Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

2

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams  

E-Print Network [OSTI]

An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

3

Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas  

SciTech Connect (OSTI)

An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.

Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.

2004-01-01T23:59:59.000Z

4

Integrated flue gas processing method  

SciTech Connect (OSTI)

A system and process for flue gas processing to remove both gaseous contaminants such as sulfur dioxide and particulate matter such as flyash integrates spray scrubbing apparatus and wet electrostatic precipitation apparatus and provides for the advantageous extraction and utilization of heat present in the flue gas which is being processed. The integrated system and process utilizes a spray scrubbing tower into which the flue gas is introduced and into which aqueous alkali slurry is introduced as spray for sulfur dioxide removal therein. The flue gas leaves the tower moisture laden and enters a wet electrostatic precipitator which includes a heat exchanger where flyash and entrained droplets in the flue gas are removed by electrostatic precipitation and heat is removed from the flue gas. The cleaned flue gas exits from the precipitator and discharges into a stack. The heat removed from the flue gas finds use in the system or otherwise in the steam generation plant. The wet electrostatic precipitator of the integrated system and process includes a portion constructed as a cross flow heat exchanger with flue gas saturated with water vapor moving vertically upwards inside tubes arranged in a staggered pattern and ambient air being pulled horizontally across the outside of those tubes to cool the tube walls and thereby remove heat from the flue gas and cause condensation of water vapor on the inside wall surfaces. The condensate washes the electrostatically collected flyash particles down from the inside tube walls. The heat that is extracted from the saturated flue gas in the wet electrostatic precipitator heat exchanger may be utilized in several different ways, including: (1) for flue gas reheat after the wet electrostatic precipitator; (2) for preheating of combustion air to the steam generator boiler; and, (3) for heating of buildings.

Bakke, E.; Willett, H.P.

1982-12-21T23:59:59.000Z

5

The Beckett System Recovery and Utilization of Low Grade Waste Heat From Flue Gas  

E-Print Network [OSTI]

THE BECKETT SYSTEM RECOVERY AND UTILIZATION OF LOW GRADE WASTE HEAT FROM FLUE GAS Wilfred R. Henderson Blenkhorn & Sawle Ltd. St. Catharines, Ontario Joseph F. DeBiase John Deere WeIland I%rks WeIland, Ontario ABSTRACT The Beckett Heat Recovery...

Henderson, W. R.; DeBiase, J. F.

1983-01-01T23:59:59.000Z

6

Recovery of Water from Boiler Flue Gas  

SciTech Connect (OSTI)

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

7

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

8

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

9

Combined Flue Gas Heat Recovery and Pollution Control Systems  

E-Print Network [OSTI]

in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

Zbikowski, T.

1979-01-01T23:59:59.000Z

10

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams .  

E-Print Network [OSTI]

??An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue… (more)

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

11

Flue gas desulfurization  

DOE Patents [OSTI]

The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

Im, K.H.; Ahluwalia, R.K.

1984-05-01T23:59:59.000Z

12

Flue gas desulfurization  

DOE Patents [OSTI]

A process and apparatus for removing sulfur oxide from combustion gas to form Na.sub.2 SO.sub.4 and for reducing the harmful effects of Na.sub.2 SO.sub.4 on auxiliary heat exchangers in which a sodium compound is injected into the hot combustion gas forming liquid Na.sub.2 SO.sub.4 in a gas-gas reaction and the resultant gas containing Na.sub.2 SO.sub.4 is cooled to below about 1150.degree. K. to form particles of Na.sub.2 SO.sub.4 prior to contact with at least one heat exchanger with the cooling being provided by the recycling of combustion gas from a cooled zone downstream from the introduction of the cooling gas.

Im, Kwan H. (Lisle, IL); Ahluwalia, Rajesh K. (Clarendon Hills, IL)

1985-01-01T23:59:59.000Z

13

Mercury sorbent delivery system for flue gas  

DOE Patents [OSTI]

The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

Klunder; ,Edgar B. (Bethel Park, PA)

2009-02-24T23:59:59.000Z

14

Final Flue Gas Cleaning (FFGC)  

E-Print Network [OSTI]

the surrounding area but can also be carried thousands of miles by trade winds before falling to ground level to pollute soil, vegetation and water resources. An obvious question is: why doesn’t industry cool the flue gas; condense out the pollutants... of handling and disposing of these pollutants at the plant site. 2. Oxides of sulfur and nitrogen can condense out as an acid, including carbonic acid that attacks materials of construction. By keeping temperatures elevated, carbon steel construction can...

Stinger, D. H.; Romero, M. H.

2006-01-01T23:59:59.000Z

15

Cement Kiln Flue Gas Recovery Scrubber Project  

SciTech Connect (OSTI)

The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

National Energy Technology Laboratory

2001-11-30T23:59:59.000Z

16

Construction and testing of a flue-gas corrosion probe  

SciTech Connect (OSTI)

The selection of suitable materials for industrial, waste-heat- recovery systems requires assessment of corrosion of materials in various flue-gas environments. Such assessments involve exposing candidate materials to high-temperature flue gases and analyzing the effects of the exposure conditions. Because corrosion is related to flue-gas chemical composition and temperature, variations in temperature complicate the determination of corrosion rates and corrosion mechanisms. Conversely, a relatively constant temperature allows a more accurate determination of the effects of exposure conditions. For this reason, controlled-temperature flue-gas corrosion probes were constructed and tested for exposure tests of materials. A prototype probe consisted of a silicon carbide tube specimen, supporting hardware, and instrumentation for controlling temperature by internal heating and cooling. An advanced probe included other tubular specimens. Testing of the probes in an industrial-type furnace at a nominal flue-gas temperature of 1200{degree}C revealed that temperature control was inadequate. The cooling mode imposed a substantial axial-temperature gradient on the specimens; while the heating mode imposed a smaller gradient, the heating capacity was very limited. 10 refs., 10 figs., 2 tabs.

Federer, J.I.; McEvers, J.A.

1990-08-01T23:59:59.000Z

17

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

18

Evaluation of the Energy Saving Potential from Flue Gas Pressurization  

E-Print Network [OSTI]

details the impact of providing a can be recovered at .1 inch wc. The work of com 500 r----------------------, FLUE GAS TEMPERATURES 200 COUNTER FLOW 100 50 _~,,_ CO-FLOW RECUPERATORS 20 10 SPECIFIC ENERGY, Btu/IbM AIR rl'-h~A:--WORK OF 5... consideration for a convective heat flue gas is entrained, the two are mixed in a exchanger is l600?F for the convective portion of the mixing section, and pressure is then recovered in recuperation equipment. It is significant that for a a diffuser...

Stanton, E. H.

1980-01-01T23:59:59.000Z

19

Flue gas desulfurization method and apparatus  

DOE Patents [OSTI]

A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

Madden, D.A.; Farthing, G.A.

1998-09-29T23:59:59.000Z

20

Flue gas desulfurization method and apparatus  

DOE Patents [OSTI]

A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

Madden, D.A.; Farthing, G.A.

1998-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Control of scale in flue gas scrubbers  

SciTech Connect (OSTI)

This patent describes a flue gas desulfurization system in which sulfur dioxide-containing flue gas is passed in countercurrent flow with an aqueous calcium-bearing scrubbing liquor whereby the sulfur dioxide is removed from the flue gas by being absorbed by the scrubbing liquor and converted to calcium sulfite and/or calcium sulfate. The improvement of minimizing the formation of calcium scale on the surfaces of the system comprises maintaining in the scrubbing liquor about 0.1-25 ppm of a 1:1 diisobutylene-maleic anhydride copolymer having an average molecular weight of 11000. The copolymer is incorporated in the scrubbing liquor as a 10-15% aqueous dispersion.

Thomas, P.A.; Dewitt-Dick, D.B.

1987-06-02T23:59:59.000Z

22

Confined zone dispersion flue gas desulfurization demonstration  

SciTech Connect (OSTI)

Under the Cooperative Agreement with DOE, Bechtel and Pennsylvania Electric Company (Penelec) will jointly demonstrate Bechtel's confined zone dispersion (CZD) process for removing both sulfur and nitrogen pollutants from the flue gases leaving a coal-fired boiler. Demonstration testing of the CZD process will be conducted on the 147 MWe coal-fired generating Seward Station Unit 15 of Penelec. The test will utilize one-half of the existing flue gas capacity, and will be designed to demonstrate the viability of the process and its operability at a total cost of less than $300/ton of SO{sub 2} removed. The CZD process involves injecting a finely atomized slurry of reactive lime into the duct work of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct confined in an envelope of hot gas between the wet zone and the duct walls. The lime slurry reacts with part of the sulfur dioxide (SO{sub 2}) in the gas, and the reaction products dry to form solid particles. An electrostatic precipitator (ESP) downstream from the point of injection captures the reaction products, along with the fly ash entrained in the flue gas. 2 figs.

Not Available

1991-02-22T23:59:59.000Z

23

Fundamental mechanisms in flue-gas conditioning  

SciTech Connect (OSTI)

The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.

1992-01-09T23:59:59.000Z

24

Direct fired absorption machine flue gas recuperator  

DOE Patents [OSTI]

A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1985-01-01T23:59:59.000Z

25

Water Extraction from Coal-Fired Power Plant Flue Gas  

SciTech Connect (OSTI)

The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

2006-06-30T23:59:59.000Z

26

Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents  

SciTech Connect (OSTI)

This report describes research conducted between October 1, 2005, and December 31, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A field test was conducted to examine the extent to which RTI's supported sorbent can be regenerated in a heated, hollow screw conveyor. This field test was conducted at the facilities of a screw conveyor manufacturer. The sorbent was essentially completely regenerated during this test, as confirmed by thermal desorption and mass spectroscopy analysis of the regenerated sorbent. Little or no sorbent attrition was observed during 24 passes through the heated screw conveyor system. Three downflow contactor absorption tests were conducted using calcined sodium bicarbonate as the absorbent. Maximum carbon dioxide removals of 57 and 91% from simulated flue gas were observed at near ambient temperatures with water-saturated gas. These tests demonstrated that calcined sodium carbonate is not as effective at removing CO{sub 2} as are supported sorbents containing 10 to 15% sodium carbonate. Delivery of the hollow screw conveyor for the laboratory-scale sorbent regeneration system was delayed; however, construction of other components of this system continued during the quarter.

David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Andreas Weber; Raghubir P. Gupta

2006-01-01T23:59:59.000Z

27

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect (OSTI)

Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

2001-01-01T23:59:59.000Z

28

Noble metal catalysts for oxidation of mercury in flue gas  

SciTech Connect (OSTI)

The use of precious metals and platinum group metals as catalysts for oxidation of mercury in flue gas is an active area of study. To date, field studies have recently focused on gold and palladium catalysts installed at pilot-scale. In this work, we introduce bench-scale results for gold, platinum, and palladium catalysts tested in realistic simulated flue gas. Initial results reveal intriguing characteristics of catalytic mercury oxidation and provide insight for future research.

Presto, A.A.; Granite, E.J.

2008-04-01T23:59:59.000Z

29

Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs  

E-Print Network [OSTI]

, corefloods were conducted at 1,500 psig and 70??C, in which flue gas was injected into an Austin chalk core containing initially methane. Two types of flue gases were injected: dehydrated flue gas with 13.574 mole% CO2 (Gas A), and treated flue gas (N2, O2...

Nogueira de Mago, Marjorie Carolina

2005-11-01T23:59:59.000Z

30

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect (OSTI)

Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

2001-05-01T23:59:59.000Z

31

Flue gas desulfurization/denitrification using metal-chelate additives  

DOE Patents [OSTI]

A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

1985-08-05T23:59:59.000Z

32

Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas  

DOE Patents [OSTI]

Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

2012-11-06T23:59:59.000Z

33

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

SciTech Connect (OSTI)

Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

2007-06-30T23:59:59.000Z

34

Flue gas injection control of silica in cooling towers.  

SciTech Connect (OSTI)

Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

2011-06-01T23:59:59.000Z

35

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect (OSTI)

This report describes research conducted between April 1, 2005 and June 30, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas from coal combustion and synthesis gas from coal gasification. Supported sodium carbonate sorbents removed up to 76% of the carbon dioxide from simulated flue gas in a downflow cocurrent flow reactor system, with an approximate 15 second gas-solid contact time. This reaction proceeds at temperatures as low as 25 C. Lithium silicate sorbents remove carbon dioxide from high temperature simulated flue gas and simulated synthesis gas. Both sorbent types can be thermally regenerated and reused. The lithium silicate sorbent was tested in a thermogravimetric analyzer and in a 1-in quartz reactor at atmospheric pressure; tests were also conducted at elevated pressure in a 2-in diameter high temperature high pressure reactor system. The lithium sorbent reacts rapidly with carbon dioxide in flue gas at 350-500 C to absorb about 10% of the sorbent weight, then continues to react at a lower rate. The sorbent can be essentially completely regenerated at temperatures above 600 C and reused. In atmospheric pressure tests with synthesis gas of 10% initial carbon dioxide content, the sorbent removed over 90% of the carbon dioxide. An economic analysis of a downflow absorption process for removal of carbon dioxide from flue gas with a supported sodium carbonate sorbent suggests that a 90% efficient carbon dioxide capture system installed at a 500 MW{sub e} generating plant would have an incremental capital cost of $35 million ($91/kWe, assuming 20 percent for contingencies) and an operating cost of $0.0046/kWh. Assuming capital costs of $1,000/kW for a 500 MWe plant the capital cost of the down flow absorption process represents a less than 10% increase, thus meeting DOE goals as set forth in its Carbon Sequestration Technology Roadmap and Program Plan.

David A. Green; Thomas Nelson; Brian S. Turk; Paul Box; Weijiong Li; Raghubir P. Gupta

2005-07-01T23:59:59.000Z

36

Biomimetic Membrane for CO2 Capture from Flue Gas  

SciTech Connect (OSTI)

These Phase III experiments successfully addressed several issues needed to characterize a permeator system for application to a pulverized coal (PC) burning furnace/boiler assuming typical post-combustion cleanup devices in place. We completed key laboratory stage optimization and modeling efforts needed to move towards larger scale testing. The SOPO addressed six areas. Task 1--Post-Combustion Particle Cleanup--The first object was to determine if the Carbozyme permeator performance was likely to be reduced by particles (materials) in the flue gas stream that would either obstruct the mouth of the hollow fibers (HF) or stick to the HF bore wall surface. The second, based on the Acceptance Standards (see below), was to determine whether it would be preferable to clean the inlet gas stream (removing acid gases and particulates) or to develop methods to clean the Carbozyme permeator if performance declined due to HF block. We concluded that condensation of particle and particulate emissions, in the heat exchanger, could result in the formation of very sticky sulfate aerosols with a strong likelihood of obtruding the HF. These must be managed carefully and minimized to near-zero status before entering the permeator inlet stream. More extensive post-combustion cleanup is expected to be a necessary expense, independent of CO{sub 2} capture technology This finding is in agreement with views now emerging in the literature for a variety of CO{sub 2} capture methods. Task 2--Water Condensation--The key goal was to monitor and control temperature distributions within the permeator and between the permeator and its surroundings to determine whether water condensation in the pores or the HF bore would block flow, decreasing performance. A heat transfer fluid and delivery system were developed and employed. The result was near isothermal performance that avoided all instances of flow block. Direct thermocouple measurements provided the basis for developing a heat transfer model that supports prediction of heat transfer profiles for larger permeators Tasks 3. 4.1, 4.2--Temperature Range of Enzymes--The goal was to determine if the enzyme operating temperature would limit the range of thermal conditions available to the capture system. We demonstrated the ability of various isozymes (enzyme variants) to operate from 4-85 C. Consequently, the operating characteristics of the enzyme are not a controlling factor. Further, any isozyme whose upper temperature bound is at least 10 C greater than that of the planned inlet temperature will be stable under unanticipated, uncontrolled 'hiccups' in power plant operation. Task 4.4, 4.4--Examination of the Effects of SOx and NOx on Enzyme Activity (Development of Flue Gas Composition Acceptance Standards)--The purpose was to define the inlet gas profile boundaries. We examined the potential adverse effects of flue gas constituents including different acids from to develop an acceptance standard and compared these values to actual PC flue gas composition. Potential issues include changes in pH, accumulation of specific inhibitory anions and cations. A model was developed and validated by test with a SO{sub 2}-laden stream. The predicted and actual data very largely coincided. The model predicted feed stream requirements to allow continuous operation in excess of 2500 hours. We developed operational (physical and chemical) strategies to avoid or ameliorate these effects. Avoidance, the preferred strategy (noted above), is accomplished by more extensive cleanup of the flue gas stream. Task 5--Process Engineering Model--We developed a process-engineering model for two purposes. The first was to predict the physical and chemical status at each test point in the design as a basis for scale-up. The second was to model the capital and operating cost of the apparatus. These were accomplished and used to predict capex, opex and cost of energy. Task 6--Preliminary Commercialization Plan--We carried out analyses of the market and the competition by a variety of parameters. The conclusion was that there is a l

Michael C. Trachtenberg

2007-05-31T23:59:59.000Z

37

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect (OSTI)

The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport reactor systems is planned to demonstrate the feasibility of this process in large scale operations to separate carbon dioxide from flue gas.

David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

2001-10-01T23:59:59.000Z

38

Recovering "Waste" from "WTEs"? Heat Attaching devices to flues and exhaust pipes could harvest waste heat-  

E-Print Network [OSTI]

Kanatzidis argues that wherever heat is generated as part of power generation, thermoelectric devices couldRecovering "Waste" from "WTEs"? Heat Attaching devices to flues and exhaust pipes could harvest waste heat- Mar 16th 2006 | From The Economist print edition HERE is a thought: approximately 60

Columbia University

39

Flue gas conditioning for improved particle collection in electrostatic precipitators  

SciTech Connect (OSTI)

The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfm bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.

Durham, M.D.

1992-04-27T23:59:59.000Z

40

Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents  

SciTech Connect (OSTI)

This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents  

SciTech Connect (OSTI)

This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Raghubir P. Gupta

2006-03-31T23:59:59.000Z

42

Alternative formulations of regenerable flue gas cleanup catalysts  

SciTech Connect (OSTI)

The major source of man-made SO{sub 2} in the atmosphere is the burning of coal for electric power generation. Coal-fired utility plants are also large sources of NO{sub x} pollution. Regenerable flue gas desulfurization/NO{sub x} abatement catalysts provide one mechanism of simultaneously removing SO{sub 2} and NO{sub x} species from flue gases released into the atmosphere. The purpose of this project is to examine routes of optimizing the adsorption efficiency, the adsorption capacity, and the ease of regeneration of regenerable flue gas cleanup catalysts. We are investigating two different mechanisms for accomplishing this goal. The first involves the use of different alkali and alkaline earth metals as promoters for the alumina sorbents to increase the surface basicity of the sorbent and thus adjust the number and distribution of adsorption sites. The second involves investigation of non-aqueous impregnation, as opposed to aqueous impregnation, as a method to obtain an evenly dispersed monolayer of the promoter on the surface.

Mitchell, M.B.; White, M.G.

1991-01-01T23:59:59.000Z

43

Thief process for the removal of mercury from flue gas  

DOE Patents [OSTI]

A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

Pennline, Henry W. (Bethel Park, PA); Granite, Evan J. (Wexford, PA); Freeman, Mark C. (South Park Township, PA); Hargis, Richard A. (Canonsburg, PA); O'Dowd, William J. (Charleroi, PA)

2003-02-18T23:59:59.000Z

44

E-Print Network 3.0 - advanced flue gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(WTERT) Collection: Renewable Energy 5 INNOVATIVE TECHNOLOGY FOR THE CONTROL OF AIR POLLUTION AT WASTE-TO-ENERGY Summary: -Beam process is applied to flue gas compositions...

45

Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum  

SciTech Connect (OSTI)

Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

Hensman, Carl, E., P.h.D; Baker, Trevor

2008-06-16T23:59:59.000Z

46

Fundamentals of Mercury Oxidation in Flue Gas  

SciTech Connect (OSTI)

The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 2 results for the experimental and modeling tasks. Experiments in the mercury reactor are underway and interesting results suggested that a more comprehensive look at catalyzed surface reactions was needed. Therefore, much of the work has focused on the heterogeneous reactions. In addition, various chemical kinetic models have been explored in an attempt to explain some discrepancies between this modeling effort and others.

JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble; Balaji Krishnakumar

2005-08-01T23:59:59.000Z

47

Characterization of flue gas residues from municipal solid waste combustors  

SciTech Connect (OSTI)

Solid residues recovered from treatment of flue gas resulting from the combustion of municipal solid waste (MSW) are of particular concern because of ever-increasing worldwide production rates and their concentrations of potentially hazardous transition elements and heavy metals. Three main residue types have been studied in this study: electrostatic precipitator ashes, wet filter cakes, and semidry scrubber residues. Using a large number of residues from two French MSW combustion (MSWC) facilities, the aim of this work is to determine their chemistry and mineralogy in order to shed light on their potential toxicity. The authors find that pollutant concentrations are dependent not only on the composition of MSW but also on the size of particles and flue gas treatment process. Using a procedure based on leaching, grain-size, density, and magnetic separations, the authors present a detailed description of the mineralogy of MSWC solid residues. These residues consist of a very heterogeneous assemblage of glasses, metals, and other crystals in which polluting elements are distributed. The results of this characterization will therefore help to contribute to the development of adequate waste management strategies.

Forestier, L.L. [CRPG-CNRS, Vandoeuvre-les-Nancy (France)] [CRPG-CNRS, Vandoeuvre-les-Nancy (France); [ENSG, Vandoeuvre-les-Nancy (France); Libourel, G. [CRPG-CNRS, Vandoeuvre-les-Nancy (France)] [CRPG-CNRS, Vandoeuvre-les-Nancy (France); [Univ. H. Poincare, Vandoeuvre-les-Nancy (France)

1998-08-01T23:59:59.000Z

48

Dry flue gas desulfurization process for various coals  

SciTech Connect (OSTI)

Flue gas desulfurization (FGD) processes have been widely used since the early 1970's for control of sulfur dioxide emissions from coal-fired power plants. First generation FGD systems employ ''wet processes'' whereby the flue gas is contacted with a solution or slurry of an alkali reagent. Most of these installations use either lime or limestone. Calcium-based wet systems have, in general, satisfied SO/sub 2/ removal requirements; however, reliability of the early systems was affected by some operational problems. Additionally, sludge dewatering and disposal equipment results in overall system complexity. A dry FGD process which minimizes these problems was developed in late 1970's. It incorporates a spray drying concept for removal of SO/sub 2/ by reaction with lime slurry or soda ash solution. The spray dryer absorber is followed by an electrostatic precipitator or a fabric filter where particulates are collected. The waste product, which is a mixture of FGD reaction products, unreacted reagent and fly ash, is dry thus eliminating the need for dewatering equipment.

Widico, M.J.; Dhargalkar, P.H.

1985-01-01T23:59:59.000Z

49

Separation of CO2 from flue gas using electrochemical cells  

SciTech Connect (OSTI)

ABSTRACT Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation, However, the presence of trace contaminants, i.e" sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area, Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/ bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO 2 and 02 is produced, the possibility exists to use this stream in oxy-firing of additional fuel. From this research, a novel concept for efficiently producing a carbon dioxide rich effiuent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossilfuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide, A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.

Pennline, H.W; Granite, E.J.; Luebke, D.R; Kitchin, J.R; Landon, J.; Weiland, L.M.

2010-06-01T23:59:59.000Z

50

Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps  

DOE Patents [OSTI]

A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

2012-08-21T23:59:59.000Z

51

Desulfurization of flue gas by the confined zone dispersion process  

SciTech Connect (OSTI)

This Confined Zone Dispersion (CZD) process involves injecting a finely atomized slurry of reactive lime into the ductwork of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct confined in an envelope of hot gas between the wet zone and the duct walls. The lime slurry reacts with part of the sulfur dioxide (SO{sub 2}) in the gas, and the reaction products dry to form solid particles. An electrostatic precipitator (ESP) downstream from the point of injection captures the reaction products, along with the fly ash entrained in the flue gas. The purpose of this project was to prove the CZD process concept by testing it on a limited scale, and then demonstrating the process on a large scale. The scope of work included projecting the cost of commercial implementation. The test facility for the proof-of-concept tests was on a scale equivalent to a 7 MWe generating plant. The large-scale demonstration was made on a scale of 70 MWe. This report describes how data from the two test sites were correlated, and presents conceptual designs for two full-scale retrofit installations. The rationale and data supporting the conclusions are also given in Part 4.

Not Available

1989-10-01T23:59:59.000Z

52

Multi-component removal in flue gas by aqua ammonia  

DOE Patents [OSTI]

A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

Yeh, James T. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA)

2007-08-14T23:59:59.000Z

53

Flue gas desulfurization : cost and functional analysis of large-scale and proven plants  

E-Print Network [OSTI]

Flue Gas Desulfurization is a method of controlling the emission of sulfurs, which causes the acid rain. The following study is based on 26 utilities which burn coal, have a generating capacity of at least 50 Megawatts ...

Tilly, Jean

1983-01-01T23:59:59.000Z

54

New Developments in Closed Loop Combustion Control Using Flue Gas Analysis  

E-Print Network [OSTI]

New developments in closed loop combustion control are causing radical changes in the way combustion control systems are implemented. The recent availability of in line flue gas analyzers and microprocessor technology are teaming up to produce...

Nelson, R. L.

