National Library of Energy BETA

Sample records for flue door vent

  1. Gas venting

    DOE Patents [OSTI]

    Johnson, Edwin F.

    1976-01-01

    Improved gas venting from radioactive-material containers which utilizes the passageways between interbonded impervious laminae.

  2. Doors | Open Energy Information

    Open Energy Info (EERE)

    Doors Jump to: navigation, search TODO: Add description List of Doors Incentives Retrieved from "http:en.openei.orgwindex.php?titleDoors&oldid267160...

  3. Doors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Windows, Doors, & Skylights » Doors Doors Although many people choose wood doors for their beauty, insulated steel and fiberglass doors are more energy-efficient. | Photo courtesy of ©iStockphoto/cstewart Although many people choose wood doors for their beauty, insulated steel and fiberglass doors are more energy-efficient. | Photo courtesy of ©iStockphoto/cstewart Your home's exterior doors can contribute significantly to air leakage, and can also waste energy through

  4. Driving Demand: Door-to-Door Outreach & Tracking Impacts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Driving Demand: Door-to-Door Outreach & Tracking Impacts Driving Demand: Door-to-Door Outreach & Tracking Impacts This webinar covered door-to-door outreach and tracking metrics ...

  5. Vented Capacitor

    DOE Patents [OSTI]

    Brubaker, Michael Allen; Hosking, Terry Alan

    2006-04-11

    A technique of increasing the corona inception voltage (CIV), and thereby increasing the operating voltage, of film/foil capacitors is described. Intentional venting of the capacitor encapsulation improves the corona inception voltage by allowing internal voids to equilibrate with the ambient environment.

  6. Windows, Doors, and Skylights

    Broader source: Energy.gov [DOE]

    Efficient windows, doors, and skylights can reduce energy bills and improve the comfort of your home.

  7. Doors | Department of Energy

    Energy Savers [EERE]

    the effects of a window. For example, a 1-12 inch (3.81 cm) thick door without a window offers more than five times the insulating value of a solid wood door of the same size. ...

  8. Egress door opening assister

    DOE Patents [OSTI]

    Allison, Thomas L.

    2015-10-06

    A door opening spring assistance apparatus is set forth that will automatically apply a door opening assistance force using a combination of rods and coil springs. The release of the rods by the coil springs reduces the force required to set the door in motion.

  9. Gas venting system

    DOE Patents [OSTI]

    Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

    2010-06-29

    A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

  10. High speed door assembly

    DOE Patents [OSTI]

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  11. High speed door assembly

    DOE Patents [OSTI]

    Shapiro, Carolyn

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  12. Battic Door | Open Energy Information

    Open Energy Info (EERE)

    Battic Door Jump to: navigation, search Name: Battic Door Address: P.O. Box 15 Place: Mansfield, Massachusetts Zip: 02048 Region: Greater Boston Area Sector: Buildings Product:...

  13. Windows, Doors, & Skylights

    Broader source: Energy.gov [DOE]

    Windows, doors and skylights affect home aesthetics as well as energy use. Learn how to choose products that allow you to use natural light without raising your heating and cooling costs.

  14. Electronic door locking mechanism

    DOE Patents [OSTI]

    Williams, Gary Lin; Kirby, Patrick Gerald

    1997-01-01

    The invention is a motorized linkage for engaging a thumb piece in a door mechanism. The device has an exterior lock assembly with a small battery cell and combination lock. Proper entry by a user of a security code allows the battery to operate a small motor within the exterior lock assembly. The small motor manipulates a cam-plunger which moves an actuator pin into a thumb piece. The user applies a force on to the thumb piece. This force is transmitted by the thumb piece to a latch engagement mechanism by the actuator pin. The latch engagement mechanism operates the door latch.

  15. Electronic door locking mechanism

    DOE Patents [OSTI]

    Williams, G.L.; Kirby, P.G.

    1997-10-21

    The invention is a motorized linkage for engaging a thumb piece in a door mechanism. The device has an exterior lock assembly with a small battery cell and combination lock. Proper entry by a user of a security code allows the battery to operate a small motor within the exterior lock assembly. The small motor manipulates a cam-plunger which moves an actuator pin into a thumb piece. The user applies a force on to the thumb piece. This force is transmitted by the thumb piece to a latch engagement mechanism by the actuator pin. The latch engagement mechanism operates the door latch. 6 figs.

  16. Battery venting system and method

    DOE Patents [OSTI]

    Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

  17. Battery Vent Mechanism And Method

    SciTech Connect (OSTI)

    Ching, Larry K. W.

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  18. Battery venting system and method

    SciTech Connect (OSTI)

    Casale, Thomas J.; Ching, Larry K. W.; Baer, Jose T.; Swan, David H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  19. System of treating flue gas

    DOE Patents [OSTI]

    Ziegler, D.L.

    1975-12-01

    A system is described for treating or cleaning incinerator flue gas containing acid gases and radioactive and fissionable contaminants. Flue gas and a quench solution are fed into a venturi and then tangentially into the lower portion of a receptacle for restricting volumetric content of the solution. The upper portion of the receptacle contains a scrub bed to further treat or clean the flue gas.

  20. Coil spring venting arrangement

    DOE Patents [OSTI]

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  1. Blower Door Tests | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blower Door Tests Blower Door Tests Blower door test during a home energy audit. Credit: Holtkamp Heating & A/C, Inc. Blower door test during a home energy audit. Credit: Holtkamp Heating & A/C, Inc. Professional energy auditors use blower door tests to help determine a home's airtightness. Our Energy Saver 101 infographic explains the importance of a blower door test during a home energy audit. These are some reasons for establishing the proper building tightness: Reducing energy

  2. Flue gas conditioning today

    SciTech Connect (OSTI)

    Southam, B.J.; Coe, E.L. Jr.

    1995-12-01

    Many relatively small electrostatic precipitators (ESP`s) exist which collect fly ash at remarkably high efficiencies and have been tested consistently at correspondingly high migration velocities. But the majority of the world`s coal supplies produce ashes which are collected at much lower migration velocities for a given efficiency and therefore require correspondingly large specific collection areas to achieve acceptable results. Early trials of flue gas conditioning (FGC) showed benefits in maximizing ESP performance and minimizing expense which justified continued experimentation. Trials of several dozen ways of doing it wrong eventually developed a set of reliable rules for doing it right. One result is that the use of sulfur trioxide (SO{sub 3}) for adjustment of the resistivity of fly ash from low sulfur coal has been widely applied and has become an automatically accepted part of the option of burning low sulfur coal for compliance with the Clean Air Act of l990 in the U.S.A. Currently, over 100,000 MW of generating capacity is using FGC, and it is estimated that approximately 45,800 MW will utilize coal-switching with FGC for Clean Air Act emission compliance. Guarantees that this equipment will be available to operate at least 98 percent of the time it is called upon are routinely fulfilled.

  3. Mercury sorbent delivery system for flue gas

    DOE Patents [OSTI]

    Klunder; ,Edgar B.

    2009-02-24

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  4. Door latching recognition apparatus and process

    DOE Patents [OSTI]

    Eakle, Jr., Robert F.

    2012-05-15

    An acoustic door latch detector is provided in which a sound recognition sensor is integrated into a door or door lock mechanism. The programmable sound recognition sensor can be trained to recognize the acoustic signature of the door and door lock mechanism being properly engaged and secured. The acoustic sensor will signal a first indicator indicating that proper closure was detected or sound an alarm condition if the proper acoustic signature is not detected within a predetermined time interval.

  5. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  6. Another Door Opens: Marion Invests in Energy Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    new handicap, motorized door to make the entrance ADA compliant. City Services Director Jay Shoup said the new front doors will increase door space while reducing the city's...

  7. Jamison Door: Order (2013-CE-5348)

    Broader source: Energy.gov [DOE]

    DOE ordered Jamison Door Company to pay a $6,000 civil penalty after finding Jamison Door had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  8. Development of a practical training program based on BNL`s input to new NFPA Lined Masonary Chimney Venting Tables

    SciTech Connect (OSTI)

    Potter, G.

    1997-09-01

    This paper describes how we developed a practical training program for technicians and sales personnel from the BNL studies that evolved into the Lined Chimney Venting Tables. One of the topics discussed is our search for solutions to the reoccurring problems associated with flue gas condensation on newly installed oil fired appliances. The paper will also discuss our own experiences in applying the new venting tables and working through the questions that arise when we encounter installations beyond the scope of the present tables.

  9. Flue gas injection control of silica in cooling towers. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Flue gas injection control of silica in cooling towers. Citation Details In-Document Search Title: Flue gas injection control of silica in cooling towers. ...

  10. Recovery of Water from Boiler Flue Gas Using Condensing Heat...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers Citation Details In-Document Search Title: Recovery of Water from Boiler Flue Gas Using ...

  11. Sorbents for mercury removal from flue gas (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Fossil Energy Country of Publication: United States Language: English Subject: 01 COAL, LIGNITE, AND PEAT; Flue Gas; Flue Gas; Mercury; Mercury; ...

  12. Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Virginia Natural Gas Vented and Flared (Million ... Referring Pages: Natural Gas Vented and Flared Virginia Natural Gas Gross Withdrawals and ...

  13. Accelerate program opens doors for nontraditional students

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerate program opens doors for nontraditional students Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec....

  14. Reactor pressure vessel vented head

    DOE Patents [OSTI]

    Sawabe, James K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell.

  15. Sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  16. Commercial Refrigerator Door: Order (2013-CE-5351)

    Broader source: Energy.gov [DOE]

    DOE ordered Commercial Refrigerator Door Company, Inc. to pay a $8,000 civil penalty after finding Commercial Refrigerator Door had failed to certify that a variety of models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  17. Covered Product Category: Residential Windows, Doors, and Skylights...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights The Federal Energy Management Program (FEMP) provides acquisition ...

  18. Window, Door, and Skylight Products and Services | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Doors, and Skylights ENERGY STAR Learn how to save energy by sealing your home and choosing ENERGY STAR windows, doors, and skylights. Window Selection Tool Efficient Windows...

  19. Reactor pressure vessel vented head

    DOE Patents [OSTI]

    Sawabe, J.K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell. 6 figures.

  20. Jamison Door: Proposed Penalty (2013-CE-5348)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Jamison Door Company failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  1. Fermilab | Science Next Door | Subscription Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook row spacer Twitter row spacer YouTube row spacer Subscribe | Fermilab Home row spacer row spacer row spacer Subscribe to Science Next Door If you would like to receive...

  2. Flue gas injection control of silica in cooling towers. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Flue gas injection control of silica in cooling towers. Citation Details In-Document Search Title: Flue gas injection control of silica in cooling towers. You are accessing a ...

  3. Energy Performance Ratings for Windows, Doors, and Skylights

    Broader source: Energy.gov [DOE]

    Energy performance ratings make it easier to shop for energy-efficient windows, doors, and skylights.

  4. Flue gas desulfurization method and apparatus

    SciTech Connect (OSTI)

    Madden, Deborah A.; Farthing, George A.

    1998-08-18

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  5. Flue gas desulfurization method and apparatus

    SciTech Connect (OSTI)

    Madden, Deborah A.; Farthing, George A.

    1998-09-29

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  6. Flue gas desulfurization method and apparatus

    SciTech Connect (OSTI)

    Madden, D.A.; Farthing, G.A.

    1998-09-29

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  7. Flue gas desulfurization method and apparatus

    SciTech Connect (OSTI)

    Madden, D.A.; Farthing, G.A.

    1998-08-18

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  8. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Date: 12312015 Next Release Date: 01292016 Referring Pages: Natural Gas Vented and Flared Arizona Natural Gas Gross Withdrawals and Production Natural Gas Vented and Flared...

  9. Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Release Date: 03312016 Next Release Date: 04292016 Referring Pages: Natural Gas Vented and Flared Virginia Natural Gas Gross Withdrawals and Production Natural Gas Vented and ...

  10. Ballistic Missile Silo Door Monitoring Analysis

    SciTech Connect (OSTI)

    EDENBURN,MICHAEL W.; TROST,LAWRENCE C.

    2000-01-01

    This paper compares the cost and effectiveness of several potential options that may be used to monitor silo-based ballistic missiles. Silo door monitoring can be used to verify that warheads removed to deactivate or download silo-based ballistic missiles have not been replaced. A precedent for monitoring warhead replacement using reentry vehicle on site inspections (RV-OSIs) and using satellites has been established by START-I and START-II. However, other monitoring options have the potential to be less expensive and more effective. Three options are the most promising if high verification confidence is desired: random monitoring using door sensors; random monitoring using manned or unmanned aircraft; and continuous remote monitoring using unattended door sensors.

  11. Hanford Waste Treatment Plant Sets Massive Protective Shield door in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pretreatment Facility | Department of Energy Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility Hanford Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility January 12, 2011 - 12:00pm Addthis The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The carbon steel doors come together to form an upside-down L-shape. The

  12. Tour Opens Doors, Minds to Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doors, Minds to Solar Energy For more information contact: e:mail: Public Affairs Golden, Colo., Oct. 5, 1998 — The third annual Tour of Solar Homes will open the doors to hundreds of passive and active solar homes across the nation Oct. 17. The Denver-metro leg of the tour, organized by the Colorado Renewable Energy Society, will start at the Visitors Center of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). Houses and other buildings on the self-guided tour, which

  13. Monitoring arrangement for vented nuclear fuel elements

    DOE Patents [OSTI]

    Campana, Robert J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.

  14. Community Power Works' Success Opens Doors to its Future | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Works' Success Opens Doors to its Future Community Power Works' Success Opens Doors to its Future The logo for Community Power Works, with the words Seattle is providing community ...

  15. Recommended U-factors for swinging, overhead, and revolving doors

    SciTech Connect (OSTI)

    Carpenter, S.C.; Hogan, J.

    1996-11-01

    Doors are often an overlooked component in the thermal integrity of the building envelope. Although swinging doors represent a small portion of the shell in residential buildings, their U-factor is usually many times higher than those of walls or ceilings. In some commercial buildings, loading (overhead) doors represent a significant area of high heat loss. Contrary to common perception, there is a wide range in the design, type, and therefore thermal performance of doors. The 1997 ASHRAE Handbook of Fundamentals will contain expanded tables of door U-factors to account for these product variations. This paper presents the results of detailed computer simulations of door U-factors. Recommended U-factors for glazed and unglazed residential and commercial swinging doors and commercial/industrial overhead and revolving doors are presented.

  16. Energy Performance Ratings for Windows, Doors, and Skylights...

    Energy Savers [EERE]

    The NFRC label can be found on all ENERGY STAR qualified window, door, and skylight ... U-factor is the rate at which a window, door, or skylight conducts non-solar heat flow. ...

