Sample records for flue gas cleanup

  1. Flue gas cleanup with hydroxyl radical reactions

    SciTech Connect (OSTI)

    Lee, Y.J.; Pennline, H.W.; Markussen, J.M.

    1990-02-01T23:59:59.000Z

    Electric discharge processes have been intensively tested for application to flue gas cleanup. Among the several means of OH- radical generation grouped as electric discharge, E-Beam irradiation is the one that has been most thoroughly studied. Corona glow discharge, especially pulsed corona glow discharge, on the other hand, has attracted attention recently, and several active research projects are being conducted in the United States, Japan, West Germany, and Italy. Other promising approaches for generating OH radicals efficiently are based on thermal or catalytic decomposition of OH-radical precursors. If mixing problems can be overcome to achieve homogeneous distribution of OH radicals in the flue gas stream, these methods may be applicable to flue gas cleanup. Because of their high OH-radical generation rates and potentially low capital costs, the following three approaches are recommended to be tested for their potential capability to remove SO{sub 2}/NO{sub x}: (1) H{sub 2}/O{sub 2} combustion in a hydrogen torch, (2) thermal decomposition of H{sub 2}O{sub 2}, and (3) catalytic decomposition of H{sub 2}O. Ideally, the OH radicals will convert SO{sub 2} and NO{sub x} to sulfuric acid and nitric acid. These acids or acid precursors would easily be removed from the flue gas by conventional technology, such as spray drying and wet limestone scrubbing. 67 refs., 2 tabs.

  2. Alternative formulations of regenerable flue gas cleanup catalysts

    SciTech Connect (OSTI)

    Mitchell, M.B.; White, M.G.

    1991-01-01T23:59:59.000Z

    The major source of man-made SO{sub 2} in the atmosphere is the burning of coal for electric power generation. Coal-fired utility plants are also large sources of NO{sub x} pollution. Regenerable flue gas desulfurization/NO{sub x} abatement catalysts provide one mechanism of simultaneously removing SO{sub 2} and NO{sub x} species from flue gases released into the atmosphere. The purpose of this project is to examine routes of optimizing the adsorption efficiency, the adsorption capacity, and the ease of regeneration of regenerable flue gas cleanup catalysts. We are investigating two different mechanisms for accomplishing this goal. The first involves the use of different alkali and alkaline earth metals as promoters for the alumina sorbents to increase the surface basicity of the sorbent and thus adjust the number and distribution of adsorption sites. The second involves investigation of non-aqueous impregnation, as opposed to aqueous impregnation, as a method to obtain an evenly dispersed monolayer of the promoter on the surface.

  3. Advanced environmental control technology for flue gas cleanup

    SciTech Connect (OSTI)

    Pennline, H.W.; Drummond, C.J.

    1987-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) oversees a substantial research and development effort to develop advanced environmental control technology for coal-fired sources. This Flue Gas Cleanup Program is currently divided into five areas: combined SO/sub 2//NO/sub x/ control, SO/sub 2/ control, particulate control, NO/sub x/ control, and small-scale boiler emission control. Projects in these areas range from basic research studies to proof-of-concept-scale evaluations. Projects in the DOE program are conducted by universities, national laboratories, industrial organizations, and in-house research at the Pittsburgh Energy Technology Center. An overview of the program, together with brief descriptions of the status of individual projects are given.

  4. Integration of a high efficiency flue gas cleanup process into advanced power systems

    SciTech Connect (OSTI)

    Hoffman, J.S.; Pennline, H.W.; Yeh, J.T.; Ratafia-Brown, J.A.; Gorokhov, V.A.

    1994-12-31T23:59:59.000Z

    The Moving-Bed Copper Oxide Process, a dry, regenerable flue gas cleanup technology, can simultaneously remove sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emissions from the flue gases generated by coal combustion. While this advanced air pollution abatement process technology has only been previously considered for conventional utility system applications, its unique design characteristics make it quite advantageous for use in advanced power systems, such as those pulverized-coal-fired systems defined in the US Department of Energy`s Combustion 2000 Initiative. Integration of this flue gas cleanup process into the advanced power systems is technically and economically assessed and compared with several commercially available flue gas cleanup processes. An update on the status of the Moving-Bed Copper oxide Process development is also presented.

  5. Investigation of the moving-bed copper oxide process for flue gas cleanup

    SciTech Connect (OSTI)

    Pennline, H.W.; Hoffman, J.S.; Yeh, J.T. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Resnik, K.P.; Vore, P.A. [Parsons Power Group, Inc., Pittsburgh, PA (United States)

    1996-12-31T23:59:59.000Z

    The Moving-Bed Copper Oxide Process is a dry, regenerable sorbent technique that uses supported copper oxide sorbent to simultaneously remove SO{sub 2} and NO{sub x} emissions from flue gas generated by coal combustion. The process can be integrated into the design of advanced power systems, such as the Low-Emission Boiler System (LEBS) or the High-Performance Power System (HIPPS). This flue gas cleanup technique is currently being evaluated in a life-cycle test system (LCTS) with a moving-bed flue gas contactor at DOE`s Pittsburgh Energy Technology Center. An experimental data base being established will be used to verify reported technical and economic advantages, optimize process conditions, provide scaleup information, and validate absorber and regenerator mathematical models. In this communication, the results from several process parametric test series with the LCTS are discussed. The effects of various absorber and regenerator parameters on sorbent performance (e.g., SO{sub 2} removal) were investigated. Sorbent spheres of 1/8-in diameter were used as compared to 1/16-in sized sorbent of a previous study. Also discussed are modifications to the absorber to improve the operability of the LCTS when fly ash is present during coal combustion.

  6. Alternative formulations of regenerable flue gas cleanup catalysts. Progress report, September 1, 1990--August 31, 1991

    SciTech Connect (OSTI)

    Mitchell, M.B.; White, M.G.

    1991-12-31T23:59:59.000Z

    The major source of man-made SO{sub 2} in the atmosphere is the burning of coal for electric power generation. Coal-fired utility plants are also large sources of NO{sub x} pollution. Regenerable flue gas desulfurization/NO{sub x} abatement catalysts provide one mechanism of simultaneously removing SO{sub 2} and NO{sub x} species from flue gases released into the atmosphere. The purpose of this project is to examine routes of optimizing the adsorption efficiency, the adsorption capacity, and the ease of regeneration of regenerable flue gas cleanup catalysts. We are investigating two different mechanisms for accomplishing this goal. The first involves the use of different alkali and alkaline earth metals as promoters for the alumina sorbents to increase the surface basicity of the sorbent and thus adjust the number and distribution of adsorption sites. The second involves investigation of non-aqueous impregnation, as opposed to aqueous impregnation, as a method to obtain an evenly dispersed monolayer of the promoter on the surface.

  7. Developments in flue gas cleanup research at the Federal Energy Technology Center

    SciTech Connect (OSTI)

    Pennline, H.W.; Hargis, R.A.; Hedges, S.W.; Hoffman, J.S.; O`Dowd, W.J.; Warzinski, R.P.; Yeh, J.T.; Scierka, S.J.; Granite, E.J. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

    1997-12-31T23:59:59.000Z

    A major research effort in the cleanup of flue gas, which is produced by the combustion of fossil fuels, is being conducted by the in-house research program at the Federal Energy Technology Center (FETC) of the US Department of Energy (DOE). Novel technologies being developed can abate sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), hazardous air pollutants (also referred to as air toxics), and carbon dioxide (CO{sub 2}) from flue gas. Laws within the US mandate the control of some of these pollutants and the initial characterization of others, while potential new regulations impact the status of others. Techniques that can control one or more of the targeted pollutants in an environmentally and economically acceptable manner are of prime interest. Past efforts have included low-temperature dry scrubbing SO{sub 2} removal techniques that typically use a calcium or sodium-based disposable sorbent either in a spray drying mode or in a duct injection mode of operation; novel techniques for enhancing sorbent utilization in conventional wet or dry scrubbing processes; and control of emissions produced from small-scale combustors (residential or commercial-size) that burn coal or coal/sorbent briquettes. Recent research at FETC has focused on investigations of air toxics produced by burning various coals, with a particular emphasis on the speciation of mercury and the control of the various mercury species; dry, regenerable sorbent processes that use a metal oxide sorbent to simultaneously remove SO{sub 2} and NO{sub x}; catalysts for selective catalytic reduction (SCR)-type NO{sub x} control; and the utilization and sequestering of CO{sub 2} removed from flue gas produced by fossil fuel combustion. The research projects range from laboratory-scale work to testing with the combustion products of coal at a scale equivalent to about 0.75 megawatt of electric power generation. An overview and status of the in-house flue gas cleanup projects at FETC are reported.

  8. Flue gas cleanup using the Moving-Bed Copper Oxide Process

    SciTech Connect (OSTI)

    Pennline, Henry W.; Hoffman, James S.

    2013-10-01T23:59:59.000Z

    The use of copper oxide on a support had been envisioned as a gas cleanup technique to remove sulfur dioxide (SO{sub 2}) and nitric oxides (NO{sub x}) from flue gas produced by the combustion of coal for electric power generation. In general, dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available wet scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. The Moving-Bed Copper Oxide Process is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. In this regenerable sorbent technique, the use of the copper oxide sorbent was originally in a fluidized bed, but the more recent effort developed the use of the sorbent in a moving-bed reactor design. A pilot facility or life-cycle test system was constructed so that an integrated testing of the sorbent over absorption/regeneration cycles could be conducted. A parametric study of the total process was then performed where all process steps, including absorption and regeneration, were continuously operated and experimentally evaluated. The parametric effects, including absorption temperature, sorbent and gas residence times, inlet SO{sub 2} and NO{sub x} concentration, and flyash loadings, on removal efficiencies and overall operational performance were determined. Although some of the research results have not been previously published because of previous collaborative restrictions, a summary of these past findings is presented in this communication. Additionally, the potential use of the process for criteria pollutant removal in oxy-firing of fossil fuel for carbon sequestration purposes is discussed.

  9. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

  10. Proof-of concept testing of the advanced NOXSO flue gas cleanup process. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    The NOXSO Process uses a regenerable sorbent that removes SO{sub 2} and NO{sub x} simultaneously from flue gas. The sorbent is a stabilized {gamma}-alumina bed impregnated with sodium carbonate. The process was successfully tested at three different scales, equivalent to 0.017, 0.06 and 0.75 MW of flue gas generated from a coal-fired power plant. The Proof-of-Concept (POC) Test is the last test prior to a full-scale demonstration. A slip stream of flue gas equivalent to a 5 MW coal-fired power plant was used for the POC test. This paper summarizes the NOXSO POC plant and its test results.

  11. Advanced separation technology for flue gas cleanup. Quarterly technical report No. 8, [January--March 1994

    SciTech Connect (OSTI)

    Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S. [SRI International, Menlo Park, CA (United States)] [SRI International, Menlo Park, CA (United States); Sirkar, K.K.; Majumdar, S.; Bhaumick, D. [New Jersey Inst. of Tech., Newark, NJ (United States)] [New Jersey Inst. of Tech., Newark, NJ (United States)

    1994-03-01T23:59:59.000Z

    During the first quarter of 1994, we continued work on Tasks 2, 3, 4, 5, and 6. We also began work on Task 7. In Task 2, we incorporated 4.5% O{sub 2} into our simulated flue gas stream during this quarter`s NO{sub x}-absorption experiments. We also ran experiments using Cobalt (II)-phthalocyanine as an absorbing agent We observed higher absorption capacities when using this solution with the simulated flue gas containing O{sub 2}. In Task 3, we synthesized a few EDTA polymer analogs. We also began scaled up synthesis of Co(II)-phthalocyanine for use in Task 5. In Task 4, we performed experiments for measuring distribution coefficients (m{sub i}) Of SO{sub 2} between aqueous and organic phases. This was done using the liquor regenerating apparatus described in Task 6. In Task 5, we began working with Co(II)-phthalocyanine in the 301 fiber hollow fiber contactor. We also calculated mass transfer coefficients (K{sub olm}) for these runs, and we observed that the gas side resistance dominates mass transfer. In Task 6, in the liquor regeneration apparatus, we observed 90% recovery of SO{sub 2} by DMA from water used as the scrubbing solution. We also calculated the distribution of coefficients (m{sub i}). In Task 7, we established and began implementing a methodology for completing this task.

  12. Design, construction, and operation of a life-cycle test system for the evaluation of flue gas cleanup processes

    SciTech Connect (OSTI)

    Pennline, H.W.; Yeh, James T.; Hoffman, J.S. [USDOE Pittsburgh Energy Technology Center, PA (United States); Longton, E.J.; Vore, P.A.; Resnik, K.P.; Gromicko, F.N. [Gilbert/Commonwealth, Inc., Library, PA (United States)

    1995-12-01T23:59:59.000Z

    The Pittsburgh Energy Technology Center of the US Department of Energy has designed, constructed, and operated a Life-Cycle Test Systems (LCTS) that will be used primarily for the investigation of dry, regenerable sorbent flue gas cleanup processes. Sorbent continuously cycles from an absorber reactor where the pollutants are removed from the flue gas, to a regenerator reactor where the activity of the spent sorbent is restored and a usable by-product stream of gas is produced. The LCTS will initially be used to evaluate the Moving-Bed Copper Oxide Process by determining the effects of various process parameters on SO{sub 2} and NO{sub x} removals. The purpose of this paper is to document the design rationale and details, the reactor/component/instrument installation, and the initial performance of the system. Although the Moving-Bed Copper Oxide Process will be investigated initially, the design of the LCTS evolved to make the system a multipurpose, versatile research facility. Thus, the unit can be used to investigate various other processes for pollution abatement of SO{sub 2}, NO{sub x}, particulates, air toxics, and/or other pollutants.

  13. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  14. New strategy to decompose nitrogen oxides from regenerable flue gas cleanup processes

    SciTech Connect (OSTI)

    Yeh, J.T.; Ekmann, J.M.; Pennline, H.W.; Drummond, C.J.

    1987-01-01T23:59:59.000Z

    Simulated NO/sub x/ recycle tests were recently conducted at the Pittsburgh Energy Technology Center (PETC), US Department of Energy, with excellent results. However, the NO/sub x/-recycle technique needs improvement if steady-state removal of 90% of the NO/sub x/ produced from the combustor is required. This paper reports experimental results for two new techniques to improve the destruction of externally injected NO/sub x/ into a combustor. The first technique involves doping the NO/sub x/ gas stream to the combustor with methane (other reductants might also be effective). The second technique is injecting the recycled NO/sub x/ stream at the optimum location (with and without methane doping) for maximum reduction. Test data showed 100% reduction of injected NO/sub x/ is possible with this technique. A third approach is proposed using a low-NO/sub x/ burner in combination with the NO/sub x/ recycle technique to achieve a steady-state 90% NO/sub x/ removal in the flue gas. The projected results of the third process scheme are based on material balance computations and reasonable expectations of the performance of each component of the process.

  15. Absorption, electrodialysis and additional regeneration in two flue gas SO/sub 2//NO/sub x/ cleanup processes

    SciTech Connect (OSTI)

    Walker, R.J.; Pennline, H.W.

    1987-01-01T23:59:59.000Z

    Eleven potential adsorbents for use in the two processes were tested in a laboratory-scale bubble column. Best absorbent performance was obtained with iron EDTA in an ammonium sulfite/sulfate solution. Removals of greater than 95% were observed for SO/sub 2/, NO, and NO/sub 2/ from a simulated flue gas containing N/sub 2/, O/sub 2/, CO/sub 2/, SO/sub 2/, NO, and NO/sub 2/. Laboratory-scale electrodialysis tests of fresh scrubbing liquor revealed that iron EDTA tended to permeate through anion-selective membranes and thus deleteriously affected process performance. Screening tests with twelve types of anion-selective membranes showed that three had EDTA permeation rates that were acceptable for process operation. Two methods of regeneration with respect to the NO/sub x/-removal component were investigated. Thermal stripping did not appear successful for producing nitrogen oxides in the off-gas from the stripper. A thermal treatment of the spent liquor at 50/sup 0/C successfully regenerated iron EDTA. The mechanism is being investigated.

  16. Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No. 15, September 1, 1994--November 30, 1994

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The objective of the NOXSO Demonstration Project (NDP), with cost-shared funding support from DOE, is to design, construct, and operate a commercial-scale flue gas cleanup system utilizing the NOXSO process. The NDP consists of the NOXSO plant and sulfur recovery unit, designed to remove SO{sub 2} and NO{sub x} from flue gas and produce elemental sulfur by-product, and the liquid SO{sub 2} plant and air separation unit, designed to process the elemental sulfur into liquid SO{sub 2}. The NOXSO plant and sulfur recovery unit will be constructed at ALCOA Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana, and will treat all of the flue gas from the 150-MW Unit 2 boiler. The elemental sulfur produced will be shipped to the Olin Charleston Plant in Charleston, Tennessee, for conversion into liquid SO{sub 2}.

  17. Gas stream cleanup

    SciTech Connect (OSTI)

    Bossart, S.J.; Cicero, D.C.; Zeh, C.M.; Bedick, R.C.

    1990-08-01T23:59:59.000Z

    This report describes the current status and recent accomplishments of gas stream cleanup (GSCU) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Gas Stream Cleanup Program is to develop contaminant control strategies that meet environmental regulations and protect equipment in advanced coal conversion systems. Contaminant control systems are being developed for integration into seven advanced coal conversion processes: Pressurized fludized-bed combustion (PFBC), Direct coal-fueled turbine (DCFT), Intergrated gasification combined-cycle (IGCC), Gasification/molten carbonate fuel cell (MCFC), Gasification/solid oxide fuel cell (SOFC), Coal-fueled diesel (CFD), and Mild gasification (MG). These advanced coal conversion systems present a significant challenge for development of contaminant control systems because they generate multi-contaminant gas streams at high-pressures and high temperatures. Each of the seven advanced coal conversion systems incorporates distinct contaminant control strategies because each has different contaminant tolerance limits and operating conditions. 59 refs., 17 figs., 5 tabs.

  18. Mercury sorbent delivery system for flue gas

    SciTech Connect (OSTI)

    Klunder; ,Edgar B. (Bethel Park, PA)

    2009-02-24T23:59:59.000Z

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  19. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30T23:59:59.000Z

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  20. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01T23:59:59.000Z

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  1. Final Flue Gas Cleaning (FFGC)

    E-Print Network [OSTI]

    Stinger, D. H.; Romero, M. H.

    2006-01-01T23:59:59.000Z

    the surrounding area but can also be carried thousands of miles by trade winds before falling to ground level to pollute soil, vegetation and water resources. An obvious question is: why doesn’t industry cool the flue gas; condense out the pollutants... of handling and disposing of these pollutants at the plant site. 2. Oxides of sulfur and nitrogen can condense out as an acid, including carbonic acid that attacks materials of construction. By keeping temperatures elevated, carbon steel construction can...

  2. Final Flue Gas Cleaning (FFGC) 

    E-Print Network [OSTI]

    Stinger, D. H.; Romero, M. H.

    2006-01-01T23:59:59.000Z

    .F., Blythe, OG.M., Carey, T.R., Radian International & Rhudy, R.G., EPRI & Brown, T.D., Federal Energy Technology Center-DOE, ”Enhanced Control of Mercury by Wet FGD Systems, 1999 f Gramite. Evan J. and Pennline, Henry W., “Photochemical Removal of Mercury... from the Texas Commission on Environmental Quality (TCEQ). The pilot plant (FFGC-PP) will be used to test and evaluate removal of air pollution constituents from the flue gas of a power plant to determine the optimum emission reduction system...

  3. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  4. Sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01T23:59:59.000Z

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  5. The Gonzaga desulfurization flue gas process

    SciTech Connect (OSTI)

    Kelleher, R.L.; O'Leary, T.J.; Shirk, I.A.

    1984-01-01T23:59:59.000Z

    The Gonzaga desulfurization flue gas process removes sulfur dioxide from a flue by cold water scrubbing. Sulfur dioxide is significantly more soluable in cold water (35/sup 0/F to 60/sup 0/F) than in warm water (100/sup 0/F). Sulfur dioxide reacts in water similarly as carbon dioxide reacts in water, in that both gasses are released from the water as the temperature of the water increases. The researchers at the Gonzaga University developed this process from the observations and techniques used in studying the acid and aldehyde concentrations in flue gasses with varying of fuel to air ratios. The apparatus was fixed to a stationary engine and a gas/oil fired boiler. The flue gas was cooled to the dew point temperature of the air entering the combustion chamber on the pre-air heater. The system is described in two parts: the energies required for cooling in the scrubbing section and the energies required in the treatment section. The cold flue gas is utilized in cooling the scrubber section.

  6. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, Deborah A. (Canfield, OH); Farthing, George A. (Washington Township, Stark County, OH)

    1998-08-18T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  7. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, Deborah A. (Canfield, OH); Farthing, George A. (Washington Township, OH)

    1998-09-29T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  8. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, D.A.; Farthing, G.A.

    1998-09-29T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  9. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, D.A.; Farthing, G.A.

    1998-08-18T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  10. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  11. Evaluation of the Energy Saving Potential from Flue Gas Pressurization 

    E-Print Network [OSTI]

    Stanton, E. H.

    1980-01-01T23:59:59.000Z

    The potential for recovering energy from low pressure furnace flue products is limited when standard heat recovery equipment is utilized. Efficient energy recovery can be accomplished by providing a flue gas side pressure drop across a heat...

  12. Evaluation of the Energy Saving Potential from Flue Gas Pressurization

    E-Print Network [OSTI]

    Stanton, E. H.

    1980-01-01T23:59:59.000Z

    The potential for recovering energy from low pressure furnace flue products is limited when standard heat recovery equipment is utilized. Efficient energy recovery can be accomplished by providing a flue gas side pressure drop across a heat...

  13. Fundamental mechanisms in flue-gas conditioning

    SciTech Connect (OSTI)

    Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.

    1992-01-09T23:59:59.000Z

    The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

  14. E-Print Network 3.0 - advanced flue gas Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flue gas losses and minimized in... generated from flue gas condensation for district heating. Twence is another example, where a high degree... into a reusable ash and that...

  15. Biomimetic Membrane for CO2 Capture from Flue Gas

    SciTech Connect (OSTI)

    Michael C. Trachtenberg

    2007-05-31T23:59:59.000Z

    These Phase III experiments successfully addressed several issues needed to characterize a permeator system for application to a pulverized coal (PC) burning furnace/boiler assuming typical post-combustion cleanup devices in place. We completed key laboratory stage optimization and modeling efforts needed to move towards larger scale testing. The SOPO addressed six areas. Task 1--Post-Combustion Particle Cleanup--The first object was to determine if the Carbozyme permeator performance was likely to be reduced by particles (materials) in the flue gas stream that would either obstruct the mouth of the hollow fibers (HF) or stick to the HF bore wall surface. The second, based on the Acceptance Standards (see below), was to determine whether it would be preferable to clean the inlet gas stream (removing acid gases and particulates) or to develop methods to clean the Carbozyme permeator if performance declined due to HF block. We concluded that condensation of particle and particulate emissions, in the heat exchanger, could result in the formation of very sticky sulfate aerosols with a strong likelihood of obtruding the HF. These must be managed carefully and minimized to near-zero status before entering the permeator inlet stream. More extensive post-combustion cleanup is expected to be a necessary expense, independent of CO{sub 2} capture technology This finding is in agreement with views now emerging in the literature for a variety of CO{sub 2} capture methods. Task 2--Water Condensation--The key goal was to monitor and control temperature distributions within the permeator and between the permeator and its surroundings to determine whether water condensation in the pores or the HF bore would block flow, decreasing performance. A heat transfer fluid and delivery system were developed and employed. The result was near isothermal performance that avoided all instances of flow block. Direct thermocouple measurements provided the basis for developing a heat transfer model that supports prediction of heat transfer profiles for larger permeators Tasks 3. 4.1, 4.2--Temperature Range of Enzymes--The goal was to determine if the enzyme operating temperature would limit the range of thermal conditions available to the capture system. We demonstrated the ability of various isozymes (enzyme variants) to operate from 4-85 C. Consequently, the operating characteristics of the enzyme are not a controlling factor. Further, any isozyme whose upper temperature bound is at least 10 C greater than that of the planned inlet temperature will be stable under unanticipated, uncontrolled 'hiccups' in power plant operation. Task 4.4, 4.4--Examination of the Effects of SOx and NOx on Enzyme Activity (Development of Flue Gas Composition Acceptance Standards)--The purpose was to define the inlet gas profile boundaries. We examined the potential adverse effects of flue gas constituents including different acids from to develop an acceptance standard and compared these values to actual PC flue gas composition. Potential issues include changes in pH, accumulation of specific inhibitory anions and cations. A model was developed and validated by test with a SO{sub 2}-laden stream. The predicted and actual data very largely coincided. The model predicted feed stream requirements to allow continuous operation in excess of 2500 hours. We developed operational (physical and chemical) strategies to avoid or ameliorate these effects. Avoidance, the preferred strategy (noted above), is accomplished by more extensive cleanup of the flue gas stream. Task 5--Process Engineering Model--We developed a process-engineering model for two purposes. The first was to predict the physical and chemical status at each test point in the design as a basis for scale-up. The second was to model the capital and operating cost of the apparatus. These were accomplished and used to predict capex, opex and cost of energy. Task 6--Preliminary Commercialization Plan--We carried out analyses of the market and the competition by a variety of parameters. The conclusion was that there is a l

  16. Noble metal catalysts for oxidation of mercury in flue gas

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J.

    2008-04-01T23:59:59.000Z

    The use of precious metals and platinum group metals as catalysts for oxidation of mercury in flue gas is an active area of study. To date, field studies have recently focused on gold and palladium catalysts installed at pilot-scale. In this work, we introduce bench-scale results for gold, platinum, and palladium catalysts tested in realistic simulated flue gas. Initial results reveal intriguing characteristics of catalytic mercury oxidation and provide insight for future research.

  17. Fundamental mechanisms in flue gas conditioning

    SciTech Connect (OSTI)

    Snyder, T.R.; Robinson, M.S.; Bush, P.V.

    1992-04-27T23:59:59.000Z

    This project is divided into four tasks. The Management Plan was developed in task 1. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focuses on the characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, is designed to examine the effects of various conditioning agents on fine ash particles to determine the mechanisms by which these agents alter the physical properties of the ash. Tasks 2 and 3 began with an extensive literature search and the assembly of existing theories. This phase of the project is now complete. During the past quarter, initial preparations of laboratory equipment for laboratory testing have been made. A plan for initial laboratory tests has been submitted to the Project Manager for review. Laboratory testing will commence once these laboratory plans have been formally approved. The results of the work performed under task 2 and 3 will be included in a Flue Gas Conditioning Model that will be issued under task 4. The Final Report for the project will also be prepared under task 4.

  18. Particulate hot gas stream cleanup technical issues

    SciTech Connect (OSTI)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30T23:59:59.000Z

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  19. Flue gas desulfurization/denitrification using metal-chelate additives

    DOE Patents [OSTI]

    Harkness, John B. L. (Naperville, IL); Doctor, Richard D. (Glen Ellyn, IL); Wingender, Ronald J. (Deerfield, IL)

    1986-01-01T23:59:59.000Z

    A method of simultaneously removing SO.sub.2 and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO.sub.2 and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled.

  20. Flue gas desulfurization/denitrification using metal-chelate additives

    DOE Patents [OSTI]

    Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

    1985-08-05T23:59:59.000Z

    A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

  1. Construction and testing of a flue-gas corrosion probe

    SciTech Connect (OSTI)

    Federer, J.I.; McEvers, J.A.

    1990-08-01T23:59:59.000Z

    The selection of suitable materials for industrial, waste-heat- recovery systems requires assessment of corrosion of materials in various flue-gas environments. Such assessments involve exposing candidate materials to high-temperature flue gases and analyzing the effects of the exposure conditions. Because corrosion is related to flue-gas chemical composition and temperature, variations in temperature complicate the determination of corrosion rates and corrosion mechanisms. Conversely, a relatively constant temperature allows a more accurate determination of the effects of exposure conditions. For this reason, controlled-temperature flue-gas corrosion probes were constructed and tested for exposure tests of materials. A prototype probe consisted of a silicon carbide tube specimen, supporting hardware, and instrumentation for controlling temperature by internal heating and cooling. An advanced probe included other tubular specimens. Testing of the probes in an industrial-type furnace at a nominal flue-gas temperature of 1200{degree}C revealed that temperature control was inadequate. The cooling mode imposed a substantial axial-temperature gradient on the specimens; while the heating mode imposed a smaller gradient, the heating capacity was very limited. 10 refs., 10 figs., 2 tabs.

  2. Flue gas injection control of silica in cooling towers.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

    2011-06-01T23:59:59.000Z

    Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

  3. Selecting the right pumps and valves for flue gas desulfurization

    SciTech Connect (OSTI)

    Ellis, D.; Ahluwalia, H. [ITT Engineered Valves, Lancaster, PA (United States)

    2006-07-15T23:59:59.000Z

    Limestone slurry needs to move efficiently through a complex process, meaning that selecting the right pumps and valves is critical. The article discusses factors to consider in selecting pumps and values for flue gas desulfurization process in coal-fired power plants. 2 photos.

  4. Activation of flue gas nitrogen oxides by transition metal complexes

    SciTech Connect (OSTI)

    Miller, M.E.; Finseth, D.H.; Pennline, H.W.

    1987-01-01T23:59:59.000Z

    Sulfur and nitrogen oxides are major flue gas pollutants released by coal-fired electric power plants. In the atmosphere these oxides are converted to sulfuric and nitric acids, which contribute to the acid rain problem. Most of the nitrogen oxides present in coal-derived flue gas exist as the relatively inert and water-insoluble nitric oxide (NO), thus presenting a difficult removal problem. We present preliminary studies intended to establish basic homogeneous chemistry of transition metal complexes with nitrogen oxides. The transition metals considered in this work are volatile carbonyl complexes. The metal carbonyls took up nitric oxide homogeneously in the gas phase. Iron required uv light for reaction with NO, but the same result is expected with the application of heat. Metal carbonyls also reacted with nitrogen dioxide but produced polynuclear metal species. Oxygen did not attack the carbonyl or nitrosyl complexes. Results indicate high potential for NO/sub x/ removal from stack gases by sorption onto supported metal carbonyl complexes. The solid form allows ease in separation from the flue gas. Regeneration of the sorbent might be achieved by treating with CO to liberate NO/sub x/ by displacement or by heating to decompose and drive off NO/sub x/.

  5. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Raghubir P. Gupta

    2006-03-31T23:59:59.000Z

    This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

  6. Dry scrubber reduces SO sub 2 in calciner flue gas

    SciTech Connect (OSTI)

    Brown, G.W. (Refining Consulting Services, Englewood, CO (US)); Roderick, D. (Western Slope Refining Co., Fruita, CO (US)); Nastri, A. (NATEC Resources Inc., Dallas, TX (US))

    1991-02-18T23:59:59.000Z

    This paper discusses the installation of a dry sulfur dioxide scrubber for an existing petroleum coke calciner at its Fruita, Colo., refinery. The dry scrubbing process was developed by the power industry to help cope with the acid rain problem. It is the first application of the process in an oil refinery. The process could also remove SO{sub 2} from the flue gas of a fluid catalytic cracker, fluid coker, or other refinery sources.

  7. The thief process for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Freeman, M.C.; Hargis, R.A.; O'Dowd, W.J.; Pennline, H.W.

    2007-09-01T23:59:59.000Z

    The Thief Process is a cost-effective variation to activated carbon injection (ACI) for removal of mercury from flue gas. In this scheme, partially combusted coal from the furnace of a pulverized coal power generation plant is extracted by a lance and then re-injected into the ductwork downstream of the air preheater. Recent results on a 500-lb/h pilot-scale combustion facility show similar removals of mercury for both the Thief Process and ACI. The tests conducted to date at laboratory, bench, and pilot-scales demonstrate that the Thief sorbents exhibit capacities for mercury from flue gas streams that are comparable to those exhibited by commercially available activated carbons. A patent for the process was issued in February 2003. The Thief sorbents are cheaper than commercially-available activated carbons; exhibit excellent capacities for mercury; and the overall process holds great potential for reducing the cost of mercury removal from flue gas. The Thief Process was licensed to Mobotec USA, Inc. in May of 2005.

  8. Activation of flue gas nitrogen oxides by transition metal complexes

    SciTech Connect (OSTI)

    Miller, M.E.; Finseth, D.H.; Pennline, H.W.

    1987-01-01T23:59:59.000Z

    Sulfur and nitrogen oxides are major flue gas pollutants released by coal-fired electric power plants. In the atmosphere these oxides are converted to sulfuric and nitric acids, which contribute to the acid rain problem. Most of the nitrogen oxides (90%-95%) present in coal-derived flue gas exist as the relatively inert and water-insoluble nitric oxide (NO), thus presenting a difficult removal problem. A practical strategy for nitrogen oxides removal might utilize a solid support that has been impregnated with an active transition metal complex. Some supported transition metals are expected to remove NO/sub x/ by sorption, with regeneration of the sorbent being a necessary property. Others catalyze NO oxidation to the more soluble NO/sub 2/ and N/sub 2/O/sub 5/, which has been demonstrated for certain transition metal species. These activated nitrogen oxides can be more efficiently removed along with SO/sub 2/ in conventional scrubbing or spray-drying processes, in which an aqueous slurry of sorbent, such as hydrated lime, is injected into the hot flue gas. We present here preliminary studies intended to establish basic homogeneous chemistry of transition metal complexes with nitrogen oxides. The transition metals considered in this work are volatile carbonyl complexes. This work is the first step in the development of supported metal species for enhanced nitrogen oxides removal.

  9. Thief process for the removal of mercury from flue gas

    DOE Patents [OSTI]

    Pennline, Henry W. (Bethel Park, PA); Granite, Evan J. (Wexford, PA); Freeman, Mark C. (South Park Township, PA); Hargis, Richard A. (Canonsburg, PA); O'Dowd, William J. (Charleroi, PA)

    2003-02-18T23:59:59.000Z

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  10. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30T23:59:59.000Z

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

  11. Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum

    SciTech Connect (OSTI)

    Hensman, Carl, E., P.h.D; Baker, Trevor

    2008-06-16T23:59:59.000Z

    Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

  12. The Beckett System Recovery and Utilization of Low Grade Waste Heat From Flue Gas

    E-Print Network [OSTI]

    Henderson, W. R.; DeBiase, J. F.

    1983-01-01T23:59:59.000Z

    . During low demand periods, the unit is gas-fired and produces 150 psi steam at high efficiency. In the fall, the heat exchanger is converted to accept flue gas from the large original water tube boilers. The flue gas heats water, which preheats make...

  13. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31T23:59:59.000Z

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  14. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect (OSTI)

    JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Joseph Helble; Balaji Krishnakumar

    2006-07-31T23:59:59.000Z

    The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 3 results for the experimental and modeling tasks. Experiments have been completed on the effects of chlorine. However, the experiments with sulfur dioxide and NO, in the presence of water, suggest that the wet-chemistry analysis system, namely the impingers, is possibly giving erroneous results. Future work will investigate this further and determine the role of reactions in the impingers on the oxidation results. The solid-phase experiments have not been completed and it is anticipated that only preliminary work will be accomplished during this study.

  15. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect (OSTI)

    JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble; Balaji Krishnakumar

    2005-08-01T23:59:59.000Z

    The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 2 results for the experimental and modeling tasks. Experiments in the mercury reactor are underway and interesting results suggested that a more comprehensive look at catalyzed surface reactions was needed. Therefore, much of the work has focused on the heterogeneous reactions. In addition, various chemical kinetic models have been explored in an attempt to explain some discrepancies between this modeling effort and others.

  16. Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems

    SciTech Connect (OSTI)

    Jost Wendt; Sung Jun Lee; Paul Blowers

    2008-09-30T23:59:59.000Z

    The research was directed towards a sorbent injection/particle removal process where a sorbent may be injected upstream of the warm gas cleanup system to scavenge Hg and other trace metals, and removed (with the metals) within the warm gas cleanup process. The specific objectives of this project were to understand and quantify, through fundamentally based models, mechanisms of interaction between mercury vapor compounds and novel paper waste derived (kaolinite + calcium based) sorbents (currently marketed under the trade name MinPlus). The portion of the research described first is the experimental portion, in which sorbent effectiveness to scavenge metallic mercury (Hg{sup 0}) at high temperatures (>600 C) is determined as a function of temperature, sorbent loading, gas composition, and other important parameters. Levels of Hg{sup 0} investigated were in an industrially relevant range ({approx} 25 {micro}g/m{sup 3}) although contaminants were contained in synthetic gases and not in actual flue gases. A later section of this report contains the results of the complementary computational results.

  17. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect (OSTI)

    JoAnn Lighty; Geoffrey Silcox; Constance Senior; Joseph Helble; Balaji Krishnakumar

    2008-07-31T23:59:59.000Z

    The objective of this project was to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involved both experimental and modeling efforts. The team was comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective was to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. The results suggested that homogeneous mercury oxidation is below 10% which is not consistent with previous data of others and work which was completed early in this research program. Previous data showed oxidation above 10% and up to 100%. However, the previous data are suspect due to apparent oxidation occurring within the sampling system where hypochlorite ion forms in the KCl impinger, which in turn oxidized mercury. Initial tests with entrained iron oxide particles injected into a flame reactor suggest that iron present on fly ash particle surfaces can promote heterogeneous oxidation of mercury in the presence of HCl under entrained flow conditions. Using the data generated above, with homogeneous reactions accounting for less than 10% of the oxidation, comparisons were made to pilot- and full-scale data. The results suggest that heterogeneous reactions, as with the case of iron oxide, and adsorption on solid carbon must be taking place in the full-scale system. Modeling of mercury oxidation using parameters from the literature was conducted to further study the contribution of homogeneous pathways to Hg oxidation in coal combustion systems. Calculations from the literature used rate parameters developed in different studies, in some cases using transition state theory with a range of approaches and basis sets, and in other cases using empirical approaches. To address this, rate constants for the entire 8-step homogeneous Hg oxidation sequence were developed using an internally consistent transition state approach. These rate constants when combined with the appropriate sub-mechanisms produced lower estimates of the overall extent of homogeneous oxidation, further suggesting that heterogeneous pathways play an important role in Hg oxidation in coal-fired systems.

  18. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Andreas Weber; Raghubir P. Gupta

    2006-01-01T23:59:59.000Z

    This report describes research conducted between October 1, 2005, and December 31, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A field test was conducted to examine the extent to which RTI's supported sorbent can be regenerated in a heated, hollow screw conveyor. This field test was conducted at the facilities of a screw conveyor manufacturer. The sorbent was essentially completely regenerated during this test, as confirmed by thermal desorption and mass spectroscopy analysis of the regenerated sorbent. Little or no sorbent attrition was observed during 24 passes through the heated screw conveyor system. Three downflow contactor absorption tests were conducted using calcined sodium bicarbonate as the absorbent. Maximum carbon dioxide removals of 57 and 91% from simulated flue gas were observed at near ambient temperatures with water-saturated gas. These tests demonstrated that calcined sodium carbonate is not as effective at removing CO{sub 2} as are supported sorbents containing 10 to 15% sodium carbonate. Delivery of the hollow screw conveyor for the laboratory-scale sorbent regeneration system was delayed; however, construction of other components of this system continued during the quarter.

  19. The Beckett System Recovery and Utilization of Low Grade Waste Heat From Flue Gas 

    E-Print Network [OSTI]

    Henderson, W. R.; DeBiase, J. F.

    1983-01-01T23:59:59.000Z

    The Beckett Heat Recovery is a series of techniques for recovering low-grade waste heat from flue gas. Until the cost of fossil fuels began rising rapidly, flue gas below 600 F was considered economically unworthy of reclaim. This paper...

  20. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01T23:59:59.000Z

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  1. Supported polyethylenimine adsorbents for CO2 capture from flue gas

    SciTech Connect (OSTI)

    Fauth, D.J.; Gray, M.L.; Pennline, H.W.