1981-01-01T23:59:59.000Z

55

Profitability of CCS with flue gas bypass and solvent storage Supplementary Information  

E-Print Network [OSTI]

1 Profitability of CCS with flue gas bypass and solvent storage #12; 2 Perfect information model formulation Sets t T Time, in hours, from K Capital cost to oversize turbine if solvent storage or bypass are used

Jaramillo, Paulina

56

Separation of flue-gas scrubber sludge into marketable products  

SciTech Connect (OSTI)

A tremendous amount of wet flue-gas desulfurization scrubber sludge (estimated 20 million metric tons per year in the US) is currently being landfilled at a huge cost to utility companies. Scrubber sludge is the solid precipitate produced during desulfurization of flue-gas from burning high sulfur coal. The amount of this sludge is expected to increase in the near future due to ever increasing governmental regulation concerning the amount of sulfur emissions. Scrubber sludge is a fine, grey colored powder that contains calcium sulfite hemihydrate (CaSO{sub 3} {center_dot} 1/2H{sub 2}), calcium sulfate dihydrate (CaSO{sub 4} {center_dot} 2H{sub 2}O), limestone (CaCO{sub 3}), silicates, and iron oxides. This material can continue to be landfilled at a steadily increasing cost, or an alternative for utilizing this material can be developed. This study explores the characteristics of a naturally oxidized wet flue-gas desulfurization scrubber sludge and uses these characteristics to develop alternatives for recycling this material. In order for scrubber sludge to be used as a feed material for various markets, it was necessary to process it to meet the specifications of these markets. A physical separation process was therefore needed to separate the components of this sludge into useful products at a low cost. There are several physical separation techniques available to separate fine particulates. These techniques can be divided into four major groups: magnetic separation, electrostatic separation, physico-chemical separation, and density-based separation. The properties of this material indicated that two methods of separation were feasible: water-only cycloning (density-based separation), and froth flotation (physico-chemical separation). These processes could be used either separately, or in combination. The goal of this study was to reduce the limestone impurity in this scrubber sludge from 5.6% by weight to below 2.0% by weight. The resulting clean calcium sulfite/sulfate material can be oxidized into a synthetic gypsum that can be used in several markets which include: wallboard manufacturing, plaster, portland cement, and as a soil conditioner. Single stage water-only cycloning removed nearly 50% of the limestone by weight from the scrubber sludge and maintained a weight recovery of 76%. Froth flotation produced a calcium sulfite/sulfate that contained 4.30% limestone by weight with a 71% weight recovery. These methods were successful in removing some of the limestone impurity, but were not able to meet the specifications needed. However, the combination of water-only cycloning and froth flotation provided a clean, useful calcium sulfite/sulfate material with a limestone grade of 1.70% by weight and a total weight recovery of nearly 66%.

Kawatra, S.K.; Eisele, T.C.

1997-08-31T23:59:59.000Z

57

Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations  

SciTech Connect (OSTI)

The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

Presto, A.A.; Granite, E.J

2008-07-01T23:59:59.000Z

58

Analysis of Halogen-Mercury Reactions in Flue Gas  

SciTech Connect (OSTI)

Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

2010-01-01T23:59:59.000Z

59

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment  

SciTech Connect (OSTI)

The AFGD process as demonstrated by Pure Air at the Bailly Station offers a reliable and cost-effective means of achieving a high degree of SO{sub 2} emissions reduction when burning high-sulfur coals. Many innovative features have been successfully incorporated in this process, and it is ready for widespread commercial use. The system uses a single-loop cocurrent scrubbing process with in-situ oxidation to produce wallboard-grade gypsum instead of wet sludge. A novel wastewater evaporation system minimizes effluents. The advanced scrubbing process uses a common absorber to serve multiple boilers, thereby saving on capital through economies of scale. Major results of the project are: (1) SO{sub 2} removal of over 94 percent was achieved over the three-year demonstration period, with a system availability exceeding 99.5 percent; (2) a large, single absorber handled the combined flue gas of boilers generating 528 MWe of power, and no spares were required; (3) direct injection of pulverized limestone into the absorber was successful; (4) Wastewater evaporation eliminated the need for liquid waste disposal; and (5) the gypsum by-product was used directly for wallboard manufacture, eliminating the need to dispose of waste sludge.

National Energy Technology Laboratory

2001-08-31T23:59:59.000Z

60

Comment on the “Role of SO2 for Elemental Mercury Removal from Coal Combustion Flue Gas by Activated Carbon”  

SciTech Connect (OSTI)

A communication in response to the excellent and timely paper entitled “Role of SO2 for Elemental Mercury Removal from Coal Combustion Flue Gas by Activated Carbon”.

Granite, E.J.; Presto, A.A.

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

In the field. Pilot project uses innovative process to capture CO{sub 2} from flue gas  

SciTech Connect (OSTI)

A pilot project at We Energies' Pleasant Prairie Power Plant uses chilled ammonia to capture CO{sub 2} from flue gas. 3 photos.

NONE

2008-04-01T23:59:59.000Z

62

Near-Zero Emissions Oxy-Combustion Flue Gas Purification  

SciTech Connect (OSTI)

The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plants burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by-product sulfuric and nitric acids that meet the commercial product specifications. The sulfuric acid will have to be disposed of by neutralization, thus lowering the value of the technology to same level as that of the activated carbon process. Therefore, it was decided to discontinue any further efforts on sulfuric acid process. Because of encouraging results on the activated carbon process, it was decided to add a new subtask on testing this process in a dual bed continuous unit. A 40 days long continuous operation test confirmed the excellent SOx/NOx removal efficiencies achieved in the batch operation. This test also indicated the need for further efforts on optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level. The VPSA process was tested in a pilot unit. It achieved CO{sub 2} recovery of > 95% and CO{sub 2} purity of >80% (by vol.) from simulated cold box feed streams. The overall CO{sub 2} recovery from the cold box VPSA hybrid process was projected to be >99% for plants with low air ingress (2%) and >97% for plants with high air ingress (10%). Economic analysis was performed to assess value of the NZE CPU. The advantage of NZE CPU over conventional CPU is only apparent when CO{sub 2} capture and avoided costs are compared. For greenfield plants, cost of avoided CO{sub 2} and cost of captured CO{sub 2} are generally about 11-14% lower using the NZE CPU compared to using a conventional CPU. For older plants with high air intrusion, the cost of avoided CO{sub 2} and capture CO{sub 2} are about 18-24% lower using the NZE CPU. Lower capture costs for NZE CPU are due to lower capital investment in FGD/SCR and higher CO{sub 2} capture efficiency. In summary, as a result of this project, we now have developed one technology option for NZE CPU based on the activated carbon process and coldbox-VPSA hybrid process. This technology is projected to work for both low and high sulfur coal plants. The NZE CPU technology is projected to achieve near zero stack emissions

Minish Shah; Nich Degenstein; Monica Zanfir; Rahul Solunke; Ravi Kumar; Jennifer Bugayong; Ken Burgers

2012-06-30T23:59:59.000Z

63

Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas  

SciTech Connect (OSTI)

Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

Lee, S.H.D.; Swift, W.M.; Johnson, I.

1980-01-01T23:59:59.000Z

64

Proof-of concept testing of the advanced NOXSO flue gas cleanup process. Final report  

SciTech Connect (OSTI)

The NOXSO Process uses a regenerable sorbent that removes SO{sub 2} and NO{sub x} simultaneously from flue gas. The sorbent is a stabilized {gamma}-alumina bed impregnated with sodium carbonate. The process was successfully tested at three different scales, equivalent to 0.017, 0.06 and 0.75 MW of flue gas generated from a coal-fired power plant. The Proof-of-Concept (POC) Test is the last test prior to a full-scale demonstration. A slip stream of flue gas equivalent to a 5 MW coal-fired power plant was used for the POC test. This paper summarizes the NOXSO POC plant and its test results.

Not Available

1993-04-01T23:59:59.000Z

65

Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas  

E-Print Network [OSTI]

Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using]. Besides physical and chemical methods for sequestration of CO2 from flue gas [2], microalgae culture holds great potential for converting flue gas to biomass. Microalgae can capture solar energy more efficiently

Subramanian, Venkat

66

Compression stripping of flue gas with energy recovery  

DOE Patents [OSTI]

A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SO.sub.X and NO.sub.X and CO.sub.2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO.sub.2, SO.sub.2, and H.sub.2 O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

2005-05-31T23:59:59.000Z

67

Compression Stripping of Flue Gas with Energy Recovery  

DOE Patents [OSTI]

A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SOX and NOX and CO2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO2, SO2, and H2O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

Ochs, Thomas L.; O'Connor, William K.

2005-05-31T23:59:59.000Z

68

High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents  

SciTech Connect (OSTI)

The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.

Cengiz, P.A.; Ho, K.K.; Abbasian, J.; Lau, F.S.

2002-09-20T23:59:59.000Z

69

Synthetic aggregates prepared from flue gas desulfurization by-products using various binder materials  

SciTech Connect (OSTI)

Flue Gas Desulfurization (FGD) by-products can be converted into environmentally safe and structurally stable aggregates. One type of synthetic aggregate was prepared using an optimum mixture of (FGD) by-products, fly ash, and water. Mineral reactions have been examined using X-ray diffraction and scanning electron microscope.

Bellucci, J.; Graham, U.M.; Hower, J.C.; Robl, T.L. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

1994-12-31T23:59:59.000Z

70

Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process  

SciTech Connect (OSTI)

Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

2011-10-16T23:59:59.000Z

71

MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS  

SciTech Connect (OSTI)

The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

2009-03-31T23:59:59.000Z

72

New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement  

SciTech Connect (OSTI)

Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

2014-01-01T23:59:59.000Z

73

Confined zone dispersion flue gas desulfurization demonstration. Quarterly report No. 10, February 17--May 31, 1993  

SciTech Connect (OSTI)

The CZD process involves injecting a finely atomized slurry of reactive lime into the flue gas duct work of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct walls. The lime slurry reacts with part of the SO{sub 2} in the gas, and the reaction products dry to form solid particles. A solids collector, typically an electrostatic precipitator (ESP) downstream from the point of injection, captures the reaction products along with the fly ash entrained in the flue gas. The demonstration is being conducted at Penelec`s Seward Station, Unit No. 15. This boiler is a 147 MWe coal-fired unit, which utilizes Pennsylvania bituminous coal (approximately 1.2 to 2.5% sulfur). One of the two flue gas ducts leading from the boiler has been retrofitted with the CZD technology. The first existing ESP installed in the station is immediately behind the air preheater. The second ESP, installed about 15 years ago, is about 80 feet away from the first ESP. The goal of this demonstration is to prove the technical and economic feasibility of the CZD technology on a commercial scale. The process is expected to achieve 50% SO{sub 2}

Not Available

1993-11-15T23:59:59.000Z

74

Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas  

SciTech Connect (OSTI)

The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This topical report covers Phase 2b, which is the construction phase of pilot demonstration subsystems that make up the integrated plant. The subsystems included are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant is now capable of capturing CO2 from various sources (gas and coal) and mineralizing into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The topical report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. At the end of Phase 2b, the CCMP pilot demonstration is fully ready for testing.

Devenney, Martin; Gilliam, Ryan; Seeker, Randy

2014-06-01T23:59:59.000Z

75

Flue gas conditioning for improved particle collection in electrostatic precipitators. Quarterly technical report  

SciTech Connect (OSTI)

The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfm bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.

Durham, M.D.

1992-04-27T23:59:59.000Z

76

Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis  

SciTech Connect (OSTI)

Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

Kadam, K. L.

2001-06-22T23:59:59.000Z

77

Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass  

SciTech Connect (OSTI)

The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

Anuar, S.H.; Keener, H.M.

1995-12-31T23:59:59.000Z

78

Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal  

SciTech Connect (OSTI)

This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

Eric P. Robertson

2007-09-01T23:59:59.000Z

79

Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation  

SciTech Connect (OSTI)

The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis found a number of modifications and adjustments that could provide higher efficiency and better use of available work. Conclusions from this analysis will help guide the analyses and CFD modeling in future process development. The MBB technology has the potential to be a disruptive technology that will enable coal combustion power plants to be built and operated in a cost effective way, cleanly with no carbon dioxide emissions. A large amount of work is needed to quantify and confirm the great promise of the MBB technology. A Phase 2 proposal was submitted to DOE and other sponsors to address the most critical MBB process technical gaps. The Phase 2 proposal was not accepted for current DOE support.

Rue, David

2013-09-30T23:59:59.000Z

80

Alternative formulations of regenerable flue gas cleanup catalysts. Progress report, September 1, 1990--August 31, 1991  

SciTech Connect (OSTI)

The major source of man-made SO{sub 2} in the atmosphere is the burning of coal for electric power generation. Coal-fired utility plants are also large sources of NO{sub x} pollution. Regenerable flue gas desulfurization/NO{sub x} abatement catalysts provide one mechanism of simultaneously removing SO{sub 2} and NO{sub x} species from flue gases released into the atmosphere. The purpose of this project is to examine routes of optimizing the adsorption efficiency, the adsorption capacity, and the ease of regeneration of regenerable flue gas cleanup catalysts. We are investigating two different mechanisms for accomplishing this goal. The first involves the use of different alkali and alkaline earth metals as promoters for the alumina sorbents to increase the surface basicity of the sorbent and thus adjust the number and distribution of adsorption sites. The second involves investigation of non-aqueous impregnation, as opposed to aqueous impregnation, as a method to obtain an evenly dispersed monolayer of the promoter on the surface.

Mitchell, M.B.; White, M.G.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cleaning of municipal-waste incinerator flue gas in Europe  

SciTech Connect (OSTI)

This paper gives an overview of a substantial ongoing air-pollution-control program in West Germany, as it relates to emission of acid gases and other pollutants from municipal-refuse incineration. It details emission regulations, control means used, and technical advancements accomplished and foreseen. It gives results and the approximate effectiveness of various controls in reducing acid gas, trace organic, trace heavy metal, and particulate-matter emissions. Available data indicate that lime spray dryer/electrostatic precipitator (ESP) and spray-dryer/fabric-filter systems can attain 70-90% acid-gas removal and 97% or more control of dioxins and furans, while limiting mercury emissions to about 0.01-0.07 mg/N-cu m (dry). In comparison, some wet-scrubber systems can attain 90-plus % acid-gas removal with substantial removal of NOx and comparable control of dioxins and furans, while possibly providing consistently lower mercury emissions.

Brna, T.G.; Ellison, W.; Jorgensen, C.

1988-01-01T23:59:59.000Z

82

Catalysts for oxidation of mercury in flue gas  

DOE Patents [OSTI]

Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2010-08-17T23:59:59.000Z

83

Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas  

SciTech Connect (OSTI)

This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and l

Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

2012-03-31T23:59:59.000Z

84

Advanced separation technology for flue gas cleanup. Quarterly technical report No. 8, [January--March 1994  

SciTech Connect (OSTI)

During the first quarter of 1994, we continued work on Tasks 2, 3, 4, 5, and 6. We also began work on Task 7. In Task 2, we incorporated 4.5% O{sub 2} into our simulated flue gas stream during this quarter`s NO{sub x}-absorption experiments. We also ran experiments using Cobalt (II)-phthalocyanine as an absorbing agent We observed higher absorption capacities when using this solution with the simulated flue gas containing O{sub 2}. In Task 3, we synthesized a few EDTA polymer analogs. We also began scaled up synthesis of Co(II)-phthalocyanine for use in Task 5. In Task 4, we performed experiments for measuring distribution coefficients (m{sub i}) Of SO{sub 2} between aqueous and organic phases. This was done using the liquor regenerating apparatus described in Task 6. In Task 5, we began working with Co(II)-phthalocyanine in the 301 fiber hollow fiber contactor. We also calculated mass transfer coefficients (K{sub olm}) for these runs, and we observed that the gas side resistance dominates mass transfer. In Task 6, in the liquor regeneration apparatus, we observed 90% recovery of SO{sub 2} by DMA from water used as the scrubbing solution. We also calculated the distribution of coefficients (m{sub i}). In Task 7, we established and began implementing a methodology for completing this task.

Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S. [SRI International, Menlo Park, CA (United States)] [SRI International, Menlo Park, CA (United States); Sirkar, K.K.; Majumdar, S.; Bhaumick, D. [New Jersey Inst. of Tech., Newark, NJ (United States)] [New Jersey Inst. of Tech., Newark, NJ (United States)

1994-03-01T23:59:59.000Z

85

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

SciTech Connect (OSTI)

Oxidation of Hg0 with any oxidant or converting it to a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg0 by gas phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas phase reaction rate constants between Hg0 and the sulfur/chlorine compounds were determined, and the effects of temperature and the main components in flue gases were studied. The gas phase reaction between Hg0 and SCl2 is shown to be more rapid than the gas phase reaction with chlorine, and the second order rate constant was 9.1(+-0.5) x 10-18 mL-molecules-1cdots-1 at 373oK. Nitric oxide (NO) inhibited the gas phase reaction of Hg0 with sulfur-chlorine compounds. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg0 removal is about 90percent with 5 ppm SCl2 or S2Cl2 and 40 g/m3 of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that co-injection of 3-5 ppm of SCl2 (or S2Cl2) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90percent of Hg0 can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3percent of SCl2 or S2Cl2 is used. Unlike gas phase reactions, NO exhibited little effect on Hg0 reactions with SCl2 or S2Cl2 on flyash or activated carbon. Mercuric sulfide was identified as one of the principal products of the Hg0/SCl2 or Hg0/S2Cl2 reactions. Additionally, about 8percent of SCl2 or S2Cl2 in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution.

Chang, Shih-Ger; Yan, Nai-Qiang; Qu, Zan; Chi, Yao; Qiao, Shao-Hua; Dod, Ray; Chang, Shih-Ger; Miller, Charles

2008-07-02T23:59:59.000Z

86

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

Kenneth E. Baldrey

2003-01-01T23:59:59.000Z

87

Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks  

SciTech Connect (OSTI)

UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary building units bound by DOBDC resulting in 1D hexagonal pores about 11 angstroms in diameter. Surface areas range from 800 to 1500 sq m/g for the different MOFs. Mg/DOBDC outperformed all MOF and zeolite materials evaluated to date, with about 25 wt% CO{sub 2} captured by this MOF at flue gas conditions ({approx}0.13 atm CO{sub 2} pressure, 311K). In simulated flue gas without oxygen, the zero-length (ZLC) system was very useful in quickly simulating the effect of long term exposure to impurities on the MOFs. Detailed adsorption studies on MOF pellets have shown that water does not inhibit CO{sub 2} adsorption for MOFs as much as it does for typical zeolites. Moreover, some MOFs retain a substantial CO{sub 2} capacity even with a modest water loading at room temperature. Molecular modeling was a key activity in three areas of our earlier DOE/NETL-sponsored MOF-based research on CC. First, the team was able to effectively simulate CO{sub 2} and other gas adsorption isotherms for more than 20 MOFs, and the knowledge obtained was used to help predict new MOF structures that should be effective for CO{sub 2} adsorption at low pressure. The team also showed that molecular modeling could be utilized to predict the hydrothermal stability of a given MOF. Finally, the team showed that low moisture level exposure actually enhanced the CO{sub 2} adsorption performance of a particular MOF, HKUST-1.

David A Lesch

2010-06-30T23:59:59.000Z

88

Environ. Scl. Technol. 1994, 28, 277-283 Effects of Salts on Preparation and Use of Calcium Silicates for Flue Gas  

E-Print Network [OSTI]

Silicates for Flue Gas Desulfurization Kurt K. Klnd, Phlllp D. Wasserman, and Gary 1.Rochelle' Department is a flue gas desulfurization (FGD) technology developed for existingcoal to remove sulfur dioxide. High surface area calcium silicate hydrates are made by slurrying Ca(0H

Rochelle, Gary T.

89

Flue gas cleaning with ammonia reduces SO{sub 2} emission  

SciTech Connect (OSTI)

This paper describes the technical and commercial development and basis for application in North America for wet flue gas desulfurization (FGD) of the AMASOX{reg_sign} (i.e. Ammonia Absorbs Sulfur Oxides) Process of Krupp Uhde (Germany) employing ammonia reagent. This process technology has been emerging slowly and stepwise over a twenty-year period in reaching the present stage of commercial applicability. The discussion herein considers the need for accommodating to and advantageously addressing the increasing number of applications with high and ultra-high flue-gas concentrations of SO{sub 2} at the boiler outlet accompanied by significant levels of other pollutants. Key measures in accomplishing this include use of important process innovations. This, as well, calls for the effective use, when applicable, of wet electrostatic precipitator mist-elimination means to gain low/minimum-opacity stack plume trailoff in wet scrubber use together with reduction of air toxics to low concentrations. With cost-effectiveness in electric utility service, detailed herein, superior to FGD processes commonly used to date in high-sulfur service, utilization of this technology is expanding. Important, potentially trend-setting types of powerplant applications of ammonia FGD are reviewed to identify foreseen market sectors and procurement trends that will at the same time serve to substantially broaden lowest-cost coal utilization.

Emish, G.J. [Krupp Wilputte Corp., Bridgeville, PA (United States); Schulte, W. [Krupp Uhde GmbH, Dortmund (Germany); Ellison, W. [Ellison Consultants, Monrovia, MD (United States)

1997-12-31T23:59:59.000Z

90

Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas  

SciTech Connect (OSTI)

The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA. This topical report covers Subphase 2a which is the design phase of pilot demonstration subsystems. Materials of construction have been selected and proven in both lab scale and prototype testing to be acceptable for the reagent conditions of interest. The target application for the reactive carbonate material has been selected based upon small-scale feasibility studies and the design of a continuous fiber board production line has been completed. The electrochemical cell architecture and components have been selected based upon both lab scale and prototype testing. The appropriate quality control and diagnostic techniques have been developed and tested along with the required instrumentation and controls. Finally the demonstrate site infrastructure, NEPA categorical exclusion, and permitting is all ready for the construction and installation of the new units and upgrades.

Devenney, Martin; Gilliam, Ryan; Seeker, Randy

2013-08-01T23:59:59.000Z

91

Land application uses for dry flue gas desulfurization by-products: Phase 3  

SciTech Connect (OSTI)

New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

1999-01-31T23:59:59.000Z

92

Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development  

SciTech Connect (OSTI)

The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

Radisav Vidic; Joseph Flora; Eric Borguet

2008-12-31T23:59:59.000Z

93

Hydrodynamics and flue gas desulfurization characteristics of a three-phase, gas-continuous, cocurrent semifluidized bed  

SciTech Connect (OSTI)

The hydrodynamic characteristics of a gas-liquid-solid, gas-continuous, cocurrent semifluidized bed were defined. Five different particle types were used to characterize the hydrodynamics. Air and water were used as the gas and liquid streams, respectively. Six flow regimes were observed in the constrained gas-continuous, three-phase bed. These regimes are described in terms of the solids properties and the gas and liquid superficial velocities. The heights of the packed and fluidized beds and the solids holdup in the fluidized section of the semifluidized bed are discussed in terms of the superficial gas and liquid velocities, the solids density and diameter and the initial quantity of particles in the bed. The desulfurization characteristics of the gas-liquid-solid semifluidized bed were determined using a calcium carbonate slurry. Gas side mass transfer coefficients and the ratio of liquid side to gas side mass transfer coefficients were measured and correlated in terms of gas flow rate, liquid flow rate, bed height, calcium carbonate concentration and sulfur dioxide pressure for both the fluidized and packed sections of the semifluidized bed. The hydrodynamic and mass transfer characteristics were used to construct a mathematical model that predicted overall removal of sulfur dioxide from the simulated flue gas.

Beaver, L.E.

1983-01-01T23:59:59.000Z

94

SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report  

SciTech Connect (OSTI)

Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

NONE

1995-09-01T23:59:59.000Z

95

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-05-01T23:59:59.000Z

96

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was completed at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. The product was effective as a flue gas conditioner. However, ongoing problems with in-duct deposition resulting from the flue gas conditioning were not entirely resolved. Primarily these problems were the result of difficulties encountered with retrofit of an existing spray humidification system. Eventually it proved necessary to replace all of the original injection lances and to manually bypass the PLC-based air/liquid feed control. This yielded substantial improvement in spray atomization and system reliability. However, the plant opted not to install a permanent system. Also in this quarter, preparations continued for a test of the cohesivity additives at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-07-01T23:59:59.000Z

97

Monticello Unit 3 recovery project: The rebuild of a first generation wet flue gas desulfurization system  

SciTech Connect (OSTI)

Since November 1993, TU Electric and Sargent & Lundy have been engaged in the repair or replacement of equipment that was damaged by the collapse of the Monticello Unit 3 chimney. In addition to the replacement of the chimney, electrostatic precipitator, and various balance-of-plant systems, the scope of the project includes the demolition, engineering and design, procurement, and construction activities to rebuild major equipment within the wet limestone flue gas desulfurization (FGD) system. This paper reviews and discusses various aspects of the design, procurement and schedule associated with the rebuild of the FGD system. The paper reviews the design selections in the areas of process technology, the absorber island, and technical enhancements to improve the operability of this 1970s-vintage system. Finally, the challenges and solutions in implementing a 17-month schedule for the design, construction, and startup of an FGD system will be discussed.

Guletsky, P.W.; Katzberger, S.M. [Sargent & Lundy, Chicago, IL (United States); Jeanes, R.L. [TU Electric, Dallas, TX (United States)

1995-06-01T23:59:59.000Z

98

SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report  

SciTech Connect (OSTI)

The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

NONE

1995-09-01T23:59:59.000Z

99

The desulfurization of flue gas at the Mae Moh Power Plant Units 12 and 13  

SciTech Connect (OSTI)

As pollution of air, water and ground increasingly raises worldwide concern, the responsible national and international authorities establish and issue stringent regulations in order to maintain an acceptable air quality in the environment. In Thailand, the Electricity Generating Authority of Thailand (EGAT) takes full responsibility in environmental protection matters as well as in generating the electricity needed to supply the country`s very rapid power demand growth. Due to the rapidly increasing electricity demand of the country, EGAT had decided to install two further lignite-fired units of 300 MW each (Units 12 and 13) at the Mae Moh power generation station and they are now under construction. The arrangement and the capacity of all the power plant units are as shown. In 1989, EGAT started the work on the flue gas desulfurization system of Mae Moh power plant units 12 and 13 as planned. A study has been conducted to select the most suitable and most economical process for flue gas desulfurization. The wet scrubbing limestone process was finally selected for the two new units. Local limestone will be utilized in the process, producing a by-product of gypsum. Unfortunately, natural gypsum is found in abundance in Thailand, so the produced gypsum will be treated as landfill by mixing it with ash from the boilers of the power plants and then carrying it to the ash dumping area. The water from the waste ash water lake is utilized in the process as much as possible to minimize the requirement of service water, which is a limited resource. The Mae Moh power generation station is situated in the northern region of Thailand, 600 km north of Bangkok and about 30 km east of the town of Lampang, close to the Mae Moh lignite mine. Three lignite-fired units (Units 1-3) of 75 MW each, four units (Units 4-7) of 150 MW each and four units (Units 8-11) of 300 MW each are in operation.