  17. New National Labs Pilot Opens Doors to Small Businesses | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Labs Pilot Opens Doors to Small Businesses New National Labs Pilot Opens Doors to Small Businesses July 8, 2015 - 1:31pm Addthis Through the new Small Business Vouchers ...

  18. Fundamental mechanisms in flue gas conditioning

    SciTech Connect (OSTI)

    Bush, P.V.; Snyder, T.R.

    1992-01-09

    The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ask properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

  19. Operating Experience Level 3, Safety Concern: Roll-up Doors

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Operating Experience Level 3 (OE-3) document provides information about a safety concern related to roll-up doors that fail unexpectedly, endangering workers. Under normal operation, roll-up doors operate smoothly, and users may not realize the hazard a failed door can present. Industrial doors may weigh more than half of a ton, and uncontrolled gravitational movement is hazardous to personnel and equipment.

  20. Window, Door, and Skylight Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Use the following links to get product information and locate professional services for windows, doors, and skylights. Product Information Awnings in Residential Buildings: The Impact on Energy Use and Peak Demand University of Minnesota Center for Sustainable Building Research Independently Tested and Certified Energy Performance ENERGY STAR®

  1. Cement Kiln Flue Gas Recovery Scrubber Project

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-11-30

    The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

  2. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  3. Characterization of suspended flue gas particle systems with...

    Office of Scientific and Technical Information (OSTI)

    Subject: 01 COAL, LIGNITE, AND PEAT; CASCADE IMPACTORS; PERFORMANCE TESTING; FLUE GAS; PARTICLE SIZE; FLUIDIZED-BED COMBUSTION; AIR FILTERS; DISTRIBUTION; MEASURING INSTRUMENTS; ...

  4. Nuclear Storage Overpack Door Actuator and Alignment Apparatus

    DOE Patents [OSTI]

    Andreyko, Gregory M.

    2005-05-11

    The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.

  5. Nuclear storage overpack door actuator and alignment apparatus

    DOE Patents [OSTI]

    Andreyko, Gregory M. (North Huntingdon, PA)

    2005-05-10

    The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.

  6. Crystal growth furnace with trap doors

    DOE Patents [OSTI]

    Sachs, Emanual M.; Mackintosh, Brian H.

    1982-06-15

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  7. Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power...

    Office of Scientific and Technical Information (OSTI)

    Flue Gas Purification - Power Plant Performance Citation Details In-Document Search Title: Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance A ...

  8. ANALYSIS OF VENTING OF A RESIN SLURRY

    SciTech Connect (OSTI)

    Laurinat, J.; Hensel, S.

    2012-03-27

    A resin slurry venting analysis was conducted to address safety issues associated with overpressurization of ion exchange columns used in the Purex process at the Savannah River Site (SRS). If flow to these columns were inadvertently interrupted, an exothermic runaway reaction could occur between the ion exchange resin and the nitric acid used in the feed stream. The nitric acid-resin reaction generates significant quantities of noncondensable gases, which would pressurize the column. To prevent the column from rupturing during such events, rupture disks are installed on the column vent lines. The venting analysis models accelerating rate calorimeter (ARC) tests and data from tests that were performed in a vented test vessel with a rupture disk. The tests showed that the pressure inside the test vessel continued to increase after the rupture disk opened, though at a slower rate than prior to the rupture. Calculated maximum discharge rates for the resin venting tests exceeded the measured rates of gas generation, so the vent size was sufficient to relieve the pressure in the test vessel if the vent flow rate was constant. The increase in the vessel pressure is modeled as a transient phenomenon associated with expansion of the resin slurry/gas mixture upon rupture of the disk. It is postulated that the maximum pressure at the end of this expansion is limited by energy minimization to approximately 1.5 times the rupture disk burst pressure. The magnitude of this pressure increase is consistent with the measured pressure transients. The results of this analysis demonstrate the need to allow for a margin between the design pressure and the rupture disk burst pressure in similar applications.

  9. Examination of frit vent from Sixty-Watt Heat Source simulant fueled clad vent set

    SciTech Connect (OSTI)

    Ulrich, G.B.

    1995-11-01

    The flow rate and the metallurgical condition of a frit vent from a simulant-fueled clad vent set (CVS) that had been hot isostatically pressed (HIP) for the Sixty-Watt Heat Source program were evaluated. The flow rate form the defueled vent cup subassembly was reduced approximately 25% from the original flow rate. No obstructions were found to account for the reduced flow rate. Measurements indicate that the frit vent powder thickness was reduced about 30%. Most likely, the powder was compressed during the HIP operation, which increased the density of the powder layer and thus reduced the flow rate of the assembly. All other observed manufacturing attributes appeared to be normal, but the vent hole activation technique needs further refinement before it is used in applications requiring maximum CVS integrity.

  10. Flue gas desulfurization wastewater treatment primer

    SciTech Connect (OSTI)

    Higgins, T.E.; Sandy, A.T.; Givens, S.W.

    2009-03-15

    Purge water from a typical wet flue gas desulfurization system contains myriad chemical constituents and heavy metals whose mixture is determined by the fuel source and combustion products as well as the stack gas treatment process. A well-designed water treatment system can tolerate upstream fuel and sorbent arranged in just the right order to produce wastewater acceptable for discharge. This article presents state-of-the-art technologies for treating the waste water that is generated by wet FGD systems. 11 figs., 3 tabs.

  11. Vented Cavity Radiant Barrier Assembly And Method

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.; Jackaway, Adam D.

    2000-05-16

    A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

  12. Covered Product Category: Residential Windows, Doors, and Skylights |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights The Federal Energy Management Program (FEMP) provides acquisition guidance for residential windows, doors, and skylights, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most

  13. Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Virginia Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  14. Science DMZ Opens Doors to More Science, More Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opens Doors to More Science, More Collaboration News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Media Jon...

  15. Simplified multizone blower door techniques for multifamily buildings. Final report

    SciTech Connect (OSTI)

    1995-09-01

    This research focused on the applicability of (a) two-blower-door and (b) single-blower-door multi-zone pressurization techniques for estimating the air leakage characteristics of New York State multi-family apartment buildings. The research also investigated the magnitude of external leakage area in multi-family buildings and used computer simulations to estimate the effect of decreasing external and internal leakage areas on air infiltration rates. This research investigates whether two blower doors can be used to determine the ELA of the exterior envelope and the ELA of partitions. Two multi-zone versions of the single-blower-door pressurization method are also examined.

  16. Door County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Door County, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1113873, -87.0470884 Show Map Loading map... "minzoom":false,"mappin...

  17. Electrochemical cell having improved pressure vent

    DOE Patents [OSTI]

    Dean, Kevin; Holland, Arthur; Fillmore, Donn

    1993-01-01

    The electrochemical cell of the instant invention includes a case having a gas outlet, one or more positive electrodes positioned within the case, one or more negative electrodes positioned within the case electrode separators positioned between the positive and negative electrodes, electrolyte positioned within the case, and a pressure vent for releasing internal pressure occurring in the case to the surrounding atmosphere. The pressure vent is affixed to the case covering the gas outlet, the pressure vent includes a vent housing having a hollow interior area in gaseous communication with the surrounding atmosphere and the interior of the case via the gas outlet, a pressure release piston positioned within the hollow interior area, the pressure release piston sized to surround the gas outlet and having a seal groove configured to encapsulate all but one surface of a seal mounted within the seal groove, leaving the non-encapsulated surface of the seal exposed, and a compression spring positioned to urge the pressure release piston to compress the seal in the seal groove and block the gas outlet in the case.

  18. Near-Zero Emissions Oxy-Combustion Flue Gas Purification

    SciTech Connect (OSTI)

    Minish Shah; Nich Degenstein; Monica Zanfir; Rahul Solunke; Ravi Kumar; Jennifer Bugayong; Ken Burgers

    2012-06-30

    The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plants burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by

  19. Retrofitting Doors on Open Refrigerated Cases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofitting Doors on Open Refrigerated Cases Retrofitting Doors on Open Refrigerated Cases Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review commlbldgs18_goetzler_040413.pdf (1.18 MB) More Documents & Publications Better Buildings Alliance - 2013 BTO Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Better Buildings Alliance Equipment Performance Specifications - 2013 BTO P

  20. Flue gas desulfurization/denitrification using metal-chelate additives

    DOE Patents [OSTI]

    Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

    1985-08-05

    A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

  1. Flue gas desulfurization/denitrification using metal-chelate additives

    DOE Patents [OSTI]

    Harkness, John B. L.; Doctor, Richard D.; Wingender, Ronald J.

    1986-01-01

    A method of simultaneously removing SO.sub.2 and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO.sub.2 and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled.

  2. Utility flue gas mercury control via sorbent injection

    SciTech Connect (OSTI)

    Chang, R.; Carey, T.; Hargrove, B.

    1996-12-31

    The potential for power plant mercury control under Title III of the 1990 Clean Air Act Amendments generated significant interest in assessing whether cost effective technologies are available for removing the mercury present in fossil-fired power plant flue gas. One promising approach is the direct injection of mercury sorbents such as activated carbon into flue gas. This approach has been shown to be effective for mercury control from municipal waste incinerators. However, tests conducted to date on utility fossil-fired boilers show that it is much more difficult to remove the trace species of mercury present in flue gas. EPRI is conducting research in sorbent mercury control including bench-scale evaluation of mercury sorbent activity and capacity with simulated flue gas, pilot testing under actual flue gas conditions, evaluation of sorbent regeneration and recycle options, and the development of novel sorbents. A theoretical model that predicts maximum mercury removals achievable with sorbent injection under different operating conditions is also being developed. This paper presents initial bench-scale and model results. The results to date show that very fine and large amounts of sorbents are needed for mercury control unless long residence times are available for sorbent-mercury contact. Also, sorbent activity and capacity are highly dependent on flue gas composition, temperature, mercury species, and sorbent properties. 10 refs., 4 figs., 2 tabs.

  3. Method and apparatus for forming flues on tubular stock

    DOE Patents [OSTI]

    Beck, D.E.; Carson, C.

    1979-12-21

    The present invention is directed to a die mechanism utilized for forming flues on long, relatively narrow tubular stock. These flues are formed by displacing a die from within the tubular stock through perforations previously drilled through the tubular stock at selected locations. The drawing of the die upsets the material to form the flue of the desired configuration. The die is provided with a lubricating system which enables the lubricant to be dispensed uniformly about the entire periphery of the die in contact with the material being upset so as to assure the formation of the flues. Further, the lubricant is dispensed from within the die onto the peripheral surface of the latter at pressures in the range of about 2000 to 10,000 psi so as to assure the adequate lubrication of the die during the drawing operation. By injecting the lubricant at such high pressures, low viscosity liquid, such as water and/or alcohol, may be efficiently used as a lubricant and also provides a mechanism by which the lubricant may be evaporated from the surface of the flues at ambient conditions so as to negate the cleansing operations previously required prior to joining the flues to other conduit mechanisms by fusion welding and the like.

  4. Provisions for containment venting in Germany

    SciTech Connect (OSTI)

    Wilhelm, J.G.

    1997-08-01

    In this short paper an overlook is given of the systems developed in Germany for filtered containment venting and their implementation in nuclear power plants. More information on the development can be found in the Proceedings of the DOE/NRC Aircleaning Conferences. In Germany, 28.8 % of the electric energy is produced by 19 nuclear power reactors. No new power reactor is expected to be built at least within the next ten years, but France and Germany cooperate in the development of a future European Power Reactor (ERP). This reactor type will be fitted with a core catcher and passive cooling in order to avoid serious consequences of a hypothetical core meltdown accident so that provisions for containment venting are not required. 3 refs., 6 figs., 1 tab.

  5. Comparative Study of Vented vs. Unvented Crawlspaces

    SciTech Connect (OSTI)

    Biswas, Kaushik; Christian, Jeffrey E; Gehl, Anthony C

    2011-10-01

    There has been a significant amount of research in the area of building energy efficiency and durability. However, well-documented quantitative information on the impact of crawlspaces on the performance of residential structures is lacking. The objective of this study was to evaluate and compare the effects of two crawlspace strategies on the whole-house performance of a pair of houses in a mixed humid climate. These houses were built with advanced envelope systems to provide energy savings of 50% or more compared to traditional 2010 new construction. One crawlspace contains insulated walls and is sealed and semi-conditioned. The other is a traditional vented crawlspace with insulation in the crawlspace ceiling. The vented (traditional) crawlspace contains fiberglass batts installed in the floor chase cavities above the crawl, while the sealed and insulated crawlspace contains foil-faced polyisocyanurate foam insulation on the interior side of the masonry walls. Various sensors to measure temperatures, heat flux through crawlspace walls and ceiling, and relative humidity were installed in the two crawlspaces. Data from these sensors have been analyzed to compare the performance of the two crawlspace designs. The analysis results indicated that the sealed and insulated crawlspace design is better than the traditional vented crawlspace in the mixed humid climate.

  6. Confined zone dispersion flue gas desulfurization demonstration

    SciTech Connect (OSTI)

    Not Available

    1992-02-27

    The confined zone dispersion (CZD) process involves flue gas post-treatment, physically located between a boiler's outlet and its particulate collector, which in the majority of cases is an electrostatic precipitator. The features that distinguish this process from other similar injection processes are: Injection of an alkaline slurry directly into the duct, instead of injection of dry solids into the duct ahead of a fabric filter. Use of an ultrafine calcium/magnesium hydroxide, type S pressure-hydrated dolomitic lime. This commercial product is made from plentiful, naturally occurring dolomite. Low residence time, made possible by the high effective surface area of the Type S lime. Localized dispersion of the reagent. Slurry droplets contact only part of the gas while the droplets are drying, to remove up to 50 percent of the S0{sub 2} and significant amounts of NO{sub x}. The process uses dual fluid rather than rotary atomizers. Improved electrostatic precipitator performance via gas conditioning from the increased water vapor content, and lower temperatures. Supplemental conditioning with S0{sub 3} is not believed necessary for satisfactory removal of particulate matter.

  7. Flue gas desulfurization: Physicochemical and biotechnological approaches

    SciTech Connect (OSTI)

    Pandey, R.A.; Biswas, R.; Chakrabarti, T.; Devotta, S.

    2005-07-01

    Various flue gas desulfurization processes - physicochemical, biological, and chemobiological - for the reduction of emission of SO{sub 2} with recovery of an economic by-product have been reviewed. The physicochemical processes have been categorized as 'once-through' and 'regenerable.' The prominent once-through technologies include wet and dry scrubbing. The wet scrubbing technologies include wet limestone, lime-inhibited oxidation, limestone forced oxidation, and magnesium-enhanced lime and sodium scrubbing. The dry scrubbing constitutes lime spray drying, furnace sorbent injection, economizer sorbent injection, duct sorbent injection, HYPAS sorbent injection, and circulating fluidized bed treatment process. The regenerable wet and dry processes include the Wellman Lord's process, citrate process, sodium carbonate eutectic process, magnesium oxide process, amine process, aqueous ammonia process, Berglau Forchung's process, and Shell's process. Besides these, the recently developed technologies such as the COBRA process, the OSCAR process, and the emerging biotechnological and chemobiological processes are also discussed. A detailed outline of the chemistry, the advantages and disadvantages, and the future research and development needs for each of these commercially viable processes is also discussed.