    2008-10-01T23:59:59.000Z

    Anthropogenic CO2 emissions produced from fossil fuel combustion are believed to contribute to undesired consequences in global climate. Major contributors towards CO2 emissions are fossil fuel-fired power plants for electricity production. For this reason, CO2 capture from flue gas streams together with permanent sequestration in geologic formations is being considered a viable solution towards mitigation of the major greenhouse gas1. Technologies based on chemical absorption with alkanolamines have been assessed for first generation CO2 post-combustion capture primarily due to its advanced stage of development. However, limitations associated with these chemical solvents (i.e., low CO2 loadings, amine degradation by oxygen, equipment corrosion) manifest themselves in high capital and operating costs with reduced thermal efficiencies. Therefore, necessary design and development of alternative, lower cost approaches for CO2 capture from coal-fired combustion streams are warranted.

  2. Separation of CO2 from flue gas using electrochemical cells

    SciTech Connect (OSTI)

    Pennline, H.W; Granite, E.J.; Luebke, D.R; Kitchin, J.R; Landon, J.; Weiland, L.M.

    2010-06-01T23:59:59.000Z

    ABSTRACT Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation, However, the presence of trace contaminants, i.e" sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area, Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/ bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO 2 and 02 is produced, the possibility exists to use this stream in oxy-firing of additional fuel. From this research, a novel concept for efficiently producing a carbon dioxide rich effiuent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossilfuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide, A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.

  3. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect (OSTI)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30T23:59:59.000Z

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

  4. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-05-01T23:59:59.000Z

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

  5. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01T23:59:59.000Z

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  6. [PFBC Hot Gas Cleanup Test Program

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    Four hundred and fifty four clay bonded silicon carbide Schumacher Dia Schumalith candle filters were purchased for installation in the Westinghouse Advanced Particle Filtration (APF) system at the American Electric Power (AEP) plant in Brilliant, Ohio. A surveillance effort has been identified which will monitor candle filter performance and life during hot gas cleaning in AEP's pressurized fluidized-bed combustion system. A description of the candle surveillance program, strategy for candle filter location selection, as well as candle filter post-test characterization is provided in this memo. The period of effort for candle filter surveillance monitoring is planned through March 1994.

  7. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOE Patents [OSTI]

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21T23:59:59.000Z

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  8. System and method for monitoring wet bulb temperature in a flue gas stream

    SciTech Connect (OSTI)

    Glover, R.L.; Bland, V.V.

    1990-01-02T23:59:59.000Z

    This patent describes in a system for monitoring wet bulb temperature in a flue gas stream means for extracting a sample of the gas from the flue, means for heating the sample to maintain the sample at substantially the same temperature as the gas in the flue, a sensor for measuring the wet bulb temperature of the sample, a reservoir of liquid, a liquid absorbent wick surrounding the sensor and extending into the liquid in the reservoir, and means for maintaining the liquid in the reservoir at a substantially constant level.

  9. Multi-component removal in flue gas by aqua ammonia

    DOE Patents [OSTI]

    Yeh, James T. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA)

    2007-08-14T23:59:59.000Z

    A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

  10. Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs

    E-Print Network [OSTI]

    Nogueira de Mago, Marjorie Carolina

    2005-11-01T23:59:59.000Z

    sequestration. In this thesis, I report my findings on the effect of flue gas ??impurities?? on the displacement of natural gas during CO2 sequestration, and results on unconfined compressive strength (UCS) tests to carbonate samples. In displacement experiments...

  11. Biomass Gas Cleanup Using a Therminator

    SciTech Connect (OSTI)

    David C. Dayton; Atish Kataria; Rabhubir Gupta

    2012-03-06T23:59:59.000Z

    The objective of the project is to develop and demonstrate a novel fluidized-bed process module called a �¢����Therminator�¢��� to simultaneously destroy and/or remove tar, NH3 and H2S from raw syngas produced by a fluidized-bed biomass gasifier. The raw syngas contains as much as 10 g/m3 of tar, 4,000 ppmv of NH3 and 100 ppmv of H2S. The goal of the Therminator module would be to use promising regenerable catalysts developed for removing tar, ammonia, and H2S down to low levels (around 10 ppm). Tars are cracked to a non-condensable gas and coke that would deposit on the acid catalyst. We will deposit coke, much like a fluid catalytic cracker (FCC) in a petroleum refinery. The deposited coke fouls the catalyst, much like FCC, but the coke would be burned off in the regenerator and the regenerated catalyst would be returned to the cracker. The rapid circulation between the cracker and regenerator would ensure the availability of the required amount of regenerated catalyst to accomplish our goal. Also, by removing sulfur down to less than 10 ppmv, NH3 decomposition would also be possible in the cracker at 600-700���°C. In the cracker, tar decomposes and lays down coke on the acid sites of the catalyst, NH3 is decomposed using a small amount of metal (e.g., nickel or iron) catalyst incorporated into the catalyst matrix, and H2S is removed by a small amount of a metal oxide (e.g. zinc oxide or zinc titanate) by the H2S-metal oxide reaction to form metal sulfide. After a tolerable decline in activity for these reactions, the catalyst particles (and additives) are transported to the regenerator where they are exposed to air to remove the coke and to regenerate the metal sulfide back to metal oxide. Sulfate formation is avoided by running the regeneration with slightly sub-stoichiometric quantity of oxygen. Following regeneration, the catalyst is transported back to the cracker and the cycling continues. Analogous to an FCC reactor system, rapid cycling will allow the use of very active cracking catalysts that lose activity due to coking within the order of several seconds.

  12. Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams

    E-Print Network [OSTI]

    Latcham, Jacob G. (Jacob Greco)

    2009-01-01T23:59:59.000Z

    An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

  13. New Developments in Closed Loop Combustion Control Using Flue Gas Analysis 

    E-Print Network [OSTI]

    Nelson, R. L.

    1981-01-01T23:59:59.000Z

    New developments in closed loop combustion control are causing radical changes in the way combustion control systems are implemented. The recent availability of in line flue gas analyzers and microprocessor technology are teaming up to produce...

  14. Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers 

    E-Print Network [OSTI]

    Miller, B.; Keon, E.

    1980-01-01T23:59:59.000Z

    Chemical technology has been used successfully to solve many of the operational and emissions problems that result from burning coal. This paper describes the use of blended chemical flue gas conditioners to significantly reduce particulate...

  15. Flue gas desulfurization : cost and functional analysis of large-scale and proven plants

    E-Print Network [OSTI]

    Tilly, Jean

    1983-01-01T23:59:59.000Z

    Flue Gas Desulfurization is a method of controlling the emission of sulfurs, which causes the acid rain. The following study is based on 26 utilities which burn coal, have a generating capacity of at least 50 Megawatts ...

  16. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J

    2008-07-01T23:59:59.000Z

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  17. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01T23:59:59.000Z

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport reactor systems is planned to demonstrate the feasibility of this process in large scale operations to separate carbon dioxide from flue gas.

  18. Analysis of Halogen-Mercury Reactions in Flue Gas

    SciTech Connect (OSTI)

    Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

    2010-01-01T23:59:59.000Z

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

  19. Status of flue-gas treatment technologies for combined SO[sub 2]/NO[sub x] reduction

    SciTech Connect (OSTI)

    Livengood, C.D. (Argonne National Lab., IL (United States). Energy Systems Div.); Markussen, J.M. (USDOE Pittsburgh Energy Technology Center, PA (United States))

    1993-01-01T23:59:59.000Z

    Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO.) regulations have fueled research and development efforts on the technologies for the combined control of sulfur dioxide (SO[sub 2]) and NO[sub x]. The integrated removal of both SO[sub 2] and NO[sub x] in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  20. Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-08-31T23:59:59.000Z

    The AFGD process as demonstrated by Pure Air at the Bailly Station offers a reliable and cost-effective means of achieving a high degree of SO{sub 2} emissions reduction when burning high-sulfur coals. Many innovative features have been successfully incorporated in this process, and it is ready for widespread commercial use. The system uses a single-loop cocurrent scrubbing process with in-situ oxidation to produce wallboard-grade gypsum instead of wet sludge. A novel wastewater evaporation system minimizes effluents. The advanced scrubbing process uses a common absorber to serve multiple boilers, thereby saving on capital through economies of scale. Major results of the project are: (1) SO{sub 2} removal of over 94 percent was achieved over the three-year demonstration period, with a system availability exceeding 99.5 percent; (2) a large, single absorber handled the combined flue gas of boilers generating 528 MWe of power, and no spares were required; (3) direct injection of pulverized limestone into the absorber was successful; (4) Wastewater evaporation eliminated the need for liquid waste disposal; and (5) the gypsum by-product was used directly for wallboard manufacture, eliminating the need to dispose of waste sludge.

  1. In the field. Pilot project uses innovative process to capture CO{sub 2} from flue gas

    SciTech Connect (OSTI)

    NONE

    2008-04-01T23:59:59.000Z

    A pilot project at We Energies' Pleasant Prairie Power Plant uses chilled ammonia to capture CO{sub 2} from flue gas. 3 photos.

  2. Comment on the “Role of SO2 for Elemental Mercury Removal from Coal Combustion Flue Gas by Activated Carbon”

    SciTech Connect (OSTI)

    Granite, E.J.; Presto, A.A.

    2008-09-01T23:59:59.000Z

    A communication in response to the excellent and timely paper entitled “Role of SO2 for Elemental Mercury Removal from Coal Combustion Flue Gas by Activated Carbon”.

  3. Near-Zero Emissions Oxy-Combustion Flue Gas Purification

    SciTech Connect (OSTI)

    Minish Shah; Nich Degenstein; Monica Zanfir; Rahul Solunke; Ravi Kumar; Jennifer Bugayong; Ken Burgers

    2012-06-30T23:59:59.000Z

    The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plants burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by-product sulfuric and nitric acids that meet the commercial product specifications. The sulfuric acid will have to be disposed of by neutralization, thus lowering the value of the technology to same level as that of the activated carbon process. Therefore, it was decided to discontinue any further efforts on sulfuric acid process. Because of encouraging results on the activated carbon process, it was decided to add a new subtask on testing this process in a dual bed continuous unit. A 40 days long continuous operation test confirmed the excellent SOx/NOx removal efficiencies achieved in the batch operation. This test also indicated the need for further efforts on optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level. The VPSA process was tested in a pilot unit. It achieved CO{sub 2} recovery of > 95% and CO{sub 2} purity of >80% (by vol.) from simulated cold box feed streams. The overall CO{sub 2} recovery from the cold box VPSA hybrid process was projected to be >99% for plants with low air ingress (2%) and >97% for plants with high air ingress (10%). Economic analysis was performed to assess value of the NZE CPU. The advantage of NZE CPU over conventional CPU is only apparent when CO{sub 2} capture and avoided costs are compared. For greenfield plants, cost of avoided CO{sub 2} and cost of captured CO{sub 2} are generally about 11-14% lower using the NZE CPU compared to using a conventional CPU. For older plants with high air intrusion, the cost of avoided CO{sub 2} and capture CO{sub 2} are about 18-24% lower using the NZE CPU. Lower capture costs for NZE CPU are due to lower capital investment in FGD/SCR and higher CO{sub 2} capture efficiency. In summary, as a result of this project, we now have developed one technology option for NZE CPU based on the activated carbon process and coldbox-VPSA hybrid process. This technology is projected to work for both low and high sulfur coal plants. The NZE CPU technology is projected to achieve near zero stack emissions

  4. Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas

    SciTech Connect (OSTI)

    Lee, S.H.D.; Swift, W.M.; Johnson, I.

    1980-01-01T23:59:59.000Z

    Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

  5. Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas

    E-Print Network [OSTI]

    Subramanian, Venkat

    great potential for converting flue gas to biomass. Microalgae can capture solar energy more efficientlyExperimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas Lian He, Venkat R. Subramanian, Yinjie J. Tang* Department of Energy, Environmental

  6. Effect of connate water on miscible displacement of reservoir oil by flue gas 

    E-Print Network [OSTI]

    Maxwell, H. D.

    1960-01-01T23:59:59.000Z

    EFFECT OF CONNATE WATER ON MISCIBLE DISPLACEMENT OF RESERVOIR OIL BY FLUE GAS A Thesis By H. D. MAXWELL, JR. Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE Au gus t, 19 60 Major Subject: PETROLEUM ENGINEERING EFFECT OF CONNATE WATER ON MISCIBLE DISPLACEMENT OF RESERVOIR OIL BY FLUE GAS A Thesis H. D. MAXWELL, JR. Approved as to style and content by: haxrman of ommitte...

  7. Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas

    DOE Patents [OSTI]

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2012-11-06T23:59:59.000Z

    Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

  8. Synthetic aggregates prepared from flue gas desulfurization by-products using various binder materials

    SciTech Connect (OSTI)

    Bellucci, J.; Graham, U.M.; Hower, J.C.; Robl, T.L. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1994-12-31T23:59:59.000Z

    Flue Gas Desulfurization (FGD) by-products can be converted into environmentally safe and structurally stable aggregates. One type of synthetic aggregate was prepared using an optimum mixture of (FGD) by-products, fly ash, and water. Mineral reactions have been examined using X-ray diffraction and scanning electron microscope.

  9. Separation of Carbon Dioxide from Nitrogen and Water in Flue Gas Streams 

    E-Print Network [OSTI]

    Mera, Hilda 1989-

    2012-04-12T23:59:59.000Z

    are determined by the mean-square displacement method derived by Albert Einstein. The diffusion coefficients of each component in the flue gas are analyzed to examine the effect of temperature in diffusion coefficients and study the motion of the gases in the MOF...

  10. High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents

    SciTech Connect (OSTI)

    Cengiz, P.A.; Ho, K.K.; Abbasian, J.; Lau, F.S.

    2002-09-20T23:59:59.000Z

    The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.

  11. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    SciTech Connect (OSTI)

    Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

    2009-03-31T23:59:59.000Z

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

  12. Hot-gas cleanup system model development. Volume I. Final report

    SciTech Connect (OSTI)

    Ushimaru, K.; Bennett, A.; Bekowies, P.J.

    1982-11-01T23:59:59.000Z

    This two-volume report summarizes the state of the art in performance modeling of advanced high-temperature, high-pressure (HTHP) gas cleanup devices. Volume I contains the culmination of the research effort carried over the past 12 months and is a summary of research achievements. Volume II is the user's manual for the computer programs developed under the present research project. In this volume, Section 2 presents background information on pressurized, fluidized-bed combustion concepts, a description of the role of the advanced gas cleanup systems, and a list of advanced gas cleanup systems that are currently in development under DOE sponsorship. Section 3 describes the methodology for the software architecture that forms the basis of the well-disciplined and structured computer programs developed under the present project. Section 4 reviews the fundamental theories that are important in analyzing the cleanup performance of HTHP gas filters. Section 5 discusses the effect of alkali agents in HTHP gas cleanup. Section 6 evaluates the advanced HTHP gas cleanup models based on their mathematical integrity, availability of supporting data, and the likelihood of commercialization. As a result of the evaluation procedure detailed in Section 6, five performance models were chosen to be incorporated into the overall system simulation code, ASPEN. These five models (the electrocyclone, ceramic bag filter, moving granular bed filter, electrostatic granular bed filter, and electrostatic precipitator) are described in Section 7. The method of cost projection for these five models is discussed in Section 8. The supporting data and validation of the computer codes are presented in Section 9, and finally the conclusions and recommendations for the HTHP gas cleanup system model development are given in Section 10. 72 references, 19 figures, 25 tables.

  13. Alternative flue gas treatment technologies for integrated SO{sub 2} and NO{sub x} control

    SciTech Connect (OSTI)

    Markussen, J.M. [USDOE Pittsburgh Energy Technology Center, PA (United States); Livengood, D.D. [Argonne National Lab., IL (United States)

    1995-06-01T23:59:59.000Z

    Enactment of the 1990 Clean Air Act Amendments, as well as passage of legislation at the state level has raised the prospect of more stringent nitrogen oxides (NO{sub x}) emission regulations and has fueled research and development efforts on a number technologies for the combined control of sulfur dioxide (SO{sub 2}) and NO{sub x}. The integrated removal of both SO{sub 2} and NO{sub x} in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue gas cleanup systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  14. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  15. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  16. Confined zone dispersion flue gas desulfurization demonstration. Quarterly report No. 10, February 17--May 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-15T23:59:59.000Z

    The CZD process involves injecting a finely atomized slurry of reactive lime into the flue gas duct work of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct walls. The lime slurry reacts with part of the SO{sub 2} in the gas, and the reaction products dry to form solid particles. A solids collector, typically an electrostatic precipitator (ESP) downstream from the point of injection, captures the reaction products along with the fly ash entrained in the flue gas. The demonstration is being conducted at Penelec`s Seward Station, Unit No. 15. This boiler is a 147 MWe coal-fired unit, which utilizes Pennsylvania bituminous coal (approximately 1.2 to 2.5% sulfur). One of the two flue gas ducts leading from the boiler has been retrofitted with the CZD technology. The first existing ESP installed in the station is immediately behind the air preheater. The second ESP, installed about 15 years ago, is about 80 feet away from the first ESP. The goal of this demonstration is to prove the technical and economic feasibility of the CZD technology on a commercial scale. The process is expected to achieve 50% SO{sub 2}

  17. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2014-06-01T23:59:59.000Z

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This topical report covers Phase 2b, which is the construction phase of pilot demonstration subsystems that make up the integrated plant. The subsystems included are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant is now capable of capturing CO2 from various sources (gas and coal) and mineralizing into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The topical report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. At the end of Phase 2b, the CCMP pilot demonstration is fully ready for testing.

  18. Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis

    SciTech Connect (OSTI)

    Kadam, K. L.

    2001-06-22T23:59:59.000Z

    Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

  19. Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass

    SciTech Connect (OSTI)

    Anuar, S.H.; Keener, H.M.

    1995-12-31T23:59:59.000Z

    The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

  20. ENGINEERING A NEW MATERIAL FOR HOT GAS CLEANUP

    SciTech Connect (OSTI)

    T.D. Wheelock; L.K. Doraiswamy; K.P. Constant

    2003-09-01T23:59:59.000Z

    The overall purpose of this project was to develop a superior, regenerable, calcium-based sorbent for desulfurizing hot coal gas with the sorbent being in the form of small pellets made with a layered structure such that each pellet consists of a highly reactive lime core enclosed within a porous protective shell of strong but relatively inert material. The sorbent can be very useful for hot gas cleanup in advanced power generation systems where problems have been encountered with presently available materials. An economical method of preparing the desired material was demonstrated with a laboratory-scale revolving drum pelletizer. Core-in-shell pellets were produced by first pelletizing powdered limestone or other calcium-bearing material to make the pellet cores, and then the cores were coated with a mixture of powdered alumina and limestone to make the shells. The core-in-shell pellets were subsequently calcined at 1373 K (1100 C) to sinter the shell material and convert CaCO{sub 3} to CaO. The resulting product was shown to be highly reactive and a very good sorbent for H{sub 2}S at temperatures in the range of 1113 to 1193 K (840 to 920 C) which corresponds well with the outlet temperatures of some coal gasifiers. The product was also shown to be both strong and attrition resistant, and that it can be regenerated by a cyclic oxidation and reduction process. A preliminary evaluation of the material showed that while it was capable of withstanding repeated sulfidation and regeneration, the reactivity of the sorbent tended to decline with usage due to CaO sintering. Also it was found that the compressive strength of the shell material depends on the relative proportions of alumina and limestone as well as their particle size distributions. Therefore, an extensive study of formulation and preparation conditions was conducted to improve the performance of both the core and shell materials. It was subsequently determined that MgO tends to stabilize the high-temperature reactivity of CaO. Therefore, a sorbent prepared from dolomite withstands the effects of repeated sulfidation and regeneration better than one prepared from limestone. It was also determined that both the compressive strength and attrition resistance of core-in-shell pellets depend on shell thickness and that the compressive strength can be improved by reducing both the particle size and amount of limestone in the shell preparation mixture. A semiempirical model was also found which seems to adequately represent the absorption process. This model can be used for analyzing and predicting sorbent performance, and, therefore, it can provide guidance for any additional development which may be required. In conclusion, the overall objective of developing an economical, reusable, and practical material was largely achieved. The material appears suitable for removing CO{sub 2} from fuel combustion products as well as for desulfurizing hot coal gas.

  1. Effect of connate water on miscible displacement of reservoir oil by flue gas

    E-Print Network [OSTI]

    Maxwell, H. D.

    1960-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE Au gus t, 19 60 Major Subject: PETROLEUM ENGINEERING EFFECT OF CONNATE WATER ON MISCIBLE DISPLACEMENT OF RESERVOIR OIL BY FLUE GAS A Thesis H. D. MAXWELL, JR. Approved as to style and content by: haxrman of ommitte... of the petroleum industry there has been a continually increasing search for more economical and more efficient methods for increasing the primary recovery from an oil reservoir. Better production practices, including pressure maintenance programs using both...

  2. Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers

    E-Print Network [OSTI]

    Miller, B.; Keon, E.

    1980-01-01T23:59:59.000Z

    FLUE GAS CONDITIONING TO REDUCE PARTICULATE EMISSIONS IN INDUSTRIAL COAL-FIRED BOILERS Barry Miller and Ed Keon Apollo Technologies, Inc. Whippany, New Jersey ABSTRACT Chemical technology has been used successfully to solve many... inspection of the ESP, careful observation of ESP controls to determine spark rate and voltage drop during sparking, in-situ resistivity mea surements, rapper on-off observations, and a re view of records to investigate the relationship of boiler...

  3. New Developments in Closed Loop Combustion Control Using Flue Gas Analysis

    E-Print Network [OSTI]

    Nelson, R. L.

    1981-01-01T23:59:59.000Z

    NEW DEVELOPMENTS IN CLOSED LOOP COMBUSTION CONTROL USING FLUE GAS ANALYSIS Robert L. Nelson Westinghouse Computer &Instrumentation Div. Orrville, Ohio Introduction New developments in closed loop combustion control are causing radical changes... the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 i The Westinghouse Model 215 analyzer, shown in j Figure 8, has a very short sampling path and has be~n used on many high temperature applications befor~ a high temperature...

  4. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-09-01T23:59:59.000Z

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  5. Using Flue Gas Huff 'n Puff Technology and Surfactants to Increase Oil Production from the Antelope Shale Formation of the Railroad Gap Oil Field

    SciTech Connect (OSTI)

    McWilliams, Michael

    2001-12-18T23:59:59.000Z

    This project was designed to test cyclic injection of exhaust flue gas from compressors located in the field to stimulate production from Antelope Shale zone producers. Approximately 17,000 m{sup 3} ({+-}600 MCF) of flue gas was to be injected into each of three wells over a three-week period, followed by close monitoring of production for response. Flue gas injection on one of the wells would be supplemented with a surfactant.

  6. Investigation of mercury transformation by HBr addition in a slipstream facility with real flue gas atmospheres of bituminous coal and Powder River Basin Coal

    SciTech Connect (OSTI)

    Yan Cao; Quanhai Wang; Chien-wei Chen; Bobby Chen; Martin Cohron; Yi-chuan Tseng; Cheng-chung Chiu; Paul Chu; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

    2007-09-15T23:59:59.000Z

    An investigation of speciated mercury transformation with the addition of hydrogen bromide (HBr) at elevated temperatures was conducted in a slipstream reactor with real flue gas atmospheres. Test results indicated that adding HBr into the flue gas at several parts per million strongly impacted the mercury oxidation and adsorption, which were dependent upon temperature ranges. Higher temperatures (in the range of 300-350 C) promoted mercury oxidation by HBr addition but did not promote mercury adsorption. Lower temperatures (in a range of 150-200 C) enhanced mercury adsorption on the fly ash by adding HBr. Test results also verified effects of flue gas atmospheres on the mercury oxidation by the addition of HBr, which included concentrations of chlorine and sulfur in the flue gas. Chlorine species seemed to be involved in the competition with bromine species in the mercury oxidation process. With the addition of HBr at 3 ppm at a temperature of about 330 C, the additional mercury oxidation could be reached by about 55% in a flue gas atmosphere by burning PRB coal in the flue gas and by about 20% in a flue gas by burning bituminous coal. These are both greater than the maximum gaseous HgBr2 percentage in the flue gas (35% for PRB coal and 5% for bituminous coal) by thermodynamic equilibrium analysis predictions under the same conditions. This disagreement may indicate a greater complexity of mercury oxidation mechanisms by the addition of HBr. It is possible that bromine species promote activated chlorine species generation in the flue gas, where the kinetics of elemental mercury oxidation were enhanced. However, SO{sub 2} in the flue gas may involve the consumption of the available activated chlorine species. Thus, the higher mercury oxidation rate by adding bromine under the flue gas by burning PRB coal may be associated with its lower SO{sub 2} concentration in the flue gas. 39 refs., 8 figs., 4 tabs.

  7. An investigation of sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Haddad, G.J.; Hargis, R.A. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

    1998-12-31T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from a carrier gas. An on-line atomic fluorescence spectrophotometer, used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. The capacities and breakthrough times of several commercially available activated carbons, as well as novel sorbents, were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  8. Catalysts for oxidation of mercury in flue gas

    DOE Patents [OSTI]

    Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

    2010-08-17T23:59:59.000Z

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  9. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31T23:59:59.000Z

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and l

  10. A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

    E-Print Network [OSTI]

    Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

    2001-01-01T23:59:59.000Z

    A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

  11. Novel sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Hargis, R.A.

    1999-07-01T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from various carrier gases. When the carrier gas is argon, an on-line atomic fluorescence spectrophotometer (AFS), used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. For more complex carrier gases, capacity is determined off-line by analyzing the spent sorbent with either a cold vapor atomic absorption spectrophotometer (CVAAS) or an inductively coupled argon plasma atomic emission spectrophotometer (ICP-AES). The capacities and breakthrough times of several commercially available activated carbons, as well as novel sorbents, were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  12. Novel sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Hargis, R.A.

    2000-04-01T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from various carrier gases. When the carrier gas is argon, an on-line atomic fluorescence spectrophotometer (AFS), used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. For more complex carrier gases, the capacity is determined off-line by analyzing the spent sorbent with either a cold vapor atomic absorption spectrophotometer (CVAAS) or an inductively coupled argon plasma atomic emission spectrophotometer (ICP-AES). The capacities and breakthrough times of several commercially available activated carbons as well as novel sorbents were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  13. SOx-NOx-Rox Box Flue Gas Cleanup Demonstration: A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2000-12-15T23:59:59.000Z

    The SNRB{trademark} test program demonstrated the feasibility of controlling multiple emissions from a coal-fired boiler in a single processing unit. The degree of emissions removals for SO{sub 2}, NO{sub x}, and particulates all exceeded the project goals. A high degree of removal for HAPs was also achieved. The SNRB system offers low space requirements, control of multiple pollutants, and operating flexibility. The pneumatic SO{sub 2} sorbent and ammonia injection systems are expected to have high reliability because of their mechanical simplicity. Despite these advantages, the SNRB process may not be an economic choice for applications involving SO{sub 2} removals above about 85%. For lower levels of SO{sub 2} removal, the projected economics for SNRB appear to be more favorable than those of existing processes which involve separate units for the same degree of control for SO{sub 2}, NO{sub x} , and particulates. Specific findings are summarized as follows: (1) SO{sub 2} removal of 85-90% was achieved at a calcium utilization of 40-45%, representing a significant improvement in performance over other dry lime injection processes. (2) When firing 3-4% sulfur coal, compliance with the 1990 CAAA Phase I SO{sub 2} emissions limit of 2.5 lb/10{sup 6} Btu was achieved with a Ca/S molar ratio of less than 1.0. For the Phase II SO{sub 2} emissions limit of 1.2 lb/10{sup 6} Btu, compliance was achieved with a Ca/S molar ratio as low as 1.5. Phase II compliance is the more relevant emissions limit. (3) When using NaHCO{sub 3} as the sorbent, the Phase II SO{sub 2} emissions limit was achieved at a Na{sub 2}/S molar ratio of less than 2.0 (NSR < 1.0). (4) Compliance with the Phase I NO{sub x} emissions limit of 0.45 lb/10{sup 6} Btu for Group 1 boilers was achieved at an NH{sub 3}/NO{sub x} ratio of 0.85, with an ammonia slip of 5 ppm or less. (5) Particulate collection efficiency averaged 99.9%, corresponding to an average emissions rate of 0.018 lb/10{sup 6} Btu. This is significantly lower than the NSPS value of 0.03 lb/10{sup 6} Btu. The high-temperature baghouse design incorporating an SCR catalyst for NO{sub x} reduction was demonstrated successfully. The technology is ready for commercial application. The key feature of the technology is control of SO{sub 2}, NO{sub x}, and particulates in a single process unit. However, this limits its commercial market to applications requiring control of all three components. Also, although the testing demonstrated greater than 90% SO{sub 2} capture, this was achieved at high sorbent/sulfur ratios. For applications requiring a high percentage of sulfur removal, a modern conventional FGD unit with LNBs for NO{sub x} control may be the preferred option.

  14. Compression stripping of flue gas with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

    2005-05-31T23:59:59.000Z

    A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SO.sub.X and NO.sub.X and CO.sub.2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO.sub.2, SO.sub.2, and H.sub.2 O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

  15. Compression Stripping of Flue Gas with Energy Recovery

    DOE Patents [OSTI]

    Ochs, Thomas L.; O'Connor, William K.

    2005-05-31T23:59:59.000Z

    A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SOX and NOX and CO2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO2, SO2, and H2O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

  16. EPA reports advances in scrubber technology at Flue Gas Desulfurization symposium

    SciTech Connect (OSTI)

    Smock, R.

    1982-07-01T23:59:59.000Z

    The overall message of the recent Symposium on Flue Gas Desulfurization was that the technology for sulfur dioxide scrubbing has matured enough for discussions to focus on future improvements rather than whether scrubbers work at all. The Environmental Protection Agency (EPA) regulations will not change in the near future, however, unless there are changes in the Clean air Act to deal with acid rain, despite the improvements in performance data. The symposium covered reports on dual-alkali scrubbing, organic buffer additives, the probability that scrubber wastes will not be classified as hazardous, simultaneous removal of nitrogen oxides and sulfur dioxide, and continuous monitoring programs. 3 figures, 4 tables. (DCK)

  17. Flue Gas Desulfurization Market Research Report 2018 | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro IncEnergy InformationFlue Gas

  18. Desulfurization of flue gas by the confined zone dispersion process - Proof-of-concept tests

    SciTech Connect (OSTI)

    Abrams, J.Z.; Blake, J.H.; Pennline, H.W.

    1986-01-01T23:59:59.000Z

    As part of a program to develop more cost-effective approaches to the control of acid rain precursors, the Department of Energy (DOE) is supporting proof-of-concept tests of the Confined Zone Dispersion (CZD) process proposed by Bechtel. This process removes SO/sub 2/ from flue gas by injecting a finely atomized slurry of highly reactive pressure hydrated dolomitic lime into the duct of a utility boiler. A slipstream of flue gas at 300/sup 0/F will be withdrawn from the plant ductwork and will pass through a 130-ft run of 3-ft diameter test duct. A two-fluid atomizer will inject the lime slurry into the upstream end of the test duct. A pilot scale electrostatic precipitator (ESP) will remove reaction products and fly ash before the gas is discharged back into the utility's ESP. An 11-month test program will optimize controllable variables, acquire design data, and demonstrate reliability by a long duration run. Measurements taken will include SO/sub 2/ removal, lime utilization, ESP performance, and characterization of waste solids.

  19. Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds

    SciTech Connect (OSTI)

    Chang, Shih-Ger; Yan, Nai-Qiang; Qu, Zan; Chi, Yao; Qiao, Shao-Hua; Dod, Ray; Chang, Shih-Ger; Miller, Charles

    2008-07-02T23:59:59.000Z

    Oxidation of Hg0 with any oxidant or converting it to a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg0 by gas phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas phase reaction rate constants between Hg0 and the sulfur/chlorine compounds were determined, and the effects of temperature and the main components in flue gases were studied. The gas phase reaction between Hg0 and SCl2 is shown to be more rapid than the gas phase reaction with chlorine, and the second order rate constant was 9.1(+-0.5) x 10-18 mL-molecules-1cdots-1 at 373oK. Nitric oxide (NO) inhibited the gas phase reaction of Hg0 with sulfur-chlorine compounds. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg0 removal is about 90percent with 5 ppm SCl2 or S2Cl2 and 40 g/m3 of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that co-injection of 3-5 ppm of SCl2 (or S2Cl2) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90percent of Hg0 can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3percent of SCl2 or S2Cl2 is used. Unlike gas phase reactions, NO exhibited little effect on Hg0 reactions with SCl2 or S2Cl2 on flyash or activated carbon. Mercuric sulfide was identified as one of the principal products of the Hg0/SCl2 or Hg0/S2Cl2 reactions. Additionally, about 8percent of SCl2 or S2Cl2 in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution.

  20. Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks

    SciTech Connect (OSTI)

    David A Lesch

    2010-06-30T23:59:59.000Z

    UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary building units bound by DOBDC resulting in 1D hexagonal pores about 11 angstroms in diameter. Surface areas range from 800 to 1500 sq m/g for the different MOFs. Mg/DOBDC outperformed all MOF and zeolite materials evaluated to date, with about 25 wt% CO{sub 2} captured by this MOF at flue gas conditions ({approx}0.13 atm CO{sub 2} pressure, 311K). In simulated flue gas without oxygen, the zero-length (ZLC) system was very useful in quickly simulating the effect of long term exposure to impurities on the MOFs. Detailed adsorption studies on MOF pellets have shown that water does not inhibit CO{sub 2} adsorption for MOFs as much as it does for typical zeolites. Moreover, some MOFs retain a substantial CO{sub 2} capacity even with a modest water loading at room temperature. Molecular modeling was a key activity in three areas of our earlier DOE/NETL-sponsored MOF-based research on CC. First, the team was able to effectively simulate CO{sub 2} and other gas adsorption isotherms for more than 20 MOFs, and the knowledge obtained was used to help predict new MOF structures that should be effective for CO{sub 2} adsorption at low pressure. The team also showed that molecular modeling could be utilized to predict the hydrothermal stability of a given MOF. Finally, the team showed that low moisture level exposure actually enhanced the CO{sub 2} adsorption performance of a particular MOF, HKUST-1.

  1. Environ. Scl. Technol. 1994, 28, 277-283 Effects of Salts on Preparation and Use of Calcium Silicates for Flue Gas

    E-Print Network [OSTI]

    Rochelle, Gary T.

    Silicates for Flue Gas Desulfurization Kurt K. Klnd, Phlllp D. Wasserman, and Gary 1.Rochelle' Department is a flue gas desulfurization (FGD) technology developed for existingcoal to remove sulfur dioxide. High surface area calcium silicate hydrates are made by slurrying Ca(0H

  2. Lead Isotopic Composition of Fly Ash and Flue Gas Residues from Municipal Solid Waste Combustors in France: Implications for Atmospheric Lead Source Tracing.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Lead Isotopic Composition of Fly Ash and Flue Gas Residues from Municipal Solid Waste Combustors@crpg.cnrs-nancy.fr _______________________________________________________________________________________ Fly ash and flue gas residues from eight municipal solid waste combusters (MSWC) in France (1992 of "industrial Pb" is not an easy task because of its possible extreme heterogeneity. Municipal solid waste

  3. Land application uses for dry flue gas desulfurization by-products: Phase 3

    SciTech Connect (OSTI)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31T23:59:59.000Z

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  4. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    SciTech Connect (OSTI)

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31T23:59:59.000Z

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  5. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2013-08-01T23:59:59.000Z

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA. This topical report covers Subphase 2a which is the design phase of pilot demonstration subsystems. Materials of construction have been selected and proven in both lab scale and prototype testing to be acceptable for the reagent conditions of interest. The target application for the reactive carbonate material has been selected based upon small-scale feasibility studies and the design of a continuous fiber board production line has been completed. The electrochemical cell architecture and components have been selected based upon both lab scale and prototype testing. The appropriate quality control and diagnostic techniques have been developed and tested along with the required instrumentation and controls. Finally the demonstrate site infrastructure, NEPA categorical exclusion, and permitting is all ready for the construction and installation of the new units and upgrades.

  6. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly report, April--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This quarterly technical progress report summarizes the work completed during the first quarter, April 1 through June 30, 1995. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasificafion and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel continued at a good pace during the quarter.

  7. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

  8. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 1

    SciTech Connect (OSTI)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

    1987-08-01T23:59:59.000Z

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster displays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume I covers information presented at sessions 1 through 4 on systems for the production of Co-products and industrial fuel gas, environmental projects, and components and materials. Individual papers have been processed for the Energy Data Base.

  9. Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2

    SciTech Connect (OSTI)

    Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

    1987-08-01T23:59:59.000Z

    On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

  10. Assessment of the Flue Gas Recycle Strategies on Oxy-Coal Power Plants using an Exergy-based Methodology

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Assessment of the Flue Gas Recycle Strategies on Oxy- Coal Power Plants using an Exergy to be competitive with post-combustion for carbon capture on coal-fired power plants. In order to achieve is produced from coal (IEA 2012b), the development of CO2 capture technology on coal-fired power plants

  11. The effects of fracture fluid cleanup upon the analysis of pressure buildup tests in tight gas reservoirs

    E-Print Network [OSTI]

    Johansen, Atle Thomas

    1988-01-01T23:59:59.000Z

    THE EFFECTS OF FRACTURE FLUID CLEANUP UPON THE ANALYSIS OF PRESSURE BUILDUP TESTS IN TIGHT GAS RESERVOIRS A Thesis by ATLE THOMAS JOHANSEN Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1988 Major Subject: Petroleum Engineering THE EFFECTS OF FRACTURE FLUID CLEANUP UPON THE ANALYSIS OF PRESSURE BUILDUP TESTS IN TIGHT GAS RESERVOIRS A Thesis by ATLE THOMAS JOHANSEN Approved...

  12. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    SciTech Connect (OSTI)

    NONE

    1996-04-30T23:59:59.000Z

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  13. Speciation, characterization, and mobility of As, Se, and Hg in flue gas desulphurization residues

    SciTech Connect (OSTI)

    Souhail R. Al-Abed; Gautham Jegadeesan; Kirk G. Scheckel; Thabet Tolaymat [United States Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Laboratory

    2008-03-01T23:59:59.000Z

    Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se), and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue. With increasing reuse of the FGD residues in beneficial applications, it is important to determine metal speciation and mobility to understand the environmental impact of its reuse. In this paper, we report the solid phase speciation of As, Se, and Hg in FGD residues using X-ray absorption spectroscopy (XAS), X-ray fluorescence spectroscopy (XRF), and sequential chemical extraction (SCE) techniques. The SCE results combined with XRF data indicated a strong possibility of As association with iron oxides, whereas Se was distributed among all geochemical phases. Hg appeared to be mainly distributed in the strong-complexed phase. XRF images also suggested a strong association of Hg with Fe oxide materials within FGD residues. XAS analysis indicated that As existed in its oxidized state (As(V)), whereas Se and Hg was observed in primarily reduced states as selenite (Se(IV)) and Hg(I), respectively. The results from the SCE and variable pH leaching tests indicated that the labile fractions of As, Se, and Hg were fairly low and thus suggestive of their stability in the FGD residues. However, the presence of a fine fraction enriched in metal content in the FGD residue suggested that size fractionation is important in assessing the environmental risks associated with their reuse. 34 refs., 3 figs., 4 tabs.