Haemapun, C.

1993-12-31T23:59:59.000Z

100

Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report  

SciTech Connect (OSTI)

The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

NONE

1996-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance  

SciTech Connect (OSTI)

A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ºF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

Andrew Seltzer; Zhen Fan

2011-03-01T23:59:59.000Z

102

Start up results from a specialized flue gas cleaning facility in a power station using refinery residues  

SciTech Connect (OSTI)

In eastern Germany STEAG--the biggest German IPP--has erected a power plant consisting of three combustion lines burning oil distillation residues from the new Mider refinery to provide the refinery with power, steam, water and compressed air. Each of the three flue gas cleaning lines consists of a high dust SCR-system, quench, wet electrostatic precipitator, scrubber, steam reheater and ID-fan. Common systems are the storage and handling of the absorbent, the gypsum dewatering and the waste water treatment. The installed high dust SCR system attains the expected NO{sub x}-reduction efficiency and an excellent NO{sub x} outlet distribution and low ammonia slip. After commissioning problems occurred with the wet ESP in all three lines due to improper function of the upstream quenches. Modifications of the quench system have been made which assure a temperature of the flue gas after quench near saturation temperature and correct functioning of the quench and wet ESP. To reduce pressure loss of the absorber concurrent spray nozzles were installed. Strong vibrations of the absorber tower, the connected pipes and the steel structure along with an insufficient SO{sub x} removal efficiency at high inlet concentration were observed. After changing the concurrent operation of the spray nozzles to counter current operation the vibrations of the absorber tower became smaller and the removal efficiency achieved the guaranteed value. Problems arose in the waste water treatment plant caused by the high solid concentration of up to 1,000 g/l in the thickener. By diluting the settled sludge with overflow water from the thickener the problems in the waste water treatment plant could be minimized to an acceptable degree. Despite these problems the flue gas cleaning system is in continuous operation and the emission values of flue gas and waste water meet the required standards.

Beiers, H.G.; Gilgen, R.; Weiler, H.

1998-07-01T23:59:59.000Z

103

Advances of flue gas desulfurization technology for coal-fired boilers and strategies for sulfur dioxide pollution prevention in China  

SciTech Connect (OSTI)

Coal is one of the most important kinds of energy resources at the present time and in the immediate future in China. Sulfur dioxide resulting from combustion of coal is one of the principle pollutants in the air. Control of SO{sub 2} discharge is still a major challenge for environmental protection in developing China. In this paper, research, development and application of technology of flue gas desulfurization (FGD) for coal-fired boilers in China will be reviewed with emphasis on cost-effective technology, and the development trends of FGD technology, as well as the strategy for SO{sub 2} discharge control in China, will be analyzed. A practical technology for middle-small-sized boilers developed by the primary author and the field investigation results will also be presented. At present, there are four major kinds of FGD technologies that are practical to be applied in China for their cost-effectiveness and efficiency to middle-small-sized boilers. An important development trend of the FGD technology for middle-small-sized boilers for the next decade is improvement of the existing cost-effective wet-type FGD technology, and in the future it will be the development of dry-type FGD technology. For middle-sized generating boilers, the development direction of the FGD technology is the spraying and drying process. For large-sized generating boilers, the wet-type limestone-plaster process will still be applied in the immediate future, and dry-type FGD technologies, such as ammonia with electron beam irradiation, will be developed in the future. State strategies for the control of SO{sub 2} discharge will involve the development and popularization of efficient coal-fired devices, extension of gas coal and liquefied coal, spreading coal washing, and centralized heating systems.

Yang, C.; Zeng, G.; Li, G.; Qiu, J.

1999-07-01T23:59:59.000Z

104

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a flue gas conditioning system was completed at PacifiCorp Jim Bridger Power Plant. Performance testing was underway. Results will be detailed in the next quarterly and subsequent technical summary reports. Also in this quarter, discussions were initiated with a prospective long-term candidate plant. This plant fires a bituminous coal and has opacity performance issues related to fly ash re-entrainment. Ammonia conditioning has been proposed here, but there is interest in liquid additives as a safer alternative.

Kenneth E. Baldrey

2002-01-01T23:59:59.000Z

105

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

Kenneth E. Baldrey

2003-07-30T23:59:59.000Z

106

JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas  

SciTech Connect (OSTI)

This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

Ye Zhuang; Christopher Martin; John Pavlish

2009-03-31T23:59:59.000Z

107

Separation of the components of flue-gas scrubber sludge by froth flotation  

SciTech Connect (OSTI)

To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. Currently, the major markets for scrubber sludge are for manufacture of gypsum products, such as wallboard and plaster, and for cement. However, the quality of the raw sludge is often not high enough or consistent enough to satisfy manufacturers, and so the material is difficult to sell. Other markets, such as paper manufacture and plastics fillers, have even more stringent quality requirements and will not accept raw sludge at all. In the work described in this paper, several reagents have been examined to determine their ability to selectively improve the flotation of the unreacted limestone contaminant away from the desirable products (calcium sulfite and gypsum). The most success has been achieved using a cationic collector, which shows a higher selectivity between calcium sulfite and calcium carbonate than do the anionic collectors that were studied.

Kawatra, S.K.; Eisele, T.C. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Metallurgical and Materials Engineering

1995-12-31T23:59:59.000Z

108

CO{sub 2} Capture Membrane Process for Power Plant Flue Gas  

SciTech Connect (OSTI)

Because the fleet of coal-fired power plants is of such importance to the nationâ??s energy production while also being the single largest emitter of CO{sub 2}, the development of retrofit, post-combustion CO{sub 2} capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO{sub 2} from plant flue gas with 95% captured CO{sub 2} purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO{sub 2}-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft{sup 2}) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO{sub 2}, NOx, etc.). Specific objectives were: ï?· Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO{sub 2} over N{sub 2} and CO{sub 2} permeance greater than 300 gas permeation units (GPU) targeted; ï?· Development of next-generation polycarbonate hollow-fiber membranes and membrane modules with higher CO{sub 2} permeance than current commercial polycarbonate membranes; ï?· Development and fabrication of membrane hollow fibers and modules from candidate polymers; ï?· Development of a CO{sub 2} capture membrane process design and integration strategy suitable for end-of-pipe, retrofit installation; and ï?· Techno-economic evaluation of the "best" integrated CO{sub 2} capture membrane process design package In this report, the results of the project research and development efforts are discussed and include the post-combustion capture properties of the two membrane material platforms and the hollow-fiber membrane modules developed from them and the multi-stage process design and analysis developed for 90% CO{sub 2} capture with 95% captured CO{sub 2} purity.

Lora Toy; Atish Kataria; Raghubir Gupta

2011-09-30T23:59:59.000Z

109

Intermountain Gas Company (IGC)- Gas Heating Rebate Program  

Broader source: Energy.gov [DOE]

The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system...

110

Confined zone dispersion flue gas desulfurization demonstration. Quarterly report No. 8, August 17, 1992--November 16, 1992  

SciTech Connect (OSTI)

The CZD process involves injecting a finely atomized slurry of reactive lime into the flue gas duct work of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct confined in an envelope of hot gas between the wet zone and the duct walls. The lime slurry reacts with part of the SO{sub 2} in the gas, and the reaction products dry to form solid particles. A solids collector, typically an electrostatic precipitator (ESP) downstream from the point of injection, captures the reaction products along with the fly ash entrained in the flue gas. The goal of this demonstration is to prove the technical and economic feasibility of the CZD technology on a commercial scale. The process is expected to achieve 50% SO{sub 2} removal at lower capital and O&M costs than other systems. To achieve its objectives, the project is divided into the following three phases: Phase 1: Design and Permitting, Phase 2: Construction and Start-up, Phase 3: Operation and Disposition. Phase 1 activities were completed on January 31, 1991. Phase 2 activities were essentially concluded on July 31, 1991, and Phase 3a, Parametric Testing, was initiated on July 1, 1991. This Quarterly Technical Progress Report covers Phase 3b activities from August 17, 1992 through November 16, 1992.

Not Available

1993-09-27T23:59:59.000Z

111

Confined zone dispersion flue gas desulfurization demonstration. Quarterly report No. 9, November 17, 1992--February 16, 1993  

SciTech Connect (OSTI)

The CZD process involves injecting a finely atomized slurry of reactive lime into the flue gas duct work of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct confined in an envelope of hot gas between the wet zone and the duct walls. The lime slurry reacts with part of the SO{sub 2} in the gas, and the reaction products dry to form solid particles. A solids collector, typically on electrostatic precipitator (ESP) downstream from the point of injection, captures the reaction products along with the fly ash entrained in the flue gas. The waste product is composed of magnesium and calcium sulfite and sulfate, with some excess lime. This product mixed with fly ash is self-stabilizing because of the excess lime values, and thus tends to retain heavy metals in insoluble forms within the fly ash. The demonstration is being conducted at Penelec`s Seward Station, Unit No. 15. This boiler is a 147 MWe coal-fired unit, which utilizes Pennsylvania bituminous coal (approximately 1.2 to 2.5% sulfur). Progress is described for the ninth quarter.

Not Available

1993-10-01T23:59:59.000Z

112

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal  

SciTech Connect (OSTI)

The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

Nick Degenstein; Minish Shah; Doughlas Louie

2012-05-01T23:59:59.000Z

113

Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system  

SciTech Connect (OSTI)

Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO{sub 2}) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO{sub 2} will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO{sub 2} is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs.

Bolinsky, F.T. (Pure Air, Allentown, PA (United States)); Ross, J. (Northern Indiana Public Service Co., Hammond, IN (United States)); Dennis, D.S. (United Engineers and Constructors, Inc., Denver, CO (United States). Stearns-Roger Div.); Huston, J.S. (Environmental Alternatives, Inc., Warren NJ (USA))

1991-01-01T23:59:59.000Z

114

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

Kenneth E. Baldrey

2001-09-01T23:59:59.000Z

115

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, two cohesivity-specific additive formulations, ADA-44C and ADA-51, were evaluated in a full-scale trial at the American Electric Power Conesville plant. Ammonia conditioning was also evaluated for comparison. ADA-51 and ammonia conditioning significantly reduced rapping and non-rapped particulate re-entrainment based on stack opacity monitor data. Based on the successful tests to date, ADA-51 will be evaluated in a long-term test.

Kenneth E. Baldrey

2003-02-01T23:59:59.000Z

116

Selective CO2 Capture from Flue Gas Using Metal-Organic Frameworks?A Fixed Bed Study  

SciTech Connect (OSTI)

It is important to capture carbon dioxide from flue gas which is considered to be the main reason to cause global warming. CO2/N2 separation by novel adsorbents is a promising method to reduce CO2 emission but effect of water and CO2/N2 selectivity is critical to apply the adsorbents into practical applications. A very well known, Metal Organic Framework, NiDOBDC (Ni-MOF-74 or CPO-27-Ni) was synthesized through a solvothermal reaction and the sample (500 to 800 microns) was used in a fixed bed CO2/N2 breakthrough study with and without H2O. The Ni/DOBDC pellet has a high CO2 capacity of 3.74 mol/kg at 0.15 bar and a high CO2/N2 selectivity of 38, which is much higher than those of reported MOFs and zeolites under dry condition. Trace amount of water can impact CO2 adsorption capacity as well as CO2/N2 selectivity for the Ni/DOBDC. However, Ni/DOBDC can retain a significant CO2 capacity and CO2/N2 selectivity at 0.15 bar CO2 with 3% RH water. These results indicate a promising future to use the Ni/DOBDC in CO2 capture from flue gas.

Liu, Jian; Tian, Jian; Thallapally, Praveen K.; McGrail, B. Peter

2012-05-03T23:59:59.000Z

117

A mathematical model for the estimation of flue temperature in a coke oven  

SciTech Connect (OSTI)

The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

1997-12-31T23:59:59.000Z

118

Low Temperature Heat Recovery for Boiler Systems  

E-Print Network [OSTI]

be economically heated to within 50 0 F of the entering flue gas temperature. Other less common, but practical, uses for energy include driving a low-temperature electric turbine cycle or an absorption chilling cycle. An improvement in boiler efficiency of 3...% to 8% can normally be realized by cooling boiler flue gasses down to llO o F_200 0 F. This recovers a large quantity of the available sensible heat in most boiler flue gas streams. Efficiency can be improv ed by up to 10% if flue gas is cooled down...

Shook, J. R.; Luttenberger, D. B.

119

Confined zone dispersion flue gas desulfurization demonstration. Quarterly report No. 7, May 1, 1992--August 16, 1992  

SciTech Connect (OSTI)

The CZD process involves injecting a finely atomized slurry of reactive lime into the flue gas duct work of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct confined in an envelope of hot gas between the wet zone and the duct walls. The lime slurry reacts with part of the SO{sub 2} in the gas, and the reaction products dry to form solid particles. A solids collector, typically an electrostatic precipitator (ESP) downstream from the point of injection, captures the reaction products along with the fly ash entrained in the flue gas. The features that distinguish the CZD process from other similar injection processes are: (1) Injection of an alkaline slurry directly into the duct, instead of injection of dry solids into the duct ahead of a fabric filter. (2) Use of an ultrafine calcium/magnesium hydroxide, type S pressure-hydrated dolomitic lime. This commercial product is made from plentiful, naturally occurring dolomite. (3) Low residence time, made possible by the high effective surface area of the Type S lime. (4) Localized dispersion of the reagent. (5) Improved electrostatic precipitator performance via gas conditioning from the increased water vapor content, and lower temperatures. The waste product is composed of magnesium and calcium sulfite and sulfate, with some excess lime. This product mixed with fly ash is self-stabilizing because of the excess lime values, and thus tends to retain heavy metals in insoluble forms within the fly ash.

Not Available

1993-02-01T23:59:59.000Z

120

Packed-Bed Reactor Study of NETL Sample 196c for the Removal of Carbon Dioxide from Simulated Flue Gas Mixture  

SciTech Connect (OSTI)

An amine-based solid sorbent process to remove CO2 from flue gas has been investigated. The sorbent consists of polyethylenimine (PEI) immobilized onto silica (SiO2) support. Experiments were conducted in a packed-bed reactor and exit gas composition was monitored using mass spectrometry. The effects of feed gas composition (CO2 and H2O), temperature, and simulated steam regeneration were examined for both the silica support as well as the PEI-based sorbent. The artifact of the empty reactor was also quantified. Sorbent CO2 capacity loading was compared to thermogravimetric (TGA) results to further characterize adsorption isotherms and better define CO2 working capacity. Sorbent stability was monitored by periodically repeating baseline conditions throughout the parametric testing and replacing with fresh sorbent as needed. The concept of the Basic Immobilized Amine Sorbent (BIAS) Process using this sorbent within a system where sorbent continuously flows between the absorber and regenerator was introduced. The basic tenet is to manipulate or control the level of moisture on the sorbent as it travels around the sorbent circulation path between absorption and regeneration stages to minimize its effect on regeneration heat duty.

Hoffman, James S.; Hammache, Sonia; Gray, McMahan L.; Fauth Daniel J.; Pennline, Henry W.

2012-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc)  

E-Print Network [OSTI]

, stationary sources like coal-fired power plants, carbon capture and sequestration (CCS) has been proposed.4Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine- Appended Metal-Organic Framework viable absorbents for carbon capture under the aforementioned conditions, and they are presently used

122

Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems  

SciTech Connect (OSTI)

A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2009-09-15T23:59:59.000Z

123

Flue gas desulfurization sludge: establishment of vegetation on ponded and soil-applied waste. Final report January 1977-September 1981  

SciTech Connect (OSTI)

The report gives results of research to identify and evaluate forms of vegetation and methods of their establishment for reclaiming retired flue gas desulfurization sludge ponds. Also studied were the soil liming value of limestone scrubber sludge (LSS) and plant uptake and percolation losses of some chemical nutrients in the sludge. Several vegetation schemes were evaluated between 1977 and 1982 for covering and stabilizing LSS at Colbert Steam Plant, Cherokee, AL, and Shawnee Steam Plant, Paducah, KY. Eleven tree and 10 grass or legume species were tested for adaptability and survival when planted directly in LSS or in LSS amended with soil, municipal sewage sludge, or standard potting mix. Other studies indicated that LSS apparently has sufficient unreacted limestone to be a satisfactory soil liming agent.

Giordano, P.M.; Mays, D.A.; Soileau, J.M.

1984-01-01T23:59:59.000Z

124

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect (OSTI)

ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

C. Jean Bustard

2003-12-01T23:59:59.000Z

125

Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants  

SciTech Connect (OSTI)

This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

2003-12-31T23:59:59.000Z

126

,"Colorado Heat Content of Natural Gas Consumed"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Heat Content of Natural Gas Consumed",1,"Monthly","112014","1152013" ,"Release...

127

Fundamental mechanisms in flue-gas conditioning. Topical report No. 1, Literature review and assembly of theories on the interactions of ash and FGD sorbents  

SciTech Connect (OSTI)

The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.

1992-01-09T23:59:59.000Z

128

Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator  

SciTech Connect (OSTI)

This paper describes the experimental study of dioxins removal from flue gas from a co-combustion municipal solid waste and coal incinerator by means of a fluidized absorption tower and a fabric filter. A test rig has been set up. The flow rate of flue gas of the test rig is 150-2000 m{sup 3}/h. The system was composed of a humidification and cooling system, an absorption tower, a demister, a slurry make-up tank, a desilter, a fabric filter and a measurement system. The total height of the absorption tower was 6.5 m, and the diameter of the reactor pool was 1.2 m. When the absorbent was 1% limestone slurry, the recirculation ratio was 3, the jet rate was 5-15 m/s and the submerged depth of the bubbling pipe under the slurry was 0.14 m, the removal efficiency for dioxins was 99.35%. The concentration of dioxins in the treated flue gas was 0.1573 x 10{sup -13} kg/Nm{sup 3} and the concentration of oxygen was 11%. This concentration is comparable to the emission standards of other developed countries.

Zhong Zhaoping [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China)]. E-mail: zzhong@seu.edu.cn; Jin Baosheng [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Huang Yaji [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Zhou Hongcang [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Lan Jixiang [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China)

2006-07-01T23:59:59.000Z

129

Economic assessment of advanced flue gas desulfurization processes. Final report. Volume 2. Appendices G, H, and I  

SciTech Connect (OSTI)

This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final report, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluation, was completed in October 1980. A slightly modified and condensed version of that report appears as Appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

1981-09-01T23:59:59.000Z

130

Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997  

SciTech Connect (OSTI)

This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

Chugh, Y.P.; Brackebusch, F.; Carpenter, J. [and others

1998-12-31T23:59:59.000Z

131

DEVELOPMENT OF SUPERIOR SORBENTS FOR SEPARATION OF CO2 FROM FLUE GAS AT A WIDE TEMPERATURE RANGE DURING COAL COMBUSTION  

SciTech Connect (OSTI)

For this part of the project the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed.

Panagiotis G. Smirniotis

2005-01-30T23:59:59.000Z

132

Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO{sub 2} Derived from Oxyfuel Combustion  

SciTech Connect (OSTI)

The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO{sub 2} stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO{sub 2} derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

Fogash, Kevin

2010-09-30T23:59:59.000Z

133

Flue Gas Perification Utilizing SOx/NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion  

SciTech Connect (OSTI)

The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO2 stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO2 derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

Kevin Fogash

2010-09-30T23:59:59.000Z

134

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Powerlaunchmulticolorreduction+

135

OpenEI Community - natural gas+ condensing flue gas heat recovery+ water  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahomast, 2012CoastfredResult Formats

136

Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas  

DOE Patents [OSTI]

The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

2014-10-07T23:59:59.000Z

137

Effect of connate water on miscible displacement of reservoir oil by flue gas  

E-Print Network [OSTI]

gas and water injection, have allowed the industry to greatly increase primary oil recovery. But the common weakness of gas and water as pressure maintenance and secondary recovery agents is im- miscibility with the reservoir fluid to be displaced... to using a hydrocarbon slug, Saxon, et al was one of the earliest investigators of carbon dioxide as a possible flooding 14 agent. Gatlin and Slobod reported on laboratory investigations of another possible miscible flooding agent, methyl alcohol. Each...

Maxwell, H. D.

1960-01-01T23:59:59.000Z

138

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a...

139

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

140

Natural Gas Heat Pump and Air Conditioner | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Heat Pump and Air Conditioner Natural Gas Heat Pump and Air Conditioner Lead Performer: Thermolift - Stony Brook, NY Partners: -- New York State Energy Research &...

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents [OSTI]

The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

Yang, Wen-Ching (Murrysville, PA); Newby, Richard A. (Pittsburgh, PA); Lippert, Thomas E. (Murrysville, PA)

1997-01-01T23:59:59.000Z

142

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents [OSTI]

The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

Yang, W.C.; Newby, R.A.; Lippert, T.E.

1997-08-05T23:59:59.000Z

143

Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, March 11, 1993--June 11, 1993  

SciTech Connect (OSTI)

There are two basic approaches to addressing the problem of SO{sub 2} and NO{sub x} emissions: (1) desulfurize (and denitrogenate) the feedstock prior to or during combustion; or (2) scrub the resultant SO{sub 2} and oxides of nitrogen from the boiler flue gases. The flue gas processing alternative has been addressed in this project via microbial reduction of SO{sub 2} and NO{sub x} by sulfate-reducing bacteria

Sublette, K.L.

1993-11-01T23:59:59.000Z

144

Heat Hyperbolic Diffusion in Planck Gas  

E-Print Network [OSTI]

In this paper we investigate the diffusion of the thermal pulse in Planck Gas. We show that the Fourier diffusion equation gives the speed of diffusion, v > c and breaks the causality of the thermal processes in Planck gas .For hyperbolic heat transport v

Miroslaw Kozlowski; Janina Marciak-Kozlowska

2006-07-06T23:59:59.000Z

145

Heat conductivity of a pion gas  

E-Print Network [OSTI]

We evaluate the heat conductivity of a dilute pion gas employing the Uehling-Uehlenbeck equation and experimental phase-shifts parameterized by means of the SU(2) Inverse Amplitude Method. Our results are consistent with previous evaluations. For comparison we also give results for an (unphysical) hard sphere gas.

Antonio Dobado Gonzalez; Felipe J. Llanes-Estrada; Juan M. Torres Rincon

2007-02-13T23:59:59.000Z

146

Metal-Organic Frameworks Capture CO2 From Coal Gasification Flue Gas |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & Fuel Cells In ThisMetalCenter for Gas

147

Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions  

E-Print Network [OSTI]

#12;Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump use of buildings Gas Heat Pump Solution #12;Gas Heat Pump - deserves special attention due to its source in addition to the outside air ·A further essential component of Gas Heat Pump air conditioning

Oak Ridge National Laboratory

148

Residential gas-fired sorption heat Test and technology evaluation  

E-Print Network [OSTI]

..........................................................................................10 1.3.2 Adsorption heat pumpsResidential gas-fired sorption heat pumps Test and technology evaluation Energiforskningsprogram EFP05 Journal nr: 33031-0054 December 2008 #12;Residential gas-fired sorption heat pumps Test

149

Gas heat transfer in a heated vertical channel under deteriorated turbulent heat transfer regime  

E-Print Network [OSTI]

Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

Lee, Jeongik

2007-01-01T23:59:59.000Z

150

Gas Heat Transfer in a Heated Vertical Channel under Deteriorated Turbulent Heat Transfer Regime  

E-Print Network [OSTI]

Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

Lee, Jeongik

151

Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No. 15, September 1, 1994--November 30, 1994  

SciTech Connect (OSTI)

The objective of the NOXSO Demonstration Project (NDP), with cost-shared funding support from DOE, is to design, construct, and operate a commercial-scale flue gas cleanup system utilizing the NOXSO process. The NDP consists of the NOXSO plant and sulfur recovery unit, designed to remove SO{sub 2} and NO{sub x} from flue gas and produce elemental sulfur by-product, and the liquid SO{sub 2} plant and air separation unit, designed to process the elemental sulfur into liquid SO{sub 2}. The NOXSO plant and sulfur recovery unit will be constructed at ALCOA Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana, and will treat all of the flue gas from the 150-MW Unit 2 boiler. The elemental sulfur produced will be shipped to the Olin Charleston Plant in Charleston, Tennessee, for conversion into liquid SO{sub 2}.

NONE

1997-01-01T23:59:59.000Z

152

Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report, No. 14, June 1, 1994--August 31, 1994  

SciTech Connect (OSTI)

The objective of the NOXSO Demonstration Project (NDP), with cost-shared funding support from DOE, is to design, construct, and operate a commercial-scale flue gas cleanup system utilizing the NOXSO process. The NDP consists of the NOXSO plant and sulfur recovery unit, designed to remove SO{sub 2} and NO{sub x} from flue gas and produce elemental sulfur by-product, and the liquid SO{sub 2} plant and air separation unit, designed to process the elemental sulfur into liquid SO{sub 2}. The NOXSO plant and sulfur recovery unit will be constructed at ALCOA Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana, and will treat all of the flue gas from the 150-MW Unit 2 boiler. The elemental sulfur produced will be shipped to the Olin Charleston Plant in Charleston, Tennessee, for conversion into liquid SO{sub 2}.

