Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers  

E-Print Network (OSTI)

Chemical technology has been used successfully to solve many of the operational and emissions problems that result from burning coal. This paper describes the use of blended chemical flue gas conditioners to significantly reduce particulate emissions in coal-fired industrial boilers. In many cases, these chemical conditioning agents have increased the efficiency of electrostatic precipitators and mechanical collectors by more than fifty percent. The effectiveness of this technology has been demonstrated on units generating 50,000 to 200,000 lbs./hr. steam. Results achieved at various industrial plants under actual operating conditions are presented.

Miller, B.; Keon, E.

1980-01-01T23:59:59.000Z

2

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents (OSTI)

The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

Yang, W.C.; Newby, R.A.; Lippert, T.E.

1997-08-05T23:59:59.000Z

3

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents (OSTI)

The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

Yang, Wen-Ching (Murrysville, PA); Newby, Richard A. (Pittsburgh, PA); Lippert, Thomas E. (Murrysville, PA)

1997-01-01T23:59:59.000Z

4

Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

In many of the operating flue gas desulfurization (FGD) systems throughout the world, materials corrosion leads to considerable costs and downtime. Utilities are often required to maintain, repair, replace, and/or upgrade existing materials to combat corrosion issues. This document provides the results of a recent EPRI survey that examined the various types of corrosion and materials damage in FGD systems.

2005-12-23T23:59:59.000Z

5

System of treating flue gas  

DOE Patents (OSTI)

A system is described for treating or cleaning incinerator flue gas containing acid gases and radioactive and fissionable contaminants. Flue gas and a quench solution are fed into a venturi and then tangentially into the lower portion of a receptacle for restricting volumetric content of the solution. The upper portion of the receptacle contains a scrub bed to further treat or clean the flue gas.

Ziegler, D.L.

1975-12-01T23:59:59.000Z

6

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the WES, which involves injection into the flue gas duct upstream of the existing electrostatic 11 precipitator (ESP). The hot flue gas evaporates the water and the...

7

Fundamental mechanisms in flue-gas conditioning  

Science Conference Proceedings (OSTI)

The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.

1992-01-09T23:59:59.000Z

8

Fundamental mechanisms in flue gas conditioning  

Science Conference Proceedings (OSTI)

The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ask properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

Bush, P.V.; Snyder, T.R.

1992-01-09T23:59:59.000Z

9

Mercury sorbent delivery system for flue gas  

DOE Patents (OSTI)

The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

Klunder; ,Edgar B. (Bethel Park, PA)

2009-02-24T23:59:59.000Z

10

Fundamental mechanisms in flue gas conditioning. Final report  

SciTech Connect

The US Department of Energy`s Pittsburgh Energy Technology Center (DOE/PETC) initiated this project as part of a program to study the control of fine particles from coal combustion. Our project focus was flue gas conditioning. Various conditioning processes have lowered operating costs and increased collection efficiency at utility particulate control devices. By improving fine particle collection, flue gas conditioning also helps to control the emission of toxic metals, which are concentrated in the fine particle fraction. By combining a review of pertinent literature, laboratory characterization of a variety of fine powders and ashes, pilot-scale studies of conditioning mechanisms, and field experiences, Southern Research Institute has been able to describe many of the key processes that account for the effects that conditioning can have on fine-particle collection. The overall goal of this research project was to explain the mechanisms by which various flue gas conditioning processes alter the performance of particulate control devices. Conditioning involves the modification of one or more of the parameters that determine the magnitude of the forces acting on the fly ash particles. Resistivity, chemistry, cohesivity, size distribution, and particle morphology are among the basic properties of fly ash that significantly influence fine particle collection. Modifications of particulate properties can result in improved or degraded control device performance. These modifications can be caused by (1) changes to the process design or operation that affect properties of the flue gas, (2) addition of particulate matter such as flue-gas desulfurization sorbents to the process effluent stream, (3) injection of reactive gases or liquids into the flue gas. We recommend that humidification be seriously considered as a flue gas conditioning option. 80 refs., 69 figs., 23 tabs.

Snyder, T.R.; Bush, P.V.; Dahlin, R.S.

1996-03-20T23:59:59.000Z

11

Recovery of Water from Boiler Flue Gas  

SciTech Connect

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

12

Cement Kiln Flue Gas Recovery Scrubber Project  

SciTech Connect

The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

National Energy Technology Laboratory

2001-11-30T23:59:59.000Z

13

Flue gas desulfurization  

DOE Patents (OSTI)

The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

Im, K.H.; Ahluwalia, R.K.

1984-05-01T23:59:59.000Z

14

Mercury Sorbent Delivery System for Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

(NETL) is seeking licensing partners interested in implementing United States Patent Number 7,494,632 entitled "Mercury Sorbent Delivery System for Flue Gas." Disclosed in...

15

Flue Gas Desulfurization Gypsum Agricultural Network  

Science Conference Proceedings (OSTI)

Research on flue gas desulfurization gypsum (FGDG) has been conducted under the auspices of the Flue Gas Desulfurization Gypsum Agricultural Network program sponsored by the Electric Power Research Institute (EPRI) in collaboration with individual utilities, the U.S. Environmental Protection Agency, U.S. Department of Agriculture-Agricultural Research Service, and universities. This report describes work conducted in northwestern New Mexico in 2008–2012 as part of that effort. Two separate ...

2012-10-15T23:59:59.000Z

16

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

of Catalysts for Oxidation of Mercury in Flue Gas, Environ.mercury oxidation when the chlorine concentration in flue gas

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

17

Process for the desulfurization of flue gas  

SciTech Connect

A process for the removal of sulfur oxides from gases is described that is comprised of the steps of contacting the gas with a cerium oxide sorbent at conditions whereby the sulfur oxides present in the gas are sorbed by the cerium oxide sorbent and regenerate the cerium oxide sorbent by contacting it with a reducing atmosphere at conditions whereby the sorbent is substantially converted to a sulfur-free state. The gas may be an exhaust gas, e.g., from an automobile or a flue gas. This invention is especially preferred for treating flue gas. In this preferred embodiment, the flue gas may be contacted with the cerium oxide sorbent at a temperature of from 300/sup 0/ to 800/sup 0/C, to form cerium sulfate and/or sulfite and the sorbent is regenerated by contacting with a reducing gas, for example, hydrogen in admixture with steam or other inert gases at a temperature of from 500/sup 0/ to 800/sup 0/C to convert the cerium sulfate or sulfite to cerium oxide. During the regeneration step, the desorbed species is initially sulfur dioxide. However, when about 50% of the sulfur is removed from the sorbent, the desorbed species becomes H/sub 2/S. Thus, the instant invention provides SO/sub 2/ and H/sub 2/S in admixture with the excess reducing gas, which can be fed conveniently to the Claus plant for conversion into elemental sulfur.

Longo, J.M.

1977-01-04T23:59:59.000Z

18

Thief process for the removal of mercury from flue gas  

DOE Patents (OSTI)

A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

Pennline, Henry W. (Bethel Park, PA); Granite, Evan J. (Wexford, PA); Freeman, Mark C. (South Park Township, PA); Hargis, Richard A. (Canonsburg, PA); O' Dowd, William J. (Charleroi, PA)

2003-02-18T23:59:59.000Z

19

Recovery of Water from Boiler Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

RecoveRy of WateR fRom BoileR flue Gas RecoveRy of WateR fRom BoileR flue Gas Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

20

Flue Gas Desulfurization Gypsum Agricultural Network  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) gypsum is a solid produced by wet FGD systems with forced air oxidation and is chemically similar to mined gypsum. These gypsums, used as beneficial agricultural amendments, were evaluated for their effects on earthworm populations and trace element concentrations in soils and earthworms at four field sites (Ohio, Indiana, Alabama, and Wisconsin). These sites are part of a network study on agricultural uses of FGD gypsum conducted at sites across the United States. ...

2012-09-19T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Flue Gas Desulfurization Gypsum Agricultural Network  

Science Conference Proceedings (OSTI)

Increasing volumes of flue gas desulfurization (FGD) gypsum will become available for agricultural use as more utilities install forced oxidation scrubbers and the wallboard market for the resulting gypsum becomes saturated. This interim report describes work performed in 2007 and 2008 to develop a national research network to gain data and experience to support the beneficial uses of FGD products, especially FGD gypsum, in agriculture and other land applications.

2008-12-12T23:59:59.000Z

22

Flue Gas Desulfurization Equipment Issues Guidelines  

Science Conference Proceedings (OSTI)

As electric utilities enter a more competitive environment, every aspect of electric power generation is under scrutiny to determine where costs can be reduced. Because flue gas desulfurization (FGD) systems represent significant capital, operating, and maintenance expenses for many coal-fired power plants, identification and implementation of cost reduction options are crucial. This report documents successful approaches for determining the cost-effectiveness of key FGD optimization strategies.

2001-10-15T23:59:59.000Z

23

Induced Flue Gas Recirculation Performance Tests  

Science Conference Proceedings (OSTI)

Induced Flue Gas Recirculation (IFGR) is a proven, low-cost method for controlling NOx emissions on gas-fired utility boilers. In 1997, IFGR technology for power generation applications was first demonstrated at Entergy's Willow Glen station, near Baton Rouge, LA. Following the success with IFGR at Willow Glen, four members of the Gas/Oil Fired Boiler Performance and Combustion NOx Control Target (No.55 in 2000) installed, or plan to install, IFGR on an additional 27 units. American Electric Power has im...

2000-07-03T23:59:59.000Z

24

Flue gas desulfurization wastewater treatment primer  

SciTech Connect

Purge water from a typical wet flue gas desulfurization system contains myriad chemical constituents and heavy metals whose mixture is determined by the fuel source and combustion products as well as the stack gas treatment process. A well-designed water treatment system can tolerate upstream fuel and sorbent arranged in just the right order to produce wastewater acceptable for discharge. This article presents state-of-the-art technologies for treating the waste water that is generated by wet FGD systems. 11 figs., 3 tabs.

Higgins, T.E.; Sandy, A.T.; Givens, S.W.

2009-03-15T23:59:59.000Z

25

Catalysts for Oxidation of Mercury in Flue Gas  

Disclosed in this patent are catalysts for the oxidation of elemental mercury in flue gas. These novel catalysts include iridium (Ir), ...

26

Pilot Test of Bauxite Residue Carbonation With Flue Gas  

Science Conference Proceedings (OSTI)

... of bauxite residue in water with flue gas, produced from direct oil burning. ... New Development Model for Bauxite Deposits - Dedicated Compact Refinery.

27

Catalysts for Oxidation of Mercury in Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysts for Oxidation of Mercury in Flue Gas Catalysts for Oxidation of Mercury in Flue Gas Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,776,780 entitled "Catalysts for Oxidation of Mercury in Flue Gas." Disclosed in this patent are catalysts for the oxidation of elemental mercury in flue gas. These novel catalysts include iridium (Ir), platinum/iridium (Pt/Ir), and Thief carbons. The catalyst materials will adsorb the oxidizing agents HCl, Cl 2 , and other halogen species in the flue gas stream that are produced when fuel is combusted. These adsorbed oxidizing agents can then react with elemental mercury in the stream, which is difficult to capture, and oxidize it to form Hg (II) species,

28

DRY FLUE GAS CLEANING PROCESSES FOR ACHIEVING AIR POLLUTANT EMISSIONS  

E-Print Network (OSTI)

was mercury adsorption onto calcium sulfate (CaSO4), a byproduct of the flue gas desulfurization (FGD) wet., Powers K.W., and Pitoniak E.R. (2004) Method for Purifying Flue Gases from Combustion Sources. PatentCoupling of Advanced Oxidation and Adsorption Processes onto Silica-Titania Composites for Low

Columbia University

29

Identification of Unknown Selenium Species in Flue Gas Desulfurization Water  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) is a process used in the electrical power industry to remove sulfur dioxide (SO2) from flue gas produced by coal-fired power plants. In a wet FGD system, circulating water must be periodically blown down and treated to remove solids and dissolved chemicals. Along with SO2, other substances in flue gas may dissolve in water, including selenium (Se). In addition to the common selenium species selenite and selenate, past research has identified selenium-containing species that...

2008-03-25T23:59:59.000Z

30

Multi-component Removal in Flue Gas by Aqua Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

component Removal in Flue Gas by Aqua Ammonia component Removal in Flue Gas by Aqua Ammonia Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,255,842 entitled "Multi-component Removal in Flue Gas by Aqua Ammonia." This patent discloses a method for the removal of potential environmental-impacting compounds from flue gas streams. The method oxidizes some or all of the acid precursors such as sulfur dioxide (SO 2 ) and nitric oxides (NO x ) into sulfur trioxide and nitrogen dioxide, respectively. Following this step, the gas stream is then treated with aqua ammonia or ammonium hydroxide to capture the compounds via chemical absorption through acid-base or neutralization reactions where a fertilizer is formed.

31

Thief Process Removal of Mercury from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Process for the Removal of Mercury from Flue Gas Process for the Removal of Mercury from Flue Gas Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 6,521,021 entitled "Thief Process for the Removal of Mercury from Flue Gas." Disclosed in this patent is a novel process in which partially combusted coal is removed from the combustion chamber of a power plant using a lance (called a "thief"). This partially combusted coal acts as a thermally activated adsorbent for mercury. When it is in- jected into the duct work of the power plant downstream from the exit port of the combustion chamber, mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury

32

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Process for Power Plant Flue Gas Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D)...

33

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4966 jose.figueroa@netl.doe.gov Carbon DioxiDe Capture from flue Gas usinG Dry reGenerable sorbents Background Currently...

34

Dry Flue Gas Desulfurization State of the Art Survey  

Science Conference Proceedings (OSTI)

The intent of this report is to provide a summary of state-of-the-art dry flue gas desulfurization (FGD) technologies, including circulating dry scrubbers (CDS), spray dryer absorbers (SDA), and the Alstom Novel Integrated Desulfurization (NID) technology. These can all be considered “semi-dry” technologies, as the flue gas is cooled and humidified as part of each of these processes. This report also discusses a completely dry FGD technology, dry sorbent injection (DSI), which is ...

2012-12-14T23:59:59.000Z

35

Evaluation of Selenium Species in Flue Gas Desulfurization Waters  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) is a process used in the electrical power industry to remove sulfur dioxide from flue gas produced by coal-fired power plants. The trace element selenium is found in coal and can become concentrated in the wastewater from the FGD process. Some chemical forms, or species, of selenium are more resistant to removal by water treatment processes than others; thus, understanding the speciation of selenium is important to designing effective wastewater treatment systems. In additi...

2009-03-23T23:59:59.000Z

36

Guidelines for Flue Gas Desulfurization (FGD) Water Sampling and Analysis  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) scrubbers are being installed on coal-fired power plants in response to federal and state air pollution regulations limiting sulfur dioxide emissions. FGD scrubbers produce an aqueous waste stream that contains metals adsorbed from flue gas. At the same time, the U.S. Environmental Protection Agency (EPA) is reviewing, and may tighten, water discharge limits on trace metals. Collection of accurate data on the trace metal composition of FGD water discharges is therefore esse...

2009-03-27T23:59:59.000Z

37

Trace Metals Determination in Flue Gas Desulfurization Water  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) scrubbers are used on coal-fired power plants to reduce sulfur dioxide emissions to air. While effective for this purpose, wet FGD scrubbers produce an aqueous blowdown stream that contains trace levels of metals adsorbed from flue gas. Power plant owners need to measure concentrations of these metals for purposes of process control, discharge monitoring, or design and operation of wastewater treatment systems. FGD water has proven to be a very difficult matrix to analyze a...

2009-12-28T23:59:59.000Z

38

Fundamental mechanisms in flue gas conditioning  

Science Conference Proceedings (OSTI)

This project is divided into four tasks. The Management Plan was developed in task 1. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focuses on the characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, is designed to examine the effects of various conditioning agents on fine ash particles to determine the mechanisms by which these agents alter the physical properties of the ash. Tasks 2 and 3 began with an extensive literature search and the assembly of existing theories. This phase of the project is now complete. During the past quarter, initial preparations of laboratory equipment for laboratory testing have been made. A plan for initial laboratory tests has been submitted to the Project Manager for review. Laboratory testing will commence once these laboratory plans have been formally approved. The results of the work performed under task 2 and 3 will be included in a Flue Gas Conditioning Model that will be issued under task 4. The Final Report for the project will also be prepared under task 4.

Snyder, T.R.; Robinson, M.S.; Bush, P.V.

1992-04-27T23:59:59.000Z

39

Fundamental mechanisms in flue gas conditioning  

Science Conference Proceedings (OSTI)

This project is divided into four tasks. Task 1 is the Development of a Management Plan. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focuses on the characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, is designed to examine the effects of various conditioning agents on fine ash particles to determine the mechanisms by which these agents alter the physical properties of the ash. Tasks 2 and 3 began with an extensive literature search and the assembly of existing theories. The results of the work performed under Tasks 2 and 3 will be included in a Flue Gas Conditioning Model that will be issued under Task 4. The Final Report for the project will also be prepared under Task 4. This quarterly report covers four months in order to synchronize the reporting periods for this project with US Government quarters. Work performed on the project during the past quarter consisted almost entirely of the review of literature pertaining to the objectives of Tasks 2 and 3. The primary results of that review are discussed at length in Topical Reports 1 and 2, submitted January 9, 1992. As a consequence of the work described in the topical reports, several of the project's Measures of Success that were described in the first quarterly report have been achieved. This quarterly report will discuss these achievements.

Snyder, T.R.

1992-01-23T23:59:59.000Z

40

Automatic flue gas heat recovery system  

Science Conference Proceedings (OSTI)

An automatic flue gas heat recovery system for supplementing or replacing a conventional, separate hot water system. In the example described, the heat recovery system is applied to a pizza restaurant where large quantities of heat energy are normally wasted up an oven chimney stack, and large quantities of hot water also are required for restaurant operations. An electric motor driven pump circulates water in a closed loop between a storage tank and a heat exchanger tube located in the oven chimney stack. A thermostat control automatically starts the pump when the oven heats the chimney stack to an effective water heating temperature. When temperature in the storage tank reaches a predetermined maximum, the thermostat control stops the pump, opens a drain valve, and dumps water quickly and completely from the heat exchanger tube. Three different embodiments are shown and described illustrating systems with one or more storage tanks and one or more pumps. In the plural storage tank embodiments, an existing hot water heating tank may be converted for use to augment a main tank supplied with the present system.

Whalen, D.A.

1983-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Flue gas desulfurization: Physicochemical and biotechnological approaches  

Science Conference Proceedings (OSTI)

Various flue gas desulfurization processes - physicochemical, biological, and chemobiological - for the reduction of emission of SO{sub 2} with recovery of an economic by-product have been reviewed. The physicochemical processes have been categorized as 'once-through' and 'regenerable.' The prominent once-through technologies include wet and dry scrubbing. The wet scrubbing technologies include wet limestone, lime-inhibited oxidation, limestone forced oxidation, and magnesium-enhanced lime and sodium scrubbing. The dry scrubbing constitutes lime spray drying, furnace sorbent injection, economizer sorbent injection, duct sorbent injection, HYPAS sorbent injection, and circulating fluidized bed treatment process. The regenerable wet and dry processes include the Wellman Lord's process, citrate process, sodium carbonate eutectic process, magnesium oxide process, amine process, aqueous ammonia process, Berglau Forchung's process, and Shell's process. Besides these, the recently developed technologies such as the COBRA process, the OSCAR process, and the emerging biotechnological and chemobiological processes are also discussed. A detailed outline of the chemistry, the advantages and disadvantages, and the future research and development needs for each of these commercially viable processes is also discussed.

Pandey, R.A.; Biswas, R.; Chakrabarti, T.; Devotta, S. [National Environmental Engineering Research Institute, Nagpur (India)

2005-07-01T23:59:59.000Z

42

Ceramic filters for removal of particulates from hot gas streams  

Science Conference Proceedings (OSTI)

The primary goal is to demonstrate the performance of a new ceramic filter in removing particulate matter from hot gas streams produced in advanced coal conversion processes. The specific objectives are threefold: (1) Development of full size ceramic filters suitable for hot gas filtration; (2) Demonstration of ceramic filters in long term (ca. 1000 hrs) field trials; and (3) Development of full-scale hot gas filter system designs and costs. To date, field tests of the ceramic filter for particulate removal have been conducted at seven sites on a variety of gas streams and under a variety of test conditions. In general, the following performance characteristics have been observed: 1. Filtration face velocity (equivalent to an ``air to cloth ratio``) for flue gas tests is comparable to that for pulse jet bags operating at the same pressure drop. In hot gas tests, flow-pressure drop characteristics have been observed to be comparable to those for other ceramic filters. 2. Complete regeneration by a simple backpulse technique is achieved; i.e., no increase in clean filter resistance over repetitive cycles is observed. 3. No plugging of the filter passageways by badly caking particulates is observed. 4. Essentially complete particulate removal, including submicron particulate matter, is achieved.

Goldsmith, R.L.

1992-11-01T23:59:59.000Z

43

Ceramic filters for removal of particulates from hot gas streams  

Science Conference Proceedings (OSTI)

The primary goal is to demonstrate the performance of a new ceramic filter in removing particulate matter from hot gas streams produced in advanced coal conversion processes. The specific objectives are threefold: (1) Development of full size ceramic filters suitable for hot gas filtration; (2) Demonstration of ceramic filters in long term (ca. 1000 hrs) field trials; and (3) Development of full-scale hot gas filter system designs and costs. To date, field tests of the ceramic filter for particulate removal have been conducted at seven sites on a variety of gas streams and under a variety of test conditions. In general, the following performance characteristics have been observed: 1. Filtration face velocity (equivalent to an air to cloth ratio'') for flue gas tests is comparable to that for pulse jet bags operating at the same pressure drop. In hot gas tests, flow-pressure drop characteristics have been observed to be comparable to those for other ceramic filters. 2. Complete regeneration by a simple backpulse technique is achieved; i.e., no increase in clean filter resistance over repetitive cycles is observed. 3. No plugging of the filter passageways by badly caking particulates is observed. 4. Essentially complete particulate removal, including submicron particulate matter, is achieved.

Goldsmith, R.L.

1992-01-01T23:59:59.000Z

44

Flue gas desulfurization/denitrification using metal-chelate additives  

DOE Patents (OSTI)

A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

1985-08-05T23:59:59.000Z

45

Biomimetic Membrane for CO2 Capture from Flue Gas  

SciTech Connect

These Phase III experiments successfully addressed several issues needed to characterize a permeator system for application to a pulverized coal (PC) burning furnace/boiler assuming typical post-combustion cleanup devices in place. We completed key laboratory stage optimization and modeling efforts needed to move towards larger scale testing. The SOPO addressed six areas. Task 1--Post-Combustion Particle Cleanup--The first object was to determine if the Carbozyme permeator performance was likely to be reduced by particles (materials) in the flue gas stream that would either obstruct the mouth of the hollow fibers (HF) or stick to the HF bore wall surface. The second, based on the Acceptance Standards (see below), was to determine whether it would be preferable to clean the inlet gas stream (removing acid gases and particulates) or to develop methods to clean the Carbozyme permeator if performance declined due to HF block. We concluded that condensation of particle and particulate emissions, in the heat exchanger, could result in the formation of very sticky sulfate aerosols with a strong likelihood of obtruding the HF. These must be managed carefully and minimized to near-zero status before entering the permeator inlet stream. More extensive post-combustion cleanup is expected to be a necessary expense, independent of CO{sub 2} capture technology This finding is in agreement with views now emerging in the literature for a variety of CO{sub 2} capture methods. Task 2--Water Condensation--The key goal was to monitor and control temperature distributions within the permeator and between the permeator and its surroundings to determine whether water condensation in the pores or the HF bore would block flow, decreasing performance. A heat transfer fluid and delivery system were developed and employed. The result was near isothermal performance that avoided all instances of flow block. Direct thermocouple measurements provided the basis for developing a heat transfer model that supports prediction of heat transfer profiles for larger permeators Tasks 3. 4.1, 4.2--Temperature Range of Enzymes--The goal was to determine if the enzyme operating temperature would limit the range of thermal conditions available to the capture system. We demonstrated the ability of various isozymes (enzyme variants) to operate from 4-85 C. Consequently, the operating characteristics of the enzyme are not a controlling factor. Further, any isozyme whose upper temperature bound is at least 10 C greater than that of the planned inlet temperature will be stable under unanticipated, uncontrolled 'hiccups' in power plant operation. Task 4.4, 4.4--Examination of the Effects of SOx and NOx on Enzyme Activity (Development of Flue Gas Composition Acceptance Standards)--The purpose was to define the inlet gas profile boundaries. We examined the potential adverse effects of flue gas constituents including different acids from to develop an acceptance standard and compared these values to actual PC flue gas composition. Potential issues include changes in pH, accumulation of specific inhibitory anions and cations. A model was developed and validated by test with a SO{sub 2}-laden stream. The predicted and actual data very largely coincided. The model predicted feed stream requirements to allow continuous operation in excess of 2500 hours. We developed operational (physical and chemical) strategies to avoid or ameliorate these effects. Avoidance, the preferred strategy (noted above), is accomplished by more extensive cleanup of the flue gas stream. Task 5--Process Engineering Model--We developed a process-engineering model for two purposes. The first was to predict the physical and chemical status at each test point in the design as a basis for scale-up. The second was to model the capital and operating cost of the apparatus. These were accomplished and used to predict capex, opex and cost of energy. Task 6--Preliminary Commercialization Plan--We carried out analyses of the market and the competition by a variety of parameters. The conclusion was that there is a l

Michael C. Trachtenberg

2007-05-31T23:59:59.000Z

46

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent InjectIon for Small eSP Sorbent InjectIon for Small eSP mercury control In low Sulfur eaStern bItumInouS coal flue GaS Background Full-scale field testing has demonstrated the effectiveness of activated carbon injection (ACI) as a mercury-specific control technology for certain coal-fired power plants, depending on the plant's coal feedstock and existing air pollution control device configuration. In a typical configuration, powdered activated carbon (PAC) is injected downstream of the plant's air heater and upstream of the existing particulate control device - either an electrostatic precipitator (ESP) or a fabric filter (FF). The PAC adsorbs the mercury from the combustion flue gas and is subsequently captured along with the fly ash in the ESP or FF. ACI can have some negative side

47

Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis  

DOE Green Energy (OSTI)

Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

Kadam, K. L.

2001-06-22T23:59:59.000Z

48

Flue Gas Conditioning Trial at Rochester Gas and Electric Russell Station  

Science Conference Proceedings (OSTI)

This report presents data and results of a full-scale evaluation of two flue gas conditioning agents considered as upgrades for the existing electrostatic precipitators (ESPs) at Rochester Gas and Electric's (RG&E) Russell Station. The flue gas additives evaluated were anhydrous ammonia and a proprietary chemical agent, ADA-23.

1999-04-06T23:59:59.000Z

49

Flue gas injection control of silica in cooling towers.  

Science Conference Proceedings (OSTI)

Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

2011-06-01T23:59:59.000Z

50

BUILDING MATERIALS MADE FROM FLUE GAS DESULFURIZATION BY-PRODUCTS  

SciTech Connect

Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

Michael W. Grutzeck; Maria DiCola; Paul Brenner

2006-03-30T23:59:59.000Z

51

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas. How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature? Links: The technology of Condensing Flue Gas Heat Recovery natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building

52

Carbon Dioxide Sequestration with Flue Gas Desulfurization (FGD) Gypsum  

Science Conference Proceedings (OSTI)

Carbonation of industrial alkaline residues can be used as a CO2 sequestration technology to reduce carbon dioxide emissions. In this study, alkaline Ca-rich flue gas desulfurization (FGD) gypsum samples were carbonated to a varying extent. These materials ... Keywords: FGD gypsum, carbonation, carbon dioxide

Hongqi Wang; Ningning Sun; Rona J. Donahoe

2009-07-01T23:59:59.000Z

53

Flue Gas Desulfurization Scrubber Maintenance Guide: Gypsum Dewatering Area  

Science Conference Proceedings (OSTI)

Flue Gas Desulfurization Scrubber Maintenance Guide: Gypsum Dewatering Area provides fossil plant maintenance personnel with current maintenance information on this system. This report will assist the plant maintenance personnel in improving the reliability and reducing the maintenance costs for this area of their scrubber system.

2009-12-08T23:59:59.000Z

54

Flue Gas Desulfurization Scrubber Maintenance Guide: Absorber Area  

Science Conference Proceedings (OSTI)

The Flue Gas Desulfurization Scrubber Maintenance Guide: Absorber Area provides fossil plant maintenance personnel with current maintenance information on this system and will help to improve the reliability of and reduce the maintenance costs for this area of their scrubber system.

2008-12-18T23:59:59.000Z

55

Flue Gas Desulfurization Scrubber Maintenance Guide: Reagent Preparation Area  

Science Conference Proceedings (OSTI)

The Flue Gas Desulfurization Scrubber Maintenance Guide: Reagent Preparation Area provides the fossil plant maintenance personnel with current maintenance information on this system and will help improve the reliability and reduce the maintenance costs for this area of their scrubber system.

2008-12-15T23:59:59.000Z

56

Investigation of Flue Gas Desulfurization Chemical Process Problems  

Science Conference Proceedings (OSTI)

An understanding of flue gas desulfurization process chemistry is crucial in troubleshooting problems in operating FGD systems. This report discusses a variety of problems and solutions associated with process chemistry for 25 different wet FGD systems, including lime/limestone and double alkali processes. Among the problems addressed are SO2 removal, mist eliminator scaling, poor solids dewatering, and water management.

1990-09-10T23:59:59.000Z

57

2009 Update on Mercury Capture by Wet Flue Gas Desulfurization  

Science Conference Proceedings (OSTI)

This technical update presents results of four research and development projects focused on understanding and enhancing mercury emissions control associated with wet flue gas desulfurization (FGD) technology. The first project was directed at characterizing partitioning of elemental and oxidized mercury species in solid, liquid, and gas phases within process streams involved in an operating commercial system. The second project explored dewatering options with an objective of producing low-mercury-conten...

2009-12-15T23:59:59.000Z

58

Flue Gas Desulfurization (FGD) Wastewater Characterization and Management: 2007 Update  

Science Conference Proceedings (OSTI)

Tightened air regulations on acid-gas-forming emissions are leading more electric utilities to install flue gas desulfurization (FGD) systems, typically wet scrubbers. However, there are challenges associated with such decisions in terms of utility wastewater management. Volatile metals, such as selenium and mercury, are better captured in wet scrubber systems than in electrostatic precipitators and may be present at higher concentrations in utility wastewater systems. This report is designed to help pow...

