} capture from flue gases using pressure swing adsorption  

SciTech Connect (OSTI)

Pressure swing adsorption (PSA) processes have been used extensively for gas separation, especially in the separation of hydrogen from CO{sub 2}, and in air purification. The objective of this paper is to examine the economic feasibility of pressure swing adsorption (PSA) for recovering CO{sub 2} from postcombustion power plant flue gas. The analysis considers both high-pressure feed and vacuum desorption using commercial adsorbent 13X, which has a working capacity of 2.2 mol/kg and CO{sub 2}/N{sub 2} selectivity of 54. The results show that using vacuum desorption reduces the capture cost from US$57 to US$51 per ton of CO{sub 2} avoided and is comparable in cost to CO{sub 2} capture using conventional MEA absorption of US$49 per ton of CO{sub 2} avoided. In this paper, a sensitivity analysis is also presented showing the effect on the capture cost with changes in process cycle; feed pressure and evacuation pressure; improvements the adsorbent characteristics; and selectivity and working capacity. The results show that a hypothetical adsorbent with a working capacity of 4.3 mol/kg and a CO{sub 2}/N{sub 2} selectivity of 150 can reduce the capture cost to US$30 per ton of CO{sub 2} avoided.

Ho, M.T.; Allinson, G.W.; Wiley, D.E. [University of New South Wales, Sydney, NSW (Australia)

2008-07-15T23:59:59.000Z

163

KTAdesign Purification Method handbook  

E-Print Network [OSTI]

................................................................................................................................................. 33 Planning peptide purification synthetic peptides Standard purification protocol for synthetic ................................................................................................................................................. 80 Planning oligonucleotide purification Standard purification protocol for synthetic Optimization Cycle Active Analogues Cloned Gene DNA Synthesis Sequencing Probe Antisense Primers Isolated Gene

Kirschner, Marc W.

164

Emerging Technologies on Syngas Purification: Process Intensification  

Science Journals Connector (OSTI)

Syngas normally contains a series of contaminating gases,...2S, accompanied by COS and, also, HCl, HF, etc. Normally, purification should be performed before its combustion in the gas turbine (in the case...

Ramón Álvarez-Rodríguez; Carmen Clemente-Jul

2011-01-01T23:59:59.000Z

165

GE Healthcare Antibody Purification  

E-Print Network [OSTI]

.....................................................................................................................4 Chapter 3. Small-scale purification by affinity chromatography......................43 GeneralGE Healthcare Antibody Purification Handbook GE Healthcare imagination at work agination at work Purification Handbook Principles and Methods 18-1142-75 Isolation of mononuclear cells Methodology

Lebendiker, Mario

166

Gas Turbine Plants  

Science Journals Connector (OSTI)

In a cycle process of a gas turbine, the compressor load, as well as ... from the expansion of the hot pressurized flue gas. Either turbine, compressor and driven assembly are joined by ... shaft is thus divided,...

1992-01-01T23:59:59.000Z

167

Flue gas desulfurization gypsum and fly ash  

SciTech Connect (OSTI)

The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.

Not Available

1992-05-01T23:59:59.000Z

168

Recovery of CO2 from Flue Gases: Commercial Trends  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 from Flue Gases: Commercial Trends Originally presented at the Canadian Society of Chemical Engineers annual meeting October 4-6, 1999, Saskatoon, Saskatchewan, Canada Authors: Dan G. Chapel (dan.chapel@fluor.com; 949-349-7530) Carl L. Mariz (carl.mariz@fluor.com; 949-349-7530) FluorDaniel One Fluor Drive Aliso Viejo CA, 92698 John Ernest (john.ernest@minimed.com; 818-576-4293) Advanced Quality Services Inc 11024 Balboa Blvd. PMB154, Granada Hills, CA 91344-5007 1 Recovery of CO 2 from Flue Gases: Commercial Trends Originally presented at the Canadian Society of Chemical Engineers annual meeting October 4-6, 1999, Saskatoon, Saskatchewan, Canada Authors: Dan Chapel - Fluor Daniel Inc., Senior Vice President Technology; Oil, Gas & Power John Ernest - Advanced Quality Services Inc., Validation Engineer

169

CO2-SELECTIVE MEMBRANE FOR FUEL CELL APPLICATIONS.  

E-Print Network [OSTI]

??We have developed CO2-selective membranes to purified hydrogen and nitrogenfor fuel cell processes. Hydrogen purification impacts other industries such as ammoniaproduction and flue gas purification… (more)

El-Azzami, Louei Abdel Raouf

2006-01-01T23:59:59.000Z

170

CO2 Separation from Low-Temperature Flue Gases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

partners interested in implementing United States Patent Number 7,842,126 entitled "Co 2 Separation from Low-Temperature Flue Gases." Disclosed in this patent are novel methods for processing carbon dioxide (CO 2 ) from combustion gas streams. Researchers at NETL are focused on the development of novel sorbent systems that can effectively remove CO 2 and other gases in an economically feasible manner with limited impact on energy production cost. The current invention will help in reducing greenhouse gas emissions by using an improved, regenerable aqueous amine and soluble potassium carbonate sorbent system. This novel solvent system may be capable of achieving CO 2 capture from larger emission streams at lower overall cost. Overview Sequestration of CO

171

Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery  

DOE Patents [OSTI]

A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

2011-10-18T23:59:59.000Z

172

Effect of V2O5 additive on simultaneous SO2 and NO removal from flue gas over a monolithic cordierite-based CuO/Al2O3 catalyst  

Science Journals Connector (OSTI)

A monolithic cordierite-based CuO/Al2O3 catalyst showed industrial potential for simultaneous SO2 and NO removal from flue gases at 350–400 °C. However, it is still a challenge to prevent CuO from aggregation and to keep it in an active state during the removal and regeneration processes. This work shows that addition of V2O5 to the catalyst can significantly reduce CuO particle size and improve SO2 removal activity, and maintain a high selective catalytic reduction (SCR) activity for NO removal. Furthermore, V2O5 additive prevents aggregation of SiO2 in the cordierite with the coated Al2O3, and inhibits over reduction of the SO2 removal product, CuSO4, during the regeneration by NH3, which are important to the catalyst's stability. V2O5 additive changes the regeneration product from Cu3N to CuO and thus may avoid the temperature rise and \\{NOx\\} release in the subsequent removal process.

Qingya Liu; Zhenyu Liu; Weize Wu

2009-01-01T23:59:59.000Z

173

Water purification and monitoring.  

E-Print Network [OSTI]

??The purification of water for the next century is paramount. As global demand for energy increases new ways of generating energy have been discovered and… (more)

Maguire Boyle, Samuel James

2014-01-01T23:59:59.000Z

174

NETL: IEP – Post-Combustion CO2 Emissions Control - CO2 Capture from Flue  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Flue Gas by Phase Transitional Absorption from Flue Gas by Phase Transitional Absorption Project No.: FG26-05NT42488 Basic Illustration of the Phase Transitional Absorption Process. Basic Illustration of the Phase Transitional Absorption Process. Hampton University researched a novel carbon dioxide (CO2) absorption concept, phase transitional absorption, that utilizes a two-part proprietary absorbent consisting of an activated agent dissolved in a solvent. Phase separation of the activated agent from the chemical solvent occurs during CO2 absorption and physical separation of the two phases exiting the absorber reduces the volume of process liquid requiring thermal regeneration. This unique aspect of phase transitional absorption also decreases the amount of energy (i.e., steam) required to liberate the CO2. If the proper liquid

175

Ultra-high CO2 capture efficiency in CFB oxyfuel power plants by calcium looping process for CO2 recovery from purification units vent gas  

Science Journals Connector (OSTI)

Abstract This work presents a new option for the recovery of the CO2 losses from CO2 purification units in oxyfuel plants, by means of the Ca-looping process. The idea is to capture the CO2 in the vent stream from purification units by reaction with CaO sorbent in a carbonator reactor, where CaCO3 is formed. Sorbent is then regenerated in a calciner reactor by oxyfuel combustion of a fraction of the coal fed to the power plant. Since the Ca-looping process requires a continuous purge of exhaust sorbent and make-up of fresh limestone, the system is best coupled with a CFB boiler, where the exhausted Ca-rich sorbent can be used for in-furnace sulfur absorption. In this work, detailed mass and energy balances of the system proposed are reported, including a preliminary sizing of the reactors of the Ca-looping unit. A sensitivity analysis was also performed, by considering two types of coal as feed (mainly differing in sulfur content), two levels of non-condensable gases in the impure CO2 stream to be purified and different behaviors of the exhausted Ca-based sorbent injected in the CFB boiler, where it can experience different levels of recarbonation. Interesting results were obtained for this new system, which can capture about 90% of the CO2 vented from the purification unit in a reasonably compact reactors system, allowing an overall CO2 avoidance of the order of 99% with respect to conventional coal-fired steam plants without capture. As far as energy penalties are concerned, they were evaluated by the specific primary energy consumption for CO2 avoided index (SPECCA). Small differences with respect to reference oxyfuel plants without CO2 recovery were obtained, with either slightly better or slightly worse performances, depending on the sulfur content of the coal used. Penalties are associated to the export of CaO in the final exhausted sulfated sorbent from the CFB boiler, which increases when a higher sulfur coal is used. However, experimental analysis on the recarbonation level which can be attained by the CaL exhaust sorbent in the CFB boiler and further process optimization are needed to correctly account for these penalties and possibly minimize them.

Matteo C. Romano

2013-01-01T23:59:59.000Z

176

FlueGen Inc | Open Energy Information  

Open Energy Info (EERE)

FlueGen Inc FlueGen Inc Jump to: navigation, search Name FlueGen, Inc. Place Irvine, California Zip 92614 Product Irvine-based original equipment manufacturer (OEM) of air pollution control systems for the utility industry, including coal-fired power plants, in addition to financing client's projects, thereafter operating and maintaining the system for a fee. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Advanced Technology for the Capture of Carbon Dioxide from Flue Gases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology for the Capture of Carbon Dioxide Technology for the Capture of Carbon Dioxide from Flue Gases by Shrikar Chakravarti (shrikar_chakravarti@praxair.com; 716-879-4760) Amitabh Gupta (ami_gupta@praxair.com; 716-879-2194) Balazs Hunek (balazs_hunek@praxair.com; 716-879-2250) Praxair, Inc. Process & Systems R&D, CO 2 Technology 175 East Park Drive, P.O. Box 44 Tonawanda, NY 14150 USA key words: flue gas, carbon dioxide, separation, amine absorption, oxygen tolerant process, amine blends First National Conference on Carbon Sequestration Washington, DC, May 15-17, 2001 Copyright 2001, Praxair Technology, Inc. All Rights Reserved. 1 Abstract Cost effective carbon sequestration schemes have been identified as a key need for dealing with carbon dioxide's (CO 2 ) impact on global climate change. Two main

178

Optimal Gas Turbine Integration to the Process Industries  

Science Journals Connector (OSTI)

Gas turbine integration can also help cut down flue gas emissions as a result of the improved efficiency of a cogeneration system. ... The aeroderivative turbines have higher efficiency than the industrial type, but they are more expensive. ...

Jussi Manninen; X. X. Zhu

1999-09-28T23:59:59.000Z

179

Gas Separation With Graphene Membranes By Will Soutter  

E-Print Network [OSTI]

Gas Separation With Graphene Membranes By Will Soutter Introduction What is Graphene? Benefits of Graphene in Gas Separation Membranes Recent Developments Conclusion References Introduction The separation applications including fuel cells, batteries, gas sensors and gas purification. The materials

Bunch, Scott

180

Reducing the cost of CO{sub 2} capture from flue gases using membrane technology  

SciTech Connect (OSTI)

Studies of CO{sub 2} capture using membrane technology from coal-fired power-plant flue gas typically assume compression of the feed to achieve a driving force across the membrane. The high CO{sub 2} capture cost of these systems reflects the need to compress the low-pressure feed gas (1 bar) and the low CO{sub 2} purity of the product stream. This article investigates how costs for CO{sub 2} capture using membranes can be reduced by operating under vacuum conditions. The flue gas is pressurized to 1.5 bar, whereas the permeate stream is at 0.08 bar. Under these operating conditions, the capture cost is U.S. $54/tonne CO{sub 2} avoided compared to U.S. $82/tonne CO{sub 2} avoided using membrane processes with a pressurized feed. This is a. reduction of 35%. The article also investigates the effect on the capture cost of improvements in CO{sub 2} permeability and selectivity. The results show that the capture cost can be reduced to less than U.S. $25/tonne CO{sub 2} avoided when the CO{sub 2} permeability is 300 bar, CO{sub 2}/N{sub 2} selectivity is 250, and the membrane cost is U.S. $10/m{sup 2}.

Ho, M.T.; Allinson, G.W.; Wiley, D.E. [University of New South Wales, Kensington, NSW (Australia)

2008-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PRODUCTION OF CONSTRUCTION AGGREGATES FROM FLUE GAS DESULFURIZATION SLUDGE  

SciTech Connect (OSTI)

The three main conclusions of this report are: (1) The pilot plant successfully demonstrated the continuous, fully-integrated, long-term process operation, including the mixing, pelletizing, and curing steps for aggregate production. The curing vessel, which was designed for the pilot plant test, was operated in a mass flow mode and performed well during pilot plant operation. (2) The pilot plant test demonstrated process flexibility. The same equipment was used to produce lightweight, medium-weight, and road aggregates. The only change was the mix formulation. Aggregates were produced from a variety of mix designs and from FGD sludge with solids concentrations between 45.0% and 56.7% and moisture contents between 55.0% and 43.3%. (3) The pilot plant provided operating data and experience to design and cost a commercial plant, which was not part of the cooperative agreement.

M.M. Wu; D.C. McCoy; R.O. Scandrol; M.L. Fenger; J.A. Withum; R.M. Statnick

2000-05-01T23:59:59.000Z

182

Probabilistic theories with purification  

SciTech Connect (OSTI)

We investigate general probabilistic theories in which every mixed state has a purification, unique up to reversible channels on the purifying system. We show that the purification principle is equivalent to the existence of a reversible realization of every physical process, that is, to the fact that every physical process can be regarded as arising from a reversible interaction of the system with an environment, which is eventually discarded. From the purification principle we also construct an isomorphism between transformations and bipartite states that possesses all structural properties of the Choi-Jamiolkowski isomorphism in quantum theory. Such an isomorphism allows one to prove most of the basic features of quantum theory, like, e.g., existence of pure bipartite states giving perfect correlations in independent experiments, no information without disturbance, no joint discrimination of all pure states, no cloning, teleportation, no programming, no bit commitment, complementarity between correctable channels and deletion channels, characterization of entanglement-breaking channels as measure-and-prepare channels, and others, without resorting to the mathematical framework of Hilbert spaces.

Chiribella, Giulio; D'Ariano, Giacomo Mauro; Perinotti, Paolo [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Ontario, Ontario N2L 2Y5 (Canada); QUIT Group, Dipartimento di Fisica ''A. Volta'' and INFN Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy)

2010-06-15T23:59:59.000Z

183

An Electrochemically-mediated Gas Separation Process for Carbon Abatement  

E-Print Network [OSTI]

This work describes a promising alternative to conventional thermal processes for absorber/desorber processing of for removal of CO[subscript 2] from flue gas streams at fossil fuel fired power plants. Our electrochemica ...

Stern, Michael C.

184

Liquid Scintillator Purification  

SciTech Connect (OSTI)

The KamLAND collaboration has studied background requirements and purification methods needed to observe the 7Be neutrino from the sun. First we will discuss the present background situation in KamLAND where it is found that the main background components are 210Pb and 85Kr. It is then described how to purify the liquid scintillator. The present status and results on how to remove 210Pb from the liquid scintillator are discussed. Specifically, the detailed analysis of the effects of distillation and adsorption techniques are presented.

Kishimoto, Y. [Research Center for Neutrino Science, Tohoku University (Japan)

2005-09-08T23:59:59.000Z

185

The QIAexpressionist 03/2001 63 Purification  

E-Print Network [OSTI]

to empirically establish optimal conditions with small-scale cultures before purification on a larger scaleThe QIAexpressionist 03/2001 63 Purification Purification Optimal expression of recombinant, and in this context directly influence the strategies employed for protein purification. It is therefore advisable

Lebendiker, Mario

186

Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures  

DOE Patents [OSTI]

A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

Aines, Roger D.; Bourcier, William L.

2014-08-19T23:59:59.000Z

187

Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures  

DOE Patents [OSTI]

A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

2010-11-09T23:59:59.000Z

188

Comparing Russian and Finnish standards of water purification; Comparing Russian and Finnish standards of water purification.  

E-Print Network [OSTI]

??The subject of this thesis is water purification. The first aim of this thesis is to consider different ways of water purification. The second aim… (more)

Maria, Pupkova

2012-01-01T23:59:59.000Z

189

Purification and Properties of Crustacyanin  

Science Journals Connector (OSTI)

15 February 1966 research-article Purification and Properties of Crustacyanin D. F. Cheesman P. F. Zagalsky...per molecule of protein. Crustacyanin, on dialysis against water, dissociates into particles of about 35 000 molecular weight...

1966-01-01T23:59:59.000Z

190

Water purification using TAM5  

E-Print Network [OSTI]

WA TER PURIFICA TIOA' USING TAMS A Senior Thesis By Elizabeth Philip 1997-98 University Undergraduate Research Fellow Texas AS' University Group: Engineering III WATER PURIFICATION USING TAMS By ELIZABETH PHILIP Submitted to the Office...Profess an Head epartment of Chemical Engineering a fc ~b( Susanna Finnell, Executive Director Honors Programs and Academic Scholarships Fellows Group: Engineering III WATER PURIFICATION USING TAMS A Senior Thesis By Elizabeth Philip 1997-98 University...

Philip, Elizabeth

2013-02-22T23:59:59.000Z

191

Control of pollutants in flue gases and fuel gases  

E-Print Network [OSTI]

and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Flue gases and fuel gases: combustion, gasification, pyrolysis, incineration and other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . 3-5 3.4 Emission

Laughlin, Robert B.