  8. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Pressure Steam | Department of Energy Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam This tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #29 Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam (January 2012)

  9. Commercial Refrigerator Door: Proposed Penalty (2013-CE-5351)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Commercial Refrigerator Door Company, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  10. Energy Performance Ratings for Windows, Doors, and Skylights...

    Broader source: Energy.gov (indexed) [DOE]

    the rate of air movement around a window, door, or skylight in the presence of a specific pressure difference across it. It's expressed in units of cubic feet per minute per square...

  11. Updating the Doors and Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Windows Updating the Doors and Windows August 23, 2012 - 2:46pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Since I can't afford to replace...

  12. Repairing Windows & Doors: How To's for the Handy Homeowner

    SciTech Connect (OSTI)

    2006-01-05

    This brochure contains tips for homeowners to repair windows and doors in their home that sustained hurricane damage. This publication is a part of the How To's for the Handy Homeowner Series.

  13. NREL Opens New Doors to Renewable Energy Data - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Opens New Doors to Renewable Energy Data Developer.nrel.gov empowers Web developers to use renewable energy data for Web and mobile applications October 25, 2011 The U.S. ...

  14. Use a Vent Condenser to Recover Flash Steam Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use a Vent Condenser to Recover Flash Steam Energy (January 2012) (374.64 KB) More Documents & Publications Recover Heat from Boiler Blowdown Deaerators in Industrial Steam Systems ...

  15. Assessment of Literature Related to Combustion Appliance Venting...

    Office of Scientific and Technical Information (OSTI)

    Assessment of Literature Related to Combustion Appliance Venting Systems Citation Details ... Country of Publication: United States Language: English Subject: 29 ENERGY PLANNING, ...

  16. Hydrogen Student Design Contest Inspires and Opens Doors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hydrogen Student Design Contest Inspires and Opens Doors Hydrogen Student Design Contest Inspires and Opens Doors September 28, 2011 - 3:22pm Addthis A hydrogen-powered Toyota Prius pulls up to Humboldt State University's student designed hydrogen fueling station. A hydrogen-powered Toyota Prius pulls up to Humboldt State University's student designed hydrogen fueling station. Sunita Satyapal Director, Fuel Cell Technologies Office Since 2004, the Hydrogen Student Design Contest has

  17. PH adjustment of power plant cooling water with flue gas/fly...

    Office of Scientific and Technical Information (OSTI)

    PH adjustment of power plant cooling water with flue gasfly ash Citation Details In-Document Search Title: PH adjustment of power plant cooling water with flue gasfly ash A...

  18. Blower-door techniques for measuring interzonal leakage

    SciTech Connect (OSTI)

    Hult, Erin L.; Sherman, Max H.; Walker, Iain

    2013-01-01

    Abstract The standard blower door test methods, such as ASTM E779, describe how to use a single blower door to determine the total leakage of a single-zone structure such as a detached single-family home. There are no standard test methods for measuring interzonal leakage in a two-zone or multi-zone building envelope such as might be encountered in with an attached garage or in a multifamily building. Some practitioners have been using techniques that involve making multiple measurements with a single blower door as well as combined measurements using multiple blower doors. Even for just two zones there are dozens of combinations of one-door and two-door test protocols that could conceivably be used to determine the interzonal air tightness. We examined many of these two-zone configurations using both simulation and measured data to estimate the accuracy and precision of each technique for realistic measurement scenarios. We also considered the impact of taking measurements at a single pressure versus over multiple pressures. We compared the various techniques and evaluated them for specific uses. Some techniques work better in one leakage regime; some are more sensitive to wind and other noise; some are more suited to determining only a subset of the leakage values. This paper makes recommendations on which techniques to use or not use for various cases and provides data that could be used to develop future test methods.

  19. Environmental sustainability comparison of a hypothetical pneumatic waste collection system and a door-to-door system

    SciTech Connect (OSTI)

    Punkkinen, Henna; Merta, Elina; Teerioja, Nea; Moliis, Katja; Kuvaja, Eveliina

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We compare the environmental sustainability of two MSW collection systems. Black-Right-Pointing-Pointer We evaluate pneumatic and door-to-door collection systems. Black-Right-Pointing-Pointer The greenhouse gas emissions of pneumatic collection are around three times higher. Black-Right-Pointing-Pointer System components are decisive but assumptions on electricity use are also important. Black-Right-Pointing-Pointer Pneumatic collection could provide other benefits over door-to-door system. - Abstract: Waste collection is one of the life cycle phases that influence the environmental sustainability of waste management. Pneumatic waste collection systems represent a new way of arranging waste collection in densely populated urban areas. However, limited information is available on the environmental impacts of this system. In this study, we compare the environmental sustainability of conventional door-to-door waste collection with its hypothetical pneumatic alternative. Furthermore, we analyse whether the size of the hypothetical pneumatic system, or the number of waste fractions included, have an impact on the results. Environmental loads are calculated for a hypothetical pneumatic waste collection system modelled on an existing dense urban area in Helsinki, Finland, and the results are compared to those of the prevailing, container-based, door-to-door waste collection system. The evaluation method used is the life-cycle inventory (LCI). In this study, we report the atmospheric emissions of greenhouse gases (GHG), SO{sub 2} and NO{sub x}. The results indicate that replacing the prevailing system with stationary pneumatic waste collection in an existing urban infrastructure would increase total air emissions. Locally, in the waste collection area, emissions would nonetheless diminish, as collection traffic decreases. While the electricity consumption of the hypothetical pneumatic system and the origin of electricity have a

  20. Energy Auditor - Single Family 2.0: Blower Door Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Blower Door Basics Energy Auditor - Single Family 2.0: Blower Door Basics Blower Door Basics - Complete (12.5 MB) Lesson Plan: Blower Door Basics (225.08 KB) PowerPoint: Blower Door Basics (12.84 MB) More Documents & Publications Energy Auditor - Single Family 2.0: Mechanical Ventilation Energy Auditor - Single Family 2.0: Zone Pressure Diagnostics Energy Auditor - Single Family 2.0: Building Science Basics

  1. Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Vented ... Referring Pages: Natural Gas Vented and Flared Federal Offshore Gulf of Mexico Natural Gas ...

  2. Staged venting of fuel cell system during rapid shutdown

    DOE Patents [OSTI]

    Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.

    2002-01-01

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  3. Assessment of Literature Related to Combustion Appliance Venting Systems

    SciTech Connect (OSTI)

    Rapp, V. H.; Less, B. D.; Singer, B. C.; Stratton, J. C.; Wray, C. P.

    2015-02-01

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents their technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.

  4. Staged venting of fuel cell system during rapid shutdown

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-09-14

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  5. Workshop on sulfur chemistry in flue gas desulfurization

    SciTech Connect (OSTI)

    Wallace, W.E. Jr.

    1980-05-01

    The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

  6. BUILDING MATERIALS MADE FROM FLUE GAS DESULFURIZATION BY-PRODUCTS

    SciTech Connect (OSTI)

    Michael W. Grutzeck; Maria DiCola; Paul Brenner

    2006-03-30

    Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

  7. Dynamic Object Oriented Requirements System (DOORS) System Test Plan

    SciTech Connect (OSTI)

    JOHNSON, A.L.

    2000-04-01

    The U. S. Department of Energy, Office of River Protection (ORP) will use the Dynamic Object Oriented Requirements System (DOORS) as a tool to assist in identifying, capturing, and maintaining the necessary and sufficient set of requirements for accomplishing the ORP mission. By managing requirements as one integrated set, the ORP will be able to carry out its mission more efficiently and effectively. DOORS is a Commercial-Off-The-Shelf (COTS) requirements management tool. The tool has not been customized for the use of the PIO, at this time.

  8. ARM - Campaign Instrument - cm22-pmod-vent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pmod-vent Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Kipp & Zonen CM22-PMOD Vent (CM22-PMOD-VENT) Instrument Categories Radiometric Campaigns Diffuse Shortwave IOP [ Download Data ] Southern Great Plains, 2001.09.24 - 2001.10.22 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for the list of all available measurements,

  9. Building America Case Study - Evaluation of Passive Vents in...

    Energy Savers [EERE]

    Typical apartments will need 20-45 CFM of outdoor air to meet ASHRAE 62.2-2010 whole-house ... The average airfow through the passive vents fell short of providing the ASHRAE 62.2-2010 ...

  10. Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure...

    Open Energy Info (EERE)

    Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation,...

  11. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Example An industrial facility vents 10,000 lbhr of steam at near atmospheric pressure 0.3 psig, 212.9F, 1,150.7 Btu per pound (Btulb). Wasted steam can be converted into ...

  12. Give Me My Tax Credit! (Or, How I Almost Bought the Wrong Patio Door)

    Broader source: Energy.gov [DOE]

    Over the past few weeks, my husband and I have been shopping for a new patio door. We currently have a sliding glass door that we have always hated—full exposure to winds from the west and to open...

  13. Covered Product Category: Residential Windows, Doors, and Skylights

    Office of Energy Efficiency and Renewable Energy (EERE)

    FEMP provides acquisition guidance across a variety of product categories, including residential windows, doors, and skylights, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  14. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  15. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

    2006-09-30

    This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

  16. Dry scrubber reduces SO sub 2 in calciner flue gas

    SciTech Connect (OSTI)

    Brown, G.W. ); Roderick, D. ); Nastri, A. )

    1991-02-18

    This paper discusses the installation of a dry sulfur dioxide scrubber for an existing petroleum coke calciner at its Fruita, Colo., refinery. The dry scrubbing process was developed by the power industry to help cope with the acid rain problem. It is the first application of the process in an oil refinery. The process could also remove SO{sub 2} from the flue gas of a fluid catalytic cracker, fluid coker, or other refinery sources.

  17. Separation of Carbon Dioxide from Flue Gas Using Ion Pumping

    SciTech Connect (OSTI)

    Aines, R; Bourcier, W L; Johnson, M R

    2006-04-21

    We are developing a new way of separating carbon dioxide from flue gas based on ionic pumping of carbonate ions dissolved in water. Instead of relying on large temperature or pressure changes to remove carbon dioxide from solvent used to absorb it from flue gas, the ion pump increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, which can be removed from the downstream side of the ion pump as a nearly pure gas. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas. The slightly basic water used as the extraction medium is impervious to trace acid gases that destroy existing solvents, and no pre-separation is necessary. The simple, robust nature of the process lends itself to small separation plants. Although the energy cost of the ion pump is significant, we anticipate that it will be compete favorably with the current 35% energy penalty of chemical stripping systems in use at power plants. There is the distinct possibility that this simple method could be significantly more efficient than existing processes.

  18. PH adjustment of power plant cooling water with flue gas/fly ash

    SciTech Connect (OSTI)

    Brady, Patrick V.; Krumhansl, James L.

    2015-09-22

    A system including a vessel including a heat source and a flue; a turbine; a condenser; a fluid conduit circuit disposed between the vessel, the turbine and the condenser; and a diverter coupled to the flue to direct a portion of an exhaust from the flue to contact with a cooling medium for the condenser water. A method including diverting a portion of exhaust from a flue of a vessel; modifying the pH of a cooling medium for a condenser with the portion of exhaust; and condensing heated fluid from the vessel with the pH modified cooling medium.

  19. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  20. Metal Oxide Semiconductor Nanoparticles Open the Door to New Medical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovations | Argonne National Laboratory Metal Oxide Semiconductor Nanoparticles Open the Door to New Medical Innovations Technology available for licensing: novel nanometer-sized metal oxide semiconductors that allow targeting, initiating and control of in vitro and in vivo chemical reactions in biological molecules, such as DNA, proteins, and antibodies. Allows for targeting, initiation and control of in vitro and in vivo chemical reactions in biological molecules Commercial applications

  1. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  2. Transport characteristics across drum filter vents and polymer bags

    SciTech Connect (OSTI)

    Liekhus, K.J.

    1994-08-01

    The rate at which hydrogen (H {sub 2}) or a volatile organic compound (VOC) exits a layer of confinement in a vented waste drum is proportional to the concentration difference across the layer. The proportionality constant is the gas transport characteristic. A series of transport experiments were conducted to determine H{sub 2} and VOC transport characteristics across different drum filter vents and polymer bags. This report reviews the methods and results of past investigators in defining transport characteristics across filter vents and polymer bags, describes the apparatus and procedures used in these experiments, compares the reported and estimated transport characteristics with earlier results, and discusses the impact of changing the transport characteristic values used in model calculations.

  3. Kinetics of combined SO/sub 2//NO in flue gas clean-up

    SciTech Connect (OSTI)

    Chang, S.G.; Littlejohn, D.

    1985-03-01

    The kinetics of reactions involving SO/sub 2/, NO, and ferrous chelate additives in wet flue gas simultaneous desulfurization and denitrification scrubbers are discussed. The relative importance of these reactions are assessed. The relevance of these reactions to spray dryer processes for combined SO/sub 2//NO flue gas clean-up is addressed. 37 refs., 7 figs.

  4. Thief process for the removal of mercury from flue gas

    DOE Patents [OSTI]

    Pennline, Henry W.; Granite, Evan J.; Freeman, Mark C.; Hargis, Richard A.; O'Dowd, William J.

    2003-02-18

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  5. Coke oven doors: Historical methods of emission control and evaluation of current designs

    SciTech Connect (OSTI)

    Pettrey, J.O.; Greene, D.E. )

    1993-01-01

    The containment of oven door leakage has presented challenges to coke producers for many years as the requirements of environmental regulatory agencies have become increasingly stringent. A description and evaluation of past door modifications, leakage control methodologies and luting practices on Armco Steel Company, L.P.'s Ashland No. 4 Battery is detailed to provide a background for recent work, and to expand the industry's technology base. The strict door leakage standards of the 1990 amendments to the USA Clean Air Act has prompted additional technical studies. Both a joint Armco committee's evaluation of successful systems world wide and test door installations at Ashland were incorporated to determine compliance strategy. The eventual installation of Ikio Model II coke oven doors, along with modifications to ancillary equipment, has resulted in door leakage rates approaching zero. Associated methods, problems, results and evaluations are discussed.

  6. Container lid gasket protective strip for double door transfer system

    DOE Patents [OSTI]

    Allen, Jr., Burgess M

    2013-02-19

    An apparatus and a process for forming a protective barrier seal along a "ring of concern" of a transfer container used with double door systems is provided. A protective substrate is supplied between a "ring of concern" and a safety cover in which an adhesive layer of the substrate engages the "ring of concern". A compressive foam strip along an opposite side of the substrate engages a safety cover such that a compressive force is maintained between the "ring of concern" and the adhesive layer of the substrate.