2008-03-31T23:59:59.000Z

59

JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas  

Science Conference Proceedings (OSTI)

This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

Ye Zhuang; Christopher Martin; John Pavlish

2009-03-31T23:59:59.000Z

60

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Flue gas conditioning for improved particle collection in electrostatic precipitators  

SciTech Connect

The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfm bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.

Durham, M.D.

1992-04-27T23:59:59.000Z

62

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

63

Biominetic Membrane for Co2 Capture from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Membrane for CO Biomimetic Membrane for CO 2 Capture from Flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport, and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post

64

Air Toxics Control by Wet Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

This report provides an update on three tasks associated with the EPRI project, Air Toxics Control by Wet Flue Gas Desulfurization (FGD) Systems. The first task is an investigation of the factors that influence and control the oxidation-reduction potential (ORP) at which a limestone forced oxidation FGD system operates. Both a literature review and a numerical analysis of full-scale wet FGD data were conducted. Results from this task are presented and discussed in Section 2 of the ...

2012-12-31T23:59:59.000Z

65

Spray tower: the workhorse of flue-gas desulfurization  

Science Conference Proceedings (OSTI)

A recently developed spray tower system for use in a utility flue gas desulfurization system is simple, durable, and capable of achieving very high sulfur dioxide removal efficiencies, possibly approaching 100%. The principles behind the design and operation of the spray tower are discussed. The quality of water used for washing, tower size limitations, construction materials liquid distribution, gas-inlet design, gas distribution, mass transfer, and operating characteristics are examined. Procedures to maintain the reliability and high performance of the spray tower are described. (5 diagrams, 5 photos, 12 references, 1 table)

Saleem, A.

1980-10-01T23:59:59.000Z

66

The Thief Process for Mercury Removal from Flue Gas  

E-Print Network (OSTI)

The Thief Process is a cost-effective variation to activated carbon injection (ACI) for removal of mercury from flue gas. In this scheme, partially combusted coal from the furnace of a pulverized coal power generation plant is extracted by a lance and then re-injected into the ductwork downstream of the air preheater. Recent results on a 500-lb/hr pilot-scale combustion facility show similar removals of mercury for both the Thief Process and ACI. The tests conducted to date at laboratory, bench, and pilot-scales demonstrate that the Thief sorbents exhibit capacities for mercury from flue gas streams that are comparable to those exhibited by commercially available activated carbons. Independent verification of the sorbent activity at a pilot-plant that uses a slipstream from a Wisconsin utility has been accomplished. A patent for the process was issued in February 2003 [1]. The Thief sorbents are cheaper than commerciallyavailable activated carbons; exhibit excellent capacities for mercury; and the overall process holds great potential for reducing the cost of mercury removal from flue gas [1-4].

Evan J. Granite; Mark C. Freeman; Richard A. Hargis; William J. O’dowd; Henry W. Pennline

2004-01-01T23:59:59.000Z

67

Fundamental mechanisms in flue gas conditioning  

Science Conference Proceedings (OSTI)

SEM pictures of the three mixtures of sorbent and ash from the DITF and the base line ESP hopper ash from Muskingum are shown in Figures 1 through 4. The effects of sorbent addition on particle morphology are evident in Figures 2 through 4 by the presence of irregularly shaped particles and deposits on the surfaces of the spherical fly ash particles. In contrast, the base Ene ash particles have the characteristic relatively smooth, spherical morphology normally associated with pulverized-coal (PC) fly ashes. Resistivity determinations made on these four ashes in ascending and descending temperature modes. These data are shown in Figures 5 and 6. Sorbent injection processes performed at the DITF lowered the duct temperature to around 165{degrees}F from about 350{degrees}F for base line operation. Consequently, during collection in the ESP, the particulate matter from the sorbent injection processes had a significantly lower resitivity (approximately 4 {times} 10{sup 7} {Omega}-cm) than the base line ash (approximately 3 {times} 10{sup 11} {Omega}-cm at 350{degrees}F). Specific surface areas and true particle densities have been measured for the four samples obtained from the DOE/PETC Duct Injection Test Facility. These data are summarized in Table 4. The primary difference indicated by these initial analyses of these four samples is the significant increase in specific surface area due to sorbent addition. The specific surface areas of the three sorbent and ash mixtures from the DITF are quite similar.

Snyder, T.R.; Vann Bush, P.

1992-07-27T23:59:59.000Z

68

FUNDAMENTALS OF MERCURY OXIDATION IN FLUE GAS  

Science Conference Proceedings (OSTI)

The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves two experimental scales and a modeling effort. The team is comprised of University of Utah, Reaction Engineering International, and University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studies include HCl, NOx, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 1 results for the experimental and modeling tasks. Experiments in the drop tube are just beginning and a new, speciated mercury analyzer is up and running. A preliminary assessment has been made for the drop tube experiments using the existing model of gas-phase kinetics.

JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble

2004-08-01T23:59:59.000Z

69

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions have begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During the second reporting quarter for this project, design and development is continuing on an electrostatic tensiometer to measure cohesion of flyash layers. A dedicated test fixture to automate flyash electrical resistivity testing is also underway. Ancillary instrumentation to control gas humidification within these test fixtures is also under construction.

Kenneth E. Baldrey

2000-09-01T23:59:59.000Z

70

Water Extraction from Coal-Fired Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

2006-06-30T23:59:59.000Z

71

Comparison of Furnace Flue Gas Temperature Monitors  

Science Conference Proceedings (OSTI)

This report summarizes the results of a temperature monitor comparison study performed at Ameren Sioux Station, in Missouri. The study compared the accuracy and ease of use of two radiation-based monitors, an Infra-View and SpectraTemp, and a newer tunable-diode laser (TDL) absorption-based device, the LTS-100. The instruments, installed in the upper furnace and allowed to run continuously for approximately 8 weeks, monitored and recorded exit gas temperatures during normal boiler operation and one brief...

2006-09-22T23:59:59.000Z

72

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

efficiency by sulfur and/or chlorine containing compounds atfired Flue Gas by Sulfur-chlorine Compounds Nai-Qiang Yanremoval. Two sulfur-chlorine compounds, sulfur dichloride (

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

73

NETL: IEP ? Post-Combustion CO2 Emissions Control - Flue Gas...  

NLE Websites -- All DOE Office Websites (Extended Search)

Flue Gas Purification Utilizing SOx NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion Project No.: DE-NT0005309 Air Products and Chemicals Inc. will...

74

Co-Removal of Mercury from Coal-Fired Power Plant Flue Gas with...  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion conditions, and air pollution control devices upstream of a power plant FGD system have an impact on the types and concentration of flue gas mercury at the...

75

Microsoft Word - Flue Gas Moisture.Final Report.Abstract.Summary...  

NLE Websites -- All DOE Office Websites (Extended Search)

were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The...

76

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

This report describes research conducted between January 1, 2004 and March 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. RTI has produced laboratory scale batches (approximately 300 grams) of supported sorbents (composed of 20 to 40% sodium carbonate) with high surface area and acceptable activity. Initial rates of weight gain of the supported sorbents when exposed to a simulated flue gas exceeded that of 100% calcined sodium bicarbonate. One of these sorbents was tested through six cycles of carbonation/calcination by thermogravimetric analysis and found to have consistent carbonation activity. Kinetic modeling of the regeneration cycle on the basis of diffusion resistance at the particle surface is impractical, because the evolving gases have an identical composition to those assumed for the bulk fluidization gas. A kinetic model of the reaction has been developed on the basis of bulk motion of water and carbon dioxide at the particle surface (as opposed to control by gas diffusion). The model will be used to define the operating conditions in future laboratory- and pilot-scale testing.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

2004-04-01T23:59:59.000Z

77

Thermal oxidation vitrification flue gas elimination system  

SciTech Connect

With minor modifications to a Best Demonstrated Available Technology hazardous waste incinerator, it is possible to obtain combustion without potentially toxic emissions by using technology currently employed in similar applications throughout industry. Further, these same modifications will reduce waste handling over an extended operating envelope while minimizing energy consumption. Three by-products are produced: industrial grade carbon dioxide, nitrogen, and a final waste form that will exceed Toxicity Characteristics Leaching Procedures requirements and satisfy nuclear waste product consistency tests. The proposed system utilizes oxygen rather than air as an oxidant to reduce the quantities of total emissions, improve the efficiency of the oxidation reactions, and minimize the generation of toxic NO{sub x} emissions. Not only will less potentially hazardous constituents be generated; all toxic substances can be contained and the primary emission, carbon dioxide -- the leading ``greenhouse gas`` contributing to global warming -- will be converted to an industrial by-product needed to enhance the extraction of energy feedstocks from maturing wells. Clearly, the proposed configuration conforms to the provisions for Most Achievable Control Technology as defined and mandated for the private sector by the Clear Air Act Amendments of 1990 to be implemented in 1997 and still lacking definition.

Kephart, W. [Foster-Wheeler Environmental Corp., Oak Ridge, TN (United States); Angelo, F. [Resource Energy Corp. (United States); Clemens, M. [Argonne National Lab., IL (United States)

1995-06-01T23:59:59.000Z

78

Fundamentals of Mercury Oxidation in Flue Gas  

SciTech Connect

The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 3 results for the experimental and modeling tasks. Experiments have been completed on the effects of chlorine. However, the experiments with sulfur dioxide and NO, in the presence of water, suggest that the wet-chemistry analysis system, namely the impingers, is possibly giving erroneous results. Future work will investigate this further and determine the role of reactions in the impingers on the oxidation results. The solid-phase experiments have not been completed and it is anticipated that only preliminary work will be accomplished during this study.

JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Joseph Helble; Balaji Krishnakumar

2006-07-31T23:59:59.000Z

79

Fundamentals of Mercury Oxidation in Flue Gas  

SciTech Connect

The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 2 results for the experimental and modeling tasks. Experiments in the mercury reactor are underway and interesting results suggested that a more comprehensive look at catalyzed surface reactions was needed. Therefore, much of the work has focused on the heterogeneous reactions. In addition, various chemical kinetic models have been explored in an attempt to explain some discrepancies between this modeling effort and others.

JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble; Balaji Krishnakumar

2005-08-01T23:59:59.000Z

80

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium carbonate in these tests is initially very rapid and high degrees of removal are possible. The exothermic nature of the carbonation reaction resulted in a rise in bed temperature and subsequent decline in removal rate. Good temperature control, possibly through addition of supplemental water and evaporative cooling, appears to be the key to getting consistent carbon dioxide removal in a full-scale reactor system. The tendency of the alkali carbonate sorbents to cake on contact with liquid water complicates laboratory investigations as well as the design of larger scale systems. Also their low attrition resistance appears unsuitable for their use in dilute-phase transport reactor systems. Sodium and potassium carbonate have been incorporated in ceramic supports to obtain greater surface area and attrition resistance, using a laboratory spray dryer. The caking tendency is reduced and attrition resistance increased by supporting the sorbent. Supported sorbents with loading of up to 40 wt% sodium and potassium carbonate have been prepared and tested. These materials may improve the feasibility of large-scale CO{sub 2} capture systems based on short residence time dilute-phase transport reactor systems.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

2004-11-01T23:59:59.000Z

82

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

Science Conference Proceedings (OSTI)

Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium carbonate in these tests is initially very rapid and high degrees of removal are possible. The exothermic nature of the carbonation reaction resulted in a rise in bed temperature and subsequent decline in removal rate. Good temperature control, possibly through addition of supplemental water and evaporative cooling, appears to be the key to getting consistent carbon dioxide removal in a full-scale reactor system. The tendency of the alkali carbonate sorbents to cake on contact with liquid water complicates laboratory investigations as well as the design of larger scale systems. Also their low attrition resistance appears unsuitable for their use in dilute-phase transport reactor systems. Sodium and potassium carbonate have been incorporated in ceramic supports to obtain greater surface area and attrition resistance, using a laboratory spray dryer. The caking tendency is reduced and attrition resistance increased by supporting the sorbent. Supported sorbents with loading of up to 40 wt% sodium and potassium carbonate have been prepared and tested. These materials may improve the feasibility of large-scale CO{sub 2} capture systems based on short residence time dilute-phase transport reactor systems.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson; Santosh Gangwal; Ya Liang; Tyler Moore; Margaret Williams; Douglas P. Harrison

2004-09-30T23:59:59.000Z

83

Fundamentals of Mercury Oxidation in Flue Gas  

SciTech Connect

The objective of this project was to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involved both experimental and modeling efforts. The team was comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective was to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. The results suggested that homogeneous mercury oxidation is below 10% which is not consistent with previous data of others and work which was completed early in this research program. Previous data showed oxidation above 10% and up to 100%. However, the previous data are suspect due to apparent oxidation occurring within the sampling system where hypochlorite ion forms in the KCl impinger, which in turn oxidized mercury. Initial tests with entrained iron oxide particles injected into a flame reactor suggest that iron present on fly ash particle surfaces can promote heterogeneous oxidation of mercury in the presence of HCl under entrained flow conditions. Using the data generated above, with homogeneous reactions accounting for less than 10% of the oxidation, comparisons were made to pilot- and full-scale data. The results suggest that heterogeneous reactions, as with the case of iron oxide, and adsorption on solid carbon must be taking place in the full-scale system. Modeling of mercury oxidation using parameters from the literature was conducted to further study the contribution of homogeneous pathways to Hg oxidation in coal combustion systems. Calculations from the literature used rate parameters developed in different studies, in some cases using transition state theory with a range of approaches and basis sets, and in other cases using empirical approaches. To address this, rate constants for the entire 8-step homogeneous Hg oxidation sequence were developed using an internally consistent transition state approach. These rate constants when combined with the appropriate sub-mechanisms produced lower estimates of the overall extent of homogeneous oxidation, further suggesting that heterogeneous pathways play an important role in Hg oxidation in coal-fired systems.

JoAnn Lighty; Geoffrey Silcox; Constance Senior; Joseph Helble; Balaji Krishnakumar

2008-07-31T23:59:59.000Z

84

Flue Gas Cleanup at Temperatures about 1400 C for a Coal Fired Combined Cycle Power Plant: State and Perspectives in the Pressurized Pulverized Coal Combustion (PPCC) Project  

Science Conference Proceedings (OSTI)

The PPCC technology, a combined cycle, requires comprehensive cleaning of the flue gases because coal contains a large variety of minerals and other substances. This would lead to fast destruction of the gas turbine blades due to erosion and corrosion. The present specifications of the turbine manufacturers for the required flue gas quality are at a maximum particulate content of 5 mg/m3 s.t.p., diameter of Kraftwerke GmbH, SaarEnergie GmbH, Siemens AG, and Steag AG.

Foerster, M.E.C.; Oeking, K.; Hannes, K.

2002-09-18T23:59:59.000Z

85

Near-zero Emissions Oxy-combustion Flue Gas Purification  

NLE Websites -- All DOE Office Websites (Extended Search)

Near-zero Emissions Oxy-combustion Near-zero Emissions Oxy-combustion Flue Gas Purification Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) R&D Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D Program portfolio of post- and

86

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, progress was made in obtaining an industry partner for a long-term demonstration and in technology transfer activities. Engineering and equipment procurement activities related to the long-term demonstration were also completed.

Kenneth E. Baldrey

2001-10-01T23:59:59.000Z

87

Recovery of CO/sub 2/ from flue gas  

SciTech Connect

Within the Permian Basin geographic region, there are a variety of sources for CO/sub 2/ other than naturally occurring deposits. These sources can provide sufficient quantities of CO/sub 2/ for enhanced oil recovery (EOR) projects. The cost associated with pipelining CO/sub 2/ produced from natural sources into the Permian Basin is reported to be $1.50/MSCF or less. Therefore, flue gas sources result in higher CO/sub 2/ costs than natural deposits. However, these costs are within the pricing parameters for the normal CO/sub 2/ market place. The demand for flue gas CO/sub 2/ for EOR is seen to depend largely on the success of CO/sub 2/ floods and the relative price that can be applied to CO/sub 2/ based on the price of oil and the increases in domestic oil production and gas liquids that CO/sub 2/ can provide. Under current conditions, CO/sub 2/ has a value of ca $2.00/MSCF for EOR use.

Hyde, E.P.

1983-01-01T23:59:59.000Z

88

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

2001-01-01T23:59:59.000Z

89

Supported polyethylenimine adsorbents for CO2 capture from flue gas  

Science Conference Proceedings (OSTI)

Anthropogenic CO2 emissions produced from fossil fuel combustion are believed to contribute to undesired consequences in global climate. Major contributors towards CO2 emissions are fossil fuel-fired power plants for electricity production. For this reason, CO2 capture from flue gas streams together with permanent sequestration in geologic formations is being considered a viable solution towards mitigation of the major greenhouse gas1. Technologies based on chemical absorption with alkanolamines have been assessed for first generation CO2 post-combustion capture primarily due to its advanced stage of development. However, limitations associated with these chemical solvents (i.e., low CO2 loadings, amine degradation by oxygen, equipment corrosion) manifest themselves in high capital and operating costs with reduced thermal efficiencies. Therefore, necessary design and development of alternative, lower cost approaches for CO2 capture from coal-fired combustion streams are warranted.

Fauth, D.J.; Gray, M.L.; Pennline, H.W.

2008-10-01T23:59:59.000Z

90

OpenEI Community - natural gas+ condensing flue gas heat recovery+ water  

Open Energy Info (EERE)

Increase Natural Gas Increase Natural Gas Energy Efficiency http://en.openei.org/community/group/increase-natural-gas-energy-efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas.How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature?gas-energy-efficiency" target="_blank">read more natural gas+ condensing flue gas heat

91

NETL: CO2 Capture from Flue Gas Using Solid Molecular Basket...  

NLE Websites -- All DOE Office Websites (Extended Search)

molecular basket sorbent for CO2 capture from flue gas. Energy Fuels 2011, 25, 456-458. XX Wang, SQ Zhao, XL Ma, CS Song, CO2 capture from gas streams with low CO2...

92

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

SciTech Connect

Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

2007-06-30T23:59:59.000Z

93

Particulate hot gas stream cleanup technical issues  

Science Conference Proceedings (OSTI)

The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

Pontius, D.H.; Snyder, T.R.

1999-09-30T23:59:59.000Z

94

Biomimetric Membrane for CO2 Capture from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic memBrane for co Biomimetic memBrane for co 2 capture from flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post combustion applications - absorption, adsorption, reaction and membranes chemically facilitated absorption promises to be the most cost-effective membrane solution for post combustion application. The Carbozyme technology extracts CO 2 from low concentration, low pressure sources by means of chemical facilitation of a polymer membrane. The chemical

95

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Advanced Flue Gas Desulfurization (AFGD) Demonstration Project A DOE Assessment August 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

96

The durability of stabilized flue gas desulfurization sludge  

Science Conference Proceedings (OSTI)

The effects of freeze-thaw cycling on the strength and durability of samples of compacted, stabilized, wet flue gas desulfurization (FGD) by-products are reported. The results of laboratory tests show a clear relationship between higher water contents and increasing vulnerability to freeze-thaw effects. In the samples tested, water contents at or above 40% were characteristic of all the freeze-thaw specimens exhibiting low strengths. Lime content and curing time were also shown to have a marked influence on the durability of the FGD material. It was shown that samples can maintain good strength under freeze-thaw conditions provided 5% lime was added before compaction and the time from compaction to first freeze was at least 60 days.

Chen, X.; Wolfe, W.E.; Hargraves, M.D.

1995-12-31T23:59:59.000Z

97

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

2004-07-01T23:59:59.000Z

98

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

2001-05-01T23:59:59.000Z

99

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

Fossil fuels used for power generation, transportation, and by industry are the primary source of anthropogenic CO{sub 2} emissions to the atmosphere. Much of the CO{sub 2} emission reduction effort will focus on large point sources, with fossil fuel fired power plants being a prime target. The CO{sub 2} content of power plant flue gas varies from 4% to 9% (vol), depending on the type of fossil fuel used and on operating conditions. Although new power generation concepts that may result in CO{sub 2} control with minimal economic penalty are under development, these concepts are not generally applicable to the large number of existing power plants.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

2002-07-01T23:59:59.000Z

100

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description:...

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Multi-component removal in flue gas by aqua ammonia  

DOE Patents (OSTI)

A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

Yeh, James T. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA)

2007-08-14T23:59:59.000Z

102

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

Science Conference Proceedings (OSTI)

ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

C. Jean Bustard

2003-12-01T23:59:59.000Z

103

Membrane Process to Sequester CO2 from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

MeMbrane Process to sequester co MeMbrane Process to sequester co 2 froM Power Plant flue Gas Background Carbon dioxide emissions from coal-fired power plants are believed to contribute significantly to global warming climate change. The direct approach to address this problem is to capture the carbon dioxide in flue gas and sequester it underground. However, the high cost of separating and capturing CO 2 with conventional technologies prevents the adoption of this approach. This project investigates the technical and economic feasibility of a new membrane process to capture CO 2 from power plant flue gas. Description Direct CO 2 capture from power plant flue gas has been the subject of many studies. Currently, CO 2 capture with amine absorption seems to be the leading candidate technology-although membrane processes have been suggested. The principal

104

Flue gas desulfurization : cost and functional analysis of large-scale and proven plants  

E-Print Network (OSTI)

Flue Gas Desulfurization is a method of controlling the emission of sulfurs, which causes the acid rain. The following study is based on 26 utilities which burn coal, have a generating capacity of at least 50 Megawatts ...

Tilly, Jean

1983-01-01T23:59:59.000Z

105

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

removal from flue gas of coal-fired power plants. Environ.Speciation in a 100-MW Coal-Fired Boiler with Low-NOxControl Technologies for Coal-Fired Power Plants, DOE/NETL

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

106

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams  

E-Print Network (OSTI)

An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

107

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

from flue gas of coal-fired power plants. Environ. Sci. &Technologies for Coal-Fired Power Plants, DOE/NETL Mercurynumber of coal-fired generating plants (1-3). The mercury is

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

108

pH Adjustment of Power Plant Cooling Water with Flue Gas/Fly Ash  

to fossil fuel burning power plants to control mineral precipitation in cooling water. Flue gas, which is 10% CO2, could be diverted into a plant’s cooling water

109

Analysis of Halogen-Mercury Reactions in Flue Gas  

SciTech Connect

Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

2010-01-01T23:59:59.000Z

110

Catalysts for oxidation of mercury in flue gas  

DOE Patents (OSTI)

Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2010-08-17T23:59:59.000Z

111

CO2 Removal from Flue Gas Using MIcroporous Metal Organic Frameworks  

NLE Websites -- All DOE Office Websites (Extended Search)

Removal from Flue Gas Using Removal from Flue Gas Using Microporous Metal Organic Frameworks Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D

112

CO2 Capture from Flue Gas Using SOlid Molecular Basket Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

from Flue Gas Using Solid from Flue Gas Using Solid Molecular Basket Sorbents Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-

113

Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations  

Science Conference Proceedings (OSTI)

The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

Presto, A.A.; Granite, E.J

2008-07-01T23:59:59.000Z

114

Flue Gas Desulfurization Gypsum Agricultural Network: Indiana Kingman Research Station (Corn and Soybeans)  

Science Conference Proceedings (OSTI)

Flue gas desulfurization gypsum (FGDG) is an excellent source of gypsum (CaSO4•2H2O) that is created when sulfur dioxide is removed from the exhaust gases during the combustion of coal for energy production. Research on FGDG has been conducted as part of the Flue Gas Desulfurization Gypsum Agricultural Network program sponsored by the Electric Power Research Institute in collaboration with individual utilities, the U.S. EPA, the United States Department of Agriculture’s Agricultural ...

2013-10-07T23:59:59.000Z

115

Enhanced Control of Mercury by Wet Flue Gas Desulfurization Systems - Site 3 Topical Report  

Science Conference Proceedings (OSTI)

Researchers conducted field tests to evaluate the ability of a variety of materials to oxidize vapor-phase elemental mercury at a coal-fired power plant equipped with a wet flue gas desulfurization (FGD) system. Results, while confounded by measurement difficulties, showed that under bituminous coal flue gas conditions, two catalysts, Pd #1 and Carbon #6, continued to oxidize at least 85 percent of the inlet elemental mercury after three months.

2002-02-06T23:59:59.000Z

116

Flue Gas Sulfuric Acid Measurement Method Improvements: Second Interim Report, December 2000  

Science Conference Proceedings (OSTI)

The objective of this project is to improve the ability of electric utilities with coal and oil-fired power plants to measure and report sulfuric emissions. Most coal and oil-fired utility boilers will trigger Toxic Release Inventory (TRI) reporting for sulfuric acid. The Controlled Condensation System (CCS) method for measuring flue gas sulfuric acid concentrations is believed to provide one of the best methods for measuring sulfuric acid in flue gas. However, there are situations where the CCS method m...

2000-12-05T23:59:59.000Z

117

A Review of Manufacturing Uses for Gypsum Produced by Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

Gypsum is widely used as a source material to manufacture products for building construction applications8212primarily wallboard, cement, and concrete8212and has a number of other commercial applications. The mineral is mined throughout the world (natural gypsum) and also is produced as a result of various industrial processes (synthetic gypsum). The largest source of synthetic gypsum used for manufacturing applications is flue gas desulfurization (FGD) gypsum, the product of wet flue gas desulfurization...

2006-03-07T23:59:59.000Z

118

Evaluation of the NeuStream-S™ Flue Gas Desulfurization Process  

Science Conference Proceedings (OSTI)

Harris Group Inc. (HGI) of Denver, Colorado, was contracted by the Electric Power Research Institute (EPRI) to monitor, evaluate, and prepare this report on a dual-alkali flue gas desulfurization (FGD) process developed by Neumann Systems Group, Inc. (NSG). The process is being demonstrated in a nominal 20-MW demonstration plant, treating a slip stream of flue gas from the Colorado Springs Utilities 142-MW Drake Unit 7. HGI evaluated performance, operability, and readiness for scale-up of the process. Co...

2011-05-31T23:59:59.000Z

119

Method for removing heavy metal and nitrogen oxides from flue gas, device for removing heavy metal and nitrogen oxides from flue gas  

DOE Patents (OSTI)

A method for the simultaneous removal of oxides and heavy metals from a fluid is provided comprising combining the fluid with compounds containing alkali and sulfur to create a mixture; spray drying the mixture to create a vapor phase and a solid phase; and isolating the vapor phase from the solid phase. A device is also provided comprising a means for spray-drying flue gas with alkali-sulfide containing liquor at a temperature sufficient to cause the flue gas to react with the compounds so as to create a gaseous fraction and a solid fraction and a means for directing the gaseous fraction to a fabric filter.

Huang, Hann-Sheng; Livengood, Charles David

1997-12-01T23:59:59.000Z

120

Economic assessment of advanced flue gas desulfurization processes. Final report  

Science Conference Proceedings (OSTI)

This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

1981-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

2003-08-01T23:59:59.000Z

122

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates or intermediate salts through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that high calcination temperatures decrease the activity of sodium bicarbonate Grade 1 (SBC No.1) during subsequent carbonation cycles, but there is little or no progressive decrease in activity in successive cycles. SBC No.1 appears to be more active than SBC No.3. As expected, the presence of SO{sub 2} in simulated flue gas results in a progressive loss of sorbent capacity with increasing cycles. This is most likely due to an irreversible reaction to produce Na{sub 2}SO{sub 3}. This compound appears to be stable at calcination temperatures as high as 200 C. Tests of 40% supported potassium carbonate sorbent and plain support material suggest that some of the activity observed in tests of the supported sorbent may be due to adsorption by the support material rather than to carbonation of the sorbent.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

2003-01-01T23:59:59.000Z

123

Mathematical modeling of wet magnesia flue gas desulphurization process  

Science Conference Proceedings (OSTI)

Desulphurization of flue gases from various chemical industries in a techno-econo-enviro manner is a demanding technology. The concentrations of sulphur dioxide in and around these plants overshoot the danger point. In recent years, the process analysis ...

M. K. Mondal

2008-01-01T23:59:59.000Z

124

Decarb/Desal: Separation of Carbon Dioxide from Flue Gas with Simultaneous Fresh Water Production  

Science Conference Proceedings (OSTI)

If fossil fuels continue to be a major part of the world's energy supply, effective means must be developed to deal with the carbon emissions. Geologic sequestration of supercritical CO{sub 2} is expected to play a major role in mitigating this problem. Separating carbon dioxide from other gases is the most costly aspect of schemes for geologic sequestration. That cost is driven by the complexity and energy intensity of current chemical-stripping methods for separating carbon dioxide. Our experience in water treatment technology indicated that an entirely new approach could be developed, taking advantage of water's propensity to separate gases that ionize in water (like CO{sub 2}) from those that do not (like N{sub 2}). Even though water-based systems might not have the extreme selectivity of chemicals like substituted amines used in industrial systems today, they have the potential to tolerate NO{sub x}, SO{sub x}, and particulates while also producing clean drinking water as a valuable byproduct. Lower capital cost, broader range of applicability, environmental friendliness, and revenue from a second product stream give this approach the potential to significantly expand the worldwide application of carbon separation for geologic sequestration. Here we report results for separation of CO{sub 2} from flue gas by two methods that simultaneously separate carbon dioxide and fresh water: ionic pumping of carbonate ions dissolved in water, and thermal distillation. The ion pumping method dramatically increases dissolved carbonate ion in solution and hence the overlying vapor pressure of CO{sub 2} gas, allowing its removal as a pure gas. We have used two common water treatment methods to drive the ion pumping approach, reverse osmosis and electrodialysis to produce pure CO{sub 2}. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas, because the slightly basic water used as the extraction medium is impervious to trace acid gases that destroy existing solvents, and no pre-separation is necessary. Thermal distillation uses boiling water to steam strip solid sorbents - the steam is recovered as fresh water. We anticipate that our method will compete favorably with current chemical stripping systems used for CO{sub 2} separation at power plants, which incur a 35% energy penalty. Thus we expect to offer a dramatically improved solution for removing carbon from hydrocarbon combustion. Our method can be demonstrated on small sources, which will enable us to conduct the demonstrations required to build confidence in the method. If successful, we will be in a position to advance a follow-on proposal for a demonstration at the 10-MW scale.

Aines, R; Bourcier, W

2009-10-21T23:59:59.000Z

125

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry.