192

Control of pollutants in flue gases and fuel gases  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Flue gases and fuel gases: combustion, gasification, pyrolysis, incineration and other and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . . 3-5 3.4 Emission

Zevenhoven, Ron

193

Main Purification Operations  

Science Journals Connector (OSTI)

Syngas final usage requires a previous step of ... the description and the modelling of the required syngas treatment units before electricity production or before ... from solids. Secondly the gas before its combustion

Mar Pérez-Fortes; Aarón D. Bojarski

2011-01-01T23:59:59.000Z

194

Method for high temperature mercury capture from gas streams  

DOE Patents [OSTI]

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

195

Milli-Q Reference Water Purification System  

E-Print Network [OSTI]

Milli-Q® Reference Water Purification System The reference for ultrapure water systems EMD the requirements of the most demanding norms. We've achieved all this with a new purification strategy. Water. This water is sent through a small recirculation loop to the POD pak, where a final purification step

Woodall, Jerry M.

196

sigma-aldrich.com DETECTION AND PURIFICATION  

E-Print Network [OSTI]

sigma-aldrich.com 82 DETECTION AND PURIFICATION RecombinantProtein DetectionandPurification Product of Working Dilution: water results in a solution of 0.01 M sodium phosphate · 1:2,000 by Western blotting tagged fusion purification protein per 1 ml of settled resin. Elution: At least 3.5 nmoles of HA

Lebendiker, Mario

197

Development of Novel Water-Gas-Shift Membrane Reactor  

E-Print Network [OSTI]

Development of Novel Water- Gas-Shift Membrane Reactor Addressing Barrier L: H2 Purification-22, 2003 #12;Water-Gas-Shift Membrane Reactor · Relevance/Objectives - Produce Enhanced H2 Product with ppm CO at High Pressure Used for Reforming - Overcome Barrier L: H2 Purification/CO Clean-up - Achieve

198

Reducing nitrogen oxides emissions from the combustion of LCV gas staged firing  

E-Print Network [OSTI]

with cotton gin tr ash, one of the primary fuels under consider ation, r esulted in flue NO levels ranging from 650-B60 ng/J (1. 5-2. 0 lb/MBtu). The Texas Air Control Board (TACB) will issue a facility a permit to operate only if NOx emissions are within... NO Methods of NOx Control Methods of NOx control may be lumped into two cate- gories: flue gas treatment (FGT) and combustion modifica- tion. The different processes are described below. Flue Gas Tr eatment Most of the research on FGT to date has been...

Finch, Stanley Frank

2012-06-07T23:59:59.000Z

199

Engineered Graphite Oxide Materials for Application in Water Purification  

Science Journals Connector (OSTI)

Engineered Graphite Oxide Materials for Application in Water Purification ... The research results could open avenues for developing low-cost water purification materials for the developing economies. ... water purification; graphite oxide; mercury removal; diazonium chemistry; Rhodamine B; sand coating ...

Wei Gao; Mainak Majumder; Lawrence B. Alemany; Tharangattu N. Narayanan; Miguel A. Ibarra; Bhabendra K. Pradhan; Pulickel M. Ajayan

2011-05-13T23:59:59.000Z

200

Distribution of bacteria within operating laboratory water purification systems.  

Science Journals Connector (OSTI)

...within operating laboratory water purification systems. G A McFeters S C...within operating laboratory water purification systems. | Experiments were...within Operating Laboratory Water Purification Systems GORDON A. McFETERS...

G A McFeters; S C Broadaway; B H Pyle; Y Egozy

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

PARTIAL PURIFICATION OF THE EXTRACELLULAR HEMOLYSIN OF PSEUDOMONAS AERUGINOSA  

Science Journals Connector (OSTI)

...first step in the purification procedure was...in a boiling-water bath for 15 to...spectively. purification the water solubility tended...advantage of the purification procedure described...concomitant retention of water solubility. Although...

Richard S. Berk

1964-09-01T23:59:59.000Z

202

Biocidal Efficacy of a Flocculating Emergency Water Purification Tablet  

Science Journals Connector (OSTI)

...of a Flocculating Emergency Water Purification Tablet Edmund M. Powers 1...Chlor-Floc (CF) emergency water purification tablets were tested for bactericidal...requirements for emergency water purification and are safe and acceptable...

Edmund M. Powers; C. Hernandez; S. N. Boutros; B. G. Harper

1994-07-01T23:59:59.000Z

203

Some Functions of Bacteria in the Purification of Polluted Water  

Science Journals Connector (OSTI)

...failed. 528 BACTERIA AND PURIFICATION OF WATER dilute media. This finding...unusual natural 530 BACTERIA AND PURIFICATION OF WATER environment or by artificial...concen- 532 BACTERIA AND PURIFICATION OF WATER 533 tration in liquid media...

C. T. Butterfield

1940-05-01T23:59:59.000Z

204

SNO+ Scintillator Purification and Assay  

SciTech Connect (OSTI)

We describe the R and D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O{sub 2}, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed ''natural'' radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

Ford, R.; Vazquez-Jauregui, E. [SNOLAB, Creighton Mine, Lively, P3Y 1N2 (Canada); Chen, M. [Department of Physics, Queen's University, Kingston, K7L 3N6 (Canada); Chkvorets, O.; Hallman, D. [Department of Physics, Laurentian University, Sudbury, P3E 2C6 (Canada)

2011-04-27T23:59:59.000Z

205

Catalytic Filter for Diesel Exhaust Purification | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Filter for Diesel Exhaust Purification This project is developing a precious metal-free passive diesel particulate filter. deer09fokema.pdf More Documents & Publications...

206

Purification of sulfide oxidase from rat liver  

E-Print Network [OSTI]

of sulfide oxidase, provided an initial precipitation of sulfide oxidase, and after chromatographic procedures a 21 fold purification of the enzyme was obtained....

Pu, Lixia

1994-01-01T23:59:59.000Z

207

Purification and Characterization of [NiFe]-Hydrogenase of Shewanella...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Purification and Characterization of NiFe-Hydrogenase of Shewanella oneidensis MR-1. Purification and Characterization of NiFe-Hydrogenase of Shewanella oneidensis MR-1....

208

Project Sponsor: An Original Equipment Manufacturer (confidential)  

E-Print Network [OSTI]

. The main consumers are the air separation, the CO2 purification and the CO2 compression units. Flue gas high concentration of CO2 in the gas flowing through the boiler, the difference in physical properties of processes involves contacting the flue gas with an aqueous amine solution to absorb the CO2 and thermally

Mease, Kenneth D.

209

BUSINESS PLAN NIRMAL: LOW COST WATER PURIFICATION  

E-Print Network [OSTI]

NIRMAL #12;BUSINESS PLAN 2 NIRMAL: LOW COST WATER PURIFICATION I. Executive summary Nearly one the water. Hence we intend to address the issue by providing a low cost water purification system using billion people all over the world do not have access to safe drinking water.It is estimated that around 37

Mlllet, Dylan B.

210

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect (OSTI)

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

211

Purification of noisy quantum measurements  

SciTech Connect (OSTI)

We consider the problem of improving noisy quantum measurements by suitable preprocessing strategies making many noisy detectors equivalent to a single ideal detector. For observables pertaining to finite-dimensional systems (e.g., qubits or spins) we consider preprocessing strategies that are reminiscent of quantum error correction procedures and allow one to perfectly measure an observable on a single quantum system for increasing number of inefficient detectors. For measurements of observables with an unbounded spectrum (e.g., photon number and homodyne and heterodyne detection), the purification of noisy quantum measurements can be achieved by preamplification as suggested by Yuen [Opt. Lett. 12, 789 (1987)].

Dall'Arno, Michele; D'Ariano, Giacomo Mauro [Quit Group, Dipartimento di Fisica 'A. Volta', via Bassi 6, I-27100 Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Gruppo IV, via Bassi 6, I-27100 Pavia (Italy); Sacchi, Massimiliano F. [Quit Group, Dipartimento di Fisica 'A. Volta', via Bassi 6, I-27100 Pavia (Italy); Istituto di Fotonica e Nanotecnologie (IFN-CNR), Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

2010-10-15T23:59:59.000Z

212

Ion exchange purification of scandium  

DOE Patents [OSTI]

An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity. 2 figs.

Herchenroeder, L.A.; Burkholder, H.R.

1990-10-23T23:59:59.000Z

213

Purification of aqueous cellulose ethers  

SciTech Connect (OSTI)

Manufacture of cellulose ethers usually involves high amounts of salt by-products. For application of the product, salt must be removed. In this work, we have studied the injection of high-pressure CO{sub 2} into an aqueous polymer-salt solution; we find that upon addition of isopropanol in addition to CO{sub 2}, the solution separates into two phases. One phase is rich in polymer and water, and the other phase contains mostly isopropanol, water and CO{sub 2}. The salt distributes between the two phases, thereby offering interesting possibilities for development of a new purification process for water-soluble polymers. This work presents experimental phase-equilibrium data for hydroxyethyl cellulose and sodium carboxymethyl cellulose with sodium acetate and potassium sulfate, respectively, in the region 40{degree}C and 30 to 80 bar. Based on these data, we suggest a process for the manufacture and purification of water-soluble cellulose ethers. 15 refs., 14 figs., 9 tabs.

Bartscherer, K.A.; de Pablo, J.J.; Bonnin, M.C.; Prausnitz, J.M.

1990-07-01T23:59:59.000Z

214

Load Preheating Using Flue Gases from a Fuel-Fired Heating System  

Broader source: Energy.gov [DOE]

This tip sheet discusses how the thermal efficiency of a process heating system can be improved significantly by using heat contained in furnace flue gases to preheat the furnace load.

215

Gas-Liquid Contact Area of Random and Structured Packing Ian David Wilson, B.S.  

E-Print Network [OSTI]

of the gas or to avoid catalyst poisoning. It is becoming apparent that CO2 emissions may also play a mayor the flue gas and the liquid solvent. The gas exits from the top with a low concentration of CO2 while 1.1 CO2 removal by absorption/stripping Absorber Stripper Sweet Gas CO2 + H2O Sour Gas Rich Amine

Rochelle, Gary T.

216

Efficiency of Gas-to-Liquids Technology with Different Synthesis Gas Production Methods  

Science Journals Connector (OSTI)

The design and optimization of a gas-to-liquids technology (GTL) is considered, mostly from the view of an optimal choice of a synthesis gas (syngas) production method. ... If the tail gas is not enough, an additional portion of the natural gas is burned. ... The temperature of the flue gases passing from the radiation chamber of the tubular furnace to the convection chamber is taken as equal to 1150 °C, which allows proper calculation of required amount of gas supplied to the burner. ...

Ilya S. Ermolaev; Vadim S. Ermolaev; Vladimir Z. Mordkovich

2014-02-05T23:59:59.000Z

217

On the Spontaneous Purification of Thames Water.  

Science Journals Connector (OSTI)

1815-1830 research-article On the Spontaneous Purification of Thames Water. John Bostock The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Abstracts of the Papers...

1815-01-01T23:59:59.000Z

218

Purification of polymorphic components of complex genomes  

DOE Patents [OSTI]

A method for processing related subject and reference macromolecule composed of complementary strand into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments. 1 fig.

Stodolsky, M.

1988-01-21T23:59:59.000Z

219

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATIO...  

Broader source: Energy.gov (indexed) [DOE]

WRI FE DE-FC26-08NT43293 Task 19-S2 Gasification Division 2010 Ronald. Breault July 1, 2009 to Dec 31, 2011 Laramie, WY A NOVEL INTEGRATED OXY-COMBUSTION FLUE GAS PURIFICATION...

220

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)  

SciTech Connect (OSTI)

The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

John L. Marion; Nsakala ya Nsakala

2003-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Large-scale purification of single-wall carbon nanotubes prepared by electric arc discharge  

Science Journals Connector (OSTI)

High-yield single-wall carbon nanotubes (SWNTs) have been mass-produced by dc arc discharge evaporation of a carbon electrode including 1 at.% Fe catalyst in hydrogen mixed gas [i.e., H2–inert gas (Ne, Ar, Kr, Xe), or H2–N2]. The as-grown \\{SWNTs\\} have high-crystallinity due to the high temperature of arc plasma, and the coexisting Fe catalyst nanoparticles are embedded in very thin amorphous carbon because of the in situ etching effects of hydrogen. A macroscale purification technique, which is a whole liquid-phase purification process, first reflux treatment in H2O2 solution and then rinsing with hydrochloric acid, has been developed to eliminate the coexisting Fe catalyst nanoparticles and obtain \\{SWNTs\\} with purity higher than 90 at.%.

Xinluo Zhao; Masato Ohkohchi; Sakae Inoue; Tomoko Suzuki; Takenori Kadoya; Yoshinori Ando

2006-01-01T23:59:59.000Z

222

New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement  

SciTech Connect (OSTI)

Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

2014-01-01T23:59:59.000Z

223

Guayule resin separation and purification  

E-Print Network [OSTI]

fraction and reducing the presence of these terpenes to practically non-detectable levels in the polar fraction. A single component, as identified by gas chromatograph (GC) was also effectively extracted from the Texas A&M resins. Saponification..., using an FID Solvent fractionation of the Firestone resin between methanol and hexane was also apparently effective in separating the low molecular weight rubber. Figure 16 and Figure 17 show the gas chromatographs of the bottom phase (fraction "a...

Bajwa, Mohinder P.S.

1992-01-01T23:59:59.000Z

224

Purification and Characterization of Liposan, a Bioemulsifier from Candida lipolytica  

Science Journals Connector (OSTI)

...and stabilizers. Purification and Characterization...The inducible water-soluble bioemulsifier...with a number of water-immiscible compounds...we describe the purification of liposan to apparent...communication we describe purification of liposan by repeated...chloroform-methanol-water phase parti- tions...

Michael C. Cirigliano; George M. Carman

1985-10-01T23:59:59.000Z

225

Multiple copy distillation and purification of phase diffused squeezed states  

E-Print Network [OSTI]

We provide a detailed theoretical analysis of multiple copy purification and distillation protocols for phase diffused squeezed states of light. The standard iterative distillation protocol is generalized to a collective purification of an arbitrary number of N copies. We also derive a semi-analytical expression for the asymptotic limit of the iterative distillation and purification protocol and discuss its properties.

Petr Marek; Jaromir Fiurasek; Boris Hage; Alexander Franzen; James DiGugliemo; Roman Schnabel

2007-08-10T23:59:59.000Z

226

Method and apparatus for efficient photodetachment and purification of negative ion beams  

DOE Patents [OSTI]

Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

Beene, James R. (Oak Ridge, TN) [Oak Ridge, TN; Liu, Yuan (Knoxville, TN) [Knoxville, TN; Havener, Charles C. (Knoxville, TN) [Knoxville, TN

2008-02-26T23:59:59.000Z

227

Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases  

SciTech Connect (OSTI)

A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur (S) and chlorine (Cl)) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NO{sub x}) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg{sup 0}), decreasing the percentage of Hg{sup 0} at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg{sup 0} by the SCR catalyst, with the percentage of Hg{sup 0} decreasing from {approximately} 96% at the inlet of the reactor to {approximately} 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation. 16 refs., 4 figs., 3 tabs.

Lee, C.W.; Srivastava, R.K.; Ghorishi, S.B.; Karwowski, J.; Hastings, T.H.; Hirschi, J.C. [US Environmental Protection Agency, Triangle Park, NC (United States)

2006-05-15T23:59:59.000Z

228

Temperature-Triggered Purification of Antibodies  

E-Print Network [OSTI]

1 1 Department of Chemical and Environmental Engineering, University of California, Riverside will be useful as an econom- ical, highly efficient, and universal platform for the purification of antibodies. B- quires chemical coupling of the binding proteins onto a solid support, which can cause a significant

Chen, Wilfred

229

On the Spontaneous Purification of Thames Water  

Science Journals Connector (OSTI)

1 January 1829 research-article On the Spontaneous Purification of Thames Water John Bostock The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Philosophical Transactions of the Royal Society of London. www.jstor.org

1829-01-01T23:59:59.000Z

230

NETL: IEP – Post-Combustion CO2 Emissions Control - Near-Zero Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Near-Zero Emissions Oxy-Combustion Flue Gas Purification Project No.: DE-NT0005341 Praxair oxy-combustion test equipment Praxair oxy-combustion test equipment. Praxair Inc. will develop a near-zero emissions flue gas purification technology for existing coal-fired power plants retrofit with oxy-combustion technology. Emissions of sulfur dioxide (SO2) and mercury (Hg) will be reduced by at least 99 percent, and nitrogen oxide (NOx) emissions will be reduced by greater than 90 percent without the need for wet flue gas desulfurization and selective catalytic reduction (SCR). Two separate processes are proposed depending on the sulfur content of the coal. For high-sulfur coal, SO2 and NOx will be recovered as product sulfuric acid and nitric acid, respectively, and Hg will be recovered as

231

Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads  

Science Journals Connector (OSTI)

Vacuum pressure swing adsorption (VPSA) for CO2 capture has attracted much research effort with the...2...adsorbent materials. In this work, a new adsorbent, that is, pitch-based activated carbon bead (AC bead), ...

Chunzhi Shen; Jianguo Yu; Ping Li; Carlos A. Grande; Alirio E. Rodrigues

2011-02-01T23:59:59.000Z

232

The utilization of flue gas desulfurization waste by-products in construction brick.  

E-Print Network [OSTI]

??Millions of tons of waste by-products from Texas coal burning plants are produced each year. Two common byproducts are the fuel ashes and calcium sulfate… (more)

Berryman, Charles Wayne

2012-01-01T23:59:59.000Z

233

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network [OSTI]

III T; Murphy J T. DOE/NETL’s Phase II Mercury ControlFired Power Plants, DOE/NETL Mercury R&D Program Review,

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

234

Application of holographic neural networks for flue gas emissions prediction in the Burnaby incinerator  

SciTech Connect (OSTI)

This article describes the development of a parametric prediction system (PPS) for various emission species at the Burnaby incinerator. The continuous emissions monitoring system at the Burnaby incinerator is shared between three boilers and therefore actual results are only available 5 minutes out of every 15 minutes. The PPS was developed to fill in data for the 10 minutes when the Continuous Emission Monitor (CEM) is measuring the other boilers. It bases its prediction on the last few actual readings taken and parametrically predicts CO, SO2 and NOx. The Burnaby Incinerator is located in the commercial/industrial area of South Burnaby, British Columbia. It consists of three separate lines, each burning ten tonnes of garbage per hour and producing about three tonnes of steam for every tonne of garbage burned. The air pollution control system first cools the combustion products with water injection and then scrubs them with very fine hydrated lime. Carbon is added to the lime to enhance the scrubbing of the combustion products. The CEM monitors the levels of oxygen, carbon monoxide, nitrogen oxides, sulphur dioxide and opacity. In 1996, an expert system was installed on one of boilers at the Burnaby Incinerator plant to determine if it could improve the plant=s operations and reduce overall emission. As part of the expert system, the PPS was developed. Holographic Neural Technology (HNeT), developed by AND Corporation of Toronto, Ontario, is a novel neural network technology using complex numbers in its architecture. Compared to the traditional neural networks, HNeT has some significant advantage. It is more resilient against converging on local minima; is faster training and executing; less prone to over fitting; and, in most cases, has significantly lower error. Selection of independent variabs, training set preparation, testing neural nets and other related issue will be discussed.