  7. Use of sulfide-containing liquors for removing mercury from flue gases

    SciTech Connect (OSTI)

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2003-01-01

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  8. Use of sulfide-containing liquors for removing mercury from flue gases

    SciTech Connect (OSTI)

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  9. Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas

    SciTech Connect (OSTI)

    Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.

    2004-01-01

    An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.

  10. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  11. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect (OSTI)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co

  12. Opening the Door: San Diego R&D Workshop Video | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opening the Door: San Diego R&D Workshop Video Opening the Door: San Diego R&D Workshop Video View the video from Jim Brodrick's opening presentation at the February 2011 DOE SSL R&D Workshop in San Diego, California

  13. Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc) Previous Next List Thomas M. McDonald, Woo Ram Lee, Jarad A. ...

  14. Load Preheating Using Flue Gases from a Fuel-Fired Heating System

    Broader source: Energy.gov [DOE]

    This tip sheet discusses how the thermal efficiency of a process heating system can be improved significantly by using heat contained in furnace flue gases to preheat the furnace load.

  15. PH adjustment of power plant cooling water with flue gas/fly...

    Office of Scientific and Technical Information (OSTI)

    Krumhansl, James L. A system including a vessel including a heat source and a flue; a turbine; a condenser; a fluid conduit circuit disposed between the vessel, the turbine and...

  16. Ohio Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Ohio Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 330 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  17. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Oklahoma Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 126,629 129,408 130,766 1970's 129,629 39,799 38,797 36,411 34,199 31,802 30,197 29,186 27,489 26,605 1980's 25,555 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release

  18. Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 98 96 99 75 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  19. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Arizona Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 347 367 277 26 47 32 101 1980's 143 106 162 108 182 124 122 125 123 95 1990's 22 56 23 21 8 0 0 1 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  20. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Kentucky Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6 15 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  1. Request for approval, vented container annual release fraction

    SciTech Connect (OSTI)

    HILL, J.S.

    1999-10-12

    In accordance with the approval conditions for Modification to the Central Waste Complex (CWC) Radioactive Air Emissions Notice of Construction (NOC). dated August 24,1998, a new release fraction has been developed for submittal to the Washington State Department of Health (WDOH). The proposed annual release fraction of 2.50 E-14 is proposed for use in future NOCs involving the storage and handling operations associated with vented containers on the Hanford Site. The proposed annual release fraction was the largest release fraction calculated from alpha measurements of the NucFil filters from 10 vented containers consisting of nine 55-gallon drums and one burial box with dimensions of 9.3 x 5.7 x 6.4 feet. An annual release fraction of 2.0 E-09 was used in the modification to the CWC radioactive air emissions NOC. This study confirmed that the release fraction used in the CWC radioactive air emissions NOC was conservative.

  2. Florida Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Florida Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 355 284 837 607 1980's 677 428 435 198 34 13 54 30 166 450 1990's 286 482 245 205 220 28 - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  3. Illinois Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Illinois Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 126 102 93 1970's 122 3,997 1,806 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  4. Device and method for remotely venting a container

    DOE Patents [OSTI]

    Vodila, James M. (North Huntingdon, PA); Bergersen, Jeffrey A. (Idaho Falls, ID)

    1997-01-01

    A device for venting a container having a bung includes a saddle assembly curable to a container and having a support extending therefrom. A first arm is rotatably secured to the support, and the first arm extends in a first direction. A second arm has a first end portion drivingly engaged with the first arm, so that rotation of the first arm causes rotation of the second arm. A second end portion of the first arm is positionable proximate the bung of the container. A socket is operably associated and rotatable with the second end portion and is drivingly engageable with the bung, so that rotation of the socket causes corresponding rotation of the bung for thereby venting the container.

  5. Tennessee Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Tennessee Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 408 180 165 376 585 339 156 117 126 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  6. TRANSPORT OF WASTE SIMULANTS IN PJM VENT LINES

    SciTech Connect (OSTI)

    Qureshi, Z

    2007-02-21

    The experimental work was conducted to determine whether there is a potential for waste simulant to transport or 'creep' up the air link line and contaminate the pulse jet vent system, and possibly cause long term restriction of the air link line. Additionally, if simulant creep occurred, establish operating parameters for washing down the line. The amount of the addition of flush fluids and mixer downtime must be quantified.

  7. Catalysts for Oxidation of Mercury in Flue Gas - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Catalysts for Oxidation of Mercury in Flue Gas National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication 7776780.pdf (365 KB) Technology Marketing Summary Disclosed in this patent are catalysts for the oxidation of elemental mercury in flue gas. These novel catalysts include iridium (Ir), platinum/iridium (Pt/Ir), and Thief carbons. The catalyst materials will adsorb

  8. Biomimetic Membrane for CO2 Capture from Flue Gas

    SciTech Connect (OSTI)

    Michael C. Trachtenberg

    2007-05-31

    These Phase III experiments successfully addressed several issues needed to characterize a permeator system for application to a pulverized coal (PC) burning furnace/boiler assuming typical post-combustion cleanup devices in place. We completed key laboratory stage optimization and modeling efforts needed to move towards larger scale testing. The SOPO addressed six areas. Task 1--Post-Combustion Particle Cleanup--The first object was to determine if the Carbozyme permeator performance was likely to be reduced by particles (materials) in the flue gas stream that would either obstruct the mouth of the hollow fibers (HF) or stick to the HF bore wall surface. The second, based on the Acceptance Standards (see below), was to determine whether it would be preferable to clean the inlet gas stream (removing acid gases and particulates) or to develop methods to clean the Carbozyme permeator if performance declined due to HF block. We concluded that condensation of particle and particulate emissions, in the heat exchanger, could result in the formation of very sticky sulfate aerosols with a strong likelihood of obtruding the HF. These must be managed carefully and minimized to near-zero status before entering the permeator inlet stream. More extensive post-combustion cleanup is expected to be a necessary expense, independent of CO{sub 2} capture technology This finding is in agreement with views now emerging in the literature for a variety of CO{sub 2} capture methods. Task 2--Water Condensation--The key goal was to monitor and control temperature distributions within the permeator and between the permeator and its surroundings to determine whether water condensation in the pores or the HF bore would block flow, decreasing performance. A heat transfer fluid and delivery system were developed and employed. The result was near isothermal performance that avoided all instances of flow block. Direct thermocouple measurements provided the basis for developing a heat transfer

  9. Method for removing heavy metal and nitrogen oxides from flue gas, device for removing heavy metal and nitrogen oxides from flue gas

    SciTech Connect (OSTI)

    Huang, Hann-Sheng; Livengood, Charles David

    1997-12-01

    A method for the simultaneous removal of oxides and heavy metals from a fluid is provided comprising combining the fluid with compounds containing alkali and sulfur to create a mixture; spray drying the mixture to create a vapor phase and a solid phase; and isolating the vapor phase from the solid phase. A device is also provided comprising a means for spray-drying flue gas with alkali-sulfide containing liquor at a temperature sufficient to cause the flue gas to react with the compounds so as to create a gaseous fraction and a solid fraction and a means for directing the gaseous fraction to a fabric filter.

  10. Separation of flue-gas scrubber sludge into marketable products

    SciTech Connect (OSTI)

    Kawatra, S.K.; Eisele, T.C.

    1997-08-31

    A tremendous amount of wet flue-gas desulfurization scrubber sludge (estimated 20 million metric tons per year in the US) is currently being landfilled at a huge cost to utility companies. Scrubber sludge is the solid precipitate produced during desulfurization of flue-gas from burning high sulfur coal. The amount of this sludge is expected to increase in the near future due to ever increasing governmental regulation concerning the amount of sulfur emissions. Scrubber sludge is a fine, grey colored powder that contains calcium sulfite hemihydrate (CaSO{sub 3} {center_dot} 1/2H{sub 2}), calcium sulfate dihydrate (CaSO{sub 4} {center_dot} 2H{sub 2}O), limestone (CaCO{sub 3}), silicates, and iron oxides. This material can continue to be landfilled at a steadily increasing cost, or an alternative for utilizing this material can be developed. This study explores the characteristics of a naturally oxidized wet flue-gas desulfurization scrubber sludge and uses these characteristics to develop alternatives for recycling this material. In order for scrubber sludge to be used as a feed material for various markets, it was necessary to process it to meet the specifications of these markets. A physical separation process was therefore needed to separate the components of this sludge into useful products at a low cost. There are several physical separation techniques available to separate fine particulates. These techniques can be divided into four major groups: magnetic separation, electrostatic separation, physico-chemical separation, and density-based separation. The properties of this material indicated that two methods of separation were feasible: water-only cycloning (density-based separation), and froth flotation (physico-chemical separation). These processes could be used either separately, or in combination. The goal of this study was to reduce the limestone impurity in this scrubber sludge from 5.6% by weight to below 2.0% by weight. The resulting clean calcium

  11. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOE Patents [OSTI]

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  12. Economic assessment of advanced flue gas desulfurization processes. Final report

    SciTech Connect (OSTI)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  13. Multi-component removal in flue gas by aqua ammonia

    DOE Patents [OSTI]

    Yeh, James T.; Pennline, Henry W.

    2007-08-14

    A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

  14. Dry FGD (flue-gas desulfurization) at Argonne National Laboratory

    SciTech Connect (OSTI)

    Livengood, C.D.

    1990-01-01

    Flue-gas desulfurization (FGD) systems based on spray drying are a relatively recent addition to the spectrum of sulfur dioxide (SO{sub 2}) control options available to utility and industrial boiler operators. Such systems appear to offer advantages over wet lime/limestone systems in a number of areas: low energy consumption, low capital cost, high reliability, and production of a dry waste that is easily handled and disposed of. These advantages have promoted rapid acceptance of dry scrubbers for applications using western low-sulfur coal, but uncertainties regarding the performance and economics of such systems for control of high-sulfur-coal emissions have slowed adoption of the technology in the Midwest and East. At Argonne National Laboratory (ANL) we have had more than eight years of operating experience with an industrial-scale dry scrubber used with a boiler firing high-sulfur (3.5%) midwestern coal. This paper describes our operating experience with that system and summarizes several research programs that have utilized it. 7 refs., 15 figs., 6 tabs.

  15. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

    2003-08-01

    This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

  16. Separation of Flue-Gas Scrubber Sludge into Marketable Products

    SciTech Connect (OSTI)

    1998-02-28

    The reduction of sulfur oxides from high sulfur coal burning utility companies has resulted in the production of huge quantities of wet flue-gas desulfurization scrubber sludge. A typical 400 MW power station burning a coal containing 3.5% sulfur by weight and using a limestone absorbent would produce approximately 177,000 tons (dry weight) of scrubber sludge per year. This brownish colored, finely divided material contains calcium sulfite (CaSO{sub 3} {center_dot} 1/2 H{sub 2}O), calcium sulfate (CaSO{sub 4} {center_dot} 2H{sub 2}O), unreacted limestone (CaCO{sub 3}), and various other impurities such as fly-ash and iron oxide particles. The physical separation of the components of scrubber sludge would result in the re-use of this material. The primary use would be conversion to a highly pure synthetic gypsum. This technical report concentrates on the effect of baffle configuration on the separation of calcium sulfite/sulfate from limestone. The position of the baffles as they related to the feed inlet, and the quantity of the baffles were examined. A clean calcium sulfite/sulfate (less than 2.0% limestone by weight) was achieved with the combination of water-only cyclone and horizontally baffled column.

  17. In the field. Pilot project uses innovative process to capture CO{sub 2} from flue gas

    SciTech Connect (OSTI)

    2008-04-01

    A pilot project at We Energies' Pleasant Prairie Power Plant uses chilled ammonia to capture CO{sub 2} from flue gas. 3 photos.

  18. Use a Vent Condenser to Recover Flash Steam Energy, Energy Tips...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Use a Vent Condenser to Recover Flash Steam Energy When the pressure of saturated ... tanks and deaerators for excessive flash steam plumes. Reexamine deaerator ...

  19. Remote-Handled Transuranic Waste Drum Venting - Operational Experience and Lessons Learned

    SciTech Connect (OSTI)

    Clements, Th.L.Jr.; Bhatt, R.N.; Troescher, P.D.; Lattin, W.J.

    2008-07-01

    Remote-handled transuranic (RH TRU) waste drums must be vented to meet transportation and disposal requirement before shipment to the Waste Isolation Pilot Plant. The capability to perform remote venting of drums was developed and implemented at the Idaho National Laboratory. Over 490 drums containing RH TRU waste were successfully vented. Later efforts developed and implemented a long-stem filter to breach inner waste bags, which reduced layers of confinement and mitigated restrictive transportation wattage limits. This paper will provide insight to the technical specifications for the drum venting system, development, and testing activities, startup, operations, and lessons learned. (authors)

  20. CO₂ Capture Membrane Process for Power Plant Flue Gas

    SciTech Connect (OSTI)

    Toy, Lora; Kataria, Atish; Gupta, Raghubir

    2012-04-01

    Because the fleet of coal-fired power plants is of such importance to the nation's energy production while also being the single largest emitter of CO₂, the development of retrofit, post-combustion CO₂ capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO₂ from plant flue gas with 95% captured CO₂ purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO₂-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft²) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO₂, NOx, etc.). Specific objectives were: - Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO₂ over N₂ and CO₂ permeance

  1. Analysis of Halogen-Mercury Reactions in Flue Gas

    SciTech Connect (OSTI)

    Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

    2010-01-01

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation

  2. Genome Data from DOOR: a Database for prOkaryotic OpeRons

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOOR provides an Organism View for browsing, a gene search tool, an operon search tool, and the operon prediction interface.[Text taken and edited from http://csbl1.bmb.uga.edu/OperonDB/tutorial.php

  3. Stable "superoxide" opens the door to a new class of batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stable "superoxide" opens the door to a new class of batteries By Jared Sagoff * January 12, 2016 Tweet EmailPrint While lithium-ion batteries have transformed our everyday lives, ...

  4. Residents Learn to Open Their Doors to Energy Efficiency in Michigan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residents Learn to Open Their Doors to Energy Efficiency in Michigan Residents Learn to Open Their Doors to Energy Efficiency in Michigan Logo of BetterBuildings for Michigan. BetterBuildings for Michigan conducts neighborhood "sweeps" that have already marketed the program's offerings to more than 11,000 homeowners in 27 targeted communities. Neighborhood sweeps are intensive, house-by-house mini-campaigns designed to convince homeowners to complete a home

  5. A mathematical model for the estimation of flue temperature in a coke oven

    SciTech Connect (OSTI)

    Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

    1997-12-31

    The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

  6. Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II

    SciTech Connect (OSTI)

    Rapp, Vi H.; Pastor-Perez, Albert; Singer, Brett C.; Wray, Craig P.