David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

2002-04-01T23:59:59.000Z

126

Method for removing particulate matter from a gas stream  

DOE Patents (OSTI)

Particulate matter is removed from a stream of pressurized gas by directing the stream of gas upwardly through a bed of porous material, the porous bed being held in an open ended container and at least partially submerged in liquid. The passage of the gas through the porous bed sets up a circulation in the liquid which cleans the particulate matter from the bed.

Postma, Arlin K. (Benton City, WA)

1984-01-01T23:59:59.000Z

127

PRODUCTION OF CONSTRUCTION AGGREGATES FROM FLUE GAS DESULFURIZATION SLUDGE  

SciTech Connect

Through a cooperative agreement with DOE, the Research and Development Department of CONSOL Inc. (CONSOL R and D) is teaming with SynAggs, Inc. and Duquesne Light to design, construct, and operate a 500 lb/h continuous pilot plant to produce road construction aggregate from a mixture of wet flue gas desulfurization (FGD) sludge, fly ash, and other components. The proposed project is divided into six tasks: (1) Project Management; (2) Mix Design Evaluation; (3) Process Design; (4) Construction; (5) Start-Up and Operation; and (6) Reporting. In this quarter, Tasks 1 and 2 were completed. A project management plan (Task 1) was issued to DOE on October 22, 1998 . The mix design evaluation (Task 2) with Duquesne Light Elrama Station FGD sludge and Allegheny Power Hatfields Ferry Station fly ash was completed. Eight semi-continuous bench-scale tests were conducted to examine the effects of mix formulation on aggregate properties. A suitable mix formulation was identified to produce aggregates that meet specifications of the American Association of State High Transport Officials (AASHTO) as Class A aggregate for use in highway construction. The mix formulation was used in designing the flow sheet of the pilot plant. The process design (Task 3) is approximately 80% completed. Equipment was evaluated to comply with design requirements. The design for the curing vessel was completed by an outside engineering firm. All major equipment items for the pilot plant, except the curing vessel, were ordered. Pilot plant construction (Task 4) was begun in October. The Hazardous Substance Plan was issued to DOE. The Allegheny County (PA) Heat Department determined that an air emission permit is not required for operation of the pilot plant.

1998-12-01T23:59:59.000Z

128

Near-Zero Emissions Oxy-Combustion Flue Gas Purification  

Science Conference Proceedings (OSTI)

The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plants burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by-product sulfuric and nitric acids that meet the commercial product specifications. The sulfuric acid will have to be disposed of by neutralization, thus lowering the value of the technology to same level as that of the activated carbon process. Therefore, it was decided to discontinue any further efforts on sulfuric acid process. Because of encouraging results on the activated carbon process, it was decided to add a new subtask on testing this process in a dual bed continuous unit. A 40 days long continuous operation test confirmed the excellent SOx/NOx removal efficiencies achieved in the batch operation. This test also indicated the need for further efforts on optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level. The VPSA process was tested in a pilot unit. It achieved CO{sub 2} recovery of > 95% and CO{sub 2} purity of >80% (by vol.) from simulated cold box feed streams. The overall CO{sub 2} recovery from the cold box VPSA hybrid process was projected to be >99% for plants with low air ingress (2%) and >97% for plants with high air ingress (10%). Economic analysis was performed to assess value of the NZE CPU. The advantage of NZE CPU over conventional CPU is only apparent when CO{sub 2} capture and avoided costs are compared. For greenfield plants, cost of avoided CO{sub 2} and cost of captured CO{sub 2} are generally about 11-14% lower using the NZE CPU compared to using a conventional CPU. For older plants with high air intrusion, the cost of avoided CO{sub 2} and capture CO{sub 2} are about 18-24% lower using the NZE CPU. Lower capture costs for NZE CPU are due to lower capital investment in FGD/SCR and higher CO{sub 2} capture efficiency. In summary, as a result of this project, we now have developed one technology option for NZE CPU based on the activated carbon process and coldbox-VPSA hybrid process. This technology is projected to work for both low and high sulfur coal plants. The NZE CPU technology is projected to achieve near zero stack emissions

Minish Shah; Nich Degenstein; Monica Zanfir; Rahul Solunke; Ravi Kumar; Jennifer Bugayong; Ken Burgers

2012-06-30T23:59:59.000Z

129

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC{number_sign}3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO{sub 2}. Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO{sub 2}/20% H{sub 2}O, and lowest subsequent to calcination in pure CO{sub 2} at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO{sub 2} in the simulated flue gas. CO{sub 2} evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC{number_sign}3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first carbonation cycle, CO{sub 2} removal rates declined from 20% to about 8% over the course of three hours. Following calcination, a second carbonation cycle was conducted, at a lower temperature with a lower water vapor content. CO{sub 2} removal and sorbent capacity utilization declined under these conditions. Modifications were made to the reactor to permit addition of extra water for testing in the next quarter. Thermodynamic analysis of the carbonation reaction suggested the importance of other phases, intermediate between sodium carbonate and sodium bicarbonate, and the potential for misapplication of thermodynamic data from the literature. An analysis of initial rate data from TGA experiments suggested that the data may fit a model controlled by the heat transfer from the sorbent particle surface to the bulk gas.

David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

2002-01-01T23:59:59.000Z

130

Process for off-gas particulate removal and apparatus therefor  

DOE Patents (OSTI)

In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

Carl, D.E.

1997-10-21T23:59:59.000Z

131

Fundamental mechanisms in flue-gas conditioning. Topical report No. 1, Literature review and assembly of theories on the interactions of ash and FGD sorbents  

Science Conference Proceedings (OSTI)

The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.

1992-01-09T23:59:59.000Z

132

Fundamental mechanisms in flue gas conditioning. Topical report No. 2, Literature review and assembly of theories on the interactions of ash and conditioning agents  

Science Conference Proceedings (OSTI)

The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ask properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

Bush, P.V.; Snyder, T.R.

1992-01-09T23:59:59.000Z

133

Critical review of mercury chemistry in flue gas.  

SciTech Connect

Mercury (Hg) and its compounds have long been recognized as potentially hazardous to human health and the environment. Many man-made sources of mercury have been reduced in recent years through process changes and control measures. However, emissions of mercury from coal-fired power plants, while exceedingly dilute by the usual pollution standards, still constitute a major source when considered in the aggregate. Concerns over those emissions and the prospect of impending emissions regulations have led to a wide range of research projects dealing with the measurement and control of mercury in flue gas. This work has made considerable progress in improving the understanding of mercury emissions and their behavior, but inconsistencies and unexpected results have also shown that a better understanding of mercury chemistry is needed. To develop a more complete understanding of where additional research on mercury chemistry is needed, the U.S. Department of Energy (DOE) asked Argonne National Laboratory (Argonne) to conduct a critical review of the available information as reported in the technical literature. The objectives were to summarize the current state of the art of chemistry knowledge, identify significant knowledge gaps, and recommend future research to resolve those gaps. An initial evaluation of potential review topics indicated that the scope of the review would need to be limited and focused on the most important topics relative to mercury control. To aid in this process, Argonne developed a brief survey that was circulated to researchers in the field who could help identify and prioritize the many aspects of the problem. The results of the survey were then used to design and guide a highly focused literature search that identified key papers for analysis. Each paper was reviewed, summarized, and evaluated for the relevance and quality of the information presented. The results of that work provided the basis for conclusions regarding the state of knowledge of mercury chemistry and recommendations for further research. This report begins by summarizing the survey process and describing how the results were used to shape the critical review. Analyses of information obtained from the various publications are presented chronologically, beginning with the earliest relevant publication found and concluding with the end of the review in early 2003. Finally, the conclusions and recommendations for future research are presented. The survey instrument is included in Appendix A, while detailed information on each of the publications reviewed is given in Appendix B.

Mendelsohn, M. H.; Livengood, C. D.

2006-11-27T23:59:59.000Z

134

EPRI Environmental Control Technology Center: FGD Wet Scrubber Performance At High Flue Gas Velocities  

Science Conference Proceedings (OSTI)

This report summarizes the impact of operating a wet flue gas desulfurization scrubber system at high flue gas velocities up to 20ft/sec (6.1 m/sec). It includes results for countercurrent spray, tray, and packing designs a variety of nozzle types. The report also describes the effect of adding dibasic acid and the impact of operation of state-of-the-art mist elimination systems. These results will be useful for planning compliance with SO2 emission regulations whether a new system is planned or addition...

1997-01-28T23:59:59.000Z

135

The Influence of Flue Gas Recirculation on the Formation of NOx in the Process of Coal Grate-Fired  

Science Conference Proceedings (OSTI)

With the improvement of environmental protection requirements, the problems of NOx emission from industrial boiler become more and more notable. To explore a real effective method of low NOx combustion, the article discusses the influence of flue gas ... Keywords: flue gas recirculation, grate-fired, temperature, Nox

Li Xu; Jianmin Gao; Guangbo Zhao; Laifu Zhao; Zhifeng Zhao; Shaohua Wu

2011-03-01T23:59:59.000Z

136

The Discussion of a New Exhausting Smoke Solution in Natural Draft Cooling Tower with Flue Gas Injection  

Science Conference Proceedings (OSTI)

First, the three-dimensional model of NDCT with flue gas injection and the boundary conditions was established by GAMBIT2.3 on the basis of structural parameter. On theFLUENT6.3 technology platform with self-designed program, it was found that: The new ... Keywords: NDCT with flue gas injection, jet mechanics numerical simulation, natural draft cooling towers

Yang Shuo; Qing-Jie Qi; Xin-Le Yang; Shi Lei; Chun-Yang Li

2011-02-01T23:59:59.000Z

137

Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas  

DOE Patents (OSTI)

Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

2012-11-06T23:59:59.000Z

138

A Manual on the Use of Flue Gas Conditioning for ESP Performance Enhancement  

Science Conference Proceedings (OSTI)

Flue gas conditioning can boost the effectiveness of electrostatic precipitators. This manual quantifies both the performance and the cost-benefits, with low-sulfur coals for example cases. It also outlines a procedure that will allow utilities to make estimates for their own units.

1985-08-02T23:59:59.000Z

139

Case Studies to Evaluate Flue Gas Desulfurization Wastewater Physical/Chemical Treatment Performance  

Science Conference Proceedings (OSTI)

This study focuses on physical/chemical wastewater treatment technologies used to remove trace metals from flue gas desulphurization (FGD) wastewater. The scope of this study includes FGD wastewater treatment for trace metals.BackgroundThe United States Environmental Protection Agency (EPA) is currently revising the Effluent Limitations Guidelines (ELGs) for the steam electric power generating industry. The Electric Power Research Institute (EPRI) provided ...

2013-12-23T23:59:59.000Z

140

Flue Gas Desulfurization Scrubber Maintenance Guide: Wastewater Treatment and Gypsum Handling Area  

Science Conference Proceedings (OSTI)

The Flue Gas Desulfurization Scrubber Maintenance Guide: Wastewater Treatment and Gypsum Handling Area provides fossil plant maintenance personnel with current maintenance information on these systems. This guide will assist plant maintenance personnel in improving the reliability and reducing the maintenance costs for these areas of their scrubber system.

2009-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

"LIMITS AND CHANCES IN FLUE-GAS CLEANING -INTE RNATIONAL PERSPECTIVE"  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

142

Land Application Uses for Dry Flue Gas Desulfurization By-Products: Phase 2  

Science Conference Proceedings (OSTI)

The utility industry currently generates about 20 million tons of flue gas desulfurization (FGD) by-products annually, and the quantity is expected to increase as utilities institute further controls to comply with Clean Air Act requirements. This report presents the results of the second phase of a large-scale study of beneficial land-use applications of these by-products.

1998-04-10T23:59:59.000Z

143

Stabilization of Flue Gas Desulfurization Sludge for Application in Marine Environments.  

E-Print Network (OSTI)

??Flue Gas Desulfurization sludge (FGD, CaSO4·2H2O, CaSO3·1/2H2O) is a waste by-product produced when sorbent slurry is passed through wet scrubbers. FGD contains higher concentrations of… (more)

Kour, Tej

2004-01-01T23:59:59.000Z

144

The Fate of Mercury Absorbed in Flue Gas Desulfurization (FGD) Systems  

Science Conference Proceedings (OSTI)

Wet flue gas desulfurization (FGD) systems are known to remove a percentage of the mercury in coal flue gases. This raises several questions about the fate of mercury removed by wet FGD systems: Does the absorbed mercury stay in the FGD liquor or does it leave with the byproduct solids? What happens to mercury in the FGD liquor and solid byproducts when they leave the FGD system? To address such questions, this report describes results from an EPRI project that involves field sample collection and labora...

2005-03-24T23:59:59.000Z

145

A process for off-gas particulate removal  

DOE Patents (OSTI)

This paper describes an off-gas system for the removal of radioactive particulates from a melter for the vitrification of radioactive wastes to form glass waste forms. A diagram is provided.

Carl, D.E.

1998-04-01T23:59:59.000Z

146

Effects of Ammonia and Flue Gas Desulfurization (FGD) Wastewater on Power Plant Effluent Toxicity  

Science Conference Proceedings (OSTI)

The Clean Air Act Amendments and subsequently the Clean Air Interstate Rule and other state-level actions have resulted in implementation of a variety of technologies to reduce emissions of nitrogen oxides (NOx), and to further reduce emissions of sulfur oxides (SOx). Selective Catalytic Reduction (SCR) and SNCR (non-catalytic) are two of the primary NOx emission reduction technologies. Often, ammonia is injected into flue gas as the reductant for the chemical reaction that converts NOx to nitrogen gas. ...

2007-12-18T23:59:59.000Z

147

Optimal absorption pressure for CO/sub 2/ recovery from flue gas calculated  

SciTech Connect

This paper calculates the cost of separating carbon dioxide from flue gas for enhanced oil recovery (EOR). It diagrams a carbon dioxide recovery plant and presents tables with costs of carbon dioxide recovery at various absorption pressures, and cost in various EOR project. It shows that the utility cost is a dominant factor and that a gas compressor does not reduce the equipment cost effectively at low pressure and concludes that 70 psig is the optimal operating pressure.

Fang, C.S.; Fan, S.K.

1982-11-22T23:59:59.000Z

148

Solvent Formulation for CO2 Separation from Flue Gas Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

gas characteristics (composition, pressure, temperature, etc.) and the treated gas specifications (i.e. the process requirements). These two elements provide a preliminary...

149

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Dexin Wang Dexin Wang Principal Investigator Gas Technology Institute 1700 South Mount Prospect Rd Des Plaines, Il 60018 847-768-0533 dexin.wang@gastechnology.org TransporT MeMbrane Condenser for WaTer and energy reCovery froM poWer planT flue gas proMIs/projeCT no.: nT0005350 Background One area of the U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program's research is being performed to develop advanced technologies to reuse power plant cooling water and associated waste heat and to investigate methods to recover water from power plant flue gas. Considering the quantity of water withdrawn and consumed by power plants, any recovery or reuse of this water can significantly reduce the plant's water requirements. Coal occurs naturally with water present (3-60 weight %), and the combustion

150

Effect of H{sub 2}O on the desulfurization of simulated flue gas by an ionic liquid  

SciTech Connect

Functionalized ionic liquids (ILs) have been demonstrated to absorb SO{sub 2} from mixed gases or simulated flue gases efficiently. However, after absorbing a large amount of SO{sub 2}, the viscosity of the ILs increases greatly, which might limit their eventual applications in large-scale desulfurization from mixed gases or flue gases. In this work, the effect of the presence of water in a simulated flue gas on the absorption of SO{sub 2} by a functionalized ionic liquid, 1,1,3,3-tetramethylguanidinium lactate, has been studied at different temperatures. It is found that the presence of water in the simulated flue gas can decrease the viscosity of the IL greatly, and it has no effect on the absorptivity of SO{sub 2} from the flue gas. The densities of the IL absorbing SO{sub 2} from the flue gas with or without water are also studied. They increase with the increase of the amount of SO{sub 2} absorbed from the flue gas in both cases.

Ren, S.H.; Hou, Y.C.; Wu, W.Z.; Chen, X.T.; Fan, J.L.; Zhang, J.W. [Beijing University of Chemical Technology, Beijing (China)

2009-05-15T23:59:59.000Z

151

MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS  

Science Conference Proceedings (OSTI)

The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

2009-03-31T23:59:59.000Z

152

Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs  

E-Print Network (OSTI)

Previous experiments - injecting pure CO2 into carbonate cores - showed that the process is a win-win technology, sequestrating CO2 while recovering a significant amount of hitherto unrecoverable natural gas that could help defray the cost of CO2 sequestration. In this thesis, I report my findings on the effect of flue gas ??impurities?? on the displacement of natural gas during CO2 sequestration, and results on unconfined compressive strength (UCS) tests to carbonate samples. In displacement experiments, corefloods were conducted at 1,500 psig and 70??C, in which flue gas was injected into an Austin chalk core containing initially methane. Two types of flue gases were injected: dehydrated flue gas with 13.574 mole% CO2 (Gas A), and treated flue gas (N2, O2 and water removed) with 99.433 mole% CO2 (Gas B). The main results of this study are as follows. First, the dispersion coefficient increases with concentration of ??impurities??. Gas A exhibits the largest dispersion coefficients, 0.18-0.25 cm2/min, compared to 0.13-0.15 cm2/min for Gas B, and 0.15 cm2/min for pure CO2. Second, recovery of methane at breakthrough is relatively high, ranging from 86% OGIP for pure CO2, 74-90% OGIP for Gas B, and 79-81% for Gas A. Lastly, injection of Gas A would sequester the least amount of CO2 as it contains about 80 mole% nitrogen. From the view point of sequestration, Gas A would be least desirable while Gas B appears to be the most desirable as separation cost would probably be cheaper than that for pure CO2 with similar gas recovery. For UCS tests, corefloods were conducted at 1,700 psig and 65??C in such a way that the cell throughput of CO2 simulates near-wellbore throughput. This was achieved through increasing the injection rate and time of injection. Corefloods were followed by porosity measurement and UCS tests. Main results are presented as follows. First, the UCS of the rock was reduced by approximately 30% of its original value as a result of the dissolution process. Second, porosity profiles of rock samples increased up to 2.5% after corefloods. UCS test results indicate that CO2 injection will cause weakening of near-wellbore formation rock.

Nogueira de Mago, Marjorie Carolina

2005-08-01T23:59:59.000Z

153

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

Science Conference Proceedings (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

154

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

Science Conference Proceedings (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

155

Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations  

SciTech Connect

Flue gas is greatly responsible for acid rain formation and global warming. New generation ionic liquids (ILs) have potential in controlling the flue gas emissions, as they acquire high absorptivity for the component gases SO{sub 2}, CO{sub 2}, etc. The association of the IL-gas interactions to the absorptivity of gas molecules in ILs is, however, poorly understood. In this paper, we present a molecular level description of the interactions of ILs with SO{sub 2}, CO{sub 2}, and N{sub 2} and show its implications to the differential gas solubility. Our results indicate that the IL anion-gas interactions play a key role in deciding the gas solubility in ILs, particularly for polar gases such as SO{sub 2}. On the other hand, regular solution assumption applies to -2 solubility. In accordance with the previous theoretical and experimental findings, our results also imply that the IL anions dominate the interactions with gas molecules while the cations play a secondary role and the underlying fluid structures of the ILs remain unperturbed by the addition of gas molecules.

Prasad, B.R.; Senapati, S. [Indian Institute of Technology, Madras (India). Dept. of Biotechnology

2009-04-15T23:59:59.000Z

156

Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass  

DOE Green Energy (OSTI)

The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

Anuar, S.H.; Keener, H.M.

1995-12-31T23:59:59.000Z

157

Flue gas conditioning for improved particle collection in electrostatic precipitators. Quarterly technical report  

SciTech Connect

The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfm bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.

Durham, M.D.

1992-04-27T23:59:59.000Z

158

Model predictive control of a wet limestone flue gas desulfurization pilot plant  

SciTech Connect

A model predictive control (MPC) strategy based on a dynamic matrix (DMC) is designed and applied to a wet limestone flue gas desulfurization (WLFGD) pilot plant to evaluate what enhancement in control performance can be achieved with respect to a conventional decentralized feedback control strategy. The results reveal that MPC can significantly improve both reference tracking and disturbance rejection. For disturbance rejection, the main control objective in WLFGD plants, selection of tuning parameters and sample time, is of paramount importance due to the fast effect of the main disturbance (inlet SO{sub 2} load to the absorber) on the most important controlled variable (outlet flue gas SO{sub 2} concentration). The proposed MPC strategy can be easily applied to full-scale WLFGD plants.

Perales, A.L.V.; Ollero, P.; Ortiz, F.J.G.; Gomez-Barea, A. [University of Seville, Seville (Spain). Dept. of Chemical & Environmental Engineering

2009-06-15T23:59:59.000Z

159

Flue Gas Purification Utilizing SOx/NOx Reactions During Compressin of CO2 Derived from Oxyfuel Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Flue Gas Purification Flue Gas Purification Utilizing SO X /NO X Reactions During Compression of CO 2 Derived from Oxyfuel Combustion Background Oxy-combustion in a pulverized coal-fired power station produces a raw carbon dioxide (CO 2 ) product containing contaminants such as water vapor, oxygen, nitrogen, and argon from impurities in the oxygen used and any air leakage into the system. Acid gases are also produced as combustion products, such as sulfur oxides (SO

160

Inductively Coupled Plasma-Mass Spectrometry with Collision/Reaction Cell Technology for Analysis of Flue Gas Desulfurization Wastew aters  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) wastewater is produced by pollution control equipment used on coal-fired power plants to reduce sulfur dioxide emissions to air. Wet FGD scrubbers produce an aqueous blowdown stream that contains trace levels of metals that have been adsorbed from flue gas. Power plant owners need to measure concentrations of these metals for purposes of process control, discharge monitoring, or design and operation of wastewater treatment systems. FGD water is a very difficult matrix ...

2012-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Membrane Process to Capture CO2 from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Process to Capture CO Membrane Process to Capture CO 2 from Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

162

Effects of Chlorine and Other Flue Gas Parameters on SCR Catalyst Mercury Oxidation and Capture Efficiencies  

Science Conference Proceedings (OSTI)

Although catalyst behavior is relatively well understood with respect to deNOx and SO2 oxidation, relatively little is known about mercury oxidation behavior. This test program seeks to evaluate the mercury oxidation performance of multiple types of Selective Catalytic Reduction (SCR) catalyst as a function of changes in various flue gas parameters, including chlorine level, ammonia level, flow rate, and temperature. This interim report describes the results from parametric testing on the first catalyst.

2008-08-27T23:59:59.000Z

163

Thermal Flue Gas Desulfurization Wastewater Treatment Processes for Zero Liquid Discharge Operations  

Science Conference Proceedings (OSTI)

This report presents a worldwide inventory of power plant flue gas desulfurization (FGD) blowdown treatment systems using thermal technologies to achieve zero liquid discharge (ZLD) water management. The number of thermal treatment systems presently operating is very few, with the majority using chemical pretreatment followed by evaporation in a brine concentrator and crystallizer and finally dewatering of the residual salts. Of the operating thermal ZLD systems identified, six are located in Italy and o...

2010-12-31T23:59:59.000Z

164

Flue Gas Desulfurization Gypsum Agricultural Network: North Dakota Sites 1 and 2 (Wheat)  

Science Conference Proceedings (OSTI)

This report describes work performed in 2007 and 2008 to evaluate potential beneficial agricultural uses of flue gas desulfurization (FGD) gypsum at two sites in North Dakota. This work was part of a national research network evaluating beneficial uses of FGD gypsum in agriculture. The objectives of this research were to determine the influence of FGD gypsum applications on soil quality and on wheat (Triticum aestivum L.) yields and seed quality. Three application rates of FGD gypsum were compared with s...

2011-12-16T23:59:59.000Z

165

Demonstration Test of Iron Addition to a Flue Gas Desulfurization (FGD) Absorber to Enhance Mercury Removal  

Science Conference Proceedings (OSTI)

This report documents the findings from a full-scale demonstration test of the effects on trace elements of adding iron to a forced oxidation flue gas desulfurization (FGD) scrubber. Three specific effects were evaluated: lowering mercury emissions to the atmosphere; lowering the concentration of soluble or sub-micron-sized mercury particles in FGD purge water, which could improve removal of mercury in FGD purge water treatment; and lowering the concentration of selenate in FGD purge water, which could i...

2009-12-31T23:59:59.000Z

166

Performance Evaluation of a Radial Deionization System for Flue Gas Desulfurization Wastewater Treatment  

Science Conference Proceedings (OSTI)

The U. S. Environmental Protection Agency’s proposed effluent limitation guidelines for steam electric power generating units could affect not only how power plants use water but also how they discharge it. The revised guidelines propose discharge limits for selenium, mercury, arsenic, and nitrite/nitrate in flue gas desulfurization (FGD) wastewater. Final rule approval is expected by the middle of 2014. Additional regulation of these contaminants and other constituents may occur through ...

2013-12-23T23:59:59.000Z

167

A Review of Agricultural and Other Land Application Uses of Flue Gas Desulfurization Products  

Science Conference Proceedings (OSTI)

The production of flue gas desulfurization (FGD) products, especially FGD gypsum, is expected to increase substantially over the next ten to twenty years in response to clean air initiatives. There are a large number of agricultural and other land application uses of FGD products that have received previous research and development attention, but only in specific locations of the United States and under limited conditions of crops, climate and soil types. This report discusses current and potential futur...

2006-03-13T23:59:59.000Z

168

Land Application Uses for Dry Flue Gas Desulfurization By-Products: Phase 3  

Science Conference Proceedings (OSTI)

The utility industry currently generates about 25 million tons of flue gas desulfurization (FGD) by-products annually in the United States -- a quantity that is expected to increase as utilities apply new controls to comply with Clean Air Act Amendments. This report presents results of the third and final phase of a large-scale study of beneficial land-use applications for these by-products.

1999-09-28T23:59:59.000Z

169

Land Application Uses for Dry Flue Gas Desulfurization By-Products  

Science Conference Proceedings (OSTI)

New sulfur dioxide removal technologies produce a dry, solid by-product material consisting of excess sorbent, reaction products that contain sulfates and sulfites, and coal fly ash. The scarcity of landfill disposal sites for such flue gas desulfurization (FGD) by-products has led to a long-term study on possible large-volume beneficial applications. To date, FGD by-products have been successfully used in agriculture, construction, and strip mine reclamation.

1995-09-26T23:59:59.000Z

170

Fundamental mechanisms in flue gas conditioning. Quarterly report, January 1994--March 1994  

Science Conference Proceedings (OSTI)

We are currently performing a series of pilot-scale tests designed to determine the effects that adsorbed water has on fabric filtration and electrostatic precipitation of entrained fly ash particles in actual flue gas environments. We are investigating two key phenomena in our pilot-scale tests. The first is the ability of flue gas humidification to increase ash cohesivity through the creation of liquid bridges between particles collected in a fabric filter. Increasing cohesivity through the development of liquid bridges was demonstrated in our laboratory measurements of tensile strength and uncompacted bulk porosity, and in filtration studies performed for DOE/PETC under an earlier contract. With the range of coals that will be fired in Southern Research Institute`s Coal Combustion Facility (CCF), filtration tests should verify how different fly ashes react to water conditioning in actual flue gas environments. The CCF provides a valuable test location for our studies. The second phenomenon we plan to study is the electrostatic reentrainment of previously collected ash particles in an ESP. We have prepared a small ESP for use in our pilot-scale tests. Our laboratory studies have shown the effects that relative humidity can have on the forces that hold the collected ash on the grounded ESP plate.

Snyder, T.R.

1994-04-18T23:59:59.000Z

171

Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal  

Science Conference Proceedings (OSTI)

This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

Eric P. Robertson

2007-09-01T23:59:59.000Z

172

SNOX Flue Gas Cleaning Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

SO 2 to SO 3 . The exit gas from the SO 3 converter passes through a novel glass-tube condenser in which the SO 3 is hydrated to H 2 SO 4 vapor and then condensed to a concentrated...

173

Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators  

SciTech Connect

Fossil fuel combustion leads to acidic pollutants, like SO2, NOx, HCl emission. Different control technologies are proposed however, the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First, using lime or limestone slurry leads to SO2 capture, and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan, the USA, Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland, third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany, Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators, 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world, nowadays. Description of the plant and results obtained has been presented in the paper.

Chmielewski, Andrzej G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); University of technology, faculty of Process and Chemical Engineering, Warsaw (Poland); Tyminski, Bogdan; Zimek, Zbigniew; Pawelec, Andrzej [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Licki, Janusz [Institute of Atomic Energy, Swierk (Poland)

2003-08-26T23:59:59.000Z

174

Using Flue Gas Huff 'n Puff Technology and Surfactants to Increase Oil Production from the Antelope Shale Formation of the Railroad Gap Oil Field  

Science Conference Proceedings (OSTI)

This project was designed to test cyclic injection of exhaust flue gas from compressors located in the field to stimulate production from Antelope Shale zone producers. Approximately 17,000 m{sup 3} ({+-}600 MCF) of flue gas was to be injected into each of three wells over a three-week period, followed by close monitoring of production for response. Flue gas injection on one of the wells would be supplemented with a surfactant.

McWilliams, Michael

2001-12-18T23:59:59.000Z

175

Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas  

SciTech Connect

This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris™ membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and

Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

2012-03-31T23:59:59.000Z

176

Gas and Particulate Concentration Measurements and ...  

Science Conference Proceedings (OSTI)

... to the species of interest as gas concentration standards ... for low concentrations and toxic and reactive gases. ... data set correlating liquid-phase fuels ...

2012-10-01T23:59:59.000Z

177

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant  

E-Print Network (OSTI)

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

2001-01-01T23:59:59.000Z

178

Improved Recovery from Gulf of Mexico Reservoirs, Volume 4, Comparison of Methane, Nitrogen and Flue Gas for Attic Oil. February 14, 1995 - October 13, 1996. Final Report  

SciTech Connect

Gas injection for attic oil recovery was modeled in vertical sandpacks to compare the process performance characteristics of three gases, namely methane, nitrogen and flue gas. All of the gases tested recovered the same amount of oil over two cycles of gas injection. Nitrogen and flue gas recovered oil more rapidly than methane because a large portion of the methane slug dissolved in the oil phase and less free gas was available for oil displacement. The total gas utilization for two cycles of gas injection was somewhat better for nitrogen as compared to methane and flue gas. The lower nitrogen utilization was ascribed to the lower compressibility of nitrogen.