Zheng, L.; Dockrill, P.; Clements, B. [Natural Resources Canada, Nepean, Ontario (Canada). CANMET Energy Technology Centre

1997-12-31T23:59:59.000Z

235

Management of dry flue gas desulfurization by-products in underground mines  

SciTech Connect (OSTI)

Disposal of coal combustion by-products (CCBs) in an environmentally sound manner is a major issue facing the coal and utility industries in the US today. Disposal into abandoned sections of underground coal mines may overcome many of the surface disposal problems along with added benefits such as mitigation of subsidence and acid mine drainage. However, many of the abandoned underground coal mines are located far from power plants, requiring long distance hauling of by-products which will significantly contribute to the cost of disposal. For underground disposal to be economically competitive, the transportation and handling cost must be minimized. This requires careful selection of the system and optimal design for efficient operation. The materials handling and system economics research addresses these issues. Transportation and handling technologies for CCBs were investigated from technical, environmental and economic points of view. Five technologies were found promising: (1) Pneumatic Trucks, (2) Pressure Differential Rail Cars, (3) Collapsible Intermodal Containers, (4) Cylindrical Intermodal Tanks, and (5) Coal Hopper Cars with Automatic Retractable Tarping. The first two technologies are currently being utilized in transporting by-products from power plants to disposal sites, whereas the next three are either in development or in conceptualization phases. In this research project, engineering design and cost models were developed for the first four technologies. The engineering design models are in the form of spreadsheets and serve the purpose of determining efficient operating schedules and sizing of system components.

Sevim, H.

1997-06-01T23:59:59.000Z

236

DOE/FETC/TR--98-01 SORBENTS FOR MERCURY REMOVAL FROM FLUE GAS  

Office of Scientific and Technical Information (OSTI)

in the Analysis of Mercury in Air. Paper presented at the 66th Annual Meeting of the Air Pollution Control Association, June 1973. 45 Arizona Instrument Company, Manual for...

237

Silicates as Nonspecific Adsorbents of Bacteriophage: a Model for Purification of Water from Viruses  

Science Journals Connector (OSTI)

...Microbiology Silicates as Nonspecific Adsorbents of Bacteriophage: a Model for Purification...and sewage. Silicates as nonspecific adsorbents of bacteriophage: a model for purification...02.00/0 Silicates as Nonspecific Adsorbents of Bacteriophage: a Model for Purification...

Refael Fass; Yochevet Straussman; Abraham Shahar; Avshalom Mizrahi

1980-01-01T23:59:59.000Z

238

Abstract 1516: Automated circulating DNA purification from large volumes of plasma  

Science Journals Connector (OSTI)

...Automated circulating DNA purification from large volumes of plasma...The current commercial DNA purification methods limit researchers...microl of nuclease-free water in either plates or tubes...Automated circulating DNA purification from large volumes of plasma...

Sydnor T. Withers; Mary Dressler; and Cristopher A. Cowan

2014-10-01T23:59:59.000Z

239

Purification of lipoteichoic acid by chromatography in water-organic solvent systems.  

Science Journals Connector (OSTI)

...Research Article Purification of lipoteichoic...chromatography in water-organic solvent...of acyl groups. Purification of lipoteichoic...chromatography in water-organic solvent...for Microbiology Purification of Lipoteichoic...Chromatography in Water-Organic Solvent...

S L Josephson; M W Stinson; S J Millar; R E Cohen

1986-02-01T23:59:59.000Z

240

Use of Chemical Oxygen Demand Values of Bacterial Cells in Waste-Water Purification  

Science Journals Connector (OSTI)

...Bacterial Cells in Waste-Water Purification A. F. Gaudy Jr. M. N...Bacterial Cells in Waste-Water Purification A. F. GAUDY, JR., M...bacterial cells in waste-water purification. Appl. Microbiol. 12:254-260...

A. F. Gaudy Jr.; M. N. Bhatla; E. T. Gaudy

1964-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Purification and Properties of an Enzyme Capable of Degrading the Sheath of Sphaerotilus natans  

Science Journals Connector (OSTI)

...B. I and II. . Purification and properties of...from soil and river water. Two bacterial strains...genetics isolation & purification Bacteria metabolism...genetics isolation & purification metabolism Fresh Water microbiology Molecular...

Minoru Takeda; Keishi Iohara; Sachie Shinmaru; Ichiro Suzuki; Jun-Ichi Koizumi

2000-11-01T23:59:59.000Z

242

Silicates as Nonspecific Adsorbents of Bacteriophage: a Model for Purification of Water from Viruses  

Science Journals Connector (OSTI)

...Bacteriophage: a Model for Purification of Water from Viruses Refael Fass Yochevet...bacteriophage: a model for purification of water from viruses. | Amorphous...Bacteriophage: a Model for Purification of Water from Viruses REFAEL FASS...

Refael Fass; Yochevet Straussman; Abraham Shahar; Avshalom Mizrahi

1980-01-01T23:59:59.000Z

243

Microporous Inorganic Membranes for Hydrogen Purification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microporous Microporous Inorganic Membranes for Hydrogen Purification Brian L. Bischoff, Roddie R. Judkins, and Timothy R. Armstrong Oak Ridge National Laboratory Presented at: DOE Workshop on Hydrogen Separations and Purification Technologies Arlington, Virginia September 8, 2004 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Hydrogen Separation Membranes * Non-Porous - Palladium based films - Ion transport membranes * Porous - Ordered microporous membranes (IUPAC Recommendations 2001), e.g. zeolite membranes - Microporous membranes 3 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Microporous Membranes * IUPAC defines micropores as pores smaller than 2nm in diameter * Generally a microporous membrane is made by applying 1 to 3 thin layers to a porous support * Porous support can be ceramic or metallic

244

Isolation and purification of a bovine milk lipase  

E-Print Network [OSTI]

ISOLATION AND PURIFICATION OF A BOVINE MILK LIPASE A Thesis by EDNA SUSTEK ALFORD Approved to style an cpntent by: / / (Chairman of C mmittee) Head of Depa ment) (Member7) (Member) December 1979 ABSTRACT Isolation and Purification of a.... Elution profile of the sodium taurocholate treated fraction on Sephadex G-50. The arrows denote the fractions collected for additional purification. 17 3. Elution profile of the electrofocused lipolytic fraction ( ? ) superimposed over the pH gradient...

Alford, Edna Sustek

1979-01-01T23:59:59.000Z

245

Methods for reducing emissions of dioxins and furans in flue gases at plants burning solid domestic waste  

Science Journals Connector (OSTI)

Methods are discussed for reducing emissions of toxic chlorinated dibenzo-dioxins and dibenzo-furans in flue gases at plants which burn solid domestic waste. Results are presented from a study of ... number of th...

A. N. Tugov; V. F. Moskvichev; L. G. Fedorov…

2009-01-01T23:59:59.000Z

246

Graphene from Sugar and its Application in Water Purification  

Science Journals Connector (OSTI)

Graphene from Sugar and its Application in Water Purification ... A table presents test results on the purified water and design criteria are discussed. ...

Soujit Sen Gupta; Theruvakkattil Sreenivasan Sreeprasad; Shihabudheen Mundampra Maliyekkal; Sarit Kumar Das; Thalappil Pradeep

2012-07-12T23:59:59.000Z

247

Energy and Water Conservation in Biodiesel Purification Processes .  

E-Print Network [OSTI]

??Biodiesel purification processes generate wastewater streams that require a large amount of energy when distillation is used as a treatment technology. Process simulation software was… (more)

Hastie, Michele

2011-01-01T23:59:59.000Z

248

Conformal Metal Thin Films for H2 Purification and Fuel-Cell Catalyst Applications Tyler Munhollon, Coe College, SURF 2009 Fellow  

E-Print Network [OSTI]

Conformal Metal Thin Films for H2 Purification and Fuel-Cell Catalyst Applications Tyler Munhollon a heightened need for pure hydrogen gas at a low cost. Research has begun on thin film metal membranes that will become a hydrogen filter in syngas pipelines. The thin film metal membranes are fairly inexpensive

Li, Mo

249

Affinity Purification of Plasmid DNA by Temperature-Triggered Precipitation  

E-Print Network [OSTI]

Affinity Purification of Plasmid DNA by Temperature-Triggered Precipitation Jan Kostal, Ashok purification method, which takes advantage of the DNA- binding affinity and specificity of the bacterial increasing the temper- ature, ELP undergoes a reversible phase transition from water-soluble forms

Chen, Wilfred

250

CRYOGENIC SYSTEM FOR CONTINUOUS ULTRAHIGH HYDROGEN PURIFICATION IN CIRCULATION MODE  

E-Print Network [OSTI]

1 CRYOGENIC SYSTEM FOR CONTINUOUS ULTRAHIGH HYDROGEN PURIFICATION IN CIRCULATION MODE A. Vasilyev1, the total level of all contaminants (water, nitrogen, oxygen etc.) has to be lower than 0.01 ppm. Hydrogen preparation by commercial purification units, such as palladium filters, could give a good initial level

Kammel, Peter

251

The Preparation and Purification of Tritiated Carcinogenic Hydrocarbons  

Science Journals Connector (OSTI)

...or methanol :ether :water (4:4:1) or (2...the above methods of purification were not satisfactory...with methanol:ether:water (4:4:1 and 4...ethanohacetic acid:water: benzene (15:15...general rule, that all purification procedures be carried...

Beppino C. Giovanella; C. W. Abell; and Charles Heidelberger

1962-09-01T23:59:59.000Z

252

Water purification by shock electrodialysis: Deionization, filtration, separation, and disinfection  

E-Print Network [OSTI]

purification is performed primarily by reverse osmosis (RO) plants and in some cases by electrodialysis (EDWater purification by shock electrodialysis: Deionization, filtration, separation, and disinfection H L I G H T S · Experiments demonstrate the multi- functionality of shock electrodialysis. · Besides

Bazant, Martin Z.

253

Gas Separations using Ceramic Membranes  

SciTech Connect (OSTI)

This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

Paul KT Liu

2005-01-13T23:59:59.000Z

254

16 - Nanotechnology for domestic water purification  

Science Journals Connector (OSTI)

Abstract: Water, a nonsubstitutional natural resource, is best described by Leonardo Da Vinci as ‘the vehicle of nature’ (‘vetturale di natura’). This is the single most essential commodity responsible for the existence and sustenance of life on the planet earth. It is not at all an exaggeration to state that water is primarily responsible for the restoration of health, environment and prosperiy of human civilization. Unfortunately, this most precious natural resource is becoming increasingly scarce day by day. Water scarcity is among the main problems facing many societies around the world in the twenty-first century. Water use has been growing at more than twice the rate of population increase in the last century. According to a report from the United Nations, by 2025, 1800 million people will be living in countries or regions with absolute water scarcity, and two-thirds of the world’s population could be under stress conditions. As emphasized in one of the UN’s Millenium Development Goals (MDGs), water scarcity calls for strengthened international cooperation in the fields of technologies for enhanced water productivity. Recent years have witnessed impressive breakthroughs towards application of nanostructured materials such as carbon nanotubes (CNTs), metal/metal-oxide nanoparticles, zeolites, and dendrimers in the field of water purification. The present chapter aims to give an overview of the developments in the application of nanotechnology in water treatment, with a special emphasis on domestic water purification. The focus is oriented to the fact that the ultimate practical realization of this new technology is based on the assessment of the risks as well as benefits posed by nanostructured materials. The challenges involved in producing a well-defined integrated nano-based water purification device are discussed.

S. Kar; P.K. Tewari

2013-01-01T23:59:59.000Z

255

Facilitated transport membrane hybrid systems for olefin purification  

SciTech Connect (OSTI)

A new membrane system has been developed by BP for refinery and chemical plant olefin purification and recovery. This facilitated transport system, coupled with distillation, offers lower capital and operating costs than conventional distillation alone. Initial results on lab scale hollow fiber devices indicate membrane flux ranging from 8.75 {times} 10{sup {minus}6} to 8 {times} 10{sup {minus}5} m{sup 3}/m{sup 2}/sec (2.5 to 23 scfd/ft{sub 2}) and selectivities from 150 to 300. Pilot plant experiments on propylene/propane and ethylene purge gas recovery over three to six months duration show membrane stability and product purity of 98.5% or greater using refinery grade propylene feed. Hybrid system optimization data for membranes and distillation indicate that using a side draw from the distillation tower provides advantages in terms of membrane area, purity of feed to the membrane, and low per-pass recovery coupled with high overall propylene recovery. Membrane performance data under various conditions are also presented. In addition to performance data, economic evaluation and energy savings are discussed.

Davis, J.C.; Valus, R.J.; Eshraghi, R.; Velikoff, A.E. [BP Research, Cleveland, OH (United States)

1993-01-01T23:59:59.000Z

256

Distillation sequence for the purification and recovery of hydrocarbons  

DOE Patents [OSTI]

This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column. The top of the deethanizer is thermally coupled to an ethylene distributor column, and the ethylene distributor column utilizes a conventional reboiler. The top of the ethylene distributor column is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor column feeds a C2 splitter column. The C2 splitter column operates at a pressure substantially lower than the ethylene distributor column, the demethanizer column, and the deethanizer column.

Reyneke, Rian (Katy, TX); Foral, Michael (Aurora, IL); Papadopoulos, Christos G. (Naperville, IL); Logsdon, Jeffrey S. (Naperville, IL); Eng, Wayne W. Y. (League City, TX); Lee, Guang-Chung (Houston, TX); Sinclair, Ian (Warrington, GB)

2007-12-25T23:59:59.000Z

257

Energy consumption analysis for CO2 separation from gas mixtures  

Science Journals Connector (OSTI)

Abstract CO2 separation is an energy intensive process, which plays an important role in both energy saving and CO2 capture and storage (CCS) implementation to deal with global warming. To quantitatively investigate the energy consumption of CO2 separation from different CO2 streams and analyze the effect of temperature, pressure and composition on energy consumption, in this work, the theoretical energy consumption of CO2 separation from flue gas, lime kiln gas, biogas and bio-syngas was calculated. The results show that the energy consumption of CO2 separation from flue gas is the highest and that from biogas is the lowest, and the concentration of CO2 is the most important factor affecting the energy consumption when the CO2 concentration is lower than 0.15 in mole fraction. Furthermore, if the CO2 captured from flue gases in CCS was replaced with that from biogases, i.e. bio-CO2, the energy saving would be equivalent to 7.31 million ton standard coal for China and 28.13 million ton standard coal globally, which corresponds to 0.30 billion US$ that can be saved for China and 1.36 billion US$ saved globally. This observation reveals the importance of trading fossil fuel-based CO2 with bio-CO2.

Yingying Zhang; Xiaoyan Ji; Xiaohua Lu

2014-01-01T23:59:59.000Z

258

Automating the purification and isolation of synthetic DNA  

SciTech Connect (OSTI)

The authors describe the application of robotics to the purification and isolation of synthetic oligodeoxyribunucleotides. Starting with commercially available components, they have designed and programmed a robot based system that can isolate oligonucleotides from polyacrylamide gel slices, prepare oligonucleotides for purification by polyacrylamide gel electrophoresis and execute a rapid purification protocol on a disposable C-18 reverse phase column. Each operation has been fully automated, including evaporative centrifugation, such that the system can execute any two procedures simultaneously with a throughput of 12 samples in about six hours.

Jones, S.S.; Brown, J.E.; Vanstone, D.A.; Stone, D.K.; Brown, E.L.

1987-01-01T23:59:59.000Z

259

Submersible purification system for radioactive water  

DOE Patents [OSTI]

A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

Abbott, Michael L. (Fort Collins, CO); Lewis, Donald R. (Pocatello, ID)

1989-01-01T23:59:59.000Z

260

Chapter 3 - Principles of Water Purification  

Science Journals Connector (OSTI)

Abstract This chapter describes the principles of water purification. An important point to observe is the difference between purifying drinking water and purifying water optimal for life of organisms. In the former case, it is important that organisms, prokaryotes and protists, are effectively killed in the water treatment. In the latter instance, the purified water must allow all organisms to live. Chlorination and other treatments that are used to purify drinking water are toxic to all organisms. Water treatment first mechanically removes large objects, whereafter much of the organic material is biodegraded via digestion by anaerobic and aerobic bacteria. When wastes are biodegraded, production of biogas and heat occurs. A final step in wastewater treatment involves the removal of certain compounds, such as phosphorus by precipitation as, for example, insoluble iron phosphate, and of some metals by hyperaccumulating plants.

Mikko Nikinmaa

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Metal-Organic Frameworks as Adsorbents for Hydrogen Purification...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal-Organic Frameworks as Adsorbents for Hydrogen Purification and Precombustion Carbon Dioxide Capture Previous Next List Z. R. Herm, J. A. Swisher, B. Smit, R. Krishna, and J....

262

PURIFICATION OF GST-TAGGED PROTEINS Materials/Solutions  

E-Print Network [OSTI]

PURIFICATION OF GST-TAGGED PROTEINS Materials/Solutions: Glutathione Agarose or Glutathione fraction + 90 ul water + 1 ml Bradford reagent; measure absorbance at 595 nm and calculate protein

Lamond, Angus I.

263

Boronic acid-modified magnetic materials for antibody purification  

Science Journals Connector (OSTI)

...several times with distilled water and then dispersed in 50 ml of...washed five times with distilled water and used for purification study. The second method involved...particles were washed with distilled water. The third method included the...

2014-01-01T23:59:59.000Z

264

Intein Engineering for Protien Hydrogel Synthesis and Protein Purification  

E-Print Network [OSTI]

applications. This dissertation focuses on the use and development of intein-based technologies for applications in protein purification and immobilization. The highly efficient naturally split DnaE intein from Nostoc punctiforme (Npu DnaE) was incorporated...