  14. ENGINEERING A NEW MATERIAL FOR HOT GAS CLEANUP

    SciTech Connect (OSTI)

    T.D. Wheelock; L.K. Doraiswamy; K. Constant

    2001-06-30T23:59:59.000Z

    The overall objective of this project is the engineering development of a reusable calcium-based sorbent for desulfurizing hot coal gas. A two-step pelletization method has been employed to produce relatively strong, ''core-in-shell,'' spherical pellets. Each pellet consists of a highly reactive core surrounded by a strong, inert, porous shell. A suitable core is composed largely of CaO which reacts with H{sub 2}S to form CaS. Pellet cores have been prepared by pelletizing either pulverized limestone or plaster of Paris, and shells have been made of various materials. The most suitable shell material has been formed from a mixture of alumina and limestone particles. The core-in-shell pellets require treatment at high temperature to convert the core material to CaO and to partially sinter the shell material. Pellet cores derived from plaster of Paris have proved superior to those derived from limestone because they react more rapidly with H{sub 2}S and their reactivity does not seem to decline with repeated loading and regeneration. The rate of reaction of H{sub 2}S with CaO derived from either material is directly proportional to H{sub 2}S concentration. The rate of reaction does not appear to be affected significantly by temperature in the range of 1113 K (840 C) to 1193 K (920 C) but decreases markedly at 1233 K (960 C). The rate is not affected by shell thickness within the range tested, which also provides adequate compressive strength.

  15. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  16. Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance

    SciTech Connect (OSTI)

    Andrew Seltzer; Zhen Fan

    2011-03-01T23:59:59.000Z

    A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ÂşF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

  17. Hot gas cleanup test facility for gasification and pressurized combustion project. Quarterly report, October--December 1995

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during this quarter.

  18. Landfill gas cleanup for carbonate fuel cell power generation. Final report

    SciTech Connect (OSTI)

    Steinfield, G.; Sanderson, R.

    1998-02-01T23:59:59.000Z

    Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

  19. A technique to control mercury from flue gas: The Thief Process

    SciTech Connect (OSTI)

    O'Dowd, W.J.; Pennline, H.W.; Freeman, M.C.; Granite, E.J.; Hargis, R.A.; Lacher, C.J.; Karash, A.

    2006-12-01T23:59:59.000Z

    The Thief Process is a mercury removal process that may be applicable to a broad range of pulverized coal-fired combustion systems. This is one of several sorbent injection technologies under development by the U.S. Department of Energy for capturing mercury from coal-fired electric utility boilers. A unique feature of the Thief Process involves the production of a thermally activated sorbent in situ at the power plant. The sorbent is obtained by inserting a lance, or thief, into the combustor, in or near the flame, and extracting a mixture of partially combusted coal and gas. The partially combusted coal or sorbent has adsorptive properties suitable for the removal of vapor-phase mercury at flue gas temperatures that are typical downstream of a power plant preheater. One proposed scenario, similar to activated carbon injection (ACI), involves injecting the extracted sorbent into the downstream ductwork between the air preheater and the particulate collection device of the power plant. Initial laboratory-scale and pilot-scale testing, using an eastern bituminous coal, focused on the concept validation. Subsequent pilot-scale testing, using a Powder River Basin (PRB) coal, focused on the process development and optimization. The results of the experimental studies, as well as an independent experimental assessment, are detailed. In addition, the results of a preliminary economic analysis that documents the costs and the potential economic advantages of the Thief Process for mercury control are discussed.

  20. Flue-gas carbon capture on carbonaceous sorbents: Toward a low-cost multifunctional Carbon Filter for 'Green' energy producers

    SciTech Connect (OSTI)

    Radosz, M.; Hu, X.D.; Krutkramelis, K.; Shen, Y.Q. [University of Wyoming, Laramie, WY (United States)

    2008-05-15T23:59:59.000Z

    A low-pressure Carbon Filter Process (patent pending) is proposed to capture carbon dioxide (CO{sub 2}) from flue gas. This filter is filled with a low-cost carbonaceous sorbent, such as activated carbon or charcoal, which has a high affinity (and, hence, high capacity) to CO{sub 2} but not to nitrogen (N{sub 2}). This, in turn, leads to a high CO{sub 2}/N{sub 2} selectivity, especially at low pressures. The Carbon Filter Process proposed in this work can recover at least 90% of flue-gas CO{sub 2} of 90%+ purity at a fraction of the cost normally associated with the conventional amine absorption process. The Carbon Filter Process requires neither expensive materials nor flue-gas compression or refrigeration, and it is easy to heat integrate with an existing or grassroots power plant without affecting the cost of the produced electricity too much. An abundant supply of low-cost CO{sub 2} from electricity producers is good news for enhanced oil recovery (EOR) and enhanced coal-bed methane recovery (ECBMR) operators, because it will lead to higher oil and gas recovery rates in an environmentally sensitive manner. A CO{sub 2}-rich mixture that contains some nitrogen is much less expensive to separate from flue-gas than pure CO{sub 2}; therefore, mixed CO{sub 2}/N{sub 2}-EOR and CO{sub 2}/N{sub 2}-ECBMR methods are proposed to maximize the overall carbon capture and utilization efficiency.

  1. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  2. [Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion]. Quarterly technical progress report, October 1--December 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, October 1 through December 31, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/pressurized circulating fluidized bed gas source; (2) hot gas cleanup units to mate to all gas streams; (3) combustion gas turbine; (4) fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  3. A kinetic approach to the catalytic oxidation of mercury in flue gas

    SciTech Connect (OSTI)

    Albert A. Presto; Evan J. Granite; Andrew Karash; Richard A. Hargis; William J. O'Dowd; Henry W. Pennline [U.S. Department of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory

    2006-10-15T23:59:59.000Z

    Four mercury oxidation catalysts were tested in a packed bed reactor in the presence of flue gas generated by the NETL 500 lb/h coal combustor. The four catalysts tested were Ir, Ir/HCl, Darco FGD activated carbon, and Thief/HCl. The Thief/HCl and Darco converted the highest percentage of the inlet mercury; however, the high conversion in these experiments was aided by larger catalyst loadings than in the Ir and Ir/HCl experiments. We propose a method for analyzing mercury oxidation catalyst results in a kinetic framework using the bulk reaction rate for oxidized mercury formation normalized by either the catalyst mass or surface area. Results reported for fractional mercury oxidation are strongly influenced by the specific experimental conditions and are therefore difficult to translate from experiment to experiment. The catalyst-normalized results allow for more quantitative analysis of mercury oxidation catalyst data and are the first step in creating a predictive model that will allow for efficient scaling up from laboratory-scale to larger-scale studies. 34 refs., 1 fig., 3 tabs.

  4. Fundamental mechanisms in flue gas conditioning. Quarterly report, January 1992--March 1992

    SciTech Connect (OSTI)

    Snyder, T.R.; Robinson, M.S.; Bush, P.V.

    1992-04-27T23:59:59.000Z

    This project is divided into four tasks. The Management Plan was developed in task 1. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focuses on the characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, is designed to examine the effects of various conditioning agents on fine ash particles to determine the mechanisms by which these agents alter the physical properties of the ash. Tasks 2 and 3 began with an extensive literature search and the assembly of existing theories. This phase of the project is now complete. During the past quarter, initial preparations of laboratory equipment for laboratory testing have been made. A plan for initial laboratory tests has been submitted to the Project Manager for review. Laboratory testing will commence once these laboratory plans have been formally approved. The results of the work performed under task 2 and 3 will be included in a Flue Gas Conditioning Model that will be issued under task 4. The Final Report for the project will also be prepared under task 4.

  5. Investigation of a mercury speciation technique for flue gas desulfurization materials

    SciTech Connect (OSTI)

    Lee, J.Y.; Cho K.; Cheng L.; Keener, T.C.; Jegadeesan G.; Al-Abed, S.R. [University of Cincinnati, Cincinnati, OH (United States). Department of Chemical and Materials Engineering

    2009-08-15T23:59:59.000Z

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method and samples from power plants in Pennsylvania. Potential candidates of pure mercury standards including mercuric chloride, mercurous chloride, mercury oxide, mercury sulfide, and mercuric sulfate were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg{sub 2}Cl{sub 2} and HgCl{sub 2} could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury. 21 refs., 5 figs., 3 tabs.

  6. Evaluation of BOC'S Lotox Process for the Oxidation of Elemental Mercury in Flue Gas from a Coal-Fired Boiler

    SciTech Connect (OSTI)

    Khalid Omar

    2008-04-30T23:59:59.000Z

    Linde's Low Temperature Oxidation (LoTOx{trademark}) process has been demonstrated successfully to remove more than 90% of the NOx emitted from coal-fired boilers. Preliminary findings have shown that the LoTOx{trademark} process can be as effective for mercury emissions control as well. In the LoTOx{trademark} system, ozone is injected into a reaction duct, where NO and NO{sub 2} in the flue gas are selectively oxidized at relatively low temperatures and converted to higher nitrogen oxides, which are highly water soluble. Elemental mercury in the flue gas also reacts with ozone to form oxidized mercury, which unlike elemental mercury is water-soluble. Nitrogen oxides and oxidized mercury in the reaction duct and residual ozone, if any, are effectively removed in a wet scrubber. Thus, LoTOx{trademark} appears to be a viable technology for multi-pollutant emission control. To prove the feasibility of mercury oxidation with ozone in support of marketing LoTOx{trademark} for multi-pollutant emission control, Linde has performed a series of bench-scale tests with simulated flue gas streams. However, in order to enable Linde to evaluate the performance of the process with a flue gas stream that is more representative of a coal-fired boiler; one of Linde's bench-scale LoTOx{trademark} units was installed at WRI's combustion test facility (CTF), where a slipstream of flue gas from the CTF was treated. The degree of mercury and NOx oxidation taking place in the LoTOx{trademark} unit was quantified as a function of ozone injection rates, reactor temperatures, residence time, and ranks of coals. The overall conclusions from these tests are: (1) over 80% reduction in elemental mercury and over 90% reduction of NOx can be achieved with an O{sub 3}/NO{sub X} molar ratio of less than two, (2) in most of the cases, a lower reactor temperature is preferred over a higher temperature due to ozone dissociation, however, the combination of both low residence time and high temperature proved to be effective in the oxidation of both NOx and elemental mercury, and (3) higher residence time, lower temperature, and higher molar ratio of O{sub 3}/NOx contributed to the highest elemental mercury and NOx reductions.

  7. CO{sub 2} Capture Membrane Process for Power Plant Flue Gas

    SciTech Connect (OSTI)

    Lora Toy; Atish Kataria; Raghubir Gupta

    2011-09-30T23:59:59.000Z

    Because the fleet of coal-fired power plants is of such importance to the nationâ??s energy production while also being the single largest emitter of CO{sub 2}, the development of retrofit, post-combustion CO{sub 2} capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO{sub 2} from plant flue gas with 95% captured CO{sub 2} purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO{sub 2}-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft{sup 2}) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO{sub 2}, NOx, etc.). Specific objectives were: ď?· Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO{sub 2} over N{sub 2} and CO{sub 2} permeance greater than 300 gas permeation units (GPU) targeted; ď?· Development of next-generation polycarbonate hollow-fiber membranes and membrane modules with higher CO{sub 2} permeance than current commercial polycarbonate membranes; ď?· Development and fabrication of membrane hollow fibers and modules from candidate polymers; ď?· Development of a CO{sub 2} capture membrane process design and integration strategy suitable for end-of-pipe, retrofit installation; and ď?· Techno-economic evaluation of the "best" integrated CO{sub 2} capture membrane process design package In this report, the results of the project research and development efforts are discussed and include the post-combustion capture properties of the two membrane material platforms and the hollow-fiber membrane modules developed from them and the multi-stage process design and analysis developed for 90% CO{sub 2} capture with 95% captured CO{sub 2} purity.

  8. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    SciTech Connect (OSTI)

    Rue, David

    2013-09-30T23:59:59.000Z

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis found a number of modifications and adjustments that could provide higher efficiency and better use of available work. Conclusions from this analysis will help guide the analyses and CFD modeling in future process development. The MBB technology has the potential to be a disruptive technology that will enable coal combustion power plants to be built and operated in a cost effective way, cleanly with no carbon dioxide emissions. A large amount of work is needed to quantify and confirm the great promise of the MBB technology. A Phase 2 proposal was submitted to DOE and other sponsors to address the most critical MBB process technical gaps. The Phase 2 proposal was not accepted for current DOE support.

  9. CO{sub 2} Capture from Flue Gas Using Solid Molecular Basket Sorbents

    SciTech Connect (OSTI)

    Fillerup, Eric; Zhang, Zhonghua; Peduzzi, Emanuela; Wang, Dongxiang; Guo, Jiahua; Ma, Xiaoliang; Wang, Xiaoxing; Song, Chunshan

    2012-08-31T23:59:59.000Z

    The objective of this project is to develop a new generation of solid, regenerable polymeric molecular basket sorbent (MBS) for more cost-efficient capture and separation of CO{sub 2} from flue gas of coal-fired power plants. The primary goal is to develop a cost-effective MBS sorbent with better thermal stability. To improve the cost-effectiveness of MBS, we have explored commercially available and inexpensive support to replace the more expensive mesoporous molecular sieves like MCM-41 and SBA- 15. In addition, we have developed some advanced sorbent materials with 3D pore structure such as hexagonal mesoporous silica (HMS) to improve the CO{sub 2} working capacity of MBS, which can also reduce the cost for the whole CO{sub 2} capture process. During the project duration, the concern regarding the desorption rate of MBS sorbents has been raised, because lower desorption rate increases the desorption time for complete regeneration of the sorbent which in turn leads to a lower working capacity if the regeneration time is limited. Thus, the improvement in the thermal stability of MBS became a vital task for later part of this project. The improvement in the thermal stability was performed via increasing the polymer density either using higher molecular weight PEI or PEI cross-linking with an organic compound. Moreover, we have used the computational approach to estimate the interaction of CO{sub 2} with different MBSs for the fundamental understanding of CO{sub 2} sorption, which may benefit the development, design and modification of the sorbents and the process.

  10. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Fauth, D.J.; Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01T23:59:59.000Z

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2 concentration resulted in incremental loss in IAS performance and revealed progressive degrees of “staining” upon testing. Adsorption of SO2 by the IAS necessitates upstream removal of SO2 prior to CO2 capture.

  11. Activated carbon cleanup of the acid gas feed to Claus sulfur plants

    SciTech Connect (OSTI)

    Harruff, L.G.; Bushkuhl, S.J. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31T23:59:59.000Z

    This paper presents the details of a recently developed novel process using activated carbon to remove hydrocarbon contaminants from the acid gas feed to Claus sulfur recovery units. Heavy hydrocarbons, particularly benzene, toluene and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This effect is especially evident in split flow Claus plants which bypass some of the acid gas feed stream around the initial combustion step because of a low hydrogen sulfide concentration. This new clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}{sup +} hydrocarbons from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated using low pressure steam. A post regeneration drying step using plant fuel gas also proved beneficial. This technology was extensively pilot tested in Saudi Aramco`s facilities in Saudi Arabia. Full scale commercial units are planned for two plants in the near future with the first coming on-line in 1997. The process described here represents the first application of activated carbon in this service, and a patent has been applied for. The paper will discuss the pilot plant results and the issues involved in scale-up to commercial size.

  12. Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

  13. Desulfurization of fuel gases in fluidized bed gasification and hot fuel gas cleanup systems

    DOE Patents [OSTI]

    Steinberg, M.; Farber, G.; Pruzansky, J.; Yoo, H.J.; McGauley, P.

    1983-08-26T23:59:59.000Z

    A problem with the commercialization of fluidized bed gasification is that vast amounts of spent sorbent are generated if the sorbent is used on a once-through basis, especially if high sulfur coals are burned. The requirements of a sorbent for regenerative service in the FBG process are: (1) it must be capable of reducing the sulfur containing gas concentration of the FBG flue gas to within acceptable environmental standards; (2) it must not lose its reactivity on cyclic sulfidation and regeneration; (3) it must be capable of regeneration with elimination of substantially all of its sulfur content; (4) it must have good attrition resistance; and, (5) its cost must not be prohibitive. It has now been discovered that calcium silicate pellets, e.g., Portland cement type III pellets meet the criteria aforesaid. Calcium silicate removes COS and H/sub 2/S according to the reactions given to produce calcium sulfide silicate. The sulfur containing product can be regenerated using CO/sub 2/ as the regenerant. The sulfur dioxide can be conveniently reduced to sulfur with hydrogen or carbon for market or storage. The basic reactions in the process of this invention are the reactions with calcium silicate given in the patent. A convenient and inexpensive source of calcium silicate is Portland cement. Portland cement is a readily available, widely used construction meterial.

  14. Confined zone dispersion flue gas desulfurization demonstration. Quarterly report No. 8, August 17, 1992--November 16, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-09-27T23:59:59.000Z

    The CZD process involves injecting a finely atomized slurry of reactive lime into the flue gas duct work of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct confined in an envelope of hot gas between the wet zone and the duct walls. The lime slurry reacts with part of the SO{sub 2} in the gas, and the reaction products dry to form solid particles. A solids collector, typically an electrostatic precipitator (ESP) downstream from the point of injection, captures the reaction products along with the fly ash entrained in the flue gas. The goal of this demonstration is to prove the technical and economic feasibility of the CZD technology on a commercial scale. The process is expected to achieve 50% SO{sub 2} removal at lower capital and O&M costs than other systems. To achieve its objectives, the project is divided into the following three phases: Phase 1: Design and Permitting, Phase 2: Construction and Start-up, Phase 3: Operation and Disposition. Phase 1 activities were completed on January 31, 1991. Phase 2 activities were essentially concluded on July 31, 1991, and Phase 3a, Parametric Testing, was initiated on July 1, 1991. This Quarterly Technical Progress Report covers Phase 3b activities from August 17, 1992 through November 16, 1992.

  15. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    SciTech Connect (OSTI)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01T23:59:59.000Z

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  16. OpenEI Community - natural gas+ condensing flue gas heat recovery+ water

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff<div/0 en TheResult

  17. Hot gas cleanup using ceramic cross flow membrane filters. Final report

    SciTech Connect (OSTI)

    Ciliberti, D.F.; Smeltzer, E.E.; Alvin, M.A.; Keairns, D.L.; Bachovchin, D.M.

    1983-12-01T23:59:59.000Z

    The single unresolved technical issue in the commercialization of pressurized fluid-bed combustion (PPBC) for electric power production is the hot gas cleaning problem. In this technology, high-temperature and -pressure (HTHP), dust-laden flue gases from the combustor must be cleaned enough to reduce expansion turbine blade erosion to an economically acceptable level. Additionally, the level of particulate emission must be compatible with the New Source Performance Standards (NSPS) for environmental acceptability. The Department of Energy (DOE) has sponsored a wide range of research and development programs directed at the solution of this problem. These programs were divided into two classifications, one dealing with more advanced concepts where testing was to be done at relatively large scale and a second group of less advanced, novel concepts where the testing was to be carried out at a bench scale. The cross-flow ceramic membrane filter program described in this report is a member of the small-scale, novel concept group.

  18. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  19. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2001-09-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

  20. Selective CO2 Capture from Flue Gas Using Metal-Organic Frameworks?A Fixed Bed Study

    SciTech Connect (OSTI)

    Liu, Jian; Tian, Jian; Thallapally, Praveen K.; McGrail, B. Peter

    2012-05-03T23:59:59.000Z

    It is important to capture carbon dioxide from flue gas which is considered to be the main reason to cause global warming. CO2/N2 separation by novel adsorbents is a promising method to reduce CO2 emission but effect of water and CO2/N2 selectivity is critical to apply the adsorbents into practical applications. A very well known, Metal Organic Framework, NiDOBDC (Ni-MOF-74 or CPO-27-Ni) was synthesized through a solvothermal reaction and the sample (500 to 800 microns) was used in a fixed bed CO2/N2 breakthrough study with and without H2O. The Ni/DOBDC pellet has a high CO2 capacity of 3.74 mol/kg at 0.15 bar and a high CO2/N2 selectivity of 38, which is much higher than those of reported MOFs and zeolites under dry condition. Trace amount of water can impact CO2 adsorption capacity as well as CO2/N2 selectivity for the Ni/DOBDC. However, Ni/DOBDC can retain a significant CO2 capacity and CO2/N2 selectivity at 0.15 bar CO2 with 3% RH water. These results indicate a promising future to use the Ni/DOBDC in CO2 capture from flue gas.

  1. Development of a Calicum-Based Sorbent for Hot Gas Cleanup.

    SciTech Connect (OSTI)

    Wheelock, T.W.; Constant, K.; Doraiswamy, L.K.; Akiti, T.; Zhu, J.; Amanda, A.; Roe, R.

    1997-09-01T23:59:59.000Z

    Further review of the technical literature has provided additional information which will support the development of a superior calcium-based sorbent for hot gas cleanup in IGCC systems. Two general methods of sorbent preparation are being investigated. One method involves impregnating a porous refractory substrate with calcium while another method involves pelletizing lime or other calcium containing materials with a suitable binder. Several potential substrates, which are made of alumina and are commercially available, have been characterized by various methods. The surface area and apparent density of the materials have been measured, and it has been shown that some of the high surface area materials (i.e., 200-400 m{sub 2}/g) undergo a large decrease in surface area when heated to higher temperatures. Some of the lower surface area materials (i.e., 1-30 m{sub 2}/g) have been successfully impregnated with calcium by soaking them in a calcium nitrate solution and then heat treating them to decompose the nitrate. Potentially useful sorbents have also been prepared by pelletizing type I Portland cement and mixtures of cement and lime.

  2. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard

    2003-12-01T23:59:59.000Z

    ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

  3. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    This quarterly technical progress report summarizes work completed during the Sixth Quarter of the First Budget Period, January 1 through March 31, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. The major emphasis during this reporting period was expanding the test facility to address system integration issues of hot particulate removal in advanced power generation systems. The conceptual design of the facility was extended to include additional modules for the expansion of the test facility, which is referred to as the Power Systems Development Facility (PSOF). A letter agreement was negotiated between Southern Company Services (SCS) and Foster Wheeler (FW) for the conceptual design of the Advanced Pressurized Fluid-Bed Combustion (APFBC)/Topping Combustor/Gas Turbine System to be added to the facility. The expanded conceptual design also included modifications to the existing conceptual design for the Hot Gas Cleanup Test Facility (HGCTF), facility layout and balance of plant design for the PSOF. Southern Research Institute (SRI) began investigating the sampling requirements for the expanded facility and assisted SCS in contacting Particulate Control Device (PCD) vendors for additional information. SCS also contacted the Electric Power Research Institute (EPRI) and two molten carbonate fuel cell vendors for input on the fuel cell module for the PSDF.

  4. Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants

    SciTech Connect (OSTI)

    M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

    2003-12-31T23:59:59.000Z

    This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

  5. Fundamental mechanisms in flue-gas conditioning. Topical report No. 1, Literature review and assembly of theories on the interactions of ash and FGD sorbents

    SciTech Connect (OSTI)

    Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.

    1992-01-09T23:59:59.000Z

    The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

  6. Efficient capture of CO{sub 2} from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates

    SciTech Connect (OSTI)

    Shuanshi Fan; Shifeng Li; Jingqu Wang; Xuemei Lang; Yanhong Wang [South China University of Technology, Guangzhou (China). Key Laboratory of Enhanced Heat Transfer and Energy Conversation

    2009-08-15T23:59:59.000Z

    Capturing CO{sub 2} by forming hydrate is an attractive technology for reducing the greenhouse effect. The most primary challenges are high energy consumption, low hydrate formation rate, and separation efficiency. This work presents efficient capture of CO{sub 2} from simulated flue gas (CO{sub 2} (16.60 mol %)/N{sub 2} binary mixtures) by formation of semiclathrate hydrates at 4.5 and 7.1{sup o}C and feed pressures ranging from 2.19 to 7.31 MPa. The effect of 0.293 mol % tetra-n-butyl ammonium bromide (TBAB) and tetra-n-butyl ammonium fluoride (TBAF) on the hydrate formation rate, reactor space velocity, and CO{sub 2} separation efficiency was studied in a 1 L stirred reactor. The results showed the hydrate formation rate constant increased with increasing feed pressure and reached the maximum at 2.82 x 10{sup -7} mol{sup 2}/(s.J) with TBAB and 8.26 x 10{sup -7} mol{sup 2}/(s.J) with TBAF. The space velocity of the hydrate reactor increased with increasing feed pressure and reached a maximum of 13.46 h{sup -1} with TBAB and 25.96 h{sup -1} with TBAF. CO{sub 2} recovery was about 50%, and the optimum CO{sub 2} separation factor with TBAF was 36.98, which was about 4 times higher than that with TBAB in the range of feed pressure. CO{sub 2} could be enriched to 90.40 mol % from simulated flue gas under low feed pressure by two stages of hydrate separation with TBAF. The results demonstrated that TBAB, especially TBAF, could accelerate hydrate formation. The space velocity of the hydrate reactor with TBAB or TBAF was higher than that with THF. CO{sub 2} could be easily enriched in the hydrate phase by two stages of hydrate separation under gentle conditions. 27 refs., 8 figs., 5 tabs.

  7. Simultaneous SO{sub 2}/NO separation from flue gas using HFCLM. Final report

    SciTech Connect (OSTI)

    Schimmel, K.

    1995-02-01T23:59:59.000Z

    Abatement technologies for oxides of sulfur and nitrogen present in flue and stack gases from coal fired boilers are becoming increasingly important. Scrubbing the gases with an aqueous limestone slurry to remove SO{sub 2} is a widely used treatment process. These scrubbing solutions are, however, not very effective in removing NO. In addition, the process is expensive and produces large volumes of sludge. The liquid membrane from a 0.01 M aqueous solution of Fe{sup 2+}EDTA has been found to have a very high selectivity for NO over N{sub 2}. Thus, SO{sub 2}/NO{sub x} can be removed simultaneously using an aqueous Fe 3{sup 3+}EDTA solution in a hollow fiber contained liquid membrane (HFCLM) permeator with hydrophobic fibers. The HFCLM configuration has addressed previous concerns about liquid membrane stability for an application such as this. In this project, a flow apparatus was constructed that will allow simultaneous SO{sub 2}/NO removal and recovery using two hollow fiber modules in series. Flowing the liquid membrane on the shell-side of the modules it is hypothesized will enhance the performance over that of HFCLMs without loss of stability. From the work completed in this exploratory project, it was concluded that to move the current state-of-the-art for this promising technology toward commercialization will require progress in the following areas: (1) sensitivity of the performance of the system to temperature changes, (2) validation of a mass transfer model to be used in scale-up calculations, (3) data on alternative flow schemes, and (4) overall process economics calculations.

  8. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator

    SciTech Connect (OSTI)

    Zhong Zhaoping [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China)]. E-mail: zzhong@seu.edu.cn; Jin Baosheng [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Huang Yaji [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Zhou Hongcang [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Lan Jixiang [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China)

    2006-07-01T23:59:59.000Z

    This paper describes the experimental study of dioxins removal from flue gas from a co-combustion municipal solid waste and coal incinerator by means of a fluidized absorption tower and a fabric filter. A test rig has been set up. The flow rate of flue gas of the test rig is 150-2000 m{sup 3}/h. The system was composed of a humidification and cooling system, an absorption tower, a demister, a slurry make-up tank, a desilter, a fabric filter and a measurement system. The total height of the absorption tower was 6.5 m, and the diameter of the reactor pool was 1.2 m. When the absorbent was 1% limestone slurry, the recirculation ratio was 3, the jet rate was 5-15 m/s and the submerged depth of the bubbling pipe under the slurry was 0.14 m, the removal efficiency for dioxins was 99.35%. The concentration of dioxins in the treated flue gas was 0.1573 x 10{sup -13} kg/Nm{sup 3} and the concentration of oxygen was 11%. This concentration is comparable to the emission standards of other developed countries.

  9. Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.; Brackebusch, F.; Carpenter, J. [and others

    1998-12-31T23:59:59.000Z

    This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

  10. Flue Gas Perification Utilizing SOx/NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion

    SciTech Connect (OSTI)

    Kevin Fogash

    2010-09-30T23:59:59.000Z

    The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO2 stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO2 derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

  11. Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO{sub 2} Derived from Oxyfuel Combustion

    SciTech Connect (OSTI)

    Fogash, Kevin

    2010-09-30T23:59:59.000Z

    The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO{sub 2} stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO{sub 2} derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

  12. Economic assessment of advanced flue gas desulfurization processes. Final report. Volume 2. Appendices G, H, and I

    SciTech Connect (OSTI)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01T23:59:59.000Z

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final report, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluation, was completed in October 1980. A slightly modified and condensed version of that report appears as Appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  13. DEVELOPMENT OF SUPERIOR SORBENTS FOR SEPARATION OF CO2 FROM FLUE GAS AT A WIDE TEMPERATURE RANGE DURING COAL COMBUSTION

    SciTech Connect (OSTI)

    Panagiotis G. Smirniotis

    2005-01-30T23:59:59.000Z

    For this part of the project the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed.

  14. The use of wet limestone systems for combined removal of SO sub 2 and NO sub x from flue gas

    SciTech Connect (OSTI)

    Lee, G.C. (Bechtel Corp., San Francisco, CA (USA)); Shen, D.X.; Littlejohn, D.; Chang, S.G. (Lawrence Berkeley Lab., CA (USA))

    1990-03-01T23:59:59.000Z

    A new approach by utilizing yellow phosphorus in conventional wet limestone systems for high efficiency control of SO{sub 2} and NO{sub x} emissions from power plants has been developed. The addition of yellow phosphorus in the system induces the production of O{sub 3} which subsequently oxidizes NO to NO{sub 2}. The resulting NO{sub 2} dissolves readily and can be reduced to form ammonium ions by dissolved SO{sub 2} under appropriate conditions. Yellow phosphorus is oxidized to yield P{sub 2}O{sub 5} which picks up water to form H{sub 3}PO{sub 4} mists and can be collected as a valuable product. Proof of concept experiments have been performed using a 20 acfm bench-scale system. The results show that better than 90% of SO{sub 2} and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained. This ratio depends on operating conditions as well as the process configuration. A conceptual process flow diagram has been proposed. A preliminary cost evaluation of this approach appears to indicate great economic potential. 22 refs., 8 figs., 1 tab.

  15. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    DOE Patents [OSTI]

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2014-10-07T23:59:59.000Z

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  16. Inorganic hazardous air pollutants before and after a limestone flue gas desulfurization system as a function of <10 micrometer particle sizes and unit load

    SciTech Connect (OSTI)

    Maxwell, D.P.; Williams, W.A.; Flora, H.B. II [Radian Corp., Austin, TX (United States)

    1995-12-31T23:59:59.000Z

    Radian Corporation collected size-fractionated particulate samples from stack gas at a unit burning high sulfur coal with a venturi scrubber FGD system. Independent sample fractions were collected under high-load and low-load operating conditions and subjected to various techniques designed to measure the total composition and surface-extractable concentrations of selected trace elements. The relationships between unit load, particle-size distribution, total composition, and surface-extractable inorganic species are reported and compared to show the availability of trace elements relevant to potential health risks from flue gas particulate emissions.

  17. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOE Patents [OSTI]

    Yang, Wen-Ching (Murrysville, PA); Newby, Richard A. (Pittsburgh, PA); Lippert, Thomas E. (Murrysville, PA)

    1997-01-01T23:59:59.000Z

    The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

  18. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOE Patents [OSTI]

    Yang, W.C.; Newby, R.A.; Lippert, T.E.

    1997-08-05T23:59:59.000Z

    The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

  19. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, March 11, 1993--June 11, 1993

    SciTech Connect (OSTI)

    Sublette, K.L.

    1993-11-01T23:59:59.000Z

    There are two basic approaches to addressing the problem of SO{sub 2} and NO{sub x} emissions: (1) desulfurize (and denitrogenate) the feedstock prior to or during combustion; or (2) scrub the resultant SO{sub 2} and oxides of nitrogen from the boiler flue gases. The flue gas processing alternative has been addressed in this project via microbial reduction of SO{sub 2} and NO{sub x} by sulfate-reducing bacteria

  20. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, January--March 1995

    SciTech Connect (OSTI)

    Chugh, Y.; Dutta, D.; Esling, S. [and others

    1995-04-01T23:59:59.000Z

    On September 30, 1993, the U.S. Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC 30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, as well as the management plan and the test plan for the overall program, and a discussion of these will not be repeated here. Rather, this report, will set forth the technical progress made during the period January 1 through March 31, 1995. The demonstration of the SEEC, Inc. technology for the transporting of coal combustion residues was completed with the unloading and final disposition of the three Collapsible Intermodal Containers (CIC). The loading and transport by rail of the three CIC`s was quire successful; however some difficulties were encountered in the unloading of the containers. A full topical report on the entire SEEC demonstration is being prepared. As a result of the demonstration some modifications of the SEEC concept may be undertaken. Also during the quarter the location of the injection wells at the Peabody No. 10 mine demonstration site were selected. Peabody Coal Company has developed the specifications for the wells and sought bids for the actual drilling. It is expected that the wells will be drilled early in May.

  1. Scrubber strategy: the how and why of flue gas desulfurization. [Analysis of 20 US scrubbing systems in 1980

    SciTech Connect (OSTI)

    Baviello, M.A.

    1982-01-01T23:59:59.000Z

    In this report, INFORM provides facts that will help the non-technical decisionmakers in the US understand a technology that can significantly reduce the polluting effects of burning coal. Those decisionmakers include legislators, regulators and utility executives, public interest groups, concerned community organizations and environmentalists who have been involved in the debate over the broader use of our most abundant fossil fuel - coal. The use of this resource, especially in large industrial and utility plants, has created widespread and intense public controversy. For the past four years INFORM has turned its research capabilities to defining cleaner and more economical ways of using US coal supplies. We have focused on finding out what cleaning coal and using flue gas desulfurization systems (called scrubbers) can contribute to reducing the polluting effects of burning coal in utility plants. All in all, both scrubbers and coal cleaning offer exciting and important possibilities for putting more coal to work in generating power in this country more economically and still meeting critical air quality standards that have been set to protect public health. The need for accurate and clear information concerning these technologies is evident: 80% of the sulfur dioxide emissions in the US now come from utility power plant operations, and over 140 existing oil-fired power plants are candidates for conversion to coal use. We hope that this documentation of the technologies of scrubber systems along with INFORM's companion study of coal cleaning, may help government and business planners and concerned citizens chart intelligent future courses and set realistic goals for meeting our energy needs in an environmentally sound manner.

  2. Metal-Organic Frameworks Capture CO2 From Coal Gasification Flue Gas |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC)MaRIETechnologiesMesdiCenter for Gas

  3. Experimental investigation of a molecular gate membrane for separation of carbon dioxide from flue gas

    SciTech Connect (OSTI)

    Kazama, S. (RITE, Kyoto, Japan); Kai, T. (RITE, Kyoto, Japan); Kouketsu, T. (RITE, Kyoto, Japan); Matsui, S. (RITE, Kyoto, Japan); Yamada, K. (RITE, Kyoto, Japan); Hoffman, J.S.; Pennline, H.W.

    2006-09-01T23:59:59.000Z

    Commercial-sized modules of the PAMAM dendrimer composite membrane with high CO2/N2 selectivity and CO2 permeance were developed according to the In-situ Modification (IM) method. This method utilizes the interfacial precipitation of membrane materials on the surface of porous, commercially available polysulfone (PSF) ultrafiltration hollow fiber membrane substrates. A thin layer of amphiphilic chitosan, which has a potential affinity for both hydrophobic PSF substrates and hydrophilic PAMAM dendrimers, was employed as a gutter layer directly beneath the inner surface of the substrate by the IM method. PAMAM dendrimers were then impregnated into the chitosan gutter layer to form a hybrid active layer for CO2 separation. Permeation experiments of the PAMAM dendrimer composite membrane were carried out using a humidified mixed CO2 / N2 feed gas at a pressure difference up to 97 kPa at ambient temperature. When conducted with CO2 (5%) / N2 (95%) feed gas at a pressure difference of 97 kPa, the PAMAM composite membrane exhibited an excellent CO2/N2 selectivity of 150 and a CO2 permeance of 1.7×10-7 m3(STP) m-2 s-1 kPa-1. The impact of various process parameters on the permeability and selectivity was also examined.

  4. Field testing of a probe to measure fouling in an industrial flue gas stream

    SciTech Connect (OSTI)

    Sohal, M.S.

    1990-11-01T23:59:59.000Z

    The US Department of Energy, Office of Industrial Technology sponsors work in the area of measuring and mitigating fouling in heat exchangers. This report describes the design and fabrication of a gas-side fouling measuring device, and its testing in an industrial environment. The report gives details of the probe fabrication, material used, controllers, other instrumentation required for various measurements, and computer system needed for recording the data. The calibration constants for measuring the heat flux with the heat fluxmeter were determined. The report also describes the field test location, the tests performed, the data collected, and the data analysis. The conclusions of the tests performed were summarized. Although fouling deposits on the probe were minimal, the tests proved that the probe is capable of measuring the fouling in a harsh industrial environment. 17 refs., 19 figs., 5 tabs.

  5. Preliminary evaluation of a concept using microwave energy to improve an adsorption-based, natural gas clean-up process

    SciTech Connect (OSTI)

    Grimes, R.W.

    1992-12-01T23:59:59.000Z

    This report describes the results of a preliminary evaluation performed to: (1) determine if microwave energy could be used to regenerate a zeolite adsorbent and (2) to evaluate the feasibility of using microwave energy to improve the desorption phase of a pressure swing adsorption process applied to upgrading natural gas (methane) contaminated with nitrogen. Microwave regeneration was evaluated by comparing the adsorption characteristics of a zeolite preconditioned by heating under vacuum to the characteristics of the same zeolite after various lengths of exposure to microwave energy. The applicability of microwave regeneration to natural gas cleanup was evaluated by measuring the rise in adsorbent temperature resulting from the microwave exposure. Microwave energy consumed by heating the adsorbent is not productive and must therefore be minimal for a process to be economically viable. Exposure of the methane-saturated chabazite for 2 minutes to microwave energy effectively regenerated the adsorbent, but resulted in a 75{degrees}F (42{degrees}C) rise in adsorbent temperature. This temperature rise indicates that the concept is unacceptable for natural gas processing due to excessive energy consumption.

  6. Global evaluation of mass transfer effects: In-duct injection flue gas desulfurization

    SciTech Connect (OSTI)

    Cole, J.A.; Newton, G.H.; Kramlich, J.C.; Payne, R.

    1990-09-30T23:59:59.000Z

    Sorbent injection is a low capital cost, low operating cost approach to SO{sub 2} control targeted primarily at older boilers for which conventional fuel gas desulfurization is not economically viable. Duct injection is one variation of this concept in which the sorbent, either a dry powder or a slurry, is injected into the cooler regions of the boiler, generally downstream of the air heaters. The attractiveness of duct injection is tied to the fact that it avoids much of the boiler heat transfer equipment and thus has minimal impact of boiler performance. Both capital and operating cost are low. This program has as its objectives three performance related issues to address: (1) experimentally identify limits on sorbent performance. (2) identify and test sorbent performance enhancement strategies. (3) develop a compute model of the duct injection process. Two major tasks are described: a laboratory-scale global experiment and development of process model. Both are aimed at understanding and quantifying the rate-limiting processes which control SO{sub 2} capture by lime slurry during boiler duct injection. 29 refs., 35 figs., 4 tabs.

  7. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    SciTech Connect (OSTI)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01T23:59:59.000Z

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  8. Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup 

    E-Print Network [OSTI]

    Ming, Pingjia

    2014-06-05T23:59:59.000Z

    , but cannot be used in sensitive energy conversion systems, like solid oxide fuel cell (SOFC). Utilizing small amount of energy to clean up and reform heavier hydrocarbon into synthesis gas is necessary when using hydrocarbon sources which contain heavier...

  9. Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report

    SciTech Connect (OSTI)

    Steinfeld, G.; Sanderson, R.