    2013-04-01

    VENT-II is a computer program designed to provide detailed analysis of natural draft and induced draft combustion appliance vent-systems (i.e., furnace or water heater). This program is capable of predicting house depressurization thresholds that lead to backdrafting and spillage of combustion appliances; however, validation reports of the program being applied for this purpose are not readily available. The purpose of this report is to assess VENT-II’s ability to predict combustion gas spillage events due to house depressurization by comparing VENT-II simulated results with experimental data for four appliance configurations. The results show that VENT-II correctly predicts depressurizations resulting in spillage for natural draft appliances operating in cold and mild outdoor conditions, but not for hot conditions. In the latter case, the predicted depressurizations depend on whether the vent section is defined as part of the vent connector or the common vent when setting up the model. Overall, the VENTII solver requires further investigation before it can be used reliably to predict spillage caused by depressurization over a full year of weather conditions, especially where hot conditions occur.

  7. Technology Solutions Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings

    SciTech Connect (OSTI)

    S. Puttagunta, S. Maxwell, D. Berger, and M. Zuluaga

    2015-10-01

    The Consortium for Advanced Residential Buildings (CARB) conducted research to gain more insight into passive vents. Because passive vents are meant to operate in a general environment of negative apartment pressure, the research assessed whether these negative pressures prevail through a variety of environmental conditions.

  8. Critical review of mercury chemistry in flue gas.

    SciTech Connect (OSTI)

    Mendelsohn, M. H.; Livengood, C. D.

    2006-11-27

    Mercury (Hg) and its compounds have long been recognized as potentially hazardous to human health and the environment. Many man-made sources of mercury have been reduced in recent years through process changes and control measures. However, emissions of mercury from coal-fired power plants, while exceedingly dilute by the usual pollution standards, still constitute a major source when considered in the aggregate. Concerns over those emissions and the prospect of impending emissions regulations have led to a wide range of research projects dealing with the measurement and control of mercury in flue gas. This work has made considerable progress in improving the understanding of mercury emissions and their behavior, but inconsistencies and unexpected results have also shown that a better understanding of mercury chemistry is needed. To develop a more complete understanding of where additional research on mercury chemistry is needed, the U.S. Department of Energy (DOE) asked Argonne National Laboratory (Argonne) to conduct a critical review of the available information as reported in the technical literature. The objectives were to summarize the current state of the art of chemistry knowledge, identify significant knowledge gaps, and recommend future research to resolve those gaps. An initial evaluation of potential review topics indicated that the scope of the review would need to be limited and focused on the most important topics relative to mercury control. To aid in this process, Argonne developed a brief survey that was circulated to researchers in the field who could help identify and prioritize the many aspects of the problem. The results of the survey were then used to design and guide a highly focused literature search that identified key papers for analysis. Each paper was reviewed, summarized, and evaluated for the relevance and quality of the information presented. The results of that work provided the basis for conclusions regarding the state of knowledge

  9. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams

    SciTech Connect (OSTI)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl; Patel, Dilip; DiNitto, M.; Marina, Olga A.; Pederson, Larry R.; Steen, William A.

    2015-09-30

    To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.

  10. Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas

    DOE Patents [OSTI]

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2012-11-06

    Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

  11. High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents

    SciTech Connect (OSTI)

    Cengiz, P.A.; Ho, K.K.; Abbasian, J.; Lau, F.S.

    2002-09-20

    The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.

  12. Effect of pressure vents on the fast cookoff of energetic materials.

    SciTech Connect (OSTI)

    Cooper, Marcia A.; Oliver, Michael S.; Erikson, William Wilding

    2013-10-01

    The effect of vents on the fast cookoff of energetic materials is studied through experimental modifications to the confinement vessel of the Radiant Heat Fast Cookoff Apparatus. Two venting schemes were investigated: 1) machined grooves at the EM-cover plate interface; 2) radial distribution of holes in PEEK confiner. EM materials of PBXN-109 and PBX 9502 were tested. Challenges with the experimental apparatus and EM materials were identified such that studying the effect of vents as an independent parameter was not realized. The experimental methods, data and post-test observations are presented and discussed.

  13. Self-testing security sensor for monitoring closure of vault doors and the like

    DOE Patents [OSTI]

    Cawthorne, D.C.

    1997-05-27

    A self-testing device is provided for a monitoring system for monitoring whether a closure member such as a door or window is closed. The monitoring system includes a switch unit mounted on the frame of the closure member being monitored and including magnetically biased switches connected in one or more electrical monitoring circuits, and a door magnet unit mounted on the closure member being monitored. The door magnet includes one or more permanent magnets that produce a magnetic field which, when the closure member is closed, cause said switches to assume a first state. When the closure member is opened, the switches switch to a second, alarm state. The self-testing device is electrically controllable from a remote location and produces a canceling or diverting magnetic field which simulates the effect of movement of the closure member from the closed position thereof without any actual movement of the member. 5 figs.

  14. Self-testing security sensor for monitoring closure of vault doors and the like

    DOE Patents [OSTI]

    Cawthorne, Duane C.

    1997-05-27

    A self-testing device is provided for a monitoring system for monitoring whether a closure member such as a door or window is closed. The monitoring system includes a switch unit mounted on the frame of the closure member being monitored and including magnetically biased switches connected in one or more electrical monitoring circuits, and a door magnet unit mounted on the closure member being monitored. The door magnet includes one or more permanent magnets that produce a magnetic field which, when the closure member is closed, cause said switches to assume a first state. When the closure member is opened, the switches switch to a second, alarm state. The self-testing device is electrically controllable from a remote location and produces a canceling or diverting magnetic field which simulates the effect of movement of the closure member from the closed position thereof without any actual movement of the member.

  15. "Troops to Energy Jobs" Opens New Doors for Veterans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Troops to Energy Jobs" Opens New Doors for Veterans "Troops to Energy Jobs" Opens New Doors for Veterans July 11, 2011 - 7:05pm Addthis Steve Dunwoody Former Special Assistant to the Deputy Secretary of Energy As a Veteran, I've always been acutely aware of the role that energy plays in our ability to defend and uphold our national security. This awareness manifested itself in many ways during my time in the field, from the economic struggles of my relatives and friends back

  16. The effect of venting on cookoff of a melt-castable explosive (Comp-B)

    SciTech Connect (OSTI)

    Hobbs, Michael L.; Kaneshige, Michael J.

    2015-03-01

    Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia’s Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complex bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.

  17. Vented target elements for use in an isotope-production reactor. [LMFBR

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium gas in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins equipped with vents, and tritium gas is recovered from the coolant.

  18. System design description for the SY-101 vent header flow element enclosure upgrades

    SciTech Connect (OSTI)

    Vargo, G.F.

    1995-11-01

    This document describes the design of the High and Low Range Vent Header Flow Element(s) Field Enclosure for the 241-SY-101 High Level Nuclear Waste Underground Storage Tank.

  19. Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents

    Broader source: Energy.gov [DOE]

    This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

  20. Reactor pressure vessel head vents and methods of using the same

    SciTech Connect (OSTI)

    Gels, John L; Keck, David J; Deaver, Gerald A

    2014-10-28

    Internal head vents are usable in nuclear reactors and include piping inside of the reactor pressure vessel with a vent in the reactor upper head. Piping extends downward from the upper head and passes outside of the reactor to permit the gas to escape or be forcibly vented outside of the reactor without external piping on the upper head. The piping may include upper and lowers section that removably mate where the upper head joins to the reactor pressure vessel. The removable mating may include a compressible bellows and corresponding funnel. The piping is fabricated of nuclear-reactor-safe materials, including carbon steel, stainless steel, and/or a Ni--Cr--Fe alloy. Methods install an internal head vent in a nuclear reactor by securing piping to an internal surface of an upper head of the nuclear reactor and/or securing piping to an internal surface of a reactor pressure vessel.

  1. Use a Vent Condenser to Recover Flash Steam Energy - Steam Tip Sheet #13

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on vent condenser to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  2. InnoVent InfraVest GmbH | Open Energy Information

    Open Energy Info (EERE)

    InfraVest GmbH Jump to: navigation, search Name: InnoVentInfraVest GmbH Place: Varel, Germany Zip: 26316 Sector: Wind energy Product: Wind farm project developer based in Germany....

  3. The effect of venting on cookoff of a melt-castable explosive (Comp-B)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hobbs, Michael L.; Kaneshige, Michael J.

    2015-03-01

    Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia’s Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complexmore » bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.« less

  4. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  5. Florida Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0

  6. Illinois Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  7. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  8. Tennessee Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  9. Unit vent airflow measurements using a tracer gas technique

    SciTech Connect (OSTI)

    Adams, D.G.; Lagus, P.L.; Fleming, K.M.

    1997-08-01

    An alternative method for assessing flowrates that does not depend on point measurements of air flow velocity is the constant tracer injection technique. In this method one injects a tracer gas at a constant rate into a duct and measures the resulting concentration downstream of the injection point. A simple equation derived from the conservation of mass allows calculation of the flowrate at the point of injection. Flowrate data obtained using both a pitot tube and a flow measuring station were compared with tracer gas flowrate measurements in the unit vent duct at the Callaway Nuclear Station during late 1995 and early 1996. These data are presented and discussed with an eye toward obtaining precise flowrate data for release rate calculations. The advantages and disadvantages of the technique are also described. In those test situations for which many flowrate combinations are required, or in large area ducts, a tracer flowrate determination requires fewer man-hours than does a conventional traverse-based technique and does not require knowledge of the duct area. 6 refs., 10 figs., 6 tabs.

  10. Validation testing of radioactive waste drum filter vents

    SciTech Connect (OSTI)

    Weber, L.D.; Rahimi, R.S.; Edling, D.

    1997-08-01

    The minimum requirements for Drum Filter Vents (DFVs) can be met by demonstrating conformance with the Waste Isolation Pilot Plant (WIPP) Trupact II Safety Assessment Report (SAR), and conformance with U.S. Federal shipping regulations 49 CFR 178.350, DOT Spec 7A, for Type A packages. These together address a number of safety related performance parameters such as hydrogen diffusivity, flow related pressure drop, filtration efficiency and, separately, mechanical stability and the ability to prevent liquid water in-leakage. In order to make all metal DFV technology (including metallic filter medium) available to DOE sites, Pall launched a product development program to validate an all metal design to meet these requirements. Numerous problems experienced by DOE sites in the past came to light during this development program. They led us to explore enhancements to DFV design and performance testing addressing these difficulties and concerns. The result is a patented all metal DFV certified to all applicable regulatory requirements, which for the first time solves operational and health safety problems reported by DOE site personnel but not addressed by previous DFV`s. The new technology facilitates operations (such as manual, automated and semi-automated drum handling/redrumming), sampling, on-site storage, and shipping. At the same time, it upgrades filtration efficiency in configurations documented to maintain filter efficiency following mechanical stress. 2 refs., 2 figs., 10 tabs.

  11. Ohio Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  12. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0

  13. Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  14. Hydrogen venting characteristics of commercial carbon-composite filters and applications to TRU waste

    SciTech Connect (OSTI)

    Callis, E.L.; Marshall, R.S.; Cappis, J.H.

    1997-04-01

    The generation of hydrogen (by radiolysis) and of other potentially flammable gases in radioactive wastes which are in contact with hydrogenous materials is a source of concern, both from transportation and on-site storage considerations. Because very little experimental data on the generation and accumulation of hydrogen was available in actual waste materials, work was initiated to experimentally determine factors affecting the concentration of hydrogen in the waste containers, such as the hydrogen generation rate, (G-values) and the rate of loss of hydrogen through packaging and commercial filter-vents, including a new design suitable for plastic bags. This report deals only with the venting aspect of the problem. Hydrogen venting characteristics of two types of commercial carbon-composite filter-vents, and two types of PVC bag closures (heat-sealed and twist-and-tape) were measured. Techniques and equipment were developed to permit measurement of the hydrogen concentration in various layers of actual transuranic (TRU) waste packages, both with and without filter-vents. A test barrel was assembled containing known configuration and amounts of TRU wastes. Measurements of the hydrogen in the headspace verified a hydrogen release model developed by Benchmark Environmental Corporation. These data were used to calculate revised wattage Emits for TRU waste packages incorporating the new bag filter-vent.

  15. Migrating data from TcSE to DOORS : an evaluation of the T-Plan Integrator software application.

    SciTech Connect (OSTI)

    Post, Debra S.; Manzanares, David A.; Taylor, Jeffrey L.

    2011-02-01

    This report describes our evaluation of the T-Plan Integrator software application as it was used to transfer a real data set from the Teamcenter for Systems Engineering (TcSE) software application to the DOORS software application. The T-Plan Integrator was evaluated to determine if it would meet the needs of Sandia National Laboratories to migrate our existing data sets from TcSE to DOORS. This report presents the struggles of migrating data and focuses on how the Integrator can be used to map a data set and its data architecture from TcSE to DOORS. Finally, this report describes how the bulk of the migration can take place using the Integrator; however, about 20-30% of the data would need to be transferred from TcSE to DOORS manually. This report does not evaluate the transfer of data from DOORS to TcSE.

  16. The use of flue gas for the growth of microalgal biomass

    SciTech Connect (OSTI)

    Zeiler, K.G.; Kadam, K.L.; Heacox, D.A.

    1995-11-01

    Capture and utilization of carbon dioxide (CO{sub 2}) by microalgae is a promising technology to help reduce emissions from fossil fuel-fired power plants. Microalgae are of particular interest because of their rapid growth rates and tolerance to varying environmental conditions. Laboratory work is directed toward investigating the effects of simulated flue gas on microalgae, while engineering studies have focused on the economics of the technology. One strain of a green algae, Monoraphidium minutum, has shown excellent tolerance and growth when exposed to simulated flue gas which meets the requirements of the 1990 Clean Air Act Amendments (1990 CAAA). Biomass concentrations of {similar_to}2g/L have been measured in batch culture. Several other microalgae have also shown tolerance to simulated flue gas; however, the growth of these strains is not equivalent to that observed for M. minutum. Coupling the production of biodiesel or other microalgae-derived commodity chemicals with the use of flue gas carbon dioxide is potentially a zero-cost method of reducing the amount of carbon dioxide contributed to the atmosphere by fossil fuel-fired power plants. We have identified two major biological performance parameters which can provide sufficient improvement in this technology to render it cost-competitive with other existing CO{sub x} mitigation technologies. These are algal growth rate and lipid content. An updated economic analysis shows that growth rate is the more important of the two, and should be the focus of near term research activities. The long term goal of achieving zero cost will require other, non-biological, improvements in the process.