Ramirez, Miguel Angel

2013-11-26T23:59:59.000Z

265

The purification, quantitation and EPR characterization of human lactoferrin  

E-Print Network [OSTI]

THE PURIFICATION, QUANTITATION AND EPR CHARACTERIZATION OF HUMAN LACTOFERRIN A Thesis by GREGORY ARNOLD GRAYBILL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1987 Major Subject: Biochemistry THE PURIFICATION, QUANTKATION AND EPR CHARACTERIZATION OF ~ LACTOFERRIN A Thesis by GREGORY ARNOLD GRAYBILL Approved as to style and content by George W. tes (Chair of Committee) David N. Mc...

Graybill, Gregory Arnold

1987-01-01T23:59:59.000Z

266

Characterization and purification of juvenile hormone acid methyltransferase  

E-Print Network [OSTI]

CHARACTERIZATION AND PURIFICATION OF JUVENILE HORMONE ACID METHYLTRANSFERASE A Thesis by KENNETH ELDEN PECK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1989 Major Subject: Biology CHARACTERIZATION AND PURIFICATION OF JUVENILE HORMONE ACID METHYLTRANSFERASE A Thesis by Kenneth Elden Peck Approve as to the style and content by: Karl H. Dahm (Chair of Committee...

Peck, Kenneth Elden

1989-01-01T23:59:59.000Z

267

U-GAS process  

SciTech Connect (OSTI)

The Institute of Gas Technology (IGT) has developed an advanced coal gasification process. The U-GAS process has been extensively tested in a pilot plant to firmly establish process feasibility and provide a large data base for scale-up and design of the first commercial plant. The U-GAS process is considered to be one of the more flexible, efficient, and economical coal gasification technologies developed in the US during the last decade. The U-GAS technology is presently available for licensing from GDC, Inc., a wholly-owned subsidiary of IGT. The U-GAS process accomplishes four important functions in a single-stage, fluidized-bed gasifier: It decakes coal, devolatilizes coal, gasifies coal, and agglomerates and separates ash from char. Simultaneously with coal gasification, the ash is agglomerated into spherical particles and separated from the bed. Part of the fluidizing gas enters the gasifier through a sloping grid. The remaining gas flows upward at a high velocity through the ash agglomerating device and forms a hot zone within the fluidized bed. High-ash-content particles agglomerate under these conditions and grow into larger and heavier particles. Agglomerates grow in size until they can be selectively separated and discharged from the bed into water-filled ash hoppers where they are withdrawn as a slurry. In this manner, the fluidized bed achieves the same low level of carbon losses in the discharge ash generally associated with the ash-slagging type of gasifier. Coal fines elutriated from the fluidized bed are collected in two external cyclones. Fines from the first cyclone are returned to the bed and fines from the second cyclone are returned to the ash agglomerating zone, where they are gasified, and the ash agglomerated with bed ash. The raw product gas is virtually free of tar and oils, thus simplifying ensuing heat recovery and purification steps.

Schora, F.C.; Patel, J.G.

1982-01-01T23:59:59.000Z

268

One-year survey of enteroviruses, adenoviruses, and reoviruses isolated from effluent at an activated-sludge purification plant.  

Science Journals Connector (OSTI)

...Support, Non-U.S. Gov't | 0 Sewage | Adenoviridae isolation & purification Australia Enterovirus isolation & purification Reoviridae isolation & purification Sewage Water Microbiology Vol. 41, No. 1APPLIED AND ENVIRONMENTAL MICROBIOLOGY...

L G Irving; F A Smith

1981-01-01T23:59:59.000Z

269

Detection of Toxin-Producing Cyanobacteria by Use of Paramagnetic Beads for Cell Concentration and DNA Purification  

Science Journals Connector (OSTI)

...cyanobacteria in water that utilizes...subsequent DNA purification. In the cell...concentration and DNA purification. | Early detection of water blooms caused...isolation & purification Polymerase Chain...Specificity Water Microbiology...

Knut Rudi; Frank Larsen; Kjetill S. Jakobsen

1998-01-01T23:59:59.000Z

270

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

January 13, 2010 January 13, 2010 CX-000726: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: B3.6 Date: 01/13/2010 Location(s): Birmingham, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000727: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Bridgewater, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000728: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9

271

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3, 2010 3, 2010 CX-000727: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Bridgewater, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000728: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Perryville, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000729: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010

272

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

January 13, 2010 January 13, 2010 CX-000727: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Bridgewater, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000728: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Perryville, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000729: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9

273

NO, Reduction in a Gas Fired Utility Boiler by Combustion Modifications  

E-Print Network [OSTI]

Data on the effect of several combustion modifications on the for-math of nitrogen oxides and on boiler efficiency were acquired and analyzed for a 110 MW gas fired utility boiler. The results from the study showed that decreasing the oxygen in the flue gas from 2.2% to 0.6 % reduced the NO, formation by 33 % and also gave better boiler efficiencies. Flue gas recirculation through the bottom of the fire4mx WBS founb to be Ineffective. Staged combustion was found to reduce the NO, emlssions by as much as 55 % while decreasing the efficiency by about 5%. Adjustment of the burner air registers reduced the NO, formation by about 20 ppm. The lowest NO, emisdons of 42 ppm (at about 3 % 02) in the stack was obtained for air only to one top burner and 0.5 % oxygen in the flue gas. The reduction of nitrogen oxides (NO,) emissions from steam boilers has been under study for several years. The NO, from boilers consist almost entirely of nitric oxide (NO) and nitrogen dioxide (N02) with NO2 usually only l or 2 % of the total. After leaving the stack, the NO eventually combines with atmospheric oxygen to form NOp. The Environmental Protection Agency has sponsored several studies1-I0 on reducing NO, emissions while maintaining thermal efficiency of boilers. Other studies have been sponsored by The Electric Power Research Institute (EPRI) " and Argonne National

Jerry A. Bullin; Dan Wilkerson

1982-01-01T23:59:59.000Z

274

Chapter 6 - Nanostructured Membranes for Water Purification  

Science Journals Connector (OSTI)

Application of nanotechnology to water purification is currently faced with the issue of how to design nanomaterials that are capable of collecting and preconcentrating a large number of contaminants per unit volume. Specifically, it is not clear how to interface nanoparticles with contaminants because direct addition of nanoparticles into drinking water may require extra separation steps to recover the expensive nanomaterials. Due to their large pore sizes, conventional membrane filters cannot be used for removing submicron particles, engineered nanoparticles, or biological particles within the range of 100 nm or below. To overcome these challenges, we present transformative membrane technologies that are based on the use of nanostructured conducting phase-inverted poly(amic acid) membranes to isolate and remove silver nanoparticles, quantum dots, and titanium dioxide particles in environmental samples. nPAA membranes have also been utilized to remove pathogenic bacteria in drinking water. Filtration efficiency of over 99.98% was recorded for most contaminants. The membrane pore sizes were experimentally controlled from 4 to 35 nm, and the optimized membranes were tested against three of the most common drinking water contaminants, namely Escherichia coli, Citrobacter freundii, and Staphylococcus epidermidis. Hundred percent removal of these microbial species were recorded and the results were validated with conventional plating techniques.

Omowunmi A. Sadik; Nian Du; Idris Yazgan; Veronica Okello

2014-01-01T23:59:59.000Z

275

Membrane Purification Cell for Aluminum Recycling  

SciTech Connect (OSTI)

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

276

Purification and characterization of periplasmic alpha-amylase from Xanthomonas campestris K-11151.  

Science Journals Connector (OSTI)

...9005-82-7 Amylose 9037-22-3 Amylopectin 9057-02-7...3.2.1.1 alpha-Amylases EC 3.2.1...cyclomaltodextrinase | Amylopectin metabolism Amylose metabolism Cell...purification alpha-Amylases isolation & purification...

J Abe; N Onitsuka; T Nakano; Y Shibata; S Hizukuri; E Entani

1994-06-01T23:59:59.000Z

277

Cement kiln flue dust as a source of lime and potassium in four East Texas soils  

E-Print Network [OSTI]

the blight encountered the previous year. Forage sorghum (DeKalb SX-11) was planted 5/1/73, 4/26/74 and, 6/9/75) . Yield of corn grain, corn forage, and sorghum forage were determined for the three growing seasons. Leaf samples were also taken... by rate and source of lime, de th, and time. Treatment k /ha 0 mo. 3 mo. 8 mo. 11 mo. 17 mo. 0 to 15 cm depth 8000 flue dust 2000 5QQ II II S. 6 a s. s a 5. 6 a 6. 9 c 6. 1 ab 5. 7 a 7. 2 c 6. 5 bc 5. 9 ab 6. 5 bc 7. 0 c 6. 0 abc 6. 4 b 5. 6 a...

Poole, Warren David

2012-06-07T23:59:59.000Z

278

Comparison of thermoelectric and permeation dryers for sulfur dioxide removal during sample conditioning of wet gas streams  

SciTech Connect (OSTI)

Flue gas conditioning for moisture removal is commonly performed for criteria pollutant measurements, in particular for extractive CEM systems at combustion sources. An implicit assumption is that conditioning systems specifically remove moisture without affecting pollutant and diluent concentrations. Gas conditioning is usually performed by passing the flue gas through a cold trap (Peltier or thermoelectric dryer) to remove moisture by condensation, which is subsequently extracted by a peristaltic pump. Many air pollutants are water-soluble and potentially susceptible to removal in a condensation dryer from gas interaction with liquid water. An alternative technology for gas conditioning is the permeation dryer, where the flue gas passes through a selectively permeable membrane for moisture removal. In this case water is transferred through the membrane while other pollutants are excluded, and the gas does not contact condensed liquid. Laboratory experiments were performed to measure the relative removal of a water-soluble pollutant (sulfur dioxide, SO{sub 2}) by the two conditioning techniques. A wet gas generating system was used to create hot, wet gas streams of known composition (15% and 30% moisture, balance nitrogen) and flow rate. Pre-heated SO{sub 2} was dynamically spiked into the wet stream using mass flow meters to achieve concentrations of 20, 50, and 100 ppm. The spiked gas was directed through a heated sample line to either a thermoelectric or a permeation conditioning system. Two gas analyzers (Western Research UV gas monitor, KVB/Analect FTIR spectrometer) were used to measure the SO{sub 2} concentration after conditioning. Both analytic methods demonstrated that SO{sub 2} is removed to a significantly greater extent by the thermoelectric dryer. These results have important implications for SO{sub 2} monitoring and emissions trading.

Dunder, T.A. [Entropy, Inc., Research Triangle Park, NC (United States). Research Div.; Leighty, D.A. [Perma Pure, Inc., Toms River, NJ (United States)

1997-12-31T23:59:59.000Z

279

Purification, Partial Characterization, and Clinical Evaluation of a Pancreatic Oncofetal Antigen  

Science Journals Connector (OSTI)

...preparations. After purification, however, pancreatic...blue (0.05%) in water] and 50 /JL\\of a...For immunoglobulin purification, conventional techniques...serum proteins. For the purification of a2-macroglobulin...dialyzed against distilled water at 4 ,clarified, dialyzed...

F. B. Gelder; C. J. Reese; A. R. Moossa; T. Hall; and R. Hunter

1978-02-01T23:59:59.000Z

280

Purification and properties of glucosyltransferase responsible for water-insoluble glucan synthesis from Streptococcus mutans.  

Science Journals Connector (OSTI)

...Research Article Purification and properties of...responsible for water-insoluble glucan...4.1.?). Purification and properties of...responsible for water-insoluble glucan...Vol. 37, No. 1 Purification and Properties of...Responsible for Water-Insoluble Glucan...

K Fukui; T Moriyama; Y Miyake; K Mizutani; O Tanaka

1982-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Purification of Estrogen Receptors from MCF-7 Human Breast Cancer Cells  

Science Journals Connector (OSTI)

...September 1980 research-article Purification of Estrogen Receptors from...0.04 m KCl (11-fold purification) and 0.22 m KCl (12...ml of dimethylformamide:water (1:1, v/v). Aliquots...tI) SEPTEMBER 1980 3173 Purification of estrogen receptor by ammoniumsulfateprecipitationTotal...

Ming Ta Chong and Marc Lippman

1980-09-01T23:59:59.000Z

282

Purification, Partial Characterization, and Clinical Evaluation of an Adenocarcinoma-associated Antigen  

Science Journals Connector (OSTI)

...Alexandria, VA). Purification of ACAA. The crude...against running distilled water over night. The euglobulin...spectrophotometry at 280 nm. ACAA Purification by Affinity Chromatography...precipitate against distilled water resulted in a euglobulin...protein and a 6727-fold purification (Table 1). Subsequent...

Valerian B. Pinto; Frank B. Gelder; and Don M. Morris

1986-12-01T23:59:59.000Z

283

Purification and Biological Characterization of Human Hepatopoietin A, a Polypeptide Growth Factor for Hepatocytes  

Science Journals Connector (OSTI)

...describe the complete purification of HPTA from human...isoelectric point. 3314 PURIFICATION OF HUMAN HEPATOPOIETIN...5 mm x 7.5 cm. Waters Associ ates) equilibrated...7.5 mm x 75 mm. Water Associates). , absorbance...indicating that further purification was needed. Therefore...

Reza Zarnegar and George Michalopoulos

1989-06-15T23:59:59.000Z

284

Multiple-copy distillation and purification of phase-diffused squeezed states  

SciTech Connect (OSTI)

We provide a detailed theoretical analysis of multiple-copy purification and distillation protocols for phase-diffused squeezed states of light. The standard iterative distillation protocol is generalized to a collective purification of an arbitrary number of N copies. We also derive a semianalytical expression for the asymptotic limit of the iterative distillation and purification protocol and discuss its properties.

Marek, Petr [School of Mathematics and Physics, The Queen's University, Belfast BT7 1NN (United Kingdom); Fiurasek, Jaromir [Department of Optics, Palacky University, 17. listopadu 50, 77200 Olomouc (Czech Republic); Hage, Boris; Franzen, Alexander; DiGugliemo, James; Schnabel, Roman [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Leibniz Universitaet Hannover, Callinstr. 38, 30167 Hannover (Germany)

2007-11-15T23:59:59.000Z

285

Solid-State Circuit for Spin Entanglement Generation and Purification J. M. Taylor,1  

E-Print Network [OSTI]

computers by connecting small- scale processors in a quantum network. EPR pair genera- tion and purificationSolid-State Circuit for Spin Entanglement Generation and Purification J. M. Taylor,1 W. Du¨r,2,3 P for the robust generation and purification of four-particle spin entangled states in elec- trically controlled

Yacoby, Amir

286

GE Healthcare Data File 28-4046-59 AA Tagged protein purification  

E-Print Network [OSTI]

chromatography (IMAC). The column allows fast and simple small-scale purifications and is a valuable toolGE Healthcare Data File 28-4046-59 AA Tagged protein purification His SpinTrap His Spin and one purification run takes approx. 10 min. His SpinTrap allows: · High protein binding capacity

Lebendiker, Mario

287

Feed gas contaminant removal in ion transport membrane systems  

DOE Patents [OSTI]

Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

2008-09-16T23:59:59.000Z

288

On a cryogenic noble gas ion catcher  

E-Print Network [OSTI]

In-situ purification of the gas used as stopping medium in a noble gas ion catcher by operating the device at low temperatures of 60 to 150 K was investigated. Alpha-decay recoil ions from a 223Ra source served as energetic probes. The combined ion survival and transport efficiencies for 219Rn ions saturated below about 90 K, reaching 28.7(17) % in helium, 22.1(13) % in neon, and 17.0(10) % in argon. These values may well reflect the charge exchange and stripping cross sections during the slowing down of the ions, and thus represent a fundamental upper limit for the efficiency of noble gas ion catcher devices. We suggest the cryogenic noble gas ion catcher as a technically simpler alternative to the ultra-high purity noble gas ion catcher operating at room temperature.

P. Dendooven; S. Purushothaman; K. Gloos

2005-10-20T23:59:59.000Z

289

A combined purification of fluorine-containing foul water  

SciTech Connect (OSTI)

An experiment was carried out for two-stage water purification. A solution of AOC ( aluminum oxychloride) was added to a neutralized and clarified foul water and the pH brought up to 11.5 by lime water. After cleaning, the required components were identified. This method is simple and in relation to the apparatus used does not differ from the neutralization method. Therefore under industrial conditions the process can be carried out using the standard equipment. The hypothesis that flouride is codeposited with CHSA-3 has been confirmed experimentally. With additional purification using the sulfo-aluminate method, the value of the pH immediately after deposition is greater than the norm. The results obtained have made it possible to develop a simple, effective method of combining high purification of foul water from flourine and sulfates with the simultaneous additional deposition of heavy ferrous metals.

Sal'nikova, E.O.

1986-05-01T23:59:59.000Z

290

Evaluation of ultrafiltration membranes in the purification of guayule resin  

E-Print Network [OSTI]

EVALUATION OF ULTRAFILTRATlON hfEMBRANES IN TEIE PURIFICATION OF GUAYULE RESIN A Thesi" bv RANJIT S. JEYASEELAN Submitted to the Office of Gra. duate Studies of Texas ARM Ilniversity in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1991 Major Subject: Safety Engineering EVALUATION OF' ULTRAF'ILTRATION MEMBRANES IN THE PURIFICATION OF GUAYULE RESIN A Thesis by RANJIT S. JEYASEELAN Appr ed as to style and content by John P. Wagn ( ' air of the Committee...

Jeyaseelan, Ranjit S.

1991-01-01T23:59:59.000Z

291

Natural gas pipeline technology overview.  

SciTech Connect (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

292

Water Purification Using the Adsorption Characteristics of Microbubbles  

Science Journals Connector (OSTI)

Recently, technology using microbubbles has been studied for water purification. However, the mechanism and physical parameters of the purification process have not yet been sufficiently clarified. The purpose of this study is to clarify the physical parameters of microbubbles that influence water purification. Firstly, we measured and analyzed the purifying performance using various millimeter-sized bubbles, and we obtained the equilibrium constant of the pollutant adsorbed on the bubble surface from the experimental results. Secondly, we experimented with purifying the polluted water using microbubbles and clarified that the purification performance of microbubbles agreed with that theoretically expected using the equilibrium constant obtained in the preparatory experiment. We assume that an important parameter affecting adsorption on the surface of microbubbles is the equilibrium constant in the chemical potential. Because the equilibrium constant is derived from the surface chemical potential, it is equal to the bulk chemical potential of the liquid. In the microbubbles diameter (70 µm) range in this study, we have found that the most significant factor determining the adsorption is the surface area. The surface tension of microbubbles is not significant factor.