NONE

1997-01-01T23:59:59.000Z

153

Flue gas conditioning for improved particle collection in electrostatic precipitators. Quarterly technical report, October 1--December 31, 1993  

SciTech Connect (OSTI)

The initial pilot-scale testing of two additives was completed at CONSOL`s research coal combustor. The results and conclusions from this test series and subsequent analysis of the data are presented in this report. Table 1 summarizes the conditions tested. During the tests, the research combustor was firing a medium-sulfur coal. The combustor had recently been retrofitted with low-NOx burners for a DOE Clean Coal test program. Operation of the low-NOx burners required a reduced flow rate in the combustor, resulting in lower flow and velocity in the ESP. A comprehensive baseline condition was tested, followed by initial screening runs for several additives. It was discovered that the flyash exhibited properties characteristic of a high-resistivity ash. In-situ measurements at the ESP inlet confirmed that the resistivity was in the 10{sup 10} -- 10{sup 12} ohm-cm range. In addition, the ESP plate rappers were not able to remove ash buildup on the first section during normal operation. Power off rapping was periodically required to fully clean the plates; this is a clear indication of high-resistivity conditions. Since the major benefit of ESP additives will be to reduce reentrainment at low to midrange resistivity, this operating condition was undesirable for performance testing. It was decided to continue the program with SO{sub 3} conditioning of the flue gas to reduce particle resistivity. It was also decided to operate with two rather than three electrical fields energized. By reducing the ESP collection area, it was hoped that it would be easier to measure changes in ESP performance and to see an immediate indication of the effectiveness Of SO{sub 3} conditioning. The ESP was reconfigured with two electrical sections energized and SO{sub 3} conditioning at a rate of approximately 20 ppM. An additional baseline was run, followed by extended tests with two additives referred to in this report as Additive ``C`` and Additive ``D.``

Durham, M.D.; Baldrey, K.E.

1994-01-12T23:59:59.000Z

154

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

155

CenterPoint Energy- Residential Gas Heating Rebates  

Broader source: Energy.gov [DOE]

CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

156

Water Heating Requirements Overview Page 5-1 5 Water Heating Requirements  

E-Print Network [OSTI]

units with tank volumes of 40 to 50 gallons. Standby loss associated with the center flue gas storage energy use. Whereas natural gas, (liquefied petroleum gas), LPG or oil can be burned directly to heat code from 2008 are listed below: Instantaneous (or tankless) water heaters including gas, oil, small

157

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal  

SciTech Connect (OSTI)

The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbonâ??s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

Monica Zanfir; Rahul Solunke; Minish Shah

2012-06-01T23:59:59.000Z

158

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP  

E-Print Network [OSTI]

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP R. C. Meier, Program Manager, Gas Heat Pump Program General Electric Company P. 0. Box 8555 Philadelphia, Pennsylvania 19101 FILE COPY DO NOT REMOVE SUMMARY The Stirling/Rankine Heat Activated Heat Pump is a high performance product for space

Oak Ridge National Laboratory

159

Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature Range During Coal Combustion  

SciTech Connect (OSTI)

In chapter 1, the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed. In chapter 2, Ca(NO{sub 3}){sub 2} {center_dot} 4H{sub 2}O, CaO, Ca(OH){sub 2}, CaCO{sub 3}, and Ca(CH{sub 3}COO){sub 2} {center_dot} H{sub 2}O were used as precursors for synthesis of CaO sorbents on this work. The sorbents prepared from calcium acetate (CaAc{sub 2}-CaO) resulted in the best uptake characteristics for CO{sub 2}. It possessed higher BET surface area and higher pore volume than the other sorbents. According to SEM images, this sorbent shows 'fluffy' structure, which probably contributes to its high surface area and pore volume. When temperatures were between 550 and 800 C, this sorbent could be carbonated almost completely. Moreover, the carbonation progressed dominantly at the initial short period. Under numerous adsorption-desorption cycles, the CaAc{sub 2}-CaO demonstrated the best reversibility, even under the existence of 10 vol % water vapor. In a 27 cyclic running, the sorbent sustained fairly high carbonation conversion of 62%. Pore size distributions indicate that their pore volume decreased when experimental cycles went on. Silica was doped on the CaAc{sub 2}-CaO in various weight percentages, but the resultant sorbent did not exhibit better performance under cyclic operation than those without dopant. In chapter 3, the Calcium-based carbon dioxide sorbents were made in the gas phase by flame spray pyrolysis (FSP) and compared to the ones made by standard high temperature calcination (HTC) of selected calcium precursors. The FSP-made sorbents were solid nanostructured particles having twice as large specific surface area (40-60 m{sup 2}/g) as the HTC-made sorbents (i.e. from calcium acetate monohydrate). All FSP-made sorbents showed high capacity for CO{sub 2} uptake at high temperatures (773-1073 K) while the HTC-made ones from calcium acetate monohydrate (CaAc{sub 2} {center_dot} H{sub 2}O) demonstrated the best performance for CO{sub 2} uptake among all HTC-made sorbents. At carbonation temperatures less than 773 K, FSP-made sorbents demonstrated better performance for CO{sub 2} uptake than all HTC-made sorbents. Above that, both FSP-made, and HTC-made sorbents from CaAc{sub 2} {center_dot} H{sub 2}O exhibited comparable carbonation rates and maximum conversion. In multiple carbonation/decarbonation cycles, FSP-made sorbents demonstrated stable, reversible and high CO{sub 2} uptake capacity sustaining maximum molar conversion at about 50% even after 60 such cycles indicating their potential for CO{sub 2} uptake. In chapter 4 we investigated the performance of CaO sorbents with dopant by flame spray pyrolysis at higher temperature. The results show that the sorbent with zirconia gave best performance among sorbents having different dopants. The one having Zr to Ca of 3:10 by molar gave stable performance. The calcium conversion around 64% conversion during 102-cycle operations at 973 K. When carbonation was performance at 823 K, the Zr/Ca sorbent (3:10) exhibited stable performance of 56% by calcium molar conversion, or 27% by sorbent weight, both of which are less than those at 973 K as expected. In chapter 5 we investigated the perfor

Panagiotis G. Smirniotis

2007-06-30T23:59:59.000Z

160

Method and apparatus for fuel gas moisturization and heating  

DOE Patents [OSTI]

Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-01-29T23:59:59.000Z

162

Working on new gas turbine cycle for heat pump drive  

E-Print Network [OSTI]

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor, is sized for a 10-ton heat pump system - will be scaled to power a commercial product line ranging from 7 of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

163

Use Feedwater Economizers for Waste Heat Recovery: Office of Industrial Technologies (OIT) Steam Energy Tips No.3  

SciTech Connect (OSTI)

A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the flue gas to incoming feedwater. Boiler flue gases are often rejected to the stack at temperatures more than 100 F to 150 F higher than the temperature of the generated steam. Generally, boiler efficiency can be increased by 1% for every 40 F reduction in flue gas temperature. By recovering waste heat, an economizer can often reduce fuel requirements by 5% to 10% and pay for itself in less than 2 years. The table provides examples of the potential for heat recovery.

Not Available

2002-03-01T23:59:59.000Z

164

Increasing interest in the gas engine heat pump  

SciTech Connect (OSTI)

Increasing primary-energy prices and the availability of untapped heat sources have sparked interest in using a high-efficiency natural gas-driven engine as the power source in a heatpump system. This approach is being studied using a 37-kW Waukesha gas engine; one recently completed installation at Schiedam, Netherlands, extracts heat from a nearby waterway and utilizes the gas engine's waste heat as well.

Not Available

1980-10-01T23:59:59.000Z

165

,"New Mexico Heat Content of Natural Gas Consumed"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Heat Content of Natural Gas Consumed",1,"Monthly","12015","1152013"...

166

,"New York Heat Content of Natural Gas Consumed"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Heat Content of Natural Gas Consumed",1,"Monthly","102014","1152013" ,"Release...

167

Combustion Exhaust Gas Heat to Power usingThermoelectric Engines...  

Broader source: Energy.gov (indexed) [DOE]

Solutions Combustion Exhaust Gas Heat to Power using Thermoelectric Engines John LaGrandeur October 5, 2011 Advanced Thermoelectric Solutions - 1 - Market motivation based on CO 2...

168

Southwest Gas Corporation- Combined Heat and Power Program  

Broader source: Energy.gov [DOE]

Southwest Gas Corporation (SWG) offers incentives to qualifying commercial and industrial facilities who install efficient Combined Heat and Power systems (CHP). CHP systems produce localized, on...

169

Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No. 13, March 1, 1994--May 31, 1994  

SciTech Connect (OSTI)

The NOXSO process is a dry, post-combustion flue gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from the flue gas of a coal-fired utility boiler. In the process, the SO{sub 2} is converted to a sulfur by-product and the NO{sub x} is converted to nitrogen and oxygen. It is predicted that the process can economically remove 90% of the acid rain precursor gases from the flue gas stream in a retrofit or new facility. The objective of the NOXSO Demonstration Project is to design, construct, and operate a flue gas treatment system utilizing the NOXSO process. The effectiveness of the process will be demonstrated by achieving significant reductions in emissions of sulfur and nitrogen oxides. In addition, sufficient operating data will be obtained to confirm the process economics and provide a basis to guarantee performance on a commercial scale. The project is presently in the project definition and preliminary design phase. Data obtained during pilot plant testing which was completed on July 30, 1993 is being incorporated in the design of the commercial size plant. A suitable host site to demonstrate the NOXSO process on a commercial scale is presently being sought. Preliminary engineering activities involved evaluating various design options for the major process vessels with the principal focus being on the sorbent heater vessel, which is operated at the highest temperature. Additionally, the impact of the NOXSO system on power plant particulate emissions and opacity was estimated. It is predicted that particulate emissions will decrease slightly while opacity will increase slightly. Neither change will be significant enough to have an impact on emissions compliance. Advertised performance of the proposed adsorber separator is being verified by laboratory testing. Process studies activities included POC equipment inspection and materials evaluations.

NONE

1994-12-31T23:59:59.000Z

170

Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, December 11, 1992--March 11, 1993  

SciTech Connect (OSTI)

This report describes the potential of sulfate reducing bacteria to fix sulfur derived from flue gas desulfurization. The first section reviews the problem, the second section reviews progress of this study to use desulfovibrio desulfuricans for this purpose. The final section related progress during the current reporting period. This latter section describes studies to immobilize the bacteria in co-culture with floc-forming anaerobes, use of sewage sludges in the culture media, and sulfate production from sulfur dioxide.

Sublette, K.L.

1993-12-31T23:59:59.000Z

171

Catalytic hydrolysis of urea with fly ash for generation of ammonia in a batch reactor for flue gas conditioning and NOx reduction  

SciTech Connect (OSTI)

Ammonia is a highly volatile noxious material with adverse physiological effects, which become intolerable even at very low concentrations and present substantial environmental and operating hazards and risk. Yet ammonia has long been known to be used for feedstock of flue gas conditioning and NOx reduction. Urea as the source of ammonia for the production of ammonia has the obvious advantages that no ammonia shipping, handling, and storage is required. The process of this invention minimizes the risks and hazards associated with the transport, storage, and use of anhydrous and aqueous ammonia. Yet no such rapid urea conversion process is available as per requirement of high conversion in shorter time, so here we study the catalytic hydrolysis of urea for fast conversion in a batch reactor. The catalyst used in this study is fly ash, a waste material originating in great amounts in combustion processes. A number of experiments were carried out in a batch reactor at different catalytic doses, temperatures, times, and at a constant concentration of urea solution 10% by weight, and equilibrium and kinetic studies have been made.

Sahu, J.N.; Gangadharan, P.; Patwardhan, A.V.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

2009-01-15T23:59:59.000Z

172

High-volume, high-value usage of flue gas desulfurization (FGD) by-products in underground mines - Phase I: Laboratory investigations. Quarterly report, October 1993--December 1993  

SciTech Connect (OSTI)

This project proposes to use pneumatically or hydraulically emplaced dry-flue gas desulfurization (FGD) by-products to backfill the adits left by highwall mining. Backfilling highwall mine adits with dry-FGD materials is technically attractive. The use of an active highwall mine would allow the dry-FGD material to be brought in using the same transportation network used to move the coal out, eliminating the need to recreated the transportation infrastructure, thereby saving costs. Activities during the period included the negotiations leading to the final cooperative agreement for the project and the implementation of the necessary instruments at the University of Kentucky to administer the project. Early in the negotiations, a final agreement on a task structure was reached and a milestone plan was filed. A review was initiated of the original laboratory plan as presented in the proposal, and tentative modifications were developed. Selection of a mine site was made early; the Pleasant Valley mine in Greenup County was chosen. Several visits were made to the mine site to begin work on the hydrologic monitoring plan. The investigation of the types of permits needed to conduct the project was initiated. Considerations concerning the acceptance and implementation of technologies led to the choice of circulating fluidized bed ash as the primary material for the study. Finally, the membership of a Technical Advisory Committee for the study was assembled.

Not Available

1994-03-01T23:59:59.000Z

173

COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES: I. QUASILINEAR THEORY  

E-Print Network [OSTI]

COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES: I. QUASILINEAR THEORY Yu.M. Aliev1 , I an interest in mechanisms of electron heating and power deposition in the plasma main- tained by radio parameters. Due to the large value of the mean free path (MFP) the main mechanism of electron heating turns

Kaganovich, Igor

174

Improved high efficiency third stage separator cyclones for separation of fines from fluid catalytic cracking flue gas  

SciTech Connect (OSTI)

Stairmand type small diameter (0.254 m) multicyclones were cold flow tested for fluid catalytic cracking third stage separator application. The gas discharge from the cyclone dust outlet into the common collection hopper was found to far exceed the hopper bleed rate (underflow). The excess gas reentrained dust from the hopper back into cyclones, which lowered collection efficiencies. Vortex {open_quotes}stabilization{close_quotes} using apex cones was unsuccessful whereas a Mobil proprietary cyclone modification was successful in minimizing excess gas discharge and dust reentrainment at the cyclone-hopper boundary. In tests at 700 {degrees}C, the modified cyclones captured all particles above 4 {mu}m. Mobil-Kellogg incorporated the modified cyclones in a new third stage separator design which is targeted for achieving lowest opacity and <50 mg/Nm{sup 3} emissions at the stack. The first such unit will be commercialized in Mobil`s newest catalytic cracker (M.W. Kellogg design) under construction in Altona, Australia in late 1996. 5 refs., 4 figs., 2 tabs.

Chitnis, G.K.; Schatz, K.W. [Mobil Technology Co., Paulsboro, NJ (United States); Bussey, B.K. [M.W. Kellogg Co., Houston, TX (United States)

1996-12-31T23:59:59.000Z

175

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

SciTech Connect (OSTI)

This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and increase carbon injection when inlet loading and mercury removal were low. The resulting mercury removal varied between 50 and 98%, with an overall average of 85.6%, showing that the process was successful at removing high percentages of vapor-phase mercury even with a widely varying mass loading. In an effort to improve baghouse performance, high-permeability bags were tested. The new bags made a significant difference in the cleaning frequency of the baghouse. Before changing the bags, the baghouse was often in a continuous clean of 4.4 p/b/h, but with the new bags the cleaning frequency was very low, at less than 1 p/b/h. Alternative sorbent tests were also performed using these high-permeability bags. The results of these tests showed that most standard, high-quality activated carbon performed similarly at this site; low-cost sorbent and ash-based sorbents were not very effective at removing mercury; and chemically enhanced sorbents did not appear to offer any benefits over standard activated carbons at this site.

C. Jean Bustard; Charles Lindsey; Paul Brignac

2006-05-01T23:59:59.000Z

176

PECO Energy (Gas) – Heating Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The PECO Smart Gas Efficiency Upgrade Program offers rebates and incentives to commercial or residential customers that install an ENERGY STAR qualified high-efficiency natural gas furnace or...

177

Cascade heat recovery with coproduct gas production  

DOE Patents [OSTI]

A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

1986-10-14T23:59:59.000Z

178

Cascade heat recovery with coproduct gas production  

DOE Patents [OSTI]

A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

Brown, William R. (Zionsville, PA); Cassano, Anthony A. (Allentown, PA); Dunbobbin, Brian R. (Allentown, PA); Rao, Pradip (Allentown, PA); Erickson, Donald C. (Annapolis, MD)

1986-01-01T23:59:59.000Z

179

Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets  

E-Print Network [OSTI]

of a flue gas condenser with a steam boiler. ? Improvedsteam dryers by gas ? Dryers and filtration equipment ? Applied CHP ? Purchased flue gas condensers ?

Price, Lynn

2010-01-01T23:59:59.000Z

180

Increase of unit efficiency by improved waste heat recovery  

SciTech Connect (OSTI)

For coal-fired power plants with flue gas desulfurization by wet scrubbing and desulfurized exhaust gas discharge via cooling tower, a further improvement of new power plant efficiency is possible by exhaust gas heat recovery. The waste heat of exhaust gas is extracted in a flue gas cooler before the wet scrubber and recovered for combustion air and/or feedwater heating by either direct or indirect coupling of heat transfer. Different process configurations for heat recovery system are described and evaluated with regard to net unit improvement. For unite firing bituminous coal an increase of net unit efficiency of 0.25 to 0.7 percentage points and for lignite 0.7 to 1.6 percentage points can be realized depending on the process configurations of the heat recovery systems.

Bauer, G.; Lankes, F.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Separation of carbon dioxide from flue emissions using Endex principles  

E-Print Network [OSTI]

In an Endex reactor endothermic and exothermic reactions are directly thermally coupled and kinetically matched to achieve intrinsic thermal stability, efficient conversion, autothermal operation, and minimal heat losses. Applied to the problem of in-line carbon dioxide separation from flue gas, Endex principles hold out the promise of effecting a carbon dioxide capture technology of unprecedented economic viability. In this work we describe an Endex Calcium Looping reactor, in which heat released by chemisorption of carbon dioxide onto calcium oxide is used directly to drive the reverse reaction, yielding a pure stream of carbon dioxide for compression and geosequestration. In this initial study we model the proposed reactor as a continuous-flow dynamical system in the well-stirred limit, compute the steady states and analyse their stability properties over the operating parameter space, flag potential design and operational challenges, and suggest an optimum regime for effective operation.

Ball, R

2009-01-01T23:59:59.000Z

182

Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange  

DOE Patents [OSTI]

In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

McBride, Troy O; Bell, Alexander; Bollinger, Benjamin R; Shang, Andrew; Chmiel, David; Richter, Horst; Magari, Patrick; Cameron, Benjamin

2013-07-02T23:59:59.000Z

183

Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...  

Office of Environmental Management (EM)

will build on system concepts and technical solutions developed for an 11-ton packaged natural gas heat pump. Residential Multi-Function Gas Heat Pump More Documents &...

184

Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange  

DOE Patents [OSTI]

In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

McBride, Troy O.; Bell, Alexander; Bollinger, Benjamin R.

2012-08-07T23:59:59.000Z

185

Southwest Gas Corporation- Smarter Greener Better Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Southwest Gas is offering rebates to Nevada customers for solar water heating systems installed in private residential, small business, public and other properties. Rebates are based on the amount...

186

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

187

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

188

Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No. 16, December 1, 1994--February 28, 1995  

SciTech Connect (OSTI)

The NOXSO process is a dry, post-combustion flue gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas. In the process, the SO{sub 2} is converted to a sulfur by- product (elemental sulfur, sulfuric acid, or liquid SO{sub 2}) and the NO{sub x} is converted to nitrogen and oxygen. The objective of the NOXSO Clean Coal Project is to design, construct, and operate a flue gas treatment system utilizing the NOXSO process at Alcoa Generating Corporation`s (AGC) Warrick Power Plant. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} from the flue gas from the 150-MW equivalent, unit 2 boiler. The by-product to be generated by the project is liquid SO{sub 2}. Sufficient construction cost and operating data will be obtained during the project to confirm the process economics and provide a basis to guarantee performance on a commercial scale. The project is in the Front End Engineering/Environmental Evaluation Phase. Engineering activities are approximately 20% complete and activities to update the project estimate based on completed engineering and equipment bids have been initiated. Process study activities include laboratory fluid-bed adsorber studies, regenerator computer model development and studies, fluid-flow modelling in fluid-bed vessels, and evaluations of SO{sub 2} production processes. The laboratory- scale, fluid-bed adsorber studies are being conducted to improve the accuracy of the removal efficiency predictions and study the impact of adding a third adsorber stage. The construction of the steel, multi-stage reactor is currently underway. The regenerator computer model was revised and is being used to study design options for improving the regenerator performance. Fluid-flow modelling has been conducted to study the effect of grid supports on the gas flow inside the fluid bed vessels.

NONE

1995-12-31T23:59:59.000Z

189

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

190

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, February 1-July 31, 1982  

SciTech Connect (OSTI)

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W. E.; DeSaro, R.; Griffith, J.; Joshi, C.

1982-08-01T23:59:59.000Z

191

Measurement and analysis of gas turbine blade endwall heat transfer  

E-Print Network [OSTI]

the aerodynamic flow and external heat transfer distribution around the airfoils and end-wall surfaces. A stationary 5 vane linear cascade is designed and developed to investigate gas turbine blade endwall heat transfer and flow. The test cascade is instrumented...

Lee, Joon Ho

2001-01-01T23:59:59.000Z

192

Load Preheating Using Flue Gases from a Fuel-Fired Heating System; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #9 (Fact Sheet).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.1310 DOE

193

Process for the combined removal of SO.sub.2 and NO.sub.x from flue gas  

DOE Patents [OSTI]

The present invention in one aspect relates to a process for the simultaneous removal of NO.sub.x and SO.sub.2 from a fluid stream comprising mixtures thereof and in another aspect relates to the separation, use and/or regeneration of various chemicals contaminated or spent in the process and which includes the steps of: (A) contacting the fluid stream at a temperature of between about 105.degree. and 180.degree. C. with a liquid aqueous slurry or solution comprising an effective amount of an iron chelate of an amino acid moiety having at least one --SH group; (B) separating the fluid stream from the particulates formed in step (A) comprising the chelate of the amino acid moiety and fly ash; (C) washing and separating the particulates of step (B) with an aqueous solution having a pH value of between about 5 to 8; (D) subsequently washing and separating the particulates of step (C) with a strongly acidic aqueous solution having a pH value of between about 1 to 3; (E) washing and separating the particulates of step (D) with an basic aqueous solution having a pH value of between about 9 to 12; (F) optionally adding additional amino acid moiety, iron (II) and alkali to the aqueous liquid from step (D) to produce an aqueous solution or slurry similar to that in step (A) having a pH value of between about 4 to 12; and (G) recycling the aqueous slurry of step (F) to the contacting zone of step (A). Steps (D) and (E) can be carried out in the reverse sequence, however the preferred order is (D) and then (E). In another preferred embodiment the present invention provides a process for the removal of NO.sub.x, SO.sub.2 and particulates from a fluid stream which includes the steps of (A) injecting into a reaction zone an aqueous solution itself comprising (i) an amino acid moiety selected from those described above; (ii) iron (II) ion; and (iii) an alkali, wherein the aqueous solution has a pH of between about 4 and 11; followed by solids separation and washing as is described in steps (B), (C), (D) and (E) above. The overall process is useful to reduce acid rain components from combustion gas sources.

Chang, Shih-Ger (El Cerrito, CA); Liu, David K. (Oakland, CA); Griffiths, Elizabeth A. (Neston, GB2); Littlejohn, David (Oakland, CA)

1988-01-01T23:59:59.000Z

194

Recovery Act: Innovative CO2 Sequestration from Flue Gas Using Industrial Sources and Innovative Concept for Beneficial CO2 Use  

SciTech Connect (OSTI)

field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stability in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture. Incorporation of the laboratory results showed that for the application at the aluminum smelter, the in-duct scrubber system is more economical than traditional methods. However, the reverse is true for the refinery case, where the bauxite residue is not effective enough as a sequestrant, combined with challenges related to contaminants in the bauxite residue accumulating in and fouling the scrubber absorbent. Sensitivity analyses showed that the critical variables by which process economics could be improved are enzyme concentration, efficiency, and half-life. At the end of the first part of the Phase 2 project, a gate review (DOE Decision Zero Gate Point) was conducted to decide on the next stages of the project. The original plan was to follow the pre-testing phase with a detailed design for the field testing. Unfavorable process economics, however, resulted in a decision to conclude the project before moving to field testing. It is noted that CO2 Solutions proposed an initial solution to reduce process costs through more advanced enzyme management, however, DOE program requirements restricting any technology development extending beyond 2014 as commercial deployment timeline did not allow this solution to be undertaken.

Dando, Neal; Gershenzon, Mike; Ghosh, Rajat

2012-07-31T23:59:59.000Z

195

Method of coverning the working gas temperature of a solar heated hot gas engine  

SciTech Connect (OSTI)

A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

Almstrom, S.-H.; Nelving, H.G.

1984-07-03T23:59:59.000Z

196

Method of governing the working gas temperature of a solar heated hot gas engine  

SciTech Connect (OSTI)

A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

Almstrom, S.H.; Nelving, H.G.

1984-07-03T23:59:59.000Z

197

Separation of flue-gas scrubber sludge into marketable products. Second quarterly technical progress report, December 1, 1993--February 28, 1994 (Quarter No. 2)  

SciTech Connect (OSTI)

To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{lg_bullet}0.5H{sub 2}0), gypsum (CaSO{sub 4}{lg_bullet}2H{sub 2}0), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH){sub 2}), with miscellaneous objectionable impurities such as iron oxides; silica; and magnesium, sodium, and potassium oxides or salts. Currently, the only market for scrubber sludge is for manufacture of gypsum products, such as wallboard and plaster, and for cement. However, the quality of the raw sludge is often not high enough or consistent enough to satisfy manufacturers, and so the material is difficult to sell. This project is developing a process that can produce a high-quality calcium sulfite or gypsum product while keeping process costs low enough that the material produced will be competitive with that from other, more conventional sources. This purification will consist of minimal-reagent froth flotation, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified gypsum or calcium sulfite product. The separated limestone will be a useful by-product, as it can be recycled to the scrubber, thus boosting the limestone utilization and improving process efficiency. Calcium sulfite will then be oxidized to gypsum, or separated as a salable product in its own right from sludges where it is present in sufficient quantity. The main product of the process will be either gypsum or calcium sulfite, depending on the characteristics of the sludge being processed. These products will be sufficiently pure to be easily marketed, rather that being landfilled.