Wolcott, Joanne; Shayegi, Sara

1997-01-13T23:59:59.000Z

179

Compression stripping of flue gas with energy recovery  

SciTech Connect

A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SO.sub.X and NO.sub.X and CO.sub.2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO.sub.2, SO.sub.2, and H.sub.2 O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

Ochs, Thomas L. (Albany, OR); O' Connor, William K. (Lebanon, OR)

2005-05-31T23:59:59.000Z

180

Compression Stripping of Flue Gas with Energy Recovery  

DOE Patents (OSTI)

A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SOX and NOX and CO2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO2, SO2, and H2O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

Ochs, Thomas L.; O' Connor, William K.

2005-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Process to recover CO/sub 2/ from flue gas gets first large-scale tryout in Texas  

SciTech Connect

This article describes a new plant that will recover 1,120 tons/day of CO/sub 2/ for use in an enhanced oil recovery (EOR) project in West Texas. Feed for the plant is flue gas from an adjacent electrical power generating station. Product CO/sub 2/ is pipelined from the recovery plant in a supercritical state at about 2,000 psig. The pilot plant demonstrated the ability of Dow Chemical's Gas Spec amine solvent to recover CO/sub 2/ from industrial flue gas, and confirmed that Procon/Dow's improved solvent adsorption system is effective in reducing the energy requirements.

St. Clair, J.H.; Simister, W.F.

1983-02-14T23:59:59.000Z

182

Flue Gas Desulfurization Gypsum Agricultural Network: Wisconsin Arlington Research Station Fields 295 and 27 (Alfalfa)  

Science Conference Proceedings (OSTI)

This report describes field research in Wisconsin as part of the Flue Gas Desulfurization Gypsum (FGDG) Agricultural Network. The objective of this study, conducted during 2009-2010, was to evaluate potential beneficial agricultural uses of FGDG as a soil amendment to improve alfalfa production. FGDG was compared to a commercially available gypsum product (C-GYP) widely sold in the U.S. Midwest and other areas. A study was established in two fields (Field 295 in 2009/2010 and Field 27 in 2010) at ...

2013-05-06T23:59:59.000Z

183

Enhanced Control of Mercury by Wet Flue Gas Desulfurization Systems - Site 2 Results  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy and EPRI are co-funding this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project is investigating catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installation...

2000-11-28T23:59:59.000Z

184

Leaching Assessment of Fly Ash, Flue Gas Desulfurization Filter Cake, and Fixated Scrubber Solids  

Science Conference Proceedings (OSTI)

The by-products of coal combustion (for example, fly ash and flue gas desulfurization filter cake) are an important environmental concern due to potential leaching of trace constituents and the large volume of residues produced. About 40% of these by-products may be utilized as raw materials outside of the energy sector; the remaining 60% of the coal combustion products (CCPs) are disposed of as waste. At Plant 14090, the subject of this report, fly ash and scrubber sludge are blended with quicklime ...

2012-12-03T23:59:59.000Z

185

Flue Gas Desulfurization Gypsum Agricultural Network: North Dakota Sites 3, 4, and 5 (Canola)  

Science Conference Proceedings (OSTI)

Flue gas desulfurization gypsum (FGDG) is a very pure form of gypsum that is a by-product from the combustion of coal for energy production. This report describes 2008-2009 work to evaluate potential beneficial agricultural uses of FGDG at three sites near Langdon, North Dakota. This work was part of a national research network evaluating beneficial uses of FGDG in agriculture, in this case, fertilization of dryland canola by FGDG. The objectives of this research were to 1) determine the influence of FGD...

2011-11-28T23:59:59.000Z

186

Flue Gas Desulfurization Gypsum Agricultural Network: Ohio Sites 1 (Mixed Hay) and 2 (Corn)  

Science Conference Proceedings (OSTI)

The objectives of this work conducted during 2008–2010 were to evaluate potential beneficial agricultural uses of flue gas desulphurization gypsum (FGDG) in eastern Ohio and to assess the potential for environmental effects of the use of FGDG. Two field experiments were conducted at the eastern Ohio research site, one involving a mixed-grass hay field and the other a corn (Zea mays L.) field. FGDG and mined gypsum product were applied one time at rates of 0.2, 2.0, and 20 megagrams ...

2012-09-17T23:59:59.000Z

187

Reactive carbon from life support wastes for incinerator flue gas cleanup-System Testing  

DOE Green Energy (OSTI)

This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NO{sub x} and SO{sub 2} contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NO{sub x} and SO{sub 2} in activated carbon made from biomass. Conversion of adsorbed NO{sub x} to nitrogen has also been observed.

Fisher, John W.; Pisharody, Suresh; Moran, Mark J.; Wignarajah, Kanapathipillai; Xu, X.H.; Shi, Yao; Chang, Shih-Ger

2002-05-14T23:59:59.000Z

188

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

SciTech Connect

Oxidation of Hg0 with any oxidant or converting it to a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg0 by gas phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas phase reaction rate constants between Hg0 and the sulfur/chlorine compounds were determined, and the effects of temperature and the main components in flue gases were studied. The gas phase reaction between Hg0 and SCl2 is shown to be more rapid than the gas phase reaction with chlorine, and the second order rate constant was 9.1(+-0.5) x 10-18 mL-molecules-1cdots-1 at 373oK. Nitric oxide (NO) inhibited the gas phase reaction of Hg0 with sulfur-chlorine compounds. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg0 removal is about 90percent with 5 ppm SCl2 or S2Cl2 and 40 g/m3 of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that co-injection of 3-5 ppm of SCl2 (or S2Cl2) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90percent of Hg0 can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3percent of SCl2 or S2Cl2 is used. Unlike gas phase reactions, NO exhibited little effect on Hg0 reactions with SCl2 or S2Cl2 on flyash or activated carbon. Mercuric sulfide was identified as one of the principal products of the Hg0/SCl2 or Hg0/S2Cl2 reactions. Additionally, about 8percent of SCl2 or S2Cl2 in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution.

Chang, Shih-Ger; Yan, Nai-Qiang; Qu, Zan; Chi, Yao; Qiao, Shao-Hua; Dod, Ray; Chang, Shih-Ger; Miller, Charles

2008-07-02T23:59:59.000Z

189

Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks  

SciTech Connect

UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary building units bound by DOBDC resulting in 1D hexagonal pores about 11 angstroms in diameter. Surface areas range from 800 to 1500 sq m/g for the different MOFs. Mg/DOBDC outperformed all MOF and zeolite materials evaluated to date, with about 25 wt% CO{sub 2} captured by this MOF at flue gas conditions ({approx}0.13 atm CO{sub 2} pressure, 311K). In simulated flue gas without oxygen, the zero-length (ZLC) system was very useful in quickly simulating the effect of long term exposure to impurities on the MOFs. Detailed adsorption studies on MOF pellets have shown that water does not inhibit CO{sub 2} adsorption for MOFs as much as it does for typical zeolites. Moreover, some MOFs retain a substantial CO{sub 2} capacity even with a modest water loading at room temperature. Molecular modeling was a key activity in three areas of our earlier DOE/NETL-sponsored MOF-based research on CC. First, the team was able to effectively simulate CO{sub 2} and other gas adsorption isotherms for more than 20 MOFs, and the knowledge obtained was used to help predict new MOF structures that should be effective for CO{sub 2} adsorption at low pressure. The team also showed that molecular modeling could be utilized to predict the hydrothermal stability of a given MOF. Finally, the team showed that low moisture level exposure actually enhanced the CO{sub 2} adsorption performance of a particular MOF, HKUST-1.

David A Lesch

2010-06-30T23:59:59.000Z

190

Fundamental mechanisms in flue gas conditioning. Quarterly report, October 1994--December 1994  

Science Conference Proceedings (OSTI)

This project is divided into four tasks. We developed our Management Plan in Task 1. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focused on characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, was designed to examine effects of various conditioning agents on fine ash particles to determine mechanisms by which these agents alter physical properties of ash. We began Tasks 2 and 3 with an extensive literature search and assembly of existing theories. We completed this phase of the project with publication of two special Topical Reports. During the next phase of the project we analyzed a variety of fly ashes and fine powders in the laboratory. Pilot-scale evaluations were then performed to verify the results we obtained in these laboratory analyses. Under Task 4 we will issue our Final Report that will summarize the results of our laboratory and pilot-scale work and will also include a Flue Gas Conditioning Model. In our literature reviews reported in Topical Reports 1 and 2, we emphasized the roles adsorbed water can have in controlling bulk properties of powders. The experiments we performed were primarily designed to define the extent to which water affects key properties of ashes, powders, and mixtures of sorbents and ashes. We have recently completed a series of pilot-scale tests designed to determine the effects that adsorbed water has on fabric filtration and electrostatic precipitation of entrained fly ash particles in actual flue gas environments.

Snyder, T.R.

1995-01-16T23:59:59.000Z

191

Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains  

Science Conference Proceedings (OSTI)

Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant, and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.

DeSutter, T.M.; Cihacek, L.J. [North Dakota State University, Fargo, ND (United States). Department of Soil Science

2009-07-15T23:59:59.000Z

192

Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development  

SciTech Connect

The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

Radisav Vidic; Joseph Flora; Eric Borguet

2008-12-31T23:59:59.000Z

193

Cooler and particulate separator for an off-gas stack  

DOE Patents (OSTI)

This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

Wright, G.T.

1991-04-08T23:59:59.000Z

194

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

Science Conference Proceedings (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 ® . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

None

1999-05-05T23:59:59.000Z

195

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

Science Conference Proceedings (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 ® . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

NONE

1998-11-30T23:59:59.000Z

196

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

Science Conference Proceedings (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97{reg_sign}. Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy/Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

NONE

1999-05-05T23:59:59.000Z

197

Program on Technology Innovation: Developing Technologies for the Direct Measurement of Particulate Mass Emissions from Flue Gases  

Science Conference Proceedings (OSTI)

This report examines the current status of continuous particulate monitoring systems. It addresses the recent advent of new monitoring systems and the role of miniaturization and microelectromechanical systems (MEMS) in particulate monitor development. It examines sensors and monitoring systems in other fields of application, such as ambient, indoor, process, and clean room monitoring. Many of these methods are particle counting and particle sizing methods, meant for monitoring low particle concentration...

2010-12-07T23:59:59.000Z

198

Mercury Control Research: Effects of Fly Ash and Flue Gas Parameters on Mercury Speciation  

E-Print Network (OSTI)

and fly ash parameters on the oxidation of HgOin simulated flue gases containing hydrogen chloride (Hel-combustion region are unknown, and the major reaction pathways for Hg oxidation in combustion flue gases remain in the oxidation ofHgo in flue gases containingHC!. Thus, an important parameter that influences the oxidation of

Columbia University

199

The utilization of flue gas desulfurization waste by-products in construction brick  

E-Print Network (OSTI)

Millions of tons of waste by-products from Texas coal burning plants are produced each year. Two common byproducts are the fuel ashes and calcium sulfate (gypsum). Fuel ashes result from the burning of coal. Gypsum is a byproduct of the air purification system, called Flue Gas Desulfurization (FGD). Abatement of these waste products is a growing concern, not only for the industry, but the environment as well. It is possible to produce a gypsum brick unit that can meet the engineering properties required by the Americans Society of Testing Materials (ASTM) standards by using these by-products. This can be accomplished at a cost less than the least expensive common fired clay brick that is used in construction operations. The gypsum brick can be manufactured using established methods that are currently in operation.

Berryman, Charles Wayne

1992-01-01T23:59:59.000Z

200

Reclamation of abandoned surface coal mined land using flue gas desulfurization products  

SciTech Connect

Details are given of a field-scale research project where the Fleming site, in Ohio, of highly degraded and acid-forming abandoned surface coal-mined land, was reclaimed using a dry flue gas desulfurization product from an atmospheric fluidized bed combustion burner at a General Motors plant Pontiac, MI, which burned eastern Ohio coal and used dolomitic limestone for desulfurization. Plots were seeded with a mixture of grasses, wheat and clover, in 1994 and soil and water samples were analysed in 1995 and in 2009. It was found that FGD-treated plots promoted good regenerative growth, similar to that in plots using more concentrated re-soil material. The FGD treatment also greatly improved overall water quality. 3 figs., 4 tabs.

Chen, L.; Kost, D.; Dick, W.A. [Ohio State University, OH (United States)

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hollow fiber adsorbents for CO{sub 2} removal from flue gas  

Science Conference Proceedings (OSTI)

The nation's pulverized coal infrastructure is aging, and implementation of current retrofit postcombustion capture methods is extremely expensive. This paper describes a technology based on hollow polymeric fibers with sorbent particles embedded in the porous fiber wall to enable postcombustion CO{sub 2} capture via a rapid temperature swing adsorption (RTSA) system. The system takes advantage of the hollow fiber morphology by passing cooling water through the bores during sorption to maximize sorption capacities and steam through the bores during desorption to desorb CO{sub 2} efficiently. The thin-walled hollow fibers offer the advantage of rapid heat and mass transport. To avoid mass transfer between the core and the fiber sheath, a dense lumen layer is used on the interior of the fiber wall. This system has advantages over competing technologies. Specifically, the fiber sorbent contactor minimizes flue gas pressure drop across the bed, while maximizing sorption efficiencies via rapid thermal cycles and low regenerative thermal requirements.

Lively, R.P.; Chance, R.R.; Kelley, B.T.; Deckman, H.W.; Drese, J.H.; Jones, C.W.; Koros, W.J. [Georgia Institute of Technology, Atlanta, GA (United States)

2009-08-15T23:59:59.000Z

202

Controllability analysis and decentralized control of a wet limestone flue gas desulfurization plant  

Science Conference Proceedings (OSTI)

Presently, decentralized feedback control is the only control strategy used in wet limestone flue gas desulfurization (WLFGD) plants. Proper tuning of this control strategy is becoming an important issue in WLFGD plants because more stringent SO{sub 2} regulations have come into force recently. Controllability analysis is a highly valuable tool for proper design of control systems, but it has not been applied to WLFGD plants so far. In this paper a decentralized control strategy is designed and applied to a WLFGD pilot plant taking into account the conclusions of a controllability analysis. The results reveal that good SO{sub 2} control in WLFGD plants can be achieved mainly because the main disturbance of the process is well-aligned with the plant and interactions between control loops are beneficial to SO{sub 2} control.

Perales, A.L.V.; Ortiz, F.J.G.; Ollero, P.; Gil, F.M. [University of Seville, Seville (Spain)

2008-12-15T23:59:59.000Z

203

By-product disposal from MSW incinerator flue gas cleaning systems  

Science Conference Proceedings (OSTI)

Waste incineration has been found to be an effective method of achieving significant volume reduction of Municipal Solid Waste (MSW) while at the same time allowing for energy recovery in the form of steam or electricity. Concern over potential air pollution from incinerators in the form of acid gases, heavy metals and dioxins has led to the application of Spray Dryer Absorption (SDA) flue gas cleaning systems to control these emissions. SDA has demonstrated high efficiencies in converting these air pollutants into a dry by-product for disposal. This has, in turn, led to concerns over potential secondary pollution from the disposal of these by-products. This paper presents a description of the SDA process and reviews disposal options for the SDA product. Product characteristics are given and results of leaching studies are presented. Comparisons between EPA's and TEP and TCLP procedures are presented. Results of dioxin measurements from the by-product are given.

Donnelly, J.R. (Joy Manufacturing Co., Los Angeles, CA (US)); Jons, E. (A/S Niro Atomizer, Copenhagen (DK))

1987-01-01T23:59:59.000Z

204

Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report  

SciTech Connect

The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

NONE

1996-04-30T23:59:59.000Z

205

Fundamental mechanisms in flue gas conditioning. Quarterly report, April--June 1994  

Science Conference Proceedings (OSTI)

This project is divided into four tasks. The author developed a Management Plan in Task 1. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focuses on characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, is designed to examine effects of various conditioning agents on fine ash particles to determine mechanisms by which these agents alter physical properties of ash. The author began Tasks 2 and 3 with an extensive literature search and assembly of existing theories. He completed this phase of the project with publication of two special Topical Reports. During the past several quarters he performed analyses of the samples in the database. Pilot-scale evaluations have begun and will continue through the next two quarters. The author will include the results of laboratory and pilot-scale work performed under Tasks 2 and 3 in a Flue Gas Conditioning Model that will be issued under Task 4. The Final Report for the project will also be prepared under Task 4. In the literature reviews reported in Topical Reports 1 and 2, the author emphasized the roles adsorbed water can have in controlling bulk properties of powders. The experiments performed were primarily designed to define the extent to which water affects key properties of ashes, powders, and mixtures of sorbents and ashes. The author is currently performing a series of pilot-scale tests designed to determine the effects that absorbed water has on fabric filtration and electrostatic precipitation of entrained fly ash particles in actual flue gas environments.

Snyder, T.R.

1994-07-12T23:59:59.000Z

206

Pilot-plant technical assessment of wet flue gas desulfurization using limestone  

Science Conference Proceedings (OSTI)

An experimental study was performed on a countercurrent pilot-scale packed scrubber for wet flue gas desulfurization (FGD). The flow rate of the treated flue gas was around 300 Nm{sup 3}/h, so the pilot-plant capacity is one of the largest with respect to other published studies on a pilot-plant wet FGD. The tests were carried out at an SO{sub 2} inlet concentration of 2000 ppm by changing the recycle slurry pH to around 4.8 and the L/G ratio to between 7.5 and 15. Three types of limestone were tested, obtaining desulfurization efficiencies from 59 to 99%. We show the importance of choosing an appropriate limestone in order to get a better performance from the FGD plant. Thus, it is important to know the reactivity (on a laboratory scale) and the sorbent utilization (on a pilot-plant scale) in order to identify if a limestone is reactive enough and to compare it with another type. In addition, by using the transfer-unit concept, a function has been obtained for the desulfurization efficiency, using the L/G ratio and the recycle slurry pH as independent variables. The Ca/S molar ratio is related to these and to the SO{sub 2} removal efficiency. This function, together with a simplified function of the operation variable cost, allows us to determine the pair (L/G ratio and pH) to achieve the desired SO{sub 2} removal with the minimum operation cost. Finally, the variable operation costs between packed towers and spray scrubbers have been compared, using as a basis the pilot packed tower and the industrial spray column at the Compostilla Power Station's FGD plant (in Leon, Spain).

Ortiz, F.J.G.; Vidal, F.; Ollero, P.; Salvador, L.; Cortes, V.; Gimenez, A. [University of Seville, Seville (Spain)

2006-02-15T23:59:59.000Z

207

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

SciTech Connect

This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate the performance of low-cost activated carbon sorbents for removing mercury. In addition, the effects of the dual flue gas conditioning system on mercury removal performance were evaluated as part of short-term parametric tests on Unit 2. Based on the parametric test results, a single sorbent (e.g., RWE Super HOK) was selected for a 30-day continuous injection test on Unit 1 to observe long-term performance of the sorbent as well as its effects on ESP and FGD system operations as well as combustion byproduct properties. A series of parametric tests were also performed on Shawville Unit 3 over a three-week period in which several activated carbon sorbents were injected into the flue gas duct just upstream of either of the two Unit 3 ESP units. Three different sorbents were evaluated in the parametric test program for the combined ESP 1/ESP 2 system in which sorbents were injected upstream of ESP 1: RWE Super HOK, Norit's DARCO Hg, and a 62:38 wt% hydrated lime/DARCO Hg premixed reagent. Five different sorbents were evaluated for the ESP 2 system in which activated carbons were injected upstream of ESP 2: RWE Super HOK and coarse-ground HOK, Norit's DARCO Hg and DARCO Hg-LH, and DARCO Hg with lime injection upstream of ESP 1. The hydrated lime tests were conducted to reduce SO3 levels in an attempt to enhance the mercury removal performance of the activated carbon sorbents. The Plant Yates and Shawville studies provided data required for assessing carbon performance and long-term operational impacts for flue gas mercury control across small-sized ESPs, as well as for estimating the costs of full-scale sorbent injection processes.

Carl Richardson; Katherine Dombrowski; Douglas Orr

2006-12-31T23:59:59.000Z

208

Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance  

SciTech Connect

A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ÂşF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

Andrew Seltzer; Zhen Fan

2011-03-01T23:59:59.000Z

209

Refuse Composition And flue-Gas Analyses from Mun;c;pal  

E-Print Network (OSTI)

(see Figure 3 and 4). In the fixed-bed or moving-bed process, the pollutant-loaded flue gases in the flue gases which occur during combustion and total approx. 350,000 m3(STP, dryt/hr is separatedReduction in Mercury Emissions with Lignite Coke W. Esser-Schmittmann, J. Wirling and U. Lenz Due

Columbia University

210

CO2 separation from flue gas using hollow fiber membrane contactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Research on CO Research on CO 2 Separation from Flue Gas Prof. Mengxiang Fang State Key Laboratory of Clean Energy Utilization, Zhejiang University, China Global CO 2 Emissions Country CO 2 Emission (MtCO2) 1990 2003 2004 2010 USA 4,989 5,800 5,923 6,156 China 2,241 3,898 4,707 6,432 Russia 2,334 1,602 1,685 1,840 Japan 1,015 1,244 1,262 1,260 World 21,246 25,508 26,922 30,670 Source: Energy Information Administration/International Energy Outlook 2004 with High Oil Price Case CO 2 Emission in China Year Total Coal Petroleum Natural Gas Mt CO2 Mtc % Mtc % Mtc % 1990 2,241 1,886 84.2 325 14.5 30 1.34 2003 3,898 3,117 80.0 711 18.2 70 1.80 2004 4,707 3,809 80.9 816 17.3 83 1.76 2010 6,432 5,103 79.3 1,151 17.9 178 2.76 2015 7,376 5,946 80.6 1,184 16.1 246 3.33 Source: Energy Information Administration/International Energy Outlook 2004 with High Oil Price Case.

211

Flue-gas carbon capture on carbonaceous sorbents: Toward a low-cost multifunctional Carbon Filter for 'Green' energy producers  

SciTech Connect

A low-pressure Carbon Filter Process (patent pending) is proposed to capture carbon dioxide (CO{sub 2}) from flue gas. This filter is filled with a low-cost carbonaceous sorbent, such as activated carbon or charcoal, which has a high affinity (and, hence, high capacity) to CO{sub 2} but not to nitrogen (N{sub 2}). This, in turn, leads to a high CO{sub 2}/N{sub 2} selectivity, especially at low pressures. The Carbon Filter Process proposed in this work can recover at least 90% of flue-gas CO{sub 2} of 90%+ purity at a fraction of the cost normally associated with the conventional amine absorption process. The Carbon Filter Process requires neither expensive materials nor flue-gas compression or refrigeration, and it is easy to heat integrate with an existing or grassroots power plant without affecting the cost of the produced electricity too much. An abundant supply of low-cost CO{sub 2} from electricity producers is good news for enhanced oil recovery (EOR) and enhanced coal-bed methane recovery (ECBMR) operators, because it will lead to higher oil and gas recovery rates in an environmentally sensitive manner. A CO{sub 2}-rich mixture that contains some nitrogen is much less expensive to separate from flue-gas than pure CO{sub 2}; therefore, mixed CO{sub 2}/N{sub 2}-EOR and CO{sub 2}/N{sub 2}-ECBMR methods are proposed to maximize the overall carbon capture and utilization efficiency.

Radosz, M.; Hu, X.D.; Krutkramelis, K.; Shen, Y.Q. [University of Wyoming, Laramie, WY (United States)

2008-05-15T23:59:59.000Z

212

Impact of supplemental firing of tire-derived fuel (TDF) on mercury species and mercury capture with the advanced hybrid filter in a western subbituminous coal flue gas  

Science Conference Proceedings (OSTI)

Pilot-scale experimental studies were carried out to evaluate the impacts of cofiring tire-derived fuel and a western subbituminous coal on mercury species in flue gas. Mercury samples were collected at the inlet and outlet of the Advanced Hybrid filter to determine mercury concentrations in the flue gas with and without TDF cofiring, respectively. Cofiring of TDF with a subbituminous coal had a significant effect on mercury speciation in the flue gas. With 100% coal firing, there was only 16.8% oxidized mercury in the flue gas compared to 47.7% when 5% TDF (mass basis) was fired and 84.8% when 10% TDF was cofired. The significantly enhanced mercury oxidation may be the result of additional homogeneous gas reactions between Hg{sup 0} and the reactive chlorine generated in the TDF-cofiring flue gas and the in situ improved reactivity of unburned carbon in ash by the reactive chlorine species. Although the cofiring of TDF demonstrated limited improvement on mercury-emission control with the Advanced Hybrid filter, it proved to be a very cost-effective mercury control approach for power plants equipped with wet or dry flue gas desulfurization (FGD) systems because of the enhanced mercury oxidation. 15 refs., 4 figs., 4 tabs.

Ye Zhuang; Stanley J. Miller [University of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center

2006-05-15T23:59:59.000Z

213

JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas  

SciTech Connect

The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

Robert Patton

2006-12-31T23:59:59.000Z

214

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project. Technical progress report No. 15, July 1, 1993--September 30, 1993  

Science Conference Proceedings (OSTI)

The goal of this project is to demonstrate that, by combining state-of-the-art technology, highly efficient plant operation and maintenance capabilities and by-product gypsum sales, significant reductions of SO{sub 2} emissions can be achieved at approximately one-half the life cycle cost of a conventional Flue Gas Desulfurization (FGD) system. Further, this emission reduction is achieved without generating solid waste and while minimizing liquid wastewater effluent. Basically, this project entails the design, construction and operation of a nominal 600 MWe AFGD facility to remove SO{sub 2} from coal-fired power plant flue gas at the Northern Indiana Public Service Company`s Bailly Generating Station.

Not Available

1994-08-01T23:59:59.000Z

215

JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas  

SciTech Connect

The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

Robert Patton

2006-12-31T23:59:59.000Z

216

Innovative Carbon Dioxide Sequestration from Flue Gas Using an In-Duct Scrubber Coupled with Alkaline Clay Mineralization  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Carbon Dioxide Sequestration Innovative Carbon Dioxide Sequestration from Flue Gas Using an In-Duct Scrubber Coupled with Alkaline Clay Mineralization Background The United States Department of Energy (DOE) is leading an effort to find novel approaches to reduce carbon dioxide (CO 2 ) emissions from industrial sources. The Industrial Carbon Capture and Sequestration (ICCS) program is funded by the American Recovery and Reinvestment Act (ARRA) to encourage development of processes that

217

Evaluation of the Origin of Dissolved Organic Carbon and the Treatability of Mercury in Flue Gas Desulfurization Wastewater  

Science Conference Proceedings (OSTI)

Regulations for reducing the dissolved mercury (Hg) concentrations in wastewater discharged by electric generating power plants are becoming more stringent via federal regulatory limits proposed by the EPA and regulatory limits set by select states. Data obtained in a previous EPRI study conducted in 2009 suggested a potential negative impact of dissolved organic carbon (DOC) and iodide concentrations present in flue gas desulfurization (FGD) wastewater on mercury treatability (EPRI report 1019867). ...

2013-12-17T23:59:59.000Z

218

Corrosion in Wet Flue Gas Desulfurization (FGD) Systems: Technical Root Cause Analysis of Internal Corrosion on Wet FGD Alloy Absorbers  

Science Conference Proceedings (OSTI)

State-of-the-art flue gas desulfurization (FGD) technologies have been or are being installed on most large coal-fired electric generating units in response to new regulatory emission requirements. Aggressive corrosion has been noted in some of these systems, presumably from the low pH, high chloride environments created in the FGD process. There exists a plethora of material systems (metallic, organic, plastics, coating, and so forth) available to construct these systems, but, because of cost, fabricabi...

2012-04-30T23:59:59.000Z

219

Investigation of a mercury speciation technique for flue gas desulfurization materials  

Science Conference Proceedings (OSTI)

Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method and samples from power plants in Pennsylvania. Potential candidates of pure mercury standards including mercuric chloride, mercurous chloride, mercury oxide, mercury sulfide, and mercuric sulfate were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg{sub 2}Cl{sub 2} and HgCl{sub 2} could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury. 21 refs., 5 figs., 3 tabs.

Lee, J.Y.; Cho K.; Cheng L.; Keener, T.C.; Jegadeesan G.; Al-Abed, S.R. [University of Cincinnati, Cincinnati, OH (United States). Department of Chemical and Materials Engineering

2009-08-15T23:59:59.000Z

220

Recycle/reuse of boiler chemical cleaning wastes in wet limestone flue gas desulfurization (FGD) systems  

Science Conference Proceedings (OSTI)

Boiler chemical cleaning wastes (BCCW) are generated by the periodic waterside cleaning of utility boilers to remove metallic deposits from boiler tube surfaces. Depending on boiler metallurgy, BCCW generally contain high concentrations of iron and copper or both, as well as other heavy metals such as chromium, lead, nickel, and zinc. BCCW treatment and disposal methods include precipitation, coponding in an ash pond, evaporation in the fireside of an operating boiler (for organic solvents), and contracted off-site disposal. Depending on the type of BCCW chemical treatment methods achieve varying degrees of success. BCCW which contain organic chelating agents can be especially difficult to treat to national pollutant discharge elimination system (NPDES) limits (1 mg/L for both iron and copper) with conventional lime precipitation.Research is being done to evaluate different BCCW treatment and disposal methods. One waste management option under consideration is reuse of BCCW in utility wet flue gas desulfurization (FGD) systems. To investigate this option, a series of laboratory tests were performed in which five different types of BCCW were added to the reaction tank of EPRI's bench-scale wet limestone FGD system. This paper presents the results and conclusions from this study.

Stohs, M.; Owens, D.R. (Radian Corp. (US)); Micheletti, W. (Electric Power Research Inst., Palo Alto, CA (USA))

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fundamental mechanisms in flue gas conditioning. Quarterly report, January 1992--March 1992  

Science Conference Proceedings (OSTI)

This project is divided into four tasks. The Management Plan was developed in task 1. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focuses on the characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, is designed to examine the effects of various conditioning agents on fine ash particles to determine the mechanisms by which these agents alter the physical properties of the ash. Tasks 2 and 3 began with an extensive literature search and the assembly of existing theories. This phase of the project is now complete. During the past quarter, initial preparations of laboratory equipment for laboratory testing have been made. A plan for initial laboratory tests has been submitted to the Project Manager for review. Laboratory testing will commence once these laboratory plans have been formally approved. The results of the work performed under task 2 and 3 will be included in a Flue Gas Conditioning Model that will be issued under task 4. The Final Report for the project will also be prepared under task 4.

Snyder, T.R.; Robinson, M.S.; Bush, P.V.