Akira Yoshida; Osamu Takahashi; Yorishige Ishii; Yoshihiro Sekimoto; Yukio Kurata

2008-01-01T23:59:59.000Z

293

Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997  

SciTech Connect (OSTI)

The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

Chugh, Y.P.

1997-12-31T23:59:59.000Z

294

Geological and Geotechnical Site Investigation for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility  

SciTech Connect (OSTI)

With international efforts to limit anthropogenic carbon in the atmosphere, various CO{sub 2} sequestration methods have been studied by various facilities worldwide. Basalt rock in general has been referred to as potential host material for mineral carbonation by various authors, without much regard for compositional variations due to depositional environment, subsequent metamorphism, or hydrothermal alteration. Since mineral carbonation relies on the presence of certain magnesium, calcium, or iron silicates, it is necessary to study the texture, mineralogy, petrology, and geochemistry of specific basalts before implying potential for mineral carbonation. The development of a methodology for the characterization of basalts with respect to their susceptibility for mineral carbonation is proposed to be developed as part of this research. The methodology will be developed based on whole rock data, petrography and microprobe analyses for samples from the Caledonia Mine in Michigan, which is the site for a proposed small-scale demonstration project on mineral carbonation in basalt. Samples from the Keweenaw Peninsula will be used to determine general compositional trends using whole rock data and petrography. Basalts in the Keweenaw Peninsula have been subjected to zeolite and prehnite-pumpellyite facies metamorphism with concurrent native copper deposition. Alteration was likely due to the circulation of CO{sub 2}-rich fluids at slightly elevated temperatures and pressures, which is the process that is attempted to be duplicated by mineral carbonation.

Metz, Paul; Bolz, Patricia

2013-03-25T23:59:59.000Z

295

Flue-Gas Carbon Capture on Carbonaceous Sorbents:? Toward a Low-Cost Multifunctional Carbon Filter for “Green” Energy Producers  

Science Journals Connector (OSTI)

Mr. Ian Andrews and Mr. Nick Rahn (PacifiCorp Energy), Mr. Robert Matius and Mr. Eldon Lindt (Xcel Energy), Mr. George Farthing (Babcock & Wilcox Company), and anonymous journal reviewers contributed helpful comments that enhanced this work. ...

Maciej Radosz; Xudong Hu; Kaspars Krutkramelis; Youqing Shen

2008-04-29T23:59:59.000Z

296

Management of dry flue gas desulfurization by-products in underground mines. Topical report, October 1, 1993--March 31, 1998  

SciTech Connect (OSTI)

The DESEVAL-TRANS program is developed for the purpose of helping the engineer to design and economically evaluate coal combustion byproduct transportation systems that will operate between the power plant and the disposal site. The objective of the research project was to explore the technical, environmental and economic feasibility of disposing coal combustion byproducts in underground mines in Illinois. The DESEVAL-TRANS (short for Design and Evaluation of Transportation Systems) was developed in the Materials Handling and Systems Economics branch of the overall project. Four types of coal combustion byproducts were targeted for transportation and handling: Conventional fly ash; Scrubber sludge; Fluidized Bed Combustion (FBC) fly ash; and Spent-bed ash. Several transportation and handling systems that could handle these byproducts were examined. These technologies were classified under three general categories: Truck; Rail; and Container. The purpose of design models is to determine the proper number of transport units, silo capacity, loading and unloading rates, underground placement capacity, number of shifts, etc., for a given case, defined by a distance-tonnage combination. The cost computation models were developed for the determination of the operating and capital costs. An economic evaluation model, which is common to all categories, was also developed to establish the cost-per-ton of byproduct transported.

NONE

1998-09-01T23:59:59.000Z

297

Management of dry flue gas desulfurization by-products in underground mines. Technical progress report, 1 January--31 March 1994  

SciTech Connect (OSTI)

Southern Illinois University at Carbondale will develop and demonstrate several technologies for the handling and transport of dry coal combustion residues and for the underground placement in abandoned coal mines and assess associated environmental impacts. Although parts of the Residue Characterization portion of the program were delayed because residue samples were not obtained, other parts of the program are proceeding on schedule. The delays in obtaining residue samples were primarily caused by adverse weather conditions, the shut-down of one unit at the City Water, Light, and Power Company Plant for routing maintenance and problems due to conflicting schedules of utility and program personnel. However, by the end of the quarter most residue samples had been obtained, and the residue characterization studies were under way. Progress is described for five studies: environmental assessment and geotechnical stability and subsidence impacts; residue characterization; physico-chemical characterization of residues; identification and assessment of handling/transportation systems for FGD residues; and residue handling and transport.

Chugh, Y.P.; Esling, S.; Ghafoori, N.; Honaker, R.; Paul, B.; Sevim, H.; Thomasson, E.

1994-04-01T23:59:59.000Z

298

Flue Gas Emissions from the Burning of Asphaltite and Lignite in a Rotating Head Combustor with Secondary Air Delivery  

Science Journals Connector (OSTI)

(1, 2) In this context, Turkey is rich in coal reserves, and it is among the biggest coal producers in the world with a production of about 76 million tons (Mt) in 2011, and a large portion of this production is lignite. ... (5) Turkey has also a high asphaltite reserve, which is mostly found in the southeastern part of Anatolia and used around the region for domestic heating. ... Modeling of NOx emissions from fluidized Bed combustion of high volatile lignites ...

Cengiz Öner; ?ehmus Altun

2014-06-01T23:59:59.000Z

299

Purification of caprolactam from recycled nylon  

DOE Patents [OSTI]

A method is disclosed of removing 1,11-diamino-6-undecanone from the pyrolysis product of nylon comprising: (a) pyrolyzing nylon-6 to form a pyrolyzate containing a caprolactam mixture; (b) dissolving the caprolactam mixture in a solvent to form a solution; (c) passing carbon dioxide gas through the solution to form a precipitate; (d) removing the precipitate from the solution; and (e) recovering the purified caprolactam from the solution. 3 figs.

Moens, L.

1999-07-06T23:59:59.000Z

300

Metals purification by improved vacuum arc remelting  

DOE Patents [OSTI]

The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

Zanner, Frank J. (Sandia Park, NM); Williamson, Rodney L. (Albuquerque, NM); Smith, Mark F. (Albuquerque, NM)

1994-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Molecular Characterization of the Bacterial Communities in the Different Compartments of a Full-Scale Reverse-Osmosis Water Purification Plant  

Science Journals Connector (OSTI)

...Full-Scale Reverse-Osmosis Water Purification Plant Published ahead of print...reverse-osmosis (RO) membrane water purification plant were analyzed by molecular...full-scale membrane-based water purification processes was examined using...

L. A. Bereschenko; G. H. J. Heilig; M. M. Nederlof; M. C. M. van Loosdrecht; A. J. M. Stams; G. J. W. Euverink

2008-07-11T23:59:59.000Z

302

Purification and Partial Characterization of a Mr 52,000 Glycoprotein from Human Cancer Ascites Fluid Which Stimulates Bone Resorption in Vitro  

Science Journals Connector (OSTI)

...paper describes the purification and partial characterization...was purchased from Waters Associates, Milford...Precipitation. All purification procedures were carried...during the course of the purification were dialyzed twice...once against distilled water, lyophilized, and...

Mark S. Lamkin; Craig Colclasure; Weldon S. Lloyd; Jane M. Doherty; Wayne Gonnerman; Karl Schmid; and Richard B. Nimberg

1986-09-01T23:59:59.000Z

303

Concentration and purification of beef extract mock eluates from water samples for the detection of enteroviruses, hepatitis A virus, and Norwalk virus by reverse transcription-PCR.  

Science Journals Connector (OSTI)

...Concentration and purification of beef extract...eluates from water samples for...Concentration and purification of beef extract...eluates from water samples for...isolation & purification Oligonucleotide...Virology methods Water Microbiology

K J Schwab; R De Leon; M D Sobsey

1995-02-01T23:59:59.000Z

304

Quantitative Detection of Legionella pneumophila in Water Samples by Immunomagnetic Purification and Real-Time PCR Amplification of the dotA Gene  

Science Journals Connector (OSTI)

...Legionella pneumophila in Water Samples by Immunomagnetic Purification and Real-Time PCR...processing and immunomagnetic purification. Water samples were concentrated...of L. pneumophila in water samples. The purification of L. pneumophila by...

M. A. Yáńez; C. Carrasco-Serrano; V. M. Barberá; V. Catalán

2005-07-01T23:59:59.000Z

305

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

306

Water Purification by Shock Electrodialysis: Deionization, Filtration, Separation, and Disinfection  

E-Print Network [OSTI]

The development of energy and infrastructure efficient water purification systems are among the most critical engineering challenges facing our society. Water purification is often a multi-step process involving filtration, desalination, and disinfection of a feedstream. Shock electrodialysis (shock ED) is a newly developed technique for water desalination, leveraging the formation of ion concentration polarization (ICP) zones and deionization shock waves in microscale pores near to an ion selective element. While shock ED has been demonstrated as an effective water desalination tool, we here present evidence of other simultaneous functionalities. We show that, unlike electrodialysis, shock ED can thoroughly filter micron-scale particles and aggregates of nanoparticles present in the feedwater. We also demonstrate that shock ED can enable disinfection of feedwaters, as approximately $99\\%$ of viable bacteria (here \\textit{E. coli}) in the inflow were killed or removed by our prototype. Shock ED also separates...

Deng, Daosheng; Braff, William A; Schlumpberger, Sven; Suss, Matthew E; Bazant, Martin Z

2014-01-01T23:59:59.000Z

307

Report of the DOE Workshop on Hydrogen Separations and Purification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Energy Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Report of the DOE Workshop on Hydrogen Separations and Purification September 8-9, 2004 Arlington, VA U.S. Department of Energy Office of Hydrogen, Fuel Cells & Infrastructure Technologies CONTENTS INTRODUCTION ...............................................................................................1 Background ................................................................................................................. 1 Current Hydrogen Separation Technology .................................................................. 2 Hydrogen Membrane Separation Technologies .......................................................... 3 HYDROGEN MEMBRANE SEPARATION PERFORMANCE TARGETS.........................6

308

Ecological aspects of the extreme purification of water  

Science Journals Connector (OSTI)

The influence on the eco-system of the products of the large-scale technology for the preparation of ultra-pure water required for the electronic and radiotechnical industries is examined. The distillation, ion-exchange, and membrane methods are subjected to a comparative analysis. It is shown that the membrane method for the extreme purification of water is ecologically the most desirable. The methods for the elimination of nitrates from drinking water are examined. The bibliography includes 41 references.

Vladimir A Shaposhnik; A A Mazo; P Frölich

1991-01-01T23:59:59.000Z

309

Superhydrophobic coated apparatus for liquid purification by evaporative condensation  

DOE Patents [OSTI]

Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a first vessel for storing the contaminated fluid. The first vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus simplifying maintenance of the apparatus.

Simpson, John T; McNeany, Steve R; Dinsmore, Thomas V; Hunter, Scott R; Ivanov, Ilia N

2014-03-11T23:59:59.000Z

310

Water purification by shock electrodialysis: Deionization, filtration, separation, and disinfection  

Science Journals Connector (OSTI)

Abstract The development of energy and infrastructure efficient water purification systems is among the most critical engineering challenges facing our society. Water purification is often a multi-step process involving filtration, desalination, and disinfection of a feedstream. Shock electrodialysis (shock ED) is a newly developed technique for water desalination, leveraging the formation of ion concentration polarization (ICP) zones and deionization shock waves in microscale pores near to an ion selective element. While shock ED has been demonstrated as an effective water desalination tool, we here present evidence of other simultaneous functionalities. We show that shock ED can thoroughly filter micron-scale particles and aggregates of nanoparticles present in the feedwater. We also demonstrate that shock ED can enable disinfection of feedwaters, as approximately 99% of viable bacteria (here Escherichia coli) in the inflow were killed or removed by our prototype. Shock ED also separates positive from negative particles, contrary to claims that ICP acts as a virtual barrier for all charged particles. By combining these functionalities (filtration, separation and disinfection) with deionization, shock ED has the potential to enable highly compact and efficient water purification systems.

Daosheng Deng; Wassim Aouad; William A. Braff; Sven Schlumpberger; Matthew E. Suss; Martin Z. Bazant

2015-01-01T23:59:59.000Z

311

Water Purification by Shock Electrodialysis: Deionization, Filtration, Separation, and Disinfection  

E-Print Network [OSTI]

The development of energy and infrastructure efficient water purification systems are among the most critical engineering challenges facing our society. Water purification is often a multi-step process involving filtration, desalination, and disinfection of a feedstream. Shock electrodialysis (shock ED) is a newly developed technique for water desalination, leveraging the formation of ion concentration polarization (ICP) zones and deionization shock waves in microscale pores near to an ion selective element. While shock ED has been demonstrated as an effective water desalination tool, we here present evidence of other simultaneous functionalities. We show that, unlike electrodialysis, shock ED can thoroughly filter micron-scale particles and aggregates of nanoparticles present in the feedwater. We also demonstrate that shock ED can enable disinfection of feedwaters, as approximately $99\\%$ of viable bacteria (here \\textit{E. coli}) in the inflow were killed or removed by our prototype. Shock ED also separates positive from negative particles, contrary to claims that ICP acts as a virtual barrier for all charged particles. By combining these functionalities (filtration, separation and disinfection) with deionization, shock ED has the potential to enable more compact and efficient water purification systems.

Daosheng Deng; Wassim Aouad; William A. Braff; Sven Schlumpberger; Matthew E. Suss; Martin Z. Bazant

2014-02-01T23:59:59.000Z

312

The optimal treatment method of water turbidity purification in tap-water plant.  

E-Print Network [OSTI]

??The main purpose of this study is to investigate the relationship between the water turbidity purification result with raw water turbidity, raw water pH value… (more)

Lin, Yi-Heng

2010-01-01T23:59:59.000Z

313

HPLC Purification of Higher Plant-Dervied Lignin Phenols for Compound Specific Radiocarbon Analysis  

E-Print Network [OSTI]

purification scheme for lignin phenol CSRA is feasible. Thebased method are that (1) lignin phenols can be purifiedobtain semipure fractions of lignin phenols. The subsequent

2010-01-01T23:59:59.000Z

314

Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques  

Science Journals Connector (OSTI)

Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques ... This article is part of the Fundamental and Applied Reviews in Analytical Chemistry special issue. ...

Kim E. Sapsford; Katherine M. Tyner; Benita J. Dair; Jeffrey R. Deschamps; Igor L. Medintz

2011-05-05T23:59:59.000Z

315

Water Purification by Using Microplasma Treatment  

Science Journals Connector (OSTI)

Dielectric barrier discharge microplasma generated at the surface of water is proposed as a solution for water treatment. It is an economical and an ecological technology for water treatment due to its generation at atmospheric pressure and low discharge voltage. Microplasma electrodes were placed at small distance above the water thus active species and radicals were flown by the gas towards the water surface and furthermore reacted with the target to be decomposed. Indigo carmine was chosen as the target to be decomposed by the effect of active species and radicals generated between the electrodes. Air, oxygen, nitrogen and argon were used as discharge gases. Measurement of absorbance showed the decomposition of indigo carmine by microplasma treatment. Active species and radicals of oxygen origin so called ROS (reactive oxidative species) were considered to be the main factor in indigo carmine decomposition. The decomposition rate increased with the increase of the treatment time as shown by the spectrophotometer analysis. Discharge voltage also influenced the decomposition process.

K Shimizu; N Masamura; M Blajan

2013-01-01T23:59:59.000Z

316

Design, purification and characterization of a soluble variant of the integral membrane protein MotB for structural studies  

Science Journals Connector (OSTI)

...using the known scattering of water as previously described...To facilitate the protein purification via affinity chromatography...presented the rational design, purification and characterization of the water-soluble variant of homodimeric...

2013-01-01T23:59:59.000Z

317

Evaluation of Buildup of Activated Corrosion Products for Highly Compact Marine Reactor DRX without Primary Coolant Water Purification System  

E-Print Network [OSTI]

Evaluation of Buildup of Activated Corrosion Products for Highly Compact Marine Reactor DRX without Primary Coolant Water Purification System

Odano, N

2000-01-01T23:59:59.000Z

318

Purification of a Low Molecular Weight Factor That Induces Differentiation and Inhibits Growth in Myeloid Leukemia Cells  

Science Journals Connector (OSTI)

...above. For the next purification, the fractions...pyridine:acetone:water(6:4:l:3...propanol. For further purification after evaporation...dissolved in distilled water and applied to a...purify the factor. Purification of a Factor with...ml of distilled water, and applied to...

Kazuyasu Nakaya; Noriko Kumakawa; Hironobu Iinuma; and Yasuharu Nakamura

1988-08-01T23:59:59.000Z

319

Identification, immunochemical characterization, and purification of a major lipoprotein antigen associated with the inner (cytoplasmic) membrane of Escherichia coli.  

Science Journals Connector (OSTI)

...A protocol for the purification of antigen 47, based...chloroform-methanol-water mixture, was developed...characterization, and purification of a major lipoprotein...A protocol for the purification of antigen 47, based...chloroform-methanol-water mixture, was developed...

H Doherty; H Yamada; P Caffrey; P Owen

1986-06-01T23:59:59.000Z

320

Isolation and Partial Purification of Plasma Membrane-associated Antigens from Human Osteosarcoma (TE-85) Cells in Tissue Culture  

Science Journals Connector (OSTI)

...Isolation and partial purification of plasma membrane-associated...Tumor-specific water-soluble antigens...Isolation and Partial Purification of Plasma Membrane...Tumor-specific water-soluble anti gens...could be rendered water soluble by limited...digestion and partial purification achieved by anion-exchange...

Iqbal Singh; Kwong Y. Tsang; and William S. Blakemore

1976-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fractionation and Purification of the Polysaccharides with Marked Antitumor Activity, Especially Lentinan, from Lentinus edodes (Berk.) Sing. (an Edible Mushroom)  

Science Journals Connector (OSTI)

...preparations from water extracts of L...fractionation, purification, and antitumor...Fractionation and Purification of LC-1 Fraction...1.2 liters of water, and contaminants...Fractionation and Purification of Crude Fraction...dissolved in 6 liters of water and centrifuged...