    1998-02-01T23:59:59.000Z

    The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

  10. Gas stream clean-up filter and method for forming same

    DOE Patents [OSTI]

    Mei, Joseph S. (Morgantown, WV); DeVault, James (Fairmont, WV); Halow, John S. (Waynesburg, PA)

    1993-01-01T23:59:59.000Z

    A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

  11. Initial test results from the Department of Energy`s pressurized fluidized bed combustion Hot Gas Cleanup Program

    SciTech Connect (OSTI)

    Dennis, R.A. [USDOE Morgantown Energy Technology Center, WV (United States); Lippert, T.E.; Bruck, G.J.; Alvin, M.A. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; Mudd, M.J. [Ohio Power Co., Columbus, OH (United States)]|[American Electric Power Service Corp., Columbus, OH (United States)

    1993-06-01T23:59:59.000Z

    In August 1989 a cooperative agreement was signed between Ohio Power Company, through its agent the American Electric Power Service Corporation, and the United States Department of Energy to assess the readiness and economic viability of high-temperature and high-pressure (HTHP) particulate filter systems for pressurized fluidized bed combustion (PFBC) applications. In this agreement, known as the PFBC Hot Gas Cleanup (HGCU) Program, two HTHP particulate filtration systems are to be tested with one seventh of the flow from the Tidd 70-MWe PFBC Clean Coal Demonstration Plant. This paper describes the initial results from the first PFBC HGCU test and an additional proof-of-concept, pilot-scale test used to validate a ceramic candle filter element, which may be used in the second test of the PFBC HGCU Program. The first test consisted of a three-cluster filter system, incorporating 384, 1.5-meter long silicon carbide candle filters. This system utilized a one-seventh flow slipstream, approximately 7360 actual cubic feet per minute, from the Tidd 70-MWe PFBC. The proof-of-concept test is being used to qualify mullite candle filters as a potential candidate for the second test at the Tidd 70-MWe PFBC. Both filter systems were designed and fabricated by the Westinghouse Science and Technology Center.

  12. Development of novel copper-based sorbents for hot-gas cleanup. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Bo, L.; Patel, C. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-10-01T23:59:59.000Z

    The objective of this investigation is to evaluate several novel copper-based binary oxides for their suitability as regenerable sorbents for hot gas cleanup application in the temperature range of 650{degrees} to 850{degrees}C. During this quarter cyclic sulfidation/regeneration tests of the sorbents Cu{sub 2}Cr-O and Cu-Ce-0 were conducted using different compositions of the feed gases to investigate the effects of H{sub 2}0, H{sub 2} and CO. These tests were conducted in a packed-bed microreactor at 850{degrees}C. The results of these tests showed that H{sub 2} and CO (along with C02) had a significant effect on the H{sub 2}S pre-breakthrough levels, whereas H{sub 2}0 did not have an effect. The physical properties of the fresh and reacted samples of the Cu-2Cr-O and Cu-Ce-0 sorbents prepared in this program and used in the cyclic sulfidation/regeneration tests were also measured. In addition, sulfidation/regeneration tests were conducted using two commercial copper chromite sorbents (G-13 and G-89, United Catalyst, Inc.) and a zinc titanate sorbent (L-3014) in a one-inch fluidized-bed reactor at 650{degrees}C. The G-13 sorbent appears to have a much higher sulfur capacity than the G-89 sorbent.

  13. Rapid pressure swing absorption cleanup of post-shift reactor synthesis gas

    SciTech Connect (OSTI)

    Sirkar, K.K.; Majumdar, S.; Bhaumik, S.

    1992-09-24T23:59:59.000Z

    This investigation is concerned with the separation of gas mixtures using a novel concept of rapid pressure swing absorption (RAPSAB) of gas in a stationary absorbent liquid through gas-liquid interfaces immobilized in the pore mouths of hydrophobic microporous membranes. The process is implemented in a module well-packed with hydrophobic microporous hollow fiber membranes. Before we proceed to RAPSAB studies with reactive absorbents, it is necessary to make an effort to compare experimental results with those predicted by the models. The only model developed so far involved a type of RAPSAB cycle (Mode 3) for which limited data were acquired earlier. A number of experiments have, therefore, been conducted in this mode to characterize the absorption part of the cycle. A new and more compact module (Module No. 5) was made using 840 fibers and a teflon casing inside the stainless steel shell to exactly define the fiber packing density. This allows an exact calculation of Happel's free surface radius. Experiments were carried out using a CO[sub 2]-N[sub 2] mixture of around 10% CO[sub 2] and balanced N[sub 2] using both modules 4 and 5 over a wide range of absorption times.

  14. Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +

    E-Print Network [OSTI]

    Zevenhoven, Ron

    pulverised coal combustion and gas clean-up system: dry scrubber + baghouse filter for SO2 and particulate For a conventional pulverised coal-fired power plant a set-up is shown in Figure 10.1, with a gas clean-up system scrubber (pH ~ 6) 60 - 70 7 Re-heater 350 - 400 8 SCR DeNOx 300 - 400 9 Active coke bed 100 - 150 Figure 10

  15. Simulation of fracture fluid cleanup and its effect on long-term recovery in tight gas reservoirs

    E-Print Network [OSTI]

    Wang, Yilin

    2009-05-15T23:59:59.000Z

    fluid cleanup is a complex problem, that can be influenced by many parameters such as the fluid system used, treatment design, flowback procedures, production strategy, and reservoir conditions. Residual polymer in the fracture can reduce the effective...

  16. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01T23:59:59.000Z

    for biomas-derived syngas. National Renewable EnergyM. Lesemann. RTI/Eastman warm syngas clean-up technology:v the composition of syngas from steam hydrogasification

  17. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    SciTech Connect (OSTI)

    Monica Zanfir; Rahul Solunke; Minish Shah

    2012-06-01T23:59:59.000Z

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbonâ??s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

  18. Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas

    SciTech Connect (OSTI)

    Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

    2010-09-30T23:59:59.000Z

    One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this report describes the development efforts which expand this sorbent development effort to include Se, Cd, and P as well as Hg and As. Additional research has focused on improving removal performance with the goal of achieving effluent concentrations that are suitable for chemical production applications. By contrast, sorbent development for CO{sub 2} capture has focused on regenerable sorbents that capture the CO{sub 2} byproduct at higher CO{sub 2} pressures. Previous research on CO{sub 2} sorbents has demonstrated that the most challenging aspect of developing CO{sub 2} sorbents is regeneration. The research documented in this report investigates options to improve regeneration of the CO{sub 2} capture sorbents. This research includes effort on addressing existing regeneration limitations for sorbents previously developed and new approaches that focus initially on the regeneration performance of the sorbent.

  19. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature Range During Coal Combustion

    SciTech Connect (OSTI)

    Panagiotis G. Smirniotis

    2007-06-30T23:59:59.000Z

    In chapter 1, the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed. In chapter 2, Ca(NO{sub 3}){sub 2} {center_dot} 4H{sub 2}O, CaO, Ca(OH){sub 2}, CaCO{sub 3}, and Ca(CH{sub 3}COO){sub 2} {center_dot} H{sub 2}O were used as precursors for synthesis of CaO sorbents on this work. The sorbents prepared from calcium acetate (CaAc{sub 2}-CaO) resulted in the best uptake characteristics for CO{sub 2}. It possessed higher BET surface area and higher pore volume than the other sorbents. According to SEM images, this sorbent shows 'fluffy' structure, which probably contributes to its high surface area and pore volume. When temperatures were between 550 and 800 C, this sorbent could be carbonated almost completely. Moreover, the carbonation progressed dominantly at the initial short period. Under numerous adsorption-desorption cycles, the CaAc{sub 2}-CaO demonstrated the best reversibility, even under the existence of 10 vol % water vapor. In a 27 cyclic running, the sorbent sustained fairly high carbonation conversion of 62%. Pore size distributions indicate that their pore volume decreased when experimental cycles went on. Silica was doped on the CaAc{sub 2}-CaO in various weight percentages, but the resultant sorbent did not exhibit better performance under cyclic operation than those without dopant. In chapter 3, the Calcium-based carbon dioxide sorbents were made in the gas phase by flame spray pyrolysis (FSP) and compared to the ones made by standard high temperature calcination (HTC) of selected calcium precursors. The FSP-made sorbents were solid nanostructured particles having twice as large specific surface area (40-60 m{sup 2}/g) as the HTC-made sorbents (i.e. from calcium acetate monohydrate). All FSP-made sorbents showed high capacity for CO{sub 2} uptake at high temperatures (773-1073 K) while the HTC-made ones from calcium acetate monohydrate (CaAc{sub 2} {center_dot} H{sub 2}O) demonstrated the best performance for CO{sub 2} uptake among all HTC-made sorbents. At carbonation temperatures less than 773 K, FSP-made sorbents demonstrated better performance for CO{sub 2} uptake than all HTC-made sorbents. Above that, both FSP-made, and HTC-made sorbents from CaAc{sub 2} {center_dot} H{sub 2}O exhibited comparable carbonation rates and maximum conversion. In multiple carbonation/decarbonation cycles, FSP-made sorbents demonstrated stable, reversible and high CO{sub 2} uptake capacity sustaining maximum molar conversion at about 50% even after 60 such cycles indicating their potential for CO{sub 2} uptake. In chapter 4 we investigated the performance of CaO sorbents with dopant by flame spray pyrolysis at higher temperature. The results show that the sorbent with zirconia gave best performance among sorbents having different dopants. The one having Zr to Ca of 3:10 by molar gave stable performance. The calcium conversion around 64% conversion during 102-cycle operations at 973 K. When carbonation was performance at 823 K, the Zr/Ca sorbent (3:10) exhibited stable performance of 56% by calcium molar conversion, or 27% by sorbent weight, both of which are less than those at 973 K as expected. In chapter 5 we investigated the perfor

  20. Packed-Bed Reactor Study of NETL Sample 196c for the Removal of Carbon Dioxide from Simulated Flue Gas Mixture

    SciTech Connect (OSTI)

    Hoffman, James S.; Hammache, Sonia; Gray, McMahan L.; Fauth Daniel J.; Pennline, Henry W.

    2012-04-24T23:59:59.000Z

    An amine-based solid sorbent process to remove CO2 from flue gas has been investigated. The sorbent consists of polyethylenimine (PEI) immobilized onto silica (SiO2) support. Experiments were conducted in a packed-bed reactor and exit gas composition was monitored using mass spectrometry. The effects of feed gas composition (CO2 and H2O), temperature, and simulated steam regeneration were examined for both the silica support as well as the PEI-based sorbent. The artifact of the empty reactor was also quantified. Sorbent CO2 capacity loading was compared to thermogravimetric (TGA) results to further characterize adsorption isotherms and better define CO2 working capacity. Sorbent stability was monitored by periodically repeating baseline conditions throughout the parametric testing and replacing with fresh sorbent as needed. The concept of the Basic Immobilized Amine Sorbent (BIAS) Process using this sorbent within a system where sorbent continuously flows between the absorber and regenerator was introduced. The basic tenet is to manipulate or control the level of moisture on the sorbent as it travels around the sorbent circulation path between absorption and regeneration stages to minimize its effect on regeneration heat duty.

  1. FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS

    SciTech Connect (OSTI)

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2004-01-29T23:59:59.000Z

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  2. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, December 11, 1992--March 11, 1993

    SciTech Connect (OSTI)

    Sublette, K.L.

    1993-12-31T23:59:59.000Z

    This report describes the potential of sulfate reducing bacteria to fix sulfur derived from flue gas desulfurization. The first section reviews the problem, the second section reviews progress of this study to use desulfovibrio desulfuricans for this purpose. The final section related progress during the current reporting period. This latter section describes studies to immobilize the bacteria in co-culture with floc-forming anaerobes, use of sewage sludges in the culture media, and sulfate production from sulfur dioxide.

  3. High-volume, high-value usage of flue gas desulfurization (FGD) by-products in underground mines - Phase I: Laboratory investigations. Quarterly report, October 1993--December 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This project proposes to use pneumatically or hydraulically emplaced dry-flue gas desulfurization (FGD) by-products to backfill the adits left by highwall mining. Backfilling highwall mine adits with dry-FGD materials is technically attractive. The use of an active highwall mine would allow the dry-FGD material to be brought in using the same transportation network used to move the coal out, eliminating the need to recreated the transportation infrastructure, thereby saving costs. Activities during the period included the negotiations leading to the final cooperative agreement for the project and the implementation of the necessary instruments at the University of Kentucky to administer the project. Early in the negotiations, a final agreement on a task structure was reached and a milestone plan was filed. A review was initiated of the original laboratory plan as presented in the proposal, and tentative modifications were developed. Selection of a mine site was made early; the Pleasant Valley mine in Greenup County was chosen. Several visits were made to the mine site to begin work on the hydrologic monitoring plan. The investigation of the types of permits needed to conduct the project was initiated. Considerations concerning the acceptance and implementation of technologies led to the choice of circulating fluidized bed ash as the primary material for the study. Finally, the membership of a Technical Advisory Committee for the study was assembled.

  4. Catalytic hydrolysis of urea with fly ash for generation of ammonia in a batch reactor for flue gas conditioning and NOx reduction

    SciTech Connect (OSTI)

    Sahu, J.N.; Gangadharan, P.; Patwardhan, A.V.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

    2009-01-15T23:59:59.000Z

    Ammonia is a highly volatile noxious material with adverse physiological effects, which become intolerable even at very low concentrations and present substantial environmental and operating hazards and risk. Yet ammonia has long been known to be used for feedstock of flue gas conditioning and NOx reduction. Urea as the source of ammonia for the production of ammonia has the obvious advantages that no ammonia shipping, handling, and storage is required. The process of this invention minimizes the risks and hazards associated with the transport, storage, and use of anhydrous and aqueous ammonia. Yet no such rapid urea conversion process is available as per requirement of high conversion in shorter time, so here we study the catalytic hydrolysis of urea for fast conversion in a batch reactor. The catalyst used in this study is fly ash, a waste material originating in great amounts in combustion processes. A number of experiments were carried out in a batch reactor at different catalytic doses, temperatures, times, and at a constant concentration of urea solution 10% by weight, and equilibrium and kinetic studies have been made.

  5. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  6. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect (OSTI)

    C. Jean Bustard; Charles Lindsey; Paul Brignac

    2006-05-01T23:59:59.000Z

    This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and increase carbon injection when inlet loading and mercury removal were low. The resulting mercury removal varied between 50 and 98%, with an overall average of 85.6%, showing that the process was successful at removing high percentages of vapor-phase mercury even with a widely varying mass loading. In an effort to improve baghouse performance, high-permeability bags were tested. The new bags made a significant difference in the cleaning frequency of the baghouse. Before changing the bags, the baghouse was often in a continuous clean of 4.4 p/b/h, but with the new bags the cleaning frequency was very low, at less than 1 p/b/h. Alternative sorbent tests were also performed using these high-permeability bags. The results of these tests showed that most standard, high-quality activated carbon performed similarly at this site; low-cost sorbent and ash-based sorbents were not very effective at removing mercury; and chemically enhanced sorbents did not appear to offer any benefits over standard activated carbons at this site.

  7. FlueGen Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro IncEnergy InformationFlue GasFlueGen Inc

  8. Environmental Cleanup Stories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories community-environmentassetsimagesicon-environment.jpg Environmental Cleanup Stories Our environmental stewardship commitment: clean up the past, minimize environmental...

  9. Process for the combined removal of SO.sub.2 and NO.sub.x from flue gas

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA); Liu, David K. (Oakland, CA); Griffiths, Elizabeth A. (Neston, GB2); Littlejohn, David (Oakland, CA)

    1988-01-01T23:59:59.000Z

    The present invention in one aspect relates to a process for the simultaneous removal of NO.sub.x and SO.sub.2 from a fluid stream comprising mixtures thereof and in another aspect relates to the separation, use and/or regeneration of various chemicals contaminated or spent in the process and which includes the steps of: (A) contacting the fluid stream at a temperature of between about 105.degree. and 180.degree. C. with a liquid aqueous slurry or solution comprising an effective amount of an iron chelate of an amino acid moiety having at least one --SH group; (B) separating the fluid stream from the particulates formed in step (A) comprising the chelate of the amino acid moiety and fly ash; (C) washing and separating the particulates of step (B) with an aqueous solution having a pH value of between about 5 to 8; (D) subsequently washing and separating the particulates of step (C) with a strongly acidic aqueous solution having a pH value of between about 1 to 3; (E) washing and separating the particulates of step (D) with an basic aqueous solution having a pH value of between about 9 to 12; (F) optionally adding additional amino acid moiety, iron (II) and alkali to the aqueous liquid from step (D) to produce an aqueous solution or slurry similar to that in step (A) having a pH value of between about 4 to 12; and (G) recycling the aqueous slurry of step (F) to the contacting zone of step (A). Steps (D) and (E) can be carried out in the reverse sequence, however the preferred order is (D) and then (E). In another preferred embodiment the present invention provides a process for the removal of NO.sub.x, SO.sub.2 and particulates from a fluid stream which includes the steps of (A) injecting into a reaction zone an aqueous solution itself comprising (i) an amino acid moiety selected from those described above; (ii) iron (II) ion; and (iii) an alkali, wherein the aqueous solution has a pH of between about 4 and 11; followed by solids separation and washing as is described in steps (B), (C), (D) and (E) above. The overall process is useful to reduce acid rain components from combustion gas sources.

  10. Recovery Act: Innovative CO2 Sequestration from Flue Gas Using Industrial Sources and Innovative Concept for Beneficial CO2 Use

    SciTech Connect (OSTI)

    Dando, Neal; Gershenzon, Mike; Ghosh, Rajat

    2012-07-31T23:59:59.000Z

    field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stability in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture. Incorporation of the laboratory results showed that for the application at the aluminum smelter, the in-duct scrubber system is more economical than traditional methods. However, the reverse is true for the refinery case, where the bauxite residue is not effective enough as a sequestrant, combined with challenges related to contaminants in the bauxite residue accumulating in and fouling the scrubber absorbent. Sensitivity analyses showed that the critical variables by which process economics could be improved are enzyme concentration, efficiency, and half-life. At the end of the first part of the Phase 2 project, a gate review (DOE Decision Zero Gate Point) was conducted to decide on the next stages of the project. The original plan was to follow the pre-testing phase with a detailed design for the field testing. Unfavorable process economics, however, resulted in a decision to conclude the project before moving to field testing. It is noted that CO2 Solutions proposed an initial solution to reduce process costs through more advanced enzyme management, however, DOE program requirements restricting any technology development extending beyond 2014 as commercial deployment timeline did not allow this solution to be undertaken.

  11. Separation of flue-gas scrubber sludge into marketable products. Second quarterly technical progress report, December 1, 1993--February 28, 1994 (Quarter No. 2)

    SciTech Connect (OSTI)

    Kawatra, S.K.; Eisele, T.C.

    1994-03-01T23:59:59.000Z

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{lg_bullet}0.5H{sub 2}0), gypsum (CaSO{sub 4}{lg_bullet}2H{sub 2}0), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH){sub 2}), with miscellaneous objectionable impurities such as iron oxides; silica; and magnesium, sodium, and potassium oxides or salts. Currently, the only market for scrubber sludge is for manufacture of gypsum products, such as wallboard and plaster, and for cement. However, the quality of the raw sludge is often not high enough or consistent enough to satisfy manufacturers, and so the material is difficult to sell. This project is developing a process that can produce a high-quality calcium sulfite or gypsum product while keeping process costs low enough that the material produced will be competitive with that from other, more conventional sources. This purification will consist of minimal-reagent froth flotation, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified gypsum or calcium sulfite product. The separated limestone will be a useful by-product, as it can be recycled to the scrubber, thus boosting the limestone utilization and improving process efficiency. Calcium sulfite will then be oxidized to gypsum, or separated as a salable product in its own right from sludges where it is present in sufficient quantity. The main product of the process will be either gypsum or calcium sulfite, depending on the characteristics of the sludge being processed. These products will be sufficiently pure to be easily marketed, rather that being landfilled.

  12. Novel technologies for SO{sub x}/NO{sub x} removal from flue gas. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect (OSTI)

    Kung, H.; Kung, M.; Yang, B.; Spivey, J.J.; Jang, B.W.

    1994-09-01T23:59:59.000Z

    The goal of this project is to develop a cost-effective low temperature deNO{sub x} catalyst to be used in the Research Triangle Institute-Waterloo SO{sub 2}/NO{sub x} process for boiler retrofit applications. The performance goal of the catalyst is to convert over 80% of the NO in the flue gas at a temperature as low as 150{degrees}C in the presence of 4% O{sub 2}, and 10% water. Based on the results obtained in the previous quarter, which showed a La-Cu-ZrO{sub 2} catalyst to be a promising low temperature catalyst in the presence of 2% H{sub 2}O in the reduction of NO to N{sub 2} with isobutanol, research was conducted to investigate the variations in feed conditions on the performance of the catalyst. Specifically, the effect of increased H{sub 2}O concentration and the effect of NO{sub 2} in the feed were investigated. Although the activity of the catalyst declined when the H{sub 2}O concentration was increased from 2 to 10%, the decline was relatively mild compared with that when the water content was changed from 0 to 2%. The effect of NO{sub 2} was investigated because oxidation of NO to NO{sub 2}, a thermodynamically favorable process, proceeds at a finite rate even in the absence of a catalyst. It was found that, under the low temperature reaction conditions, replacement of NO{sub 2} with NO did not affect the catalytic performance of the La-Cu-ZrO{sub 2} catalyst. Besides studying the La-Cu-ZrO{sub 2} catalyst, effort has continued in screening other potential catalysts. A promising 5%Cu-2%Ag catalyst supported on active carbon was found that catalyzes NO reduction by acetone. At 150{degrees}C, 35% NO conversion was obtained in the presence of 4% O{sub 2} and 8% H{sub 2}O at a space velocity of 3000 h{sup {minus}1} after 5 h on stream.

  13. Factors that affect fracture fluid clean-up and pressure buildup test results in tight gas reservoirs

    E-Print Network [OSTI]

    Montgomery, Kevin Todd

    1990-01-01T23:59:59.000Z

    Backflow of Injected Liquids, Lf = 750 ft. , Cr = 1. 0, k = 0. 01 md. 70 The Effect of Capillary Pressure on Gas/Water Ratio Lf = 750 it. , Cr = 1. 0, k = 0. 01 md. Gas and Water Pressure Profiles for a Fracture, Damage Zone, and Reservoir System..., ft. CREATED FRACTURE LENGTH, ft. 250, 750 378, 1150 DIMENSIONLESS FRACTURE CONDUCTIVITY 0. 1, 1. 0, 10. 0, 100. 0 19 Z 0 a 0 IZ III Z III III Q K O IK 4 I III III 0 g N O O O CO O O ill O O O O O Cl O N O O O O O ISd '3BASS...

  14. PFB coal fired combined cycle development program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. This finding suggests that large cyclones with natural or augmented electrostatic forces employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. This is of special importance since the use of many small cyclones in parallel, or multicyclones, commonly suffers from fouling and this approach is not recommended in the CFCC application. The original objective of this investigation was to assess the relative merits of the Aerodyne cyclone separator. It was found from both the cold flow and the hot flow tests that its separative efficiencies are disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones.

  15. PFB Coal Fired Combined Cycle Development Program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation

    SciTech Connect (OSTI)

    Not Available

    1980-02-01T23:59:59.000Z

    This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. Hence this finding offers a major hope that large cyclones employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. The separative efficiencies of the Aerodyne cyclone separator were found from both the cold flow and the hot flow tests to be disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones. (LTN)

  16. Development of novel copper-based sorbents for hot-gas cleanup. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Abbasian, J.; Hill, A.H. [Inst. of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Li, Z. [Tufts Univ., Medford, MA (United States)

    1994-09-01T23:59:59.000Z

    The objective of this investigation is to evaluate two novel copper-based sorbents, namely copper-chromium and copper-cerium, for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650 to 850 C. Such high temperatures will be required for the new generation of gas turbines (inlet > 750 C) in Integrated Gasification Combined Cycle (IGCC) systems. Results of fixed-bed reactor tests conducted in this quarter, indicate that, at 750 C, pre-reduction with H{sub 2} in the presence of H{sub 2}O does not effect the performance of either sorbent for H{sub 2}S removal. For the pre-reduced CuCr{sub 2}O{sub 4} sorbent, copper utilization before the first H{sub 2}S breakthrough is substantially higher in synthesis feed gas mixture than in feed gas containing 30 Vol% H{sub 2}, and slightly lower than in 10 vol% H{sub 2}. In sulfidation-regeneration testing of copper- and additive-rich sorbents, chromium-rich CuO-3Cr{sub 2}O{sub 4} sorbent demonstrated very high H{sub 2}S removal efficiency and high copper conversion levels (comparable to that of the 1:1 molar composition sorbent). Similar results were obtained with the cerium-rich CuO-3CeO{sub 2} sorbent, but only for the first cycle. The H{sub 2}S removal performance of both copper-rich sorbents was inferior to that of the respective 1:1 molar compositions. CuO-CeO{sub 2} sorbent testing in a TGA indicates no appreciable decrease in the sulfidation rate over 5 1/2 cycles. However, weight changes during regeneration of the CuO-CeO{sub 2} suggest that some copper or cerium sulfates formed.

  17. [PFBC Hot Gas Cleanup Test Program]. Third Quarterly technical progress report, July--September 1992, CY 1992

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    Four hundred and fifty four clay bonded silicon carbide Schumacher Dia Schumalith candle filters were purchased for installation in the Westinghouse Advanced Particle Filtration (APF) system at the American Electric Power (AEP) plant in Brilliant, Ohio. A surveillance effort has been identified which will monitor candle filter performance and life during hot gas cleaning in AEP`s pressurized fluidized-bed combustion system. A description of the candle surveillance program, strategy for candle filter location selection, as well as candle filter post-test characterization is provided in this memo. The period of effort for candle filter surveillance monitoring is planned through March 1994.

  18. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Final report

    SciTech Connect (OSTI)

    Sublette, K.L.

    1994-03-01T23:59:59.000Z

    The main objective of this research was to investigate microorganisms capable of fossil fuel flue gas desulfurization and denitrification. The study used municipal sewage sludge as a carbon and energy source for SO{sub 2}-reducing cultures. The individual tasks developed a consortium of sulfate-reducing bacteria, investigated the design parameters for a continuous process, preformed a cost analysis, and screened sulfate-reducing bacteria. In the investigation of microbial reduction of NO{sub x} to nitrogen, tasks included screening denitrifying bacteria for NO and NO{sub 2} activity, developing optimum NO-reducing cultures, and investigating design parameters for a continuous system. This final report reviews the work previous to the current project, describes project objectives and the specific work plan, and reports results from the work completed during the previous reporting periods.

  19. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    DOE Patents [OSTI]

    Ayala, Raul E. (Clifton Park, NY)

    1993-01-01T23:59:59.000Z

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  20. Use of sulfide-containing liquors for removing mercury from flue gases

    DOE Patents [OSTI]

    Nolan, Paul S. (North Canton, OH); Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH); Vecci, Stanley J. (Alliance, OH)

    2003-01-01T23:59:59.000Z

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  1. Use of sulfide-containing liquors for removing mercury from flue gases

    DOE Patents [OSTI]

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02T23:59:59.000Z

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  2. Idaho Cleanup Project Congressional Nuclear Cleanup Caucus

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandards forand OpportunitiesIanCleanup

  3. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20T23:59:59.000Z

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  4. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1992--December 11, 1992

    SciTech Connect (OSTI)

    Sublette, K.L.

    1992-12-31T23:59:59.000Z

    With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans and have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.

  5. Upper Los Alamos Canyon Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upper Los Alamos Canyon Cleanup The Upper Los Alamos Canyon Project involves cleaning up hazardous materials left over from some of the Laboratory's earliest activities. Contact...

  6. New Contract Helps Portsmouth GDP Cleanup

    Broader source: Energy.gov [DOE]

    To accelerate the Portsmouth GDP cleanup efforts left over from the Cold War, the Department of Energy made a huge step forward in our nuclear environmental cleanup efforts.

  7. Promising Science for Plutonium Cleanup | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promising Science for Plutonium Cleanup Promising Science for Plutonium Cleanup Released: July 06, 2011 New finding shows a research area to expand in EMSL Radiochemistry Annex...

  8. Environmental Management (EM) Cleanup Projects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-24T23:59:59.000Z

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and provides guidance on environmental management cleanup projects. Canceled by DOE N 251.105.

  9. Superfund Cleanups and Infant Health

    E-Print Network [OSTI]

    Currie, Janet

    2011-02-23T23:59:59.000Z

    We are the first to examine the effect of Superfund cleanups on infant health rather than focusing on proximity to a site. We study singleton births to mothers residing within 5km of a Superfund site between 1989 and 2003 ...

  10. Natural gas cleanup: Evaluation of a molecular sieve carbon as a pressure swing adsorbent for the separation of methane/nitrogen mixtures

    SciTech Connect (OSTI)

    Grimes, R.W.

    1994-06-01T23:59:59.000Z

    This report describes the results of a preliminary evaluation to determine the technical feasibility of using a molecular sieve carbon manufactured by the Takeda Chemical Company of Japan in a pressure owing adsorption cycle for upgrading natural gas (methane) contaminated with nitrogen. Adsorption tests were conducted using this adsorbent in two, four, and five-step adsorption cycles. Separation performance was evaluated in terms of product purity, product recovery, and sorbent productivity for all tests. The tests were conducted in a small, single-column adsorption apparatus that held 120 grams of the adsorbent. Test variables included adsorption pressure, pressurization rate, purge rate and volume, feed rate, and flow direction in the steps from which the product was collected. Sorbent regeneration was accomplished by purging the column with the feed gas mixture for all but one test series where a pure methane purge was used. The ratio between the volumes of the pressurization gas and the purge gas streams was found to be an important factor in determining separation performance. Flow rates in the various cycle steps had no significant effect. Countercurrent flow in the blow-down and purge steps improved separation performance. Separation performance appears to improve with increasing adsorption pressure, but because there are a number of interrelated variables that are also effected by pressure, further testing will be needed to verify this. The work demonstrates that a molecular sieve carbon can be used to separate a mixture of methane and nitrogen when used in a pressure swing cycle with regeneration by purge. Further work is needed to increase product purity and product recovery.

  11. Rapid pressure swing absorption cleanup of post-shift reactor synthesis gas. Technical progress report, April 1, 1992--July 31, 1992

    SciTech Connect (OSTI)

    Sirkar, K.K.; Majumdar, S.; Bhaumik, S.

    1992-09-24T23:59:59.000Z

    This investigation is concerned with the separation of gas mixtures using a novel concept of rapid pressure swing absorption (RAPSAB) of gas in a stationary absorbent liquid through gas-liquid interfaces immobilized in the pore mouths of hydrophobic microporous membranes. The process is implemented in a module well-packed with hydrophobic microporous hollow fiber membranes. Before we proceed to RAPSAB studies with reactive absorbents, it is necessary to make an effort to compare experimental results with those predicted by the models. The only model developed so far involved a type of RAPSAB cycle (Mode 3) for which limited data were acquired earlier. A number of experiments have, therefore, been conducted in this mode to characterize the absorption part of the cycle. A new and more compact module (Module No. 5) was made using 840 fibers and a teflon casing inside the stainless steel shell to exactly define the fiber packing density. This allows an exact calculation of Happel`s free surface radius. Experiments were carried out using a CO{sub 2}-N{sub 2} mixture of around 10% CO{sub 2} and balanced N{sub 2} using both modules 4 and 5 over a wide range of absorption times.

  12. Confined zone dispersion flue gas desulfurization demonstration

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This is the fifth quarterly report for this project. This project is divided into three phases. Phase 1, which has been completed, involved design, engineering, and procurement for the CZD system, duct and facility modifications, and supporting equipment. Phase 2, also completed, included equipment acquisition and installation, facility construction, startup, and operator training for parametric testing. Phase 3 broadly covers testing, operation and disposition, but only a portion of Phase 3 was included in Budget Period 1. That portion was concerned with parametric testing of the CZD system to establish the optimum conditions for an extended, one-year, continuous demonstration. As of December 31, 1991, the following goals have been achieved. (1) Nozzle Selection - A modified Spraying Systems Company (SSC) atomizing nozzle has been selected for the one-year continuous CZD demonstration. (2) SO[sub 2] and NO[sub x] Reduction - Preliminary confirmation of 50% SO[sub 2] reduction has been achieved, but the NO[sub x] reduction target cannot be confirmed at this time. (3) Lime Selection - Testing indicated an injection rate of 40 to 50 gallons per minute with a lime slurry concentration of 8 to 10% to achieve 50% SO[sub 2] reduction. There has been no selection of the lime to be used in the one year demonstration. (4) ESP Optimization - Tests conducted to date have shown that lime injection has a very beneficial effect on ESP performance, and little adjustment may be necessary. (5) SO[sub 2] Removal Costs - Testing has not revealed any significant departure from the bases on which Bechtel's original cost estimates (capital and operating) were prepared. Therefore, SO[sub 2] removal costs are still expected to be in the range of $300/ton or less.

  13. Fundamental mechanisms in flue gas conditioning

    SciTech Connect (OSTI)

    Snyder, T.R.; Bush, P.V.

    1993-01-20T23:59:59.000Z

    We performed a wide variety of laboratory analyses during the past quarter. As with most of the work we performed during the previous quarter, our recent efforts were primarily directed toward the determination of the effects of adsorbed water on the cohesivity and tensile strength of powders. We also continued our analyses of dust cake ashes that have had the soluble compounds leached from their particle surfaces by repeated washings with water. Our analyses of leached and unleached dust cake ashes continued to provide some interesting insights into effects that compounds adsorbed on surfaces of ash particles can have on bulk ash behavior. As suggested by our literature review, our data indicate that water adsorption depends on particle morphology and on surface chemistry. Our measurements of tensile strength show, that for many of the samples we have analyzed a relative minimum in tensile strength exists for samples conditioned and tested at about 30% relative humidity. In our examinations of the effects of water conditioning on sample cohesivity, we determined that in the absence of absorption of water into the interior of the particles, cohesivity usually increases sharply when environments having relative humidities above 75% are used to condition and test the samples. Plans are under way to condition selected samples with (NH[sub 4])[sub 2]SO[sub 4], NH[sub 4]HSO[sub 4], CaCl[sub 2], organosiloxane, and SO[sub 3]. Pending approval, we will begin these conditioning experiments, and subsequent analyses of the conditioned samples.

  14. Fundamental mechanisms in flue gas conditioning

    SciTech Connect (OSTI)

    Snyder, T.R.; Vann Bush, P.

    1992-07-27T23:59:59.000Z

    SEM pictures of the three mixtures of sorbent and ash from the DITF and the base line ESP hopper ash from Muskingum are shown in Figures 1 through 4. The effects of sorbent addition on particle morphology are evident in Figures 2 through 4 by the presence of irregularly shaped particles and deposits on the surfaces of the spherical fly ash particles. In contrast, the base Ene ash particles have the characteristic relatively smooth, spherical morphology normally associated with pulverized-coal (PC) fly ashes. Resistivity determinations made on these four ashes in ascending and descending temperature modes. These data are shown in Figures 5 and 6. Sorbent injection processes performed at the DITF lowered the duct temperature to around 165{degrees}F from about 350{degrees}F for base line operation. Consequently, during collection in the ESP, the particulate matter from the sorbent injection processes had a significantly lower resitivity (approximately 4 {times} 10{sup 7} {Omega}-cm) than the base line ash (approximately 3 {times} 10{sup 11} {Omega}-cm at 350{degrees}F). Specific surface areas and true particle densities have been measured for the four samples obtained from the DOE/PETC Duct Injection Test Facility. These data are summarized in Table 4. The primary difference indicated by these initial analyses of these four samples is the significant increase in specific surface area due to sorbent addition. The specific surface areas of the three sorbent and ash mixtures from the DITF are quite similar.

  15. Accelerating cleanup: Paths to closure

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

  16. DOE outlines complex cleanup options

    SciTech Connect (OSTI)

    Lobsenz, G.

    1994-02-25T23:59:59.000Z

    The Energy Department said last week it will consider four different strategies for cleanup of its nuclear weapons complex in a draft programmatic environmental impact statement due for release this summer. In an implementation plan released for public comment February 17, DOE also said the EIS would look at centralized, decentralized and regional approaches to management of six types of radioactive and hazardous wastes. Other issues to be addressed in the EIS are development of innovative cleanup technology, budgeting and prioritization, job cutbacks and worker retraining, waste minimization and community involvement in cleanup decisions. However, DOE said it had decided not to address spent nuclear fuel storage in the EIS, as had been previously planned. Instead, spent fuel storage options will be reviewed in another environmental study being done under court order for DOE's Idaho National Engineering Laboratory. Findings from the INEL study will be incorporated in the department-wide EIS for environmental restoration and waste management.

  17. A mathematical model for the estimation of flue temperature in a coke oven

    SciTech Connect (OSTI)

    Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

    1997-12-31T23:59:59.000Z

    The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

  18. Celebrating DOE'sCleanup

    E-Print Network [OSTI]

    .S. Department of Energy (DOE) and Brookhaven National Laboratory management (the Lab) will celebrate a momentousCelebrating DOE'sCleanup Accomplishments then,now,andtomorrow U.S. Department of Energy Brookhaven-by-shovel, system-by-system, and project-by-project, incremental but progressive achievements were made

  19. Superfund Cleanups and Infant Health

    E-Print Network [OSTI]

    Currie, Janet

    We are the first to examine the effect of Superfund cleanups on infant health rather than focusing on proximity to a site. We study singleton births to mothers residing within 5km of a Superfund site between 1989-2003 in ...

  20. Environmental Cleanup and Remediation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeeches EnergyActive for Life"Environment

  1. Hanford Cleanup - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged In You| BlandineGulfHAB

  2. Cleanup Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 BuildingEnergy Efficiency and Renewable Energy |Sites Cleanup

  3. The Morgantown Energy Technology Center`s particulate cleanup program

    SciTech Connect (OSTI)

    Dennis, R.A.

    1995-12-01T23:59:59.000Z

    The development of integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC) power systems has made it possible to use coal while still protecting the environment. Such power systems significantly reduce the pollutants associated with coal-fired plants built before the 1970s. This superior environmental performance and related high system efficiency is possible, in part, because particulate gas-stream cleanup is conducted at high-temperature and high-pressure process conditions. A main objective of the Particulate Cleanup Program at the Morgantown Energy Technology Center (METC) is to ensure the success of the CCT demonstration projects. METC`s Particulate Cleanup Program supports research, development, and demonstration in three areas: (1) filter-system development, (2) barrier-filter component development, and (3) ash and char characterization. The support is through contracted research, cooperative agreements, Cooperative Research And Development Agreements (CRADAs), and METC`s own in-house research. This paper describes METC`s Particulate Cleanup Program.

  4. German engineers study UMTRA cleanup programs

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Two environmental engineers from Germany's WISMUT, the organization responsible for uranium tailings cleanup in that country, recently completed extensive training as part of a technology transfer program at the US DOE. For six weeks the two engineers studied the practices employed in the cleanup of the DOE's UMTRA (Uranium Mill Tailings Remedial Action) sites, hoping to gain insight into how Germany's own cleanup program should proceed.

  5. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    SciTech Connect (OSTI)

    BERGMAN TB

    2011-01-14T23:59:59.000Z

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the Parties on October 26,2010, and are now in the process of being implemented.

  6. Sandia National Laboratories: radiation waste cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste cleanup ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

  7. Sandia National Laboratories: radioactive waste solution cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solution cleanup ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

  8. Final report to US Department of Energy: Cyclotron autoresonance accelerator for electron beam dry scrubbing of flue gases

    SciTech Connect (OSTI)

    Hirshfield, J.L.

    2001-05-25T23:59:59.000Z

    Several designs have been built and operated of microwave cyclotron autoresonance accelerators (CARA's) with electron beam parameters suitable for remediation of pollutants in flue gas emissions from coal-burning power plants. CARA designs have also been developed with a TW-level 10.6 micron laser driver for electron acceleration from 50 to 100 MeV, and with UHF drivers for proton acceleration to over 500 MeV. Dose requirements for reducing SO2, NOx, and particulates in flue gas emissions to acceptable levels have been surveyed, and used to optimize the design of an electron beam source to deliver this dose.

  9. Site Cleanup | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepositoryManagement | Department of EnergyShaneShawnCleanup

  10. Development of EPA radiation site cleanup regulations

    SciTech Connect (OSTI)

    Burnett, J.