1992-04-27T23:59:59.000Z

222

Fundamental mechanisms in flue gas conditioning. Quarterly report, September 1991--December 1991  

Science Conference Proceedings (OSTI)

This project is divided into four tasks. Task 1 is the Development of a Management Plan. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focuses on the characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, is designed to examine the effects of various conditioning agents on fine ash particles to determine the mechanisms by which these agents alter the physical properties of the ash. Tasks 2 and 3 began with an extensive literature search and the assembly of existing theories. The results of the work performed under Tasks 2 and 3 will be included in a Flue Gas Conditioning Model that will be issued under Task 4. The Final Report for the project will also be prepared under Task 4. This quarterly report covers four months in order to synchronize the reporting periods for this project with US Government quarters. Work performed on the project during the past quarter consisted almost entirely of the review of literature pertaining to the objectives of Tasks 2 and 3. The primary results of that review are discussed at length in Topical Reports 1 and 2, submitted January 9, 1992. As a consequence of the work described in the topical reports, several of the project`s Measures of Success that were described in the first quarterly report have been achieved. This quarterly report will discuss these achievements.

Snyder, T.R.

1992-01-23T23:59:59.000Z

223

Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process  

Science Conference Proceedings (OSTI)

Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

2011-10-16T23:59:59.000Z

224

Evaluation of BOC'S Lotox Process for the Oxidation of Elemental Mercury in Flue Gas from a Coal-Fired Boiler  

SciTech Connect

Linde's Low Temperature Oxidation (LoTOx{trademark}) process has been demonstrated successfully to remove more than 90% of the NOx emitted from coal-fired boilers. Preliminary findings have shown that the LoTOx{trademark} process can be as effective for mercury emissions control as well. In the LoTOx{trademark} system, ozone is injected into a reaction duct, where NO and NO{sub 2} in the flue gas are selectively oxidized at relatively low temperatures and converted to higher nitrogen oxides, which are highly water soluble. Elemental mercury in the flue gas also reacts with ozone to form oxidized mercury, which unlike elemental mercury is water-soluble. Nitrogen oxides and oxidized mercury in the reaction duct and residual ozone, if any, are effectively removed in a wet scrubber. Thus, LoTOx{trademark} appears to be a viable technology for multi-pollutant emission control. To prove the feasibility of mercury oxidation with ozone in support of marketing LoTOx{trademark} for multi-pollutant emission control, Linde has performed a series of bench-scale tests with simulated flue gas streams. However, in order to enable Linde to evaluate the performance of the process with a flue gas stream that is more representative of a coal-fired boiler; one of Linde's bench-scale LoTOx{trademark} units was installed at WRI's combustion test facility (CTF), where a slipstream of flue gas from the CTF was treated. The degree of mercury and NOx oxidation taking place in the LoTOx{trademark} unit was quantified as a function of ozone injection rates, reactor temperatures, residence time, and ranks of coals. The overall conclusions from these tests are: (1) over 80% reduction in elemental mercury and over 90% reduction of NOx can be achieved with an O{sub 3}/NO{sub X} molar ratio of less than two, (2) in most of the cases, a lower reactor temperature is preferred over a higher temperature due to ozone dissociation, however, the combination of both low residence time and high temperature proved to be effective in the oxidation of both NOx and elemental mercury, and (3) higher residence time, lower temperature, and higher molar ratio of O{sub 3}/NOx contributed to the highest elemental mercury and NOx reductions.

Khalid Omar

2008-04-30T23:59:59.000Z

225

DEVELOPMENT OF ANALYTICAL METHODS FOR THE QUANTIFICATION OF THE CHEMICAL FORMS OF MERCURY AND OTHER TARGET POLLUTANTS IN COAL-FIRED BOILER FLUE GAS  

Science Conference Proceedings (OSTI)

Since approximately 55% of the electrical power produced in the U. S. is generated by coal-based power utility plants, there is serious concern about the massive amounts of coal combustion products emitted into the atmosphere annually. Furthermore, Title III of the 1990 Clean Air Act Amendments (CAAA) requires the measurement and inventory of a possible 189 hazardous air pollutants (HAPs) from any stationary source producing more than 10 tons per year of any one pollutant or more than 25 tons per year of total pollutants. Although power utilities are not presently included on the list of source categories, the CAAA requires the U. S. Environmental Protection Agency to carry out a study of emissions from electricity generation using fossil fuels. Since many of these HAPs are known to be present in coal derived flue gas, coal-fired electric power utilities may be subject to regulation following these studies if Congress considers it necessary. In a cooperative effort with the U. S. Environmental Protection Agency (EPA), the U. S. Department of Energy (DOE) through its Federal Energy Technology Center (FETC) initiated such a study in 1991. DOE-FETC commissioned five primary contractors to conduct emission studies at eight different coal-fired electric utilities. The eight sites represented a cross section of feed coal type, boiler designs, and particulate and gaseous pollutant control technologies. The major goal of these studies was to determine the sampling and analytical methodologies that could be used efficiently to perform these emission tests while producing representative and reliable emission data. The successful methodology could then be recommended to the EPA for use in compliance testing in the event the regulation of air toxic emissions from coal-fired power plants is implemented. A secondary purpose of the testing was to determine the effectiveness of the control technologies in reducing target hazardous air pollutants. Advanced Technology Systems, Inc. (ATS) as a secondary DOE contractor on this project, assessed the sampling and analytical plans and the emission reports of the five primary contractors to determine how successful the contractors were in satisfying their defined objectives. ATS identified difficulties and inconsistencies in a number of sampling and analytical methodologies in these studies. In particular there was uncertainty as to the validity of the sampling and analytical methods used to differentiate the chemical forms of mercury observed in coal flue gas. Considering the differences in the mercury species with regard to human toxicity, the rate of transport through the ecosystem and the design variations in possible emission control schemes, DOE sought an accurate and reliable means to identify and quantify the various mercury compounds emitted by coal-fired utility boilers. ATS, as a contractor for DOE, completed both bench- and pilot-scale studies on various mercury speciation methods. The final validation of the modified Ontario-Hydro Method, its acceptance by DOE and submission of the method for adoption by ASTM was a direct result of these studies carried out in collaboration with the University of North Dakota's Energy and Environmental Research Center (UNDEERC). This report presents the results from studies carried out at ATS in the development of analytical methods to identify and quantify various chemical species, particularly those of mercury, in coal derived flue gas. Laboratory- and pilot-scale studies, not only on mercury species, but also on other inorganics and organics present in coal combustion flue gas are reported.

Terence J. McManus, Ph.D.

1999-06-30T23:59:59.000Z

226

CO{sub 2} Capture Membrane Process for Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

Because the fleet of coal-fired power plants is of such importance to the nationâ??s energy production while also being the single largest emitter of CO{sub 2}, the development of retrofit, post-combustion CO{sub 2} capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO{sub 2} from plant flue gas with 95% captured CO{sub 2} purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO{sub 2}-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft{sup 2}) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO{sub 2}, NOx, etc.). Specific objectives were: ď?· Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO{sub 2} over N{sub 2} and CO{sub 2} permeance greater than 300 gas permeation units (GPU) targeted; ď?· Development of next-generation polycarbonate hollow-fiber membranes and membrane modules with higher CO{sub 2} permeance than current commercial polycarbonate membranes; ď?· Development and fabrication of membrane hollow fibers and modules from candidate polymers; ď?· Development of a CO{sub 2} capture membrane process design and integration strategy suitable for end-of-pipe, retrofit installation; and ď?· Techno-economic evaluation of the "best" integrated CO{sub 2} capture membrane process design package In this report, the results of the project research and development efforts are discussed and include the post-combustion capture properties of the two membrane material platforms and the hollow-fiber membrane modules developed from them and the multi-stage process design and analysis developed for 90% CO{sub 2} capture with 95% captured CO{sub 2} purity.

Lora Toy; Atish Kataria; Raghubir Gupta

2011-09-30T23:59:59.000Z

227

Optical backscatter probe for sensing particulate in a combustion gas stream  

SciTech Connect

A system for sensing particulate in a combustion gas stream is disclosed. The system transmits light into a combustion gas stream, and thereafter detects a portion of the transmitted light as scattered light in an amount corresponding to the amount of particulates in the emissions. Purge gas may be supplied adjacent the light supply and the detector to reduce particles in the emissions from coating or otherwise compromising the transmission of light into the emissions and recovery of scattered light from the emissions.

Parks, James E; Partridge, William P

2013-05-28T23:59:59.000Z

228

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-01-29T23:59:59.000Z

229

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC baghouse. Activated carbon was injected between the ESP and COHPAC units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2003-10-31T23:59:59.000Z

230

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

Science Conference Proceedings (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-08-06T23:59:59.000Z

231

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-10-25T23:59:59.000Z

232

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001 ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC baghouse. Activated carbon was injected between the ESP and COHPAC units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC unit. The test also showed that activated carbon was effective in removing both forms of mercury: elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Tom Millar

2003-07-30T23:59:59.000Z

233

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

Science Conference Proceedings (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Cindy Larson

2006-01-27T23:59:59.000Z

234

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

Science Conference Proceedings (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Cindy Larson

2006-04-24T23:59:59.000Z

235

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

Science Conference Proceedings (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Cindy Larson

2005-10-24T23:59:59.000Z

236

Production of manufactured aggregates from flue gas desulfurization by-products  

SciTech Connect

CONSOL R and D has developed a disk pelletization process to produce manufactured aggregates from the by-products of various technologies designed to reduce sulfur emissions produced from coal utilization. Aggregates have been produced from the by-products of the Coolside and LIMB sorbent injection, the fluidized-bed combustion (FBC), spray dryer absorption (SDA), and lime and limestone wet flue gas desulfurization (FGD) processes. The aggregates produced meet the general specifications for use as road aggregate in road construction and for use as lightweight aggregate in concrete masonry units. Small field demonstrations with 1200 lb to 5000 lb of manufactured aggregates were conducted using aggregates produced from FBC ash and lime wet FGD sludge in road construction and using aggregates made from SDA ash and lime wet FGD sludge to manufacture concrete blocks. The aggregates for this work were produced with a bench-scale (200--400 lb batch) unit. In 1999, CONSOL R and D constructed and operated a 500 lb/hr integrated, continuous pilot plant. A variety of aggregate products were produced from lime wet FGD sludge. The pilot plant test successfully demonstrated the continuous, integrated operation of the process. The pilot plant demonstration was a major step toward commercialization of manufactured aggregate production from FGD by-products. In this paper, progress made in the production of aggregates from dry FGD (Coolside, LIMB, SDA) and FBC by-products, and lime wet FGD sludge is discussed. The discussion covers bench-scale and pilot plant aggregate production and aggregate field demonstrations.

Wu, M.M.; McCoy, D.C.; Fenger, M.L.; Scandrol, R.O.; Winschel, R.A.; Withum, J.A.; Statnick, R.M.

1999-07-01T23:59:59.000Z

237

Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization  

Science Conference Proceedings (OSTI)

The semidry flue gas desulfurization (FGD) process has many advantages over the wet FGD process for moving sulfur dioxide emissions from pulverized coal-fired power plants. Semidry FGD with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The sorbent was made from lumps of lime and coal fly ash. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH){sub 2} content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH){sub 2} particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH){sub 2} particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH){sub 2} particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray. 20 refs., 7 figs., 1 tab.

Jie Zhang; Changfu You; Suwei Zhao; Changhe Chen; Haiying Qi [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering

2008-03-01T23:59:59.000Z

238

CO{sub 2} Capture from Flue Gas Using Solid Molecular Basket Sorbents  

SciTech Connect

The objective of this project is to develop a new generation of solid, regenerable polymeric molecular basket sorbent (MBS) for more cost-efficient capture and separation of CO{sub 2} from flue gas of coal-fired power plants. The primary goal is to develop a cost-effective MBS sorbent with better thermal stability. To improve the cost-effectiveness of MBS, we have explored commercially available and inexpensive support to replace the more expensive mesoporous molecular sieves like MCM-41 and SBA- 15. In addition, we have developed some advanced sorbent materials with 3D pore structure such as hexagonal mesoporous silica (HMS) to improve the CO{sub 2} working capacity of MBS, which can also reduce the cost for the whole CO{sub 2} capture process. During the project duration, the concern regarding the desorption rate of MBS sorbents has been raised, because lower desorption rate increases the desorption time for complete regeneration of the sorbent which in turn leads to a lower working capacity if the regeneration time is limited. Thus, the improvement in the thermal stability of MBS became a vital task for later part of this project. The improvement in the thermal stability was performed via increasing the polymer density either using higher molecular weight PEI or PEI cross-linking with an organic compound. Moreover, we have used the computational approach to estimate the interaction of CO{sub 2} with different MBSs for the fundamental understanding of CO{sub 2} sorption, which may benefit the development, design and modification of the sorbents and the process.

Fillerup, Eric; Zhang, Zhonghua; Peduzzi, Emanuela; Wang, Dongxiang; Guo, Jiahua; Ma, Xiaoliang; Wang, Xiaoxing; Song, Chunshan

2012-08-31T23:59:59.000Z

239

Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas  

SciTech Connect

Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2 concentration resulted in incremental loss in IAS performance and revealed progressive degrees of “staining” upon testing. Adsorption of SO2 by the IAS necessitates upstream removal of SO2 prior to CO2 capture.

Fauth, D.J.; Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

2007-06-01T23:59:59.000Z

240

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal  

Science Conference Proceedings (OSTI)

The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

Nick Degenstein; Minish Shah; Doughlas Louie

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ISSN 1537-744X; doi:10.1100/2011/756264 Measurement of Mercury in Flue Gas Based on an Aluminum Matrix Sorbent  

E-Print Network (OSTI)

The measurement of total mercury in flue gas based on an economical aluminum matrix sorbent was developed in this paper. A sorbent trap consisted of three tubes was employed to capture Hg from flue gas. Hg trapped on sorbent was transferred into solution by acid leaching and then detected by CVAAS. Hg adsorbed on sorbent was recovered completely by leaching process. The 87.7 % recovery of Hg in flue gas by tube 1 and tube 2 was obtained on the equipment of coal combustion and sampling in lab. In order to evaluate the ability to recover and accurately quantify Hg 0 on the sorbent media, the analytical bias test on tube 3 spiked with Hg 0 was also performed and got the average recovery of 97.1%. Mercury measurements based on this method were conducted for three coal-fired power plants in China. The mercury in coal is distributed into bottom ash, electrostatic precipitator (ESP) ash, wet flue gas desulfurization (WFGD) reactant, and flue gas, and the relative distribution varied depending on factors such as the coal type and the operation conditions of plants. The mercury mass balances of three plants were also calculated which were 91.6%, 77.1%, and 118%, respectively. The reliability of this method was verified by the Ontario Hydro (OH) method either in lab or in field.

Juan Wang; Wei Xu; Xiaohao Wang; Wenhua Wang

2011-01-01T23:59:59.000Z

242

The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations  

Science Conference Proceedings (OSTI)

The article introduces a predictive capability for mercury (Hg) retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given Hg speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO{sub 2}) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections show that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO{sub 2} absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO{sub 2} capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O{sub 2} levels and the FGD temperature; weakly dependent on SO{sub 2} capture efficiency; and insensitive to HgCl{sub 2}, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO{sub 3} levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg{sub 0} but only for inlet O{sub 2} levels that are much lower than those in full-scale FGDs. 12 refs., 5 figs., 3 tabs.

Stephen Niksa; Naoki Fujiwara [Niksa Energy Associates, Belmont, CA (US)

2005-07-01T23:59:59.000Z

243

Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet Flue Gas Desulfurization System  

Science Conference Proceedings (OSTI)

The objective of this project was to demonstrate at full scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury (Hg0) in flue gas from coal combustion. The project was conducted from July 24, 2006 through June 30, 2010. It was conducted with cofunding from the U.S. Department of Energy's National Energy Technology Laboratory as part of Cooperative Agreement DE-FC26-06NT42778, "Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System." Private secto...

2010-08-31T23:59:59.000Z

244

Experimental Study on the Separation of CO2 from Flue Gas Using Hollow Fiber Membrane Contactors with Aqueous Solution of Potassium Glycinate  

Science Conference Proceedings (OSTI)

Experimental study on CO2 removal from flue gas using polypropylene hollow fiber membrane contactors were conducted. Aqueous solutions of potassium glycinate were used as absorption solution to absorb CO2 in the experiments. Under moderate operating ... Keywords: Gas absorption, Carbon dioxide, Potassium glycinate, Hollow fiber membrane contactor, Membrane absorption

Weifeng Zhang; Qiuhua Wang; Mengxiang Fang; Zhongyang Luo; Kefa Cen

2009-10-01T23:59:59.000Z

245

Selective CO2 Capture from Flue Gas Using Metal-Organic Frameworks?A Fixed Bed Study  

SciTech Connect

It is important to capture carbon dioxide from flue gas which is considered to be the main reason to cause global warming. CO2/N2 separation by novel adsorbents is a promising method to reduce CO2 emission but effect of water and CO2/N2 selectivity is critical to apply the adsorbents into practical applications. A very well known, Metal Organic Framework, NiDOBDC (Ni-MOF-74 or CPO-27-Ni) was synthesized through a solvothermal reaction and the sample (500 to 800 microns) was used in a fixed bed CO2/N2 breakthrough study with and without H2O. The Ni/DOBDC pellet has a high CO2 capacity of 3.74 mol/kg at 0.15 bar and a high CO2/N2 selectivity of 38, which is much higher than those of reported MOFs and zeolites under dry condition. Trace amount of water can impact CO2 adsorption capacity as well as CO2/N2 selectivity for the Ni/DOBDC. However, Ni/DOBDC can retain a significant CO2 capacity and CO2/N2 selectivity at 0.15 bar CO2 with 3% RH water. These results indicate a promising future to use the Ni/DOBDC in CO2 capture from flue gas.

Liu, Jian; Tian, Jian; Thallapally, Praveen K.; McGrail, B. Peter

2012-05-03T23:59:59.000Z

246

Longer-term Characterization of Mercury Partitioning and Re-emissions in a Full-scale Wet Flue Gas Desulfurization System, Site 2  

Science Conference Proceedings (OSTI)

This document presents and discusses results from an EPRI project focused on understanding and enhancing how mercury is captured by a wet flue gas desulfurization (FGD) system and how it partitions among the FGD liquor, fine solids, and bulk FGD solid byproduct. A second objective was to close a mercury balance around the host unit by determining what portion of the coal mercury exits the stack with the scrubbed flue gas and how much ends up in the fly ash, byproduct gypsum, and FGD wastewater. During t...

2010-12-23T23:59:59.000Z

247

Fouling reduction characteristics of a no-distributor-fluidized-bed heat exchanger for flue gas heat recovery  

Science Conference Proceedings (OSTI)

In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulate and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.

Jun, Y.D.; Lee, K.B.; Islam, S.Z.; Ko, S.B. [Kongju National University, Kong Ju (Republic of Korea). Dept. for Mechanical Engineering

2008-07-01T23:59:59.000Z

248

Modeling and simulation of CO2 removal from power plant flue gas by PG solution in a hollow fiber membrane contactor  

Science Conference Proceedings (OSTI)

The absorption of carbon dioxide from nitrogen-carbon dioxide mixture was investigated in a polytetrafluoroethylene (PTFE) hollow fiber membrane module using potassium glycinate (PG) aqueous solution. A mathematical model was developed to simulate the ... Keywords: Absorption, Flue gas, Membrane contactor, Modeling, Potassium glycinate, Power plant

S. Eslami; S. M. Mousavi; S. Danesh; H. Banazadeh

2011-08-01T23:59:59.000Z

249

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers ProMIS/Project No.: DE-NT0005648  

NLE Websites -- All DOE Office Websites (Extended Search)

Edward Levy Edward Levy Principal Investigator Director, Lehigh University Energy Research Center RecoveRy of WateR fRom BoileR flue Gas usinG condensinG Heat excHanGeRs PRomis/PRoject no.: de-nt0005648 Background As the United States' population grows and demand for electricity and water increases, power plants located in some parts of the country will find it increasingly difficult to obtain the large quantities of water needed to maintain operations. Most of the water used in a thermoelectric power plant is used for cooling, and the U.S. Department of Energy (DOE) has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. Many coal-fired power plants operate with stack temperatures in the 300 °F range to minimize fouling and corrosion problems due to sulfuric acid condensation and to

250

Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995  

SciTech Connect

On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

Chugh, Y.P.; Dutta, D.; Esling, S. [and others

1995-10-01T23:59:59.000Z

251

Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems  

SciTech Connect

A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2009-09-15T23:59:59.000Z

252

Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants  

DOE Green Energy (OSTI)

This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

2003-12-31T23:59:59.000Z

253

Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants  

SciTech Connect

This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

2003-12-31T23:59:59.000Z

254

Development of a sorbent-based technology for control of mercury in flue gas  

Science Conference Proceedings (OSTI)

This paper presents results of research being, conducted at Argonne National Laboratory on the capture of elemental mercury in simulated flue gases by using dry sorbents. Experimental results from investigation of various sorbents and chemical additives for mercury control are reported. Of the sorbents investigated thus far, an activited-carbon-based sorbent impregnated with about 15% (by weight) of sulfur compound provided the best results. The key parameters affecting mercury control efficiency in a fixed-bed reactor, such as reactor loading, reactor temperature, sorbent size distribution, etc., were also studied, and the results ire presented. In addition to activated-carbon-based sorbents, a non-carbon-based sorbent that uses an inactive substrate treated with active chemicals is being developed. Preliminary, experimental results for mercury removal by this newly developed sorbent are presented.

Wu, Jiann M.; Huang, Hann S.; Livengood, C.D.

1996-03-01T23:59:59.000Z

255

Apparatus for removal of particulate matter from gas streams  

DOE Patents (OSTI)

An apparatus for the removal of particulate matter from the gaseous product stream of an entrained flow coal gasifier which apparatus includes an initial screen, an intermediate screen which is aligned with the direction of flow of the gaseous product stream and a final screen transversely disposed to the flow of gaseous product and which apparatus is capable of withstanding at least a pressure differential of about 10 psi (68.95 kPa) or greater at the temperatures of the gaseous product stream.

Smith, Peyton L. (Baton Rouge, LA); Morse, John C. (Baton Rouge, LA)

2000-01-01T23:59:59.000Z

256

Air Toxics Control by Wet Flue Gas Desulfurization Systems: 2013 Update  

Science Conference Proceedings (OSTI)

With proposed changes in current emissions regulations and recent EPA initiatives, most power producers have concluded that tighter limits on mercury, NOx, SO2, and primary particulates are inevitable. Likewise, more stringent controls for power plant emissions emphasize the need for more cost-effective pollutant reduction approaches. This report provides an update on results from an ongoing EPRI project directed at enhancing “co-benefit” capture of mercury and ...

2013-12-05T23:59:59.000Z

257

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

Science Conference Proceedings (OSTI)

This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and increase carbon injection when inlet loading and mercury removal were low. The resulting mercury removal varied between 50 and 98%, with an overall average of 85.6%, showing that the process was successful at removing high percentages of vapor-phase mercury even with a widely varying mass loading. In an effort to improve baghouse performance, high-permeability bags were tested. The new bags made a significant difference in the cleaning frequency of the baghouse. Before changing the bags, the baghouse was often in a continuous clean of 4.4 p/b/h, but with the new bags the cleaning frequency was very low, at less than 1 p/b/h. Alternative sorbent tests were also performed using these high-permeability bags. The results of these tests showed that most standard, high-quality activated carbon performed similarly at this site; low-cost sorbent and ash-based sorbents were not very effective at removing mercury; and chemically enhanced sorbents did not appear to offer any benefits over standard activated carbons at this site.

C. Jean Bustard; Charles Lindsey; Paul Brignac

2006-05-01T23:59:59.000Z

258

Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature range during Coal Combustion  

SciTech Connect

A number basic sorbents based on CaO were synthesized, characterized with novel techniques and tested for sorption of CO{sub 2} and selected gas mixtures simulating flue gas from coal fired boilers. Our studies resulted in highly promising sorbents which demonstrated zero affinity for N{sub 2}, O{sub 2}, SO{sub 2}, and NO very low affinity for water, ultrahigh CO{sub 2} sorption capacities, and rapid sorption characteristics, CO{sub 2} sorption at a very wide temperature range, durability, and low synthesis cost. One of the 'key' characteristics of the proposed materials is the fact that we can control very accurately their basicity (optimum number of basic sites of the appropriate strength) which allows for the selective chemisorption of CO{sub 2} at a wide range of temperatures. These unique characteristics of this family of sorbents offer high promise for development of advanced industrial sorbents for the effective CO{sub 2} removal.

Panagiotis Smirniotis

2002-09-17T23:59:59.000Z

259

Effects of HCl and SO{sub 2} concentration on mercury removal by activated carbon sorbents in coal-derived flue gas  

Science Conference Proceedings (OSTI)

The effect of the presence of HCl and SO{sub 2} in the simulated coal combustion flue gas on the Hg{sup 0} removal by a commercial activated carbon (coconut shell AC) was investigated in a laboratory-scale fixed-bed reactor in a temperature range of 80-200{sup o}C. The characteristics (thermal stability) of the mercury species formed on the sorbents under various adsorption conditions were investigated by the temperature-programmed decomposition desorption (TPDD) technique. It was found that the presence of HCl and SO{sub 2} in the flue gas affected the mercury removal efficiency of the sorbents as well as the characteristics of the mercury adsorption species. The mercury removal rate of AC increased with the HCl concentration in the flue gas. In the presence of HCl and the absence of SO{sub 2} during Hg{sup 0} adsorption by AC, a single Hg{sup 0} desorption peak at around 300{sup o}C was observed in the TPDD spectra and intensity of this peak increased with the HCl concentration during mercury adsorption. The peak at around 300{sup o}C may be derived from the decomposition and desorption of mercury chloride species. The presence of SO{sub 2} during mercury adsorption had an adverse effect on the mercury removal by AC in the presence of HCl. In the presence of both HCl and SO{sub 2} during Hg{sup 0} adsorption by AC, the major TPDD peak temperatures changed drastically depending upon the concentration of HCl and SO{sub 2} in flue gas during Hg{sup 0} adsorption. 16 refs., 7 figs.

Ryota Ochiai; M. Azhar Uddin; Eiji Sasaoka; Shengji Wu [Okayama University, Okayama (Japan). Faculty of Environmental Science and Technology

2009-09-15T23:59:59.000Z

260

Development and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO2 Removal from Coal-Fired Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Demonstration of and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO 2 Removal from Coal-Fired Flue Gas Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Selenium Removal by Iron Cementation from a Coal-Fired Power Plant Flue Gas Desulfurization Wastewater in a Continuous Flow System-- a Pilot Study  

Science Conference Proceedings (OSTI)

This technical update describes work funded by the Electric Power Research Institute (EPRI) and performed by MSE Technology Applications, Inc. (MSE) at a coal-fired power plant burning Powder River Basin (PRB) coal (identified in this report as Plant E). This work was based on encouraging results obtained during previous EPRI-funded work on flue gas desulfurization (FGD) wastewater treatability testing by MSE, which focused on selenium removal from a variety of FGD wastewater sources. The results from th...

2009-07-29T23:59:59.000Z

262

Pilot-Scale Demonstration of Hybrid Zero-Valent Iron Water Treatment Technology: Removing Trace Metals from Flue Gas Desulfurization (FGD) Wastewater  

Science Conference Proceedings (OSTI)

In previous laboratory- and field bench-scale tests, the hybrid zero-valent iron (hZVI) process had been demonstrated capable of removing selenium, mercury, nitrates, and other pollutants from flue gas desulfurization (FGD) wastewater. By incorporating zero-valent iron (ZVI) with magnetite and certain Fe(II) species, the hZVI technology creates a highly reactive mixture that can transform and immobilize various trace metals, oxyanions, and other impurities from aqueous streams. To further evaluate ...

2013-04-09T23:59:59.000Z

263

Pilot-Scale and Full-Scale Evaluation of Treatment Technologies for the Removal of Mercury and Selenium in Flue Gas Desulphurization Water  

Science Conference Proceedings (OSTI)

This report presents an overall evaluation of the various advanced treatment technologies that the Electric Power Research Institute (EPRI) has tested for removal of mercury and selenium from flue gas desulfurization (FGD) water. EPRI conducted a literature survey followed by a preliminary laboratory-scale evaluation to screen promising technologies. For the technologies that were selected based on the success of laboratory-scale testing, EPRI worked with treatment vendors to further evaluate these techn...

2010-05-11T23:59:59.000Z

264

Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997  

Science Conference Proceedings (OSTI)

This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

Chugh, Y.P.; Brackebusch, F.; Carpenter, J. [and others

1998-12-31T23:59:59.000Z

265

Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October--December 1994  

SciTech Connect

On September 30, 1993, the US Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative agreement entitled ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines`` (DE-FC21-93MC30252). Under the agreement, Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. The major event during the quarter was the demonstration of the SEEC, Inc. technology for loading and transporting coal combustion residues in the SEEC developed Collapsible Intermodal Containers (CIC). The demonstration was held on November 17, 1994, at the Illinois Power Company Baldwin power plant, and was attended by about eighty (80) invited guest. Also during the quarter meetings were held with Peabody Coal Company officials to finalize the area in the Peabody No. 10 mine to be used for the placement of coal combustion residues. Work under the Materials Handling and Systems Economics area continued, particularly in refining the costs and systems configuration and in economic evaluation of various systems using equipment leasing rather than equipment purchases. Likewise, work progressed on residues characterization, with some preparations being made for long-term testing.

Chugh, Y.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

1995-01-01T23:59:59.000Z

266

Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO{sub 2} Derived from Oxyfuel Combustion  

SciTech Connect

The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO{sub 2} stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO{sub 2} derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

Fogash, Kevin

2010-09-30T23:59:59.000Z

267

Flue Gas Perification Utilizing SOx/NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion  

SciTech Connect

The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO2 stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO2 derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

Kevin Fogash

2010-09-30T23:59:59.000Z

268

DEVELOPMENT OF SUPERIOR SORBENTS FOR SEPARATION OF CO2 FROM FLUE GAS AT A WIDE TEMPERATURE RANGE DURING COAL COMBUSTION  

SciTech Connect

For this part of the project the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed.