Goro Chihara; Junji Hamuro; Yukiko Y. Maeda; Yoshiko Arai; and Fumiko Fukuoka

1970-11-01T23:59:59.000Z

322

Purification and Characterization of a Lipid-mobilizing Factor Associated with Cachexia-inducing Tumors in Mice and Humans  

Science Journals Connector (OSTI)

...successive stages of purification. MATERIALS AND...United King dom) and water ad libitum. Fragments...final step in the purification procedure was HPLC...system A [HPLC grade water (Fisons, Loughborough...overall 207-fold purification (Table j 1...acetonitrite gradient in water plus 0.06% TFA...

Trudi M. McDevitt; Penio T. Todorov; Susan A. Beck; Syrah H. Khan; and Michael J. Tisdale

1995-04-01T23:59:59.000Z

323

Partial purification from frankfurtrers of N-nitroso compound precursors and thier mutagenicity after nitrosation  

Science Journals Connector (OSTI)

...Cancer Res, Volume 47, 2006 Partial purification from frankfurtrers of N-nitroso compound...NOC. In the present study, partial purification of the NOCP in frankfurters was followed...trimethylsilyl (TMS) derivatives of a crude water extract of frankfurters indicated the...

Sidney S. Mirvish; Lin Zhou; James Haorah; Fulvio Perini; Takayuki Shibamoto; Stephen S. Hecht; and Steven G. Carmella

2006-04-15T23:59:59.000Z

324

Purification and characterization of a methylene urea-hydrolyzing enzyme from Rhizobium radiobacter (Agrobacterium tumefaciens)  

E-Print Network [OSTI]

Purification and characterization of a methylene urea-hydrolyzing enzyme from Rhizobium radiobacter , Bruce D. Hammockb a Department of Land, Air, and Water Resources, University of California, One Shields) to homogeneity using a four-step purification procedure with an overall yield of 3%. The active enzyme has

Hammock, Bruce D.

325

MERCURY PURIFICATION IN THE MEGAWATT LIQUID METAL SPALLATION TARGET OF EURISOL-DS Joerg Neuhausena  

E-Print Network [OSTI]

MERCURY PURIFICATION IN THE MEGAWATT LIQUID METAL SPALLATION TARGET OF EURISOL-DS Joerg Neuhausena. For the development of a purification procedure, knowledge about the chemical state of the different elements present-components are of different origin: Gaseous impurities include oxygen, nitrogen and water. The construction materials

McDonald, Kirk

326

Purification and Properties of an Esterase from Human Breast Cyst Fluid  

Science Journals Connector (OSTI)

...samples and describe the purification and properties of the...partitioned between water and hexane. The increase...and then rinsed with water. Preparation of Leukocytes...material for the Table 1 Purification protocol Esterase activity...was eluted with 30 ml water which removed 50% of...

S. Banerjee; J. Katz; M. Levitz; and T. H. Finlay

1991-02-15T23:59:59.000Z

327

Improved -Elimination-Based Affinity Purification Strategy for Enrichment of Phosphopeptides  

E-Print Network [OSTI]

Improved -Elimination-Based Affinity Purification Strategy for Enrichment of Phosphopeptides Derek for affinity purification via disulfide exchange with an activated thiol resin and the develop- ment.) During our experiments, we observed a side reaction in which water was eliminated from unmodified serine

Chait, Brian T.

328

The Purification of Water by Zone Melting: A Phase Diagram Interpretation  

Science Journals Connector (OSTI)

The Purification of Water by Zone Melting: A Phase Diagram Interpretation ... The author comments on the application of zone melting to the purification of water from aqueous NaCl solutions by giving an interpretation of some results taking into account the binary phase diagram. ... Water / Water Chemistry ...

Mohamed Jemal

2004-07-01T23:59:59.000Z

329

The affinity purification and characterization of ATP synthase complexes from mitochondria  

Science Journals Connector (OSTI)

...l1, respectively. 3.4. Purification of inhibited F1Fo-ATPase...performed at 23C. 3.5. Purification of active F1Fo-ATPase Active...trypsin inhibitor (5 mg ml1 in water). 3.7. Protein analysis...in an equivalent volume of water. Unilamellar liposomes of...

2013-01-01T23:59:59.000Z

330

Purification of Plastids from the Dinoflagellate Lingulodinium Yunling Wang, Tyler MacKenzie, David Morse  

E-Print Network [OSTI]

Purification of Plastids from the Dinoflagellate Lingulodinium Yunling Wang, Tyler MacKenzie, David fragile and difficult to isolate intact. In particular, standard purification protocols as described). The principal light-harvesting protein in the algae is a water-soluble PCP whose structure is clearly unrelated

331

Optimization and Scale-up of Antibody Purification Conditions by Hydrophobic  

E-Print Network [OSTI]

Optimization and Scale-up of Antibody Purification Conditions by Hydrophobic Charge Induction #12;Optimization and Scale-up of Antibody Purification Conditions by HCIC on MEP HHyyppeerr was regenerated using approximately 5 column volumes of 1 M NaOH. Small-scale runs were performed on an Ă?KTA

Lebendiker, Mario

332

Griffith 4/2004 Small Scale His Tag Enzyme Purification with TALON Affinity Column Resin  

E-Print Network [OSTI]

Griffith 4/2004 Small Scale His Tag Enzyme Purification with TALON Affinity Column Resin Overview: This is a small scale method for purifying a His-tagged protein using commercial affinity resin. Materials: TALON rotor, at 18 K rpm) at 4 °C. 7. Save supernatant fraction for column purification. Supernatant can

Doering, Tamara

333

[1] Overproduction and Purification of RFCRelated Clamp Loaders and PCNARelated Clamps from  

E-Print Network [OSTI]

in yeast and purified at a milligram scale. To aid in purification, the large subunit of each clamp loader[1] Overproduction and Purification of RFCRelated Clamp Loaders and PCNARelated Clamps from identified. These alternative clamp loaders contain the small Rfc2­5 sub- units of RFC, but replace the large

Burgers, Peter M.

334

Study on a Kind of Eco-concrete Retaining Wall's Block with Water Purification Function  

Science Journals Connector (OSTI)

Considering the environmental protection requirements for retaining wall and slope protection in Civil engineering and construction of water conservancy, a new type of retaining wall materials and structures with functions of slop reinforcement, slope greening and water purification was studied. In this paper, it designed a kind of Eco-concrete retaining wall's block which has functions of slope vegetation planting and water purification, and studied functions of water purification of this kind of Eco-concrete retaining wall's block through the water quality purification experiment. It shows that, the maximal disposable removal rates of CoDcr, TN and TP are respectively 87%, 70% and 90%, which means that functions of water purification of this kind of Eco-concrete retaining wall's block are very good.

Song Wen-jie; Fu Hong-yuan; Wang Gui-yao

2012-01-01T23:59:59.000Z

335

Novel Hydrogen Purification Device Integrated with PEM Fuel Cells  

SciTech Connect (OSTI)

A prototype device containing twelve membrane tubes was designed, built, and demonstrated. The device produced almost 300 scfh of purified hydrogen at 200 psig feed pressure. The extent of purification met the program target of selectively removing enough impurities to enable industrial-grade hydrogen to meet purity specifications for PEM fuel cells. An extrusion process was developed to produce substrate tubes. Membranes met several test objectives, including completing 20 thermal cycles, exceeding 250 hours of operating life, and demonstrating a flux of 965 scfh/ft2 at 200 psid and 400 C.

Joseph Schwartz; Hankwon Lim; Raymond Drnevich

2010-12-31T23:59:59.000Z

336

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

337

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

338

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS  

SciTech Connect (OSTI)

Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

Nsakala ya Nsakala; Gregory N. Liljedahl

2003-05-15T23:59:59.000Z

339

Hierarchical heteroarchitectures functionalized membrane for high efficient water purification  

Science Journals Connector (OSTI)

Abstract Heterojunctioned architectures were facilely fabricated using hydrothermally treated electrospun TiO2 nanofibers in an alkaline Sr(NO3)2 precursor solution in an electronic oven. TiO2 on the fiber surface was partially dissolved into Ti4+ to react with Sr2+ in favor of the nucleation of SrTiO3 on TiO2 nanofibers, and thus a heterojunction was formed between SrTiO3 and TiO2, which will benefit the improvement of photocatalytic activity. And then a multifunctional membrane was created by functionalizing the surface of commercial cellulose acetate (CA) membrane with heterojunctioned SrTiO3/TiO2 nanofibers. This newly structured membrane exhibited excellent water purification performances in a concurrent photocatalytic membrane filtration system under the irradiation of UV light, because it is able to integrate the advantages of photocatalysis and membrane filtration while minimizes their disadvantages. The high water purification performances in terms of high photodegradation ability and high permeate flux are attributed to the high photocatalytic activity of heterojunctioned SrTiO3/TiO2 nanofibers architectures and their structured porous functional layer favorable for fast water pass through.

Hongwei Bai; Xiaoli Zan; Jermyn Juay; Darren Delai Sun

2015-01-01T23:59:59.000Z

340

Purification of domestic sewage by water-hyacinth (Eichhornia crassipes)  

Science Journals Connector (OSTI)

Sewage management is posing serious techno-economic problems in cities, particularly in developing countries. A new technology, sewage purification by water-hyacinth (Eichhornia crassipes), is a possible solution. This paper studied the suitability and effectiveness of water-hyacinth in treating domestic sewage. A 28-day experiment was performed under a controlled environment of a screen-house subjected to natural conditions. Several parameters were measured and analysed, including the Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), faecal coliform count, nitrate and phosphate contents, pH value, heavy metals, turbidity, odour and colour at intervals of seven days. Laboratory analyses indicated that the water-hyacinth culture drastically reduced the faecal coliforms by about 80%. BOD dropped from 900 to 460 mg litre?1. COD was reduced from 1,424 to 766 mg litre?1 while the nitrogen content increased by about 77.5% and the phosphorus content rose by 63.3%. The pH value fell slightly from 8.58 to 7.81. The initial pungent odour of the raw sewage gradually disappeared during the purification period while the deep yellowish colour turned almost colourless in the final effluent sample. The sludge from the culture was rich and applicable as a bio-fertiliser. After comparison with the World Health Organisation Stream Standards, it was determined that the final effluent from water-hyacinth could be used for irrigation and fishing activities, or recycled to a flowing stream for other uses except for drinking purposes.

G.A. Alade; S.O. Ojoawo

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

342

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

343

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

344

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

345

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

346

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

347

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

348

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

349

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

350

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

351

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

352

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

353

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

354

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

355

Evaluation of gas-reburning and low NO{sub x} burners on a wall fired boiler. Progress report, January 1--March 31, 1996  

SciTech Connect (OSTI)

The primary objective of this Clean Coal Technology project is to evaluate the use of Gas Reburning and Low NO{sub x} Burners (GR-LNB) for NO{sub x} emission control from a wall fired boiler. This project is being conducted in three phases at the host site, a 172 MW{sub e} wall fired boiler of Public Service Company of Colorado, Cherokee Unit 3 in Denver, Colorado: Phase I, design and permitting has been completed on June 30, 1992; Phase II, construction and start-up has been completed on September 1991; and Phase III, operation, data collection, reporting and disposition. Phase III activities during this reporting period involved the following: compilation, analysis and assembly of the final report and initiation of restoration activities; restoration of the gas reburning system involving removal of the flue gas recirculation system (permanent Second Generation Gas Reburning); and participants meeting and reburning workshop. Long term testing of the equipment demonstrated an average NO{sub x} reduction of 65% using 18% gas heat input. After removing the flue gas recirculation system, (Second Generation GR), an average NO{sub x} of 64% was achieved using 13% gas heat input. The project goal of 70% reduction was achieved, but no on an average basis due to the load requirements of the utility.

NONE

1996-04-15T23:59:59.000Z

356

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE  

SciTech Connect (OSTI)

Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

2004-10-27T23:59:59.000Z

357

Distillation and purification of symmetric entangled Gaussian states  

E-Print Network [OSTI]

We propose an entanglement distillation and purification scheme for symmetric two-mode entangled Gaussian states that allows to asymptotically extract a pure entangled Gaussian state from any input entangled symmetric Gaussian state. The proposed scheme is a modified and extended version of the entanglement distillation protocol originally developed by [Browne et al., Phys. Rev. A 67, 062320 (2003)]. A key feature of the present protocol is that it utilizes a two-copy de-Gaussification procedure that involves a Mach-Zehnder interferometer with single-mode non-Gaussian filters inserted in its two arms. The required non-Gaussian filtering operations can be implemented by coherently combining two sequences of single-photon addition and subtraction operations.

Jaromir Fiurasek

2010-11-03T23:59:59.000Z

358

Distillation and purification of symmetric entangled Gaussian states  

SciTech Connect (OSTI)

We propose an entanglement distillation and purification scheme for symmetric two-mode entangled Gaussian states that allows to asymptotically extract a pure entangled Gaussian state from any input entangled symmetric Gaussian state. The proposed scheme is a modified and extended version of the entanglement distillation protocol originally developed by Browne et al. [Phys. Rev. A 67, 062320 (2003)]. A key feature of the present protocol is that it utilizes a two-copy degaussification procedure that involves a Mach-Zehnder interferometer with single-mode non-Gaussian filters inserted in its two arms. The required non-Gaussian filtering operations can be implemented by coherently combining two sequences of single-photon addition and subtraction operations.

Fiurasek, Jaromir [Department of Optics, Palacky University, 17. listopadu 12, CZ-77146 Olomouc (Czech Republic)

2010-10-15T23:59:59.000Z

359

Purification and Characterization of a Novel Cytotoxic Protein from Transformed Fibroblasts  

Science Journals Connector (OSTI)

...This purification scheme was followed identically for four independent preparations of TCP. Each study yielded...treated cells served as the 100% cytotoxicity reference point. Cell lift-oft effects were evaluated by microscopic examination...

Stanley Zucker; Betty I. DiMassimo; Rita M. Lysik; and Sergey Lyubsky

1993-03-01T23:59:59.000Z

360

Purification and Partial Biochemical Characterization of Polyphenol Oxidase from Mango (Mangifera indica cv. Manila)  

Science Journals Connector (OSTI)

The equilibrium buffer was displaced stepwise from 100 to 0% with distilled water, and the bound proteins were eluted. ... At this purification step, PPO was purified 216-fold (Table 1). ...

Gisela Palma-Orozco; Norma A. Marrufo-Hernández; José G. Sampedro; Hugo Nájera

2014-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermoplastic Microfluidic Device for On-Chip Purification of Nucleic Acids for Disposable  

E-Print Network [OSTI]

Thermoplastic Microfluidic Device for On-Chip Purification of Nucleic Acids for Disposable, Brookline, Massachusetts 02446 A polymeric microfluidic device for solid-phase extraction (SPE applications. Microfluidic approaches to nucleic acid isolation have therefore received great attention

362

TiO2-based photocatalytic process for purification of polluted water: bridging fundamentals to applications  

Science Journals Connector (OSTI)

Recent years have witnessed a rapid accumulation of investigations on TiO2-based photocatalysis, which poses as a greatly promising advanced oxidation technology for water purification. As the ability of this advanced oxidation process is ...

Chuan Wang; Hong Liu; Yanzhen Qu

2013-01-01T23:59:59.000Z

363

Water purification of nitrates by low-pressure reverse osmosis method  

Science Journals Connector (OSTI)

The paper has investigated possibilities and basic regularities of water purification of nitrates by low pressure reverse osmosis. The negative influence of chlorides and sulfates ... made on expediency of using ...

V. V. Goncharuk; V. O. Osipenko…

2013-03-01T23:59:59.000Z

364

Reverse-Osmosis Filtration Based Water Treatment and Special Water Purification for Nuclear Power Systems  

Science Journals Connector (OSTI)

This paper is devoted to the development and operation of specialized water treatment and water purification systems, based on the principle of reverse-osmosis filtration of water, for the operation of ... P. Ale...

V. N. Epimakhov; M. S. Oleinik; L. N. Moskvin

2004-04-01T23:59:59.000Z

365

The influence of purification protocol and pH on tomato spotted wilt virions  

E-Print Network [OSTI]

Two purification protocols were tested for their influence on yield of tomato spotted wilt virions. Protocol "A" was developed by Black et al (2), modified by Mohammed et al (34), and described by Gonsalves and Trujillo (16). Protocol "B...

Shimek, Christina Marie

1993-01-01T23:59:59.000Z

366

Porous TiO2 microspheres with tunable properties for photocatalytic air purification Alberto Naldoni a,  

E-Print Network [OSTI]

, continuous operation, facile scale-up process from small to large production, and thorough control overPorous TiO2 microspheres with tunable properties for photocatalytic air purification Alberto

Suslick, Kenneth S.

367

Single-Step Purification of Native Miraculin Using Immobilized Metal-Affinity Chromatography  

Science Journals Connector (OSTI)

We succeeded in purifying miraculin from miracle fruit in a single-step purification using immobilized metal-affinity chromatography (IMAC). ... A total of 25 g of the pulp powder was suspended with 100 mL of water and centrifuged at 12000g for 20 min. ... At the same amount and concentration, the purified miraculin shows a slightly higher taste-modifying activity compared to miraculin in the Tris-HCl extract before the purification. ...

Narendra Duhita; Kyoko Hiwasa-Tanase; Shigeki Yoshida; Hiroshi Ezura

2009-05-26T23:59:59.000Z

368

Partial purification and characterization of chitobiase from Gliocladium roseum strain 1620  

E-Print Network [OSTI]

PARTIAL PURIFICATION AND CHARACTERIZATION OF CHITOBIASE FROM Gliocladium roseum STRAIN 1620 A Thesis by KATHERINE LOUISE MARKS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1992 Major Subject: Plant Pathology PARTIAL PURIFICATION AND CHARACTERIZATION OF CHITOBIASE FROM Gliocladium roseum STRAIN 1620 A Thesis by KATHERINE LOUISE MARKS Approved as to style and content by: Charles...

Marks, Katherine Louise

2012-06-07T23:59:59.000Z

369

Studies on the stabilization and purification of nitrite reductase from Neurospora crassa  

E-Print Network [OSTI]

STUDIES ON THE STABILIZATION AND PURIFICATION OF NITRITE REDUCTASE FROM 1$E77ROSPORA CRASSA A Thesis by ROLAND FREDERICK BONEWITZ, JR. o Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 19 76 Maj or Subject: Biochemistry STUDIES ON THE STABILIZATION AND PURIFICATION OF NITRITE REDUCTASE FROM llfEURO"PORA CRASSA A Thesis by ROLAND FREDERICK BONEWITZ, JR. Approved as to style and content by'. n...