  17. pH Adjustment of Power Plant Cooling Water with Flue Gas/ Fly Ash - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search pH Adjustment of Power Plant Cooling Water with Flue Gas/ Fly Ash Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (801 KB) Technology Marketing SummaryIncreased recycling of power plant cooling water calls for low-cost means of preventing the formation of calcium carbonate and silicate scale. Hardness (Ca and Mg) and silica are two of

  18. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    SciTech Connect (OSTI)

    Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

    2009-03-31

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

  19. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  20. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  1. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  2. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2014-06-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This topical report covers Phase 2b, which is the construction phase of pilot demonstration subsystems that make up the integrated plant. The subsystems included are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant is now capable of capturing CO2 from various sources (gas and coal) and mineralizing into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The topical report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. At the end of Phase 2b, the CCMP pilot demonstration is fully ready for testing.

  3. Influence factors on the flue gas desulfurization in the circulating fluidized bed reactor

    SciTech Connect (OSTI)

    Gao, J.; Tang, D.; Liu, H.; Suzuki, Yoshizo; Kito, Nobo

    1997-12-31

    This paper describes a dry SO{sub 2} removal method -- the absorbent (Ca(OH){sub 2}) was injected into the Circulating Fluidized Bed (CFB) reactor at the coolside of the duct to abate SO{sub 2} in the flue gas -- with the potential to significantly enhance desulfurization performance over that of existing dry/semi-dry Flue Gas Desulfurization (FGD) technology such as Spray Drying. A patent for coolside Flue Gas Desulfurization in the Circulating Fluidized Bed reactor (CFB-FGD) was approved by the China Patent Bureau in September of 1995 and the additional laboratory experiment was carried out in an electrically heated bench scale quartz circulating fluidized bed reactor of 2350mm in height and 23mm in diameter in January, 1996. The influences of steam, ratio of calcium and sulfur, reactor temperature, and absorbent utilization efficiency were invested. The results show that: (1) Water steam plays a key role in the reaction of Ca(OH){sub 2} and SO{sub 2} in the CFB reactor; (2) There is a positive effect of Ca/S on SO{sub 2} removal efficiency; (3) The temperature is an another key factor for SO{sub 2} removal efficiency for the CFB-FGD process; (4) The absorbent can be enhanced in the CFB reactor; (5) The CFB reactor is better than the dry/semi-dry FDG technology. SO{sub 2} removal efficiency can be as high as 84.8%.

  4. Biodegradation of jet fuel in vented columns of water-unsaturated sandy soil. Master's thesis

    SciTech Connect (OSTI)

    Coho, J.W.

    1990-01-01

    The effect of soil water content on the rate of jet fuel (JP-4) biodegradation in air-vented, water-unsaturated columns of sandy soil was investigated. The contaminated soil was obtained from a spill site located on Tyndall AFB, Fla. The initial soil loading was 4590 mg of JP-4/kg of dry soil. Three laboratory columns were packed with the contaminated soil, saturated and drained for periods of 81-89 days. Two columns were continuously vented with air, and the third, intended to provide an anaerobic control, was vented with nitrogen. The venting gas flows were maintained between 1 and 2.5 soil pore volume changeouts per day. The total JP-4 removal in the air-vented columns averaged 44% of the mass originally present. Biodegradation and volatilization accounted for 93% and 7% of the total removal, respectively. A maximum biodegradation rate of 14.3 mg of JP-4/kg of moist soil per day was observed at a soil water content of approximately 72% saturation. Soil drainage characteristics indicated that this water content may have corresponded to 100% of the in situ field capacity water content. Theses.

  5. Containment venting as a mitigation technique for BWR Mark I plant ATWS

    SciTech Connect (OSTI)

    Harrington, R.M.

    1986-01-01

    Containment venting is studied as a mitigation strategy for preventing or delaying severe fuel damage following hypothetical BWR Anticipated Transient Without SCRAM (ATWS) accidents initiated by MSIV-closure, and compounded by failure of the Standby Liquid Control (SLC) system injection of sodium pentaborate solution and by the failure of manually initiated control rod insertion. The venting of primary containment after reaching 75 psia (0.52 MPa) is found to result in the release of the vented steam inside the reactor building, and to result in inadequate Net Positive Suction Head (NPSH) for any system pumping from the pressure suppression pool. CONTAIN code calculations show that personnel access to large portions of the reactor building would be lost soon after the initiation of venting and that the temperatures reached would be likely to result in independent equipment failures. It is concluded that containment venting would be more likely to cause or to hasten the onset of severe fuel damage than to prevent or to delay it.

  6. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no

  7. Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles

    SciTech Connect (OSTI)

    Jekl, J.; Auld, J.; Sweet, C.; Carter, Jon; Resch, Steve; Klarner, A.; Brevick, J.; Luo, A.

    2015-05-17

    Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffness requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.

  8. Oil heat venting technology and NFPA standard 31 revision year 2000

    SciTech Connect (OSTI)

    Krajewski, R.F.

    1997-09-01

    The revision of National Fire Protection Association (NFPA) Standard 31 for the year 2000 offers an opportunity to update the Appendix which currently offers recommendations for basic metal relining of masonry chimneys up to and including 25 feet. The paper discusses the proposed update of the existing recommendations to include flexible (rough) metal liners. In addition, the discussion addresses the inclusion of additional information for unlined (non-conforming), lined (conforming to NFPA 211) masonary chimneys, insulated metal chimneys, chimney heights beyond what are now published, as well as power venting both forced and induced draft. Included in the paper is a discussion of the existing Oil Heat Vent Analysis Program (OHVAP Version 3.0) and issues that need resolution to make it a better vent system model.

  9. Extreme behavior: New national security facility will open its doors to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study materials at extreme conditions | Argonne National Laboratory Extreme behavior: New national security facility will open its doors to study materials at extreme conditions August 4, 2016 Tweet EmailPrint A new, first-of-its-kind-worldwide research capability will help unravel the mysteries of material behavior at extreme conditions and short time scales in support of the National Nuclear Security Administration's (NNSA's) vital national security missions. NNSA, the Department of

  10. Ethylene Production Via Sunlight Opens Door to Future - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ethylene Production Via Sunlight Opens Door to Future July 31, 2015 A scientist holds a petri dish containing algae. NREL scientist Jianping Yu holds a petri dish of cyanobacteria culture being grown in his lab. He is working to cultivate various genetically engineered strains to promote ethylene production. Photo by Dennis Schroeder Here's the future of ethylene production as Dr. Jianping Yu sees it. "We envision some farms in the field that cover many acres. We will have cyanobacteria

  11. Keys to Access: Argonne-INCREASE partnership opens doors to collaboration |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Terms Key Terms Three Door Keys data-key-571156_960_720.png Key Terms Low Vision: non-correctable reduced vision Blindness: lack of visual perception Hearing Impairment: full or partial decrease in the ability to detect or understand sounds Physical Impairment: a physical condition that permanently prevents normal body movement or control Cognitive Disabilities: difficulty with one or more types of mental tasks Argonne National Laboratory

    The INCREASE workshop gave visitors one-on-one

  12. Potential Flammable Gas Explosion in the TRU Vent and Purge Machine

    SciTech Connect (OSTI)

    Vincent, A

    2006-04-05

    The objective of the analysis was to determine the failure of the Vent and Purge (V&P) Machine due to potential explosion in the Transuranic (TRU) drum during its venting and/or subsequent explosion in the V&P machine from the flammable gases (e.g., hydrogen and Volatile Organic Compounds [VOCs]) vented into the V&P machine from the TRU drum. The analysis considers: (a) increase in the pressure in the V&P cabinet from the original deflagration in the TRU drum including lid ejection, (b) pressure wave impact from TRU drum failure, and (c) secondary burns or deflagrations resulting from excess, unburned gases in the cabinet area. A variety of cases were considered that maximized the pressure produced in the V&P cabinet. Also, cases were analyzed that maximized the shock wave pressure in the cabinet from TRU drum failure. The calculations were performed for various initial drum pressures (e.g., 1.5 and 6 psig) for 55 gallon TRU drum. The calculated peak cabinet pressures ranged from 16 psig to 50 psig for various flammable gas compositions. The blast on top of cabinet and in outlet duct ranged from 50 psig to 63 psig and 12 psig to 16 psig, respectively, for various flammable gas compositions. The failure pressures of the cabinet and the ducts calculated by structural analysis were higher than the pressure calculated from potential flammable gas deflagrations, thus, assuring that V&P cabinet would not fail during this event. National Fire Protection Association (NFPA) 68 calculations showed that for a failure pressure of 20 psig, the available vent area in the V&P cabinet is 1.7 to 2.6 times the required vent area depending on whether hydrogen or VOCs burn in the V&P cabinet. This analysis methodology could be used to design the process equipment needed for venting TRU waste containers at other sites across the Department of Energy (DOE) Complex.

  13. Corrosion testing in the flue gas cleaning and condensation systems in Swedish waste incineration plants

    SciTech Connect (OSTI)

    Wallen, B.; Bergqvist, A.; Nordstroem, J.

    1994-12-31

    Test racks containing creviced, welded coupons of stainless steels, nickel base alloys and titanium have been exposed in various parts of the gas cleaning systems in three municipal waste incineration plants. The flue gases were rich in hydrogen halides and the environments in the cleaning systems were very corrosive causing mainly crevice and pitting corrosion. The best corrosion resistance was shown by the superaustenitic stainless steel S32654 and the nickel base alloys N10276 and N06022. Titanium performed badly and was attacked by excessive uniform corrosion.

  14. An experimental study of flue gas desulfurization in a pilot spray dryer

    SciTech Connect (OSTI)

    Ollero, P.; Salvador, L.; Canadas, L.

    1997-12-31

    More than 45 experimental tests have been conducted on a 10,000 Nm{sup 3}/h spray-drying desulfurization pilot plant. The effects of SO{sub 2} and fly ash concentration, Ca/S ratio, approach to saturation temperature, unit load changes, and the utilization of seawater as make-up water on both spray dryer behavior and treated flue gas properties were analyzed. This experimental study allows us to reach some conclusions about how to achieve optimum operating conditions and to assess the impact of spray drying on a downstream ESP. 5 refs., 14 figs., 2 tabs.

  15. Hot waste-to-energy flue gas treatment using an integrated fluidised bed reactor

    SciTech Connect (OSTI)

    Bianchini, A.; Pellegrini, M.; Saccani, C.

    2009-04-15

    This paper describes an innovative process to increase superheated steam temperatures in waste-to-energy (WTE) plants. This solution is mainly characterised by a fluidised bed reactor in which hot flue gas is treated both chemically and mechanically. This approach, together with gas recirculation, increases the energy conversion efficiency, and raises the superheated steam temperature without decreasing the useful life of the superheater. This paper presents new experimental data obtained from the test facility installed at the Hera S.p.A. WTE plant in Forli, Italy; discusses changes that can be implemented to increase the duration of experimental testing; offers suggestions for the design of an industrial solution.

  16. Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Phelan, J.M.; Reavis, B.; Cheng, W.C.

    1995-05-01

    Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

  17. Development of a model for predicting transient hydrogen venting in 55-gallon drums

    SciTech Connect (OSTI)

    Apperson, Jason W; Clemmons, James S; Garcia, Michael D; Sur, John C; Zhang, Duan Z; Romero, Michael J

    2008-01-01

    Remote drum venting was performed on a population of unvented high activity drums (HAD) in the range of 63 to 435 plutonium equivalent Curies (PEC). These 55-gallon Transuranic (TRU) drums will eventually be shipped to the Waste Isolation Pilot Plant (WIPP). As a part of this process, the development of a calculational model was required to predict the transient hydrogen concentration response of the head space and polyethylene liner (if present) within the 55-gallon drum. The drum and liner were vented using a Remote Drum Venting System (RDVS) that provided a vent sampling path for measuring flammable hydrogen vapor concentrations and allow hydrogen to diffuse below lower flammability limit (LFL) concentrations. One key application of the model was to determine the transient behavior of hydrogen in the head space, within the liner, and the sensitivity to the number of holes made in the liner or number of filters. First-order differential mass transport equations were solved using Laplace transformations and numerically to verify the results. the Mathematica 6.0 computing tool was also used as a validation tool and for examining larger than two chamber systems. Results will be shown for a variety of configurations, including 85-gallon and 110-gallon overpack drums. The model was also validated against hydrogen vapor concentration assay measurements.

  18. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    SciTech Connect (OSTI)

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  19. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    DOE Patents [OSTI]

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  20. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, Michael

    1998-01-01

    A novel design for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment.

  1. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, M.

    1998-02-10

    A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

  2. Income Tax Deduction for Solar-Powered Roof Vents or Fans

    Broader source: Energy.gov [DOE]

    The taxpayer must provide proof of the taxpayer’s costs for installation of a solar powered roof vent or fan and a list of the persons or corporations that supplied labor or materials for the solar...

  3. State-of-the-art review of materials-related problems in flue gas desulfurization systems

    SciTech Connect (OSTI)

    Maiya, P. S.

    1980-10-01

    This report characterizes the chemical and mechanical environments to which the structural components used in flue-gas desulfurization (FGD) are exposed. It summarizes the necessary background information pertinent to various FGD processes currently in use, with particular emphasis on lime/limestone scrubbing technology, so that the materials problems and processing variables encountered in FGD systems can be better defined and appreciated. The report also describes the materials currently used and their performance to date in existing wet scrubbers. There is little doubt that with more extensive use of coal and flue-gas scrubbers by utilities and other segments of private industry, a better understanding of the material failure mechanisms, performance limitations, and potential problem areas is required for the design of more reliable and cost-effective FGD systems. To meet the above objectives, a materials evaluation program is proposed. The important experimental variables and the number of tests required to evaluate a given material are discussed. 55 references, 9 figures, 6 tables.

  4. Land application uses for dry flue gas desulfurization by-products: Phase 3

    SciTech Connect (OSTI)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  5. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2013-08-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA. This topical report covers Subphase 2a which is the design phase of pilot demonstration subsystems. Materials of construction have been selected and proven in both lab scale and prototype testing to be acceptable for the reagent conditions of interest. The target application for the reactive carbonate material has been selected based upon small-scale feasibility studies and the design of a continuous fiber board production line has been completed. The electrochemical cell architecture and components have been selected based upon both lab scale and prototype testing. The appropriate quality control and diagnostic techniques have been developed and tested along with the required instrumentation and controls. Finally the demonstrate site infrastructure, NEPA categorical exclusion, and permitting is all ready for the construction and installation of the new units and upgrades.