Kawatra, S.K.; Eisele, T.C.

1994-03-01T23:59:59.000Z

198

Method for controlling exhaust gas heat recovery systems in vehicles  

DOE Patents [OSTI]

A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

Spohn, Brian L.; Claypole, George M.; Starr, Richard D

2013-06-11T23:59:59.000Z

199

Low-Cost Gas Heat Pump for Building Space Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term StorageDepartmentSystem for

200

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1982-31 January 1983  

SciTech Connect (OSTI)

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W.E.; DeSaro, R.; Joshi, C.

1983-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1981-31 January 1982  

SciTech Connect (OSTI)

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W. E.; DeSaro, R.; Joshi, C.

1982-02-01T23:59:59.000Z

202

Heat Exchanger Fouling- Prediction, Measurement and Mitigation  

E-Print Network [OSTI]

wall. The fouling probe has been successfully tested in the laboratory at flue gas temperatures up to 2200°F and a local heat flux up to 41,000 BTU/hr-ft2. The probe has been field tested at a coal-fired boiler plant. Future tests at a municipal waste...

Peterson, G. R.

203

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Waste Heat Recovery Methods for the UBC Microbrewery  

E-Print Network [OSTI]

into Waste Heat Recovery Methods for the UBC Microbrewery Nazanin Bahrami, Michael Huang, Aldrich Huang Heat Recovery Methods for the UBC Microbrewery Written By: Nazanin Bahrami (45179090) Michael Huang. Flue gas recovery and separation can recover 26% of the total heat energy, and can reduce the GHG

204

Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas  

DOE Patents [OSTI]

Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

2004-06-22T23:59:59.000Z

205

Sour gas injection for use with in situ heat treatment  

DOE Patents [OSTI]

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

Fowler, Thomas David (Houston, TX)

2009-11-03T23:59:59.000Z

206

Simplified method for determining heat of combustion of natural gas  

SciTech Connect (OSTI)

A simplified technique for determination of the heat of combustion of natural gas has been developed. It is a variation of the previously developed technique wherein the carrier air, in which the test sample was burnt, was oxygen enriched to adjust the mole fraction of oxygen in the combustion product gases up to that in the carrier air. The new technique eliminates the need for oxygen enrichment of the experimental mixtures and natural gas samples and has been found to predict their heats of combustion to an uncertainty of the order of 1 percent.

Singh, J.J.; Chegini, H.; Mall, G.H.

1987-04-01T23:59:59.000Z

207

Low-pressure-ratio regenerative exhaust-heated gas turbine  

SciTech Connect (OSTI)

A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

1991-01-01T23:59:59.000Z

208

Performance of Gas-Engine Driven Heat Pump Unit  

SciTech Connect (OSTI)

Air-conditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved air-conditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motor-driven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater operating efficiency compared to conventional electric motor-driven units (SCGC 1998). In Japan, many hundreds of thousands of natural gas-driven heat pumps have been sold (typically 40,000 systems annually) (Yahagi et al. 2006). The goal of this program is to develop dependable and energy efficient GHPs suitable for U.S. commercial rooftop applications (the single largest commercial product segment). This study describes the laboratory performance evaluation of an integrated 10-ton GHP rooftop unit (a 900cc Daihatsu-Aisin natural gas engine) which uses R410A as the refrigerant (GEDAC No.23). ORNL Thermally-Activated Heat Pump (TAHP) Environmental Chambers were used to evaluate this unit in a controlled laboratory environment.

Abdi Zaltash; Randy Linkous; Randall Wetherington; Patrick Geoghegan; Ed Vineyard; Isaac Mahderekal; Robert Gaylord

2008-09-30T23:59:59.000Z

209

Alabama Heat Content of Natural Gas Consumed  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342Increases (Billion2009

210

Alabama Heat Content of Natural Gas Consumed  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342Increases

211

Iowa Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb3,151,8872009 2010 2011

212

Iowa Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb3,151,8872009 2010

213

Kansas Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0Extensions (Billion2009 2010 2011

214

Kansas Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0Extensions (Billion2009 2010

215

Kentucky Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0MonthIncreases (Billion Cubic2009 2010

216

Kentucky Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0MonthIncreases (Billion Cubic2009

217

Louisiana Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0 0Feet)2009 2010 2011

218

Louisiana Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0 0Feet)2009 2010

219

Maine Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342Cubic

220

Maine Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-14 Oct-14 Nov-14 Dec-14

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Maryland Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0

222

Maryland Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0Sep-14 Oct-14

223

Massachusetts Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89

224

Massachusetts Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89Sep-14 Oct-14 Nov-14

225

Michigan Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81Feet)3,174Feet)Sales2009

226

Michigan Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0

227

Minnesota Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15continues, with theMay 20032009

228

Minnesota Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15continues, with theMay

229

Mississippi Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15ThousandExtensionsSales (Billion2009

230

Mississippi Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15ThousandExtensionsSales

231

Missouri Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0 0 0 2011

232

Missouri Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0 0 0 2011Sep-14

233

Montana Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388 413New

234

Montana Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388 413NewSep-14 Oct-14 Nov-14

235

Colorado Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47Extensions (BillionSales

236

Colorado Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47Extensions (BillionSalesSep-14

237

Connecticut Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number ofFuel2009 2010 2011

238

Connecticut Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number ofFuel2009 2010

239

Delaware Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar132009 2010 2011

240

Delaware Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar132009 2010

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Florida Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003ofDec.AdjustmentsDecreasesSales2009

242

Florida Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633

243

Georgia Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1 54.8 49.4 50.987.193.52009 2010

244

Georgia Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1 54.8 49.4 50.987.193.52009

245

Hawaii Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,4351998 19992009 2010 2011

246

Hawaii Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,4351998 19992009 2010

247

Idaho Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1Thousand

248

Idaho Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1ThousandSep-14 Oct-14

249

Illinois Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (Million

250

Illinois Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (MillionSep-14 Oct-14 Nov-14 Dec-14

251

Indiana Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0 1996-2005. 61,707 58,6938 8

252

Indiana Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0 1996-2005. 61,707 58,6938

253

Pennsylvania Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794CubicExports ofCubic17Feet)Sales2009

254

California Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1Reserves,835Feet)(Million2009

255

Nevada Heat Content of Natural Gas Consumed  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feb MarDry Natural Gas

256

Nevada Heat Content of Natural Gas Consumed  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feb MarDry Natural GasSep-14

257

Process for removing sulfur dioxide from flue gases  

SciTech Connect (OSTI)

This patent describes an improvement in a dry process for the removal of sulfur dioxide from flue gases by the addition thereto of hydrated lime containing sugar in a coal combustion unit, wherein the flue gases result from the combustion of a coal in a combustion chamber, and the flue gases are treated in an electrostatic precipitator prior to discharge to the atmosphere the improvement comprising: passing the flue gases, after the addition of the hydrated lime is of fine particles of a specific surface of 7 to 25 square meters per gram, through a conduit towards the electrostatic precipitator; and adding an aqueous media to the flue gases in the conduit in an amount to increase the water content of the flue gases and cool the same by evaporative cooling to a temperature no lower than 20{sup 0}F. about the dew point of the gas, so as to avoid forming water droplets in the gas, so as to prevent condensation of water therefrom.

Robinson, M.W. Jr.

1989-08-29T23:59:59.000Z

258

Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Final report  

SciTech Connect (OSTI)

The main objective of this research was to investigate microorganisms capable of fossil fuel flue gas desulfurization and denitrification. The study used municipal sewage sludge as a carbon and energy source for SO{sub 2}-reducing cultures. The individual tasks developed a consortium of sulfate-reducing bacteria, investigated the design parameters for a continuous process, preformed a cost analysis, and screened sulfate-reducing bacteria. In the investigation of microbial reduction of NO{sub x} to nitrogen, tasks included screening denitrifying bacteria for NO and NO{sub 2} activity, developing optimum NO-reducing cultures, and investigating design parameters for a continuous system. This final report reviews the work previous to the current project, describes project objectives and the specific work plan, and reports results from the work completed during the previous reporting periods.

Sublette, K.L.

1994-03-01T23:59:59.000Z

259

A Heating Model for the Millennium Gas Run  

E-Print Network [OSTI]

The comparison between observations of galaxy clusters thermo-dynamical properties and theoretical predictions suggests that non-gravitational heating needs to be added into the models. We implement an internally self-consistent heating scheme into GADGET-2 for the third (and fourth) run of the Millennium gas project (Pearce et al. in preparation), a set of four hydrodynamical cosmological simulations with N=2(5x10^8) particles and with the same volume (L=500 h-1 Mpc) and structures as the the N-body Millennium Simulation (Springel et al. 2005). Our aim is to reproduce the observed thermo-dynamical properties of galaxy clusters.

L. Gazzola; F. R. Pearce

2006-11-22T23:59:59.000Z

260

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

1992-07-01T23:59:59.000Z

262

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network [OSTI]

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

263

A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies  

E-Print Network [OSTI]

Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

Guyer, Brittany (Brittany Leigh)

2009-01-01T23:59:59.000Z

264

Condensing Heat Exchanger for Optimization of Energy Efficiency  

E-Print Network [OSTI]

Historically, boiler efficiency has been limited due to the minimum temperature allowed at the stack. Heat lost up the stack was in exchange for keeping the flue gas temperature above the water vapor dew point. If water vapor was allowed to condense...

Carrigan, J. F.; Johnson, D. W.; DiVitto, J. G.; Schulze, K. H.

265

Recover heat from waste incineration  

SciTech Connect (OSTI)

Using these guidelines, engineers can address critical design problems associated with burning process-waste streams and select cost-effective waste-heat boilers. Incinerating contaminant streams is a win-win situation: (1) complete destruction of pollutant(s) is attained and (2) valuable thermal energy is recovered as steam and returned to process, thus conserving energy. However, recovering thermal energy from incinerated flue-gas streams contains some caveats. This treatment method creates a large high-temperature flue gas from which valuable thermal energy is recovered as saturated or superheated steam. Unfortunately, because a process-waste stream is used as feed, this stream will have variations in contaminant and component concentrations which influence the load on the boiler. Also, burning contaminants may create acid gases which will accelerate corrosion problems for the boiler at elevated temperatures. The following guidelines and checklist clarify the do`s and don`ts when designing waste-heat boilers.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1995-09-01T23:59:59.000Z

266

Fluidized-bed waste-heat recovery system development: Final report  

SciTech Connect (OSTI)

A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize the energy, which is applicable to all processes, is to preheat the combustion air for the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) system is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, recirculating alumina particles are heated by the flue gas in a raining bed. The hot particles are then removed from the bed and placed in a fluidized bed where they are fluidized by the combustion air. Through this process, the combustion air is preheated. The cooled particles are then returned to the raining bed. Initial development of this concept is for the aluminum smelting industry. In this final report, the design, development, fabrication, and installation of a full-scale FBWHR system is detailed.

Patch, K.D.; Cole, W.E.

1988-06-01T23:59:59.000Z

267

Waste heat recovery: Textile industry. (Latest citations from World Textile Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning descriptions and evaluations of waste heat recovery operations used in the textile industry. Heat recovery and utilization from wastewater streams, flue gas, finishing processes, dyeing operations, and air jet systems are presented. The use of waste heat for space heating and process preheating is considered. (Contains a minimum of 162 citations and includes a subject term index and title list.)

Not Available

1993-08-01T23:59:59.000Z

268

Use of sulfide-containing liquors for removing mercury from flue gases  

DOE Patents [OSTI]

A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

Nolan, Paul S. (North Canton, OH); Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH); Vecci, Stanley J. (Alliance, OH)

2003-01-01T23:59:59.000Z

269

Use of sulfide-containing liquors for removing mercury from flue gases  

DOE Patents [OSTI]

A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

2006-05-02T23:59:59.000Z

270

Fluidized-bed waste-heat recovery system development. Semiannual report, February 1, 1983-July 31, 1983  

SciTech Connect (OSTI)

A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize this energy, which is applicable to all processes, is to preheat the combustion air from the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry. In this report, the accomplishments of the proceeding six-month period are described.

Cole, W. E.; De Saro, R.; Joshi, C.

1983-08-01T23:59:59.000Z

271

Control of pollutants in flue gases and fuel gases  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Flue gases and fuel gases: combustion, gasification, pyrolysis, incineration and other and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . . 3-5 3.4 Emission

Zevenhoven, Ron

272

Control of pollutants in flue gases and fuel gases  

E-Print Network [OSTI]

and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Flue gases and fuel gases: combustion, gasification, pyrolysis, incineration and other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . 3-5 3.4 Emission

Laughlin, Robert B.

273

Indirect Heat Transfer Technology For Waste Heat Recovery Can Save You Money  

E-Print Network [OSTI]

-drllt fIn lb. FI~-to_heot-roccvery .ylt8m Stoek gl' ..---::-----'1 _._.__.@_.; -+ Farcod?drall fan le. Air-prohe8ting syotem UBing I ....Hransfer ayltem Three typical arrangements for recovering waste heat from furnace flue gas Fig. 1 *Trademark... heat transfer fluid and thence to selected heat "user" sites (Figure 1C). This basic method often offers an attractive investment return, particu larly in applications where stack gas exit tempera tures exceed 316?C (600?F) and the furnace duty...

Beyrau, J. A.; Bogel, N. G.; Seifert, W. F.; Wuelpern, L. E.

1984-01-01T23:59:59.000Z

274

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network [OSTI]

- BACKGROUND: In December 2009, the Combined Heat and Power Plant at Cornell Cornell's conversion of a coal fired heating plant to natural Gas the power plant #12;

Keinan, Alon

275

Energy recovery during expansion of compressed gas using power plant low-quality heat sources  

DOE Patents [OSTI]

A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

2006-03-07T23:59:59.000Z

276

Experimental Study of Gas Turbine Blade Film Cooling and Heat Transfer  

E-Print Network [OSTI]

Modern gas turbine engines require higher turbine-entry gas temperature to improve their thermal efficiency and thereby their performance. A major accompanying concern is the heat-up of the turbine components which are already subject to high...

Narzary, Diganta P.

2010-10-12T23:59:59.000Z

277

Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint  

SciTech Connect (OSTI)

Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

Turchi, C. S.; Ma, Z.

2011-08-01T23:59:59.000Z

278

Optimization of Combustion Efficiency for Supplementally Fired Gas Turbine Cogenerator Exhaust Heat Receptors  

E-Print Network [OSTI]

A broad range of unique cogeneration schemes are being installed or considered for application in the process industries involving gas turbines with heat recovery from the exhaust gas. Depending on the turbine design, exhaust gases will range from...

Waterland, A. F.

1984-01-01T23:59:59.000Z

279

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

280

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina)  

Broader source: Energy.gov [DOE]

This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services,...

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Control of temperature and heat flux in a combustor using coal-derived gas of varying heat content. [Patent application  

SciTech Connect (OSTI)

The present invention is directed to a fuel-air control system for a combustor in which coal-derived gas of varying heat content is used. To maintain the temperature in the combustor at an essentially constant value the fuel-to-air ratio is adjusted by using a temperature actuated variable pressure regulator in the gas feed line to compensate for the variability of the heat content of the gas. The velocity of the products of combustion is maintained at an essentially constant flow rate by controlling the mass flow of the air and fuel through linked valves on the gas and air feed lines.

Loth, J.L.; Nakaishi, C.V.; Carpenter, L.K.; Bird, J.D.

1981-06-03T23:59:59.000Z

282

Superconductor fiber elongation with a heated injected gas  

DOE Patents [OSTI]

An improved method and apparatus for producing flexible fibers (30) of superconducting material includes a crucible (12) for containing a charge of the superconducting material. The material is melted in the crucible (12) and falls in a stream (18) through a bottom hole (16) in the crucible (12). The stream (18) falls through a protecting collar (22) which maintains the stream (18) at high temperatures. The stream (18) is then supplied through a downwardly directed nozzle (26) where it is subjected to a high velocity of a heated gas (36') which breaks the melted superconducting material into ligaments which solidify into the flexible fibers (30). The fibers (30) are collected by directing them against a collection filter (32).

Zeigler, Douglas D. (Atwater, OH); Conrad, Barry L. (Alliance, OH); Gleixner, Richard A. (North Canton, OH)

2001-01-16T23:59:59.000Z

283

FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Gas Hydrates? What Role Do Gas Hydrates Play in Nature? Theme 2 Gas Hydrates as a Potential Energy Resource Are Gas Hydrates a Potential Energy Source? How Big Is the...

284

Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1992--December 11, 1992  

SciTech Connect (OSTI)

With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans and have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.

Sublette, K.L.

1992-12-31T23:59:59.000Z

285

System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

286

Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones  

E-Print Network [OSTI]

In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones...

Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

2006-01-01T23:59:59.000Z

287

Ameren Illinois (Gas)- Cooking and Heating Business Efficiency Incentives  

Broader source: Energy.gov [DOE]

Ameren Illinois offers several incentive programs that include efficient natural gas technologies. The programs are available only to non-residential customers that receive natural gas service from...

288

Heat Transfer on a Hypersonic Sphere with Gas Injection Vladimir V. Riabov  

E-Print Network [OSTI]

Heat Transfer on a Hypersonic Sphere with Gas Injection Vladimir V. Riabov Department be considered as an effective way of the reduction of heat transfer to the surface in this area [1 the viscous layer is blown completely off the surface, and heat transfer is zero. The effect of injecting

Riabov, Vladimir V.

289

HEAT TRANSFER ON A HYPERSONIC SPHERE WITH DIFFUSE RAREFIED-GAS INJECTION  

E-Print Network [OSTI]

HEAT TRANSFER ON A HYPERSONIC SPHERE WITH DIFFUSE RAREFIED-GAS INJECTION Vladimir V. Riabov* Rivier numbers Re0,R.3-7 Mass injection can be considered as an effective way of the reduction of heat transfer in the case of small Reynolds numbers. Moss12 found that mass injection dramatically reduces heat transfer

Riabov, Vladimir V.

290

Int. Symp. on Heat Transfer in Gas Turbine Systems 9 14 August, 2009, Antalya, Turkey  

E-Print Network [OSTI]

Int. Symp. on Heat Transfer in Gas Turbine Systems 9 ­ 14 August, 2009, Antalya, Turkey EXPERIMENTAL TURBINE AERO-HEAT TRANSFER STUDIES IN ROTATING RESEARCH FACILITIES Cengiz Camci Turbomachinery Aero-Heat Transfer Laboratory Department of Aerospace Engineering The Pennsylvania State University 233

Camci, Cengiz

291

Flammability of selected heat resistant alloys in oxygen gas mixtures  

SciTech Connect (OSTI)

Within recent years, the use of oxygen has increased in applications where elevated temperatures and corrosion may be significant factors. In such situations, traditional alloys used in oxygen systems will not be adequate. Where alternative alloys must be utilized, based upon environmental requirements, it is essential that they may be characterized with respect to their ignition and combustion resistance in oxygen. Promoted ignition and promoted ignition-combustion are terms which have been used to describe a situation where a substance with low oxygen supports the combustion of a compatibility ignites and more ignition resistant material. In this paper, data will be presented on the promoted ignition-combustion behavior of selected heat resistant engineering alloys that may be considered for gaseous oxygen applications in severe environments. In this investigation, alloys have been evaluated via both flowing and static (fixed volume) approaches using a rod configuration. Oxygen-nitrogen gas mixtures with compositions ranging from approximately 40 to 99.7% oxygen at pressures of 3.55 to 34.6 MPa were used in the comparative studies.

Zawierucha, R.; McIlroy, K.; Million, J.F. [Praxair, Inc., Tonawanda, NY (United States)

1995-12-31T23:59:59.000Z

292

High volume - high value usage of Flue Gas Desulfurization (FGD) by-products in underground mines. Quarterly report, October 1, 1995--December 31, 1995  

SciTech Connect (OSTI)

The amount of dry FGD materials produced in the U.S. has not been increasing at the high rate originally anticipated. This has been due to a number of economic factors affecting the utility industry. Technologies for the disposal of large amounts of materials are not going to be implemented in the near term. In light of this development the target application for this project is being changed from highwall adit filling to the filling of auger holes to allow for highwall mining. This application focuses on using the dry FGD material to recover coal isolated by excessive augering. It produces 10 or more times the amount of coal per ton of dry FGD utilized than the originally proposed methodology. It also does not require extensive equipment development and, if applied to abandoned mine lands, may have substantially more significant environmental benefit. We also propose to use a spray dryer material for the demonstration instead of the fluidized bed material originally proposed. The spray dryer material is already slacked eliminating problems associated with heat generation at the mine site. Auger hole grouting with FGD material is also best performed by hydraulic emplacement methods.

NONE

1997-05-01T23:59:59.000Z

293

CORQUENCH: A model for gas sparging-enhanced, melt-water, film-boiling heat transfer  

SciTech Connect (OSTI)

In evaluation of severe-accident sequences for water-cooled nuclear reactors, molten core materials may be postulated to be released into the containment and accumulate on concrete. The heatup and decomposition of concrete is accompanied by the release of water vapor and carbon dioxide gases. Gases flowing through the melt upper surface can influence the rates of heat transfer to water overlying the melt. In particular, the gas flow through the interface can be envisioned to enhance the heat removal from the melt. A mechanistic model (CORQUENCH) has been developed to describe film-boiling heat transfer between a molten pool and an overlying coolant layer in the presence of sparging gas. The model favorably predicts the lead-Feron 11 data of Greene and Greene et al. for which the calculations indicate that area enhancement in the conduction heat transfer across the film is the predominant mechanism leading to augmentation in the heat flux as the gas velocity increases. Predictions for oxidic corium indicate a rapid increase in film-boiling heat flux as the gas velocity rises. The predominant mode of heat transfer for this case is radiation, and the increase in heat flux with gas velocity is primarily a result of interfacial area enhancement of the radiation component of the overall heat transfer coefficient. The CORQUENCH model has been incorporated into the MELTSPREAD-1 computer code{sup 6} for the analysis of transient spreading in containments.

Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

1990-01-01T23:59:59.000Z

294

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Broader source: Energy.gov (indexed) [DOE]

Generator (Waste Heat 1) - TEG 1 (preliminary assembly and testing) - TEG 2 (Bi-Te modules) - TEG 3 (Skutterudite and Bi-Te modules) * Develop Cost-Effective TEG (Waste Heat...

295

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine cycle  

E-Print Network [OSTI]

Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine steam process for exhaust gas heat recovery from a spark-ignition (SI) engine, from a prototyping of a practical supervi- sion and control system for a pilot Rankine steam process for exhaust gas heat recovery

Paris-Sud XI, Université de

296

Coil said to up heat reclaimer efficiency 3-5%  

SciTech Connect (OSTI)

The Elton Corp. will introduce a new heat reclaimer coil that can be used with its flue gas heat claimer to produce high-temperature hot water. The new coil, which can bring water from 125 to 165 degrees for users that require hotter water, can increase fuel savings by 3 to 5 percent over the standard unit. At prices starting at $32,000 to generate 20 gallons per minute, the heat reclaimer can pay for itself in as little as four months. Both the heat reclaimer and coil are custom built at Eldon's Louisiana plant.

Not Available

1984-08-06T23:59:59.000Z

297

Two-tank working gas storage system for heat engine  

DOE Patents [OSTI]

A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

Hindes, Clyde J. (Troy, NY)

1987-01-01T23:59:59.000Z

298

International Lige Colloquium on Ocean Dynamics, GAS TRANSFER AT WATER SURFACES, May 2 -6 2005 Estimation of air-sea gas and heat fluxes from infrared imagery and  

E-Print Network [OSTI]

2005 Estimation of air-sea gas and heat fluxes from infrared imagery and surface wave measurements and much higher heat fluxes. In addition, the infrared imagery analysis reveals potentially significant the infrared images. It is also shown that the difference in the surface boundary conditions for heat and gas

Jaehne, Bernd

299

Laclede Gas Company- Residential High Efficiency Heating Rebate Program  

Broader source: Energy.gov [DOE]

Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential customers can qualify for rebates on boilers, furnaces,...

300

Grid-region heat transfer in a gas solid fluidized bed  

SciTech Connect (OSTI)

The grid region heat transfer to a horizontal tube in a gas-solid fluidized bed was studied experimentally and theoretically. A preliminary experimental study was first conducted to investigate semi-quantitatively the heat transfer characteristics in the grid region as well as in the bubbling region of the gas-solid fluidized bed using a simple hot water circulation system. Experimental parameters included particle size, static bed height, superficial gas velocity, distributor open area, distributor hole sizes, distributor hole numbers, and vertical locations of the heating tube. An additional experimental study was then carried out to study quantitatively the heat transfer coefficient in each grid region phase, i.e., jet phase, emulsion phase and dead phase using an artificial jet and an electrically heated tube. The observed heat transfer coefficients for each phase were correlated as a function of experimental parameters. The observed results are also compared with results estimated from a heat transfer model, which is based on plausible heat transfer mechanisms in the grid region of a gas-solid fluidized bed.

Wang, R.C.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Enhanced convective and film boiling heat transfer by surface gas injection  

SciTech Connect (OSTI)

Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

Duignan, M.R.; Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Irvine, T.F., Jr. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering

1992-04-01T23:59:59.000Z

302

Enhanced convective and film boiling heat transfer by surface gas injection  

SciTech Connect (OSTI)

Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

Duignan, M.R.; Greene, G.A. (Brookhaven National Lab., Upton, NY (United States)); Irvine, T.F., Jr. (State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering)

1992-04-01T23:59:59.000Z

303

Conjugate Heat Transfer with Large Eddy Simulation for Gas Turbine Components.  

E-Print Network [OSTI]

Conjugate Heat Transfer with Large Eddy Simulation for Gas Turbine Components. Florent Duchaine constraint for GT (gas turbines). Most existing CHT tools are developped for chained, steady phenomena. A film-cooled turbine vane is then studied. Thermal conduction in the blade implies lower wall

Nicoud, Franck

304

Elevated freestream turbulence effects on heat transfer for a gas turbine vane  

E-Print Network [OSTI]

turbine airfoil, particularly for the first stage nozzle guide vane. For this study, augmentations. To incorporate all of the variables affecting boundary layer development on gas turbine airfoils, studies needElevated freestream turbulence effects on heat transfer for a gas turbine vane K.A. Thole a,*, R

Thole, Karen A.