Panagiotis G. Smirniotis

2005-01-30T23:59:59.000Z

269

Economic assessment of advanced flue gas desulfurization processes. Final report. Volume 2. Appendices G, H, and I  

SciTech Connect

This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final report, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluation, was completed in October 1980. A slightly modified and condensed version of that report appears as Appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

1981-09-01T23:59:59.000Z

270

Use of flue gas desulphurisation (FGD) waste and rejected fly ash in waste stabilization/solidification systems  

Science Conference Proceedings (OSTI)

Stabilization/solidification (S/S) processes have been used as the final treatment step for hazardous wastes prior to land disposal. Fly ash is a by-product of coal-fired power generation; a significant proportion of this material is low-grade, reject material (rFA) that is unsuitable as a cement replacement due to its high carbon content and large particle size (>45 {mu}m). Flue gas desulphurization (FGD) sludge is a by-product from the air pollution control systems used in coal-fired power plants. The objective of this work was to investigate the performance of S/S waste binder systems containing these two waste materials (rFA and FGD). Strength tests show that cement-based waste forms with rFA and FGD replacement were suitable for disposal in landfills. The addition of an appropriate quantity of Ca(OH){sub 2} and FGD reduces the deleterious effect of heavy metals on strength development. Results of TCLP testing and the progressive TCLP test show that cement-rFA-Ca(OH){sub 2} systems with a range of FGD additions can form an effective S/S binder. The Leachability Index indicates that cement-based waste forms with rFA replacement were effective in reducing the mobility of heavy metals.

Qiao, X.C. [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Poon, C.S. [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)]. E-mail: cecspoon@polyu.edu.hk; Cheeseman, C. [Department of Civil and Environmental Engineering, Imperial College, London SW7 2BU (United Kingdom)

2006-07-01T23:59:59.000Z

271

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

Shi, J.B. ; Feng, X.B. Mercury Pollution in China. Environ.J T. DOE/NETL’s Phase II Mercury Control Technology Fieldoxidants for the oxidation of mercury gas. Ind. vEng. Chem.

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

272

Fundamental mechanisms in flue gas conditioning. Quarterly report, April 1992--June 1992  

Science Conference Proceedings (OSTI)

SEM pictures of the three mixtures of sorbent and ash from the DITF and the base line ESP hopper ash from Muskingum are shown in Figures 1 through 4. The effects of sorbent addition on particle morphology are evident in Figures 2 through 4 by the presence of irregularly shaped particles and deposits on the surfaces of the spherical fly ash particles. In contrast, the base Ene ash particles have the characteristic relatively smooth, spherical morphology normally associated with pulverized-coal (PC) fly ashes. Resistivity determinations made on these four ashes in ascending and descending temperature modes. These data are shown in Figures 5 and 6. Sorbent injection processes performed at the DITF lowered the duct temperature to around 165{degrees}F from about 350{degrees}F for base line operation. Consequently, during collection in the ESP, the particulate matter from the sorbent injection processes had a significantly lower resitivity (approximately 4 {times} 10{sup 7} {Omega}-cm) than the base line ash (approximately 3 {times} 10{sup 11} {Omega}-cm at 350{degrees}F). Specific surface areas and true particle densities have been measured for the four samples obtained from the DOE/PETC Duct Injection Test Facility. These data are summarized in Table 4. The primary difference indicated by these initial analyses of these four samples is the significant increase in specific surface area due to sorbent addition. The specific surface areas of the three sorbent and ash mixtures from the DITF are quite similar.

Snyder, T.R.; Vann Bush, P.

1992-07-27T23:59:59.000Z

273

Pilot-Scale Demonstration of hZVI Process for Treating Flue Gas Desulfurization Wastewater at Plant Wansley, Carrollton, GA  

E-Print Network (OSTI)

The hybrid Zero Valent Iron (hZVI) process is a novel chemical treatment platform that has shown great potential in our previous bench-scale tests for removing selenium, mercury and other pollutants from Flue Gas Desulfurization (FGD) wastewater. This integrated treatment system employs new iron chemistry to create highly reactive mixture of Fe^0, iron oxides (FeOx) and various forms of Fe (II) for the chemical transformation and mineralization of various heavy metals in water. To further evaluate and develop the hZVI technology, a pilot-scale demonstration had been conducted to continuously treat 1-2 gpm of the FGD wastewater for five months at Plant Wansley, a coal-fired power plant of Georgia Power. This demonstrated that the scaled-up system was capable of reducing the total selenium (of which most was selenate) in the FGD wastewater from over 2500 ppb to below 10 ppb and total mercury from over 100 ppb to below 0.01 ppb. This hZVI system reduced other toxic metals like Arsenic (III and V), Chromium (VI), Cadmium (II), Lead (II) and Copper (II) from ppm level to ppb level in a very short reaction time. The chemical consumption was estimated to be approximately 0.2-0.4 kg of ZVI per 1 m^3 of FGD water treated, which suggested the process economics could be very competitive. The success of the pilot test shows that the system is scalable for commercial application. The operational experience and knowledge gained from this field test could provide guidance to further improvement of technology for full scale applications. The hZVI technology can be commercialized to provide a cost-effective and reliable solution to the FGD wastewater and other metal-contaminated waste streams in various industries. This technology has the potential to help industries meet the most stringent environmental regulations for heavy metals and nutrients in wastewater treatment.

Peddi, Phani 1987-

2011-12-01T23:59:59.000Z

274

Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, April 1995--June 1995  

SciTech Connect

On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, and a discussion of these is not repeated here. Rather, this report discusses the technical progress made during the period April 1 - June 30, 1995. A final topical report on the SEEC, Inc. demonstration of its technology for the transporting of coal combustion residues was completed during the quarter, although final printing of the report was accomplished early in July, 1995. The SEEC technology involves the use of Collapsible Intermodal Containers (CIC`s) developed by SEEC, and the transportation of such containers - filled with fly ash or other coal combustion residues - on rail coal cars or other transportation means. Copies of the final topical report, entitled {open_quotes}The Development and Testing of Collapsible Intermodal Containers for the Handling and Transport of Coal Combustion Residues{close_quotes} were furnished to the Morgantown Energy Technology Center. The Rapid Aging Test colums were placed in operation during the quarter. This test is to determine the long-term reaction of both the pneumatic and hydraulic mixtures to brine as a leaching material, and simulates the conditions that will be encountered in the actual underground placement of the coal combustion residues mixtures. The tests will continue for about one year.

Chugh, Y.P.; Dutta, D.; Esling, S. [and others

1995-07-01T23:59:59.000Z

275

Guidelines for Induced Flue Gas Recirculation: Volume 1: Reducing Air/Gas System Resistance and Enhancing Fan Capacity  

Science Conference Proceedings (OSTI)

This document guides users through a logical sequence, or "road map," of activities and decisions for optimizing solutions for fans, ducts, and related equipment in fossil plant combustion air and gas systems.

1999-12-13T23:59:59.000Z

276

Adsorption and desorption of sulfur dioxide on novel adsorbents for flue gas desulfurization. Final report, September 1, 1994--February 29, 1996  

Science Conference Proceedings (OSTI)

A sol-gel granulation method was developed to prepare spherical {gamma}-alumina granular supports and supported CuO granular sorbents for flue gas desulfurization. The prepared {gamma}-alumina supported CuO sorbents exhibit desirable pore structure and excellent mechanical properties. The sorbents contain higher loading (30-40 wt. %) of CuO dispersed in the monolayer or sub-monolayer form, giving rise to a larger SO{sub 2} sorption capacity ({gt}20 wt.%) and a faster sorption rate as compared to similar sorbents reported in the literature. With these excellent sulfation and mechanical properties, the sol-gel derived {gamma}-alumina supported CuO granular sorbents offer great potential for use in the dry, regenerative flue gas desulfurization process. Research efforts were also made to prepare DAY zeolite supported sorbents with various CuO contents by the microwave and conventional thermal dispersion methods at different conditions. Monolayer or sub-monolayer coating of Cu(NO{sub 3})sub 2 or CuO was achieved on several DAY supported sorbents by the microwave heating method but not by the conventional thermal dispersion method. The DAY zeolite supported CuO sorbents prepared by the microwave heating method can adsorb up to 15 wt.% of SO{sub 2}. The results obtained have demonstrated the feasibility of effective preparation of zeolite supported CuO sorbents by the microwave heating method.

Lin, Y.S.; Deng, S.G.

1996-08-05T23:59:59.000Z

277

Evaluation of a Combined Cyclone & Gas Filtration System for Particulate Removal in the Gasification Process  

Science Conference Proceedings (OSTI)

The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas™ Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas™ char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas™ gasification process. These reductions would help to keep the E-Gas™ technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas™ gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction. 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation. 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design. 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit. 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit. 6. Develop operating procedures for the cyclone-filtration hybrid unit. 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.

Rizzo, Jeffrey

2010-04-30T23:59:59.000Z

278

Characterization and control of exhaust gas from diesel engine firing coal-water mixture  

DOE Green Energy (OSTI)

Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO[sub x] concentrations are also understood in terms of known reaction mechanisms.

Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

1990-03-01T23:59:59.000Z

279

Characterization and control of exhaust gas from diesel engine firing coal-water mixture  

DOE Green Energy (OSTI)

Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO{sub x} concentrations are also understood in terms of known reaction mechanisms.

Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

1990-03-01T23:59:59.000Z

280

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal  

Science Conference Proceedings (OSTI)

The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbonâ??s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

Monica Zanfir; Rahul Solunke; Minish Shah

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Flue heat reclaimer  

Science Conference Proceedings (OSTI)

A flue heat reclaimer is constructed to be mounted on the exterior of a flue duct of a heater and provide a spiral-shaped heat transfer passage extending around the flue duct. A fan causes air to flow through the heat transfer passage so that the temperature of this air is elevated by reason at its extended heat transfer relationship with the flue duct.

Paolino, R.J.

1983-05-03T23:59:59.000Z

282

Particulate matter emissions from combustion of wood in district heating applications  

Science Conference Proceedings (OSTI)

The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning system in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.

Ghafghazi, S. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Melin, Staffan [Delta Research Corporation

2011-01-01T23:59:59.000Z

283

Packed-Bed Reactor Study of NETL Sample 196c for the Removal of Carbon Dioxide from Simulated Flue Gas Mixture  

Science Conference Proceedings (OSTI)

An amine-based solid sorbent process to remove CO2 from flue gas has been investigated. The sorbent consists of polyethylenimine (PEI) immobilized onto silica (SiO2) support. Experiments were conducted in a packed-bed reactor and exit gas composition was monitored using mass spectrometry. The effects of feed gas composition (CO2 and H2O), temperature, and simulated steam regeneration were examined for both the silica support as well as the PEI-based sorbent. The artifact of the empty reactor was also quantified. Sorbent CO2 capacity loading was compared to thermogravimetric (TGA) results to further characterize adsorption isotherms and better define CO2 working capacity. Sorbent stability was monitored by periodically repeating baseline conditions throughout the parametric testing and replacing with fresh sorbent as needed. The concept of the Basic Immobilized Amine Sorbent (BIAS) Process using this sorbent within a system where sorbent continuously flows between the absorber and regenerator was introduced. The basic tenet is to manipulate or control the level of moisture on the sorbent as it travels around the sorbent circulation path between absorption and regeneration stages to minimize its effect on regeneration heat duty.

Hoffman, James S.; Hammache, Sonia; Gray, McMahan L.; Fauth Daniel J.; Pennline, Henry W.

2012-04-24T23:59:59.000Z

284

MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. An additional task was included in this project to evaluate mercury oxidation upstream of a dry scrubber by using mercury oxidants. This project demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

Ye Zhuang; Stanley J. Miller

2005-05-01T23:59:59.000Z

285

Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, [October 1, 1993--December 31, 1993  

Science Conference Proceedings (OSTI)

The ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines`` program is one of the largest programs ever undertaken by the Mining Engineering Department of Southern Illinois university, both in terms of complexity and in terms of funding. Total funding over the expected four-year extent of the program, including both Department of Energy, matching Southern Illinois University funds, and contributed funds, this program exceeds three million dollars. The number of cooperating organizations adds to the management complexity of the program. It was believed, therefore, that sound management plan and management base is essential for the efficient and effective conduct of the program. This first quarter period (i.e., October 1--December 31, 1993) was developed to establishing the management base, developing a sound management plan, developing a test plan, and developing sound fiscal management and control. Actual technical operations, such as residue sample acquisition, residue analyses, groundwater sample acquisition and analyses, and material handling studies will get underway early in the next quarter (i.e., January 1--March 31, 1994). Some early results of residue analyses and groundwater analyses should be available by the end of the second quarter. These results will be reported in the next Technical Progress Report.

Thomasson, E.M.; Chugh, Y.P.; Esling, S.; Honaker, R.; Paul, B.; Sevin, H.

1994-01-01T23:59:59.000Z

286

High-volume, high-value usage of flue gas desulfurization (FGD) by-products in underground mines - Phase I: Laboratory investigations. Quarterly report, October 1993--December 1993  

SciTech Connect

This project proposes to use pneumatically or hydraulically emplaced dry-flue gas desulfurization (FGD) by-products to backfill the adits left by highwall mining. Backfilling highwall mine adits with dry-FGD materials is technically attractive. The use of an active highwall mine would allow the dry-FGD material to be brought in using the same transportation network used to move the coal out, eliminating the need to recreated the transportation infrastructure, thereby saving costs. Activities during the period included the negotiations leading to the final cooperative agreement for the project and the implementation of the necessary instruments at the University of Kentucky to administer the project. Early in the negotiations, a final agreement on a task structure was reached and a milestone plan was filed. A review was initiated of the original laboratory plan as presented in the proposal, and tentative modifications were developed. Selection of a mine site was made early; the Pleasant Valley mine in Greenup County was chosen. Several visits were made to the mine site to begin work on the hydrologic monitoring plan. The investigation of the types of permits needed to conduct the project was initiated. Considerations concerning the acceptance and implementation of technologies led to the choice of circulating fluidized bed ash as the primary material for the study. Finally, the membership of a Technical Advisory Committee for the study was assembled.

Not Available

1994-03-01T23:59:59.000Z

287

Application Investigation on Polyureas Anticorrosion for Concrete Surface in Desulphurization Flue  

Science Conference Proceedings (OSTI)

Application investigation on polyureas anticorrosion in flue of Wet Flue Gas Desulphurization Equipment (FGD) (product model: DTTW-? -150) was carried out according to corrosive environment and technical parameters of a coal-fired power plan. And ... Keywords: spray, polyureas, flue, corrosion margin

Song Wei; Liu Zongyu

2010-03-01T23:59:59.000Z

288

Development of new sorbents to remove mercury and selenium from flue gas. Final report, September 1, 1993--August 31, 1994  

Science Conference Proceedings (OSTI)

Mercury (Hg) and selenium (Se) are two of the volatile trace metals in coal, which are often not captured by conventional gas clean up devices of coal-fired boilers. An alternative is to use sorbents to capture the volatile components of trace metals after coal combustion. In this project sorbent screening tests were performed in which ten sorbents were selected to remove metallic mercury in N{sub 2}. These sorbents included activated carbon, char prepared from Ohio No. 5 coal, molecular sieves, silica gel, aluminum oxide, hydrated lime, Wyoming bentonite, kaolin, and Amberite IR-120 (an ion-exchanger). The sorbents were selected based on published information and B&W`s experience on mercury removal. The promising sorbent was then selected and modified for detailed studies of removal of mercury and selenium compounds. The sorbents were tested in a bench-scale adsorption facility. A known amount of each sorbent was loaded in the column as a packed bed. A carrier gas was bubbled through the mercury and selenium compounds. The vaporized species were carried by the gas and went through the sorbent beds. The amount of mercury and selenium compounds captured by the sorbents was determined by atomic absorption. Results are discussed.

Shiao, S.Y. [Babcock and Wilcox Co., Alliance, OH (United States)

1995-02-01T23:59:59.000Z

289

Adsorption and desorption of sulfur dioxide on novel adsorbents for flue gas desulfurization. Final report, September 1, 1993--August 31, 1994  

SciTech Connect

Dry regenerative sorption processes have recently attracted increasing attention in flue gas desulfurization (FGD) because of their several advantages over the conventional wet-scrubbing processes. Dry sorbents are usually made by coating a transition or alkaline earth metal precursor on the surface of a porous support. Major disadvantages of these sorbents prepared by the conventional methods include relatively poor attrition resistance and low SO{sub 2} sorption capacity. The physical and especially chemical attrition (associated with the sulphation-oxidation-reduction cycles in the process) deteriorates the performance of the sorbents. The low SO{sub 2} sorption capacity is primarily due to the small surface area of the support. Materials with a high surface area are not used as the supports for FGD sorbents because these materials usually are not thermally stable at high temperatures. In the past year, the research supported by Ohio Coal Development Office was focused on synthesis and properties of sol-gel derived alumina and zeolite sorbents with improved properties for FGD. The sol-gel derived alumina has large surface area, mesopore size and excellent mechanical strength. Some alumina-free zeolites not only posses the basic properties required as a sorbent for FGD (hydrophobicity, thermal and chemical stability, mechanical strength) but also have extremely large surface area and selective surface chemistry. The major objectives of this research program were to synthesize the sol-gel derived sorbents and to explore the use of the zeolites either directly as adsorbents or as sorbent support for FGD. The research was aimed at developing novel FGD sorbents possessing better sorption equilibrium and kinetic properties and improved physical and chemical attrition resistance.

Lin, Y.S. [University of Cincinnati, Cincinnati, OH (United States)

1995-02-01T23:59:59.000Z

290

High-volume, high-value usage of flue gas desulfurization (FGD) by-products in underground mines: Phase 1 -- Laboratory investigations. Quarterly report, July--September 1995  

Science Conference Proceedings (OSTI)

Efforts primarily focused on Subtask 2.2, Chemical and Mineralogical Characterization and Subtask 4.3, Selection and Testing of Transport System. As part of Subtask 2.2, samples were collected from the Freeman United Crown Mine III FBC disposal facility representing a verity of ages and weathering. A laboratory scale transport system has been built at the CAER to evaluate the potential of pneumatic transport for flue gas desulfurization material (FGDM) emplacement and to provide essential data for the mine emplacement demonstration as part of the Subtask 4.3 effort. The system is modeled after shotcreting systems and has the advantage that the material can be remotely placed without the need for forms. The test program is focusing on determining the pneumatic conditions necessary to maximize the strength of the emplaced FGDM under anticipated mine curing conditions while minimizing dust formation. Work on Subtask 4.1, Mine Selection, also proceeded during the quarter. A new mine site, located in the south-central section of the Pikeville quadrangle, Pike County, Kentucky, was examined for the field study. The proposed fill site is in the Middle Pennsylvanian Breathitt Formation Middle Amburgy coal bed, a coal previously mined by Costain elsewhere on the property. Efforts on Subtask 4.2, Hydrologic Monitoring Plan, focused primarily on theoretical issues concerning the effects of the mining and backfill activity on the ground water and surface water due to uncertainties in the location of the final field site. There are three major concerns about the effects of the mining activity: changes in the ground water flow field, changes in ground water quality, and consequential induced changes on stream flow.

NONE

1996-01-01T23:59:59.000Z

291

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS  

SciTech Connect

This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

Glenn England; Oliver Chang; Stephanie Wien

2002-02-14T23:59:59.000Z

292

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS  

SciTech Connect

In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered ambient air to dilute the stack gas sample followed by 80-90 seconds residence time to allow aerosol formation and growth to stabilize prior to sample collection and analysis. More accurate and complete emissions data generated using the methods developed in this program will enable more accurate source-receptor and source apportionment analysis for PM2.5 National Ambient Air Quality Standards (NAAQS) implementation and streamline the environmental assessment of oil, gas and power production facilities. The overall goals of this program were to: (1) Develop improved dilution sampling technology and test methods for PM2.5 mass emissions and speciation measurements, and compare results obtained with dilution and traditional stationary source sampling methods. (2) Develop emission factors and speciation profiles for emissions of fine particulate matter, especially organic aerosols, for use in source-receptor and source apportionment analyses. (3) Identify and characterize PM2.5 precursor compound emissions that can be used in source-receptor and source apportionment analyses.

Glenn C. England

2004-10-20T23:59:59.000Z

293

Combustion research related to utilization of coal as a gas turbine fuel  

SciTech Connect

A nominal 293 kw (1 MBtu/hr) atmospheric pressure, refractory-lined combustor has been used to investigate the effects of a number of combustor and fuel dependent variables on combustion efficiency and flue gas characteristics for minimally cleaned, coal-derived gas (MCG) and coal water mixtures. The variables which have been evaluated include: percent excess air, air distribution, combustion air preheat temperature, swirl number, fuel feedrate, coal particle size, coal loading in slurry, and slurry viscosity. Characterization of the flue gas included major/minor gas species, alkali levels, and particulate loading, size, and composition. These atmospheric pressure combustion studies accompanied by data from planned pressurized studies on coal-water slurries and hot, minimally cleaned, coal-derived gas will aid in the determination of the potential of these fuels for use in gas turbines.

Davis-Waltermine, D.M.; Anderson, R.J.

1984-06-01T23:59:59.000Z

294

DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY  

Science Conference Proceedings (OSTI)

The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

Tom Hrdlicka; William Swanson

2005-12-01T23:59:59.000Z

295

MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR  

DOE Green Energy (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ADVANCED HYBRID{trademark} Filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

2002-11-01T23:59:59.000Z

296

Mercuty Control With The Advanced Hybrid Particulate Collector  

SciTech Connect

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4 - Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Plant operated by Otter Tail Power Company, host for the field testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore and Associates, Inc., and is now marketed as the Advanced Hybrid{trademark} filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak

2003-03-31T23:59:59.000Z

297

Use of sulfide-containing liquors for removing mercury from flue gases  

DOE Patents (OSTI)

A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

Nolan, Paul S. (North Canton, OH); Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH); Vecci, Stanley J. (Alliance, OH)

2003-01-01T23:59:59.000Z

298

Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream  

DOE Patents (OSTI)

A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.

Cohen, Mitchell R. (Troy, NY); Gal, Eli (Lititz, PA)

1993-01-01T23:59:59.000Z

299

Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream  

DOE Patents (OSTI)

A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.

Cohen, M.R.; Gal, E.

1993-04-13T23:59:59.000Z

300

Control of pollutants in flue gases and fuel gases  

E-Print Network (OSTI)

. Mercury typically forms the sulfide (HgS) #12;4 because of the prevalence of sulfides in volcanic gases Aq + 2e-- ´ Hg0 Atmos Equation 1 Ionic mercury can form from the oxidation of elemental mercury Coal is known to contain mercury as a result of testing done upon the flue gas emitted from power plant

Laughlin, Robert B.

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1992--December 11, 1992  

DOE Green Energy (OSTI)

With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans and have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.

Sublette, K.L.

1992-12-31T23:59:59.000Z

302

Heat recovery device for exhaust flues  

SciTech Connect

The heat recovery device has a flue pipe assembly including a section of standard flue pipe carrying a plurality of hollow, cylindrical heating tubes extending diametrically through the flue pipe section in axially spaced, parallel relationship and a separate housing defining an air flow chamber surrounding a portion of the flue pipe section. A fan inside the housing draws ambient air into the housing through an ambient air inlet located on the same side of the flue pipe assembly as the inlet of the heating tubes and propels a flow of air both through the heating tubes and over the outer surface of the flue pipe section towards a heated air outlet located on the same side of the flue pipe section as the discharge ends of the heating tubes. The flue pipe assembly is removably mounted on the housing so it can be removed in the event it fatigues and/or becomes plugged with carbon or creosote deposits during use. A thermostat on the flue pipe section turns the fan on and off when the temperature in the flue pipe section is respectively above and below a predetermined temperature. The total open area of the ambient air inlet and the heated air outlet is large enough so that, in the event the fan is inoperative, the natural flow of ambient air through the heating tubes and over the outer surface of the flue pipe is sufficient to prevent the flue pipe section from overheating.

Knoch, D. G.

1985-11-05T23:59:59.000Z

303

Regenerable particulate filter  

DOE Patents (OSTI)

A method of making a three-dimensional lattice structure, such as a filter used to remove particulates from a gas stream, where the physical lattice structure is designed utilizing software simulation from pre-defined mass transfer and flow characteristics and the designed lattice structure is fabricated using a free-form fabrication manufacturing technique, where the periodic lattice structure is comprised of individual geometric elements.

Stuecker, John N. (Albuquerque, NM); Cesarano, III, Joseph (Albuquerque, NM); Miller, James E. (Albuquerque, NM)

2009-05-05T23:59:59.000Z

304

NETL: Control Technology: Advanced Hybrid Particulate Collector  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Hybrid Particulate Collector Advanced Hybrid Particulate Collector Under DOE-NETL sponsorship, the University of North Dakota, Energy and Environmental Research Center (UND-EERC) has developed a new concept in particulate control, called an advanced hybrid particulate collector (AHPC). In addition to DOE and the EERC, the project team includes W.L. Gore & Associates, Inc., Allied Environmental Technologies, Inc., and the Otter Tail Power Company. The AHPC utilizes both electrostatic collection and filtration in a unique geometric configuration that achieves ultrahigh particle collection with much less collection area than conventional particulate control devices. The primary technologies for state-of-the-art particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). A major limitation of ESPs is that the fractional penetration of 0.1- to 1.0-µm particles is typically at least an order of magnitude greater than for 10-µm particles, so a situation exists where the particles that are of greatest health concern are collected with the lowest efficiency. Fabric filters are currently considered to be the best available control technology for fine particles, but emissions are dependent on ash properties and typically increase if the air-to-cloth (A/C) ratio is increased. In addition, many fabrics cannot withstand the rigors of high-SO2 flue gases, which are typical for bituminous fuels. Fabric filters may also have problems with bag cleanability and high pressure drop, which has resulted in conservatively designed, large, costly baghouses.

305

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS  

SciTech Connect

This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

Glenn C. England; Stephanie Wien; Mingchih O. Chang

2002-08-01T23:59:59.000Z

306

Fundamental mechanisms in flue gas conditioning  

Science Conference Proceedings (OSTI)

We performed a wide variety of laboratory analyses during the past quarter. As with most of the work we performed during the previous quarter, our recent efforts were primarily directed toward the determination of the effects of adsorbed water on the cohesivity and tensile strength of powders. We also continued our analyses of dust cake ashes that have had the soluble compounds leached from their particle surfaces by repeated washings with water. Our analyses of leached and unleached dust cake ashes continued to provide some interesting insights into effects that compounds adsorbed on surfaces of ash particles can have on bulk ash behavior. As suggested by our literature review, our data indicate that water adsorption depends on particle morphology and on surface chemistry. Our measurements of tensile strength show, that for many of the samples we have analyzed a relative minimum in tensile strength exists for samples conditioned and tested at about 30% relative humidity. In our examinations of the effects of water conditioning on sample cohesivity, we determined that in the absence of absorption of water into the interior of the particles, cohesivity usually increases sharply when environments having relative humidities above 75% are used to condition and test the samples. Plans are under way to condition selected samples with (NH[sub 4])[sub 2]SO[sub 4], NH[sub 4]HSO[sub 4], CaCl[sub 2], organosiloxane, and SO[sub 3]. Pending approval, we will begin these conditioning experiments, and subsequent analyses of the conditioned samples.

Snyder, T.R.; Bush, P.V.

1993-01-20T23:59:59.000Z

307

NETL: Control Technology: Flue Gas Conditioning  

NLE Websites -- All DOE Office Websites (Extended Search)

a proven means of increasing the collection efficiency of an electrostatic precipitator (ESP). However, a new class of additives is needed because currently available agglomerating...

308

Cement Kiln Flue Gas Recovery Scrubber Project  

NLE Websites -- All DOE Office Websites (Extended Search)

been expensive to simulate. Performance results were sufficiently promising to justify a commercial-scale test under the CCT program. A flowsheet of the Recovery Scrubber(tm) is...

309

Recovery of CO2 from Flue Gases: Commercial Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 from Flue Gases: Commercial Trends Originally presented at the Canadian Society of Chemical Engineers annual meeting October 4-6, 1999, Saskatoon, Saskatchewan, Canada Authors: Dan G. Chapel (dan.chapel@fluor.com; 949-349-7530) Carl L. Mariz (carl.mariz@fluor.com; 949-349-7530) FluorDaniel One Fluor Drive Aliso Viejo CA, 92698 John Ernest (john.ernest@minimed.com; 818-576-4293) Advanced Quality Services Inc 11024 Balboa Blvd. PMB154, Granada Hills, CA 91344-5007 1 Recovery of CO 2 from Flue Gases: Commercial Trends Originally presented at the Canadian Society of Chemical Engineers annual meeting October 4-6, 1999, Saskatoon, Saskatchewan, Canada Authors: Dan Chapel - Fluor Daniel Inc., Senior Vice President Technology; Oil, Gas & Power John Ernest - Advanced Quality Services Inc., Validation Engineer

310

Measurement of biocarbon in flue gases using 14C  

SciTech Connect

A preliminary investigation of the biocarbon fraction in carbon dioxide emissions of power plants using both fossil- and biobased fuels is presented. Calculation of the biocarbon fraction is based on radiocarbon content measured in power plant flue gases. Samples were collected directly from the chimneys into plastic sampling bags. The C-14 content in CO{sub 2} was measured by accelerator mass spectrometry (AMS). Flue gases from power plants that use natural gas, coal, wood chips, bark, plywood residue, sludge from the pulp factory, peat, and recovered fuel were measured. Among the selected plants, there was one that used only fossil fuel and one that used only biofuel; the other investigated plants burned mixtures of fuels. The results show that C-14 measurement provides the possibility to determine the ratio of bio and fossil fuel burned in power plants.