    1994-12-31T23:59:59.000Z

    This paper summarizes the EPA program to develop radiation site cleanup and identifies many of the issues related to that effort. The material is drawn from portions of the Agency`s Issues Paper on Radiation Site Cleanup Regulations (EPA 402-R-93-084). The site cleanup regulations will be designed to protect human health and the environment and to facilitate the cleanup of sites. EPA believes that developing specific cleanup standards for radionuclides will ensure consistent, protective, and cost-effective site remediation. They will apply to all Federal facilities such as those operated by the US Department of Energy (DOE), the US Department of Defense (DoD), and sites licensed by the US Nuclear Regulatory Commission (NRC) and its Agreement States.

  11. Environmental Remediation program to perform slope-side cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perform slope-side cleanup Environmental Remediation program to perform slope-side cleanup near Smith's Marketplace Los Alamos National Laboratory is performing a high-angle...

  12. DOE-Sponsored Syngas Cleanup Demonstration Project Reaches Development...

    Energy Savers [EERE]

    DOE-Sponsored Syngas Cleanup Demonstration Project Reaches Development Milestone DOE-Sponsored Syngas Cleanup Demonstration Project Reaches Development Milestone February 19, 2015...

  13. Separation of carbon dioxide from flue emissions using Endex principles

    E-Print Network [OSTI]

    Ball, R

    2009-01-01T23:59:59.000Z

    In an Endex reactor endothermic and exothermic reactions are directly thermally coupled and kinetically matched to achieve intrinsic thermal stability, efficient conversion, autothermal operation, and minimal heat losses. Applied to the problem of in-line carbon dioxide separation from flue gas, Endex principles hold out the promise of effecting a carbon dioxide capture technology of unprecedented economic viability. In this work we describe an Endex Calcium Looping reactor, in which heat released by chemisorption of carbon dioxide onto calcium oxide is used directly to drive the reverse reaction, yielding a pure stream of carbon dioxide for compression and geosequestration. In this initial study we model the proposed reactor as a continuous-flow dynamical system in the well-stirred limit, compute the steady states and analyse their stability properties over the operating parameter space, flag potential design and operational challenges, and suggest an optimum regime for effective operation.

  14. HANFORD SITE RIVER CORRIDOR CLEANUP

    SciTech Connect (OSTI)

    BAZZELL, K.D.

    2006-02-01T23:59:59.000Z

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  15. Process for selected gas oxide removal by radiofrequency catalysts

    DOE Patents [OSTI]

    Cha, Chang Y. (3807 Reynolds St., Laramie, WY 82070)

    1993-01-01T23:59:59.000Z

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  16. Assessment of hot gas contaminant control

    SciTech Connect (OSTI)

    Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

    1996-12-31T23:59:59.000Z

    The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

  17. bectcom-roxbox | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Mar 1989) Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Program: SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Project...

  18. Money crunch looms for Federal cleanup effort

    SciTech Connect (OSTI)

    Lobsenz, G.

    1992-12-03T23:59:59.000Z

    In an unprecedented acknowledgement that federal facility cleanup activities face a money crunch, a federal-state advisory panel is preparing a new strategy to avert enforcement showdowns when funding cuts prevent federal agencies from meeting legally required cleanup schedules set by states. In a draft report the panel said states must recognize that some cleanup [open quotes]milestones[close quotes] will have to be delayed due to budget pressures - a concession that will be politically difficult in some states. At the same time, the panel said federal agencies must be more forthcoming in working with states and local groups to determine how increasingly scarce resources will be distributed. As a general rule, the report recommended that federal agencies and state environmental officials agree on a [open quotes]fair share[close quotes] allocation method under which the pain of a budget cutback would be spread equally among all cleanup sites within an affected federal agency. That fair share approach would be altered only if the federal agency reached agreement with states that a funding cutback could be absorbed at selected sites without affecting any cleanup milestone.

  19. Upton bill offers clean-up incentives

    SciTech Connect (OSTI)

    Black, B. [Weinberg & Green, Baltimore, MD (United States)

    1994-07-01T23:59:59.000Z

    Like castor oil, the Superfund law can be difficult medicine to swallow, and no one wants to volunteer for a dose. Indeed, the law`s harsh and unbending liability scheme sometimes hinders the cleanup of contaminated property. Confronted with the choice of redeveloping an old {open_quotes}brownfield{close_quotes} urban industrial site or building at a pristine new {open_quotes}greenfield{close_quotes} location, most companies opt for the latter. The brownfield problem is especially troubling because the law often prevents voluntary cleanups at relatively low priority sites that usually don`t get caught up in the Superfund program. This paper describes the Upton Bill which would require the US EPA to establish cleanup standards for hazrdous substances, allow for public comment on a proposed response plan, and require a voluntary party to submit detailed annual reports and maintain records.

  20. Issues paper on radiation site cleanup regulations

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    EPA prepared the document to present issues, approaches, and preliminary analyses related to its development of radiation site cleanup regulations. It focuses exclusively on issues and approaches related to developing cleanup regulations; it does not address issues specific to waste management regulations, which will be addressed in a separate document. The first three chapters discuss Significant Issues, Regulatory Approaches, and Summary and Next Steps. Appendix A presents background information on radioactive waste and provides additional details of EPA coordination of its rulemaking effort. Appendix B discusses statutory authorities upon which EPA may base its cleanup regulations. Appendix C is a copy of the EPA/NRC MOU. Appendix D discusses the issues raised in NRC's Enhanced Participatory Rulemaking on Radiological Criteria for Decommissioning, in which EPA participated. Appendix E is a list of acronyms, and Appendix F is a glossary of terms used throughout the document.

  1. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15T23:59:59.000Z

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  2. Recovery Act funds advance cleanup efforts at Cold War site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cleanup efforts at Cold War site Recovery Act funds advance cleanup efforts at Cold War site A local small business, ARSEC Environmental, LLC, of White Rock, NM, won a 2 million...

  3. Voluntary Protection Program Onsite Review, Idaho Cleanup Project- October 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Idaho Cleanup Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  4. Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)

    SciTech Connect (OSTI)

    Quimby, J.M.; Kumar, K.S.

    1992-01-01T23:59:59.000Z

    The objective of this contract was to investigate the removal of SO[sub x] and particulate matter from direct coal fired combustion gas streams at high temperature and high pressure conditions. This investigation was to be accomplished through a bench scale testing and evaluation program for SO[sub x] removal and the innovative particulate collection concept of particulate growth through electrostatic agglomeration followed by high efficiency mechanical collection. The process goal was to achieve control better than that required by 1979 New Source Performance Standards. During Phase I, the designs of the combustor and gas cleanup apparatus were successfully completed. Hot gas cleanup was designed to be accomplished at temperature levels between 1800[degrees] and 2500[degrees]F at pressures up to 15 atmospheres. The combustor gas flow rate could be varied between 0.2--0.5 pounds per second. The electrostatic agglomerator residence time could be varied between 0.25 to 3 seconds. In Phase II, all components were fabricated, and erected successfully. Test data from shakedown testing was obtained. Unpredictable difficulties in pilot plant erection and shakedown consumed more budget resources than was estimated and as a consequence DOE, METC, decided ft was best to complete the contract at the end of Phase II. Parameters studied in shakedown testing revealed that high-temperature high pressure electrostatics offers an alternative to barrier filtration in hot gas cleanup but more research is needed in successful system integration between the combustor and electrostatic agglomerator.

  5. Combined Flue Gas Heat Recovery and Pollution Control Systems

    E-Print Network [OSTI]

    Zbikowski, T.

    1979-01-01T23:59:59.000Z

    in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

  6. Nevada National Security Site Cleanup Information Is Just a Click...

    Office of Environmental Management (EM)

    National Security Site Cleanup Information Is Just a Click Away with Computer Map, Database - New Interactive Map Makes NNSS Data More Accessible to the Public Nevada National...

  7. accelerated cleanup risk: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California at Berkeley, University of 20 Guidelines for Investigation and Cleanup of MTBE and Other Ether-Based Oxygenates Overview CiteSeer Summary: (Sher-- Chapter 812,...

  8. Site Transition Process upon Completion of the Cleanup Mission...

    Office of Environmental Management (EM)

    218: Develop a Fact Sheet on Site Transition at On-going Mission Sites Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy...

  9. Progress toward Biomass and Coal-Derived Syngas Warm Cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal Progress toward Biomass and Coal-Derived Syngas...

  10. Paducah Cleanup Milestones | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5 Accretion-of-DutiesPROPERTY3-0127 - In-Cleanup Milestones

  11. Cleanup Progress Report - 2010 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean EnergyofDepartment of0 Cleanup

  12. Cleanup Progress Report - 2012 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean EnergyofDepartment of02 Cleanup

  13. Cleanup Progress Report - 2013 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean EnergyofDepartment of02 Cleanup3

  14. Cleanup Progress Report - 2014 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean EnergyofDepartment of02 Cleanup34

  15. Los Alamos National Laboratory names cleanup subcontractors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is YourAwards Pollution Prevention AwardeesEnvironmentalCleanup

  16. Feasibility of an alpha particle gas densimeter for stack sampling applications 

    E-Print Network [OSTI]

    Johnson, Randall Mark

    1983-01-01T23:59:59.000Z

    , for conceivable ranges of flue gas composition, the maximum error in density due to the uncertainty in gas composition is less than 2%. ACKNOWLEDGEMENTS I wish to express my appreciation to Dr. R. A. Fjeld and Dr. A. R. McFarland for their patience... LISTING APPENDIX C TABULATED RESULTS 58 60 72 VI TA 84 Vi LIST OF TABLES TABLE P age I Typical Flue Gas Compositions II Model Flue Gas Compositions 35 Coeff icients for Alpha particle Stopping Power Functions 59 Computed and Experimental...

  17. IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – The Department of Energy Idaho Operations Office today announced that James Cooper has been named deputy manager of its highly-successful Idaho Cleanup Project, which oversees the environmental cleanup and waste management mission at DOE’s Idaho site.

  18. Architecture synthesis basis for the Hanford Cleanup system: First issue

    SciTech Connect (OSTI)

    Holmes, J.J. [comp.

    1994-06-01T23:59:59.000Z

    This document describes a set of candidate alternatives proposed to accomplish the Hanford Cleanup system functions defined in a previous work. Development of alternatives is part of a sequence of system engineering activities which lead to definition of all the products which, when completed, accomplish the cleanup mission. The alternative set is developed to functional level four or higher depending on need.

  19. Flue-Cured Tobacco Curing Efficiency Research Tour

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Flue-Cured Tobacco Curing Efficiency Research Tour Wednesday, October 23, 2013 Topics to be discussed: Tobacco curing efficiency New barn evaluations New curing barn technology Evaluation of single-barn hot water boiler systems Remedial barn pad insulation Utilization of solar energy

  20. Control of pollutants in flue gases and fuel gases

    E-Print Network [OSTI]

    Laughlin, Robert B.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Flue gases and fuel gases: combustion, gasification, pyrolysis, incineration and other and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . 3-5 3.4 Emission

  1. Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration). Draft final technical report

    SciTech Connect (OSTI)

    Quimby, J.M.; Kumar, K.S.

    1992-12-31T23:59:59.000Z

    The objective of this contract was to investigate the removal of SO{sub x} and particulate matter from direct coal fired combustion gas streams at high temperature and high pressure conditions. This investigation was to be accomplished through a bench scale testing and evaluation program for SO{sub x} removal and the innovative particulate collection concept of particulate growth through electrostatic agglomeration followed by high efficiency mechanical collection. The process goal was to achieve control better than that required by 1979 New Source Performance Standards. During Phase I, the designs of the combustor and gas cleanup apparatus were successfully completed. Hot gas cleanup was designed to be accomplished at temperature levels between 1800{degrees} and 2500{degrees}F at pressures up to 15 atmospheres. The combustor gas flow rate could be varied between 0.2--0.5 pounds per second. The electrostatic agglomerator residence time could be varied between 0.25 to 3 seconds. In Phase II, all components were fabricated, and erected successfully. Test data from shakedown testing was obtained. Unpredictable difficulties in pilot plant erection and shakedown consumed more budget resources than was estimated and as a consequence DOE, METC, decided ft was best to complete the contract at the end of Phase II. Parameters studied in shakedown testing revealed that high-temperature high pressure electrostatics offers an alternative to barrier filtration in hot gas cleanup but more research is needed in successful system integration between the combustor and electrostatic agglomerator.

  2. Risk management: Reducing brownfield cleanup costs

    SciTech Connect (OSTI)

    Graves, N.

    1997-08-01T23:59:59.000Z

    Balancing environmental protection with economic vitality is crucial to maintaining competitiveness in world markets. One key initiative that has been identified as important to both environmental protection and the economy is the redevelopment of brownfields. Brownfield redevelopment can stimulate local economies that have been devastated by lost jobs and can recycle industrial land use, thereby preserving undeveloped lands. Many existing brownfield sites appear on the US Environmental Protection Agency`s (EPA) National Priority List (NPL), which designates over 1200 sites and is expected to grow to more than 2000 by the end of the decade. EPA estimates the cost of remediating the sites on the current list will approach $30 billion, with the average cost of remediating a site close to $25 million. Thousands of additional brownfield sites that do not appear on the NPL are listed under state cleanup programs.

  3. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2014-08-19T23:59:59.000Z

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  4. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

    2010-11-09T23:59:59.000Z

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  5. Tritium research laboratory cleanup and transition project final report

    SciTech Connect (OSTI)

    Johnson, A.J.

    1997-02-01T23:59:59.000Z

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project`s multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition.

  6. Update of lessons learned from cleanup projects at Oak Ridge

    SciTech Connect (OSTI)

    Sleeman, R.C. [USDOE Oak Ridge Operations, TN (United States)

    1993-12-31T23:59:59.000Z

    The Oak Ridge Operations (ORO) of the US Department of Energy (DOE) has been actively pursuing environmental cleanup of chemically and radioactively contaminated sites for about 7 years. These cleanup projects are carried out under the regulatory requirements of the US Environmental Protection Agency and the various states in which the remedial sites are located. This paper updates and re-examines some of the successes and failures of Oak Ridge cleanup activities, with the intent of encouraging improvements in the areas of safety, project planning, quality assurance, training, and regulatory interactions in future remedial projects.

  7. Central Plateau Cleanup at DOE's Hanford Site - 12504

    SciTech Connect (OSTI)

    Dowell, Jonathan [US DOE (United States)

    2012-07-01T23:59:59.000Z

    The discussion of Hanford's Central Plateau includes significant work in and around the center of the Hanford Site - located about 7 miles from the Columbia River. The Central Plateau is the area to which operations will be shrunk in 2015 when River Corridor cleanup is complete. This work includes retrieval and disposal of buried waste from miles of trenches; the cleanup and closure of massive processing canyons; the clean-out and demolition to 'slab on grade' of the high-hazard Plutonium Finishing Plant; installation of key groundwater treatment facilities to contain and shrink plumes of contaminated groundwater; demolition of all other unneeded facilities; and the completion of decisions about remaining Central Plateau waste sites. A stated goal of EM has been to shrink the footprint of active cleanup to less than 10 square miles by 2020. By the end of FY2011, Hanford will have reduced the active footprint of cleanup by 64 percent exceeding the goal of 49 percent. By 2015, Hanford will reduce the active footprint of cleanup by more than 90 percent. The remaining footprint reduction will occur between 2015 and 2020. The Central Plateau is a 75-square-mile region near the center of the Hanford Site including the area designated in the Hanford Comprehensive Land Use Plan Environmental Impact Statement (DOE 1999) and Record of Decision (64 FR 61615) as the Industrial-Exclusive Area, a rectangular area of about 20 square miles in the center of the Central Plateau. The Industrial-Exclusive Area contains the 200 East and 200 West Areas that have been used primarily for Hanford's nuclear fuel processing and waste management and disposal activities. The Central Plateau also encompasses the 200 Area CERCLA National Priorities List site. The Central Plateau has a large physical inventory of chemical processing and support facilities, tank systems, liquid and solid waste disposal and storage facilities, utility systems, administrative facilities, and groundwater monitoring wells. As a companion to the Hanford Site Cleanup Completion Framework document, DOE issued its draft Central Plateau Cleanup Completion Strategy in September 2009 to provide an outline of DOE's vision for completion of cleanup activities across the Central Plateau. As major elements of the Hanford cleanup along the Columbia River Corridor near completion, DOE believed it appropriate to articulate the agency vision for the remainder of the cleanup mission. The Central Plateau Cleanup Completion Strategy and the Hanford Site Cleanup Completion Framework were provided to the regulatory community, the Tribal Nations, political leaders, the public, and Hanford stakeholders to promote dialogue on Hanford's future. The Central Plateau Cleanup Completion Strategy describes DOE's vision for completion of Central Plateau cleanup and outlines the decisions needed to achieve the vision. The Central Plateau strategy involves steps to: (1) contain and remediate contaminated groundwater, (2) implement a geographic cleanup approach that guides remedy selection from a plateau-wide perspective, (3) evaluate and deploy viable treatment methods for deep vadose contamination to provide long-term protection of the groundwater, and (4) conduct essential waste management operations in coordination with cleanup actions. The strategy will also help optimize Central Plateau readiness to use funding when it is available upon completion of River Corridor cleanup projects. One aspect of the Central Plateau strategy is to put in place the process to identify the final footprint for permanent waste management and containment of residual contamination within the 20-square-mile Industrial-Exclusive Area. The final footprint identified for permanent waste management and containment of residual contamination should be as small as practical and remain under federal ownership and control for as long as a potential hazard exists. Outside the final footprint, the remainder of the Central Plateau will be available for other uses consistent with the Hanford Comprehensive Land-Use Plan (DOE 1999), while

  8. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

    1991-02-01T23:59:59.000Z

    The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

  9. Recovery Act Workers Accomplish Cleanup of Second Cold War Coal...

    Office of Environmental Management (EM)

    June 21, 2011 Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin AIKEN, S.C. - American Recovery and Reinvestment Act workers re- cently cleaned up a second...

  10. PPPL's Earth Week features Colloquium on NYC green plan, cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL's Earth Week features Colloquium on NYC green plan, cleanup and awards By Jeanne Jackson DeVoe April 28, 2014 Tweet Widget Google Plus One Share on Facebook Volunteers clean...

  11. Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment

    Broader source: Energy.gov [DOE]

    For the first time in history, workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a decommissioned nuclear reactor using an innovative treatment...

  12. Radiation site cleanup regulation: An interim progress report

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    On October 18 and 19, 1993, the 13 members of the National Advisory Council on Environmental Policy and Technology (NACEPT) Subcommittee on Radiation Site Cleanup Regulations met in Washington D.C. at the invitation of EPA. The Subcommittee discussed a variety of topics relevant to the cleanup of sites contaminated with radiation, and to the regulations which EPA will promulgate to establish cleanup levels for radioactive sites. This Interim Progress Report: condenses and summarizes the major themes, issues, and concerns brought up during the NACEPT Subcommittee meeting in October; Provides a brief description of current Agency thinking regarding each of the major topic areas discussed by the NACEPT Subcommittee; and Serves as a discussion guide for NACEPT Subcommittee members. Four major topics were discussed by the NACEPT Subcommittee members during their first meeting in October 1993: Common Themes; Risk (or Cleanup Levels and Risk Levels); Future Land Use and Local Statutes; and Site-Specific Public Involvement.

  13. Cleanup Verification Package for the118-F-2 Burial Ground

    SciTech Connect (OSTI)

    J. M. Capron and K. A. Anselm

    2008-02-21T23:59:59.000Z

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-2 Burial Ground. This burial ground, formerly called Solid Waste Burial Ground No. 1, was the original solid waste disposal site for the 100-F Area. Eight trenches contained miscellaneous solid waste from the 105-F Reactor and one trench contained solid waste from the biology facilities.

  14. Composite filter aids for cleanup of additives

    SciTech Connect (OSTI)

    Rudenko, L.I.; Sklyar, V.Y.

    1984-03-01T23:59:59.000Z

    This article examines the properties of composite filter aids in additive cleanup using two- and three-component filter aid composites based on perlite, kieselguhr, diatomite, asbestos, and wood flour. Filtration tests were run on naphtha solutions of the additive zinc dialkyldithiophosphate. The laboratory studies indicate that composites of perlite and kieselguhr with fibrous materials (wood flour or asbestos) show great promise for the removal of solid contaminants from the zinc disalkydithiophosphate additive. The advantages of the filter aid composite based on perlite, kieselguhr, and wood flour in comparison with the two-component composites are the higher filtration rate (by 26%) and the smaller losses of additive (by a factor of 2.1) and isobutyl alcohol (by a factor of 1.6). It is demonstrated that the filtration rate with the three components is 50-60% higher than with the composite of perlite with kieselguhr. The filtration of the zinc dialkyldithiophosphate additive using the composite filter aid based on perlite, kieselguhr, and wood flour, has been adopted at the Volgograd Petroleum Refinery. Includes 2 tables.

  15. Cement kiln flue dust as a source of lime and potassium in four East Texas soils

    E-Print Network [OSTI]

    Poole, Warren David

    1975-01-01T23:59:59.000Z

    design on both sites. Yield, soil pH, plant and soil concentrations of K, Ca, and Mg were determined. Soil pH and extractable Ca increased with increasing rate of flue dust or calcite. Under field conditions, flue dust compared favorably with calcite... was similar to plant uptake from corresponding calcite + KC1 treatments. Soil pH and extractable soil K, Ca, and Mg increased with increased rate of flue dust treatment equally as well as from the corresponding calcite treatments. The flue dust was equal...

  16. Process for selected gas oxide removal by radiofrequency catalysts

    DOE Patents [OSTI]

    Cha, C.Y.

    1993-09-21T23:59:59.000Z

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

  17. Method for high temperature mercury capture from gas streams

    DOE Patents [OSTI]

    Granite, E.J.; Pennline, H.W.

    2006-04-25T23:59:59.000Z

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  18. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 1, Final report

    SciTech Connect (OSTI)

    Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

    1991-02-01T23:59:59.000Z

    The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

  19. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1997-01-01T23:59:59.000Z

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed.

  20. Needs for Risk Informing Environmental Cleanup Decision Making - 13613

    SciTech Connect (OSTI)

    Zhu, Ming; Moorer, Richard [U.S. Department of Energy, Washington, DC 20585 (United States)] [U.S. Department of Energy, Washington, DC 20585 (United States)

    2013-07-01T23:59:59.000Z

    This paper discusses the needs for risk informing decision making by the U.S. Department of Energy (DOE) Office of Environmental Management (EM). The mission of the DOE EM is to complete the safe cleanup of the environmental legacy brought about from the nation's five decades of nuclear weapons development and production and nuclear energy research. This work represents some of the most technically challenging and complex cleanup efforts in the world and is projected to require the investment of billions of dollars and several decades to complete. Quantitative assessments of health and environmental risks play an important role in work prioritization and cleanup decisions of these challenging environmental cleanup and closure projects. The risk assessments often involve evaluation of performance of integrated engineered barriers and natural systems over a period of hundreds to thousands of years, when subject to complex geo-environmental transformation processes resulting from remediation and disposal actions. The requirement of resource investments for the cleanup efforts and the associated technical challenges have subjected the EM program to continuous scrutiny by oversight entities. Recent DOE reviews recommended application of a risk-informed approach throughout the EM complex for improved targeting of resources. The idea behind this recommendation is that by using risk-informed approaches to prioritize work scope, the available resources can be best utilized to reduce environmental and health risks across the EM complex, while maintaining the momentum of the overall EM cleanup program at a sustainable level. In response to these recommendations, EM is re-examining its work portfolio and key decision making with risk insights for the major sites. This paper summarizes the review findings and recommendations from the DOE internal reviews, discusses the needs for risk informing the EM portfolio and makes an attempt to identify topics for R and D in integrated risk assessment that could assist in the EM prioritization efforts. (authors)

  1. Reformate Cleanup: The Case for Microchannel Architecture

    E-Print Network [OSTI]

    requirements ­ rapid heat and mass transfer for high hardware productivity Thermal management ­ high heat Demonstrated partial condenser FY 1998 Full-size gasoline vaporizer/combustor R&D100 Award FY 2000 10 kWe SR LT WGS Reactor Combustor eformate Recuperator #12;5 Differential Temperature Water Gas Shift Reactor

  2. Clean-up standards and pathways analysis methods

    SciTech Connect (OSTI)

    Devgun, J.S. [Argonne National Lab., IL (United States). Office of Waste Management Programs

    1993-12-31T23:59:59.000Z

    Remediation of a radioactively contaminated site requires that certain regulatory criteria be met before the site can be released for unrestricted future use. Since the ultimate objective of remediation is to protect the public health and safety, residual radioactivity levels remaining at a site after cleanup must be below certain preset limits or meet acceptable dose or risk criteria. This paper discusses cleanup standards for radioactively contaminated soils and describes the use of pathways analysis methods for deriving site-specific residual radioactivity guidelines. An example is provided in which a pathways analysis code (RESRAD) was used to establish such guidelines.

  3. Los Alamos Lab to perform slope-side cleanup near Smith's Marketplace

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Lab to perform slope-side cleanup near Smith's Marketplace Los Alamos National Laboratory to perform slope-side cleanup near Smith's Marketplace The Lab is performing a...

  4. Microsoft Word - DOE News Release-DOE Completes Cleanup at New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Completes Cleanup at New York, California Sites Recovery Act funds accelerate cleanup; support job creation and footprint reduction WASHINGTON, D.C. - Last month, the U.S....

  5. Radiation site cleanup regulations: Technical support document for the development of radionuclide cleanup levels for soil. Review draft

    SciTech Connect (OSTI)

    Wolbarst, A.B.; Mauro, J.; Anigstein, R.; Back, D.; Bartlett, J.W.

    1994-09-24T23:59:59.000Z

    This report presents EPA`s approach to assessing some of the beneficial and adverse radiation health effects associated with various possible values for an annual dose limit. In particular, it discusses the method developed to determine how the choice of cleanup criterion affects (1) the time-integrated numbers of non-fatal and fatal radiogenic cancers averted among future populations, (2) the occurrence of radiogenic cancers among remediation workers and the public caused by the cleanup process itself, and (3) the volume of contaminated soil that may require remediation.

  6. Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162

    SciTech Connect (OSTI)

    Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia MD (United States)] [AREVA FEDERAL SERVICES, Columbia MD (United States); CIZEL, Jean-Pierre [AREVA BE/NV, Marcoule (France)] [AREVA BE/NV, Marcoule (France); Blanchard, Samuel [CEA DEN/DPAD, Marcoule (France)] [CEA DEN/DPAD, Marcoule (France)

    2013-07-01T23:59:59.000Z

    The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

  7. Cleanup Verification Package for the 618-2 Burial Ground

    SciTech Connect (OSTI)

    W. S. Thompson

    2006-12-28T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.

  8. Cleanup Verification Package for the 118-F-6 Burial Ground

    SciTech Connect (OSTI)

    H. M. Sulloway

    2008-10-02T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 118-F-6 Burial Ground located in the 100-FR-2 Operable Unit of the 100-F Area on the Hanford Site. The trenches received waste from the 100-F Experimental Animal Farm, including animal manure, animal carcasses, laboratory waste, plastic, cardboard, metal, and concrete debris as well as a railroad tank car.

  9. natural gas+ condensing flue gas heat recovery+ water creation+ CO2

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Home Rmckeel'slinked openreduction+ cool exhaust

  10. PETC Review, Issue 2, September 1990

    SciTech Connect (OSTI)

    Blaustein, B.; Reiss, J.; Riehle, B.; Brown, J.; Hammer, D. (eds.)

    1990-09-01T23:59:59.000Z

    This issue of PETC Review provides short discussion on research programs in (1) combustion technology, (2) flue gas cleanup technology, (3) coal science and chemistry. An overview of the PETC New Fuels Evaluation Facility is given, the US Clean Coal Technology Program's activities in Poland are discussed, and the NOXSO flue gas cleanup process is outlined. Supplemental sections on events, special focuses, publication listings, etc. are also included.

  11. PETC Review, Issue 2, September 1990

    SciTech Connect (OSTI)

    Blaustein, B.; Reiss, J.; Riehle, B.; Brown, J.; Hammer, D. [eds.

    1990-09-01T23:59:59.000Z

    This issue of PETC Review provides short discussion on research programs in (1) combustion technology, (2) flue gas cleanup technology, (3) coal science and chemistry. An overview of the PETC New Fuels Evaluation Facility is given, the US Clean Coal Technology Program`s activities in Poland are discussed, and the NOXSO flue gas cleanup process is outlined. Supplemental sections on events, special focuses, publication listings, etc. are also included.

  12. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01T23:59:59.000Z

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  13. Proceedings: EPRI Manufactured Gas Plants 2003 Forum

    SciTech Connect (OSTI)

    None

    2004-02-01T23:59:59.000Z

    The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

  14. Evaluating energy dissipation during expansion in a refrigeration cycle using flue pipe acoustic resonators

    E-Print Network [OSTI]

    Luckyanova, Maria N. (Maria Nickolayevna)

    2008-01-01T23:59:59.000Z

    This research evaluates the feasibility of using a flue pipe acoustic resonator to dissipate energy from a refrigerant stream in order to achieve greater cooling power from a cryorefrigeration cycle. Two models of the ...

  15. Natural and industrial analogues for release of CO2 from storage reservoirs: Identification of features, events, and processes and lessons learned

    E-Print Network [OSTI]

    Lewicki, Jennifer L.; Birkholzer, Jens; Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    Flue Flue Fuel oil Natural gas Natural gas Gas turbine Gasturbine Gas turbine Coal IGCC Flue Flue Flue Flue Fuel IEA,oil, natural gas, and gas turbine power plants. As shown,

  16. Development and validation of a cleanup method for hydrocarbon containing samples for the analysis of semivolatile organic compounds

    SciTech Connect (OSTI)

    Hoppe, E.W.; Stromatt, R.W.; Campbell, J.A.; Steele, M.J.; Jones, J.E.

    1992-04-01T23:59:59.000Z

    Samples obtained from the Hanford single shell tanks (SSTs) are contaminated with normal paraffin hydrocarbon (NPH) as hydrostatic fluid from the sampling process or can be native to the tank waste. The contamination is usually high enough that a dilution of up to several orders of magnitude may be required before the sample can be analyzed by the conventional gas chromatography/mass spectrometry methodology. This can prevent detection and measurement of organic constituents that are present at lower concentration levels. To eliminate or minimize the problem, a sample cleanup method has been developed and validated and is presented in this document.

  17. Combining innovative technology demonstrations with dense nonaqueous phase liquids cleanup

    SciTech Connect (OSTI)

    Hagood, M.C.; Koegler, K.J.; Rohay, V.J.; Trent, S.J. [Westinghouse Hanford Co., Richland, WA (United States); Stein, S.L.; Brouns, T.M.; McCabe, G.H.; Tomich, S. [Pacific Northwest Lab., Richland, WA (United States)

    1993-05-01T23:59:59.000Z

    Radioactively contaminated acidic aqueous wastes and organic liquids were discharged to the soil column at three disposal sites within the 200 West Area of the Hanford Site, Washington. As a result, a portion of the underlying groundwater is contaminated with carbon tetrachloride several orders of magnitude above the maximum contaminant level accepted for a drinking water supply. Treatability testing and cleanup actions have been initiated to remove the contamination from both the unsaturated soils to minimize further groundwater contamination and the groundwater itself. To expedite cleanup, innovative technologies for (1) drilling, (2) site characterization, (3) monitoring, (4) well field development, and (5) contaminant treatment are being demonstrated and subsequently used where possible to improve the rates and cost savings associated with the removal of carbon tetrachloride from the soils and groundwater.

  18. Site Cleanup Report for Sites PBF-33 and PBF-34

    SciTech Connect (OSTI)

    W. L. Jolley

    2007-01-16T23:59:59.000Z

    This document summaries the actions taken to remove asbestos-reinforced-concrete (transite) pipe and miscellaneous debris from Power Purst Facility (PBF)-33 and PBF-34 sites. Removal of pipe and debris were performed in November 2006 in accordance with the requirements discussed in notice of soil disturbance NSD-PBF-07-01. Debris at these two sites were classified as industrial waste that could be disposed at the Central Facilities Area (CFA) landfill at the Idaho National Laboratory. Asbestos removal was performed as Class IV asbestos cleanup work. All transite pipe was double bagged and dispositioned in the INL Landfill Complex at CFA. The remaining miscellaneous debris was loaded into dump trucks and taken to the INL Landfill Complex at CFA for final disposition. Cleanup actions are complete for both sites, and no debris or hazardous constituents remain. Therefore, both sites will be classified as No action sites.

  19. Cleanup Verification Package for the 618-8 Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel

    2006-08-10T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 618-8 Burial Ground, also referred to as the Solid Waste Burial Ground No. 8, 318-8, and the Early Solid Waste Burial Ground. During its period of operation, the 618-8 site is speculated to have been used to bury uranium-contaminated waste derived from fuel manufacturing, and construction debris from the remodeling of the 313 Building.

  20. Cleanup Verification Package for the 618-3 Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel

    2006-09-12T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 618-3 Solid Waste Burial Ground, also referred to as Burial Ground Number 3 and the Dry Waste Burial Ground Number 3. During its period of operation, the 618-3 site was used to dispose of uranium-contaminated construction debris from the 311 Building and construction/demolition debris from remodeling of the 313, 303-J and 303-K Buildings.

  1. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01T23:59:59.000Z

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  2. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems: Greenfield assessment

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    Both the KRW fluidized-bed gasifier and the transport gasifier case studies were used for this assessment. The transport technology is a high-velocity circulating fluidized-bed reactor currently under development by The M.W. Kellogg Company. In the earlier assessment, seven design concepts or cases were identified; a process design was developed; major equipment items were identified; estimates of capital cost, operation and maintenance cost, and cost of electricity were developed; reliability was predicted; and development issues were identified for six studies. Three of the most probable cases were further evaluated for a Greenfield assessment in this report to adequately determine all costs independent of facilities at Plant Wansley.

  3. River Corridor Cleanup Contract Fiscal Year 2006 Detailed Work Plan: DWP Summary, Volume 1

    SciTech Connect (OSTI)

    Project Integration

    2005-09-26T23:59:59.000Z

    This detailed work plan provides the scope, cost, and schedule for the Fiscal Year 2006 activities required to support River Corridor cleanup objectives within the directed guidance.

  4. Recovery Act Helps Y-12 Exceed Cleanup Goal at Manhattan Project...

    National Nuclear Security Administration (NNSA)

    Helps Y-12 Exceed Cleanup Goal at Manhattan Project-Era Building | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  5. Recovery Cleanup Project at Y-12 Leaves Alpha 5 with an Empty...

    National Nuclear Security Administration (NNSA)

    Cleanup Project at Y-12 Leaves Alpha 5 with an Empty Feeling | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  6. Richland Operations Office Completes Cleanup in Hanford’s 300 Area North Section

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – EM met a Tri-Party Agreement milestone by completing cleanup of the north portion of Hanford’s 300 Area.

  7. Voluntary Protection Program Onsite Review, CH2M WG LLC, Idaho Cleanup Project – March 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether CH2M WG LLC, Idaho Cleanup Project is performing at a level deserving DOE-VPP Star recognition.

  8. Environmental Cleanup of the Idaho National Laboratory Status Report

    SciTech Connect (OSTI)

    Schubert, A.L. [CH2M.WG Idaho, LLC, Idaho Falls, Idaho (United States)

    2008-07-01T23:59:59.000Z

    This paper describes the status of the cleanup of the U.S. Department of Energy's Idaho National Laboratory site (INL). On May 1, 2005 CH2M.WG Idaho, LLC (CWI) began its 7-year, $2.4 billion cleanup of the INL. When the work is completed, 3,406,871 liters (900,000 gallons) of sodium-bearing waste will have been treated; 15 high-level waste tanks will have been grouted and Resource Conservation and Recovery Act (RCRA)- closed; more than 200 facilities will have been demolished or disposed of, including three reactors, several spent fuel basins, and hot cells; thousands of containers of buried transuranic waste will have been retrieved; more than 8,000 cubic meters (10,464 cubic yards) of contact-handled transuranic waste and more than 500 cubic meters (654 cubic yards) of remote-handled transuranic waste will have been characterized, packaged, and shipped offsite; almost 200 release sites and voluntary consent order tank systems will have been remediated; and 3,178 units of spent fuel will have been moved from wet to dry storage. In 2007, CWI began the construction of the Integrated Waste Treatment Unit that will treat the sodium-bearing waste for eventual disposal; removed and disposed the 112-ton Engineering Test Reactor vessel; demolished all significant radiological facilities at Test Area North; continued the exhumation of buried transuranic wastes from the Subsurface Disposal Area at the Radioactive Waste Management Complex; shipped the first of hundreds of containers of remote-handled transuranic waste to the Waste Isolation Pilot Plant; disposed of thousands of cubic meters of low-level and low-level mixed radioactive wastes both onsite and offsite while meeting all regulatory cleanup objectives. (author)

  9. Cleanup Verification Package for the 116-K-2 Effluent Trench

    SciTech Connect (OSTI)

    J. M. Capron

    2006-04-04T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 116-K-2 effluent trench, also referred to as the 116-K-2 mile-long trench and the 116-K-2 site. During its period of operation, the 116-K-2 site was used to dispose of cooling water effluent from the 105-KE and 105-KW Reactors by percolation into the soil. This site also received mixed liquid wastes from the 105-KW and 105-KE fuel storage basins, reactor floor drains, and miscellaneous decontamination activities.

  10. Cleanup Verification Package for the 118-F-1 Burial Ground

    SciTech Connect (OSTI)

    E. J. Farris and H. M. Sulloway

    2008-01-10T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

  11. DOE Completes TRU Waste Cleanup at Bettis | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at Bettis DOE Completes TRU Waste

  12. EM Tackles Cleanup at Tonopah Test Range | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM Recovery Act PressEMTackles Cleanup at

  13. Groundwater Cleanup Progresses at Paducah Site | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 BudgetGoals andSenate | DepartmentGroundwater Cleanup

  14. Final Rocky Flats Cleanup Agreement, July 19, 1996 Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Departmentof Ohio Environmental Protection AgencyFinalRocky Flats Cleanup

  15. Recovery Act funds advance cleanup efforts at Cold War site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved Justification MemorandaRecords Management TheCleanup

  16. Mercury cleanup efforts intensify | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRod EggertMercury cleanup efforts ... Mercury

  17. Effects of fracturing fluid recovery upon well performance and ultimate recovery of hydraulically fractured gas wells

    E-Print Network [OSTI]

    Berthelot, Jan Marie

    1990-01-01T23:59:59.000Z

    on Clean-Up Mobile Water Phase 84 17 Effects of Hystexesis on Clean-Up immobile Water Phase 84 18 Effects of Initial Flow Conditions on Gas Production Initial Resexvor Pressure = 11, 700 psi ? Single Phase . . . 95 Table 19 21 22 23 24 25... Effects of Initial How Conditions on Gas Pmduction Initial Reservor Pressure = 7, 800 psi - Single Phase Effects of Initial Flow Conditions on Productivity With No Water Injection Initial Reservoir Pressure = 11, 700 psi ? Initial Cr = 10 Effects...

  18. Remediation cleanup options for the Hoe Creek UCG site

    SciTech Connect (OSTI)

    Nordin, J.; Griffin, W.; Chatwin, T.; Lindblom, S.; Crader, S.

    1990-03-01T23:59:59.000Z

    The US Department of Energy must restore groundwater quality at the Hoe Creek, Wyoming, underground coal gasification site using the best proven practicable technology. Six alternative remediation methods are evaluated in this project: (1) excavation, (2) three variations of groundwater plume containment, (3) in situ vacuum extraction, (4) pump and treat using a defined pattern of pumping wells to obtain an effective matrix sweep, (5) in situ flushing using a surfactant, and (6) in situ bioremediation. Available site characterization data is insufficient to accurately project the cost of remediation. Several alternative hypothetical examples and associated costs are described in the text and in the appendices. However, not enough information is available to use these examples as a basis for comparison purposes. Before a cleanup method is selected, core borings should be taken to define the areal extent and depth of contaminated matrix material. Segments of these core borings should be analyzed for organic contaminants in the soil (e.g., benzene) and their relationship to the groundwater contamination. These analyses and subsequent treatability studies will show whether or not the contaminants can be effectively removed by surface on in situ volatilization, leached from the matrix using washing solutions, or removed by bioremediation. After this information is obtained, each technology should be evaluated with respect to cost and probability of success. A decision tree for implementing remediation cleanup at the Hoe Creek site is presented in this report. 26 refs., 11 figs., 3 tabs.