305

Flue gas desulfurization gypsum and fly ash  

SciTech Connect (OSTI)

The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.

Not Available

1992-05-01T23:59:59.000Z

306

Confined zone dispersion flue gas desulfurization demonstration  

SciTech Connect (OSTI)

This is the fifth quarterly report for this project. This project is divided into three phases. Phase 1, which has been completed, involved design, engineering, and procurement for the CZD system, duct and facility modifications, and supporting equipment. Phase 2, also completed, included equipment acquisition and installation, facility construction, startup, and operator training for parametric testing. Phase 3 broadly covers testing, operation and disposition, but only a portion of Phase 3 was included in Budget Period 1. That portion was concerned with parametric testing of the CZD system to establish the optimum conditions for an extended, one-year, continuous demonstration. As of December 31, 1991, the following goals have been achieved. (1) Nozzle Selection - A modified Spraying Systems Company (SSC) atomizing nozzle has been selected for the one-year continuous CZD demonstration. (2) SO[sub 2] and NO[sub x] Reduction - Preliminary confirmation of 50% SO[sub 2] reduction has been achieved, but the NO[sub x] reduction target cannot be confirmed at this time. (3) Lime Selection - Testing indicated an injection rate of 40 to 50 gallons per minute with a lime slurry concentration of 8 to 10% to achieve 50% SO[sub 2] reduction. There has been no selection of the lime to be used in the one year demonstration. (4) ESP Optimization - Tests conducted to date have shown that lime injection has a very beneficial effect on ESP performance, and little adjustment may be necessary. (5) SO[sub 2] Removal Costs - Testing has not revealed any significant departure from the bases on which Bechtel's original cost estimates (capital and operating) were prepared. Therefore, SO[sub 2] removal costs are still expected to be in the range of $300/ton or less.

Not Available

1992-12-31T23:59:59.000Z

307

Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report  

SciTech Connect (OSTI)

For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

2013-01-21T23:59:59.000Z

308

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

SciTech Connect (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

309

A Gas-Fired Heat Pipe Zone Heater  

E-Print Network [OSTI]

in this table were obtained from the 1983 Qas Rel~earch Inrtitute Baseline Projection Data Book. 4verage Resldentlal Gas Prlces ($/Wtu) (1982 do1 lars) New England Middle Atlantlc South Atlantlc East North Central West North Central East South Central... West South Central kuntaln #I Mountaln I2 Paclflc #I Paclf lc 12 The conservation factor may be exprerred as lABLEm Gas Research lnstltute Fuel lnflatlon Estlmates natural Gas 1- ~2 1983-1990 1990-ZMO Nc* England 1.7 2.1 Mlddle Atlantlc 2.1 2...

Winn, C. B.; Burns, P.; Guire, J.

1984-01-01T23:59:59.000Z

310

THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS  

SciTech Connect (OSTI)

A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

Michael G. McKellar

2011-11-01T23:59:59.000Z

311

Texas Gas Service- Residential Solar Water Heating Rebate Program (Texas)  

Broader source: Energy.gov [DOE]

Texas Gas Service offers a flat rebate of $750 for its residential customers within the Austin and Sunset Valley city limits for the installation and purchase of a new solar water heater with...

312

Collisionless electron heating by radio frequency bias in low gas pressure inductive discharge  

SciTech Connect (OSTI)

We show experimental observations of collisionless electron heating by the combinations of the capacitive radio frequency (RF) bias power and the inductive power in low argon gas pressure RF biased inductively coupled plasma (ICP). With small RF bias powers in the ICP, the electron energy distribution (EED) evolved from bi-Maxwellian distribution to Maxwellian distribution by enhanced plasma bulk heating and the collisionless sheath heating was weak. In the capacitive RF bias dominant regime, however, high energy electrons by the RF bias were heated on the EEDs in the presence of the ICP. The collisionless heating mechanism of the high energy electrons transited from collisionless inductive heating to capacitive coupled collisionless heating by the electron bounce resonance in the RF biased ICP.

Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

2012-12-10T23:59:59.000Z

313

COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES: II. THE ROLE OF COLLISIONS AND NON-LINEAR EFFECTS  

E-Print Network [OSTI]

COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES: II. THE ROLE OF COLLISIONS AND NON of electrons ( ) is large (comparable with discharge slab) and collisionless heating dominates Ohmic one. Being initially proposed for plasma heating in 1 , it was rst explored in gas discharge plasma for a capacitively

Kaganovich, Igor

314

Energy Recovery By Direct Contact Gas-Liquid Heat Exchange  

E-Print Network [OSTI]

-09-48 Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13-15, 1988 passes to the atmosphere. The heated liquid moves through a closed circuit to tubular exchangers where its heat is transferred to a working fluid... are available, For sieve trays, mass transfer efficiency sources have been tabulated by Chan and Fair (1984), 267 ESL-IE-88-09-48 Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13-15, 1988 When only mass...

Fair, J. R.; Bravo, J. L.

315

Compact Ceramic Heat Exchangers for Corrosive Waste Gas Applications  

E-Print Network [OSTI]

in the late 1930's of low-leakage high-pressure metallic recuperators resulted in the gradual demise of ceramic heat exchar~ers. This trend was given further impetus by the rapid fall in oil prices in the 1950's which further reduced the economic... recuperators. Metallic heat exchangers are ideally suited to handlir~ clean waste gases havir~ temperatures rar~ir~ from 300 deg. C to 1050 deg. C and for preheatir~ air up to 550 deg. C as well as low calorific gases to 450 deg. C. Operatir~ metallic...

Laws, W. R.; Reed, G. R.

1982-01-01T23:59:59.000Z

316

Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process  

SciTech Connect (OSTI)

A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

Yoder Jr, Graydon L [ORNL; Harvey, Karen [ORNL; Ferrada, Juan J [ORNL

2011-02-01T23:59:59.000Z

317

Massively-Parallel Direct Numerical Simulation of Gas Turbine Endwall Film-Cooling Conjugate Heat Transfer  

E-Print Network [OSTI]

MASSIVELY-PARALLEL DIRECT NUMERICAL SIMULATION OF GAS TURBINE ENDWALL FILM-COOLING CONJUGATE HEAT TRANSFER A Thesis by CHARLES MICHAEL MEADOR Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements... for the degree of MASTER OF SCIENCE December 2010 Major Subject: Mechanical Engineering MASSIVELY-PARALLEL DIRECT NUMERICAL SIMULATION OF GAS TURBINE ENDWALL FILM-COOLING CONJUGATE HEAT TRANSFER A Thesis by CHARLES MICHAEL MEADOR Submitted to the O ce of Graduate...

Meador, Charles Michael

2011-02-22T23:59:59.000Z

318

Low-pressure-ratio regenerative exhaust-heated gas turbine. Final report  

SciTech Connect (OSTI)

A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

1991-01-01T23:59:59.000Z

319

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina Butler Tina-Butler.jpg TinaLaundry Tips:Natural Gas

320

District of Columbia Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and Commercial Consumers by

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

District of Columbia Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and Commercial Consumers bySep-14

322

Modelling of the dynamics of a low-speed gas-liquid heat engine  

SciTech Connect (OSTI)

This paper deals with the simulation model of a gas-liquid heat engine which is characterized by very low speeds (1-3 rpm) and relatively high torque. The engine operates according to the Minto Thermal Wheel' principle. It is based on the conversion of thermal energy from the heat source, through gas expansion, into mechanical work, by means of the fall of a mass of liquid. A prototype has already been constructed showing great ability to operate at very low temperature differences between the heat source and heat sink. This makes the engine quite suitable to the utilization of low temperature heat sources such as solar energy and waste heat. On the other hand, the number of moving parts is kept to a minimum, since the piston of traditional positive displacement engines (PDE) is now replaced simply by a mass of liquid. The mathematical model consists of applying the energy equation, in it time-derivative form, to representative engine control volumes, resulting in a set of linear ordinary differential equations. Their integration provides the time variation of pressure and temperature of the working fluid. The engine performance can thus be predicted as a function of engine operating conditions and geometric characteristics. In this paper, the engine dynamics (i.e., variable angular speed) have been taken into account, as well as heat losses in the engine structure. Results and further design considerations are discussed.

Cunha, C.M.P.; Parise, J.A.R. (Pontificia Univ. Catolica do Rio de Janeiro (Brazil))

1992-01-01T23:59:59.000Z

323

MULTIPLE POLLUTANT REMOVAL USING THE CONDENSING HEAT EXCHANGER  

SciTech Connect (OSTI)

The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon ® covered condensing heat exchanger is adapted to remove certain flue gas constituents, both particulate and gaseous, while recovering low level heat. The pollutant removal performance and durability of this device is the subject of a USDOE sponsored program to develop this technology. The program was conducted under contract to the United States Department of Energy?s Fossil Energy Technology Center (DOE-FETC) and was supported by the Ohio Coal Development Office (OCDO) within the Ohio Department of Development, the Electric Power Research Institute?s Environmental Control Technology Center (EPRI-ECTC) and Babcock and Wilcox - a McDermott Company (B&W). This report covers the results of the first phase of this program. This Phase I project has been a two year effort. Phase I includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MWt. The other task studied the durability of the Teflon ® covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. Although soda ash was shown to be the most effective reagent for acid gas absorption, comparative cost analyses suggested that magnesium enhanced lime was the most promising avenue for future study. The durability of the Teflon ® covered heat exchanger tubes was studied on a pilot-scale single- stage condensing heat exchanger (CHX ® ). This device was operated under typical coal-fired flue gas conditions on a continuous basis for a period of approximately 10 months. Data from the test indicate that virtually no decrease in Teflon ® thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings. Evidence of wear was present only at the microscopic level, and even then was very minor in severity.

B.J. JANKURA; G.A. KUDLAC; R.T. BAILEY

1998-06-01T23:59:59.000Z

324

Direct Gas Fired Air Heating For 40 to 50% Fuel Savings  

E-Print Network [OSTI]

the safety aspects of direct gas fired air heating, the most important qUe~tion is whether there would be a harmful build up of carbon monoxide within the building as a result of!the products of combustion being released directly into the air stream.... The unvented infrared heaterslhave long been proven safe from this standpoint. By looking at the fundamental chemistry of combustion! of natural gas, the direct gas-fired make-up air heaters can be shown to produce lower concentrationsII of carbon monoxide...

Searcy, J. A.

1979-01-01T23:59:59.000Z

325

Couette flow regimes with heat transfer in rarefied gas  

SciTech Connect (OSTI)

Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.

Abramov, A. A., E-mail: alabr54@mail.ru; Butkovskii, A. V., E-mail: albutkov@mail.ru [Zhukovski Central Aerohydrodynamics Institute (Russian Federation)

2013-06-15T23:59:59.000Z

326

Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 2, Heating season  

SciTech Connect (OSTI)

The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

Miller, J.D.

1995-11-01T23:59:59.000Z

327

Theoretical study of gas heated in a porous material subjected to a concentrated solar radiation (*)  

E-Print Network [OSTI]

W solar furnace of Solar Energy Laboratory in Odeillo (France). Revue Phys. Appl. 15 (1980) 423-426 MARS423 Theoretical study of gas heated in a porous material subjected to a concentrated solar exposed to the solar radiation. These quantities may be expressed in any set consistent units. 1

Paris-Sud XI, Université de

328

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents [OSTI]

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

329

Air bottoming cycle: Use of gas turbine waste heat for power generation  

SciTech Connect (OSTI)

This paper presents a thermodynamic analysis of the Air Bottoming Cycle (ABC) as well as the results of a feasibility study for using the Air Bottoming Cycle for gas turbine waste heat recovery/power generation on oil/gas platforms in the North Sea. The basis for the feasibility study was to utilize the exhaust gas heat from an LM2500PE gas turbine. Installation of the ABC on both a new and an existing platform have been considered. A design reference case is presented, and the recommended ABC is a two-shaft engine with two compressor intercoolers. The compression pressure ratio was found optimal at 8:1. The combined gas turbine and ABC shaft efficiency wa/s calculated to 46.6 percent. The LM2500PE gas turbine contributes with 36.1 percent while the ABC adds 10.5 percent points to the gas turbine efficiency. The ABC shaft power output is 6.6 MW when utilizing the waste heat of an LM2500PE gas turbine. A preliminary thermal and hydraulic design of the ABC main components (compressor, turbine, intercoolers, and recuperator) was carried out. The recuperator is the largest and heaviest component (45 tons). A weight and cost breakdown of the ABC is presented. The total weight of the ABC package was calculated to 154 metric tons, and the ABC package cost to 9.4 million US$. An economical examination for three different cases was carried out. The results show that the ABC alternative (LM2500PE + ABC) is economical, with a rather good margin, compared to the other alternatives. The conclusion is that the Air Bottoming Cycle is an economical alternative for power generation on both new platforms and on existing platforms with demand for more power.

Bolland, O.; Foerde, M. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Div. of Thermal Energy and Hydropower; Haande, B. [Oil Engineering Consultants, Sandvika (Norway)

1996-04-01T23:59:59.000Z

330

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

SciTech Connect (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

331

Crude Distillation Unit Heat Recovery Study  

E-Print Network [OSTI]

to 426?F. There is no preheat of tower bottoms. All heat beyond the prefractionator comes from fired furnaces. But there is steam generation at 25 pounds pressure from hot oil and an approved project to generate ISO-pound steam from flue gas. Pipe Still... Sinks Sources Difference Disposition Sinks 110 (110) (213) Furnace Duty 400/690 430/720 255 152 (103) l50-Pound Steam Production 365/400 395/430 25 44 19 50-Pound Steam Production 300/365 330/395 47 80 33 29 25-Pound Steam...

John, P.

1979-01-01T23:59:59.000Z

332

Application of advanced Stirling engine technology to a commercial size gas-fired heat pump  

SciTech Connect (OSTI)

The Gas Research Institute sponsored work on the kinematic Stirling engine-driven heat pump, which offers practical improvements in the use of natural gas. Results from the first phase of the program led to the selection of a method of introducing low pressure natural gas into the V160 engine's combustor and testing of the ejector system. Further engine modifications will be needed as well as demonstrations of the performance and reliability of the units. The first phase found all developmental needs to be achievable, making the concept technically feasible. Computer projections based on the system performance of components indicate the gas-fired pump will work better than electric models and be economically feasible as well. 5 figures, 1 table.

Johansson, L.; Agno, J.; Wurm, J.

1985-08-01T23:59:59.000Z

333

Multiple pollutant removal using the condensing heat exchanger: Phase 1 final report, October 1995--July 1997  

SciTech Connect (OSTI)

The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon{reg_sign} covered condensing heat exchanger is adapted to remove certain flue gas constitutents, both particulate and gaseous, while recovering low level heat. Phase 1 includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MW{sub t}. The other task studied the durability of the Teflon{reg_sign} covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. The durability of the Teflon{reg_sign} covered heat exchanger tubes was studied on a pilot-scale single-stage condensing heat exchanger (CHX{reg_sign}). Data from the test indicate that virtually no decrease in Teflon{reg_sign} thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings. Evidence of wear was present only at the microscopic level, and even then was very minor in severity.

Bailey, R.T.; Jankura, B.J.; Kudlac, G.A.

1998-06-01T23:59:59.000Z

334

Multiple pollutant removal using the condensing heat exchanger. Task 3, Long term testing at the ECTC  

SciTech Connect (OSTI)

The objective of this task is to demonstrate long term operation of a condensing heat exchanger for coal-fired conditions. A small condensing heat exchanger will be installed at the Environmental Control Technology Center in Barker, New York. It will be installed downstream of the flue gas particulate removal system. The test will determine the amount of wear, if any, on the Teflon{trademark} covered internals of the heat exchanger. Visual inspection and measurements will be obtained for the Teflon{trademark} covered tubes during the test. The material wear study will conducted over a one year calendar period, and the CHX equipment will be operated to the fullest extent allowable.

Schulze, K.H.

1996-01-01T23:59:59.000Z

335

Adding Environmental Gas Physics to the Semi-Analytic Method for Galaxy Formation: Gravitational Heating  

E-Print Network [OSTI]

We present results of an attempt to include more detailed gas physics motivated from hydrodynamical simulations within semi-analytic models (SAM) of galaxy formation, focusing on the role that environmental effects play. The main difference to previous SAMs is that we include 'gravitational' heating of the intra-cluster medium (ICM) by the net surplus of gravitational potential energy released from gas that has been stripped from infalling satellites. Gravitational heating appears to be an efficient heating source able to prevent cooling in environments corresponding to dark matter halos more massive than $\\sim 10^{13} $M$_{\\odot}$. The energy release by gravitational heating can match that by AGN-feedback in massive galaxies and can exceed it in the most massive ones. However, there is a fundamental difference in the way the two processes operate. Gravitational heating becomes important at late times, when the peak activity of AGNs is already over, and it is very mass dependent. This mass dependency and time behaviour gives the right trend to recover down-sizing in the star-formation rate of massive galaxies. Abridged...

S. Khochfar; J. P. Ostriker

2007-04-18T23:59:59.000Z

336

Initiation of long, free-standing Z-discharges by CO2 laser gas heating  

SciTech Connect (OSTI)

High current discharge channels can neutralize both current and space charge of very intense ion beams. Therefore they are considered as an interesting alternative for the final focus and beam transport in a heavy ion beam fusion reactor. At the GSI accelerator facility, 50 cm long, stable, free-standing discharge channels with currents in excess of 40 kA in 2 to 25 mbar ammonia (NH{sub 3}) gas are investigated for heavy ion beam transport studies. The discharges are initiated by a CO{sub 2} laser pulse along the channel axis before the discharge is triggered. Resonant absorption of the laser, tuned to the {nu}{sub 2} vibration of the ammonia molecule, causes strong gas heating. Subsequent expansion and rarefaction of the gas prepare the conditions for a stable discharge to fulfill the requirements for ion beam transport. This paper describes the laser-gas interaction and the discharge initiation mechanism. We report on the channel stability and evolution, measured by fast shutter and streak imaging techniques. The rarefaction of the laser heated gas is studied by means of a hydrocode simulation.

Nieman, C.; Tauschwitz, A.; Penache, D.; Neff, S.; Knobloch, R.; Birkner, R.; Presura, R.; Hoffmann, D.H.H.; Yu, S.S.; Sharp, W.M.

2004-04-19T23:59:59.000Z

337

CORQUENCH: A model for gas sparging-enhanced melt-water, film boiling heat transfer  

SciTech Connect (OSTI)

A phenomenological model (CORQUENCH) has been developed to describe the gas-sparging enhanced film boiling heat transfer between a molten pool of corium and an overlying water layer. The model accounts for thermal radiation across the vapor film, bulk liquid subcooling, interfacial area enhancement due to sparging gas, and melt entrainment into the overlying water layer. In this paper, the modeling approach is described, and a comparison with the lead-Freon 11 and lead-water film boiling experiment data of Greene is made. Predictions are then made for the case of film boiling over corium in the presence of sparging concrete decomposition gases. 15 refs., 3 figs.

Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

1990-01-01T23:59:59.000Z

338

Final report to US Department of Energy: Cyclotron autoresonance accelerator for electron beam dry scrubbing of flue gases  

SciTech Connect (OSTI)

Several designs have been built and operated of microwave cyclotron autoresonance accelerators (CARA's) with electron beam parameters suitable for remediation of pollutants in flue gas emissions from coal-burning power plants. CARA designs have also been developed with a TW-level 10.6 micron laser driver for electron acceleration from 50 to 100 MeV, and with UHF drivers for proton acceleration to over 500 MeV. Dose requirements for reducing SO2, NOx, and particulates in flue gas emissions to acceptable levels have been surveyed, and used to optimize the design of an electron beam source to deliver this dose.

Hirshfield, J.L.

2001-05-25T23:59:59.000Z

339

Heat-pipe gas-combustion system endurance test for Stirling engine. Final report, May 1990-September 1990  

SciTech Connect (OSTI)

Stirling Thermal Motors, Inc., (STM) has been developing a general purpose Heat Pipe Gas Combustion System (HPGC) suitable for use with the STM4-120 Stirling engine. The HPGC consists of a parallel plate recuperative preheater, a finned heat pipe evaporator and a film cooled gas combustor. A principal component of the HPGC is the heat pipe evaporator which collects and distributes the liquid sodium over the heat transfer surfaces. The liquid sodium evaporates and flows to the condensers where it delivers its latent heat. The report presents test results of endurance tests run on a Gas-Fired Stirling Engine (GFSE). Tests on a dynamometer test stand yielded 67 hours of engine operation at power levels over 10 kW (13.5 hp) with 26 hours at power levels above 15 kW (20 hp). Total testing of the engine, including both motoring tests and engine operation, yielded 245 hours of engine run time.

Mahrle, P.

1990-12-01T23:59:59.000Z

340

The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal  

SciTech Connect (OSTI)

The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Comparison of thermoelectric and permeation dryers for sulfur dioxide removal during sample conditioning of wet gas streams  

SciTech Connect (OSTI)

Flue gas conditioning for moisture removal is commonly performed for criteria pollutant measurements, in particular for extractive CEM systems at combustion sources. An implicit assumption is that conditioning systems specifically remove moisture without affecting pollutant and diluent concentrations. Gas conditioning is usually performed by passing the flue gas through a cold trap (Peltier or thermoelectric dryer) to remove moisture by condensation, which is subsequently extracted by a peristaltic pump. Many air pollutants are water-soluble and potentially susceptible to removal in a condensation dryer from gas interaction with liquid water. An alternative technology for gas conditioning is the permeation dryer, where the flue gas passes through a selectively permeable membrane for moisture removal. In this case water is transferred through the membrane while other pollutants are excluded, and the gas does not contact condensed liquid. Laboratory experiments were performed to measure the relative removal of a water-soluble pollutant (sulfur dioxide, SO{sub 2}) by the two conditioning techniques. A wet gas generating system was used to create hot, wet gas streams of known composition (15% and 30% moisture, balance nitrogen) and flow rate. Pre-heated SO{sub 2} was dynamically spiked into the wet stream using mass flow meters to achieve concentrations of 20, 50, and 100 ppm. The spiked gas was directed through a heated sample line to either a thermoelectric or a permeation conditioning system. Two gas analyzers (Western Research UV gas monitor, KVB/Analect FTIR spectrometer) were used to measure the SO{sub 2} concentration after conditioning. Both analytic methods demonstrated that SO{sub 2} is removed to a significantly greater extent by the thermoelectric dryer. These results have important implications for SO{sub 2} monitoring and emissions trading.

Dunder, T.A. [Entropy, Inc., Research Triangle Park, NC (United States). Research Div.; Leighty, D.A. [Perma Pure, Inc., Toms River, NJ (United States)

1997-12-31T23:59:59.000Z

342

LOx breathing system with gas permeable-liquid impermeable heat exchange and delivery hose  

DOE Patents [OSTI]

Life support apparatus is composed of: a garment for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment; a portable receptacle holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous state when at standard temperature and pressure; a fluid flow member secured within the garment and coupled to the receptacle for conducting the fluid in liquid state from the receptacle to the interior of the garment; and a fluid flow control device connected for causing fluid to flow from the receptacle to the fluid flow member at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer. 6 figs.

Hall, M.N.

1996-04-30T23:59:59.000Z

343

Lox breathing system with gas permeable-liquid impermeable heat exchange and delivery hose  

DOE Patents [OSTI]

Life support apparatus composed of: a garment (2): for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment (2); a portable receptacle (6) holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous; state when at standard temperature and pressure; a fluid flow member (16) secured within the garment (2) and coupled to the receptacle (6) for conducting the fluid in liquid state from the receptacle (6) to the interior of the garment (2); and a fluid flow control device (14) connected for causing fluid to flow from the receptacle (6) to the fluid flow member (16) at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment (2) at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer.

Hall, Mark N. (Richland, WA)

1996-01-01T23:59:59.000Z

344

Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.  

SciTech Connect (OSTI)

In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

Parkinson, W. J. (William Jerry),

2003-01-01T23:59:59.000Z

345

Local heat flux and energy loss in a 2D vibrated granular gas  

E-Print Network [OSTI]

We performed event-driven simulations of a two-dimensional granular gas between two vibrating walls and directly measured the local heat flux and energy dissipation rate in the stationary state. Describing the local heat flux as a function of the coordinate x in the direction perpendicular to the driving walls, we use a generalization of Fourier's law, q_x(x) = kappa d_x T(x) + mu d_x rho(x), to relate the local heat flux to the local gradients of the temperature and density. This ansatz accounts for the fact that density gradients also generate heat flux, not only temperature gradients. The transport coefficients kappa and mu are assumed to be independent of x, and we check the validity of this assumption in the simulations. Both kappa and mu are determined for different system parameters, in particular, for a wide range of coefficients of restitution. We also compare our numerical results to existing hydrodynamic theories. Agreement is found for kappa for very small inelasticities only. Beyond this region, kappa and mu exhibit a striking non-monotonic behavior.

Olaf Herbst; Peter Müller; Annette Zippelius

2004-12-13T23:59:59.000Z

346

KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM  

SciTech Connect (OSTI)

Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

L.E. Demick

2010-09-01T23:59:59.000Z

347

Heating the bubbly gas of galaxy clusters with weak shocks and sound waves  

E-Print Network [OSTI]

Using hydrodynamic simulations and a technique to extract the rotational component of the velocity field, we show how bubbles of relativistic gas inflated by AGN jets in galaxy clusters act as a catalyst, transforming the energy carried by sound and shock waves to heat. The energy is stored in a vortex field around the bubbles which can subsequently be dissipated. The efficiency of this process is set mainly by the fraction of the cluster volume filled by (sub-)kpc scale filaments and bubbles of relativistic plasma.

S. Heinz; E. Churazov

2005-09-26T23:59:59.000Z

348

Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020  

SciTech Connect (OSTI)

The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

2007-07-31T23:59:59.000Z

349

Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines  

SciTech Connect (OSTI)

This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently to the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.