  6. JV Task 125-Mercury Measurement in Combustion Flue Gases Short Course

    SciTech Connect (OSTI)

    Dennis Laudal

    2008-09-30

    The short course, designed to train personnel who have an interest in measuring mercury in combustion flue gases, was held twice at the Drury Inn in Marion, Illinois. The short course helped to provide attendees with the knowledge necessary to avoid the many pitfalls that can and do occur when measuring mercury in combustion flue gases. The first short course, May 5-8, 2008, included both a classroom-type session and hands-on demonstration of mercury-sampling equipment. The hands-on demonstration of equipment was staged at Southern Illinois Power Cooperative. Not including the Illinois Clean Coal Institute and the U.S. Department of Energy project managers, there were 12 attendees. The second short course was conducted September 16-17, 2008, but only included the classroom portion of the course; 14 people attended. In both cases, lectures were provided on the various mercury measurement methods, and interaction between attendees and EERC research personnel to discuss specific mercury measurement problems was promoted. Overall, the response to the course was excellent.

  7. Sodium-based dry regenerable sorbent for carbon dioxide capture from power plant flue gas

    SciTech Connect (OSTI)

    Lee, J.B.; Ryu, C.K.; Baek, J.I.; Lee, J.H.; Eom, T.H.; Kim, S.H.

    2008-07-15

    Dry regenerable sorbent technology is one of the emerging technologies as a cost-effective and energy-efficient technology for CO{sub 2} capture from flue gas. Six sodium-based dry regenerable sorbents were prepared by spray-drying techniques. Their physical properties and reactivities were tested to evaluate their applicability to a fluidized-bed or fast transport-bed CO{sub 2} capture process. Each sorbents contained 20-50 wt% of Na{sub 2}CO{sub 3} or NaHCO{sub 3}. All sorbents except for Sorb NX30 were insufficient with either attrition resistance or reactivity, or both properties. Sorb NX30 sorbent satisfied most of the physical requirements for a commercial fluidized-bed reactor process along with good chemical reactivity. Sorb NX30 sorbent had a spherical shape, an average size of 89 {mu}m, a size distribution of 38-250 {mu}m, and a bulk density of approximately 0.87 g/mL. The attrition index (AI) of Sorb NX30 reached below 5% compared to about 20% for commercial fluidized catalytic cracking (FCC) catalysts. CO{sub 2} sorption capacity of Sorb NX30 was approximately 10 wt% (>80% sorbent utilization) in the simulated flue gas condition compared with 6 of 30 wt% MEA solution (33% sorbent utilization). All sorbents showed almost-complete regeneration at temperatures less than 120{sup o}C.

  8. Model for flue-gas desulfurization in a circulating dry scrubber

    SciTech Connect (OSTI)

    Neathery, J.K.

    1996-01-01

    A simple model was developed to describe the absorption of SO{sub 2} in a circulating dry scrubbing (CDS) process, which is a semi dry, lime-based, flue-gas desulfurization (FGD) process that utilizes a circulating fluidized bed arrangement for contacting a sorbent with SO{sub 2}-laden flue gas under coolside conditions. The reaction chemistry is thought to be similar to that of spray-drying absorption. The liquid-phase mass-transfer coefficient was successfully modeled as a function of the sorbent particle spacing on the wetted surfaces. Gas-phase mass-transfer resistances were assumed to be insignificant. Due to the high surface area available in a CDS reactor, the evaporation rate of water from the slurry was modeled as constant-rate drying according to classic spray-dryer theory. However, the falling-rate and diffusion evaporation stages were negligible in CDS since sorbent particle bunching at the surface of the slurry is nonexistent.

  9. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    SciTech Connect (OSTI)

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  10. Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks

    SciTech Connect (OSTI)

    Lesch, David A

    2010-06-30

    UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary

  11. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    SciTech Connect (OSTI)

    Klein, Andrew; Matthews, Topher; Lenhof, Renae; Deason, Wesley; Harter, Jackson

    2015-01-16

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  12. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2002-05-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

  13. Solar Power Ramp Events Detection Using an Optimized Swinging Door Algorithm

    SciTech Connect (OSTI)

    Cui, Mingjian; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-05

    Solar power ramp events (SPREs) significantly influence the integration of solar power on non-clear days and threaten the reliable and economic operation of power systems. Accurately extracting solar power ramps becomes more important with increasing levels of solar power penetrations in power systems. In this paper, we develop an optimized swinging door algorithm (OpSDA) to enhance the state of the art in SPRE detection. First, the swinging door algorithm (SDA) is utilized to segregate measured solar power generation into consecutive segments in a piecewise linear fashion. Then we use a dynamic programming approach to combine adjacent segments into significant ramps when the decision thresholds are met. In addition, the expected SPREs occurring in clear-sky solar power conditions are removed. Measured solar power data from Tucson Electric Power is used to assess the performance of the proposed methodology. OpSDA is compared to two other ramp detection methods: the SDA and the L1-Ramp Detect with Sliding Window (L1-SW) method. The statistical results show the validity and effectiveness of the proposed method. OpSDA can significantly improve the performance of the SDA, and it can perform as well as or better than L1-SW with substantially less computation time.

  14. Solar Power Ramp Events Detection Using an Optimized Swinging Door Algorithm: Preprint

    SciTech Connect (OSTI)

    Cui, Mingjian; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-07

    Solar power ramp events (SPREs) are those that significantly influence the integration of solar power on non-clear days and threaten the reliable and economic operation of power systems. Accurately extracting solar power ramps becomes more important with increasing levels of solar power penetrations in power systems. In this paper, we develop an optimized swinging door algorithm (OpSDA) to detection. First, the swinging door algorithm (SDA) is utilized to segregate measured solar power generation into consecutive segments in a piecewise linear fashion. Then we use a dynamic programming approach to combine adjacent segments into significant ramps when the decision thresholds are met. In addition, the expected SPREs occurring in clear-sky solar power conditions are removed. Measured solar power data from Tucson Electric Power is used to assess the performance of the proposed methodology. OpSDA is compared to two other ramp detection methods: the SDA and the L1-Ramp Detect with Sliding Window (L1-SW) method. The statistical results show the validity and effectiveness of the proposed method. OpSDA can significantly improve the performance of the SDA, and it can perform as well as or better than L1-SW with substantially less computation time.

  15. Improved Recovery from Gulf of Mexico Reservoirs, Volume 4, Comparison of Methane, Nitrogen and Flue Gas for Attic Oil. February 14, 1995 - October 13, 1996. Final Report

    SciTech Connect (OSTI)

    Wolcott, Joanne; Shayegi, Sara

    1997-01-13

    Gas injection for attic oil recovery was modeled in vertical sandpacks to compare the process performance characteristics of three gases, namely methane, nitrogen and flue gas. All of the gases tested recovered the same amount of oil over two cycles of gas injection. Nitrogen and flue gas recovered oil more rapidly than methane because a large portion of the methane slug dissolved in the oil phase and less free gas was available for oil displacement. The total gas utilization for two cycles of gas injection was somewhat better for nitrogen as compared to methane and flue gas. The lower nitrogen utilization was ascribed to the lower compressibility of nitrogen.

  16. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    SciTech Connect (OSTI)

    Hsu, F.E.; Hedenhag, J.G.; Marchant, S.K.; Pukanic, G.W.; Norwood, V.M.; Burnett, T.A.

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, air toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.

  17. Ranking low cost sorbents for mercury capture from simulated flue gases

    SciTech Connect (OSTI)

    H. Revata Seneviratne; Cedric Charpenteau; Anthe George; Marcos Millan; Denis R. Dugwell; Rafael Kandiyoti

    2007-12-15

    Coal fired utility boilers are the largest anthropogenic source of mercury release to the atmosphere, and mercury abatement legislation is already in place in the USA. The present study aimed to rank low cost mercury sorbents (char and activated carbon from the pyrolysis of scrap tire rubber and two coal fly ashes from UK power plants) against Norit Darco HgTM for mercury retention by using a novel bench-scale reactor. In this scheme, a fixed sorbent bed was tested for mercury capture efficiency from a simulated flue gas stream. Experiments with a gas stream of only mercury and nitrogen showed that while the coal ashes were the most effective in mercury capture, char from the pyrolysis of scrap tire rubber was as effective as the commercial sorbent Norit Darco HgTM. Tests conducted at 150{sup o}C, with a simulated flue gas mix that included N{sub 2}, NO, NO{sub 2}, CO{sub 2}, O{sub 2}, SO{sub 2} and HCl, showed that all the sorbents captured approximately 100% of the mercury in the gas stream. The introduction of NO and NO{sub 2} was found to significantly improve the mercury capture, possibly by reactions between NOx and the mercury. Since the sorbents' efficiency decreased with increasing test temperature, physical sorption could be the initial step in the mercury capture process. As the sorbents were only exposed to 64 ng of mercury in the gas stream, the mercury loadings on the samples were significantly less than their equilibrium capacities. The larger capacities of the activated carbons due to their more microporous structure were therefore not utilized. Although the sorbents have been characterized by BET surface area analysis and XRD analysis, further analysis is needed in order to obtain a more conclusive correlation of how the characteristics of the different sorbents correlate with the observed variations in mercury capture ability. 34 refs., 8 figs., 6 tabs.

  18. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    SciTech Connect (OSTI)

    1996-04-30

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  19. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect (OSTI)

    1995-09-01

    The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

  20. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect (OSTI)

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  1. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    SciTech Connect (OSTI)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate

  2. A NOVEL APPROACH TO DRUM VENTING AND DRUM MONITORINGe/pj

    SciTech Connect (OSTI)

    Ohl, P.C.; Farwick, C.C.; Douglas, D.G.; Cruz, E.J.

    2003-02-27

    This paper describes the details and specifications associated with drum venting and drum monitoring technologies, and discusses the maturity of in-place systems and current applications. Each year, unventilated drums pressurize and develop bulges and/or breaches that can result in potentially hazardous explosions, posing undesirable hazards to workers and the environment. Drum venting is accomplished by the safe and simple installation of ventilated lids at the time of packaging, or by the inherently risky in-situ ventilation (depressurization) of ''bulged'' drums. Drum monitoring employs either a Magnetically Coupled Pressure Gauge (MCPG) Patent Pending and/or a Magnetically Coupled Corrosion Gauge (MCCG) Patent Pending. Through patented magnetic sensor coupling, these devices enable the noninvasive and remote monitoring of the potentially hazardous materials and/or spent nuclear fuel that is contained in 55-gal drums and associated steel overpack containers.

  3. Modeling Lithium Ion Battery Safety: Venting of Pouch Cells; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Santhanagopalan, Shriram.; Yang, Chuanbo.; Pesaran, Ahmad

    2013-07-01

    This report documents the successful completion of the NREL July milestone entitled “Modeling Lithium-Ion Battery Safety - Complete Case-Studies on Pouch Cell Venting,” as part of the 2013 Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy (DOE). This work aims to bridge the gap between materials modeling, usually carried out at the sub-continuum scale, and the

  4. New mineral occurrences and mineralization processes: Wuda coal-fire gas vents of Inner Mongolia

    SciTech Connect (OSTI)

    Stracher, G.B.; Prakash, A.; Schroeder, P.; McCormack, J.; Zhang, X.M.; Van Dijk, P.; Blake, D.

    2005-12-01

    Five unique mineral assemblages that include the sulfates millosevichite, alunogen, anhydrite, tschermigite, coquimbite, voltaite, and godovikovite, as well as the halide salammoniac and an unidentified phase, according to X-ray diffraction and EDS data, were found as encrustations on quartzofeldspathic sand and sandstone adjacent to coal-fire gas vents associated with underground coal fires in the Wuda coalfield of Inner Mongolia. The mineral assemblage of alunogen, coquimbite, voltaite, and the unidentified phase collected front the same gas vent, is documented for the first time. Observations suggest that the sulfates millosevichite, alunogen, coquimbite, voltaite, godovikovite, and the unidentified phase, crystallized in response to a complex sequence of processes that include condensation, hydrothermal alteration, crystallization from solution, fluctuating vent temperatures, boiling, and dehydration reactions, whereas the halide salammoniac crystallized during the sublimation of coal-fire gas. Tschermigite and anhydrite formed by the reaction of coal-fire gas with quartzofelds pathic rock or by hydrothermal alteration of this rock and crystallization from an acid-rich aqueous solution. These minerals have potentially important environmental significance and may be vectors for the transmission of toxins. Coal fires also provide insight for the recognition in the geologic record of preserved mineral assemblages that are diagnostic of ancient fires.

  5. Optimized Swinging Door Algorithm for Wind Power Ramp Event Detection: Preprint

    SciTech Connect (OSTI)

    Cui, Mingjian; Zhang, Jie; Florita, Anthony R.; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-06

    Significant wind power ramp events (WPREs) are those that influence the integration of wind power, and they are a concern to the continued reliable operation of the power grid. As wind power penetration has increased in recent years, so has the importance of wind power ramps. In this paper, an optimized swinging door algorithm (SDA) is developed to improve ramp detection performance. Wind power time series data are segmented by the original SDA, and then all significant ramps are detected and merged through a dynamic programming algorithm. An application of the optimized SDA is provided to ascertain the optimal parameter of the original SDA. Measured wind power data from the Electric Reliability Council of Texas (ERCOT) are used to evaluate the proposed optimized SDA.

  6. Generalized Information Architecture for Managing Requirements in IBM?s Rational DOORS(r) Application.

    SciTech Connect (OSTI)

    Aragon, Kathryn M.; Eaton, Shelley M.; McCornack, Marjorie T.; Shannon, Sharon A.

    2014-12-01

    When a requirements engineering effort fails to meet expectations, often times the requirements management tool is blamed. Working with numerous project teams at Sandia National Laboratories over the last fifteen years has shown us that the tool is rarely the culprit; usually it is the lack of a viable information architecture with well- designed processes to support requirements engineering. This document illustrates design concepts with rationale, as well as a proven information architecture to structure and manage information in support of requirements engineering activities for any size or type of project. This generalized information architecture is specific to IBM's Rational DOORS (Dynamic Object Oriented Requirements System) software application, which is the requirements management tool in Sandia's CEE (Common Engineering Environment). This generalized information architecture can be used as presented or as a foundation for designing a tailored information architecture for project-specific needs. It may also be tailored for another software tool. Version 1.0 4 November 201

  7. JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas

    SciTech Connect (OSTI)

    Robert Patton

    2006-12-31

    The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

  8. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  9. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons

    SciTech Connect (OSTI)

    Hajizadeh, Yaghoub; Onwudili, Jude A.; Williams, Paul T.

    2011-06-15

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275 deg. C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 {mu}g I-TEQ kg{sup -1} toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 {mu}g I-TEQ kg{sup -1} in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases.

  10. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2015-06-30

    The objective of this project was to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This final report details all development, analysis, design and testing of the project. Also included in the final report are an updated Techno-Economic Analysis and CO2 Lifecycle Analysis. The subsystems included in the pilot demonstration plant are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant was proven to be capable of capturing CO2 from various sources (gas and coal) and mineralizing it into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The final report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. The report also discusses the results of the fully integrated operation of the facility. Fiber cement boards have been produced in this facility exclusively using reactive calcium carbonate from captured CO2 from flue gas. These boards meet all US and China appropriate acceptance standards. Use demonstrations for these boards are now underway.