  19. A cement kiln flue-dust evaluated as a soil liming material

    E-Print Network [OSTI]

    Stacha, Raimund

    1973-01-01T23:59:59.000Z

    A CEMENT KILN FLUE-DUST EVALUATED AS A SOIl LIMING MATERIAL A Thesis by RAIMUND STACHA Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE 1973 NJSbj t...:~StlCh tt A CEMENT KILN FLUE-DUST EVALUATED AS A SOIL I IMING MATERIAL A Thesis by RAIMUND STACHA Approved as to style and content by: (Chairman of Committee) (Head of Department) (Me er) (Member) (Member) (Member) (Member) 1973 ABSTRACT A...

  20. Development of a risk-based approach to Hanford Site cleanup

    SciTech Connect (OSTI)

    Hesser, W.A.; Daling, P.M. [Pacific Northwest Lab., Richland, WA (United States); Baynes, P.A. [Westinghouse Hanford Co., Richland, WA (United States)] [and others

    1995-06-01T23:59:59.000Z

    In response to a request from Mr. Thomas Grumbly, Assistant Secretary of Energy for Environmental Management, the Hanford Site contractors developed a conceptual set of risk-based cleanup strategies that (1) protect the public, workers, and environment from unacceptable risks; (2) are executable technically; and (3) fit within an expected annual funding profile of 1.05 billion dollars. These strategies were developed because (1) the US Department of Energy and Hanford Site budgets are being reduced, (2) stakeholders are dissatisfied with the perceived rate of cleanup, (3) the US Congress and the US Department of Energy are increasingly focusing on risk and riskreduction activities, (4) the present strategy is not integrated across the Site and is inconsistent in its treatment of similar hazards, (5) the present cleanup strategy is not cost-effective from a risk-reduction or future land use perspective, and (6) the milestones and activities in the Tri-Party Agreement cannot be achieved with an anticipated funding of 1.05 billion dollars annually. The risk-based strategies described herein were developed through a systems analysis approach that (1) analyzed the cleanup mission; (2) identified cleanup objectives, including risk reduction, land use, and mortgage reduction; (3) analyzed the existing baseline cleanup strategy from a cost and risk perspective; (4) developed alternatives for accomplishing the cleanup mission; (5) compared those alternatives against cleanup objectives; and (6) produced conclusions and recommendations regarding the current strategy and potential risk-based strategies.

  1. Micellar/Polymer PhysicalProperty Models for Contaminant Cleanup Problems and

    E-Print Network [OSTI]

    Trangenstein, John A.

    /polymer phase behavior have been highly successful in simulating enhanced oil recovery processes using for contaminant cleanup [26] and for enhanced oil recovery [14]. Surfactants can be injected as dilute aqueousMicellar/Polymer Physical­Property Models for Contaminant Cleanup Problems and Enhanced Oil

  2. Waste Cleanup: Status and Implications of Compliance Agreements Between DOE and Its Regulators

    SciTech Connect (OSTI)

    Jones, G. L.; Swick, W. R.; Perry, T. C.; Kintner-Meyer, N.K.; Abraham, C. R.; Pollack, I. M.

    2003-02-26T23:59:59.000Z

    This paper discusses compliance agreements that affect the Department of Energy's (DOE) cleanup program. Compliance agreements are legally enforceable documents between DOE and its regulators, specifying cleanup activities and milestones that DOE has agreed to achieve. Over the years, these compliance agreements have been used to implement much of the cleanup activity at DOE sites, which is carried our primarily under two federal laws - the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended (CERCLA) and the Resource Conservation and Recovery Act of 0f 1976, as amended (RCRA). Our objectives were to determine the types of compliance agreements in effect at DOE cleanup sites, DOE's progress in achieving the milestones contained in the agreements, whether the agreements allowed DOE to prioritize work across sites according to relative risk, and possible implications the agreements have on DOE's efforts to improve the cleanup program.

  3. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect (OSTI)

    Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

    2014-11-01T23:59:59.000Z

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  4. Sulfur Dioxide Treatment from Flue Gases Using a Biotrickling

    E-Print Network [OSTI]

    ), and several episodes in London (1). All fuels used by humans such as coal, oil, natural gas, peat, wood of absorbing sulfur dioxide either in water or in aqueous slurries

  5. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases

    SciTech Connect (OSTI)

    Lee, C.W.; Srivastava, R.K.; Ghorishi, S.B.; Karwowski, J.; Hastings, T.H.; Hirschi, J.C. [US Environmental Protection Agency, Triangle Park, NC (United States)

    2006-05-15T23:59:59.000Z

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur (S) and chlorine (Cl)) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NO{sub x}) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg{sup 0}), decreasing the percentage of Hg{sup 0} at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg{sup 0} by the SCR catalyst, with the percentage of Hg{sup 0} decreasing from {approximately} 96% at the inlet of the reactor to {approximately} 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation. 16 refs., 4 figs., 3 tabs.

  6. RCRA corrective action: Action levels and media cleanup standards

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This Information Brief describes how action levels (ALs), which are used to determine if it is necessary to perform a Corrective Measures Study (CMS), and media cleanup standards (MCSs), which are used to set the standards for remediation performed in conjunction with Corrective Measures Implementation (CMI) are set. It is one of a series of Information Briefs on RCRA Corrective Action. ALs are health-and-environmentally-based levels of hazardous constituents in ground water, surface water, soil, or air, determined to be indicators for protection of human health and the environment. In the corrective action process, the regulator uses ALs to determine if the owner/operator of a treatment, storage, or disposal facility is required to perform a CMS.

  7. MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980

    E-Print Network [OSTI]

    Searcy, Alan W.

    2010-01-01T23:59:59.000Z

    the reaction in flue gas desulphurization processes. TIEimportance in flue gas desulphurization proc­ esses carried

  8. Advanced cleanup device performance design report (Task 4. 3). Volume A. Cyclone theory and data correlation

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The 100-year-old cyclone is perhaps the best known and least expensive method of gas particulate cleaning. The theory and practice of cyclone operation has been extensively documented. The body of experience indicates that small cyclones operated at high swirl velocity give better separative efficiency although consideration must also be given to coarse particle bouncing and limitations associated with system pressure losses and cyclone erosion. Hence, multicyclones (i.e., many small cyclones operating in parallel), and staging have been employed in situations where unusually clean gas is mandated. Despite the extensive body of literature on the subject, predicting the performance of cyclones in actual service remains an art. The inadequacies in the existing cyclone theories quickly became evident in the course of several experimental programs at GE using various cyclone designs. The most significant finding of this work has been the observation that electrostatic forces could enhance, or, in fact, dominate the separation process. Cyclone separative efficiencies, with natural electrostatic effects present, were found to be independent of flowrate or even to improve at low flowrates, completely contrary to any of the existing cyclone literature. By implication, it is also possible that such electrostatic forces could influence cyclone scaling so that large cyclones employed in the cleanup train may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. Much of the GE work has therefore been oriented toward understanding and augmenting these electrostatic effects. This report is a collection of the most significant papers and memos on cyclone performance generated during the past three years by General Electric under the CFCC program.

  9. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Brent Constantz; Randy Seeker; Martin Devenney

    2010-06-30T23:59:59.000Z

    Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO{sub 2} to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM{trademark} was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which is a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.

  10. Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds

    E-Print Network [OSTI]

    Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

    2008-01-01T23:59:59.000Z

    Coal-fired power generating plants contribute approximatelynumber of coal-fired generating plants (1-3). The mercury is

  11. QUANTIFICATION OF MERCURY IN FLUE GAS EMISSION USING BORON-DOPED DIAMOND ELECTROCHEMISTRY

    SciTech Connect (OSTI)

    A. Manivannan; M.S. Seehra

    2003-08-19T23:59:59.000Z

    In this project, we have attempted to develop a new technique utilizing Boron-doped diamond (BDD) films to electrochemically detect mercury dissolved in solution via the initial deposition of metallic mercury, followed by anodic linear sweep voltammetry in the range from 10-10{sup -10} M to 10{sup -5} M. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were employed. The extremely low background current for BDD electrodes compared to glassy carbon (GC) provides a strong advantage in trace metal detection. CV peak currents showed good linearity in the micromolar range. A detection level of 6.8 x 10{sup -10} M was achieved with DPV in 0.1 M KNO{sub 3} (pH = 1) for a deposition time of 20 minutes. Reproducible stripping peaks were obtained, even for the low concentration range. A comparison with GC shows that BDD is superior. Linear behavior was also obtained in the mercury concentration range from 10{sup -10} M to 10{sup -9} M.

  12. Performance history over 10 years of super duplex stainless steel in flue gas desulfurization

    SciTech Connect (OSTI)

    Bendall, K.C. [Langley Alloys Ltd., Maidenhead (United Kingdom)

    1996-08-01T23:59:59.000Z

    25 Cr duplex (austenitic/ferritic) stainless steel containing copper and nitrogen offers a cost effective solution to material selection for pollution control equipment. The properties of duplex stainless steel which make it suitable for this type of application are discussed and long term performance histories presented. It is concluded that high alloy duplex steel has an important role to play in the production of low maintenance reliable equipment for FGD and other pollution control systems.

  13. Fundamental mechanisms in flue gas conditioning. Quarterly report, April 1992--June 1992

    SciTech Connect (OSTI)

    Snyder, T.R.; Vann Bush, P.

    1992-07-27T23:59:59.000Z

    SEM pictures of the three mixtures of sorbent and ash from the DITF and the base line ESP hopper ash from Muskingum are shown in Figures 1 through 4. The effects of sorbent addition on particle morphology are evident in Figures 2 through 4 by the presence of irregularly shaped particles and deposits on the surfaces of the spherical fly ash particles. In contrast, the base Ene ash particles have the characteristic relatively smooth, spherical morphology normally associated with pulverized-coal (PC) fly ashes. Resistivity determinations made on these four ashes in ascending and descending temperature modes. These data are shown in Figures 5 and 6. Sorbent injection processes performed at the DITF lowered the duct temperature to around 165{degrees}F from about 350{degrees}F for base line operation. Consequently, during collection in the ESP, the particulate matter from the sorbent injection processes had a significantly lower resitivity (approximately 4 {times} 10{sup 7} {Omega}-cm) than the base line ash (approximately 3 {times} 10{sup 11} {Omega}-cm at 350{degrees}F). Specific surface areas and true particle densities have been measured for the four samples obtained from the DOE/PETC Duct Injection Test Facility. These data are summarized in Table 4. The primary difference indicated by these initial analyses of these four samples is the significant increase in specific surface area due to sorbent addition. The specific surface areas of the three sorbent and ash mixtures from the DITF are quite similar.

  14. Fundamental mechanisms in flue gas conditioning. Quarterly report, October 1992--December 1992

    SciTech Connect (OSTI)

    Snyder, T.R.; Bush, P.V.

    1993-01-20T23:59:59.000Z

    We performed a wide variety of laboratory analyses during the past quarter. As with most of the work we performed during the previous quarter, our recent efforts were primarily directed toward the determination of the effects of adsorbed water on the cohesivity and tensile strength of powders. We also continued our analyses of dust cake ashes that have had the soluble compounds leached from their particle surfaces by repeated washings with water. Our analyses of leached and unleached dust cake ashes continued to provide some interesting insights into effects that compounds adsorbed on surfaces of ash particles can have on bulk ash behavior. As suggested by our literature review, our data indicate that water adsorption depends on particle morphology and on surface chemistry. Our measurements of tensile strength show, that for many of the samples we have analyzed a relative minimum in tensile strength exists for samples conditioned and tested at about 30% relative humidity. In our examinations of the effects of water conditioning on sample cohesivity, we determined that in the absence of absorption of water into the interior of the particles, cohesivity usually increases sharply when environments having relative humidities above 75% are used to condition and test the samples. Plans are under way to condition selected samples with (NH{sub 4}){sub 2}SO{sub 4}, NH{sub 4}HSO{sub 4}, CaCl{sub 2}, organosiloxane, and SO{sub 3}. Pending approval, we will begin these conditioning experiments, and subsequent analyses of the conditioned samples.

  15. The utilization of flue gas desulfurization waste by-products in construction brick 

    E-Print Network [OSTI]

    Berryman, Charles Wayne

    1992-01-01T23:59:59.000Z

    Unconfined Compressive Strength and Density Comparisons of Gypsum Hemihydrate with Various Inductions of Fly Ash 16 Unconfined Compressive Strength and Density Comparisons Using Various Types of Bottom Ashes 18 Optimum Temperature to Calcine Dihydrate... Gypsum to Hemihydrate Gypsum 21 Optimum Time to Calcine Dihydrate to Hemihydrate 22 Unconfined Compressive Strength and Density Comparisons for Hemihydrate Subjected to Various Size Sieves 25 Temperature of Hemihydrate during Hydration versus Time...

  16. The utilization of flue gas desulfurization waste by-products in construction brick

    E-Print Network [OSTI]

    Berryman, Charles Wayne

    1992-01-01T23:59:59.000Z

    APPENDIX D. TEST PROCEDURES APPENDIX E. CONVERSION TABLES VITA 85 90 93 96 99 LIST OF FIGURES Figure Page Model for FGD Waste By-Product Research Unconfined Compressive Strength for Fly Ash Mixed with Various Inductions of Portland Cement 15... properties such as weight, durability, strength, density, etc. Varying mixes of bottom ash, fly ash, portland cement, and sand will be tested for possible enhancement of the hemihydrate. Also, a mix design that best utilizes all the waste by...

  17. pH Adjustment of Power Plant Cooling Water with Flue Gas/ Fly Ash - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development of NovelHigh( ( ( ( ( ( ( ( ( ( ( ( (

  18. DOE/FETC/TR--98-01 SORBENTS FOR MERCURY REMOVAL FROM FLUE GAS

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 Clean Energy5655994DP-1513 . Di

  19. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 CleanFOR IMMEDIATE RELEASENovel CO 2

  20. Catalysts for Oxidation of Mercury in Flue Gas - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C lKieling ,Catalysis ScienceTheAdvanced

  1. Ab Initio Rational Design of New MOFs for Separations and Flue Gas Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become agovEducationWelcome to StudyFuel

  2. Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAESMissionMetal-Organic Framework

  3. High-accuracy P-p-T measurements of pure gas and natural gas like mixtures using a compact magnetic suspension densimeter

    E-Print Network [OSTI]

    Ejaz, Saquib

    2007-09-17T23:59:59.000Z

    into syngas, i.e. carbon monoxide and hydrogen. The syngas, after cleaned of particles, mercury and sulfur, is combusted and the resulting hot, pressurized flue gas expands through a gas turbine thus producing power in an open gas turbine (Brayton) cycle...). The indirect route involves the production of syngas. Syngas can be produced by steam reforming or partial oxidative reaction of methane, which finally is converted to higher hydrocarbons by a Fischer- Tropsch (FT) process. The need for air separation...

  4. From Cleanup to Stewardship. A companion report to Accelerating Cleanup: Paths to Closure and background information to support the scoping process required for the 1998 PEIS Settlement Study

    SciTech Connect (OSTI)

    None

    1999-10-01T23:59:59.000Z

    Long-term stewardship is expected to be needed at more than 100 DOE sites after DOE's Environmental Management program completes disposal, stabilization, and restoration operations to address waste and contamination resulting from nuclear research and nuclear weapons production conducted over the past 50 years. From Cleanup to stewardship provides background information on the Department of Energy (DOE) long-term stewardship obligations and activities. This document begins to examine the transition from cleanup to long-term stewardship, and it fulfills the Secretary's commitment to the President in the 1999 Performance Agreement to provide a companion report to the Department's Accelerating Cleanup: Paths to Closure report. It also provides background information to support the scoping process required for a study on long-term stewardship required by a 1998 Settlement Agreement.

  5. EM’s December Newsletter Recaps Cold War Cleanup Accomplishments in 2013

    Broader source: Energy.gov [DOE]

    On Dec. 19, EM completed demolition of the 4.8 million-square-foot Building K-25 at Oak Ridge, a milestone that capped a busy and successful 2013 for the Cold War cleanup program.

  6. EA-1345: Cleanup and Closure of the Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    DOE prepared an EA and finding of no significant impact (FONSI) for cleanup and closure of DOE’s Energy Technology Engineering Center at the Santa Susana Field Laboratory in 2003. However, DOE’s...

  7. Active-to-Passive Environmental Cleanup Transition Strategies - 13220

    SciTech Connect (OSTI)

    Gaughan, Thomas F. [Savannah River Nuclear Solutions, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, Savannah River Site, Aiken, SC 29808 (United States); Aylward, Robert S.; Denham, Miles E.; Looney, Brian B. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Whitaker, Wade C. [Department of Energy - Savannah River, Savannah River Site, Aiken, SC 29808 (United States)] [Department of Energy - Savannah River, Savannah River Site, Aiken, SC 29808 (United States); Mills, Gary L. [Savannah River Ecology Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Ecology Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site uses a graded approach to environmental cleanup. The selection of groundwater and vadose zone remediation technologies for a specific contamination area is based on the size, contaminant type, contaminant concentration, and configuration of the plume. These attributes are the result of the nature and mass of the source of contamination and the subsurface characteristics in the area of the plume. Many large plumes consist of several zones that are most efficiently addressed with separate complementary corrective action/remedial technologies. The highest concentrations of contaminants are found in the source zone. The most robust, high mass removal technologies are often best suited for remediation of the source zone. In the primary plume zone, active remedies, such as pump-and-treat, may be necessary to remove contaminants and exert hydraulic control of the plume. In the dilute fringe zone, contaminants are generally lower in concentration and can often be treated with passive techniques. A key determination in achieving an acceptable and cost-effective end state for a given waste unit is when to transition from an active treatment system to a more passive or natural approach (e.g., monitored natural attenuation or enhanced attenuation). This paper will discuss the considerations for such a transition as well as provide examples of successful transitions at the Savannah River Site. (authors)

  8. Advanced fuel gas desulfurization (AFGD) demonstration project. Technical progress report No. 19, July 1, 1994--September 30, 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The {open_quotes}Advanced Flue Gas Desulfurization (AFGD) Demonstration Project{close_quotes} is a $150.5 million cooperative effort between the U.S. Department of Energy and Pure Air, a general partnership of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc. The AFGD process is one of several alternatives to conventional flue gas desulfurization (FGD) being demonstrated under the Department of Energy`s Clean Coal Technology Demonstration Program. The AFGD demonstration project is located at the Northern Indiana Public Service Company`s Bailly Generating Station, about 12 miles northeast of Gary, Indiana.

  9. PROGRESS & CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    SciTech Connect (OSTI)

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-23T23:59:59.000Z

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m{sup 3} (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m{sup 3} (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We plan to treat these wastes as transuranic waste (TRU) for disposal at the Waste Isolation Pilot Plant (WIPP), which will reduce the WTP system processing time by three years. We are also developing and testing bulk vitrification as a technology to supplement the WTP LAW vitrification facility for immobilizing the massive volume of LAW. We will conduct a full-scale demonstration of the Demonstration Bulk Vitrification System by immobilizing up to 1,100 m{sup 3} (300,000 gallons) of tank S-109 low-curie soluble waste from which Cs-137 had previously been removed. This past year has been marked by both progress and new challenges. The focus of our tank farm work has been retrieving waste from the old single-shell tanks (SSTs). We have completed waste retrieval from three SSTs and are conducting retrieval operations on an additional three SSTs. While most waste retrievals have gone about as expected, we have faced challenges with some recalcitrant tank heel wastes that required enhanced approaches. Those enhanced approaches ranged from oxalic acid additions to deploying a remote high-pressure water lance. As with all large, long-term projects that employ first of a kind technologies, we continue to be challenged to control costs and maintain schedule. However, it is most important to work safely and to provide facilities that will do the job they are intended to do.

  10. North Slope (Wahluke Slope) expedited response action cleanup plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  11. Research and Education of CO{sub 2} Separation from Coal Combustion Flue Gases with Regenerable Magnesium Solutions

    SciTech Connect (OSTI)

    Lee, Joo-Youp

    2013-09-30T23:59:59.000Z

    A novel method using environment-friendly chemical magnesium hydroxide (Mg(OH){sub 2}) solution to capture carbon dioxide from coal-fired power plants flue gas has been studied under this project in the post-combustion control area. The project utilizes the chemistry underlying the CO{sub 2}-Mg(OH){sub 2} system and proven and well-studied mass transfer devices for high levels of CO{sub 2} removal. The major goals of this research were to select and design an appropriate absorber which can absorb greater than 90% CO{sub 2} gas with low energy costs, and to find and optimize the operating conditions for the regeneration step. During the project period, we studied the physical and chemical characteristics of the scrubbing agent, the reaction taking place in the system, development and evaluation of CO{sub 2} gas absorber, desorption mechanism, and operation and optimization of continuous operation. Both batch and continuous operations were performed to examine the effects of various parameters including liquid-to-gas ratio, residence time, lean solvent concentration, pressure drop, bed height, CO{sub 2} partial pressure, bubble size, pH, and temperature on the absorption. The dissolution of Mg(OH){sub 2} particles, formation of magnesium carbonate (MgCO{sub 3}), and vapor-liquid-solid equilibrium (VLSE) of the system were also studied. The dissolution of Mg(OH){sub 2} particles and the steady release of magnesium ions into the solution was a crucial step to maintain a level of alkalinity in the CO{sub 2} absorption process. The dissolution process was modeled using a shrinking core model, and the dissolution reaction between proton ions and Mg(OH){sub 2} particles was found to be a rate-controlling step. The intrinsic surface reaction kinetics was found to be a strong function of temperature, and its kinetic expression was obtained. The kinetics of MgCO{sub 3} formation was also studied in terms of different pH values and temperatures, and was enhanced under high pH and temperatures.

  12. Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs 

    E-Print Network [OSTI]

    Nogueira de Mago, Marjorie Carolina

    2005-11-01T23:59:59.000Z

    were followed by porosity measurement and UCS tests. Main results are presented as follows. First, the UCS of the rock was reduced by approximately 30% of its original value as a result of the dissolution process. Second, porosity profiles of rock...

  13. International Journal of Greenhouse Gas Control 27 (2014) 279288 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Jaramillo, Paulina

    2014-01-01T23:59:59.000Z

    benefits of flexible CCS range from 0 to 35%. Most of the potential benefit is capital savings from.elsevier.com/locate/ijggc Profitability of CCS with flue gas bypass and solvent storage David Luke Oatesa, , Peter Versteega , Eric Accepted 3 June 2014 Keywords: Carbon capture and storage Carbon capture and sequestration Flexible CCS

  14. An Act Relative to Environmental Cleanup and Promoting the Redevelopment of Contaminated Property- The “Brownfields” Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    The Commonwealth of Massachusetts provides liability relief and financial incentives aimed to encourage cleanup and redevelopment of contaminated sites. Financial incentives include encouraging...

  15. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final [report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing sits are summarized as follows: In accordance with EPA-promulgated land cleanup standards (40 CFR 192), in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100-m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. A bulk interpretation of these EPA standards has been accepted by the Nuclear Regulatory Commission (NRC), and while the concentration of the finer-sized soil fraction less than a No. 4 mesh sieve contains the higher concentration of radioactivity, the bulk approach in effect integrates the total sample radioactivity over the entire sample mass. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 cleanup protocol has been developed in accordance with Supplemental Standard provisions of 40 CFR 192 for NRC/Colorado Department of Health (CDH) approval for timely implementation. Detailed elements of the protocol are contained in Appendix A, Generic Protocol from Thorium-230 Cleanup/Verification at UMTRA Project Processing Sites. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR 192 relative to supplemental standards.

  16. Preferential oxidation of methanol and carbon monoxide for gas cleanup during methanol fuel processing

    SciTech Connect (OSTI)

    Birdsell, S.A.; Vanderborgh, N.E.; Inbody, M.A. [Los Alamos National Lab., NM (United States)

    1993-07-01T23:59:59.000Z

    Methanol fuel processing generates hydrogen for low-temperature, PEM fuel cell systems now being considered for transportation and other applications. Although liquid methanol fuel is convenient for this application, existing fuel processing techniques generate contaminants that degrade fuel cell performance. Through mathematical models and laboratory experiments chemical processing is described that removes CO and other contaminants from the anode feed stream.

  17. Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup

    E-Print Network [OSTI]

    Ming, Pingjia

    2014-06-05T23:59:59.000Z

    hydrocarbons mixture such as EPE (74.8% methane, 8% ethane, 8% ethylene, 2.1% propane and 1.1% Propene). Non-thermal plasmas, due to their unique non-equilibrium characteristics, offer advantages as method of reforming at lower temperature (100-150 ş...

  18. Performance and gas cleanup criterion for a cotton gin waste fluidized-bed gasifier 

    E-Print Network [OSTI]

    Craig, Joe David

    1980-01-01T23:59:59.000Z

    . The basic results of Groves (1979) gave strong incentives to des1gn a scaled up fluidized-bed gasifier. High heat transfer rates from bed to fore1gn particles, the thermal flywheel characteristic of the bed, and the violent mixing and agitation occuring... fluidized beds. Among the advantages are high heat transfer rates from bed to foreign particles, the bed acts as a thermal flywheel and violent mixing and agitation occur. The fluidized-bed unit 13 )ur Fluidized Sand Bed Ll pright Cylinder A...

  19. Performance and gas cleanup criterion for a cotton gin waste fluidized-bed gasifier

    E-Print Network [OSTI]

    Craig, Joe David

    1980-01-01T23:59:59.000Z

    feedstock, preferably used with very little preprocessing; however, the design should be able to handle other biomass feedstocks with little or no modification. The design heating value of gin waste is 16. 3 MJ/Kg. 2) It should be a fluidized bed type...

  20. Short Communications FID gas chromatogram from LC-GC clean-up and analysis of the

    E-Print Network [OSTI]

    Zare, Richard N.

    ) as a result of entry of air into the ion source through the leaking press-fit connection Such problems were of the glued press-fit connection.:` was tested by use of an HPLC pump delivering pentane as mobile phase. A short piece (ca 0.5m) of 0.25mm i.d.fused silica tubing was glued into a press-fit connector which had

  1. Development of ceramic membrane reactors for high temperature gas cleanup. Final report

    SciTech Connect (OSTI)

    Roberts, D.L.; Abraham, I.C.; Blum, Y.; Gottschlich, D.E.; Hirschon, A.; Way, J.D.; Collins, J.

    1993-06-01T23:59:59.000Z

    The objective of this project was to develop high temperature, high pressure catalytic ceramic membrane reactors and to demonstrate the feasibility of using these membrane reactors to control gaseous contaminants (hydrogen sulfide and ammonia) in integrated gasification combined cycle (IGCC) systems. Our strategy was to first develop catalysts and membranes suitable for the IGCC application and then combine these two components as a complete membrane reactor system. We also developed a computer model of the membrane reactor and used it, along with experimental data, to perform an economic analysis of the IGCC application. Our results have demonstrated the concept of using a membrane reactor to remove trace contaminants from an IGCC process. Experiments showed that NH{sub 3} decomposition efficiencies of 95% can be achieved. Our economic evaluation predicts ammonia decomposition costs of less than 1% of the total cost of electricity; improved membranes would give even higher conversions and lower costs.

  2. Evaluation of sorbents for the cleanup of coal-derived synthesis gas at elevated temperatures

    E-Print Network [OSTI]

    Couling, David Joseph

    2012-01-01T23:59:59.000Z

    Integrated Gasification Combined Cycle (IGCC) with carbon dioxide capture is a promising technology to produce electricity from coal at a higher efficiency than with traditional subcritical pulverized coal (PC) power plants. ...

  3. DOE Issues Request for Information on Gas Clean-Up for Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy81st Lessons Learned QuarterlyEnforcementRecharging

  4. DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelopEnergyof EnergyDOE,

  5. Renewable Natural Gas Clean-up Challenges and Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues Cells Webinar, July 13, 2011.

  6. Renewable Natural Gas Clean-up Challenges and Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues Cells Webinar, July 13, 2011.Energy by

  7. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    SciTech Connect (OSTI)

    Harp, Benton; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01T23:59:59.000Z

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations of the WTP are not only dependent upon the successful design and construction of the WTP, but also on appropriately preparing the tank farms and waste feed delivery infrastructure to reliably and consistently deliver waste feed to the WTP for many decades. The key components of the 2020 vision are: all WTP facilities are commissioned, turned-over and operational, achieving the earliest possible hot operations of completed WTP facilities, and supplying low-activity waste (LAW) feed directly to the LAW Facility using in-tank/near tank supplemental treatment technologies. A One System Integrated Project Team (IPT) was recently formed to focus on developing and executing the programs that will be critical to successful waste feed delivery and WTP startup. The team is comprised of members from Bechtel National, Inc. (BNI), Washington River Protection Solutions LLC (WRPS), and DOE-ORP and DOE-WTP. The IPT will combine WTP and WRPS capabilities in a mission-focused model that is clearly defined, empowered and cost efficient. The genesis for this new team and much of the 2020 vision is based on the work of an earlier team that was tasked with identifying the optimum approach to startup, commissioning, and turnover of WTP facilities for operations. This team worked backwards from 2020 - a date when the project will be completed and steady-state operations will be underway - and identified success criteria to achieving safe and efficient operations of the WTP. The team was not constrained by any existing contract work scope, labor, or funding parameters. Several essential strategies were identified to effectively realize the one-system model of integrated feed stream delivery, WTP operations, and product delivery, and to accomplish the team's vision of hot operations beginning in 2016: - Use a phased startup and turnover approach that will allow WTP facilities to be transitioned to an operational state on as short a timeline as credible. - Align Tank Farm (TF) and WTP objectives such that feed can be supplied to the WTP when it is required for hot operations. - Ensure immobilized waste and waste recycle streams can be recei

  8. Studies of Plutonium Aerosol Resuspension at the Time of the Maralinga Cleanup

    SciTech Connect (OSTI)

    Shinn, J

    2003-08-01T23:59:59.000Z

    At the former nuclear test site at Maralinga, South Australia, soil cleanup began in October 1996 with the objective to remove the potential for residual plutonium (Pu) exposures to the public. In this case the cleanup was to restore access to the closed test site. The proposed long-term land use was primarily to be a hunting area for Pitjantjatjara (Aboriginal) people, but also presumably to be available to the public who might have an interest in the history of the site. The long-term management objective for the site was to allow casual use, but to prohibit habitation. The goal of this study is to provide an evaluation of the Maralinga soil cleanup in terms of potential long-term public inhalation exposures to particulate Pu, and in terms of a contribution to planning and conducting any such soil Pu-cleanup. Such cleanups might be carried out for example, on the Nevada Test Site in the United States. For Pu that has been deposited on the soil by atmospheric sources of finely divided particles, the dominant exposure pathway to humans is by inhalation. Other exposure pathways are less important because the Pu particles become oxidized into a nearly insoluble form, do not easily enter into the food chain, nor are they significantly transferred through the intestine to the bloodstream should Pu become ingested. The purpose of this report is to provide results of the Pu resuspension measurements made before, during, and after the Pu cleanup at Maralinga, to compare these against similar measurements made elsewhere, and to interpret the results as they relate to potential long-term public exposures. (Exposures to Pu in dust plumes produced by mechanical disturbance during cleanup are considered short-term, unlikely to be significant for purposes of this report, and are not included). A considerable amount of research had been conducted at Maralinga by the Australian Radiation Laboratory, now the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), prior to the cleanup (Johnston et al, 1992, Williams 1993, Johnston et al 1993, Burns et al 1994, Burns et al 1995). ARPANSA staff made major contributions to delineate the areas with Pu in the soil, to determine the degree of secondary soil contamination by fission products from nuclear testing, to measure Pu resuspension by wind erosion of the undisturbed soil, and to prepare assessments of the human health risk from residual soil Pu. In addition, ARPANSA supported the Maralinga cleanup to assure compliance with criteria set by an independent technical advisory committee. During the cleanup ARPANSA monitored the residual Pu in the soil and certified that the cleanup was complete according to the criteria. It was not the reduction in potential inhalation exposure that usually was the main driver of the cleanup, but the requirement to also remove individual hot particles and fragments. It is the residual microscopic particles of Pu in the soil, however, that have the potential for long-term human exposure. The resuspension of respirable-size Pu particles has been studied with specialized equipment at the Nevada Test Site (Gilbert et al 1988a, Gilbert et al 1988b, Shinn et al 1989, and Shinn 1992), and at Bikini and Enewetak in the Marshall Islands (Shinn et al 1997). These efforts were in large part contributed by the Health and Ecological Assessment Division, University of California, Lawrence Livermore National Laboratory (LLNL). The study reported here is a collaboration between ARPANSA and LLNL, and was jointly supported by the United States Department of Energy, and the Commonwealth of Australia Department of Primary Industry and Energy.

  9. Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment

    SciTech Connect (OSTI)

    Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

    2001-02-01T23:59:59.000Z

    The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford.

  10. ``How clean is clean`` in the United States federal and Washington State cleanup regulations

    SciTech Connect (OSTI)

    Landau, H.G. [Landau Associates, Inc., Edmonds, WA (United States)

    1993-12-31T23:59:59.000Z

    The enactment of legislation and promulgation of implementing regulations generally involves the resolution of conflicting goals. Defining ``How Clean is Clean?`` in federal and state cleanup laws, regulations, and policies is no exception. Answering the ``How Clean is Clean?`` question has resulted in the identification of some important and sometimes conflicting goals. Continuing resolution of the following conflicting goals is the key to effect cleanup of hazardous waste sites: Expediency vs. Fairness; Flexibility vs. Consistency; Risk Reduction vs. Risk Causation; and Permanence vs. Cost Effectiveness.

  11. Cement kiln flue dust as a source of lime and potassium in four East Texas soils 

    E-Print Network [OSTI]

    Poole, Warren David

    1975-01-01T23:59:59.000Z

    (18) a 5. 3 (84) a 4. 8 (76) a 4. 2 (66) a 3. 8 (61) a 5. 2 (82) a 4. 1 (64) a 5. 0 (80) a *Duncan's Multiple Range Test. ? = . 05. Differences in yield due to rate of applied lime material followed by the same letter are not significantly...CEMENT KILN FLUE DUST AS A SOURCE OF LIME AND POTASSIUM IN FOUR EAST TEXAS SOILS A Thesis by WARREN DAVID POOLE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER...

  12. DECOMMISSIONING AND ENVRIONMENTAL CLEANUP OF SMALL ARMS TRAINING FACILITY

    SciTech Connect (OSTI)

    Kmetz, T.

    2012-12-04T23:59:59.000Z

    USDOE performed a (CERCLA) non-time critical removal (NTCR) action at the Small Arms Training Area (SATA) Site Evaluation Area (SEA) located at the Savannah River Site (SRS), in Aiken, South Carolina. From 1951 to May 2010, the SATA was used as a small weapons practice and qualifying firing range. The SATA consisted of 870.1 ha (2,150 ac) of woodlands and open field, of which approximately 2.9 ha (7.3 ac) were used as a firing range. The SATA facility was comprised of three small arms ranges (one static and two interactive), storage buildings for supplies, a weapons cleaning building, and a control building. Additionally, a 113- m (370-ft) long earthen berm was used as a target backstop during live-fire exercises. The berm soils accumulated a large amount of spent lead bullets in the berm face during the facilities 59- years of operation. The accumulation of lead was such that soil concentrations exceeded the U.S. Environmental Protection Agency (USEPA) residential and industrial worker regional screening levels (RSLs). The RSL threshold values are based on standardized exposure scenarios that estimate contaminant concentrations in soil that the USEPA considers protective of humans over a lifetime. For the SATA facility, lead was present in soil at concentrations that exceed both the current residential (400 mg/kg) and industrial (800 mg/kg) RSLs. In addition, the concentration of lead in the soil exceeded the Toxicity Characteristic Leaching Procedure (TCLP) (40 Code of Federal Regulations [CFR] 261.24) regulatory limit. The TCLP analysis simulates landfill conditions and is designed to determine the mobility of contaminants in waste. In addition, a principal threat source material (PTSM) evaluation, human health risk assessment (HHRA), and contaminant migration (CM) analysis were conducted to evaluate soil contamination at the SATA SEA. This evaluation determined that there were no contaminants present that constitute PTSM and the CM analysis revealed that no constituents posed a migration risk to groundwater. The NTCR action involved removal of approximately 12,092 m3 (15,816 yd3) of spent bullets and lead-impacted soil and off-site disposal. The removal action included soils from the berm area, a fill area that received scraped soils from the berm, and soil from a drainage ditch located on the edge of the berm area. Also included in the removal action was a mixture of soil, concrete, and asphalt from the other three range areas. Under this action, 11,796 m3 (15,429 yd3) of hazardous waste and impacted soil were removed from the SATA and transported to a permitted hazardous waste disposal facility (Lone Mountain Facility in Oklahoma) and 296 m3 (387 yd3) of nonhazardous waste (primarily concrete debris) were removed and transported to a local solid waste landfill for disposal. During the excavation process, the extent was continuously assessed through the use of a hand-held, field-portable X-ray fluorescence unit with results verified using confirmation sampling with certified laboratory analysis. Following the completion of the excavation and confirmation sampling, final contouring, grading, and establishment of vegetative cover was performed to stabilize the affected areas. The NTCR action began on August 17, 2010, and mechanical completion was achieved on April 27, 2011. The selected removal action met the removal action objectives (RAOs), is protective of human health and the environment both in the short- and long-term, was successful in removing potential ecological risks, and is protective of surface water and groundwater. Furthermore, the selected NTCR action met residential cleanup goals and resulted in the release of the SEA from restricted use contributing to the overall footprint reduction at SRS.

  13. Guardian Unlimited | The Guardian | Scientists see big role for uranium clean-up bug Sign in Register

    E-Print Network [OSTI]

    Lovley, Derek

    The Guardian Scientists have sequenced the DNA of a bacterium which can help to remove uranium fromGuardian Unlimited | The Guardian | Scientists see big role for uranium clean-up bug Sign big role for uranium clean-up bug Alok Jha, science correspondent Friday December 12, 2003

  14. The production of activated silica with carbon dioxide gas

    E-Print Network [OSTI]

    Hayes, William Bell

    1956-01-01T23:59:59.000Z

    Ional to the per cent of carbon dioxi. de 1n the flue gas for a constant total gas flow rate. REFE REN CES l. Andrews, R. V, , Hanford Works Eocument (1952), 2. Andrews, R. V. & J. A. W. W. A, , ~46 82 (1954). 3. Andrews, R. V, , Personal Communication 4... of the reciuire . ents for the dedree of iliASTER OF SCIENCE Janus', 1956 Major Subject: Chemi. cal Engineering TH PRODUCTION OP ACTIVATED SILICA 7iIITH CARBON DIOXIDE GAS A Thesis William Bell Hayes III Approved as to style and content by: Chairmen...

  15. Gas Separations using Ceramic Membranes

    SciTech Connect (OSTI)

    Paul KT Liu

    2005-01-13T23:59:59.000Z

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  16. US Department of Energy`s high-temperature and high-pressure particulate cleanup for advanced coal-based power systems

    SciTech Connect (OSTI)

    Dennis, R.A.

    1997-05-01T23:59:59.000Z

    The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systems has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.

  17. Development, Application and Performance of Venturi Register L. E. A. Burner System for Firing Oil and Gas Fuels

    E-Print Network [OSTI]

    Cawte, A. D.