Haemaelaeinen, K.M.; Jungner, H.; Antson, O.; Rasanen, J.; Tormonen, K.; Roine, J. [University of Helsinki, Helsinki (Finland). Radiocarbon Dating Laboratory

2007-07-01T23:59:59.000Z

311

Advanced particulate matter control apparatus and methods  

DOE Patents (OSTI)

Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

Miller, Stanley J. (Grand Forks, ND); Zhuang, Ye (Grand Forks, ND); Almlie, Jay C. (East Grand Forks, MN)

2012-01-10T23:59:59.000Z

312

Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery  

DOE Patents (OSTI)

A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

2011-10-18T23:59:59.000Z

313

Investigation of the relationship between particulate-bound mercury and properties of fly ash in a full-scale 100 MWe pulverized coal combustion boiler  

Science Conference Proceedings (OSTI)

The properties of fly ash in coal-fired boilers influence the emission of mercury from power plants into the environment. In this study, seven different bituminous coals were burned in a full-scale 100 MWe pulverized coal combustion boiler and the derived fly ash samples were collected from a mechanical hopper (MH) and an electrostatic precipitator hopper (ESP). The mercury content, specific surface area (SSA), unburned carbon, and elemental composition of the fly ash samples were analyzed to evaluate the correlation between the concentration of particulate-bound mercury and the properties of coal and fly ash. For a given coal, it was found that the mercury content in the fly ash collected from the ESP was greater than in the fly ash samples collected from the MHP. This phenomenon may be due to a lower temperature of flue gas at the ESP (about 135{sup o}C) compared to the temperature at the air preheater (about 350{sup o}C). Also, a significantly lower SSA observed in MH ash might also contribute to the observation. A comparison of the fly ash samples generated from seven different coals using statistical methods indicates that the mercury adsorbed on ESP fly ashes has a highly positive correlation with the unburned carbon content, manganese content, and SSA of the fly ash. Sulfur content in coal showed a significant negative correlation with the Hg adsorption. Manganese in fly ash is believed to participate in oxidizing volatile elemental mercury (Hg{sup 0}) to ionic mercury (Hg{sup 2+}). The oxidized mercury in flue gas can form a complex with the fly ash and then get removed before the flue gas leaves the stack of the boiler.

Sen Li; Chin-Min Cheng; Bobby Chen; Yan Cao; Jacob Vervynckt; Amanda Adebambo; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2007-12-15T23:59:59.000Z

314

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1985-2010 (Megawatts) Year Coal Petroleum and Natural Gas Total 1 Particulate Collectors Cooling Towers Flue Gas Desulfurization (Scrubbers) Total 2 Particulate Collectors Cooling...

315

Combustor for fine particulate coal  

DOE Patents (OSTI)

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

Carlson, Larry W. (Oswego, IL)

1988-01-01T23:59:59.000Z

316

Combustor for fine particulate coal  

DOE Patents (OSTI)

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-11-08T23:59:59.000Z

317

Combustor for fine particulate coal  

DOE Patents (OSTI)

A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

Carlson, L.W.

1988-01-26T23:59:59.000Z

318

CO2 Separation from Low-Temperature Flue Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

partners interested in implementing United States Patent Number 7,842,126 entitled "Co 2 Separation from Low-Temperature Flue Gases." Disclosed in this patent are novel methods for processing carbon dioxide (CO 2 ) from combustion gas streams. Researchers at NETL are focused on the development of novel sorbent systems that can effectively remove CO 2 and other gases in an economically feasible manner with limited impact on energy production cost. The current invention will help in reducing greenhouse gas emissions by using an improved, regenerable aqueous amine and soluble potassium carbonate sorbent system. This novel solvent system may be capable of achieving CO 2 capture from larger emission streams at lower overall cost. Overview Sequestration of CO

319

Particulate control for coal-fueled diesel engine exhaust  

DOE Green Energy (OSTI)

The Core Separator is a cylindrical vessel having one tangential inlet and two outlets at the opposite end of the vessel. It contains an outlet for the clean flow and a second outlet for the recirculating flow. The solids-laden flue gas is introduced through a fan to the inlet of the Core Separator. Due to the swirling motion of the flow, solids move to the periphery as the central jet leaving the system through the central outlet is cleaned of particulates. The peripheral flow with most of the particles is exhausted to the cyclone and then recirculates back to the Core Separator by means of the fan. The processes of separation and solids collection are accomplished separately and in different components. The Core Separator cleans the flow discharged from the system and detains solids within the system If the Core Separator efficiency is high enough, particles cannot leave the system. They recirculate again and again until the cyclone finally collects them for removal. An analytical formula can be derived that defines the system performance. E = E{sub c}E{sub s}/1{minus}E{sub s}(1{minus}E{sub c}), where E, E{sub c}, and E{sub s} are the system, collector, and Core Separator partial separation efficiencies respectively. Examination of this equation shows that the system efficiency remains high even with poor performance in the collector, as long as the efficiency of the Core Separator is high. For example, if E{sub s} is 99% and E{sub c} is 30%, the system efficiency is 96.7%.

Smolensky, L.A.; Easom, B.H.

1993-11-01T23:59:59.000Z

320

Predicting extents of mercury oxidation in coal-derived flue gases  

SciTech Connect

The extent of Hg oxidation determines the portion of Hg in the flue gas from a coal-fired power station that can be removed in SO{sub 2} scrubbers. This article evaluates predicted extents of Hg oxidation from a detailed chemical reaction mechanism, emphasizing the data from 1 and 29 MW pilotscale furnaces for diverse coal types. The proposed mercury (Hg) oxidation mechanism consists of a 168-step gas phase mechanism that accounts for interaction among all important flue gas species and a heterogeneous oxidation mechanism on unburned carbon (UBC) particles, similar to established chemistry for dioxin production under comparable conditions. The mechanism was incorporated into a gas cleaning system simulator to predict the proportions of elemental and oxidized Hg species in the flue gases, given relevant coal properties (C/H/O/N/S/Cl/Hg), flue gas composition (O{sub 2}, H{sub 2}O, HCl), emissions (NOx, SOx, CO), the recovery of fly ash, fly ash loss-on-ignition (LOI), and a thermal history. Predictions are validated without parameter adjustments against datasets from lab-scale and from pilot-scale coal furnaces at 1 and 29 MWt. Collectively, the evaluations cover 16 coals representing ranks from sub-bituminous through high-volatile bituminous, including cases with Cl{sub 2} and CaCl{sub 2} injection. The predictions are, therefore, validated over virtually the entire domain of Cl-species concentrations and UBC levels of commercial interest. Additional predictions identify the most important operating conditions in the furnace and gas cleaning system, including stoichiometric ratio, NOX, LOI, and residence time, as well as the most important coal properties, including coal-Cl. 33 refs., 4 figs., 3 tabs.

Stephen Niksa; Naoki Fujiwara [Niksa Energy Associates, Belmont, CA (US)

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +  

E-Print Network (OSTI)

REGULATIONS Although incinerator flue gas emission limits for acid gases have been imposed by the federal, such as sodium chlorite (NaCI02), is added to oxidize flue gas NO to N02, which can be removed by a sodium of saturated flue gas to approximately 60°C ( 140°F), the total (par ticulate and gaseous) mercury emissions

Laughlin, Robert B.

322

Particulate Matter Standards (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter of the law that establishes the Ohio Environmental Protection Agency sets the standards for particulate emissions from a variety of sources, including facilities that generate power. ...

323

Airborne particulate discriminator  

DOE Patents (OSTI)

A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

Creek, Kathryn Louise (San Diego, CA); Castro, Alonso (Santa Fe, NM); Gray, Perry Clayton (Los Alamos, NM)

2009-08-11T23:59:59.000Z

324

NETL: IEP – Post-Combustion CO2 Emissions Control - CO2 Capture from Flue  

NLE Websites -- All DOE Office Websites (Extended Search)

from Flue Gas by Phase Transitional Absorption from Flue Gas by Phase Transitional Absorption Project No.: FG26-05NT42488 Basic Illustration of the Phase Transitional Absorption Process. Basic Illustration of the Phase Transitional Absorption Process. Hampton University researched a novel carbon dioxide (CO2) absorption concept, phase transitional absorption, that utilizes a two-part proprietary absorbent consisting of an activated agent dissolved in a solvent. Phase separation of the activated agent from the chemical solvent occurs during CO2 absorption and physical separation of the two phases exiting the absorber reduces the volume of process liquid requiring thermal regeneration. This unique aspect of phase transitional absorption also decreases the amount of energy (i.e., steam) required to liberate the CO2. If the proper liquid

325

Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust  

DOE Green Energy (OSTI)

The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

Durbin, T. D.; Truex, T. J.; Norbeck, J. M. (Center for Environmental Research and Technology College of Engineering, University of California - Riverside, California)

1998-11-19T23:59:59.000Z

326

Process for selected gas oxide removal by radiofrequency catalysts  

DOE Patents (OSTI)

This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

Cha, Chang Y. (3807 Reynolds St., Laramie, WY 82070)

1993-01-01T23:59:59.000Z

327

Center for Advanced Gas Turbine Systems Research  

SciTech Connect

An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

Golan, L.P.

1992-12-31T23:59:59.000Z

328

Center for Advanced Gas Turbine Systems Research  

SciTech Connect

An unregulated conventional power station based on the Rankine Cycle typically bums pulverized coal in a boiler that exports steam for expansion through a steam turbine which ultimately drives an electric generator. The flue gases are normally cleaned of particulates by an electrostatic precipitator or bag house. A basic cycle such as this will have an efficiency of approximately 35% with 10% of the energy released through the stack and 55% to cooling water. Advanced gas turbine based combustion systems have the potential to be environmentally and commercially superior to existing conventional technology. however, to date, industry, academic, and government groups have not coordinated their effort to commercialize these technologies. The Center for Advanced Gas Turbine Systems Research will provide the medium to support effective commercialization of this technology. Several cycles or concepts for advanced gas turbine systems that could be fired on natural gas or could be adapted into coal based systems have been proposed (for examples, see Figures 4, 5, 6, and 7) (2) all with vary degrees of complexity, research needs, and system potential. Natural gas fired power systems are now available with 52% efficiency ratings; however, with a focused base technology program, it is expected that the efficiency levels can be increased to the 60% level and beyond. This increase in efficiency will significantly reduce the environmental burden and reduce the cost of power generation.

Golan, L.P.

1992-01-01T23:59:59.000Z

329

Corrosion and degradation of ceramic particulate filters in direct coal-fired turbine applications  

SciTech Connect

High-temperature ceramic filters show considerable promise for efficient particulate removal from coal combustion systems. Advanced coal utilization processes such as direct coal-fired turbines require particulate-free gas for successful operation. This paper describes the various ceramic particulate filters under development and reviews the degradation mechanisms expected when operated in coal combustion systems.

Sawyer, J. (Acurex Corp., Mountain View, CA (US)); Vass, R.J.; Brown, N.R.; Brown, J.J. (Center for Advanced Ceramic Materials, CIT TDC, Virginai Polytechnic Inst. and State Univ., Blacksburg, VA (US))

1991-10-01T23:59:59.000Z

330

FlueGen Inc | Open Energy Information  

Open Energy Info (EERE)

FlueGen Inc FlueGen Inc Jump to: navigation, search Name FlueGen, Inc. Place Irvine, California Zip 92614 Product Irvine-based original equipment manufacturer (OEM) of air pollution control systems for the utility industry, including coal-fired power plants, in addition to financing client's projects, thereafter operating and maintaining the system for a fee. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Radiant zone heated particulate filter  

DOE Patents (OSTI)

A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI

2011-12-27T23:59:59.000Z

332

Advanced Technology for the Capture of Carbon Dioxide from Flue Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology for the Capture of Carbon Dioxide Technology for the Capture of Carbon Dioxide from Flue Gases by Shrikar Chakravarti (shrikar_chakravarti@praxair.com; 716-879-4760) Amitabh Gupta (ami_gupta@praxair.com; 716-879-2194) Balazs Hunek (balazs_hunek@praxair.com; 716-879-2250) Praxair, Inc. Process & Systems R&D, CO 2 Technology 175 East Park Drive, P.O. Box 44 Tonawanda, NY 14150 USA key words: flue gas, carbon dioxide, separation, amine absorption, oxygen tolerant process, amine blends First National Conference on Carbon Sequestration Washington, DC, May 15-17, 2001 Copyright 2001, Praxair Technology, Inc. All Rights Reserved. 1 Abstract Cost effective carbon sequestration schemes have been identified as a key need for dealing with carbon dioxide's (CO 2 ) impact on global climate change. Two main

333

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Progress report No. 12, September--December 1994  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. There are two basic arrangements of our HIPPS cycle. Both are coal-fired combined cycles. One arrangement is the 35% natural gas HIPPS. Coal is converted to fuel gas and char in a pyrolysis process, and these fuels are fired in separate parts of a high temperature advanced furnace (HITAF). The char-fired furnace produces flue gas that is used to heat gas turbine air up to 1400 F. Alloy tubes are used for these tube banks. After leaving the alloy tube banks, the gas turbine air goes through a ceramic air heater where it is heated from 1400 F to 1800 F. The flue gas that goes through the ceramic air heater comes from the combustion of the fuel gas that is produced in the pyrolysis process. This fuel gas is cleaned to remove particulates and alkalies that would corrode and plug a ceramic air heater. The air leaving the ceramic air heater needs to be heated further to achieve the efficiency goal of 47%, and this is done by firing natural gas in the gas turbine combustor. An alternative arrangement of the HIPPS cycle is called the All Coal HIPPS. With this arrangement, the char is used to heat the gas turbine air to 1400 F as before, but instead of then going to a ceramic air heater, the air goes directly to the gas turbine combustor. The fuel gas generated in the pyrolyzer is used as fuel in the gas turbine combustor. In both cycle arrangements, heat is transferred to the steam cycle in the HITAF and a heat recovery steam generator (HRSG).

1995-06-01T23:59:59.000Z

334

Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant  

Science Conference Proceedings (OSTI)

A natural chabazite-based silver nanocomposite (AgMC) was synthesized to capture mercury from flue gases of coal-fired power plants. Silver nanoparticles were engineered on zeolite through ion-exchange of sodium ions with silver ions, followed by thermal annealing. Mercury sorption test using AgMC was performed at various temperatures by exposing it to either pulse injection of mercury or continuous mercury flow. A complete capture of mercury by AgMC was achieved up to a capture temperature of 250{sup o}C. Nano silver particles were shown to be the main active component for mercury capture by amalgamation mechanism. Compared with activated carbon-based sorbents, the sorbent prepared in this study showed a much higher mercury capture capacity and upper temperature limit for mercury capture. More importantly, the mercury captured by the spent AgMC could be easily released for safe disposal and the sorbent regenerated by simple heating at 400{sup o}C. Mercury capture tests performed in real flue gas environment showed a much higher level of mercury capture by AgMC than by other potential mercury sorbents tested. In our mercury capture tests, the AgMC exposed to real flue gases showed an increased mercury capture efficiency than the fresh AgMC. 38 refs., 6 figs.

Yan Liu; David J.A. Kelly; Hongqun Yang; Christopher C.H. Lin; Steve M. Kuznicki; Zhenghe Xu [University of Alberta, Edmonton, AB (Canada). Department of Chemical and Materials Engineering

2008-08-15T23:59:59.000Z

335

JV Task 95-Particulate Control Consulting for Minnesota Ore Operations  

Science Conference Proceedings (OSTI)

The purpose of the project was to assist U.S. Steel in the evaluation, selection, planning, design, and testing of potential approaches to help meet U.S. Steel's goal for low-particulate matter emissions and regulatory compliance. The energy-intensive process for producing iron pellets includes treating the pellets in high-temperature kilns in which the iron is converted from magnetite to hematite. The kilns can be fired with either natural gas or a combination of gas and coal or biomass fuel and are equipped with wet venturi scrubbers for particulate control. Particulate measurements at the inlet and outlet of the scrubbers and analysis of size-fractionated particulate samples led to an understanding of the effect of process variables on the measured emissions and an approach to meet regulatory compliance.

Stanley Miller

2008-10-31T23:59:59.000Z

336

Fluidizing device for solid particulates  

DOE Patents (OSTI)

A flexible whip or a system of whips with novel attachments is suspended in a hopper and is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

Diebold, J.P.; Scahill, J.W.

1984-06-27T23:59:59.000Z

337

Fluidizing device for solid particulates  

DOE Patents (OSTI)

A flexible whip or a system of whips with novel attachments is suspended in a hopper and is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Golden, CO)

1986-01-01T23:59:59.000Z

338

Removal of CO{sub 2} from flue gases by algae. [Quarterly] technical report, March 1, 1993--May 31, 1993  

DOE Green Energy (OSTI)

The objective of this research program is to determine the feasibility of the alga Botryococcus braunii as a biocatalyst for the photosynthetic conversion of flue gas CO{sub 2} to hydrocarbons. The research program involves the determination of the biocatalytic characteristics of free and immobilized cultures of Botryococcus braunii in bench-scale studies, and the feasibility study and economic analysis of the Botryococcus braunii culture systems for the conversion of flue gas CO{sub 2} to hydrocarbons. The objective of the third quarter of this research program was to determine the growth and hydrogen formation characteristics of free and immobilized cells of Botryococcus braunii in bench-scale photobioreactors. Raceway and inclined surface type bioreactors were used for free cell and immobilized cell studies respectively. The free cell studies with air and CO{sub 2} enriched air [10% (v/v) CO{sub 2} in air] in media with and without NaHCO{sub 3} were conducted.

Akin, C.; Pradhan, S. [Inst. of Gas Technology, Chicago, IL (United States)

1993-09-01T23:59:59.000Z

339

Gas turbine-steam power plant  

SciTech Connect

The pressure vessel of the gas turbine-steam power plant is provided with a recuperator and a heat exchanger in order to reduce the temperature of the hot flue gas before separating out gas-entrained particles. The dust separator is connected to the recuperator on a secondary side so that the hot gas can be reheated for delivery to the gas turbine. By cooling the flue gas before entering the separator, use can be made of electrostatic dust filters or cloth filters.

Aguet, E.

1984-07-31T23:59:59.000Z

340

Void/particulate detector  

DOE Patents (OSTI)

Apparatus for detecting voids and particulates in a flowing stream of fluid contained in a pipe may comprise: (a) a transducer for transmitting an ultrasonic signal into the stream, coupled to the pipe at a first location; (b) a second transducer for detecting the through-transmission of said signal, coupled to the pipe at a second location; (c) a third transducer for detecting the back-scattering of said signal, coupled to the pipe at a third location, said third location being upstream from said first location; (d) circuit means for normalizing the back-scattered signal from said third transducer to the through-transmitted signal from said second transducer; which normalized signal provides a measure of the voids and particulates flowing past said first location.

Claytor, T.N.; Karplus, H.B.

1983-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Rigid particulate matter sensor  

DOE Patents (OSTI)

A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

Hall, Matthew (Austin, TX)

2011-02-22T23:59:59.000Z

342

Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control  

SciTech Connect

The device described in this report will simultaneously remove particulates, SO{sub 2} and NO{sub x} from the combustion gases of coal combustors. The device is configured as a cross-flow filter. The gas flows from the inlet passages to orthogonally oriented discharge channels via thin, multilayered porous walls. Flue gas enters from both the front and back of the device. With the left wall of the filter sealed, gas discharges from the right side of the device. The key to combined physical (fly ash) and chemical (SO{sub 2}/NO{sub x}) cleaning is to utilize chemical active sorbent-catalysts (e.g., metal oxides) in the layered walls of the filter. This quarter, the NO{sub x} reduction activity of three sorbent-catalyst materials was tested over a temperature range from 200 to 500{degree}C. We were primarily interested in the sorbent-catalyst NO{sub x} reduction performance at 400{degree}C because this appears to be a minimum temperature for acceptable sulfur capture with these sorbents. the tradeoff between sulfur capture and NO{sub x} reduction performance for these sorbent-catalysts is clear: sulfation improves with higher temperatures (e.g., 400--600{degree}C) while NO{sub x} reduction improves at lower temperatures (e.g., 200--300{degree}C). Sorbent-catalyst materials included: Cu-7Al-O; Cu-Ce-O; and CeO{sub 2}. 7 refs., 7 figs., 4 tabs.

Not Available

1990-11-01T23:59:59.000Z

343

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

2000-12-01T23:59:59.000Z

344

Method and apparatus for forming flues on tubular stock  

DOE Patents (OSTI)

The present invention is directed to a die mechanism utilized for forming flues on long, relatively narrow tubular stock. These flues are formed by displacing a die from within the tubular stock through perforations previously drilled through the tubular stock at selected locations. The drawing of the die upsets the material to form the flue of the desired configuration. The die is provided with a lubricating system which enables the lubricant to be dispensed uniformly about the entire periphery of the die in contact with the material being upset so as to assure the formation of the flues. Further, the lubricant is dispensed from within the die onto the peripheral surface of the latter at pressures in the range of about 2000 to 10,000 psi so as to assure the adequate lubrication of the die during the drawing operation. By injecting the lubricant at such high pressures, low viscosity liquid, such as water and/or alcohol, may be efficiently used as a lubricant and also provides a mechanism by which the lubricant may be evaporated from the surface of the flues at ambient conditions so as to negate the cleansing operations previously required prior to joining the flues to other conduit mechanisms by fusion welding and the like.

Beck, D.E.; Carson, C.

1979-12-21T23:59:59.000Z

345

Catalysts for Oxidation of Mercury in Flue Gas  

sions in coal-burning power plants, incin-erators, oil-burning boilers and power plants, and refuse-derived fuel power plants • They can adsorb ...

346

PhoSNOX: Yellow Phosphorous for Flue Gas Scrubbing  

Fossil fuels often contain sulfur an nitrogen compounds that, upon combustion, release SO2 and various oxides of nitrogen (NOx) into the atmosphere ...

347

PRODUCTION OF CONSTRUCTION AGGREGATES FROM FLUE GAS DESULFURIZATION SLUDGE  

Science Conference Proceedings (OSTI)

The three main conclusions of this report are: (1) The pilot plant successfully demonstrated the continuous, fully-integrated, long-term process operation, including the mixing, pelletizing, and curing steps for aggregate production. The curing vessel, which was designed for the pilot plant test, was operated in a mass flow mode and performed well during pilot plant operation. (2) The pilot plant test demonstrated process flexibility. The same equipment was used to produce lightweight, medium-weight, and road aggregates. The only change was the mix formulation. Aggregates were produced from a variety of mix designs and from FGD sludge with solids concentrations between 45.0% and 56.7% and moisture contents between 55.0% and 43.3%. (3) The pilot plant provided operating data and experience to design and cost a commercial plant, which was not part of the cooperative agreement.

M.M. Wu; D.C. McCoy; R.O. Scandrol; M.L. Fenger; J.A. Withum; R.M. Statnick

2000-05-01T23:59:59.000Z

348

THERMODYNAMIC DATA FOR FLUE-GAS DESULFURIZATION PROCESSES  

E-Print Network (OSTI)

of Energy, Div. of Fossil Energy, Report FE-2710-1, pg. 24 (by the Assistant Secretary for Fossil Energy, Office of Coalby the Assistant Secretary for Fossil Energy, Off1ce of Coal

Brewer, Leo

2013-01-01T23:59:59.000Z

349

New Limestone-Gypsum Flue Gas Desulfuization Technology  

Science Conference Proceedings (OSTI)

A new wet FGD processes which SO2 was absorbed in the spray tower using granular limestone simultaneously adding acetic acid had been proposed. The main difference compared to conventional wet FGD process was to utilize granular limestone directly as ... Keywords: new wet FGD, bubbling reactor, granular limestone, acetic acid, SO2

Sheng-yu Liu; Bin Qu; Jin Gao; Jian-ying Liu; Zhi-xiang Ye; Cheng-hua Xu

2009-10-01T23:59:59.000Z

350

CLEANING OF MUNICIPAL WASTE INCINERATOR FLUE GAS IN EUROPE  

E-Print Network (OSTI)

/07/11 2015 Narcotics Violation Towers Hall A resident admitted to smoking marijuana and turned over arrested. 04/21/11 1417 04/21/11 1200- 1405 Theft Towers A credit card was stolen. Report taken. 04 The bus shelter was spray-painted on north and west sides. Report taken. 04/09/11 1047 04/09/11 1047

Columbia University

351

Inspection Guideline for Wet Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

Severe corrosion attack has occurred in several absorber vessels constructed of duplex 2205 and 255 stainless steels. There are also mounting concerns that earlier generation absorber vessels fabricated with austenitic stainless steels may also be subject to underdeposit and pitting corrosion attack. This corrosion attack has been found in several of the spray tower/ tray tower and jet bubble reactor designs constructed of stainless steels and are reported to be occurring with relatively little service l...

2011-08-22T23:59:59.000Z

352

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that higher temperature calcination of trona leds to reduced carbonation activity in subsequent cycles, but that calcination in dry carbon dioxide did not result in decreased activity relative to calcination in helium. Following higher temperature calcination, sodium bicarbonate (SBC) No.3 has greater activity than either coarse or fine grades of trona. Fixed bed testing of calcined SBC No.3 at 70 C confirmed that high rates of carbon dioxide absorption are possible and that the resulting product is a mixture of Wegscheider's salt and sodium carbonate. In fluidized bed testing of supported potassium carbonate, very rapid carbonation rates were observed. Activity of the support material complicated the data analysis. A milled, spherical grade of SBC appeared to be similar in attrition and abrasion characteristics to an unmilled, less regularly shaped SBC. The calcination behavior, at 107 C, for the milled and unmilled materials was also similar.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P.Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

2002-10-01T23:59:59.000Z

353

NOx Reduction by Sintering Flue Gas Circulation for Iron Ores  

Science Conference Proceedings (OSTI)

Chemical Enrichment of Precious Metals in Iron Sulfides Using Microwave Energy · Chloridizing ... Co-Gasification Behavior of Metallurgical Coke with High and Low Reactivity .... Thermal Plasma Torches for Metallurgical Applications.

354

THERMODYNAMIC DATA FOR FLUE-GAS DESULFURIZATION PROCESSES  

E-Print Network (OSTI)

N.T. Ioffe, et. al. Thermodynamic Constants of Materials,Heats and Related Thermodynamic Quan- ti ties , John W i 1 eN.P.L. Computer Analysed Thermodynamic Data: Organic and

Brewer, Leo

2013-01-01T23:59:59.000Z

355

An Experimental Investigation of a Flue Gas Recirculation System ...  

Science Conference Proceedings (OSTI)

Low Grade Waste Heat Driven Desalination and SO2 Scrubbing · Meeting the Materials Challenges to Enable Clean Coal Technologies · Photocatalytic Efficacy ...

356

THERMODYNAMIC DATA FOR FLUE-GAS DESULFURIZATION PROCESSES  

E-Print Network (OSTI)

De Carvalho, J. Chern. Thermodynamics D. Detry, J. Drowart,Vanderzee, J. Chern. Thermodynamics ! Q,lll3-36 (1978). (43)L.G. Hepler, J. Chern. Thermodynamics~~ (45) J.E. Desnoyers,

Brewer, Leo

2013-01-01T23:59:59.000Z

357

CO2 Capture from Flue Gas by Phase Transitional Absorption  

Science Conference Proceedings (OSTI)

A novel absorption process called Phase Transitional Absorption was invented. What is the Phase Transitional Absorption? Phase Transitional Absorption is a two or multi phase absorption system, CO{sub 2} rich phase and CO{sub 2} lean phase. During Absorption, CO{sub 2} is accumulated in CO{sub 2} rich phase. After separating the two phases, CO{sub 2} rich phase is forward to regeneration. After regeneration, the regenerated CO{sub 2} rich phase combines CO{sub 2} lean phase to form absorbent again to complete the cycle. The advantage for Phase Transitional Absorption is obvious, significantly saving on regeneration energy. Because CO{sub 2} lean phase was separated before regeneration, only CO{sub 2} rich phase was forward to regeneration. The absorption system we developed has the features of high absorption rate, high loading and working capacity, low corrosion, low regeneration heat, no toxic to environment, etc. The process evaluation shows that our process is able to save 80% energy cost by comparing with MEA process.

Liang Hu

2009-06-30T23:59:59.000Z

358

CLEANING OF MUNICIPAL WASTE INCINERATOR FLUE GAS IN EUROPE  

E-Print Network (OSTI)

's personal copy Afforestation for reduction of NOX concentration in Lanzhou China Peter C. Chu a,, Yuchun of this study is to investigate the effect of af- forestation on the reduction of NO2 and NOX pollutions-level criterion). NOX has an evident decreasing trend (with time) since 1995. Reduction of NOX concentration since

Columbia University

359

The Thief Process for Mercury Removal from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

as less than 0.05%. These energy penalties are for a sorbent injection rate of 5 lbMM acf, and are reduced to less than 0.2% at injection rates of 1-2 lbMM acf. The cost for...

360

Flue Gas Desulfurization Bid Preparation and Proposal Review Guideline  

Science Conference Proceedings (OSTI)

The prospect of more stringent limits for sulfur dioxide (SO2) has led power producers to begin planning for the future installation of FGD systems to meet new emission limits for their power plants. Major activity has already begun with the announcements of system-wide FGD system installations by many utilities in the southeastern United States. Contractor selection is a critical component to the successful compliance with regulatory requirements. This document provides utilities with the tools that the...

2003-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

International 1 is heading a research team to develop an innovative process for CO 2 capture that employs a dry, regenerable sorbent. The process is cyclic in that the sorbent...

362

Gas-phase mercury oxidation: effects on bromine, chlorine and SO2 under air firing and oxy-fuel conditions, experimental and modeling study.  

E-Print Network (OSTI)

??The mercury in coal is emitted in its elemental state when the coal is burned. As the combustion flue gas cools, reactions under homogeneous and… (more)

Buitrago, Paula Andrea

2011-01-01T23:59:59.000Z

363

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

364

RETORT WATER PARTICULATES  

E-Print Network (OSTI)

62 (from an inert gas run using Utah shale) produce a highfrom an inert gas run using Antrim shale) produced a highhot combustion gases may release spent shale fines which are

2011-01-01T23:59:59.000Z

365

An Introduction to Particulate Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

for Fiscal Year 2014. Title An Introduction to Particulate Matter Publication Type Book Chapter Year of Publication 2009 Authors Prisco, Joe, Rich Hill, Pam Lembke, D. Moore,...

366

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

367

Ranking low cost sorbents for mercury capture from simulated flue gases  

Science Conference Proceedings (OSTI)

Coal fired utility boilers are the largest anthropogenic source of mercury release to the atmosphere, and mercury abatement legislation is already in place in the USA. The present study aimed to rank low cost mercury sorbents (char and activated carbon from the pyrolysis of scrap tire rubber and two coal fly ashes from UK power plants) against Norit Darco HgTM for mercury retention by using a novel bench-scale reactor. In this scheme, a fixed sorbent bed was tested for mercury capture efficiency from a simulated flue gas stream. Experiments with a gas stream of only mercury and nitrogen showed that while the coal ashes were the most effective in mercury capture, char from the pyrolysis of scrap tire rubber was as effective as the commercial sorbent Norit Darco HgTM. Tests conducted at 150{sup o}C, with a simulated flue gas mix that included N{sub 2}, NO, NO{sub 2}, CO{sub 2}, O{sub 2}, SO{sub 2} and HCl, showed that all the sorbents captured approximately 100% of the mercury in the gas stream. The introduction of NO and NO{sub 2} was found to significantly improve the mercury capture, possibly by reactions between NOx and the mercury. Since the sorbents' efficiency decreased with increasing test temperature, physical sorption could be the initial step in the mercury capture process. As the sorbents were only exposed to 64 ng of mercury in the gas stream, the mercury loadings on the samples were significantly less than their equilibrium capacities. The larger capacities of the activated carbons due to their more microporous structure were therefore not utilized. Although the sorbents have been characterized by BET surface area analysis and XRD analysis, further analysis is needed in order to obtain a more conclusive correlation of how the characteristics of the different sorbents correlate with the observed variations in mercury capture ability. 34 refs., 8 figs., 6 tabs.