Barthelemy, N.M.; Lynn, S.

1991-07-01T23:59:59.000Z

350

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

MW Reciprocating Engine 3 MW Gas Turbine 1 MW ReciprocatingEngine 5 MW Gas Turbine 3MW Gas Turbine 40 MW Gas Turbine 1 MW Reciprocating Engine

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

351

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network [OSTI]

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

Demirel, Melik C.

352

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site  

E-Print Network [OSTI]

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

1994-01-01T23:59:59.000Z

353

Ionization heating in rare-gas clusters under intense XUV laser pulses  

SciTech Connect (OSTI)

The interaction of intense extreme ultraviolet (XUV) laser pulses ({lambda}=32 nm, I=10{sup 11}-10{sup 14} W/cm{sup 2}) with small rare-gas clusters (Ar{sub 147}) is studied by quasiclassical molecular dynamics simulations. Our analysis supports a very general picture of the charging and heating dynamics in finite samples under short-wavelength radiation that is of relevance for several applications of free-electron lasers. First, up to a certain photon flux, ionization proceeds as a series of direct photoemission events producing a jellium-like cluster potential and a characteristic plateau in the photoelectron spectrum as observed in Bostedt et al. [Phys. Rev. Lett. 100, 133401 (2008)]. Second, beyond the onset of photoelectron trapping, nanoplasma formation leads to evaporative electron emission with a characteristic thermal tail in the electron spectrum. A detailed analysis of this transition is presented. Third, in contrast to the behavior in the infrared or low vacuum ultraviolet range, the nanoplasma energy capture proceeds via ionization heating, i.e., inner photoionization of localized electrons, whereas collisional heating of conduction electrons is negligible up to high laser intensities. A direct consequence of the latter is a surprising evolution of the mean energy of emitted electrons as function of laser intensity.

Arbeiter, Mathias; Fennel, Thomas [Institute of Physics, University of Rostock, D-18051 Rostock (Germany)

2010-07-15T23:59:59.000Z

354

Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller  

SciTech Connect (OSTI)

Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

Urata, Tatsuo [Tokyo Gas Company, LTD, Tokyo (Japan)

1996-12-31T23:59:59.000Z

355

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

limits potential use of waste heat for space conditioning.the attractive uses for waste heat in many circumstancesprovide electricity and use the waste heat for cleaning, the

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

356

Method and apparatus for enhanced heat recovery from steam generators and water heaters  

DOE Patents [OSTI]

A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

2006-06-27T23:59:59.000Z

357

Corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

358

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

SciTech Connect (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

359

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

SciTech Connect (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

360

Evaluation of a fluidized-bed waste-heat recovery system. A technical case study  

SciTech Connect (OSTI)

The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R&D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R&D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA`s Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

Not Available

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Evaluation of a fluidized-bed waste-heat recovery system  

SciTech Connect (OSTI)

The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA's Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

Not Available

1992-04-01T23:59:59.000Z

362

Dynamic Allocation of a Domestic Heating Task to Gas-Based and Heatpump-Based Heating Agents  

E-Print Network [OSTI]

energy from the environment (from air, water or soil) and uses this to heat the water of a central energy from the soil often a serious financial investment is needed, whereas a heatpump by itself countries, a substantial amount of domestic energy use during the winter season concerns heating. Often

Treur, Jan

363

Multiple pollutant removal using the condensing heat exchanger: Phase 1 final report, November 1995--June 1997. Addendum 2: Task 3 topical report -- Long term wear test  

SciTech Connect (OSTI)

Long-term operation of a condensing heat exchanger under typical coal-fired flue gas conditions was investigated in Phase 1, Task 3 of the Multiple Pollutant Removal Using the Condensing Heat Exchanger test program. The specific goal of this task was to determine the amount of wear, if any, on the Teflon{reg_sign}-covered heat transfer tubes in a condensing heat exchanger. A pilot-scale single-stage condensing heat exchanger (CHX{reg_sign}) was operated under typical coal-fired flue gas conditions on a continuous basis for a period of approximately 10 months. Operating conditions and particulate loadings for the test unit were monitored, Teflon{reg_sign} film thickness measurements were conducted, and surface replications (which duplicate the surface finish at the microscopic level) were taken at various times during the test. Data from the test indicate that virtually no decrease in Teflon{reg_sign} thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings (400 mg/dscm [0.35 lb/10{sup 6} Btu]). Evidence of wear was present only at the microscopic level, and even then was very minor in severity. Operation at high inlet particulate loadings resulted in accumulated ash deposits within the heat exchanger. Installation of a modified (higher flow rate) wash nozzle manifold substantially reduced subsequent deposit formation.

Kudlac, G.A.

1998-06-01T23:59:59.000Z

364

HEAT TRANSFER DURING THE SHOCK-INDUCED IGNITION OF AN EXPOLSIVE GAS  

E-Print Network [OSTI]

11 Stagnation Point Heat Transfer Measurements in Air atR.M. , and Kemp, N.H. , Heat Transfer from High TemperatureProceedings of the 1963 Heat Transfer and Fluid Mechanics

Heperkan, H.

2013-01-01T23:59:59.000Z

365

Rheology and Convective Heat Transfer of Colloidal Gas Aphrons in Horizontal Minichannels  

E-Print Network [OSTI]

Single-phase convective heat transfer in microchannels: aand Newell, M. E. , 1967. Heat transfer in fully developed3 /s at 130 W. Water CGA Heat Transfer Coefficient, h (W/m 2

Tseng, H.; Pilon, L.; Warrier, G.

2006-01-01T23:59:59.000Z

366

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

GHG preferable to grid power only when the waste heat can bethe grid electricity it displaces when the waste heat from

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

367

Bubble columns for condensation at high concentrations of noncondensable gas: Heat-transfer model and experiments  

E-Print Network [OSTI]

Carrier gas based thermodynamic cycles are common in water desalination applications. These cycles often require condensation of water vapor out of the carrier gas stream. As the carrier gas is most likely a noncondensable ...

Narayan, G. Prakash

368

Brayton-cycle heat recovery-system characterization program. Subatmospheric-system test report  

SciTech Connect (OSTI)

The turbine tests and results for the Brayton cycle subatmospheric system (SAS) are summarized. A scaled model turbine was operated in the same environment as that which a full-scale SAS machine would experience from the hot effluent flue gas from a glass container furnace. The objective of the testing was to evaluate the effects of a simulated furnace flue gas stream on the turbine nozzles and blades. The following specific areas were evaluated: erosion of the turbine nozzles and blades from the dust in the flue gas, hot corrosion from alkali metal salts in the dust and acid vapor (sulfur trioxide and hydrogen chloride) in the flue gas, and fouling and flow blockage due to deposition and/or condensation from the flue gas constituents.

Burgmeier, L.; Leung, S.

1981-07-31T23:59:59.000Z

369

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

generation: 50% of electricity from central grid natural gas plantsgeneration: 100% of electricity from central grid natural gas plantselectricity comes from central station natural-gas- fired combined cycle generation, and the other half comes from natural-gas-fired single cycle plants. •

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

370

Comparative Performance Analysis of IADR Operating in Natural Gas-Fired and Waste-Heat CHP Modes  

SciTech Connect (OSTI)

Fuel utilization can be dramatically improved through effective recycle of 'waste' heat produced as a by-product of on-site or near-site power generation technologies. Development of modular compact cooling, heating, and power (CHP) systems for end-use applications in commercial and institutional buildings is a key part of the Department of Energy's (DOE) energy policy. To effectively use the thermal energy from a wide variety of sources which is normally discarded to the ambient, many components such as heat exchangers, boilers, absorption chillers, and desiccant dehumidification systems must be further developed. Recently a compact, cost-effective, and energy-efficient integrated active-desiccant vapor-compression hybrid rooftop (IADR) unit has been introduced in the market. It combines the advantages of an advanced direct-expansion cooling system with the dehumidification capability of an active desiccant wheel. The aim of this study is to compare the efficiency of the IADR operation in baseline mode, when desiccant wheel regeneration is driven by a natural gas burner, and in CHP mode, when the waste heat recovered from microturbine exhaust gas is used for desiccant regeneration. Comparative analysis shows an excellent potential for more efficient use of the desiccant dehumidification as part of a CHP system and the importance of proper sizing of the CHP components. The most crucial factor in exploiting the efficiency of this application is the maximum use of thermal energy recovered for heating of regeneration air.

Petrov, Andrei Y [ORNL; Sand, James R [ORNL; Zaltash, Abdolreza [ORNL

2006-01-01T23:59:59.000Z

371

Evaluation of gas-reburning and low NO{sub x} burners on a wall fired boiler. Progress report, January 1--March 31, 1996  

SciTech Connect (OSTI)

The primary objective of this Clean Coal Technology project is to evaluate the use of Gas Reburning and Low NO{sub x} Burners (GR-LNB) for NO{sub x} emission control from a wall fired boiler. This project is being conducted in three phases at the host site, a 172 MW{sub e} wall fired boiler of Public Service Company of Colorado, Cherokee Unit 3 in Denver, Colorado: Phase I, design and permitting has been completed on June 30, 1992; Phase II, construction and start-up has been completed on September 1991; and Phase III, operation, data collection, reporting and disposition. Phase III activities during this reporting period involved the following: compilation, analysis and assembly of the final report and initiation of restoration activities; restoration of the gas reburning system involving removal of the flue gas recirculation system (permanent Second Generation Gas Reburning); and participants meeting and reburning workshop. Long term testing of the equipment demonstrated an average NO{sub x} reduction of 65% using 18% gas heat input. After removing the flue gas recirculation system, (Second Generation GR), an average NO{sub x} of 64% was achieved using 13% gas heat input. The project goal of 70% reduction was achieved, but no on an average basis due to the load requirements of the utility.

NONE

1996-04-15T23:59:59.000Z

372

Negative heat capacity in the critical region of nuclear fragmentation: an experimental evidence of the liquid-gas phase transition  

E-Print Network [OSTI]

An experimental indication of negative heat capacity in excited nuclear systems is inferred from the event by event study of energy fluctuations in $Au$ quasi-projectile sources formed in $Au+Au$ collisions at 35 A.MeV. The excited source configuration is reconstructed through a calorimetric analysis of its de-excitation products. Fragment partitions show signs of a critical behavior at about 5 A.MeV excitation energy. In the same energy range the heat capacity shows a negative branch providing a direct evidence of a first order liquid gas phase transition.

M. D'Agostino; F. Gulminelli; Ph. Chomaz; M. Bruno; F. Cannata; R. Bougault; N. Colonna; F. Gramegna; I. Iori; N. Le Neindre; G. V. Margagliotti; P. F. Mastinu; P. M. Milazzo; A. Moroni; G. Vannini

1999-06-07T23:59:59.000Z

373

Duplex Stirling gas-fired heat pump. Phase 2. Breadboard demonstration. Final report, May 1981-November 1982  

SciTech Connect (OSTI)

This program represents the first attempt to design, fabricate, and test a breadboard gas-fired duplex Stirling heat pump in a heating only mode. The system was designed to obtain a COP of 1.5 at an ambient temperature of 17F and have an output sufficient for an average residential home. The design methodology, detailed system description and test results for sub components and the entire system are discussed. Technical problems encountered in the program, and recommendations for further efforts are detailed.

Gedeon, D.; Penswick, B.; Beale, W.

1982-11-01T23:59:59.000Z

374

Reducing the cost of CO{sub 2} capture from flue gases using membrane technology  

SciTech Connect (OSTI)

Studies of CO{sub 2} capture using membrane technology from coal-fired power-plant flue gas typically assume compression of the feed to achieve a driving force across the membrane. The high CO{sub 2} capture cost of these systems reflects the need to compress the low-pressure feed gas (1 bar) and the low CO{sub 2} purity of the product stream. This article investigates how costs for CO{sub 2} capture using membranes can be reduced by operating under vacuum conditions. The flue gas is pressurized to 1.5 bar, whereas the permeate stream is at 0.08 bar. Under these operating conditions, the capture cost is U.S. $54/tonne CO{sub 2} avoided compared to U.S. $82/tonne CO{sub 2} avoided using membrane processes with a pressurized feed. This is a. reduction of 35%. The article also investigates the effect on the capture cost of improvements in CO{sub 2} permeability and selectivity. The results show that the capture cost can be reduced to less than U.S. $25/tonne CO{sub 2} avoided when the CO{sub 2} permeability is 300 bar, CO{sub 2}/N{sub 2} selectivity is 250, and the membrane cost is U.S. $10/m{sup 2}.

Ho, M.T.; Allinson, G.W.; Wiley, D.E. [University of New South Wales, Kensington, NSW (Australia)

2008-03-15T23:59:59.000Z

375

Design of compact intermediate heat exchangers for gas cooled fast reactors  

E-Print Network [OSTI]

Two aspects of an intermediate heat exchanger (IHX) for GFR service have been investigated: (1) the intrinsic characteristics of the proposed compact printed circuit heat exchanger (PCHE); and (2) a specific design optimizing ...

Gezelius, Knut, 1978-

2004-01-01T23:59:59.000Z

376

Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56?MHz planar coil inductively coupled argon discharge  

SciTech Connect (OSTI)

The axial and radial magnetic field profiles in a 13.56?MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

Jayapalan, Kanesh K., E-mail: kane-karnage@yahoo.com; Chin, Oi-Hoong, E-mail: ohchin@um.edu.my [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)] [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

2014-04-15T23:59:59.000Z

377

HEAT TRANSFER DURING THE SHOCK-INDUCED IGNITION OF AN EXPOLSIVE GAS  

E-Print Network [OSTI]

C. A . • 11 Resistance Thermometer for Heat Transfera thin film resistance thermometer. A separate analysis isa thin-film resistance thermometer was used [2-12]. This

Heperkan, H.

2013-01-01T23:59:59.000Z

378

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

to lower the carbon intensity of the power generationelectricity grid carbon-intensities are considered: •importance of grid carbon intensity. Natural-gas-fired CHP

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

379

Gas injection to inhibit migration during an in situ heat treatment process  

DOE Patents [OSTI]

Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

Kuhlman, Myron Ira (Houston, TX); Vinegar; Harold J. (Bellaire, TX); Baker, Ralph Sterman (Fitchburg, MA); Heron, Goren (Keene, CA)

2010-11-30T23:59:59.000Z

380

Field monitoring and evaluation of a residential gas-engine-driven heat pump: Volume 1, Cooling season  

SciTech Connect (OSTI)

The Federal government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL)is one of four DOE national multiprogram laboratories that participate in the NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer, Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.

Miller, J.D.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Insights into gas heating and cooling in the disc of NGC 891 from Herschel far-infrared spectroscopy  

E-Print Network [OSTI]

We present Herschel PACS and SPIRE spectroscopy of the most important far-infrared cooling lines in the nearby edge-on spiral galaxy, NGC 891: [CII] 158 $\\mu$m, [NII] 122, 205 $\\mu$m, [OI] 63, 145 $\\mu$m, and [OIII] 88 $\\mu$m. We find that the photoelectric heating efficiency of the gas, traced via the ([CII]+[OII]63)/$F_{\\mathrm{TIR}}$ ratio, varies from a mean of 3.5$\\times$10$^{-3}$ in the centre up to 8$\\times$10$^{-3}$ at increasing radial and vertical distances in the disc. A decrease in ([CII]+[OII]63)/$F_{\\mathrm{TIR}}$ but constant ([CII]+[OI]63)/$F_{\\mathrm{PAH}}$ with increasing FIR colour suggests that polycyclic aromatic hydrocarbons (PAHs) may become important for gas heating in the central regions. We compare the observed flux of the FIR cooling lines and total IR emission with the predicted flux from a PDR model to determine the gas density, surface temperature and the strength of the incident far-ultraviolet (FUV) radiation field, $G_{0}$. Resolving details on physical scales of ~0.6 kpc, a p...

Hughes, T M; Schirm, M R P; Parkin, T J; De Looze, I; Wilson, C D; Bendo, G J; Baes, M; Fritz, J; Boselli, A; Cooray, A; Cormier, D; Karczewski, O ?; Lebouteiller, V; Lu, N; Madden, S C; Spinoglio, L; Viaene, S

2014-01-01T23:59:59.000Z

382

Gas-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood, Lars Sitzki* and Paul D. Ronney  

E-Print Network [OSTI]

1 Gas-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood title: Extinction limits in excess enthalpy burners To be published in Proceedings of the Combustion-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood, Lars Sitzki* and Paul D

383

High freestream turbulence levels have been shown to greatly augment the heat transfer along a gas turbine airfoil, particularly for the first stage  

E-Print Network [OSTI]

along a gas turbine airfoil, particularly for the first stage nozzle guide vane. For this study of the variables affecting boundary layer development on gas turbine airfoils, studies need to be performed, augmentations in convective heat transfer have been measured for a first stage turbine vane in the stagna- tion

Thole, Karen A.

384

INTERNAL FORCED iquid or gas flow through pipes or ducts is commonly used in heating and  

E-Print Network [OSTI]

to flow by a fan or pump through a flow section that is sufficiently long to accomplish the desired heat. Then the logarithmic mean temperature difference and the rate of heat loss from the air become Tln 15.2°C Q · hAs Tln (13.5 W/m2 °C)(6.4 m2 )( 15.2°C) 1313 W Therefore, air will lose heat at a rate of 1313 W as it flows

Ghajar, Afshin J.

385

Intermediate Heat Transfer Loop Study for High Temperature Gas-Cooled Reactor  

SciTech Connect (OSTI)

A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycleefficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. This paper also includes a portion of stress analyses performed on pipe configurations.

C. H. Oh; C. Davis; S. Sherman

2008-08-01T23:59:59.000Z

386

A novel high-heat transfer low-NO{sub x} natural gas combustion system. Phase 1 final report  

SciTech Connect (OSTI)

Phase I of the project focused on acquiring the market needs, modeling, design, and test plan information for a novel high-heat transfer low-NO{sub x} natural gas combustion system. All goals and objectives were achieved. The key component of the system is an innovative burner technology which combines high temperature natural gas preheating with soot formation and subsequent soot burnout in the flame, increases the system`s energy efficiency and furnace throughput, while minimizing the furnace air emissions, all without external parasitic systems. Work has included identifying industry`s needs and constraints, modeling the high luminosity burner system, designing the prototype burner for initial laboratory-scale testing, defining the test plan, adapting the burner technology to meet the industry`s needs and constraints, and outlining the Industrial Adoption Plan.

Rue, D.M. [Institute of Gas Technology, Des Plaines, IL (United States); Fridman, A. [Univ. of Illinois, Chicago (United States); Viskanta, R. [Purdue Univ. (United States); Neff, D. [Cumbustion Tec, Inc. (United States)

1997-11-01T23:59:59.000Z

387

Orthogonal Decomposition Methods for Turbulent Heat Transfer Analysis with Application to Gas Turbines  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . 46 C. Computational procedure . . . . . . . . . . . . . . . . . . . 48 1. Solver settings and grid for URANS study . . . . . . . 48 2. LES study . . . . . . . . . . . . . . . . . . . . . . . . 52 D. Results... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 1. Orthogonal decomposition URANS . . . . . . . . . . . 59 2. Orthogonal decomposition LES . . . . . . . . . . . . . 62 E. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 V OPTIMIZING TURBULENT HEAT TRANSFER USING...

Schwaenen, Markus

2012-07-16T23:59:59.000Z

388

Fluid Bed Waste Heat Boiler Operating Experience in Dirty Gas Streams  

E-Print Network [OSTI]

on an aluminium melting furnace at the ALCOA Massena Integrated Aluminum Works in upstate New York. Waste heat from an aluminum melting furnace is captured for general plant use for the first time in this plant. It is accomplished with advanced fluid bed heat... recovery that typically can save energy equivalent to 40% of the furnace firing rate. Previous attempts to recovery energy conven tionally on this type of furnace were unsuccessful due to fouling. The resolution of this fouling problem by using...

Kreeger, A. H.

389

Phase I-B development of kinematic Stirling/Rankine commercial gas-fired heat-pump system. Final report, September 1983-December 1985  

SciTech Connect (OSTI)

The Kinematic Stirling/Rankine gas heat pump concept is based on the application of a Stirling engine that has been under development for over a decade. The engine has been converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial-size Stirling engine-driven gas heat pump with a cooling capacity of 10-ton, and a COP (heating) of 1.8 and COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for 1989. In this phase, an HVAC systems manufacturer (Borg-Warner) is working with SPS to develop a prototype gas-heat-pump system. To date, a piston-type open-shaft refrigeration compressor was selected as the best match for the engine. Both the engine and compressor have been tested and characterized by performance maps, and the experimental heat-pump systems designed, built, and preliminary testing performed. Close agreement with computer model output has been achieved. SPS has continued to focus on improving the Stirling-engine performance and reliability for the gas-heat-pump application.

Monahan, R.E.

1986-07-01T23:59:59.000Z

390

An Electrochemically-mediated Gas Separation Process for Carbon Abatement  

E-Print Network [OSTI]

This work describes a promising alternative to conventional thermal processes for absorber/desorber processing of for removal of CO[subscript 2] from flue gas streams at fossil fuel fired power plants. Our electrochemica ...

Stern, Michael C.

391

Rigorous modeling of the acid gas heat of absorption in alkanolamine solutions  

SciTech Connect (OSTI)

In this work, we are interested in the estimation of CO{sub 2} and H{sub 2}S heats of absorption in aqueous solutions of alkanolamine: monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA). Two methods can be used to calculate the heat release during the absorption phenomenon. The easier which consists of applying the integration of the Gibbs-Helmholtz expression remains inaccurate. The second one, more rigorous, evaluates the heat transfer through an internal energy balance for an open system. The balance expression contains partial molar enthalpies of species in the liquid phase which are calculated from the electrolyte nonrandom-two-liquid (NRTL) excess Gibbs energy model. The calculations carried out in this method can be considered as predictive regarding the NRTL model because its interaction parameters were previously and solely fitted on vapor-liquid equilibrium (VLE) data and not on experimental heat of absorption data. The comparison between both methods and experimental data for the three alkanolamines shows the contribution of this rigorous calculation to better estimate both properties (i.e., solubility and heat) and its usefulness to improve processes. Heats of absorption calculated with the second method can be used in addition to VLE data to fit NRTL parameters. This procedure leads to less-correlated parameters and allows extrapolating the model with more confidence. 63 refs., 10 figs., 6 tabs.

Emilie Blanchon le Bouhelec; Pascal Mougin; Alain Barreau; Roland Solimando [Institut Francais du Petrole, Rueil-Malmaison (France). Departement Thermodynamique et Modelisation Moleculaire

2007-08-15T23:59:59.000Z

392

Improving Gas-Fired Heat Pump Capacity and Performance by Adding a Desiccant Dehumidification Subsystem  

E-Print Network [OSTI]

This paper examines the merits of coupling a desiccant dehumidification subsystem to a gas-engine- driven vapor compression air conditioner. A system is identified that uses a rotary, silica gel, parallel-plate dehumidifier. Dehumidifier data...

Parsons, B. K.; Pesaran, A. A.; Bharathan, D.; Shelpuk, B. C.

1990-01-01T23:59:59.000Z

393

Southwest Gas Corporation- Smarter Greener Better Solar Water Heating Program (Arizona)  

Broader source: Energy.gov [DOE]

'''''Note: Effective July 15, 2013, Southwest Gas is no longer accepting applications for the current program year. Systems installed during the current program year will not be eligible for a...

394

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

for out-of-state coal generation, then clearly the GHGElectricity Generation (TWh/a) Natural Gas Coal Natural Gascoal becomes the marginal fuel. Note that the marginal generation

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

395

Local heat transfer and film effectiveness of a film cooled gas turbine blade tip  

E-Print Network [OSTI]

Gas turbine engines due to high operating temperatures undergo severe thermal stress and fatigue during operation. Cooling of these components is a very important issue during the lifetime of the engine. Cooling is achieved through the use...

Adewusi, Adedapo Oluyomi

1999-01-01T23:59:59.000Z

396

A Novel High-Heat Transfer Low-NO{sub x} Natural Gas Combustion System. Final Technical Report  

SciTech Connect (OSTI)

A novel high-heat transfer low NO(sub x) natural gas combustion system. The objectives of this program are to research, develop, test, and commercialize a novel high-heat transfer low-NO{sub x} natural gas combustion system for oxygen-, oxygen-enriched air, and air-fired furnaces. This technology will improve the process efficiency (productivity and product quality) and the energy efficiency of high-temperature industrial furnaces by at least 20%. GTI's high-heat transfer burner has applications in high-temperature air, oxygen-enriched air, and oxygen furnaces used in the glass, metals, cement, and other industries. Development work in this program is focused on using this burner to improve the energy efficiency and productivity of glass melting furnaces that are major industrial energy consumers. The following specific project objectives are defined to provide a means of achieving the overall project objectives. (1) Identify topics to be covered, problems requiring attention, equipment to be used in the program, and test plans to be followed in Phase II and Phase III. (2) Use existing codes to develop models of gas combustion and soot nucleation and growth as well as a thermodynamic and parametric description of furnace heat transfer issues. (3) Conduct a parametric study to confirm the increase in process and energy efficiency. (4) Design and fabricate a high-heat transfer low-NOx natural gas burners for laboratory, pilot- and demonstration-scale tests. (5) Test the high-heat transfer burner in one of GTI's laboratory-scale high-temperature furnaces. (6) Design and demonstrate the high-heat transfer burner on GTI's unique pilot-scale glass tank simulator. (7) Complete one long term demonstration test of this burner technology on an Owens Corning full-scale industrial glass melting furnace. (8) Prepare an Industrial Adoption Plan. This Plan will be updated in each program Phase as additional information becomes available. The Plan will include technical and economic analyses, energy savings and waste reduction predictions, evaluation of environmental effects, and outline issues concerning manufacturing, marketing, and financing. Combustion Tec, Owens Corning, and GTI will all take active roles in defining this Plan. During Phase I, the first three objectives were addressed and completed along with the design component of the fourth objective. In Phase II, the fabrication component of the fourth objective was completed along with objectives five and six. Results of the Phase I work were reported in the Phase I Final Report and are summarized in this Final Technical Report. Work for Phase II was divided in four specific Tasks. Results of the Phase II work were reported in the Phase II Final Report and are also summarized in this Final Technical Report. No Phase III Final Report was prepared, so this Final Technical Report presents the results of Phase III commercial demonstration efforts. A description of each Task in Phases I, II, and III is presented in this report.