    1979-01-01T23:59:59.000Z

    -.. \\. i\\. ,- I \\ itv \\ ~co""'120IL / ~ "- "I ....... ./ C02-NATURAL GA~ "- ~ ./ I ""' "" V ./ '" ."'l 10 11 12 13 14 15 16 17 02 AND C02 IN FLUE GAS - PER CENT BY VOLUME Figure 15 ECONOMICS OF OPERATION Figure 15 shows the relationship...

  18. HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Course contentCourse content

    E-Print Network [OSTI]

    Zevenhoven, Ron

    - firedPulverised coal- fired power plantpower plant #12;HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Pulverised coal combustion and gas clean-upPulverised coal combustion and gas clean-up #12;HELSINKIHELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 ·· Course contentCourse content ·· Flue gases and fuel

  19. Cesium and heavy metal removal from flue dusts and other matrices

    SciTech Connect (OSTI)

    Soderstrom, D.J.; May, R.; Spaulding, S. [Lockheed Environmental Systems and Technologies Co., Las Vegas, NV (United States). Technology Applications Div.

    1994-12-31T23:59:59.000Z

    A problem exists in the steel industry because of the generation of radioactive waste that is caused by the accidental destruction of nuclear detection instruments. The flue dust from electric Arc Furnaces (EAF) becomes contaminated with the radionuclide used. Typically the radionuclide is cesium 137. The problem is a concern to the industry since the contamination results in the generation of a mixed waste which is costly to dispose of properly. In the interest of providing a viable solution to the problem, Lockheed Environmental Systems and Technologies has developed a process for removal of cesium from flue dust. While removing the cesium from the treatment residue, the process also isolates the other major elements of concern and renders them innocuous, saleable, or readily disposable. However, several innovative techniques have been applied which make the process far more economical, and in addition, the changes simplify the operation and render it controllable. The process involves the dissolution of the various metallic and non-metallic constituents through the use of a mild mineral acid leach. This treatment solubilizes the majority of the constituents including the cesium.

  20. JV Task 125-Mercury Measurement in Combustion Flue Gases Short Course

    SciTech Connect (OSTI)

    Dennis Laudal

    2008-09-30T23:59:59.000Z

    The short course, designed to train personnel who have an interest in measuring mercury in combustion flue gases, was held twice at the Drury Inn in Marion, Illinois. The short course helped to provide attendees with the knowledge necessary to avoid the many pitfalls that can and do occur when measuring mercury in combustion flue gases. The first short course, May 5-8, 2008, included both a classroom-type session and hands-on demonstration of mercury-sampling equipment. The hands-on demonstration of equipment was staged at Southern Illinois Power Cooperative. Not including the Illinois Clean Coal Institute and the U.S. Department of Energy project managers, there were 12 attendees. The second short course was conducted September 16-17, 2008, but only included the classroom portion of the course; 14 people attended. In both cases, lectures were provided on the various mercury measurement methods, and interaction between attendees and EERC research personnel to discuss specific mercury measurement problems was promoted. Overall, the response to the course was excellent.

  1. Idaho Site’s Cold War Cleanup Takes Center Stage in Publication

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An association with more than 29,000 members featured an in-depth article on EM’s extensive Cold War legacy cleanup at the Idaho site in the current issue of its publication, The Military Engineer.

  2. CHEAP CLEAN-UP PROTOCOL To clean BigDye reactions

    E-Print Network [OSTI]

    Russell, Amy L.

    CHEAP CLEAN-UP PROTOCOL To clean BigDye reactions: 1. Combine and mix MgCl2/ethanol cocktail. 2. Air dry on a Kimwipe or pulse spin upside down. MgCl2/ethanol 1 µL 0.5M MgCl2 1000 µL 70% ethanol

  3. Cleanup Verification Package for the 100-F-20, Pacific Northwest Laboratory Parallel Pits

    SciTech Connect (OSTI)

    M. J. Appel

    2007-01-22T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 100-F-20, Pacific Northwest Laboratory Parallel Pits waste site. This waste site consisted of two earthen trenches thought to have received both radioactive and nonradioactive material related to the 100-F Experimental Animal Farm.

  4. BulletinVol. 64 -No. 4 February 5, 2010 Cleanup has begun in the stor-

    E-Print Network [OSTI]

    Ohta, Shigemi

    , based on the next prioritized building, and the next cleanup project will begin. -- Joe Gettler New technology programs with applications in energy efficiency, meteorologi- cal science, and national secu- rity. These research programs respond to DOE's mission to study the transport and fate of energy-related pollutants

  5. EA-1867: Scale-up of High-Temperature Syngas Cleanup Technology, Polk County, Florida

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide cost-shared funding to RTI International (RTI) for its proposed project to demonstrate the precommercial scale-up of RTI’s high-temperature syngas cleanup and carbon capture and sequestration technologies.

  6. Roundtable on Long-Term Management In The Cleanup of Contaminated Sites

    SciTech Connect (OSTI)

    Aimee Houghton

    2002-06-28T23:59:59.000Z

    The Center for Public Environmental Oversight (CPEO) convened a roundtable in Washington, DC on June 28, 2002 to discuss innovative approaches to long-term management in the cleanup of contaminated property. Twenty participants attended the meeting, including representatives of federal agencies, local government, state regulatory agencies, environmental organizations, and thinking tanks, as well as private consultants with experience in site remediation and redevelopment.

  7. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    SciTech Connect (OSTI)

    S. W. Clark and H. M Sulloway

    2007-10-31T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

  8. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    SciTech Connect (OSTI)

    S. W. Clark and H. M. Sulloway

    2007-09-26T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

  9. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel and J. M. Capron

    2007-07-25T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

  10. accident clean-up workers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident clean-up workers First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 COLUMBIA UNIVERSITY...

  11. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems: Greenfield assessment. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    Both the KRW fluidized-bed gasifier and the transport gasifier case studies were used for this assessment. The transport technology is a high-velocity circulating fluidized-bed reactor currently under development by The M.W. Kellogg Company. In the earlier assessment, seven design concepts or cases were identified; a process design was developed; major equipment items were identified; estimates of capital cost, operation and maintenance cost, and cost of electricity were developed; reliability was predicted; and development issues were identified for six studies. Three of the most probable cases were further evaluated for a Greenfield assessment in this report to adequately determine all costs independent of facilities at Plant Wansley.

  12. Lawrence Berkeley National Laboratory Launches Cleanup and Demolition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of Energy Laser-Firing ChemCamDepartment

  13. DOE Issues Final RFP for Idaho Cleanup Project Core

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevant toSiteCurrentAdvancedEnvironmental

  14. Protecting Recovery Act Cleanup Site During Massive Wildfire

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGasInformationPrimusProgramProject75798 Vol. 76,

  15. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01T23:59:59.000Z

    NO x ) in a flue gas desulphurization system. The ventedscrubbing in a flue gas desulphurization (FGD) plant usingx , e.g. , flue gas desulphurization (FGD) through injection

  16. Air pathway analysis for cleanup at the chemical plant area of the Weldon Spring site

    SciTech Connect (OSTI)

    Chang, Y.S.

    1994-01-01T23:59:59.000Z

    The Weldon Spring site is a mixed waste site located in St. Charles County, Missouri. Cleanup of the site is in the planning and design stage, and various engineering activities were considered for remedial action, including excavating soils, dredging sludge, treating various contaminated media in temporary facilities, transporting and staging supplies and contaminated material, and placing waste in an engineered disposal cell. Both contaminated and uncontaminated emissions from these activities were evaluated to assess air quality impacts and potential health effects for workers and the general public during the cleanup period. A site-specific air quality modeling approach was developed to address several complex issues, such as a variety of emission sources, an array of source/receptor configurations, and complicated sequencing/scheduling. This approach can be readily adapted to reflect changes in the expected activities as engineering plans are finalized.

  17. The Use of the Hanford Onsite Packaging and Transportation Safety Program to Meet Cleanup Milestones Under the Hanford Site Cleanup 2015 Vision and the American Recovery and Reinvestment Act of 2009 - 12403

    SciTech Connect (OSTI)

    Lavender, John C. [CH2M HILL Plateau Remediation Company, Richland, WA 99354 (United States); Edwards, W. Scott [Areva Federal Services, Richland, WA 99354 (United States); Macbeth, Paul J.; Self, Richard J. [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States); West, Lori D. [Materials and Energy Corporation, Richland, WA 99354 (United States)

    2012-07-01T23:59:59.000Z

    The Hanford Site presents unique challenges in meeting the U.S. Department of Energy Richland Operations Office (DOE-RL) 2015 Cleanup Vision. CH2M Hill Plateau Remediation Company (CHPRC), its subcontractors, and DOE-RL were challenged to retrieve, transport and remediate a wide range of waste materials. Through a collaborative effort by all Hanford Onsite Central Plateau Cleanup Team Members, disposition pathways for diverse and seemingly impossible to ship wastes were developed under a DOE Order 460.1C-compliant Hanford Onsite Transportation Safety Program. The team determined an effective method for transporting oversized compliant waste payloads to processing and disposition facilities. The use of the onsite TSD packaging authorizations proved to be vital to safely transporting these materials for processing and eventual final disposition. The American Recovery and Reinvestment Act of 2009 (ARRA) provided additional resources to expedite planning and execution of these important cleanup milestones. Through the innovative and creative use of the TSD, the Hanford Onsite Central Plateau Cleanup Team Members have developed and are executing an integrated project plan that enables the safe and compliant transport of a wide variety of difficult-to-transport waste items, accelerating previous cleanup schedules to meet cleanup milestones. (authors)

  18. Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel

    2007-01-01T23:59:59.000Z

    and Squillace, P. J. (2005). MTBE and gasoline hydrocarbonsP. J. (2004). The risk of MTBE relative to other VOCs inEPA to Settle Santa Monica MTBE Cleanup Costs, Press release

  19. Systems engineering product description report for the Hanford Cleanup Mission: First issue

    SciTech Connect (OSTI)

    Holmes, J.J.; Bailey, K.B. [Westinghouse Hanford Co., Richland, WA (United States); Collings, J.L.; Hubbard, A.B.; Niepke, T.M. [Science Applications International Corp. (United States)

    1994-06-01T23:59:59.000Z

    This document describes the upper level physical and administrative (nonphysical) products that, when delivered, complete the Hanford Cleanup Mission. Development of product descriptions is a continuation of the Sitewide Systems Engineering work described in the Sitewide functional analysis, the architecture synthesis, and is consistent with guidance contained in the mission plan. This document provides a bridge between all three documents and the products required to complete the mission of cleaning up the Hanford Site.

  20. Cleanup Verification Package for the 118-B-1, 105-B Solid Waste Burial Ground

    SciTech Connect (OSTI)

    J. M. Capron

    2008-01-21T23:59:59.000Z

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance criteria for the 118-B-1, 105-B Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-B Reactor and P-10 Tritium Separation Project and also received waste from the 105-N Reactor. The burial ground received reactor hardware, process piping and tubing, fuel spacers, glassware, electrical components, tritium process wastes, soft wastes and other miscellaneous debris.

  1. Cleanup Verification Package for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils

    SciTech Connect (OSTI)

    L. D. Habel

    2008-03-18T23:59:59.000Z

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils. The rectangular-shaped concrete basin on the south side of the 105-F Reactor building served as an underwater collection, storage, and transfer facility for irradiated fuel elements discharged from the reactor.

  2. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site: Final. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Thorium 230 (Th-230) at the Gunnison, Colorado processing site will require remediation, however, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Therefore, to effectively remediate the site with respect to Radium 226 (Ra-226) and Th-230, the following supplemental standard is proposed: In situ Ra-26 will be remediated to the EPA soil cleanup standards independent of groundwater considerations. In situ Th-230 concentrations will be remediated in the region above the encountered water table so the 1000-year projected Ra-226 concentration complies with the EPA soil cleanup concentration limits. If elevated Th-230 persists to the water table, an additional foot of excavation will be performed and the grid will be backfilled. Excavated grids will be backfilled to the final remedial action grade with clean cobbly soil. Final grid verification that is required below the water table will be performed by extracting and analyzing a single bulk soil sample with the bucket of a backhoe. Modeled surface radon flux values will be estimated and documented. A recommendation will be made that land records should be annotated to identify the presence of residual Th-230.

  3. Corrosion in gas conditioning plants - An overview

    SciTech Connect (OSTI)

    Pearce, B.; Dupart, M.

    1987-01-01T23:59:59.000Z

    Since the early 1800's, fuel gases of various sorts (acetylene, blast furnace gas, flue water gas, carbureted water gas, coal gas, coke oven gas and producer gas) were transmitted at low pressures in pipelines and were conditioned for contaminate removal. The removal of such contaminates as H/sub 2/S was usually accomplished by solid absorbents such as iron oxide, a process that is still in use today. The discovery in the late 20's of a regenerative process employing alkanolamines was instrumental in rapid increase in the use of natural gas in large volumes. Also at this time, the development of wide diameter pipelines that could handle 500-700 psi gas pressure provided the means of handling these large volumes of gas. The protection of the pipeline from corrosion depended upon contaminate removal of water, carbon dioxide and hydrogen sulfide. In the process of contaminant removal, the process equipment suffered severe corrosion damage. Corrosion test methods and inhibitors were applied to those early processes and have advanced from weep holes and coupons to the present way of electronic and physical test methods. The trend is away from the primary amine at either low strength or inhibited at high concentration to less corrosive, ''tailor-made'' solvents that can be designed or formulated to perform a given task at acceptable corrosion rates and at much lower energy levels.

  4. Development of a real-time monitor of mercury in combustor flues based on Active Nitrogen Energy Transfer (ANET)

    SciTech Connect (OSTI)

    Piper, L.G.; Fraser, M.E.; Davis, S.J. [Physical Sciences, Inc., Andover, MA (United States)

    1995-12-31T23:59:59.000Z

    This paper reports preliminary results from a development program to design and field test a prototype instrument for real-time mercury detection in combustor flue gases. This system has sub parts-per-billion sensitivity for Hg detection, can differentiate elemental mercury from mercuric chloride, and has a high tolerance toward particulates. The five major systems (sampling, discharge, detection, calibration, and data acquisition and control) which comprise the instrument are described, and design and preliminary test results are outlined.

  5. Improved gas tagging and cover gas combination for nuclear reactor

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.

    1983-09-26T23:59:59.000Z

    The invention discloses the use of stable isotopes of neon and argon, sealed as tags in different cladding nuclear fuel elements to be used in a liquid metal fast breeder reactor. Cladding failure allows fission gases and these tag isotopes to escape and to combine with the cover gas. The isotopes are Ne/sup 20/, Ne/sup 21/ and Ne/sup 22/ and Ar/sup 36/, Ar/sup 38/ and Ar/sup 40/, and the cover gas is He. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between 0 and -25/sup 0/C to remove the fission gases from the cover gas and tags, and the second or tag recovery system bed between -170 and -185/sup 0/C to isolate the tags from the cover gas. Spectrometric analysis is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be determined.

  6. Gas tagging and cover gas combination for nuclear reactor

    DOE Patents [OSTI]

    Gross, Kenny C. (Lemont, IL); Laug, Matthew T. (Idaho Falls, ID)

    1985-01-01T23:59:59.000Z

    The invention discloses the use of stable isotopes of neon and argon, that are grouped in preselected different ratios one to the other and are then sealed as tags in different cladded nuclear fuel elements to be used in a liquid metal fast breeder reactor. Failure of the cladding of any fuel element allows fission gases generated in the reaction and these tag isotopes to escape and to combine with the cover gas held in the reactor over the fuel elements. The isotopes specifically are Ne.sup.20, Ne.sup.21 and Ne.sup.22 of neon and Ar.sup.36, Ar.sup.38 and Ar.sup.40 of argon, and the cover gas is helium. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between approximately 0.degree. and -25.degree. C. operable to remove the fission gases from the cover gas and tags and the second or tag recovery system bed is held between approximately -170.degree. and -185.degree. C. operable to isolate the tags from the cover gas. Spectrometric analysis further is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be specifically determined.

  7. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

    2010-05-01T23:59:59.000Z

    An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  8. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect (OSTI)

    O. A. Marina; L. R. Pederson; R. Gemmen; K. Gerdes; H. Finklea; I. B. Celik

    2010-03-01T23:59:59.000Z

    An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  9. Comparison of thermoelectric and permeation dryers for sulfur dioxide removal during sample conditioning of wet gas streams

    SciTech Connect (OSTI)

    Dunder, T.A. [Entropy, Inc., Research Triangle Park, NC (United States). Research Div.; Leighty, D.A. [Perma Pure, Inc., Toms River, NJ (United States)

    1997-12-31T23:59:59.000Z

    Flue gas conditioning for moisture removal is commonly performed for criteria pollutant measurements, in particular for extractive CEM systems at combustion sources. An implicit assumption is that conditioning systems specifically remove moisture without affecting pollutant and diluent concentrations. Gas conditioning is usually performed by passing the flue gas through a cold trap (Peltier or thermoelectric dryer) to remove moisture by condensation, which is subsequently extracted by a peristaltic pump. Many air pollutants are water-soluble and potentially susceptible to removal in a condensation dryer from gas interaction with liquid water. An alternative technology for gas conditioning is the permeation dryer, where the flue gas passes through a selectively permeable membrane for moisture removal. In this case water is transferred through the membrane while other pollutants are excluded, and the gas does not contact condensed liquid. Laboratory experiments were performed to measure the relative removal of a water-soluble pollutant (sulfur dioxide, SO{sub 2}) by the two conditioning techniques. A wet gas generating system was used to create hot, wet gas streams of known composition (15% and 30% moisture, balance nitrogen) and flow rate. Pre-heated SO{sub 2} was dynamically spiked into the wet stream using mass flow meters to achieve concentrations of 20, 50, and 100 ppm. The spiked gas was directed through a heated sample line to either a thermoelectric or a permeation conditioning system. Two gas analyzers (Western Research UV gas monitor, KVB/Analect FTIR spectrometer) were used to measure the SO{sub 2} concentration after conditioning. Both analytic methods demonstrated that SO{sub 2} is removed to a significantly greater extent by the thermoelectric dryer. These results have important implications for SO{sub 2} monitoring and emissions trading.

  10. Methods developed for detecting hazardous elements in produced gas

    SciTech Connect (OSTI)

    Chao, S.; Attari, A. (Inst. of Gas Technology, Des Plaines, IL (United States))

    1995-01-16T23:59:59.000Z

    The Institute of Gas Technology, Des Plaines, Ill. has been developing sampling and analytical methods to detect in natural gas various trace constituents that may pose health, safety, or operational risks. The constituents of interest include paraffinic and aromatic hydrocarbons, H[sub 2]S, organic sulfur compounds, arsenic, mercury, radon, and others. Better sampling and analytical techniques for produced natural gas, similar to those developed by IGT for processed gas, will enhance producers and processors' abilities to monitor undesirable constituents in raw gas streams and improve their clean-up processes. The methods developed at IGT were modifications of air sampling and analytical methods that are commonly used for air toxic substances. These monitoring methods, when applied to natural gas, present special challenges because gas has a much more complex matrix than the air. Methods for the analysis of the following are discussed: arsenic, mercury, radon, sulfur compounds, hydrocarbons, and aromatics including BTEX and PAHs.

  11. Environmental Cleanup of the East Tennessee Technology Park Year One - Execution with Certainty SM - 13120

    SciTech Connect (OSTI)

    Schubert, A.L. [URS - CH2M Oak Ridge LLC, P.O. Box 4699, Oak Ridge, TN 37831-7294 (United States)] [URS - CH2M Oak Ridge LLC, P.O. Box 4699, Oak Ridge, TN 37831-7294 (United States)

    2013-07-01T23:59:59.000Z

    On August 1, 2011, URS - CH2M Oak Ridge LLC (UCOR) began its five-year, $1.4 billion cleanup of the East Tennessee Technology Park (ETTP), located on the U.S. Department of Energy's (DOE) Oak Ridge Reservation in Tennessee. UCOR will close out cleanup operations that began in 1998 under a previous contract. When the Contract Base scope of work [1] is completed in 2016, the K-25 gaseous diffusion building will have been demolished and all waste dispositioned, demolition will have started on the K-27 gaseous diffusion building, all contact-handled and remote-handled transuranic waste in inventory (approximately 500 cubic meters) will have been transferred to the Transuranic Waste Processing Center, previously designated 'No-Path-To-Disposition Waste' will have been dispositioned to the extent possible, and UCOR will have managed DOE Office of Environmental Management (EM)- owned facilities at ETTP, Oak Ridge National Laboratory (ORNL), and the Y-12 National Security Complex in a safe and cost-effective manner. Since assuming its responsibilities as the ETTP cleanup contractor, UCOR has completed its life-cycle Performance Measurement Baseline; received its Earned Value Management System (EVMS) certification; advanced the deactivation and demolition (D and D) of the K-25 gaseous diffusion building; recovered and completed the Tank W-1A and K-1070-B Burial Ground remediation projects; characterized, packaged, and shipped contact-handled transuranic waste to the Transuranic Waste Processing Center; disposed of more than 90,000 cubic yards of cleanup waste while managing the Environmental Management Waste Management Facility (EMWMF); and provided operations, surveillance, and maintenance activities at DOE EM facilities at ETTP, ORNL, and the Y-12 National Security Complex. Project performance as of December 31, 2012 has been excellent: - Cost Performance Index - 1.06; - Schedule Performance Index - 1.02. At the same time, since safety is the foundation of all cleanup work, UCOR's safety record goes hand in hand with its excellent project performance. Through calendar year 2012, UCOR's recordable injury rate was 0.33, and the company has worked close to 4 million hours without a lost work day injury. UCOR's safety record is one of the best in the DOE EM Complex. This performance was due, in large part, to the people and processes URS and CH2M HILL, the parent companies of UCOR, brought to the project. Key approaches included: - Selected and deployed experienced staff in key leadership positions throughout the organization; - Approached 'Transition' as the 'true' beginning of the cleanup project - kicking off a number of project initiatives such as Partnering, PMB development, D and D Plan execution, etc. - Established a project baseline for performance measurement and obtained EVMS certification in record time; - Determined material differences and changed conditions that warranted contract change - then quickly addressed these changes with the DOE client; - Aligned the project and the contract within one year - also done in record time; - Implemented Safety Trained Supervisor and Safety Conscious Work Environment Programs, and kicked off the pursuit of certification under DOE's Voluntary Protection Program. (authors)

  12. CO.sub.2 separation from low-temperature flue gases

    DOE Patents [OSTI]

    Dilmore, Robert (Irwin, PA); Allen, Douglas (Salem, MA); Soong, Yee (Monroeville, PA); Hedges, Sheila (Bethel Park, PA)

    2010-11-30T23:59:59.000Z

    Two methods are provide for the separation of carbon dioxide from the flue gases. The first method utilizes a phase-separating moiety dissolved in an aqueous solution of a basic moiety to capture carbon dioxide. The second method utilizes a phase-separating moiety as a suspended solid in an aqueous solution of a basic moiety to capture carbon dioxide. The first method takes advantage of the surface-independent nature of the CO.sub.2 absorption reactions in a homogeneous aqueous system. The second method also provides permanent sequestration of the carbon dioxide. Both methods incorporate the kinetic rate enhancements of amine-based scrubbing while eliminating the need to heat the entire amine solution (80% water) in order to regenerate and release CO.sub.2. Both methods also take advantage of the low-regeneration temperatures of CO.sub.2-bearing mineral systems such as Na.sub.2CO.sub.3/NaHCO.sub.3 and K.sub.2CO.sub.3/KHCO.sub.3.

  13. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    to install flue-gas desulphurization, NOx reduction, and aefficiency flue gas desulphurization and de-NO x to meet

  14. Coordinating NRC License Closure/Termination and Army Corps of Engineers FUSRAP Cleanups

    SciTech Connect (OSTI)

    Walter, N. [MACTEC, 511 Congress Street, Portland, ME 04101 (United States); Greene, D. R. [LeBoeuf, Lamb, Greene and MacRae LLP, 225 Asylum Street, Hartford, CT 06103 (United States); Knauerhase, R. K. [Combustion Engineering, 2000 Day Hill Road, CEP 5580-2207, Windsor, CT 06095 (United States)

    2006-07-01T23:59:59.000Z

    Overlapping regulatory cleanup programs present a significant challenge for business entities seeking to close and redevelop properties in an environmentally-appropriate but cost-effective manner. In the nuclear decontamination context, this challenge has been recognized in Memoranda of Understanding ('MOUs') between regulators with overlapping responsibilities seeking to minimize duplicative efforts/costs while fulfilling their respective regulatory obligations. For instance, an MOU between the Army Corps of Engineers (the 'Corps') and the Nuclear Regulatory Commission ('NRC') for coordinating Corps' cleanups under the Formerly Utilized Sites Remedial Action Program ('FUSRAP') and NRC D and D to close and terminate an NRC license was reached in July 2001. Similarly, U.S. Environmental Protection Agency ('EPA') and NRC entered into an MOU in October 2002 addressing the interaction between NRC decontamination and decommissioning ('D and D') oversight and EPA's authority under the Comprehensive Environmental Response, Compensation and Liability Act ('CERCLA') at NRC-licensed sites. Yet, despite these MOU agreements, the simultaneous application of different regulatory programs, differing perspectives on their respective objectives and limited experience in addressing such circumstances often can lead to issues that demand creative solutions. This paper examines the interplay of these regulatory programs, the MOU of the agencies seeking to address their responsibilities under them and the coordination of the cleanups and license closure/termination process under the programs. It also offers technical and practical suggestions and insight to cost-effectively manage such efforts based on experiences with these programs and the regulators and stakeholders involved (at the federal, state and local levels). (authors)

  15. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    Chugh, Y.P.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

    1994-10-01T23:59:59.000Z

    Preliminary environmental risk assessment on the FGD by-products to be placed underground is virtually complete. The initial mixes for pneumatic and hydraulic placement have been selected and are being subject to TCLP, ASTM, and modified SLP shake tests as well as ASTM column leaching. Results of these analyses show that the individual coal combustion residues, and the residues mixes, are non-hazardous in character. Based on available information, including well logs obtained from Peabody Coal Company, a detailed study of the geology of the placement site was completed. The study shows that the disposal site in the abandoned underground mine workings at depths of between 325 and 375 feet are well below potable groundwater resources. This, coupled with the benign nature of the residues and residues mixtures, should alleviate any concern that the underground placement will have adverse effects on groundwater resources. Seven convergence stations were installed in the proposed underground placement area of the Peabody Coal Company No. 10 mine. Several sets of convergence data were obtained from the stations. A study of materials handling and transportation of coal combustion residues from the electric power plant to the injection site has been made. The study evaluated the economics of the transportation of coal combustion residues by pneumatic trucks, by pressure differential rail cars, and by SEEC, Inc. collapsible intermodal containers (CICs) for different annual handling rates and transport distances. The preliminary physico-chemical characteristics and engineering properties of various FBC fly ash-spent bed mixes have been determined, and long-term studies of these properties are continuing.

  16. Pilot-Scale Demonstration of hZVI Process for Treating Flue Gas Desulfurization Wastewater at Plant Wansley, Carrollton, GA

    E-Print Network [OSTI]

    Peddi, Phani 1987-

    2011-12-06T23:59:59.000Z

    materials. These solids are flushed using high pressure jet stream which will fluidise the carbon bed dislodging the particles fixed in the carbon bed. The backwash water should be treated prior to discharge as the concentrations of the pollutants...). This slurry containing gypsum is recycled using recycle pumps and pumped to different levels and sprayed down. This slurry is continuously re-circulated until the percentage of solids and chlorides concentration raises up to certain level. Then a blowdown...

  17. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.

    1997-12-31T23:59:59.000Z

    The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

  18. Confined zone dispersion flue gas desulfurization demonstration. Volume 1, Quarterly report No. 5, November 1, 1991--January 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This is the fifth quarterly report for this project. This project is divided into three phases. Phase 1, which has been completed, involved design, engineering, and procurement for the CZD system, duct and facility modifications, and supporting equipment. Phase 2, also completed, included equipment acquisition and installation, facility construction, startup, and operator training for parametric testing. Phase 3 broadly covers testing, operation and disposition, but only a portion of Phase 3 was included in Budget Period 1. That portion was concerned with parametric testing of the CZD system to establish the optimum conditions for an extended, one-year, continuous demonstration. As of December 31, 1991, the following goals have been achieved. (1) Nozzle Selection - A modified Spraying Systems Company (SSC) atomizing nozzle has been selected for the one-year continuous CZD demonstration. (2) SO{sub 2} and NO{sub x} Reduction - Preliminary confirmation of 50% SO{sub 2} reduction has been achieved, but the NO{sub x} reduction target cannot be confirmed at this time. (3) Lime Selection - Testing indicated an injection rate of 40 to 50 gallons per minute with a lime slurry concentration of 8 to 10% to achieve 50% SO{sub 2} reduction. There has been no selection of the lime to be used in the one year demonstration. (4) ESP Optimization - Tests conducted to date have shown that lime injection has a very beneficial effect on ESP performance, and little adjustment may be necessary. (5) SO{sub 2} Removal Costs - Testing has not revealed any significant departure from the bases on which Bechtel`s original cost estimates (capital and operating) were prepared. Therefore, SO{sub 2} removal costs are still expected to be in the range of $300/ton or less.

  19. Geological and Geotechnical Site Investigation for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility

    SciTech Connect (OSTI)

    Metz, Paul; Bolz, Patricia

    2013-03-25T23:59:59.000Z

    With international efforts to limit anthropogenic carbon in the atmosphere, various CO{sub 2} sequestration methods have been studied by various facilities worldwide. Basalt rock in general has been referred to as potential host material for mineral carbonation by various authors, without much regard for compositional variations due to depositional environment, subsequent metamorphism, or hydrothermal alteration. Since mineral carbonation relies on the presence of certain magnesium, calcium, or iron silicates, it is necessary to study the texture, mineralogy, petrology, and geochemistry of specific basalts before implying potential for mineral carbonation. The development of a methodology for the characterization of basalts with respect to their susceptibility for mineral carbonation is proposed to be developed as part of this research. The methodology will be developed based on whole rock data, petrography and microprobe analyses for samples from the Caledonia Mine in Michigan, which is the site for a proposed small-scale demonstration project on mineral carbonation in basalt. Samples from the Keweenaw Peninsula will be used to determine general compositional trends using whole rock data and petrography. Basalts in the Keweenaw Peninsula have been subjected to zeolite and prehnite-pumpellyite facies metamorphism with concurrent native copper deposition. Alteration was likely due to the circulation of CO{sub 2}-rich fluids at slightly elevated temperatures and pressures, which is the process that is attempted to be duplicated by mineral carbonation.

  20. Pilot-Scale Demonstration of hZVI Process for Treating Flue Gas Desulfurization Wastewater at Plant Wansley, Carrollton, GA 

    E-Print Network [OSTI]

    Peddi, Phani 1987-

    2011-12-06T23:59:59.000Z

    -MS Inductively Coupled Plasma Mass Spectroscopy Mg2+ Magnesium Ion ml millilitre mM millimole Na Sodium Na2CO3 Sodium Carbonate NaHCO3 Sodium Bicarbonate NH4 + Ammonium Ion NO3 - Nitrate Ion NaOH Sodium Hydroxide NPDES National Pollutant Discharge....3.1 Performance of hZVI System and Pollutants .............. 54 5.3.2 Corrosion and Removal Mechanism ........................... 74 5.4 Oxidation-Reduction Potential (ORP) ..................................... 77...

  1. Continuing Clean-up at Oak Ridge, Portsmouth and Paducah-Successes and Near-Term Plans

    SciTech Connect (OSTI)

    Fritz, L. L.; Houser, S. M.; Starling, D. A.

    2002-02-26T23:59:59.000Z

    This paper describes the complexities and challenges associated with the Oak Ridge Environmental Management (EM) cleanup program and the steps that DOE and Bechtel Jacobs Company LLC (the Oak Ridge EM team) have collaboratively taken to make significant physical progress and get the job done. Maintaining significant environmental cleanup progress is a daunting challenge for the Oak Ridge EM Team. The scale and span of the Oak Ridge Operations (ORO) cleanup is immense-five major half-century-old installations in three states (three installations are complete gaseous diffusion plants), with concurrent cleanup at the fully operational Oak Ridge National Laboratory and Y-12 National Security Complex, and with regulatory oversight from three states and two United States (US) Environmental Protection Agency (EPA) Regions. Potential distractions arising from funding fluctuations and color-of-money constraints, regulatory negotiations, stakeholder issues, or any one of a number of other potential delay phenomena can not reduce the focus on safely achieving project objectives to maintain cleanup momentum.

  2. FLUOR HANFORD (FH) MAKES CLEANUP A REALITY IN NEARLY 11 YEARS AT HANFORD

    SciTech Connect (OSTI)

    GERBER, M.S.

    2007-05-24T23:59:59.000Z

    For nearly 11 years, Fluor Hanford has been busy cleaning up the legacy of nuclear weapons production at one of the Department of Energy's (DOE'S) major sites in the United States. As prime nuclear waste cleanup contractor at the vast Hanford Site in southeastern Washington state, Fluor Hanford has changed the face of cleanup. Fluor beginning on October 1, 1996, Hanford Site cleanup was primarily a ''paper exercise.'' The Tri-Party Agreement, officially called the Hanford Federal Facility Agreement and Consent Order - the edict governing cleanup among the DOE, U.S. Environmental Protection Agency (EPA) and Washington state - was just seven years old. Milestones mandated in the agreement up until then had required mainly waste characterization, reporting, and planning, with actual waste remediation activities off in the future. Real work, accessing waste ''in the field'' - or more literally in huge underground tanks, decaying spent fuel POO{approx}{approx}S, groundwater, hundreds of contaminated facilities, solid waste burial grounds, and liquid waste disposal sites -began in earnest under Fluor Hanford. The fruits of labors initiated, completed and/or underway by Fluor Hanford can today be seen across the site. Spent nuclear fuel is buttoned up in secure, dry containers stored away from regional water resources, reactive plutonium scraps are packaged in approved containers, transuranic (TRU) solid waste is being retrieved from burial trenches and shipped offsite for permanent disposal, contaminated facilities are being demolished, contaminated groundwater is being pumped out of aquifers at record rates, and many other inventive solutions are being applied to Hanford's most intransigent nuclear wastes. (TRU) waste contains more than 100 nanocuries per gram, and contains isotopes higher than uranium on the Periodic Table of the Elements. (A nanocurie is one-billionth of a curie.) At the same time, Fluor Hanford has dramatically improved safety records, and cost effectively maintained and streamlined infrastructure and equipment that is impossibly old and in many cases ''extinct'' in terms of spare parts and vendor support. The story of Fluor's achievements at the Hanford Site - the oldest and most productive plutonium site in the world - is both inspiring and instructive.

  3. Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project

    SciTech Connect (OSTI)

    A. B. Culp

    2007-01-26T23:59:59.000Z

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

  4. Action Memorandum for General Decommissioning Activities under the Idaho Cleanup Project

    SciTech Connect (OSTI)

    S. L. Reno

    2006-10-26T23:59:59.000Z

    This Action Memorandum documents the selected alternative to perform general decommissioning activities at the Idaho National Laboratory (INL) under the Idaho Cleanup Project (ICP). Preparation of this Action Memorandum has been performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the "Superfund Amendments and Reauthorization Act of 1986", and in accordance with the "National Oil and Hazardous Substances Pollution Contingency Plan". An engineering evaluation/cost analysis (EE/CA) was prepared and released for public comment and evaluated alternatives to accomplish the decommissioning of excess buildings and structures whose missions havve been completed.

  5. The impact of alternative oil spill cleanup responses on Spartina alterniflora 

    E-Print Network [OSTI]

    Kiesling, Russell Wayne

    1987-01-01T23:59:59.000Z

    THE IMPACT OF AL~VrE OIL SPILL CLEANUP BESPCVSES OH SPAHI INR. ALTERNIFLORA A Thesis RUSSELL ~ KIESLING Submits to the Graduat College of Twas ASM University in Partial fulfill of the reguixemts for the degv of FASTER OF SCIENCE August 1987... Pbjor Subject: azoology THE INPACT OF ALTERNATIVE OIL SPILL ~ RESPONSES ON SPARTINA ALTERNIFIgRA A Th sis by RIJSSELL WAYNE KIESLING Approved as to style and content by: Steve K. Al~w r -chairman of ' ttee) No?rrill H. Sweet (Co...

  6. The impact of alternative oil spill cleanup responses on Spartina alterniflora

    E-Print Network [OSTI]

    Kiesling, Russell Wayne

    1987-01-01T23:59:59.000Z

    followed by sorbM pad application on substrate; and ~g of oiled vegetation. Control plots which were neither oiled nor cleaned as well as plots which w~ oiled but not cleaned were also established. Sediment samples were ~ imnediately after cleanup... and chanical dispersant and to 3M Ccaqmy for supplying oil sorbwt pads. Valuable assistance in both field and laboratory was provided by Denial Avery, Carlos Vanoye-Trevino, Cecilia Miles, and Chiara Jones. The author would also like to express his sincere...

  7. Laboratory evaluation of filtercake cleanup techniques and metallic-screens plugging mechanisms in horizontal wells 

    E-Print Network [OSTI]

    Garcia Orrego, Gloria Stella

    1999-01-01T23:59:59.000Z

    . Unconsolidated Sand Core Set up 4. 3. 2. Metallic Screen Loading . 4. 3. 3. Cell Assembly 4. 3. 4. Base Permeability Determination. . 4. 3. 5. Filtercake Buildup . . 26 . . . . 26 27 29 29 29 29 4. 3. 6. Regained Permeability Study after Filtercake... Cleanup Phase . . . . , . . . . . , . . . 31 4. 3. 7. Screen Permeabilities . 4. 4. DIF Characterization 4. 4. 1. Density. 4. 4. 2. Viscosity . . 4. 4. 3. Plastic Viscosity. 4. 4. 4. Yield point. 4. 4. 5. Gel Strength. . 4. 4. 6. Fluid-Loss Control...

  8. A preliminary evaluation of the economic risk for cleanup of nuclear material licensee contamination incidents

    SciTech Connect (OSTI)

    Ostmeyer, R.M.; Skinner, D.J.

    1987-03-01T23:59:59.000Z

    This report documents an analysis of the economic risks from nuclear material licensee contamination incidents. The results of the analyses are intended to provide a technical basis for an NRC rulemaking which would require nuclear material licensees to demonstrate adequate financial means to cover the cleanup costs for accidental or inadvertant release of radioactive materials. The important products of this effort include (1) a method for categorizing licensees according to the potential cost and frequency of contamination incidents, (2) a model for ranking the categories of licensees according to potential incident costs, and (3) estimates of contamination risk for the licensee categories.

  9. Summary of proposed approach for deriving cleanup guidelines for radionuclides in soil at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1996-11-01T23:59:59.000Z

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory, carried out under an Interagency Agreement (IAG) with the United States Department of Energy (DOE), the United States Environmental Protection Agency (EPA) and the New York State Department of Environmental Conservation (NYSDEC). The objective of this paper is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL.

  10. EM Takes on Next Environmental Cleanup Challenge at SRS: Coal-Fired Ash |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM Recovery Act PressEMTackles Cleanup

  11. DOE Completes Cleanup at New York, California Sites | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of Energy SafetyDOE CompetencyCleanup at

  12. Recovery Act Funded Environmental Cleanup Begins at Y-12 | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In additionEnergy Environmental cleanup

  13. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly report, April 1, 1996 - June 30, 1996

    SciTech Connect (OSTI)

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1996-07-01T23:59:59.000Z

    A porous radiant burner testing facility consisting of a commercial deep-fat fryer, an FTIR based spectral radiance measurement system, a set of flue gas analysis components, and a fuel gas mixing station was constructed. The measurement capabilities of the system were tested using methane and the test results were found to be consistent with the literature. Following the validation of the measurement system, various gas mixtures were tested to study the effect of gas compositions have on burner performance. Results indicated that the emissions vary with fuel gas composition and air/fuel ratio. The maximum radiant efficiency of the burner was obtained close to air/fuel ratio of 1.

  14. Environmental Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment,682 DOE hasU.S.Environmental

  15. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final report: Revision 1

    SciTech Connect (OSTI)

    Gonzales, D.