Bonewitz, Roland Frederick

1976-01-01T23:59:59.000Z

370

Purification and properties of a biologically active peptide released from bovine lactoferrin by pepsin digestion  

E-Print Network [OSTI]

PURIFICATION AND PROPERTIES OF A BIOLOGICALLY ACTIVE PEPTIDE RELEASED FROM BOVINE LACTOFERRIN BY PEPSIN DIGESTION A Thesis by DENISSE ALICIA MAURER Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment... of the requirements for the degree of MASTER QF SCIENCE May 1995 Major Subject: Food Science and Technology PURIFICATION AND PROPERTIES OF A BIOLOGICALLY ACTIVE PEPTIDE RELEASED FROM BOVINE LACTOFERRIN BY PEPSIN DIGESTION A Thesis by DENISSE ALICIA MAURER...

Maurer, Denisse Alicia

1995-01-01T23:59:59.000Z

371

Purification and expression of fatty acid binding proteins in chicken liver and intestine  

E-Print Network [OSTI]

PURIFICATION AND EXPRESSION OF FATTY ACID BINDING PROTEINS IN CHICKEN LIVER AND INTESTINE A Thesis by JULIA ELLEN SEWELL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1988 Major subject: Nutrition PURIFICATION AND EXPRESSION OF FATTY ACID BINDING PROTEINS IN CHICKEN LIVER AND INTESTINE A Thesis by JULIA ELLEN SEWELL Approved as to style and content by: Pamela S. Hargi (Chair of Committ...

Sewell, Julia Ellen

1988-01-01T23:59:59.000Z

372

Purification and characterization of acyl-CoA thioesterase II from Rhodopseudomonas sphaeroides  

E-Print Network [OSTI]

PURIFICATION AND CHARACTERIZATION OF ACYL-COA THIOESTERASE II FROM RHODOPSEUDOMONAS SPHAEROIDES A Thesis by TIMOTHY SEAY Submitted to the Graduate College of Texas ASt. M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1984 Major Subject: Microbiology PURIFICATION AND CHARACTERIZATION OF ACYL-COA THIOESTERASE II FROM RHOD OPSEUD OMONAS SPHAER OIDES A Thesis TIMOTHY SEAY Approved as to sty]e and content by: ona o . ue tng (Chairman...

Seay, Timothy

1984-01-01T23:59:59.000Z

373

S-adenosyl-L-methionine:farnesoic acid O-methyltransferase of Passalus cornutus: purification and characterization  

E-Print Network [OSTI]

S-ADENOSYL-L-METHIONINE:FARNESOIC ACID 0-METHYLTRANSFERASE OF Passalus cornutus: PURIFICATION AND CHARACTERIZATION A Thesis WEN-HAI CHOU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1993 Major Subject; Zoology S-ADENOSYL-L-METHIONINE:FARNESOIC ACID 0-METHYLTRANSFERASE OF Passalvs cornutus: PURIFICATION AND CHARACTERIZATION A Thesis by HEN-HAI CHOU Approved as to style...

Chou, Wen-Hai

1993-01-01T23:59:59.000Z

374

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

375

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

376

Elimination of Botulinum Neurotoxin (BoNT) Type B from Drinking Water by Small-Scale (Personal-Use) Water Purification Devices and Detection of BoNT in Water Samples  

Science Journals Connector (OSTI)

...Small-Scale (Personal-Use) Water Purification Devices and Detection of BoNT...Seven small-scale drinking water purification devices were evaluated for...immunoassays (EIAs). The water purification devices based on filtration...

Ari Hörman; Mari Nevas; Miia Lindström; Marja-Liisa Hänninen; Hannu Korkeala

2005-04-01T23:59:59.000Z

377

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

378

Purification, crystallization and preliminary X-ray diffraction analysis of pyridoxal kinase from Plasmodium falciparum (PfPdxK)  

Science Journals Connector (OSTI)

The cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of PdxK from P. falciparum are described.

Kronenberger, T.

2014-10-25T23:59:59.000Z

379

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

380

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

382

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

383

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

384

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

385

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

386

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

387

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

388

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

389

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

390

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

391

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

392

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

393

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

394

Gas vesicles.  

Science Journals Connector (OSTI)

...in the suspending water, of concentration...MPa and balances the atmospheric pressure. Note that...versely, liquid water could not form by condensation inside the gas vesicle...presumably surrounded by water on all sides. At...

A E Walsby

1994-03-01T23:59:59.000Z

395

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

396

SEPARATION OF CO2 FROM FLUE GASES BY CARBON-MULTIWALL CARBON NANOTUBE MEMBRANES  

SciTech Connect (OSTI)

Multiwalled carbon nanotubes (MWNT) were found to be an effective separation media for removing CO{sub 2} from N{sub 2}. The separation mechanism favors the selective condensation of CO{sub 2} from the flowing gas stream. Significant uptakes of CO{sub 2} were measured at 30 C and 150 C over the pressure range 0.5 to 5 bar. No measurable uptake of nitrogen was found for this range of conditions. The mass uptake of CO{sub 2} by MWNT was found to increase with increasing temperature. A packed bed of MWNT completely removed CO{sub 2} from a flowing stream of CO{sub 2}/N{sub 2}, and exhibited rapid uptake kinetics for CO{sub 2}.

Rodney Andrews

2001-03-01T23:59:59.000Z

397

Gas reburning in tangentially-fired, wall-fired and cyclone-fired boilers  

SciTech Connect (OSTI)

Gas Reburning has been successfully demonstrated for over 4,428 hours on three coal fired utility boilers as of March 31, 1994. Typically, NO{sub x} reductions have been above 60% in long-term, load-following operation. The thermal performance of the boilers has been virtually unaffected by Gas Reburning. At Illinois Power`s Hennepin Station, Gas Reburning in a 71 MWe tangentially-fired boiler achieved an average NO{sub x} reduction of 67% from the original baseline NO{sub x} level of 0.75 lb NO{sub x}/10{sup 6} Btu over a one year period. The nominal natural gas input was 18% of total heat input. Even at 10% gas heat input, NO{sub x} reduction of 55% was achieved. At Public Service Company of Colorado`s Cherokee Station, a Gas Reburning-Low NO{sub x} Burner system on a 172 MWe wall-fired boiler has achieved overall NO{sub x} reductions of 60--73% in parametric and long-term testing, based on the original baseline NO{sub x} level of 0.73 lb/10{sup 6} Btu. NO{sub x} reduction is as high as 60--65% even at relatively low natural gas usage (5--10% of total heat input). The NO{sub x} reduction by Low NO{sub x} Burners alone is typically 30--40%. NO{sub x} reduction has been found to be insensitive to changes in recirculated flue gas (2--7% of total flue gas) injected with natural gas. At City Water, Light and Power Company`s Lakeside Station in Springfield, Illinois, Gas Reburning in a 33 MWe cyclone-fired boiler has achieved an average NO{sub x} reduction of 66% (range 52--77%) at gas heat inputs of 20--26% in long-term testing, based on a baseline NO{sub x} level of 1.0 lb/10{sup 6} Btu (430 mg/MJ). This paper presents a summary of the operating experience at each site and discusses the long term impacts of applying this technology to units with tangential, cyclone and wall-fired (with Low NO{sub x} Burner) configurations.

May, T.J. [Illinois Power Co., Decatur, IL (United States); Rindahl, E.G. [Public Service Co. of Colorado, Denver, CO (United States); Booker, T. [City Water Light and Power, Springfield, IL (United States)] [and others

1994-12-31T23:59:59.000Z

398

Deep liquid-chromatographic purification of uranium extract from technetium  

SciTech Connect (OSTI)

The recycling of uranium in the nuclear fuel cycle requires the removal of a number of radioactive and stable impurities like {sup 99}Tc from spent fuels. In order to improve the grade of uranium extract purification from technetium the method of liquid chromatography and the apparatus for its performance have been developed. Process of technetium extraction and concentrating in aqueous solution containing reducing agent has been studied on simulated solutions (U-Tc-HNO{sub 3}-30% TBP-isoparM). The dynamic tests of the method have been carried out on the laboratory unit. Solution of diformyl-hydrazine in nitric acid was used as a stationary phase. Silica gel with specific surface of 186 m{sup 2}/g was used as a carrier of the stationary phase. It is shown that the volume of purified extract increases as the solution temperature increases, concentration of reducing agent increases and extract flow rate decreases. It is established that the technetium content in uranium by this method could achieve a value below 0.3 ppm. Some variants of overload and composition of the stationary phase containing the extracted technetium have been offered and tested. It is defined that the method provides reduction of processing medium-active wastes by more than 10 times during finish refining process. (authors)

Volk, V.; Dvoeglazov, K; Podrezova, L.; Vidanov, V.; Pavlyukevich, E. [OAO State Research Center - VNIINM, Rogov str., bld. 5, Moscow (Russian Federation)

2013-07-01T23:59:59.000Z

399

The isolation and purification of a caribbean maitotoxin  

SciTech Connect (OSTI)

The phenomenon known as red tide has been a topic of great interest in that there is concern that the scale and complexity of this natural phenomenon are expanding. It is known that the benthic dinoflagellate, Gambierdiscus toxicus, produces a variety of polyether toxins that contaminate seafood and result in human illness. Maitotoxin (MTX) is one of the toxins that have been implicated in ciguatera seafood poisoning. There is a need for the development of a much broader understanding of the nature of the poisoning toxins. MTX cogeners can be difficult to isolate due to its size and chemical nature. A major goal is to obtain a purified standard of a Caribbean MTX so that more efficient assays can be developed to test seafood for the presence of toxins and thus avoid human harm. The primary goal of this project is to obtain large amounts of pure maitotoxin. The procedure described is also useful as a starting point for the purification of other toxins.

Davis, S.E.; Knoepp, S.M.; Lanoue, B.A. [and others

1994-12-31T23:59:59.000Z

400

Mercury Capture on Fly Ash and Sorbents: The Effects of Coal Properties and Combustion Conditions  

Science Journals Connector (OSTI)

The control of mercury from coal combustion is very dependent upon the flue gas chemistry. The flue gas chemistry is a function of the time–temperature ... duct, etc. However, the flue gas chemistry, and thus mer...

Nick D. Hutson

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

402

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

403

Purification and Composition of the Human Tumor-associated Glycoprotein (TAG-72) Defined by Monoclonal Antibodies CC49 and B72.3  

Science Journals Connector (OSTI)

...publication. 6811 PURIFICATION OF A TUMOR-ASSOCIATED...dialyzed for 48 h against water. This fraction is...other major increase in purification occurred after immunoaf...gentle conditions, 6815 PURIFICATION OF A TUMOR-ASSOCIATED...material was analyzed on a Waters Gen-Pak column...

Donald G. Sheer; Jeffrey Schlom; and Herbert L. Cooper

1988-12-01T23:59:59.000Z

404

Production, purification, and properties of a lipase from a bacterium (Pseudomonas aeruginosa YS-7) capable of growing in water-restricted environments.  

Science Journals Connector (OSTI)

...Article Production, purification, and properties...capable of growing in water-restricted environments...Lipase isolation & purification metabolism Pseudomonas...Substrate Specificity Water metabolism APPLIED...require addi- tional purification to reach ultimate...accompanied the HIC when water was used as final...

Y Shabtai; N Daya-Mishne

1992-01-01T23:59:59.000Z

405

Monodisperse, "Highly" Positively Charged Protein Polymer Drag-Tags Generated in an Intein-Mediated Purification System Used in  

E-Print Network [OSTI]

-Mediated Purification System Used in Free-Solution Electrophoretic Separations of DNA Xiaoxiao Wang,1 Jennifer Coyne engineered, highly repetitive polypeptides ("protein polymers") that are designed to be large, water, a one-step purification method that combines affinity chromatography and on-column tag cleavage

Barron, Annelise E.

406

Enzymatic Hydrolysis of Yeast Cell Walls I. Isolation of Wall-Decomposing Organisms and Separation and Purification of Lytic Enzymes  

Science Journals Connector (OSTI)

...1937) for the purification of mannan. The white, water- soluble polysaccharide...column with 200 ml of water ,3-1-*6 glucanase...against distilled water or buffe ,6-1...the separation and purification of j3-l3 and l-1-6...

Hirosato Tanaka; Herman J. Phaff

1965-06-01T23:59:59.000Z

407

Be in a state of purification (e.g. ritual washing, clean clothes) Stand upright facing the direction of Mecca  

E-Print Network [OSTI]

Be in a state of purification (e.g. ritual washing, clean clothes) Stand upright facing the day and night. Purification: In most cases, this is achieved through washing of the face & hands, and wiping of head & feet with water. However, at times, the body must be washed. Clothes must be clean. Call

Khambatt, Mujtaba

408

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

409

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

410

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

411

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

412

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

413

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

414

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

415

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

416

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

417

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

418

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

419

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

420

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

422

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

423

Gas vesicles.  

Science Journals Connector (OSTI)

...the gas vesicles simply reduce their sinking rates and...remaining suspended in the water column. A microorganism...phenomena as stratification, water- bloom formation, and...the many proteins that make up the phycobilisome (73...flagellate bacteria in natural waters. The natural selection...

A E Walsby

1994-03-01T23:59:59.000Z

424

Gas vesicles.  

Science Journals Connector (OSTI)

...these costs can be compared is in units of energy expenditure per time (joules per second...requires 7.24 x 10-18 kg of Gvp. The energy cost of making this protein, Eg, is...Eg = 2.84 x 101- o J. The rate of energy expenditure in gas vesicle synthesis then...

A E Walsby

1994-03-01T23:59:59.000Z

425

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

426

Cogeneration system with low NO sub x combustion of fuel gas  

SciTech Connect (OSTI)

This patent describes a cogeneration system for the production of electricity and refrigeration with low NO{sub x} combustion of fuel gas supplied at a high pressure. It comprises a heat exchanger to heat the fuel gas at high pressure; a turbo-expander connected to receive and expand the heated fuel gas from the heat exchanger; a centrifugal compressor driven by the turbo-expander the compressor being the refrigerant compressor of a refrigeration system; a porous fiber burner connected to receive the expanded fuel gas from the turbo-expander together with the requisite combustion air; a high-pressure steam boiler heated by the combustion of the expanded fuel gas on the outer surface of the porous fiber burner, the boiler being connected to pass the resulting flue gas with low NO{sub x} content through the heat exchanger to heat the fuel gas at high pressure; a steam turbine connected to receive and expand highpressure steam from the boiler and to return expanded and condensed steam to the boiler; and an electric generator driven by the steam turbine.

Garbo, P.W.

1991-06-25T23:59:59.000Z

427

COMPARISON OF DIFFERENT APPROACHES FOR THE SIMULATION OF BOILERS USING OIL, GAS, PELLETS OR WOOD CHIPS  

E-Print Network [OSTI]

A detailed model for the simulation of boilers using oil, gas, pellets or wood chips has been developed and compared with measurements. Approaches of different complexity for the simulation of steady state flue gas losses were tested. The more physical approaches are able to reproduce measured data better than the simpler empirical models, but they also require more model parameters to be determined and a higher simulation effort. Cycling behaviour of the simple one-node thermal mass approach of the model was compared with measured cycling behaviour of a pellet boiler. With the proper values for the relevant boiler parameters, cycling behaviour is reproduced well. With the implementation in a FORTRAN-dll that can be called from TRNSYS, a tool is now available that suits the needs of scientists as well as planners and product developers that use energy systems simulation tools.

Michel Haller; Lars Konersmann; Robert Haberl; Angela Dröscher; Elimar Frank

428

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

429

Aerosol synthesis of macroporous silica adsorbents with high performance in paclitaxel purification from plant cell cultures  

Science Journals Connector (OSTI)

Abstract Macroporous spherical silica particles having high performance for the purification of paclitaxel were synthesized by spray pyrolysis using polystyrene nanoparticles as a template. In terms of increasing the purity and yield of paclitaxel, the synthesized macroporous silica showed the better performance than mesoporous silica of high surface area as well as commercial sylopute. The generation of macroporous with the sacrifice of losing surface area was proved to be helpful for enhancing the performance of adsorbents for paclitaxel purification. As a result, the high purity (67.3%) and yield (80.0%) of paclitaxel was achieved by using macroporous silica prepared by spray pyrolysis.

Hye Ran Jang; Jin-Hyun Kim; Kyeong Youl Jung

2014-01-01T23:59:59.000Z

430

Circulation model for water circulation and purification in a water Cerenkov detector  

Science Journals Connector (OSTI)

Owing to its low cost and good transparency, highly purified water is widely used as a medium in large water Cerenkov detector experiments. The water circulation and purification system is usually needed to keep the water in good quality. In this work, a practical circulation model is built to describe the variation of the water resistivity in the circulation process and compared with the data obtained from a prototype experiment. The successful test of the model makes it useful in the future design and optimization of the circulation/purification system.

Lu Hao-Qi; Yang Chang-Gen; Wang Ling-Yu; Xu Ji-Lei; Wang Rui-Guang; Wang Zhi-Min; Wang Yi-Fang

2009-01-01T23:59:59.000Z

431

On the distillation and purification of phase-diffused squeezed states  

E-Print Network [OSTI]

Recently it was discovered that non-Gaussian decoherence processes, such as phase-diffusion, can be counteracted by purification and distillation protocols that are solely built on Gaussian operations. Here, we make use of this experimentally highly accessible regime, and provide a detailed experimental and theoretical analysis of several strategies for purification/distillation protocols on phase-diffused squeezed states. Our results provide valuable information for the optimization of such protocols with respect to the choice of the trigger quadrature, the trigger threshold value and the probability of generating a distilled state.

B. Hage; A. Franzen; J. DiGuglielmo; P. Marek; J. Fiurášek; R. Schnabel

2007-07-13T23:59:59.000Z

432

DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS  

SciTech Connect (OSTI)

The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

2012-09-30T23:59:59.000Z

433

Design and Application of the Dry-FGD Process in Sanming Steel No. 2 Sintering Plant  

Science Journals Connector (OSTI)

In this paper, it summarizes the characteristics of sinter flue gas, and study the application of dry-type-FGD (flue gas desulphurization) process for...