H. Revata Seneviratne; Cedric Charpenteau; Anthe George; Marcos Millan; Denis R. Dugwell; Rafael Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

368

Multimedia Fate of Selenium and Boron at Coal-Fired Power Plants Equipped with Particulate and Wet FGD Controls  

Science Conference Proceedings (OSTI)

Given the current regulatory climate in the United States, a number of flue gas desulfurization (FGD) systemsas well as selective catalytic reduction (SCR) systemswill be installed at new and existing coal-fired power plants to remove sulfur dioxide (SO2) and nitrogen oxide (NOx). The multimedia fate of trace metals species in SCR/wet FGD systems is not well understood. Understanding and quantifying the amount of trace elements removed from the flue gas and distributed to the solid and aqueous streams is...

2008-12-19T23:59:59.000Z

369

Electrically heated particulate filter with reduced stress  

DOE Patents (OSTI)

A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

Gonze, Eugene V.

2013-03-05T23:59:59.000Z

370

High pressure ceramic air heater for indirectly fired gas turbine applications  

SciTech Connect

The EFCC cycle is conceptually simple. Air enters the compressor where it is pressurized and becomes the tube-side flow of the ceramic air heater. Heat transferred from the hot combustion gases flowing through the shell-side raises the air temperature to the desired turbine inlet temperature. Internally insulated high pressure piping returns the heated compressor air to the turbine, where it is expanded providing power to drive the electric generator and gas turbine compressor. Exhaust air from the turbine is used as the combustion air for the coal combustor. The EFCC cycle burns pulverized coal in an atmospheric combustion chamber similar to the combustion system in a conventional steam generator. The combustion gas exits the combustor and enters a slag screen, or impact separator, where the larger ash particles are collected to prevent fouling of the heat exchanger. After the slag screen, the combustion gas enters the shell-side of the CerHX where its thermal energy is transferred to the tube side air flow. Shell-side exit temperatures are sufficiently high to provide thermal energy for the bottoming Rankine Cycle through a heat recovery steam generator. Exhaust gas exiting the steam generator passes through a flue gas desulfurization system and a particulate removal system.

LaHaye, P.G.; Briggs, G.F.; Orozxo, N.J.; Seger, J.L.

1993-11-01T23:59:59.000Z

371

Inductively heated particulate matter filter regeneration control system  

Science Conference Proceedings (OSTI)

A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

2012-10-23T23:59:59.000Z

372

Economic Evaluation of Particulate Control Technologies: Volume 1: New Units  

Science Conference Proceedings (OSTI)

Baghouses (reverse-gas, shake-deflate, and pulse-jet) and electrostatic precipitators are the principal options for controlling particulate emissions at coal-fired power plants. This report provides the latest cost information and cost models for determining the capital and O&M costs of the two technologies for various design conditions in new units.

1992-09-01T23:59:59.000Z

373

www.eia.gov  

U.S. Energy Information Administration (EIA)

Associated Cooling System(s) Associated Flue Gas Particulate Collector(s) ... Maximum Tower Design Rate of Water Flow Maximum Tower Power Requirement

374

Combined homo- and heterogeneous model for mercury speciation in pulverized fuel combustion flue gases  

SciTech Connect

A new model is developed to predict Hg{sup 0}, Hg{sup +}, Hg{sup 2+}, and Hg{sub p} in the post-combustion zone upstream of a particulate control device (PCD) in pulverized coal-fired power plants. The model incorporates reactions of mercury with chlorinating agents (HCl) and other gaseous species and simultaneous adsorption of oxidized mercury (HgCl{sub 2}) on fly ash particles in the cooling of flue gases. The homogeneous kinetic model from the literature has been revised to understand the effect of the NO + OH + M {longleftrightarrow} HONO + M reaction on mercury oxidation. Because it is a pressure-dependent reaction, the choice of proper reaction rates was very critical. It was found that mercury oxidation reduces from 100 to 0% while going from high- to low-pressure limit rates with 100 ppmv NO. The heterogeneous model describes selective in-duct Langmuir-Hinshelwood adsorption of mercury chloride on ash particles. The heterogeneous model has been built using Fortran and linked to Chemkin 4.0. The final predictions of elemental, oxidized, and particulate mercury were compared to mercury speciation from power plant data. Information collection request (ICR) data were used for this comparison. The model results follow very similar trends compared to those of the plant data; however, quantitative deviation was considerable. These deviations are due to the errors in the measurement of mercury upstream of PCD, lack of adsorption kinetic data, accurate homogeneous reaction mechanisms, and certain modeling assumptions. The model definitely follows a new approach for the prediction of mercury speciation, and further refinement will improve the model significantly. 43 refs., 1 figs., 6 tabs.

Shishir P. Sable; Wiebren de Jong; Hartmut Spliethoff [Delft University Technology, Delft (Netherlands). Section Energy Technology, Department of Process and Energy

2008-01-15T23:59:59.000Z

375

Removal of CO{sub 2} from flue gases by algae. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect

The objective of this research program is to determine the feasibility of the alga Botryococcus braunii as a biocatalyst for the photosynthetic conversion of flue gas CO{sub 2} to hydrocarbons. Free and immobilized cells of Botryococcus braunii were grown in aqueous medium supplemented with nitrogen, phosphorus and mineral nutrients. Air and CO{sub 2} enriched air [10% to 15% (V/V) CO{sub 2}] in the gas phase and 0.2% to 2% NaHCO{sub 3} in the liquid medium served as the carbon source. Growth and hydrocarbon formation characteristics of free and immobilized cultures of Botryococcus braunii were determined in bench-scale photobioreactors. Technical and economic feasibility of the conversion of flue gas CO{sub 2} to hydrocarbons by Botryococcus braunii culture systems was evaluated. In free cell systems, the hexane extractable oil productivity was about 15 to 37 grams of oil per 100 grams of cell dry weight. In immobilized cell systems, the oil production ranged between 5% and 47% at different immobilization systems and immobilized surface locations, with an average of 19% of cell biomass dry weight. The feasibility and economic evaluation estimated the cost of oil produced from flue gas CO{sub 2} by algae to range between $45 and $75 per barrel assuming that a hydrocarbon yield of about 50% of the biomass weight is achievable and a credit of $60 per ton of carbon removed is available. A future research program leading to development of a multistage process, consisting of closed systems for heavy inoculum buildup followed by lower cost open systems for oil production is recommended.

Akin, C.; Maka, A.; Patel, S.; Conrad, J. [Inst. of Gas Technology, Chicago, IL (United States); Benemann, J.

1993-12-31T23:59:59.000Z

376

Modeling Incinerator Flue Train Performance with a Digital Computer  

E-Print Network (OSTI)

as a matrix of pressure/volume points, along with fan speed and horsepower requirements at the design point of incinerator performance under a wide range of conditions, Furnace and flue train design data are fed that requirements can be met under all conditions at a reasonable cost. The municipal design picture is complicated

Columbia University

377

Control of pollutants in flue gases and fuel gases  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Flue gases and fuel gases: combustion, gasification, pyrolysis, incineration and other and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . . 3-5 3.4 Emission

Zevenhoven, Ron

378

High Efficiency Particulate Air Filters  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency Particulate Air (HEPA) Filters High Efficiency Particulate Air (HEPA) Filters Home Standards DOE Workshops Nuclear Air Cleaning Conference Proceedings Qualified Filter List News Items Related Sites HEPA Related Lessons Learned Contact Us HSS Logo High Efficiency Particulate Air Filters The HEPA Filter web site provides a forum for informing and reporting department-wide activities related to filtration and ventilation issues with special reference to the High Efficiency Particulate Air (HEPA) Filters' use, inspection, and testing. This site contains essentials of DOE HEPA filter test program, procedures, requirements and quality assurance aspects applicable to HEPA filters used in DOE facilities. This site contains information about the DOE-accepted Filter Test Facility and its management, operation and quality assuranceprogram.

379

Just the Basics: Particulate Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

is Particulate is Particulate Matter? One of the major components of air pollution is particulate matter, or PM. PM refers to airborne particles that include dust, dirt, soot, smoke, and liquid droplets. These particles can range in size from microscopic to large enough to be seen. PM is characterized by its size, with fine particles of less than 2.5 micrometers in size designated as PM 2.5 and coarser particles between 2.5 and 10 micrometers in size designated as PM 10 . PM arises from many sources, including combustion occurring in factories, power plants, cars, trucks, buses, trains, or wood fires; or through simple agitation of existing particulates by tilling of land, quarrying and stone-crushing, and off- road vehicular movement. Of particular interest is PM generated during diesel

380

Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures  

DOE Patents (OSTI)

A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

2010-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electrical diesel particulate filter (DPF) regeneration  

SciTech Connect

An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

Gonze, Eugene V; Ament, Frank

2013-12-31T23:59:59.000Z

382

Hydrocarbon-enhanced particulate filter regeneration via microwave ignition  

DOE Patents (OSTI)

A regeneration method for a particulate filter includes estimating a quantity of particulate matter trapped within the particulate filter, comparing the quantity of particulate matter to a predetermined quantity, heating at least a portion of the particulate filter to a combustion temperature of the particulate matter, and introducing hydrocarbon fuel to the particulate filter. The hydrocarbon fuel facilitates combustion of the particulate matter to regenerate the particulate filter.

Gonze, Eugene V. (Pinckney, MI); Brown, David B. (Brighton, MI)

2010-02-02T23:59:59.000Z

383

Natural and industrial analogues for release of CO2 from storage reservoirs: Identification of features, events, and processes and lessons learned  

E-Print Network (OSTI)

oil, natural gas, and gas turbine power plants. As shown,Flue Flue Flue Fuel oil Natural gas Natural gas Gas turbineGas turbine Gas turbine Coal IGCC Flue Flue Flue Flue Fuel

Lewicki, Jennifer L.; Birkholzer, Jens; Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

384

Overlap zoned electrically heated particulate filter  

DOE Patents (OSTI)

A system includes a particulate matter (PM) filter that includes an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than or equal to one, and wherein the N zones and the M sub-zones are arranged in P layers, where P is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI; Chapman, Mark R [Brighton, MI

2011-07-19T23:59:59.000Z

385

Process for selected gas oxide removal by radiofrequency catalysts  

DOE Patents (OSTI)

This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

Cha, C.Y.

1993-09-21T23:59:59.000Z

386

Method for high temperature mercury capture from gas streams  

DOE Patents (OSTI)

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

387

Process for particulate removal from coal liquids  

DOE Patents (OSTI)

Suspended solid particulates are removed from liquefied coal products by first subjecting such products to hydroclone action for removal in the underflow of the larger size particulates, and then subjecting the overflow from said hydroclone action, comprising the residual finer particulates, to an electrostatic field in an electrofilter wherein such finer particulates are deposited in the bed of beads of dielectric material on said filter. The beads are periodically cleaned by backwashing to remove the accumulated solids.

Rappe, Gerald C. (Macungie, PA)

1983-01-01T23:59:59.000Z

388

Removal of CO{sub 2} from flue gases by algae. Technical report, December 1, 1992--February 28, 1993  

DOE Green Energy (OSTI)

The studies reported here confirmed our preliminary observations that Botryococcus braunii can tolerate and grow well in flue gas CO{sub 2} concentrations of 10 to 15%, and produce oil. The highest extracted oil was observed in 10% CO{sub 2} enriched air. Initial pH of the medium at or near 10 pH is favorable to cell growth probably by stimulating the CO{sub 2} solubilization in the medium. This is also indicated in Botryococcus braunii growth and oil formation in NaHCO{sub 3} added medium. The lack of growth in Na{sub 2}CO{sub 3} containing media was probably due to high pH. The CaCO{sub 3} precipitation from the CA{sup ++} gelled alginate beads indicate the need for alternative immobilization systems. But the attachment of the Botryococcus braunii cells to the bottom inner surfaces of the photobioreactors may eliminate the need for gel entrapment systems as the immobilization matrices. Attachment of the Botryococcus braunii cells to the bottom inner surfaces of the photobioreactors, rather than remaining in the suspension, reduces the significance of self shadowing and related liquid height (thickness) effect. The capability of Botryococcus braunii to grow in NaHCO{sub 3} solutions is very encouraging toward development of an alkaline scrubbing system for the flue gas followed by removal of the CO{sub 2} from the alkaline solution. In such a system the pH 10 is the currently observed upper limit.

Akin, C.; Maka, A.; Pradhan, S. [Institute of Gas Technology, Chicago, IL (United States); Banerjee, D. [Illinois Clean Coal Inst., Carterville, IL (United States)

1993-05-01T23:59:59.000Z

389

Modifying Char Dustcake Pressure Drop Using Particulate Additives  

DOE Green Energy (OSTI)

Coal gasification produces residual particles of coal char, coal ash, and sorbent that are suspended in the fuel gas stream exiting the gasifier. In most cases, these particles (referred to, hereafter, simply as char) must be removed from the stream prior to sending the gas to a turbine, fuel cell, or other downstream device. Currently, the most common approach to cleaning the gas stream at high temperature and pressure is by filtering the particulate with a porous ceramic or metal filter. However, because these dusts frequently have small size distributions, irregular morphology, and high specific surface areas, they can have very high gas flow resistance resulting in hot-gas filter system operating problems. Typical of gasification chars, the hot-gas filter dustcakes produced at the Power Systems Development Facility (PSDF) during recent coal gasification tests have had very high flow resistance (Martin et al, 2002). The filter system has been able to successfully operate, but pressure drops have been high and filter cleaning must occur very frequently. In anticipation of this problem, a study was conducted to investigate ways of reducing dustcake pressure drop. This paper will discuss the efficacy of adding low-flow-resistance particulate matter to the high-flow-resistance char dustcake to reduce dustcake pressure drop. The study had two parts: a laboratory screening study and confirming field measurements at the PSDF.

Landham, C.; Dahlin, R.S.; Martin, R.A.; Guan, X.

2002-09-19T23:59:59.000Z

390

Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control  

SciTech Connect

This report describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

Benedek, K. (Little (Arthur D.), Inc., Cambridge, MA (United States)); Flytzani-Stephanopoulos, M. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

1991-08-01T23:59:59.000Z

391

Cross-flow filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control  

SciTech Connect

This report describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

Not Available

1990-05-01T23:59:59.000Z

392

Method and apparatus for transport, introduction, atomization and excitation of emission spectrum for quantitative analysis of high temperature gas sample streams containing vapor and particulates without degradation of sample stream temperature  

DOE Patents (OSTI)

A sample transport, sample introduction, and flame excitation system for spectrometric analysis of high temperature gas streams which eliminates degradation of the sample stream by condensation losses.

Eckels, David E. (Ankeny, IA); Hass, William J. (Ames, IA)

1989-05-30T23:59:59.000Z

393

Low exhaust temperature electrically heated particulate matter filter system  

DOE Patents (OSTI)

A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI); Bhatia, Garima (Bangalore, IN)

2012-02-14T23:59:59.000Z

394

Gas-Liquid Contact Area of Random and Structured Packing Ian David Wilson, B.S.  

E-Print Network (OSTI)

Gas-Liquid Contact Area of Random and Structured Packing By Ian David Wilson, B.S. Thesis Presented are preferred over spray and tray towers for gas/liquid contacting when minimizing pressure drop and maximizing the flue gas and the liquid solvent. The gas exits from the top with a low concentration of CO2 while

Rochelle, Gary T.

395

Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler; a DOE Assessment  

Science Conference Proceedings (OSTI)

The results from the GR-LNB technology demonstrated by EER at Cherokee Station approached, but did not meet, the CCT project's performance objectives. Acceptable unit operability was achieved with both the GR and the LNB components. The gas reburning component of the process appears to be broadly applicable for retrofit NO{sub x} control to most utility boilers and, in particular, to wet-bottom cyclone boilers, which are high NO{sub x} emitters and are difficult to control (LNB technology is not applicable to cyclone boilers). GR-LNB can reduce NO{sub x} to mandated emissions levels under Title IV of the CAAA without significant, adverse boiler impacts. The GR-LNB process may be applicable to boilers significantly larger than the demonstration unit, provided there is adequate dispersion and mixing of injected natural gas. Major results of the demonstration project are summarized as follows: NO{sub x}-emissions reductions averaging 64% were achieved with 12.5% gas heat input in long-term tests on a 158-MWe (net) wall-fired unit. The target reduction level of 70% was achieved only on a short-term basis with higher gas consumption. The thermal performance of coal-fired boilers is not significantly affected by GR-LNB. Convective section steam temperatures can be controlled within acceptable limits. Thermal efficiency is decreased by a small amount (about 0.8%), because of increased dry gas loss and higher moisture in the flue gas as a result of the GR process. Furnace slagging and convective section fouling can be adequately controlled. Because of the higher hydrogen/carbon (H/C) ratio of natural gas compared with coal, use of the GR process results in a modest reduction in CO{sub 2} emissions. SO{sub 2} and particulate emissions are reduced in direct proportion to the fraction of heat supplied by natural gas.

National Energy Technology Laboratory

2001-02-28T23:59:59.000Z

396

Diesel particulate filter with zoned resistive heater  

Science Conference Proceedings (OSTI)

A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

Gonze, Eugene V [Pinckney, MI

2011-03-08T23:59:59.000Z

397

Zone heated diesel particulate filter electrical connection  

DOE Patents (OSTI)

An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

2010-03-30T23:59:59.000Z

398

Methods of separating particulate residue streams  

SciTech Connect

A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

2011-04-05T23:59:59.000Z

399

Electrically heated particulate filter using catalyst striping  

DOE Patents (OSTI)

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating is applied to the PF that increases a temperature of the combustion of the particulates within the PF.

Gonze, Eugene V; Paratore, Jr., Michael J; Ament, Frank

2013-07-16T23:59:59.000Z

400

High potential recovery -- Gas repressurization  

SciTech Connect

The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

Madden, M.P.

1998-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas particulate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Confounding effects of aqueous-phase impinger chemistry on apparent oxidation of mercury in flue gases  

SciTech Connect

Gas-phase reactions between elemental mercury and chlorine are a possible pathway to producing oxidized mercury species such as mercuric chloride in combustion systems. This study examines the effect of the chemistry of a commonly used sample conditioning system on apparent and actual levels of mercury oxidation in a methane-fired, 0.3 kW, quartz-lined reactor in which gas composition (HCl, Cl{sub 2}, NOx, SO{sub 2}) and quench rate were varied. The sample conditioning system included two impingers in parallel: one containing an aqueous solution of KCl to trap HgCl{sub 2}, and one containing an aqueous solution of SnCl{sub 2} to reduce HgCl{sub 2} to elemental mercury (Hg{sup 0}). Gas-phase concentrations of Cl{sub 2} as low as 1.5 ppmv were sufficient to oxidize a significant fraction of the elemental mercury in the KCl impinger via the hypochlorite ion. Furthermore, these low, but interfering levels of Cl{sub 2} appeared to persist in flue gases from several doped rapidly mixed flames with varied post flame temperature quench rates. The addition of 0.5 wt% sodium thiosulfate to the KCl solution completely prevented the oxidation from occurring in the impinger. The addition of thiosulfate did not inhibit the KCl impinger's ability to capture HgCl{sub 2}. The effectiveness of the thiosulfate was unchanged by NO or SO{sub 2}. These results bring into question laboratory scale experimental data on mercury oxidation where wet chemistry was used to partition metallic and oxidized mercury without the presence of sufficient levels of SO{sub 2}. 23 refs., 5 figs., 1 tab.

Brydger Cauch; Geoffrey D. Silcox; Joann S. Lighty; Jost O.L. Wendt; Andrew Fry; Constance L. Senior [University of Utah, Salt Lake City, UT (United States). Department of Chemical Engineering

2008-04-01T23:59:59.000Z

402

Evaluation of ceramic filters for high-temperature/high-pressure fine particulate control. Final report Dec 75-Jun 76  

SciTech Connect

High temperature gas turbines used to generate electric power require gas streams virtually free of particulate matter. Gas streams from high temperature, high pressure coal processes, such as low Btu gasification and pressurized fluidized bed combustion, require considerable particulate removal. In order to maintain high thermal efficiency the particulate clean-up must be done at the high temperatures of the process. Many new concepts for fine particulate control at elevated temperatures are presently being proposed. One such concept utilizes ceramic membrane filters. The report gives results of a study to analyze and evaluate ceramic membrane filters as a new, fine particulate (<3 um) control concept for high-temperature (approx. 900/sup 0/C), high-pressure processes. Several ceramic filters were identified as potential candidates for fine particulate removal. There does not seem to be any inherent material limitation to high-temperature operation; however, no evidence of high-temperature filter application was found. The filters typically are 2-6 mm thick, cylindrical, and available with various pore sizes, increasing upward from 0.5 um. These elements may be suitable for fine particulate control in hot gas streams. The most promising, although undeveloped, idea for a ceramic filter is to use ceramic honeycomb monoliths similar to those available for catalyst supports and heat exchangers. The walls of the monoliths are about 0.2-0.4 mm thick and of varying pore size and porosity. Geometric configurations are available which would force the gas to flow through the membrane walls. Pressure losses would be very small relative to those of standard ceramic filter elements. The application of ceramic monoliths to high-temperature fine particulate control appears very promising. It is strongly recommended that this concept be investigated further.

Poe, G.G.; Evans, R.M.; Bonnett, W.S.; Waterland, L.R.

1977-02-01T23:59:59.000Z

403

Method and apparatus for the separation of a gas-solids mixture in a circulating fluidized bed reactor  

Science Conference Proceedings (OSTI)

The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.

Vimalchand, Pannalal (Birmingham, AL); Liu, Guohai (Birmingham, AL); Peng, WanWang (Birmingham, AL)

2010-08-10T23:59:59.000Z

404

Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control  

SciTech Connect

Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic (i.e., man-made) CO{sub 2} emissions. In 2001, ALSTOM Power Inc. (ALSTOM) began a two-phase program to investigate the feasibility of various carbon capture technologies. This program was sponsored under a Cooperative Agreement from the US Department of Energy's National Energy Technology Laboratory (DOE). The first phase entailed a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen cases, representing various levels of technology development, were evaluated. Seven cases represented coal combustion in CFB type equipment. Four cases represented Integrated Gasification Combined Cycle (IGCC) systems. Two cases represented advanced Chemical Looping Combined Cycle systems. Marion, et al. reported the details of this work in 2003. One of the thirteen cases studied utilized an oxygen-fired circulating fluidized bed (CFB) boiler. In this concept, the fuel is fired with a mixture of oxygen and recirculated flue gas (mainly CO{sub 2}). This combustion process yields a flue gas containing over 80 percent (by volume) CO{sub 2}. This flue gas can be processed relatively easily to enrich the CO{sub 2} content to over 96 percent for use in enhanced oil or gas recovery (EOR or EGR) or simply dried for sequestration. The Phase I study identified the O{sub 2}-fired CFB as having a near term development potential, because it uses conventional commercial CFB technology and commercially available CO{sub 2} capture enabling technologies such as cryogenic air separation and simple rectification or distillation gas processing systems. In the long term, air separation technology advancements offer significant reductions in power requirements, which would improve plant efficiency and economics for the oxygen-fired technology. The second phase consisted of pilot-scale testing followed by a refined performance and economic evaluation of the O{sub 2} fired CFB concept. As a part of this workscope, ALSTOM modified its 3 MW{sub th} (9.9 MMBtu/hr) Multiuse Test Facility (MTF) pilot plant to operate with O{sub 2}/CO{sub 2} mixtures of up to 70 percent O{sub 2} by volume. Tests were conducted with coal and petroleum coke. The test objectives were to determine the impacts of oxygen firing on heat transfer, bed dynamics, potential agglomeration, and gaseous and particulate emissions. The test data results were used to refine the design, performance, costs, and economic models developed in Phase-I for the O{sub 2}-fired CFB with CO{sub 2} capture. Nsakala, Liljedahl, and Turek reported results from this study in 2004. ALSTOM identified several items needing further investigation in preparation for large scale demonstration of the oxygen-fired CFB concept, namely: (1) Operation and performance of the moving bed heat exchanger (MBHE) to avoid recarbonation and also for cost savings compared to the standard bubbling fluid bed heat exchanger (FBHE); (2) Performance of the back-end flash dryer absorber (FDA) for sulfur capture under high CO{sub 2}/high moisture flue gas environment using calcined limestone in the fly ash and using fresh commercial lime directly in the FDA; (3) Determination of the effect of recarbonation on fouling in the convective pass; (4) Assessment of the impact of oxygen firing on the mercury, other trace elements, and volatile organic compound (VOC) emissions; and (5) Develop a proposal-level oxygen-fired retrofit design for a relatively small existing CFB steam power plant in preparation for a large-scale demonstration of the O{sub 2} fired CFB concept. Hence, ALSTOM responded to a DOE Solicitation to address all these issues with further O{sub 2} fired MTF pilot testing and a subsequent retrofit design study of oxygen firing and CO{s

Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

2007-03-31T23:59:59.000Z

405

Electrically heated particulate filter propagation support methods and systems  

Science Conference Proceedings (OSTI)

A control system that controls regeneration of a particulate filter is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate combustion of particulate matter in the particulate filter. A propagation module estimates a propagation status of the combustion of the particulate matter based on a combustion temperature. A temperature adjustment module controls the combustion temperature by selectively increasing a temperature of exhaust that passes through the particulate filter.

Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

2011-06-07T23:59:59.000Z

406

Zoned electrical heater arranged in spaced relationship from particulate filter  

DOE Patents (OSTI)

A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI

2011-11-15T23:59:59.000Z

407

Wireless zoned particulate matter filter regeneration control system  

DOE Patents (OSTI)

An assembly includes a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and multiple zones. An absorbing layer absorbs microwave energy in one of N frequency ranges and is arranged with the upstream end. N is an integer. A frequency selective filter has M frequency selective segments and receives microwave energy in the N frequency ranges. M is an integer. One of the M frequency selective segments permits passage of the microwave energy in one of the N frequency ranges and does not permit passage of microwave energy in the other of the N frequency ranges.

Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA

2011-10-04T23:59:59.000Z

408

ENGINEERED PARTICULATES FOR CO-FIRING OF DIVERSE FEEDSTOCKS  

DOE Green Energy (OSTI)

The goal of this project is to develop a novel methodology for the formation of engineered particulates of energy-relevant material. Specifically, we aim to control interparticle cohesion in such a way as to generate macro-particles or agglomerates of several differing types of primary particles in specific proportions such that they would be of utility for co-firing applications. In Phase I of this project, we used a combination of experimentation and simulation to validate theoretically derived mixing/segregation rules for cohesive granular materials in static systems, flowing systems, and gas-solid systems.

Joseph J. McCarthy; Kunal Jain; Hongming Li; Deliang Shi

2004-03-01T23:59:59.000Z

409

Hydraulic Fracturing in Particulate Materials .  

E-Print Network (OSTI)

??For more than five decades, hydraulic fracturing has been widely used to enhance oil and gas production. Hydraulic fracturing in solid materials (e.g., rock) has… (more)

Chang, Hong

2004-01-01T23:59:59.000Z

410

Load Preheating Using Flue Gases from a Fuel-Fired Heating System  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by using the heat in furnace flue gases to preheat material coming into the furnace to improve combustion.

Not Available

2006-01-01T23:59:59.000Z

411

Evaluating energy dissipation during expansion in a refrigeration cycle using flue pipe acoustic resonators  

E-Print Network (OSTI)

This research evaluates the feasibility of using a flue pipe acoustic resonator to dissipate energy from a refrigerant stream in order to achieve greater cooling power from a cryorefrigeration cycle. Two models of the ...

Luckyanova, Maria N. (Maria Nickolayevna)

2008-01-01T23:59:59.000Z

412

Mass transfer within electrostatic precipitators: in-flight adsorption of mercury by charged suspended particulates  

Science Conference Proceedings (OSTI)

Electrostatic precipitation is the dominant method of particulate control used for coal combustion, and varying degrees of mercury capture and transformation have been reported across ESPs. Nevertheless, the fate of gas-phase mercury within an ESP remains poorly understood. The present analysis focuses on the gas-particle mass transfer that occurs within a charged aerosol in an ESP. As a necessary step in gas-phase mercury adsorption or transformation, gas-particle mass transfer - particularly in configurations other than fixed beds - has received far less attention than studies of adsorption kinetics. Our previous analysis showed that only a small fraction of gas-phase mercury entering an ESP is likely to be adsorbed by collected particulate matter on the plate electrodes. The present simplified analysis provides insight into gas-particle mass transfer within an ESP under two limiting conditions: laminar and turbulent fluid flows. The analysis reveals that during the process of particulate collection, gas-particle mass transfer can be quite high, easily exceeding the mass transfer to ESP plate electrodes in most cases. Decreasing particle size, increasing particle mass loading, and increasing temperature all result in increased gas-particle mass transfer. The analysis predicts significantly greater gas-particle mass transfer in the laminar limit than in the turbulent limit; however, the differences become negligible under conditions where other factors, such as total mass of suspended particulates, are the controlling mass transfer parameters. Results are compared to selected pilot- and full-scale sorbent injection data. 41 refs., 5 figs.

Herek L. Clack [Illinois Institute of Technology, Chicago, IL (United States). Department of Mechanical, Materials and Aerospace Engineering

2006-06-01T23:59:59.000Z

413

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment By Fuel and Equipment Type, 2010 Total Units by Equipment Type, 1985-2010² Coal Units by Equipment Type, Petroleum and Natural Gas Units 1985-2010² by Equipment Type, 1985-2010² 318 U.S. Energy Information Administration / Annual Energy Review 2011 Coal Units Petroleum and Natural Gas Units Particulate Collectors Thousand Megawatts 329 165 185 26 75 1 Particulate Collectors Cooling Towers Flue Gas Particulate Collectors Cooling Towers Flue Gas 0 50 100 150 200 250 300 350 1985 1990 1995 2000 2005 2010 0 100 200 300 400 Thousand Megawatts Flue Gas Desulfurization¹ Particulate Collectors Cooling Towers Flue