    1993-12-01T23:59:59.000Z

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing site are summarized as follows: In accordance with EPA-promulgated land cleanup standards, in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 clean up protocol has been developed. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR Part 192 relative to supplemental standards.

  16. Effect of radon dose on cleanup criteria and using RESRAD for chemical risk assessment

    SciTech Connect (OSTI)

    Yu, C.; Cheng, J.-J. (Argonne National Lab., IL (United States)); Wallo, A. III (USDOE, Washington, DC (United States))

    1991-01-01T23:59:59.000Z

    The US Department of Energy has used RESRAD, a pathway analysis program developed at Argonne National Laboratory, in conjunction with the as low as reasonably achievable (ALARA) principle to develop site-specific residual radioactive material guidelines (cleanup criteria) for many sites. This study examines the effects of the radon pathway, recently added to the RESRAD program, on the calculation of uranium, radium, and thorium cleanup criteria. The results show that the derived uranium guidelines will not be affected by the radon ingrowth considerations. The effect of radon on radium and thorium generic guidelines is more significant, but the model does indicate that at the generic soil limits used for radium and thorium the indoor radon decay product concentrations would be below the 0.02 working level standard. This study also examines the feasibility of applying RESRAD to chemical risk assessment. The results show that RESRAD can perform risk assessment of toxic chemicals after simple modifications. Expansion of the RESRAD database to include chemical compounds will increase its capability to handle chemical risk assessments. 11 refs., 3 tabs.

  17. Phase 1 of the North Site cleanup: Definition of product streams. Volume 1

    SciTech Connect (OSTI)

    Sorini, S.; Merriam, N.

    1994-03-01T23:59:59.000Z

    Various materials and equipment have accumulated at the Western Research Institute (WRI) North Site Facility since its commissioning in 1968. This facility was built by the US Bureau of Mines, transferred to the US Energy Research Development Administration (ERDA) in 1976, and transferred once again to the US Department of Energy (DOE) shortly thereafter. In 1983, the North Site Facility became part of WRI. The materials that have accumulated over the years at the site have been stored in drums, tanks, and open piles. They vary from oil shale, tar sand, and coal feedstocks to products and materials associated with in situ simulation and surface process developments associated with these feedstocks. The majority of these materials have been associated with DOE North Site activities and work performed at the North Site under DOE-WRI cooperative agreement contracts. In phase I of the North Site Facility cleanup project, these materials were sampled and evaluated to determine their chemical characteristics for proper disposal or use in accordance with current local, state, and federal regulations. Phase I of the North Site Facility cleanup project involved dividing the stored materials into product streams and dividing each product stream into composite groups. Composite groups contain materials known to be similar in composition, source, and process exposure. For each composite group, materials, which are representative of the composite, were selected for sampling, compositing, and analysis.

  18. Combined homo- and heterogeneous model for mercury speciation in pulverized fuel combustion flue gases

    SciTech Connect (OSTI)

    Shishir P. Sable; Wiebren de Jong; Hartmut Spliethoff [Delft University Technology, Delft (Netherlands). Section Energy Technology, Department of Process and Energy

    2008-01-15T23:59:59.000Z

    A new model is developed to predict Hg{sup 0}, Hg{sup +}, Hg{sup 2+}, and Hg{sub p} in the post-combustion zone upstream of a particulate control device (PCD) in pulverized coal-fired power plants. The model incorporates reactions of mercury with chlorinating agents (HCl) and other gaseous species and simultaneous adsorption of oxidized mercury (HgCl{sub 2}) on fly ash particles in the cooling of flue gases. The homogeneous kinetic model from the literature has been revised to understand the effect of the NO + OH + M {longleftrightarrow} HONO + M reaction on mercury oxidation. Because it is a pressure-dependent reaction, the choice of proper reaction rates was very critical. It was found that mercury oxidation reduces from 100 to 0% while going from high- to low-pressure limit rates with 100 ppmv NO. The heterogeneous model describes selective in-duct Langmuir-Hinshelwood adsorption of mercury chloride on ash particles. The heterogeneous model has been built using Fortran and linked to Chemkin 4.0. The final predictions of elemental, oxidized, and particulate mercury were compared to mercury speciation from power plant data. Information collection request (ICR) data were used for this comparison. The model results follow very similar trends compared to those of the plant data; however, quantitative deviation was considerable. These deviations are due to the errors in the measurement of mercury upstream of PCD, lack of adsorption kinetic data, accurate homogeneous reaction mechanisms, and certain modeling assumptions. The model definitely follows a new approach for the prediction of mercury speciation, and further refinement will improve the model significantly. 43 refs., 1 figs., 6 tabs.

  19. Bugs boost Cold War clean-up: Bacteria could scrub uranium from sites contaminated decades ago. updated at midnight GMTtoday is friday, november 14

    E-Print Network [OSTI]

    Lovley, Derek

    2003 · Fungus catches radioactive fallout 8 May 2002 · Depleted uranium soils battlefields 12 MarchBugs boost Cold War clean-up: Bacteria could scrub uranium from sites contaminated decades ago boost Cold War clean-up Bacteria could scrub uranium from sites contaminated decades ago. 13 October

  20. Superfund Record of Decision (EPA Region 8): Anaconda Smelter site, (Operable Unit 11 - Flue Dust), Deer Lodge County, Anaconda, MT. (Second remedial action), September 1991

    SciTech Connect (OSTI)

    Not Available

    1991-09-23T23:59:59.000Z

    The 6,000-acre Anaconda Smelter site is a former copper and ore processing facility in Deer Lodge County, Montana. Land use in the area is predominantly residential. The site is bounded on the north and east, respectively, by the Warm Springs Creek and Mill Creek, both of which are potential sources of drinking water. From 1884 until 1980 when activities ceased, the site was used for ore processing and smelting operations. In 1988, EPA conducted an investigation to determine the nature and extent of the flue dust contamination. A 1988 ROD addressed the Mill Creek Operable Unit (OU15) and documented the relocation of residents from the community surrounding the smelter site as the selected remedial action. The Record of Decision (ROD) addresses the Flue Dust Operable Unit (OU11). The primary contaminants of concern affecting this site from the flue dust materials are metals including arsenic, cadmium, and lead. The selected remedial action for the site is included.

  1. Z .The Science of the Total Environment 260 2000 1 9 Assessing water quality impacts and cleanup

    E-Print Network [OSTI]

    Kirchner, James W.

    Z .The Science of the Total Environment 260 2000 1 9 Assessing water quality impacts and cleanup of the Total En¨ironment 260 2000 1 92 quality trends can be more accurately measured by changes a California Regional Water Quality Control Board, 1515 Clay St., Suite 1400, Oakland, CA 94612, USA b

  2. From Pushing Paper to Pushing Dirt - Canada's Largest LLRW Cleanup Gets Underway - 13111

    SciTech Connect (OSTI)

    Veen, Walter van [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada)] [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada); Lawrence, Dave [Public Works and Government Services Canada, Port Hope, Ontario (Canada)] [Public Works and Government Services Canada, Port Hope, Ontario (Canada)

    2013-07-01T23:59:59.000Z

    The Port Hope Project is the larger of the two projects in the Port Hope Area Initiative (PHAI), Canada's largest low level radioactive waste (LLRW) cleanup. With a budget of approximately $1 billion, the Port Hope Project includes a broad and complex range of remedial elements from a state of the art water treatment plant, an engineered waste management facility, municipal solid waste removal, remediation of 18 major sites within the Municipality of Port Hope (MPH), sediment dredging and dewatering, an investigation of 4,800 properties (many of these homes) to identify LLRW and remediation of approximately 450 of these properties. This paper discusses the status of the Port Hope Project in terms of designs completed and regulatory approvals received, and sets out the scope and schedule for the remaining studies, engineering designs and remediation contracts. (authors)

  3. Environmental cleanup privatization, products and services directory, January 1997. Second edition

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The US Department of Energy has undertaken an ambitious ``Ten Year Plan`` for the Weapons Complex, an initiative to complete cleanup at most nuclear sites within a decade. This Second Edition of the Directory is designed to facilitate privatization which is key to the success of the Plan. The Directory is patterned after the telephone Yellow Pages. Like the Yellow Pages, it provides the user with points of contact for inquiring further into the capabilities of the listed companies. This edition retains the original format of three major sections under the broad headings: Treatment, Characterization, and Extraction/Deliver/Materials Handling. Within each section, companies are listed alphabetically. Also, ``company name`` and ``process type`` indices are provided at the beginning of each section to allow the user quick access to listings of particular interest.

  4. Building organizational technical capabilities: a new approach to address the office of environmental management cleanup challenges in the 21. century

    SciTech Connect (OSTI)

    Fiore, J.J.; Rizkalla, E.I. [Office of Environmental Management, The United States Dept. of Energy, Washington, D.C. (United States)

    2007-07-01T23:59:59.000Z

    The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for the nations nuclear weapons program legacy wastes cleanup. The EM cleanup efforts continue to progress, however the cleanup continues to be technologically complex, heavily regulated, long-term, and a high life cycle cost estimate (LCCE) effort. Over the past few years, the EM program has undergone several changes to accelerate its cleanup efforts with varying degrees of success. Several cleanup projects continued to experience schedule delays and cost growth. The schedule delays and cost growth have been attributed to several factors such as changes in technical scope, regulatory and safety considerations, inadequacy of acquisition approach and project management. This article will briefly review the background and schools of thought on strategic management and organizational change practiced in the United States over the last few decades to improve an organisation's competitive edge and cost performance. The article will briefly review examples such as the change at General Electric, and the recent experience obtained from the nuclear industry, namely the long-term response to the 1986 Chernobyl accident. The long-term response to Chernobyl, though not a case of organizational change, could provide some insight in the strategic management approaches used to address people issues. The article will discuss briefly EM attempts to accelerate cleanup over the past few years, and the subsequent paradigm shift. The paradigm shift targets enhancing and/or creating organizational capabilities to achieve cost savings. To improve its ability to address the 21. century environmental cleanup challenges and achieve cost savings, EM has initiated new corporate changes to develop new and enhance existing capabilities. These new and enhanced organizational capabilities include a renewed emphasis on basics, especially technical capabilities including safety, project management, acquisition management and people. The new enhanced organizational capabilities coupled with more effective communications; oversight and decision-making processes are expected to help EM meet the 21. century challenges. This article will focus on some of the initiatives to develop and enhance organizational technical capabilities. Some of these development initiatives are a part of DOE corporate actions to respond to the Defense Nuclear Facilities Safety Board (DNFSB) recommendations 93-3 and 2004-1. Other development initiatives have been tailored to meet EM specific needs for organizational capabilities such as case studies analysis and cost estimating. (authors)

  5. Turning the Corner on Hanford Tank Waste Cleanup-From Safe Storage to Closure

    SciTech Connect (OSTI)

    Boston, H. L.; Cruz, E. J.; Coleman, S. J.

    2002-02-25T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP) which is responsible for the disposition of 204,000 cubic meters (54 million gallons) of high-level radioactive waste that have accumulated in large underground tanks at the Hanford Site since 1944. ORP continues to make good progress on improving the capability to treat Hanford tank waste. Design of the waste vitrification facilities is proceeding well and construction will begin within the next year. Progress is also being made in reducing risk to the worker and the environment from the waste currently stored in the tank farms. Removal of liquids from single-shell tanks (SSTs) is on schedule and we will begin removing solids (salt cake) from a tank (241-U-107) in 2002. There is a sound technical foundation for the waste vitrification facilities. These initial facilities will be capable of treating (vitrifying) the bulk of Hanford tank waste and are the corners tone of the clean-up strategy. ORP recognizes that as the near-term work is performed, it is vital that there be an equally strong and defensible plan for completing the mission. ORP is proceeding on a three-pronged approach for moving the mission forward. First, ORP will continue to work aggressively to complete the waste vitrification facilities. ORP intends to provide the most capable and robust facilities to maximize the amount of waste treated by these initial facilities by 2028 (regulatory commitment for completion of waste treatment). Second, and in parallel with completing the waste vitrification facilities, ORP is beginning to consider how best to match the hazard of the waste to the disposal strategy. The final piece of our strategy is to continue to move forward with actions to reduce risk in the tank farms and complete cleanup.

  6. Surface and subsurface cleanup protocol for radionuclides Gunnison, Colorado, UMTRA Project Processing Site. Revision 3, Final report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The supplemental standards provisions of Title 40, Code of Federal Regulations, Part 192 (40 CFR Part 192) require the cleanup of radionuclides other than radium-226 (Ra-226) to levels ``as low as reasonably achievable`` (ALARA), taking into account site-specific conditions, if sufficient quantities and concentrations are present to constitute a significant radiation hazard. In this context, thorium-230 (Th-230) at the Gunnison, Colorado, processing site will require remediation. However, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Characterization data indicate that in the offpile areas, the removal of residual in situ bulk Ra-226 and Th-230 such that the 1000-year projected Ra-226 concentration (Ra-226 concentration in 1000 years due to the decay of in situ Ra-226 and the in-growth of Ra-226 from in situ Th-230) complies with the US Environmental Protection Agency (EPA) cleanup standard for in situ Ra-226 and the cleanup protocol for in situ Th-230 can be readily achieved using conventional excavation techniques for bulk contamination without encountering significant impacts due to groundwater. The EPA cleanup standard and criterion for Ra-226 and the 1000-year projected Ra-226 are 5 and 15 picocuries per gram (pCi/g) above background, respectively, averaged over 15-centimeter (cm) deep surface and subsurface intervals and 100-square-meter (m{sup 2}) grid areas. Significant differential migration of Th-230 relative to Ra-226 has occurred over 40 percent of the subpile area. To effectively remediate the site with respect to Ra-226 and Th-230, supplemental standard is proposed and discussed in this report.

  7. THE ROLE OF LAND USE IN ENVIRONMENTAL DECISION MAKING AT THREE DOE MEGA-CLEANUP SITES FERNALD & ROCKY FLATS & MOUND

    SciTech Connect (OSTI)

    JEWETT MA

    2011-01-14T23:59:59.000Z

    This paper explores the role that future land use decisions have played in the establishment of cost-effective cleanup objectives and the setting of environmental media cleanup levels for the three major U.S. Department of Energy (DOE) sites for which cleanup has now been successfully completed: the Rocky Flats, Mound, and Fernald Closure Sites. At each site, there are distinct consensus-building histories throughout the following four phases: (1) the facility shut-down and site investigation phase, which took place at the completion of their Cold War nuclear-material production missions; (2) the decision-making phase, whereby stakeholder and regulatory-agency consensus was achieved for the future land-use-based environmental decisions confronting the sites; (3) the remedy selection phase, whereby appropriate remedial actions were identified to achieve the future land-use-based decisions; and (4) the implementation phase, whereby the selected remedial actions for these high-profile sites were implemented and successfully closed out. At each of the three projects, there were strained relationships and distrust between the local community and the DOE as a result of site contamination and potential health effects to the workers and local residents. To engage citizens and interested stakeholder groups - particularly in the role of final land use in the decision-making process, the site management teams at each respective site developed new public-participation strategies to open stakeholder communication channels with site leadership, technical staff, and the regulatory agencies. This action proved invaluable to the success of the projects and reaching consensus on appropriate levels of cleanup. With the implementation of the cleanup remedies now complete, each of the three DOE sites have become models for future environmental-remediation projects and associated decision making.

  8. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01T23:59:59.000Z

    59. 11. C. Eigenberger, Fixed-bed reactors. Vol, B4. 12. J.79 4.1.1.1 Fixed-Bed70 Figure 4.1 Schematic of fixed-bed

  9. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01T23:59:59.000Z

    S.P Chan, J. M Norbeck, Steam hydrogasification of coal-woodet al. , Sulfur-deactivated steam reforming of gasifiedPark, S.P. Singh, J.M. Norbeck, Steam hydrogasification of

  10. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01T23:59:59.000Z

    shale, natural bitumen, heavy oil and peat- Vol.I. 6. T.B.to hydrocracking of heavy oils in current refineries.

  11. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01T23:59:59.000Z

    experiment results and ASPEN simulation results. Referencesbased on experimental and Aspen Plus simulation results in25 2.2.1 Aspen

  12. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01T23:59:59.000Z

    22. 5. X. Sha, Coal gasification. Coal, oil shale, natural7. C. Higman, M. Burgt, Gasification. 2003. Elsevier/Gulfbiomass ( part 3): gasification technologies. Bioresource

  13. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01T23:59:59.000Z

    2003. 25. M.E Dry, The Fischer-Tropsch synthesis. Catalysis,a precipitated iron Fischer–Tropsch catalyst— A pilot plantfrom biomass via Fischer-Tropsch synthesis: new insights in

  14. The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification

    E-Print Network [OSTI]

    Luo, Qian

    2012-01-01T23:59:59.000Z

    34(1), 14-22. 5. X. Sha, Coal gasification. Coal, oil shale,low temperature coal pyrolysis and gasification, Fuel, 1989,during RDF and coal co- gasification: a comparison between

  15. Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal for Biomass Application

    SciTech Connect (OSTI)

    Howard, Christopher J.; Dagle, Robert A.; Lebarbier, Vanessa MC; Rainbolt, James E.; Li, Liyu; King, David L.

    2013-06-19T23:59:59.000Z

    Systems comprising of multiple sorbent and catalytic beds have been developed for the warm syngas cleanup of coal- and biomass-derived syngas. Tailored specifically for biomass application the process described here consists of six primary unit operations: 1) Na2CO3 bed for HCl removal, 2) two regenerable ZnO beds for bulk H2S removal, 3) ZnO bed for H2S polishing, 4) NiCu/SBA-16 sorbent for trace metal (e.g. AsH3) removal, 5) steam reforming catalyst bed for tars and light hydrocarbons reformation and NH3 decomposition, and a 6) Cu-based LT-WGS catalyst bed. Simulated biomass-derived syngas containing a multitude of inorganic contaminants (H2S, AsH3, HCl, and NH3) and hydrocarbon additives (methane, ethylene, benzene, and naphthalene) was used to demonstrate process effectiveness. The efficiency of the process was demonstrated for a period of 175 hours, during which no signs of deactivation were observed. Post-run analysis revealed small levels of sulfur slipped through the sorbent bed train to the two downstream catalytic beds. Future improvements could be made to the trace metal polishing sorbent to ensure complete inorganic contaminant removal (to low ppb level) prior to the catalytic steps. However, dual, regenerating ZnO beds were effective for continuous removal for the vast majority of the sulfur present in the feed gas. The process was effective for complete AsH3 and HCl removal. The steam reforming catalyst completely reformed all the hydrocarbons present in the feed (methane, ethylene, benzene, and naphthalene) to additional syngas. However, post-run evaluation, under kinetically-controlled conditions, indicates deactivation of the steam reforming catalyst. Spent material characterization suggests this is attributed, in part, to coke formation, likely due to the presence of benzene and/or naphthalene in the feed. Future adaptation of this technology may require dual, regenerable steam reformers. The process and materials described in this report hold promise for a warm cleanup of a variety of contaminant species within warm syngas.

  16. 5/10/10 7:04 AMCaution urged in oil spill cleanup -UPI.com Page 1 of 1http://www.upi.com/Science_News/2010/05/05/Caution-urged-in-oil-spill-cleanup/UPI-48201273087918/print/

    E-Print Network [OSTI]

    Hazen, Terry

    Horizon oil spill. Terry Hazen, a microbial ecologist at the Lawrence Berkeley National Laboratory, said5/10/10 7:04 AMCaution urged in oil spill cleanup - UPI.com Page 1 of 1http://www.upi.com/Science_News/2010/05/05/Caution-urged-in-oil-spill-cleanup/UPI-48201273087918/print/ Caution urged in oil spill

  17. EFFECTIVE ENVIRONMENTAL COMPLIANCE STRATEGY FOR THE CLEANUP OF K BASINS AT HANFORD SITE WASHINGTON

    SciTech Connect (OSTI)

    AMBALAM, T.

    2004-12-01T23:59:59.000Z

    K Basins, consisting of two water-filled storage basins (KW and KE) for spent nuclear fuel (SNF), are part of the 100-K Area of the Hanford Site, along the shoreline of the Columbia River, situated approximately 40 km (25 miles) northwest of the City of Richland, Washington. The KW contained 964 metric tons of SNF in sealed canisters and the KE contained 1152 metric tons of SNF under water in open canisters. The cladding on much of the fuel was damaged allowing the fuel to corrode and degrade during storage underwater. An estimated 1,700 cubic feet of sludge, containing radionuclides and sediments, have accumulated in the KE basin. Various alternatives for removing and processing the SNF, sludge, debris and water were originally evaluated, by USDOE (DOE), in the Environmental Impact Statement (EIS) with a preferred alternative identified in the Record of Decision. The SNF, sludge, debris and water are ''hazardous substances'' under the Comprehensive, Environmental, Response, Compensation and Liability Act of 1980 (CERCLA). Leakage of radiologically contaminated water from one of the basins and subsequent detection of increased contamination in a down-gradient monitoring well helped to form the regulatory bases for cleanup action under CERCLA. The realization that actual or threatened release of hazardous substances from the waste sites and K Basins, if not addressed in a timely manner, may present an imminent and substantial endangerment to public health, welfare and environment led to action under CERCLA, with EPA as the lead regulatory agency. Clean-up of the K Basins as a CERCLA site required SNF retrieval, processing, packaging, vacuum drying and transport to a vaulted storage facility for storage, in conformance with a quality assurance program approved by the Office of Civilian Radioactive Waste Management (OCRWM). Excluding the facilities built for SNF drying and vaulted storage, the scope of CERCLA interim remedial action was limited to the removal of fuel, sludge, debris and water. At present, almost all of the spent fuel has been removed from the basins and other activities to remove sludge, debris and water are scheduled to be completed in 2007. Developing environmental documentation and obtaining regulatory approvals for a project which was initiated outside CERCLA and came under CERCLA during execution, was a significant priority to the successful completion of the SNF retrieval, transfer, drying, transport and storage of fuel, within the purview of strong conduct-of-operations culture associated with nuclear facilities. Environmental requirements promulgated in the state regulations by Washington Department of Public Health for radiation were recognized as ''applicable or relevant and appropriate.'' Effective implementation of the environmental compliance strategy in a project that transitioned to CERCLA became a significant challenge involving multiple contractors. This paper provides an overview of the development and implementation of an environmental permitting and surveillance strategy that enabled us to achieve full compliance in a challenging environment, with milestones and cost constraints, while meeting the high safety standards. The details of the strategy as to how continuous rapport with the regulators, facility operators and surveillance groups helped to avoid impacts on the clean-up schedule are discussed. Highlighted are the role of engineered controls, surveillance protocols and triggers for monitoring and reporting, and active administrative controls that were established for the control of emissions, water loss and transport of waste shipments, during the different phases of the project.

  18. Development and demonstration of a wood-fired gas turbine system

    SciTech Connect (OSTI)

    Smith, V.; Selzer, B.; Sethi, V.

    1993-08-01T23:59:59.000Z

    The objectives of the test program were to obtain some preliminary information regarding the nature of particulate and vapor phase alkali compounds produced and to assess any deleterious impact they might have on materials of construction. Power Generating Incorporated (PGI) is developing a wood-fired gas turbine system for specialized cogeneration applications. The system is based on a patented pressurized combustor designed and tested by PGI in conjunction with McConnell Industries. The other components of the system are fuel receiving, preparation, storage and feeding system, gas clean-up equipment, and a gas turbine generator.

  19. Laboratory tests, statistical analysis and correlations for regained permeability and breakthrough time in unconsolidated sands for improved drill-in fluid cleanup practices

    E-Print Network [OSTI]

    Serrano, Gerardo Enrique

    2000-01-01T23:59:59.000Z

    Empirical models for estimating the breakthrough time and regained permeability for selected nondamaging drill-in fluids (DIF's) give a clear indication of formation damage and proper cleanup treatments for reservoir conditions analyzed...

  20. Horizontal well construction/completion process in a Gulf of Mexico unconsolidated sand: development of baseline correlations for improved drill-in fluid cleanup practices

    E-Print Network [OSTI]

    Lacewell, Jason Lawrence

    1999-01-01T23:59:59.000Z

    of well planning, completion and cleanup operations. Our objectives are to present a complete examination of the openhole horizontal well construction/completion process using a new drill-in fluid (DIF). Further, we will establish data critical...

  1. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    SciTech Connect (OSTI)

    Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

    1994-12-01T23:59:59.000Z

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  2. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOE Patents [OSTI]

    Zeren, J.D.

    1993-12-28T23:59:59.000Z

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet. 5 figures.

  3. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOE Patents [OSTI]

    Zeren, Joseph D. (390 Forest Ave., Boulder, CO 80304)

    1993-12-28T23:59:59.000Z

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet.

  4. Development of the Ultra-Clean Dry Cleanup Process for Coal-Based Syngases

    SciTech Connect (OSTI)

    Newby, R.A.; Slimane, R.B.; Lau, F.S.; Jain, S.C.

    2002-09-20T23:59:59.000Z

    The Siemens Westinghouse Power Corporation (SWPC) has proposed a novel scheme for polishing sulfur species, halides, and particulate from syngas to meet stringent cleaning requirements, the ''Ultra-Clean syngas polishing process.'' The overall development objective for this syngas polishing process is to economically achieve the most stringent cleanup requirements for sulfur species, halide species and particulate expected for chemical and fuel synthesis applications (total sulfur species < 60 ppbv, halides < 10 ppbv, and particulate < 0.1 ppmw). A Base Program was conducted to produce ground-work, laboratory test data and process evaluations for a conceptual feasibility assessment of this novel syngas cleaning process. Laboratory testing focused on the identification of suitable sulfur and halide sorbents and operating temperatures for the process. This small-scale laboratory testing was also performed to provide evidence of the capability of the process to reach its stringent syngas cleaning goals. Process evaluations were performed in the Base Program to identify process alternatives, to devise process flow schemes, and to estimate process material & energy balances, process performance, and process costs. While the work has focused on sulfur, halide, and particulate control, considerations of ammonia, and mercury control have also been included.

  5. Hanford Cleanup... Restore the Columbia River Corridor Transition the Central Plateau Prepare and Plan for the End State

    SciTech Connect (OSTI)

    Klein, Keith A. [U.S. Department of Energy Richland Operations Office (United States)

    2006-07-01T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington State was established during World War II to produce plutonium for nuclear weapons as part of the top-secret Manhattan Project. In 1989, Hanford's mission changed to cleanup and closure; today the site is engaged in one of the world's largest and most aggressive programs to clean up radioactive and hazardous wastes. The size and complexity of Hanford's environmental problems are made even more challenging by the overlapping technical, political, regulatory, financial and cultural issues associated with the cleanup. The physical challenges at the Hanford Site are daunting. More than 50 million gallons of liquid radioactive waste in 177 underground storage tanks; 2,300 tons of spent nuclear fuel;12 tons of plutonium in various forms; 25 million cubic feet of buried or stored solid waste; 270 billion gallons of groundwater contaminated above drinking-water standards spread out over about 80 square miles; more than 1,700 waste sites; and approximately 500 contaminated facilities. With a workforce of approximately 7,000 and a budget of about $1.8 billion dollars this fiscal year, Hanford cleanup operations are expected to be complete by 2035, at a cost of $60 billion dollars. (authors)

  6. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOE Patents [OSTI]

    Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Rateman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klinger, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

    2005-11-08T23:59:59.000Z

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

  7. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOE Patents [OSTI]

    Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

    2003-06-24T23:59:59.000Z

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

  8. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOE Patents [OSTI]

    Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

    2005-05-03T23:59:59.000Z

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

  9. Apparatus for the liquefaction of natural gas and methods relating to same

    DOE Patents [OSTI]

    Wilding, Bruce M. (Idaho Falls, ID); Bingham, Dennis N. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Turner, Terry D. (Ammon, ID); Raterman, Kevin T. (Idaho Falls, ID); Palmer, Gary L. (Shelley, ID); Klingler, Kerry M. (Idaho Falls, ID); Vranicar, John J. (Concord, CA)

    2007-05-22T23:59:59.000Z

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

  10. Development of site-specific soil cleanup criteria: New Brunswick Laboratory, New Jersey site

    SciTech Connect (OSTI)

    Veluri, V.R.; Moe, H.J.; Robinet, M.J.; Wynveen, R.A.

    1983-03-01T23:59:59.000Z

    The potential human exposure which results from the residual soil radioactivity at a decommissioned site is a prime concern during D and D projects. To estimate this exposure, a pathway analysis approach is often used to arrive at the residual soil radioactivity criteria. The development of such a criteria for the decommissioning of the New Brunswick Laboratory, New Jersey site is discussed. Contamination on this site was spotty and located in small soil pockets spread throughout the site area. Less than 1% of the relevant site area was contaminated. The major contaminants encountered at the site were /sup 239/Pu, /sup 241/Am, normal and natural uranium, and natural thorium. During the development of the pathway analysis to determine the site cleanup criteria, corrections for the inhomogeneity of the contamination were made. These correction factors and their effect upon the relevant pathway parameters are presented. Major pathways by which radioactive material may reach an individual are identified and patterns of use are specified (scenario). Each pathway is modeled to estimate the transfer parameters along the given pathway, such as soil to air to man, etc. The transfer parameters are then combined with dose rate conversion factors (ICRP 30 methodology) to obtain soil concentration to dose rate conversion factors (pCi/g/mrem/yr). For an appropriate choice of annual dose equivalent rate, one can then arrive at a value for the residual soil concentration. Pathway modeling, transfer parameters, and dose rate factors for the three major pathways; inhalation, ingestion and external exposure, which are important for the NBL site, are discussed.

  11. Application of Diagnostic/Prognostic Methods to Critical Equipment for the Spent Nuclear Fuel Cleanup Program

    SciTech Connect (OSTI)

    Casazza, Lawrence O.; Jarrell, Donald B.; Koehler, Theresa M.; Meador, Richard J.; Wallace, Dale E.

    2002-02-28T23:59:59.000Z

    The management of the Spent Nuclear Fuel (SNF) project at the Hanford K-Basin in the 100 N Area has successfully restructured the preventive maintenance, spare parts inventory requirements, and the operator rounds data requirements. In this investigation, they continue to examine the different facets of the operations and maintenance (O&M) of the K-Basin cleanup project in search of additional reliability and cost savings. This report focuses on the initial findings of a team of PNNL engineers engaged to identify potential opportunities for reducing the cost of O&M through the application of advanced diagnostics (fault determination) and prognostics (residual life/reliability determination). The objective is to introduce predictive technologies to eliminate or reduce high impact equipment failures. The PNNL team in conjunction with the SNF engineers found the following major opportunities for cost reduction and/or enhancing reliability: (1) Provide data routing and automated analysis from existing detection systems to a display center that will engage the operations and engineering team. This display will be operator intuitive with system alarms and integrated diagnostic capability. (2) Change operating methods to reduce major transients induced in critical equipment. This would reduce stress levels on critical equipment. (3) Install a limited sensor set on failure prone critical equipment to allow degradation or stressor levels to be monitored and alarmed. This would provide operators and engineers with advance guidance and warning of failure events. Specific methods for implementation of the above improvement opportunities are provided in the recommendations. They include an Integrated Water Treatment System (IWTS) decision support system, introduction of variable frequency drives on certain pump motors, and the addition of limited diagnostic instrumentation on specified critical equipment.

  12. Load Preheating Using Flue Gases from a Fuel-Fired Heating System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | DepartmentComputing CenterLiz Doris

  13. Gas Water Heater Energy Losses

    E-Print Network [OSTI]

    Biermayer, Peter

    2012-01-01T23:59:59.000Z

    cold water to the water heater and hot water from the waterinduced draft water heaters, water heaters with flue designsInput Screens SCREEN D1: WATER HEATER SPECIFICATIONS 1. Tank

  14. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2004-10-27T23:59:59.000Z

    Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

  15. Idaho Cleanup Project CPP-603A basin deactivation waste management 2007

    SciTech Connect (OSTI)

    Croson, D.V.; Davis, R.H.; Cooper, W.B. [CH2M-WG Idaho, LLC, Idaho Cleanup Project, Idaho National Laboratory, Idaho Falls, ID (United States)

    2007-07-01T23:59:59.000Z

    The CPP-603A basin facility is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the U.S. Department of Energy's (DOE) Idaho National Laboratory (INL). CPP-603A operations are part of the Idaho Cleanup Project (ICP) that is managed by CH2M-WG Idaho, LLC (CWI). Once the inventoried fuel was removed from the basins, they were no longer needed for fuel storage. However, they were still filled with water to provide shielding from high activity debris and contamination, and had to either be maintained so the basins did not present a threat to public or worker health and safety, or be isolated from the environment. The CPP-603A basins contained an estimated 50,000 kg (110,200 lbs) of sludge. The sludge was composed of desert sand, dust, precipitated corrosion products, and metal particles from past cutting operations. The sediment also contained hazardous constituents and radioactive contamination, including cadmium, lead, and U-235. An Engineering Evaluation/Cost Analysis (EE/CA), conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), evaluated the risks associated with deactivation of the basins and the alternatives for addressing those risks. The recommended action identified in the Action Memorandum was to perform interim stabilization of the basins. The sludge in the basins was removed and treated in accordance with the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) and disposed at the INL Radioactive Waste Management Complex (RWMC). A Non-Time Critical Removal Action (NTCRA) was conducted under CERCLA to reduce or eliminate other hazards associated with maintaining the facility. The CERCLA NTCRA included removing a small high-activity debris object (SHADO 1); consolidating and mapping the location of debris objects containing Co-60; removing, treating, and disposing of the basin water; and filling the basins with grout/controlled low strength material (CLSM). The NTCRA is an interim action that reduces the risks to human health and the environment by minimizing the potential for release of hazardous substances. The interim action does not prejudice the final end-state alternative. (authors)

  16. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    SciTech Connect (OSTI)

    Denise Lach, Principle Investigator; Stephanie Sanford, Co-P.I.

    2003-03-01T23:59:59.000Z

    During the summer of 2002, we developed and implemented a ''consensus workshop'' with Idaho citizens to elicit their concerns and issues regarding the use of bioremediation as a cleanup technology for radioactive nuclides and heavy metals at Department of Energy (DOE) sites. The consensus workshop is a derivation of a technology assessment method designed to ensure dialogue between experts and lay people. It has its origins in the United States in the form of ''consensus development conferences'' used by the National Institutes of Health (NIH) to elicit professional knowledge and concerns about new medical treatments. Over the last 25 years, NIH has conducted over 100 consensus development conferences. (Jorgensen 1995). The consensus conference is grounded in the idea that technology assessment and policy needs to be socially negotiated among many different stakeholders and groups rather than narrowly defined by a group of experts. To successfully implement new technology, the public requires access to information that addresses a full complement of issues including understanding the organization proposing the technology. The consensus conference method creates an informed dialogue, making technology understandable to the general public and sets it within perspectives and priorities that may differ radically from those of the expert community. While specific outcomes differ depending on the overall context of a conference, one expected outcome is that citizen panel members develop greater knowledge of the technology during the conference process and, sometimes, the entire panel experiences a change in attitude toward the technology and/or the organization proposing its use (Kluver 1995). The purpose of this research project was to explore the efficacy of the consensus conference model as a way to elicit the input of the general public about bioremediation of radionuclides and heavy metals at Department of Energy sites. Objectives of the research included: (1) defining the range of concerns of the public toward different bioremediation strategies and long-term stewardship; (2) creating materials and delivery methods that address bioremediation issues; and (3) assessing the effectiveness of the consensus workshop in identifying concerns about bioremediation and involving the public in a dialogue about their use. After a brief description of the Idaho workshop, we discuss the range of concerns articulated by the participants about bioremediation, discuss the materials and delivery methods used to communicate information about bioremediation, and assess the effectiveness of the consensus workshop. In summary we found that panel members in general: understood complex technical issues, especially when given enough time in a facilitated discussion with experts; are generally accepting of in situ bioremediation, but concerned about costs, safety, and effectiveness of the technology; are concerned equally about technology and decision processes; and liked the consensus workshop approach to learning about bioremediation.

  17. Precision Dual-Aquifer Dewatering at a Low Level Radiological Cleanup in New Jersey

    SciTech Connect (OSTI)

    Gosnell, A. S.; Langman, J. W. Jr.; Zahl, H. A.; Miller, D. M.

    2002-02-27T23:59:59.000Z

    Cleanup of low-level radioactive wastes at the Wayne Interim Storage Site (WISS), Wayne, New Jersey during the period October, 2000 through November, 2001 required the design, installation and operation of a dual-aquifer dewatering system to support excavation of contaminated soils. Waste disposal pits from a former rare-earth processing facility at the WISS had been in contact with the water table aquifer, resulting in moderate levels of radionuclides being present in the upper aquifer groundwater. An uncontaminated artesian aquifer underlies the water table aquifer, and is a localized drinking water supply source. The lower aquifer, confined by a silty clay unit, is flowing artesian and exhibits potentiometric heads of up to 4.5 meters above grade. This high potentiometric head presented a strong possibility that unloading due to excavation would result in a ''blowout'', particularly in areas where the confining unit was < 1 meter thick. Excavation of contaminated materials w as required down to the surface of the confining unit, potentially resulting in an artesian aquifer head of greater than 8 meters above the excavation surface. Consequently, it was determined that a dual-aquifer dewatering system would be required to permit excavation of contaminated material, with the water table aquifer dewatered to facilitate excavation, and the deep aquifer depressurized to prevent a ''blowout''. An additional concern was the potential for vertical migration of contamination present in the water table aquifer that could result from a vertical gradient reversal caused by excessive pumping in the confined system. With these considerations in mind, a conceptual dewatering plan was developed with three major goals: (1) dewater the water table aquifer to control radionuclide migration and allow excavation to proceed; (2) depressurize the lower, artesian aquifer to reduce the potential for a ''blowout''; and (3) develop a precise dewatering level control mechanism to insure a vertical gradient reversal did not result in cross-contamination. The plan was executed through a hydrogeologic investigation culminating with the design and implementation of a complex, multi-phased dual-aquifer dewatering system equipped with a state of the art monitoring network.

  18. Development of submicron particle size classification and collection techniques for nuclear facility off-gas streams. [Diffusion battery and electrofluidized bed

    SciTech Connect (OSTI)

    Hohorst, F.A.; Fernandez, S.J.

    1981-02-01T23:59:59.000Z

    High efficiency particulate air (HEPA) filters are an essential part of nuclear facility off-gas cleanup systems. However, HEPA-rated sampling filters are not the most appropriate samplers for the particle penetrating off-gas cleanup systems. Previous work at the Idaho Chemical Processing Plant (ICPP) estimated perhaps 5% of the radioactivity that challenged sampling filters penetrated them in the form of submicron particles - typically less than 0.2 microns. Accordingly, to evaluate these penetrating aerosols more fully, a suitable robust monitoring system for size differentiation and measurement of submicron particles was developed. A literature survey revealed that the diffusion battery was the best choice for particle size classification and that the electrofluidized bed was the best method for particle collection in ICPP off-gas streams. This report describes the laboratory study and in-plant demonstration of these two techniques.

  19. Development of a Small-Scale Natural Gas Liquefier. Final Report

    SciTech Connect (OSTI)

    Kountz, K.; Kriha, K.; Liss, W.; Perry, M.; Richards, M.; Zuckerman, D.

    2003-04-30T23:59:59.000Z

    This final report describes the progress during the contract period March 1, 1998 through April 30, 2003, on the design, development, and testing of a novel mixed-refrigerant-based 1000 gal/day natural gas liquefier, together with the associated gas cleanup equipment. Based on the work, it is concluded that a cost-effective 1000 gal/day liquefaction system is technically and economically feasible. A unit based on the same developed technology, with 5000 gal/day capacity, would have much improved economics.

  20. Cost and Performance Comparison Of Stationary Hydrogen Fueling Appliances

    E-Print Network [OSTI]

    with metal membrane gas cleanup, 10-atm autothermal reforming (ATR) with PSA gas cleanup, and 20-atm ATR