Abbasi, H.

2004-01-01T23:59:59.000Z

397

Inferring temperature uniformity from gas composition measurements in a hydrogen combustion-heated hypersonic flow stream  

SciTech Connect (OSTI)

The application of a method for determining the temperature of an oxygen-replenished air stream heated to 2600 K by a hydrogen burner is reviewed and discussed. The purpose of the measurements is to determine the spatial uniformity of the temperature in the core flow of a ramjet test facility. The technique involves sampling the product gases at the exit of the test section nozzle to infer the makeup of the reactant gases entering the burner. Knowing also the temperature of the inlet gases and assuming the flow is at chemical equilibrium, the adiabatic flame temperature is determined using an industry accepted chemical equilibrium computer code. Local temperature depressions are estimated from heat loss calculations. A description of the method, hardware and procedures is presented, along with local heat loss estimates and uncertainty assessments. The uncertainty of the method is estimated at {+-}31 K, and the spatial uniformity was measured within {+-}35 K.

Olstad, S.J. [Phoenix Solutions Co., Minneapolis, MN (United States)

1995-08-01T23:59:59.000Z

398

Gas reburning in tangentially-fired, wall-fired and cyclone-fired boilers  

SciTech Connect (OSTI)

Gas Reburning has been successfully demonstrated for over 4,428 hours on three coal fired utility boilers as of March 31, 1994. Typically, NO{sub x} reductions have been above 60% in long-term, load-following operation. The thermal performance of the boilers has been virtually unaffected by Gas Reburning. At Illinois Power`s Hennepin Station, Gas Reburning in a 71 MWe tangentially-fired boiler achieved an average NO{sub x} reduction of 67% from the original baseline NO{sub x} level of 0.75 lb NO{sub x}/10{sup 6} Btu over a one year period. The nominal natural gas input was 18% of total heat input. Even at 10% gas heat input, NO{sub x} reduction of 55% was achieved. At Public Service Company of Colorado`s Cherokee Station, a Gas Reburning-Low NO{sub x} Burner system on a 172 MWe wall-fired boiler has achieved overall NO{sub x} reductions of 60--73% in parametric and long-term testing, based on the original baseline NO{sub x} level of 0.73 lb/10{sup 6} Btu. NO{sub x} reduction is as high as 60--65% even at relatively low natural gas usage (5--10% of total heat input). The NO{sub x} reduction by Low NO{sub x} Burners alone is typically 30--40%. NO{sub x} reduction has been found to be insensitive to changes in recirculated flue gas (2--7% of total flue gas) injected with natural gas. At City Water, Light and Power Company`s Lakeside Station in Springfield, Illinois, Gas Reburning in a 33 MWe cyclone-fired boiler has achieved an average NO{sub x} reduction of 66% (range 52--77%) at gas heat inputs of 20--26% in long-term testing, based on a baseline NO{sub x} level of 1.0 lb/10{sup 6} Btu (430 mg/MJ). This paper presents a summary of the operating experience at each site and discusses the long term impacts of applying this technology to units with tangential, cyclone and wall-fired (with Low NO{sub x} Burner) configurations.

May, T.J. [Illinois Power Co., Decatur, IL (United States); Rindahl, E.G. [Public Service Co. of Colorado, Denver, CO (United States); Booker, T. [City Water Light and Power, Springfield, IL (United States)] [and others

1994-12-31T23:59:59.000Z

399

Sinterable ceramic powders from laser heated gas phase reactions and rapidly solidified ceramic materials : annual report.  

E-Print Network [OSTI]

CO[subscript 2] lasers have been employed to heat reactant gases to synthesize Si, Si[subscript 3] N[subscript 4] and SiC powders. The powders are small, uniform in size, nonagglomerated, highly pure and of controlled ...

Haggerty, John Scarseth

1984-01-01T23:59:59.000Z

400

Anisotropic Heat and Water Transport in a PEFC Cathode Gas Diffusion Layer  

E-Print Network [OSTI]

PEFCs , owing to their high en- ergy efficiency, low emission, and low noise, are widely considered. In addition, the latent heat effects due to condensation/evaporation of water on the temperature and water ohmic losses. Along with water man- agement, thermal management is also a key to high performance

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Single Channel Testing for Characterization of the Direct Gas Cooled Reactor and the SAFE-100 Heat Exchanger  

SciTech Connect (OSTI)

Experiments have been designed to characterize the coolant gas flow in two space reactor concepts that are currently under investigation by NASA Marshall Space Flight Center and Los Alamos National Laboratory: the direct-drive gas-cooled reactor (DDG) and the SAFE-100 heatpipe-cooled reactor (HPR). For the DDG concept, initial tests have been completed to measure pressure drop versus flow rate for a prototypic core flow channel, with gas exiting to atmospheric pressure conditions. The experimental results of the completed DDG tests presented in this paper validate the predicted results to within a reasonable margin of error. These tests have resulted in a re-design of the flow annulus to reduce the pressure drop. Subsequent tests will be conducted with the re-designed flow channel and with the outlet pressure held at 150 psi (1 MPa). Design of a similar test for a nominal flow channel in the HPR heat exchanger (HPR-HX) has been completed and hardware is currently being assembled for testing this channel at 150 psi. When completed, these test programs will provide the data necessary to validate calculated flow performance for these reactor concepts (pressure drop and film temperature rise)

Bragg-Sitton, S.M. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Propulsion Research Center, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kapernick, R. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Godfroy, T.J. [Propulsion Research Center, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

2004-02-04T23:59:59.000Z

402

Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures  

DOE Patents [OSTI]

A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

2010-11-09T23:59:59.000Z

403

Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures  

DOE Patents [OSTI]

A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

Aines, Roger D.; Bourcier, William L.

2014-08-19T23:59:59.000Z

404

Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01  

SciTech Connect (OSTI)

The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m{sup 2}). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that {approx}50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a 'toe-thrust' ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those {approx}70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the K-G basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m{sup 2}. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basi

Anne Trehu; Peter Kannberg

2011-06-30T23:59:59.000Z

405

Heat Flow and Gas Hydrates on the Continental Margin of India: Building on Results from NGHP Expedition 01  

SciTech Connect (OSTI)

The Indian National Gas Hydrate Program (NGHP) Expedition 01 presented the unique opportunity to constrain regional heat flow derived from seismic observations by using drilling data in three regions on the continental margin of India. The seismic bottom simulating reflection (BSR) is a well-documented feature in hydrate bearing sediments, and can serve as a proxy for apparent heat flow if data are available to estimate acoustic velocity and density in water and sediments, thermal conductivity, and seafloor temperature. Direct observations of temperature at depth and physical properties of the sediment obtained from drilling can be used to calibrate the seismic observations, decreasing the uncertainty of the seismically-derived estimates. Anomalies in apparent heat flow can result from a variety of sources, including sedimentation, erosion, topographic refraction and fluid flow. We constructed apparent heat flow maps for portions of the Krishna-Godavari (K-G) basin, the Mahanadi basin, and the Andaman basin and modeled anomalies using 1-D conductive thermal models. Apparent heat flow values in the Krishna-Godavari (K-G) basin and Mahanadi basin are generally 0.035 to 0.055 watts per square meter (W/m2). The borehole data show an increase in apparent heat flow as water depth increases from 900 to 1500 m. In the SW part of the seismic grid, 1D modeling of the effect of sedimentation on heat flow shows that ~50% of the observed increase in apparent heat flow with increasing water depth can be attributed to trapping of sediments behind a "toe-thrust" ridge that is forming along the seaward edge of a thick, rapidly accumulating deltaic sediment pile. The remainder of the anomaly can be explained either by a decrease in thermal conductivity of the sediments filling the slope basin or by lateral advection of heat through fluid flow along stratigraphic horizons within the basin and through flexural faults in the crest of the anticline. Such flow probably plays a role in bringing methane into the ridge formed by the toe-thrust. Because of the small anomaly due to this process and the uncertainty in thermal conductivity, we did not model this process explicitly. In the NE part of the K-G basin seismic grid, a number of local heat flow lows and highs are observed, which can be attributed to topographic refraction and to local fluid flow along faults, respectively. No regional anomaly can be resolved. Because of lack of continuity between the K-G basin sites within the seismic grid and those ~70 km to the NE in water depths of 1200 to 1500 m, we do not speculate on the reason for higher heat flow at these depths. The Mahanadi basin results, while limited in geographic extent, are similar to those for the KG basin. The Andaman basin exhibits much lower apparent heat flow values, ranging from 0.015 to 0.025 W/m2. Heat flow here also appears to increase with increasing water depth. The very low heat flow here is among the lowest heat flow observed anywhere and gives rise to a very thick hydrate stability zone in the sediments. Through 1D models of sedimentation (with extremely high sedimentation rates as a proxy for tectonic thickening), we concluded that the very low heat flow can probably be attributed to the combined effects of high sedimentation rate, low thermal conductivity, tectonic thickening of sediments and the cooling effect of a subducting plate in a subduction zone forearc. Like for the K-G basin, much of the local variability can be attributed to topography. The regional increase in heat flow with water depth remains unexplained because the seismic grid available to us did not extend far enough to define the local tectonic setting of the slope basin controlling this observational pattern. The results are compared to results from other margins, both active and passive. While an increase in apparent heat flow with increasing water depth is widely observed, it is likely a result of different processes in different places. The very low heat flow due to sedimentation and tectonics in the Andaman basin is at the low end of glob

Trehu, Anne; Kannberg, Peter

2011-06-30T23:59:59.000Z

406

Measurement and analysis of heating of paper with gas-fired infrared burner  

E-Print Network [OSTI]

. Gas-fired IR heaters produce combustion on the burner surface by ignition of a pre-mixed air and fuel streams. The combustion raises the surface temperature to ranges of 800-1,100°C to emit radiation, mainly in the medium IR range, which has a...

Husain, Abdullah Nadir

2000-01-01T23:59:59.000Z

407

Direct fired heat exchanger  

SciTech Connect (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

408

Gas temperature profiles at different flow rates and heating rates suffice to estimate kinetic parameters for fluidised bed combustion  

SciTech Connect (OSTI)

Experimental work on estimation kinetic parameters for combustion was conducted in a bench-scale fluidised bed (FB: 105x200mm). Combustion medium was obtained by using an electrical heater immersed into the bed. The ratio of heating rate (kJ/s) to molar flow rate of air (mol/s) regulated by a rheostat so that the heat of combustion (kJ/mol) can be synthetically obtained by an electrical power supply for relevant O{sub 2}-feedstock concentration (C{sub 0}). O{sub 2}-restriction ratio ({beta}) was defined by the ratio of O{sub 2}-feedstock concentration to O{sub 2}-air concentration (C{sub O{sub 2}-AIR}) at prevailing heating rates. Compressed air at further atmospheric pressure ({approx_equal}102.7kPa) entered the bed that was alumina particles (250{mu}m). Experiments were carried out at different gas flow rates and heating rates. FB was operated with a single charge of (1300g) particles for obtaining the T/T{sub 0} curves, and than C/C{sub 0} curves. The mathematical relationships between temperature (T) and conversion ratio (X) were expressed by combining total energy balance and mass balance in FB. Observed surface reaction rate constants (k{sub S}) was obtained from the combined balances and proposed model was also tested for these kinetic parameters (frequency factor: k{sub 0}, activation energy: E{sub A}, and reaction order: n) obtained from air temperature measurements. It was found that the model curves allow a good description of the experimental data. Thus, reaction rate for combustion was sufficiently expressed. (author)

Suyadal, Y. [Faculty of Engineering, Department of Chemical Engineering, Ankara University, 06100-Tandogan, Ankara (Turkey)

2006-07-15T23:59:59.000Z

409

Advanced Energy and Water Recovery Technology from Low Grade Waste Heat  

SciTech Connect (OSTI)

The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.

Dexin Wang

2011-12-19T23:59:59.000Z

410

The use of combined heat and power (CHP) to reduce greenhouse gas emissions  

SciTech Connect (OSTI)

Cogeneration or Combined Heat and Power (CHP) is the sequential production of electric power and thermal energy. It is a more efficient way of providing electricity and process heat than producing them independently. Average overall efficiencies can range from 70% to more than 80%. CHP decisions often present an opportunity to switch to a cleaner fuel. CHP systems are an attractive opportunity to save money, increase overall efficiency, reduce net emissions, and improve environmental performance. Climate Wise, a US Environmental Protection Agency (US EPA) program helping industrial Partners turn energy efficiency and pollution prevention into a corporate asset, has increased awareness of CHP by providing implementation and savings information, providing peer exchange opportunities for its Partners, and recognizing the achievements of Partners that have implemented CHP at their facilities. This paper profiles Climate Wise Partners that have invested in CHP systems, including describing how CHP is used in their facilities and the resulting cost and emission reductions.

Asrael, J.; Milmoe, P.H.; Haydel, J.

1999-07-01T23:59:59.000Z

411

Phase 1-supplemental development of a kinematic Stirling/Rankine commercial gas-fired heat-pump system. Final report, January 1989-June 1989  

SciTech Connect (OSTI)

The kinematic Stirling/Rankine gas heat pump concept is based on the application of a Stirling engine that has been under development for over a decade. The engine has been converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial size Stirling engine-driven gas heat pump with a cooling capacity of 10 tons, a COP (heating) of 1.8 and a COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for the mid-1990's. In previous phases, an HVAC-systems manufacturer (York International) had been working with SPS to develop a prototype gas-heat-pump system. To date, two generations of prototype GHP systems have been built and tested and have demonstrated significant operating cost savings over the conventional electric heat pump. Under the program, a number of design and manufacturing process changes were made to the engine to reduce costs and improve endurance and shaft efficiency and are described. The adaptation and operation of a computer optimization code was accomplished under the program and is reported herein.

Monahan, R.

1989-06-01T23:59:59.000Z

412

Heat transfer in sound propagation and attenuation through gas-liquid polyhedral foams  

E-Print Network [OSTI]

A cell method is developed, which takes into account the bubble geometry of polyhedral foams, and provides for the generalized Rayleigh-Plesset equation that contains the non-local in time term corresponding to heat relaxation. The Rayleigh-Plesset equation together with the equations of mass and momentum balances for an effective single-phase inviscid fluid yield a model for foam acoustics. The present calculations reconcile observed sound velocity and attenuation with those predicted using the assumption that thermal dissipation is the dominant damping mechanism in a range of foam expansions and sound excitation frequencies.

Yuri M. Shtemler; Isaac R. Shreiber

2007-05-20T23:59:59.000Z

413

Integrated Biorefinery for conversion of Biomass to Ethanol, Synthesis Gas, and Heat  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indianaof Energy2-02DepartmentCONFERENCEOffice(BETO)

414

Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas,Foot) Decade

415

Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas,Foot)

416

North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015(MillionProductionYearGas Markets:14NA NACubic

417

U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane, No.1SalesConsumption of

418

Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 Kentucky - Natural Gas 2013

419

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase Gas) (Million CubicFoot) Decade Year-0 Year-1

420

Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase Gas)Cubic Feet) Kenai,Sales (Billion

Note: This page contains sample records for the topic "flue gas heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Heat-pump-centered Integrated Community Energy Systems: systems development, Consolidated Natural Gas Service Company. Final report  

SciTech Connect (OSTI)

The Heat-Actuated Heat Pump Centered Integrated Community Energy System (HAHP-ICES) utilizes a gas-fired, engine-driven, heat pump and commercial buildings, and offers several advantages over the more conventional equipment it is intended to supplant. The general non-site-specific application assumes a hypothetical community of one 59,000 ft/sup 2/ office building and five 24-unit, low-rise apartment buildings located in a region with a climate similar to Chicago. This community serves as a starting point - the base case - upon which various sensitivity analyses are performed and through which the performance characteristics of the HAHP are explored. The results of these analyses provided the selection criteria for the site-specific application of the HAHP-ICES concept to a real-world community. The site-specific community consists of 42 townhouses; five 120-unit, low-rise apartment buildings; five 104-unit high-rise apartment buildings; one 124,000 ft/sup 2/ office building; and a single 135,000 ft/sup 2/ retail building located in Monroeville, Pa. The base-case analyses confirmed that the HAHP-ICES has significant potentials for reducing the primary energy consumption and pollutant emissions associated with space conditioning when compared with a conventional system. Primary energy consumption was reduced by 30%, while emission reductions ranged from 39 to 77%. The results of the site-specific analysis indicate that reductions in energy consumption of between 15 and 22% are possible when a HAHP-ICES is selected as opposed to conventional HVAC equipment.

Baker, N.R.; Donakowski, T.D.; Foster, R.B.; Sala, D.L.; Tison, R.R.; Whaley, T.P.; Yudow, B.D.; Swenson, P.F.

1980-01-01T23:59:59.000Z

422

Transitional regimes of natural convection in a differentially heated cubical cavity under the effects of wall and molecular gas radiation  

SciTech Connect (OSTI)

The transition to unsteadiness and the dynamics of weakly turbulent natural convection, coupled to wall or gas radiation in a differentially heated cubical cavity with adiabatic lateral walls, are studied numerically. The working fluid is air with small contents of water vapor and carbon dioxide whose infrared spectral radiative properties are modelled by the absorption distribution function model. A pseudo spectral Chebyshev collocation method is used to solve the flow field equations and is coupled to a direct ray tracing method for radiation transport. Flow structures are identified by means of either the proper orthogonal decomposition or the dynamic mode decomposition methods. We first retrieve the classical mechanism of transition to unsteadiness without radiation, characterized by counter-rotating streamwise-oriented vortices generated at the exit of the vertical boundary layers. Wall radiation through a transparent medium leads to a homogenization of lateral wall temperatures and the resulting transition mechanism is similar to that obtained with perfectly conducting lateral walls. The transition is due to an unstable stratification upstream the vertical boundary layers and is characterized by periodically oscillating transverse rolls of axis perpendicular to the main flow. When molecular gas radiation is accounted for, no periodic solution is found and the transition to unsteadiness displays complex structures with chimneys-like rolls whose axes are again parallel to the main flow. The origin of this instability is probably due to centrifugal forces, as suggested previously for the case without radiation. Above the transition to unsteadiness, at Ra = 3 × 10{sup 8}, it is shown that both wall and gas radiation significantly intensify turbulent fluctuations, decrease the thermal stratification in the core of the cavity, and increase the global circulation.

Soucasse, L.; Rivière, Ph.; Soufiani, A., E-mail: anouar.soufiani@ecp.fr [CNRS, UPR 288, Laboratoire EM2C, 92290 Châtenay-Malabry (France); École Centrale Paris, 92290 Châtenay-Malabry (France)] [France; Xin, S. [CNRS/INSA-Lyon, UMR 5008, CETHIL, 69621 Villeurbanne (France)] [CNRS/INSA-Lyon, UMR 5008, CETHIL, 69621 Villeurbanne (France); Le Quéré, P. [CNRS, UPR 3251, LIMSI, 91403 Orsay Cedex (France)] [CNRS, UPR 3251, LIMSI, 91403 Orsay Cedex (France)

2014-02-15T23:59:59.000Z

423

Industrial Gas Turbines  

Broader source: Energy.gov [DOE]

A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

424

Process for selected gas oxide removal by radiofrequency catalysts  

DOE Patents [OSTI]

This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

Cha, C.Y.

1993-09-21T23:59:59.000Z

425

Solar heat receiver  

DOE Patents [OSTI]

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

426

Method for high temperature mercury capture from gas streams  

DOE Patents [OSTI]

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

427

A corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

Richlen, S.L.

1987-08-10T23:59:59.000Z

428

Cement kiln flue dust as a source of lime and potassium in four East Texas soils  

E-Print Network [OSTI]

design on both sites. Yield, soil pH, plant and soil concentrations of K, Ca, and Mg were determined. Soil pH and extractable Ca increased with increasing rate of flue dust or calcite. Under field conditions, flue dust compared favorably with calcite... was similar to plant uptake from corresponding calcite + KC1 treatments. Soil pH and extractable soil K, Ca, and Mg increased with increased rate of flue dust treatment equally as well as from the corresponding calcite treatments. The flue dust was equal...

Poole, Warren David

1975-01-01T23:59:59.000Z

429

Modified heat transfer coefficient in the presence of noncondensible gas for RELAP5/MOD2 computer code  

E-Print Network [OSTI]

. volume flow area of 0. 3491 ft2. A heat source was modelled as being attached to the right surface of the pressurizer. The heat source was also divided into ten sections of equal length. The right surface of the heat slab was considered to have a heat...

Grant, Sharon Elizabeth

1990-01-01T23:59:59.000Z

430

Advanced Fluidized Bed Waste Heat Recovery Systems  

E-Print Network [OSTI]

and produce steam. In a one-year evaluation test on an aluminum remelt furnace, the FBWHRS generated about 26 million lb of saturated steam at 150 psig. Before entering the FBWHRS, the flue gases were diluted to IIOO?F to protect the fluidized bed... an improved foulant cleaning system for the fluidized bed di~tributor plate and operating the total system on an aluminum remelt furnace which has a corrosive and fouling flue gas stream (3). Although this project focused on an aluminum remelt furnace...

Peterson, G. R.

431

Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler  

SciTech Connect (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70% reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

None

1998-09-01T23:59:59.000Z

432

Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado  

SciTech Connect (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

None

1998-07-01T23:59:59.000Z

433

Reducing the cost of CO{sub 2} capture from flue gases using pressure swing adsorption  

SciTech Connect (OSTI)

Pressure swing adsorption (PSA) processes have been used extensively for gas separation, especially in the separation of hydrogen from CO{sub 2}, and in air purification. The objective of this paper is to examine the economic feasibility of pressure swing adsorption (PSA) for recovering CO{sub 2} from postcombustion power plant flue gas. The analysis considers both high-pressure feed and vacuum desorption using commercial adsorbent 13X, which has a working capacity of 2.2 mol/kg and CO{sub 2}/N{sub 2} selectivity of 54. The results show that using vacuum desorption reduces the capture cost from US$57 to US$51 per ton of CO{sub 2} avoided and is comparable in cost to CO{sub 2} capture using conventional MEA absorption of US$49 per ton of CO{sub 2} avoided. In this paper, a sensitivity analysis is also presented showing the effect on the capture cost with changes in process cycle; feed pressure and evacuation pressure; improvements the adsorbent characteristics; and selectivity and working capacity. The results show that a hypothetical adsorbent with a working capacity of 4.3 mol/kg and a CO{sub 2}/N{sub 2} selectivity of 150 can reduce the capture cost to US$30 per ton of CO{sub 2} avoided.

Ho, M.T.; Allinson, G.W.; Wiley, D.E. [University of New South Wales, Sydney, NSW (Australia)

2008-07-15T23:59:59.000Z

434

Demonstration Results From Greenhouse Heating with Liquified Wood  

SciTech Connect (OSTI)

A boiler fuel known as Lignocellulosic Boiler Fuel (LBF) was developed at the Department of Forest Products, Mississippi State University for potential application for heating agricultural buildings. LBF was field tested to heat green houses in cooperation with Natchez Trace Greenhouses (NTG) located in Kosciusko, Mississippi. MSU modified an idled natural gas boiler located at NTG to combust the LBF. Thirty gallons of bio-oil were produced at the MSU Bio-oil Research Laboratory. The bio-oil was produced from the fast-pyrolysis of southern pine (15 gal) and white oak (15 gal) feedstocks and subsequently upgraded by a proprietary process. Preliminary field testing was conducted at (NTG). The LBF was produced from each wood species was tested separately and co-fed with diesel fuel to yield three fuel formulations: (1) 100% diesel; (2) 87.5% LBF from southern pine bio-oil co-fed with 12.5% diesel and (3) 87.5% LBF from white oak co-fed with 12.5% diesel fuel formulations. Each fuel formulation was combusted in a retrofit NTG boiler. Fuel consumption and water temperature were measured periodically. Flue gas from the boiler was analyzed by gas chromatograph. The 100% diesel fuel increased water temperature at a rate of 4 ���°F per min. for 35 min. to achieve the target 140 ���°F water temperature increase. The 87.5% pine LBF fuel cofed with 12.5%) diesel attained the 140 ���°F water temperature increase in 62 min. at a rate of 2.3 ���°F per min. The 87.5% white oak LBF fuel co-fed with 12.5% diesel reached the 140 ���°F water temperature increase in 85 min. at a rate of 1.6 ���°F per min. Fuel that contained 87.5% pine LBF co-fed with 12.5% diesel yielded nitrogen and oxygen at a ratio of 5.3 and carbon dioxide and carbon monoxide at a ratio of 22.2. Fuel formulations that contained 87.5% white oak LBF co-fed with 12.5% diesel yielded nitrogen and oxygen at a ratio of 4.9 and carbon dioxide and carbon monoxide at a ratio of 16.4. Neither the pine LBF nor the white oak LBF fuel showed any measureable methane emissions from the NTG boiler flue gas. These results indicate a viable potential for mildly upgraded bio-oil to become an alternative fuel source for greenhouse operations.

Steele, Philip; Parish, Don; Cooper, Jerome

2011-07-01T23:59:59.000Z

435

Heating of the molecular gas in the massive outflow of the local ultraluminous-infrared and radio-loud galaxy 4C12.50  

E-Print Network [OSTI]

We present a comparison of the molecular gas properties in the outflow vs. in the ambient medium of the local prototype radio-loud and ultraluminous-infrared galaxy 4C12.50 (IRAS13451+1232), using new data from the IRAM Plateau de Bure interferometer and 30m telescope, and the Herschel space telescope. Previous H_2 (0-0) S(1) and S(2) observations with the Spitzer space telesc