Yu Zhijie; Li Qiyong; Xu Haijun; Lin Chunyuan

2009-01-01T23:59:59.000Z

434

Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control  

SciTech Connect (OSTI)

Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic (i.e., man-made) CO{sub 2} emissions. In 2001, ALSTOM Power Inc. (ALSTOM) began a two-phase program to investigate the feasibility of various carbon capture technologies. This program was sponsored under a Cooperative Agreement from the US Department of Energy's National Energy Technology Laboratory (DOE). The first phase entailed a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen cases, representing various levels of technology development, were evaluated. Seven cases represented coal combustion in CFB type equipment. Four cases represented Integrated Gasification Combined Cycle (IGCC) systems. Two cases represented advanced Chemical Looping Combined Cycle systems. Marion, et al. reported the details of this work in 2003. One of the thirteen cases studied utilized an oxygen-fired circulating fluidized bed (CFB) boiler. In this concept, the fuel is fired with a mixture of oxygen and recirculated flue gas (mainly CO{sub 2}). This combustion process yields a flue gas containing over 80 percent (by volume) CO{sub 2}. This flue gas can be processed relatively easily to enrich the CO{sub 2} content to over 96 percent for use in enhanced oil or gas recovery (EOR or EGR) or simply dried for sequestration. The Phase I study identified the O{sub 2}-fired CFB as having a near term development potential, because it uses conventional commercial CFB technology and commercially available CO{sub 2} capture enabling technologies such as cryogenic air separation and simple rectification or distillation gas processing systems. In the long term, air separation technology advancements offer significant reductions in power requirements, which would improve plant efficiency and economics for the oxygen-fired technology. The second phase consisted of pilot-scale testing followed by a refined performance and economic evaluation of the O{sub 2} fired CFB concept. As a part of this workscope, ALSTOM modified its 3 MW{sub th} (9.9 MMBtu/hr) Multiuse Test Facility (MTF) pilot plant to operate with O{sub 2}/CO{sub 2} mixtures of up to 70 percent O{sub 2} by volume. Tests were conducted with coal and petroleum coke. The test objectives were to determine the impacts of oxygen firing on heat transfer, bed dynamics, potential agglomeration, and gaseous and particulate emissions. The test data results were used to refine the design, performance, costs, and economic models developed in Phase-I for the O{sub 2}-fired CFB with CO{sub 2} capture. Nsakala, Liljedahl, and Turek reported results from this study in 2004. ALSTOM identified several items needing further investigation in preparation for large scale demonstration of the oxygen-fired CFB concept, namely: (1) Operation and performance of the moving bed heat exchanger (MBHE) to avoid recarbonation and also for cost savings compared to the standard bubbling fluid bed heat exchanger (FBHE); (2) Performance of the back-end flash dryer absorber (FDA) for sulfur capture under high CO{sub 2}/high moisture flue gas environment using calcined limestone in the fly ash and using fresh commercial lime directly in the FDA; (3) Determination of the effect of recarbonation on fouling in the convective pass; (4) Assessment of the impact of oxygen firing on the mercury, other trace elements, and volatile organic compound (VOC) emissions; and (5) Develop a proposal-level oxygen-fired retrofit design for a relatively small existing CFB steam power plant in preparation for a large-scale demonstration of the O{sub 2} fired CFB concept. Hence, ALSTOM responded to a DOE Solicitation to address all these issues with further O{sub 2} fired MTF pilot testing and a subsequent retrofit design study of oxygen firing and CO{s

Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

2007-03-31T23:59:59.000Z

435

NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

436

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Price Sold to...

437

Natural Gas Weekly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

438

High-volume, high-value usage of flue gas desulfurization (FGD) by- products in underground mines: Phase 1, Laboratory investigations. Quarterly report, April--June 1995  

SciTech Connect (OSTI)

The kinetics study which is investigating hydration reactions of the ADM by-product (Subtask 2.2) was continued this quarter. This study further aided in gaining information on mineral precipitation and dissolution reactions during hydration of the ADM materials. The information is of importance for a comprehensive understanding of the factors that control strength and long-term stability during aging of FGD materials. The decision was made by Addington, Inc., DOE, and the University of Kentucky that the originally selected mine site for the emplacement demonstration must be changed, mainly for safety reasons. Mine selection will be a priority for the next quarter (Jul--Sep, 1995). Another activity during this reporting period was related to Subtask 4.3, the selection and testing of the transport system for the FGD material. A laboratory-scale pneumatic emplacement test unit (ETU) for dry FGD materials was built at the CAER to generate data so that a final selection of the field demonstration technology can be made. A dry pneumatic system was chosen for laboratory testing because the equipment and expertise available at the CAER matched this sort of technology best. While the design of the laboratory system was based on shotcrete technology, the physical properties of the emplaced FGD material is expected to be similar for other transport techniques, either pneumatic or hydraulic. In other words, the selection of a dry pneumatic transport system for laboratory testing does not necessarily imply that a scaled-up version will be used for the field demonstration. The ETU is a convenient means of producing samples for subsequent chemical and physical testing by a representative emplacement technology. Ultimately, the field demonstration technology will be chosen based on the laboratory data and the suitability of locally available equipment.

NONE

1995-09-01T23:59:59.000Z

439

Lead Isotopic Composition of Fly Ash and Flue Gas Residues from Municipal Solid Waste Combustors in France: Implications for Atmospheric Lead Source Tracing.  

E-Print Network [OSTI]

types contain hundreds to thousands of micrograms of metals per gram. Leaching experiments showed that metals are present in condensed phases, probably as sulfates and chlorides, and suggest that Cd, Pb and Zn are highly fractionated from one another during volatilization/condensation processes occurring

Paris-Sud XI, Université de

440

Carbon Filter Process for Flue-Gas Carbon Capture on Carbonaceous Sorbents: Field Tests of Steam-Aided Vacuum Swing Adsorption  

Science Journals Connector (OSTI)

The final 30 cycles are performed at Pawnee Station, owned by Xcel Energy, in Brush, CO. ... This work was funded by Wyoming’s Enhanced Oil Recovery Institute, Supercritical Fluids LLC, the state of Wyoming’s Clean Coal Program administered by the University of Wyoming’s School of Energy Resources, the Electric Power Research Institute, Pacificorp Energy, Xcel Energy, and a discretionary fund of one of the authors (Maciej Radosz). ... The authors also thank Mr. Ryan Taucher, Pacificorp Energy’s Jim Bridger Power Plant, WY, Mr. Barry Andrews, Xcel Energy’s Pawnee Station, CO, and Dr. Xin Hu, who characterized the sorbents. ...

Bryce Dutcher; Kaspars Krutkramelis; Hertanto Adidharma; Maciej Radosz

2012-03-20T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Amine-Tethered Adsorbents Based on Three-Dimensional Macroporous Silica for CO2 Capture from Simulated Flue Gas and Air  

Science Journals Connector (OSTI)

Danon, A.; Stair, P. C.; Weitz, E.FTIR Study of CO2 Adsorption on Amine-Grafted SBA-15: Elucidation of Adsorbed Species J. Phys. ... Danon, Alon; Stair, Peter C.; Weitz, Eric ...

Fa-Qian Liu; Lei Wang; Zhao-Ge Huang; Chao-Qin Li; Wei Li; Rong-Xun Li; Wei-Hua Li

2014-03-03T23:59:59.000Z

442

Important Roles of Enthalpic and Entropic Contributions to CO2 Capture from Simulated Flue Gas and Ambient Air Using Mesoporous Silica Grafted Amines  

Science Journals Connector (OSTI)

The measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0–0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient ...

Mustafa A. Alkhabbaz; Praveen Bollini; Guo Shiou Foo; Carsten Sievers; Christopher W. Jones

2014-09-08T23:59:59.000Z

443

Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO{sub 2} Capture  

SciTech Connect (OSTI)

The purpose of this document is to report the final result of techno-economic analysis for the proposed 550MWe integrated pressurized chemical looping combustion combined cycle process. An Aspen Plus based model is delivered in this report along with the results from three sensitivity scenarios including the operating pressure, excess air ratio and oxygen carrier performance. A process flow diagram and detailed stream table for the base case are also provided with the overall plant energy balance, carbon balance, sulfur balance and water balance. The approach to the process and key component simulation are explained. The economic analysis (OPEX and CAPX) on four study cases via DOE NETL Reference Case 12 are presented and explained.

Liu, Kunlei; Chen, Liangyong; Zhang, Yi; Richburg, Lisa; Simpson, James; White, Jay; Rossi, Gianalfredo

2013-12-31T23:59:59.000Z

444

Study of Flue Gas Desulfurization Absorbent Prepared from Coal Fly Ash:? Effects of the Composition of the Absorbent on the Activity  

Science Journals Connector (OSTI)

The formation of calcium silicate is suggested to be predominant in a high concentration of silica, while the formation of ettringite was observed by the XRD only for the absorbent containing silica below 30%. ... ettringite ... With sample 1 containing no silica, the formation of ettringite (Ca6Al2(SO4)3(OH)12) was obvious. ...

Hiroaki Tsuchiai; Tomohiro Ishizuka; Hideki Nakamura; Tsutomu Ueno; Hideshi Hattori

1996-07-03T23:59:59.000Z

445

Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review  

Science Journals Connector (OSTI)

Abstract The remediation of carbon dioxide emitted into the atmosphere has become the topic of the day due to the enormous contribution of CO2 to the devastating global warming. The Boudouard reaction, in which solid carbon (char) reacts with CO2 to produce carbon monoxide (CO2 (g)+C(s)?CO (g)), is a straightforward route for the CO2 emission mitigation. Through this reaction, the CO2 coming from variety of combustion plants, including exhaust/flue gas and synthesis gas, can be upgraded to the fuel gas, CO. This work presents a review on the CO2 gasification of char, from coal, biomass, municipal solid wastes, sewage sludge or any co-utilized blend of them, to produce CO through the Boudouard reaction. An outline of the most effective parameters on the char gasification rate is presented. The parameters which affect the char reactivity are reviewed as those related to the char and its structural features (surface area and porosity, active sites, mineral content, structural evolution of char during gasification, pyrolysis condition and carbon source) and operation parameters (use of catalyst, gasification temperature, gasification pressure and CO2 partial pressure, char particle size and gasification heat source). The kinetics of the char gasification reaction is studied and several theoretical or semi-empirical kinetic models used to interpret the reaction rate data and calculation of kinetic parameters, specifically activation energy, are reviewed and discussed.

Pooya Lahijani; Zainal Alimuddin Zainal; Maedeh Mohammadi; Abdul Rahman Mohamed

2015-01-01T23:59:59.000Z

446

Shale gas is natural gas trapped inside  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

447

Gas Chromatography  

Science Journals Connector (OSTI)

Researchers from the University of Missouri and ICx Nomadics have reported on the use of a optofluidic ring resonator (OFRR) sensor for on-column detection ?. ... Although substantial differences were noted between fresh and aged (or oxidized) oils, many of the compounds in the oxidized oil went unidentified due to lack of library mass spectral data. ... A high resolution MEMS based gas chromatography column for the analysis of benzene and toluene gaseous mixtures ...

Frank L. Dorman; Joshua J. Whiting; Jack W. Cochran; Jorge Gardea-Torresdey

2010-05-26T23:59:59.000Z

448

Categorical Exclusion Determinations: A9 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

13, 2010 13, 2010 CX-000728: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Perryville, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000729: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Livingston, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 12, 2010 CX-006426: Categorical Exclusion Determination Ohio-City-Elyria CX(s) Applied: A1, A9, A11, B1.32, B5.1 Date: 01/12/2010 Location(s): Elyria, Ohio Office(s): Energy Efficiency and Renewable Energy

449

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11 - 5820 of 28,905 results. 11 - 5820 of 28,905 results. Download CX-000726: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: B3.6 Date: 01/13/2010 Location(s): Birmingham, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-000726-categorical-exclusion-determination Download CX-000725: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9, B3.6 Date: 01/13/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-000725-categorical-exclusion-determination Download CX-000723: Categorical Exclusion Determination

450

Categorical Exclusion Determinations: New Jersey | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

January 13, 2010 January 13, 2010 CX-000728: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Perryville, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000729: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Livingston, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000790: Categorical Exclusion Determination Infrastructure Improvements for Innovative Confinement Concept (ICC) Experiments with American Recovery and Reinvestment Act Funding

451

Determining the economic consequences of natural gas substitution  

Science Journals Connector (OSTI)

Abstract Resource depletion is a key aspect of sustainability, because the consumption of finite resources impacts on their availability for future generations. There are many proposed methods for accounting for the depletion of a particular resource, amongst which include the proportion of the resource depleted, the rate of resource depletion, and the energy, exergy, or monetary cost of extraction as the resource becomes harder to find or extract. This paper is part of a wider study to measure resource depletion using its environmental and economic impacts for the case of natural gas, where depletion of natural gas requires substitution by black coal or coal seam gas. The capital and operating costs are estimated both for upstream fuel extraction and purification and downstream use of the fuel to produce electricity, hydrogen and ammonia. These costs are based on a commercial scale of operation, using the same basis for economic modelling in each case. Black coal was found to have the lowest transfer price from upstream to downstream processing among the three feedstocks, but the highest capital and operating costs in the downstream processes. Conventional gas produced slightly higher transfer prices and downstream processing costs compared to coal seam gas. The favourable economic and environmental indicators for natural gas and coal seam gas are expected to lead to increased demand for these resources over coal, running the risk of a gas shortage. The economic consequence of a scarcity of either gas resource will be a penalty in capital and operating costs to produce the three products should gas be substituted with black coal.

Shaun Rimos; Andrew F.A. Hoadley; David J. Brennan

2014-01-01T23:59:59.000Z

452

Forward osmosis :a new approach to water purification and desalination.  

SciTech Connect (OSTI)

Fresh, potable water is an essential human need and thus looming water shortages threaten the world's peace and prosperity. Waste water, brackish water, and seawater have great potential to fill the coming requirements. Unfortunately, the ability to exploit these resources is currently limited in many parts of the world by both the cost of the energy and the investment in equipment required for purification/desalination. Forward (or direct) osmosis is an emerging process for dewatering aqueous streams that might one day help resolve this problem. In FO, water from one solution selectively passes through a membrane to a second solution based solely on the difference in the chemical potential (concentration) of the two solutions. The process is spontaneous, and can be accomplished with very little energy expenditure. Thus, FO can be used, in effect, to exchange one solute for a different solute, specifically chosen for its chemical or physical properties. For desalination applications, the salts in the feed stream could be exchanged for an osmotic agent specifically chosen for its ease of removal, e.g. by precipitation. This report summarizes work performed at Sandia National Laboratories in the area of FO and reviews the status of the technology for desalination applications. At its current state of development, FO will not replace reverse osmosis (RO) as the most favored desalination technology, particularly for routine waters. However, a future role for FO is not out of the question. The ability to treat waters with high solids content or fouling potential is particularly attractive. Although our analysis indicates that FO is not cost effective as a pretreatment for conventional BWRO, water scarcity will likely drive societies to recover potable water from increasingly marginal resources, for example gray water and then sewage. In this context, FO may be an attractive pretreatment alternative. To move the technology forward, continued improvement and optimization of membranes is recommended. The identification of optimal osmotic agents for different applications is also suggested as it is clear that the space of potential agents and recovery processes has not been fully explored.

Miller, James Edward; Evans, Lindsey R.

2006-07-01T23:59:59.000Z

453

Membrane-based systems for carbon capture and hydrogen purification  

SciTech Connect (OSTI)

This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the optimization of a technology that could be positioned upstream or downstream of one or more of the water-gas-shift reactors (WGSRs) or integrated with a WGSR.

Berchtold, Kathryn A [Los Alamos National Laboratory

2010-11-24T23:59:59.000Z

454

Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler  

SciTech Connect (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70% reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

None

1998-09-01T23:59:59.000Z

455

Gas Sampling Considerations  

Science Journals Connector (OSTI)

Gas sampling is carried out to measure the quality of a gas. Gas samples are sometimes acquired by in situ observation within the main gas body by using remote or visual observation for specific properties. A mor...

Alvin Lieberman

1992-01-01T23:59:59.000Z

456

Georgia Tech Dangerous Gas  

E-Print Network [OSTI]

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

457

Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler  

SciTech Connect (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18%. The performance goal of 70/40 reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18%.

None

1998-07-01T23:59:59.000Z

458

Removal and determination of trimethylsilanol from the landfill gas  

Science Journals Connector (OSTI)

The removal and determination of trimethylsilanol (TMSOH) in landfill gas has been studied before and after the special E3000-ITC System. The system works according to principle of temperature swing. The performance of TMSOH and humidity removal was 20% and more than 90%, respectively. The six of active carbons and impinger method were tested on the full-scale landfill in Poland for TMSOH and siloxanes determination. The extraction method and absorption in acetone were used. The concentration of TMSOH and siloxanes were found in range from 23.6 to 29.2 mg/m3 and from 18.0 to 38.9 mg/m3, respectively. The content of TMSOH in biogas originating from landfill was 41% out of all siloxanes. Moreover, the used system is alternative to other existing technique of landfill gas purification.

Grzegorz Piechota; Manfred Hagmann; Roman Buczkowski

2012-01-01T23:59:59.000Z

459

Chapter 11 - Nanofluidic Carbon Nanotube Membranes: Applications for Water Purification and Desalination  

Science Journals Connector (OSTI)

This chapter presents a brief overview of the basic physical processes that govern the structure and transport of water inside CNT pores, basic properties that make nanotube pore technologies attractive for water purification and desalination, the fabrication approaches for producing CNT membranes, and the experimental observations of water transport and ion exclusion properties in CNT membranes.

Olgica Bakajin; Aleksandr Noy; Francesco Fornasiero; Costas P. Grigoropoulos; Jason K. Holt; Jung Bin In; Sangil Kim; Hyung Gyu Park

2014-01-01T23:59:59.000Z

460

Purification and Characterization of a Novel Cytotoxic Protein from Transformed Fibroblasts  

Science Journals Connector (OSTI)

...buffer and 0.3% H2O2 in water for 3 min at 22 C.With this...the formation of a reddish water insoluble oxidation product...gelatin (20%), and water and coded before examination...Rockford, IL). RESULTS Purification and Molecular Weight Determination...

Stanley Zucker; Betty I. DiMassimo; Rita M. Lysik; and Sergey Lyubsky

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas purification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.