  11. JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas

    SciTech Connect (OSTI)

    Ye Zhuang; Christopher Martin; John Pavlish

    2009-03-31

    This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

  12. Decarb/Desal: Separation of Carbon Dioxide from Flue Gas with Simultaneous Fresh Water Production

    SciTech Connect (OSTI)

    Aines, R; Bourcier, W

    2009-10-21

    If fossil fuels continue to be a major part of the world's energy supply, effective means must be developed to deal with the carbon emissions. Geologic sequestration of supercritical CO{sub 2} is expected to play a major role in mitigating this problem. Separating carbon dioxide from other gases is the most costly aspect of schemes for geologic sequestration. That cost is driven by the complexity and energy intensity of current chemical-stripping methods for separating carbon dioxide. Our experience in water treatment technology indicated that an entirely new approach could be developed, taking advantage of water's propensity to separate gases that ionize in water (like CO{sub 2}) from those that do not (like N{sub 2}). Even though water-based systems might not have the extreme selectivity of chemicals like substituted amines used in industrial systems today, they have the potential to tolerate NO{sub x}, SO{sub x}, and particulates while also producing clean drinking water as a valuable byproduct. Lower capital cost, broader range of applicability, environmental friendliness, and revenue from a second product stream give this approach the potential to significantly expand the worldwide application of carbon separation for geologic sequestration. Here we report results for separation of CO{sub 2} from flue gas by two methods that simultaneously separate carbon dioxide and fresh water: ionic pumping of carbonate ions dissolved in water, and thermal distillation. The ion pumping method dramatically increases dissolved carbonate ion in solution and hence the overlying vapor pressure of CO{sub 2} gas, allowing its removal as a pure gas. We have used two common water treatment methods to drive the ion pumping approach, reverse osmosis and electrodialysis to produce pure CO{sub 2}. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas, because the slightly basic water used as the extraction medium is

  13. Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance

    SciTech Connect (OSTI)

    Andrew Seltzer; Zhen Fan

    2011-03-01

    A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ºF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

  14. Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Samplers

    SciTech Connect (OSTI)

    Robidart, Julie C.; Callister, Stephen J.; Song, Peng F.; Nicora, Carrie D.; Wheat, Charles G.; Girguis, Peter R.

    2013-05-07

    Microbes play a key role in mediating all aquatic biogeochemical cycles, and ongoing efforts are aimed at better understanding the relationships between microbial phylogenetic and physiological diversity, and habitat physical and chemical characteristics. Establishing such relationships is facilitated by sampling and studying microbiology and geochemistry at the appropriate spatial and temporal scales, to access information on the past and current environmental state that contributes to observed microbial abundances and activities. A modest number of sampling systems exist to date, few of which can be used in remote, harsh environments such as hydrothermal vents, where the ephemeral nature of venting underscores the necessity for higher resolution sampling. We have developed a robust, continuous fluid sampling system for co-registered microbial and biogeochemical analyses. The osmosis-powered bio-osmosampling system (BOSS) use no electricity, collects fluids with daily resolution or better, can be deployed in harsh, inaccessible environments and can sample fluids continuously for up to five years. Here we present a series of tests to examine DNA, RNA and protein stability over time, as well as material compatability, via lab experiments. We also conducted two field deployments at deep-sea hydrothermal vents to assess changes in microbial diversity and protein expression as a function of the physico-chemical environment. Our data reveal significant changes in microbial community composition co-occurring with relatively modest changes in the geochemistry. These data additionally provide new insights into the distribution of an enigmatic sulfur oxidizing symbiont in its free-living state. Data from the second deployment reveal differences in the representation of peptides over time, underscoring the utility of the BOSS in meta-proteomic studies. In concert, these data demonstrate the efficacy of this approach, and illustrate the value of using this method to study

  15. An Evaluation of Frangible Materials as Veneers on Vented Structural Member Designs

    SciTech Connect (OSTI)

    Jameson, Kevin Jay

    2015-10-01

    Literature shows there has been extensive research and testing done in the area of wall panels and frangible materials. There is evidence from past research that shows it is possible to vent a structure that has had an accidental internal explosion [1]. The reviewed literature shows that most designs vent the entire wall panel versus a frangible material attached to the wall panel. The frangible material attachment points are important to determine the overall loading of the wall panel structure [2]. The materials used in the reviewed literature were securely attached as well as strong enough to remain intact during the pressure loading to move the entire wall panel. Since the vented wall panel was the weakest part of the overall structure, the other walls of the structure were substantially larger. The structure was usually built from concrete and large amounts of steel with dirt and sand over the top of the structure.The study will be conducted at Sandia National Laboratories located in Albuquerque New Mexico. The skeletal structural design for evaluation is a rectangular frame with a square grid pattern constructed from steel. The skeletal structure has been given to the researcher as a design requirement. The grid pattern will be evaluated strictly on plastic deformation and the loading that is applied from the frangible material. The frangible material tested will either fit into the grid or will be a veneer lightly attached to the structure frame. The frangible material may be required on both sides of the structure to adequately represent the application.

  16. Evaluation of BOC'S Lotox Process for the Oxidation of Elemental Mercury in Flue Gas from a Coal-Fired Boiler

    SciTech Connect (OSTI)

    Khalid Omar

    2008-04-30

    Linde's Low Temperature Oxidation (LoTOx{trademark}) process has been demonstrated successfully to remove more than 90% of the NOx emitted from coal-fired boilers. Preliminary findings have shown that the LoTOx{trademark} process can be as effective for mercury emissions control as well. In the LoTOx{trademark} system, ozone is injected into a reaction duct, where NO and NO{sub 2} in the flue gas are selectively oxidized at relatively low temperatures and converted to higher nitrogen oxides, which are highly water soluble. Elemental mercury in the flue gas also reacts with ozone to form oxidized mercury, which unlike elemental mercury is water-soluble. Nitrogen oxides and oxidized mercury in the reaction duct and residual ozone, if any, are effectively removed in a wet scrubber. Thus, LoTOx{trademark} appears to be a viable technology for multi-pollutant emission control. To prove the feasibility of mercury oxidation with ozone in support of marketing LoTOx{trademark} for multi-pollutant emission control, Linde has performed a series of bench-scale tests with simulated flue gas streams. However, in order to enable Linde to evaluate the performance of the process with a flue gas stream that is more representative of a coal-fired boiler; one of Linde's bench-scale LoTOx{trademark} units was installed at WRI's combustion test facility (CTF), where a slipstream of flue gas from the CTF was treated. The degree of mercury and NOx oxidation taking place in the LoTOx{trademark} unit was quantified as a function of ozone injection rates, reactor temperatures, residence time, and ranks of coals. The overall conclusions from these tests are: (1) over 80% reduction in elemental mercury and over 90% reduction of NOx can be achieved with an O{sub 3}/NO{sub X} molar ratio of less than two, (2) in most of the cases, a lower reactor temperature is preferred over a higher temperature due to ozone dissociation, however, the combination of both low residence time and high temperature

  17. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    SciTech Connect (OSTI)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  18. Theoretical approach for enhanced mass transfer effects in-duct flue gas desulfurization processes

    SciTech Connect (OSTI)

    Jozewicz, W. . Environmental Systems Div.); Rochelle, G.T. . Dept. of Chemical Engineering)

    1992-01-29

    Removal of sulfur dioxide (SO{sub 2}) from the flue gas of coal- burning power plants can be achieved by duct spray drying using calcium hydroxide (Ca(OH){sub 2}) slurries. A primary objective of this research was to discover the aspects of mass transfer into Ca(OH){sub 2} slurries which limit SO{sub 2} absorption. A bench- scale stirred tank reactor with a flat gas/liquid interface was used to simulate SO{sub 2} absorption in a slurry droplet. The absorption rate of SO{sub 2} from gas concentrations of 500 to 5000 ppm was measured at 55{degrees}C in clear solutions and slurries of Ca(OH){sub 2} up to 1.0 M (7 wt percent). Results are reported in terms of the enhancement factor, {O}. This research will allow prediction of conditions where the absorption of SO{sub 2} in Ca(OH){sub 2} slurries can be enhanced by changes to liquid phase constituents (under which SO{sub 2} absorption is controlled by liquid film mass transfer). Experiments in the stirred tank have shown that SO{sub 2} absorption in a 1.0 M Ca(OH){sub 2} slurry was completely dominated by gas film mass transfer with a large excess of Ca(OH){sub 2} but becomes controlled by liquid film resistance at greater than 50 percent Ca(OH){sub 2} utilization. (VC)

  19. Spare parts program practices for flue gas desulfurization systems: Final report

    SciTech Connect (OSTI)

    Morgan, W.E.; Stresewski, J.E.; Cannell, A.L.

    1987-04-01

    Reliability and availability of a flue gas desulfurization (FGD) system is dependent to some extent on adequate system maintenance. System maintenance must be supported by a well planned spare parts program. The objective of this project was to determine the current practices followed by electric utilities in planning spare parts programs. Utilities with operational FGD systems were surveyed to determine the types of practices and typical inventory levels for spare parts for various items of FGD system equipment. FGD system suppliers and consulting engineering firms were also surveyed to obtain their recommendations regarding system sparing philosophy. The survey results were examined to determine significant trends and identify areas where further work could be beneficial. In general, spare parts problems typically have not been a cause for loss of availability except in some specific cases where a late start in planning the spare parts program contributed to problems during early stages of FGD system operation. Computerized methods for inventory surveillance and reordering are replacing manual methods. Stock levels for spare parts typically have been adjusted to reflect the individual utilities' operating experience. Documentation of spare parts usage rates over an extended time period would provide a data base for utilities planning spare parts programs for their first FGD system installation.

  20. LIFAC flue gas desulfurization process an alternative SO{sub 2} control strategy

    SciTech Connect (OSTI)

    Patel, J.G.; Vilala, J.

    1995-12-01

    This paper discusses the results from two recently completed LIFAC flue gas desulfurization plants - 300 MW Shand lignite powered station owned by Saskatchewan Power Corporation and 60 MW Whitewater Valley high sulfur coal fired station owned by Richmond Powerand Light. LIFACis a dry FGD process in which limestone is injected into the upper regions of the boiler furnace and an activation reactor is used to humidify the unreacted limestone to achieve additional sulfur capture. The performance in both plants indicates that 70 to 80% sulfur is removed at a Ca/S ratio of 2. Cost performance data from these plants has shown that LI FAC both on construction cost and $/ton SO{sub 2} removed basis is very cost competitive compared to other SO{sub 2} control technologies. The Richmond plant has been realized under the auspices of the U.S. Department of Energy`s Clean Coal Technology program. The Shand plant is the first commercial installation in North America. The paper also discusses highlights of operating and maintenance experience, availability and handling of the solid waste product.

  1. Status of spray-dryer flue-gas desulfurization. Final report

    SciTech Connect (OSTI)

    Ireland, P.A.

    1982-01-01

    Utility interest and commitment to spray drying for SO/sub 2/ and particulate control has increased dramatically in response to vendor claims (lower costs, dry wastes, lower energy requirements, and simplicity) and newly promulgated federal emission regulations that allow lower SO/sub 2/ removal requirements (70%) for low-sulfur coals. Unfortunately, limited data are available from which to evaluate vendor claims prior to commercial commitment or to improve the cost and reliability of this potentially important flue gas desulfurization (FGD) option. Accordingly, EPRI is conducting a pilot-scale project (RP1870) to provide a systematic evaluation of the technology unconstrained by specific vendor designs, operating philosophy, or commercial limitation. It will result in guidelines for system design and optimization in order to ensure reliable utility operation at minimum cost. This final report (TPS 80-741) contains a review of the design practices for the full-scale systems ordered and a discussion of the important spray-drying FGD process variables. Other EPRI work in this area includes a cost study with the Tennessee Valley Authority (RP1180-7) and a spray-dryer waste solids characterization (RP1870-2). The EPA has published a similar status document, which, in addition to spray drying, also covers dry injection and burning coal-alkali mixtures. However, the EPA document is not as detailed on either the design of full-scale systems or the technical issues.

  2. CO.sub.2 separation from low-temperature flue gases

    DOE Patents [OSTI]

    Dilmore, Robert; Allen, Douglas; Soong, Yee; Hedges, Sheila

    2010-11-30

    Two methods are provide for the separation of carbon dioxide from the flue gases. The first method utilizes a phase-separating moiety dissolved in an aqueous solution of a basic moiety to capture carbon dioxide. The second method utilizes a phase-separating moiety as a suspended solid in an aqueous solution of a basic moiety to capture carbon dioxide. The first method takes advantage of the surface-independent nature of the CO.sub.2 absorption reactions in a homogeneous aqueous system. The second method also provides permanent sequestration of the carbon dioxide. Both methods incorporate the kinetic rate enhancements of amine-based scrubbing while eliminating the need to heat the entire amine solution (80% water) in order to regenerate and release CO.sub.2. Both methods also take advantage of the low-regeneration temperatures of CO.sub.2-bearing mineral systems such as Na.sub.2CO.sub.3/NaHCO.sub.3 and K.sub.2CO.sub.3/KHCO.sub.3.

  3. Investigation of a mercury speciation technique for flue gas desulfurization materials

    SciTech Connect (OSTI)

    Lee, J.Y.; Cho K.; Cheng L.; Keener, T.C.; Jegadeesan G.; Al-Abed, S.R.

    2009-08-15

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method and samples from power plants in Pennsylvania. Potential candidates of pure mercury standards including mercuric chloride, mercurous chloride, mercury oxide, mercury sulfide, and mercuric sulfate were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg{sub 2}Cl{sub 2} and HgCl{sub 2} could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury. 21 refs., 5 figs., 3 tabs.

  4. A vent sizing program with particular reference to hybrid runaway reaction systems

    SciTech Connect (OSTI)

    Leung, J.C.; Noronha, J.A.; Torres, A.J.

    1995-12-31

    VSSPH (Vent Sizing Software Program for Hybrid System) is a software program designed to yield rapid evaluation of emergency requirements requirements for a general class of hybrid system runaway reaction - a system which generate both condensable vapor and noncondensable gases. The calculational method is based on transient numerical solutions as well as analytical solutions. This program only requires a few key input parameters as well as physical properties. The program also incorporates the latest two-phase pipe flow model based on the {omega} methodology. This paper describes the model construction and summarizes the results of sample runs. 5 refs., 5 figs.

  5. Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand

    SciTech Connect (OSTI)

    Jones, B.; Renaut, R.W.; Rosen, M.R.

    1997-01-01

    Before anthropogenic modifications, Ohaaki Pool (Broadlands-Ohaaki) and Dragon`s Mouth Geyser (Wairakei) emitted waters at temperatures of 93--98 C. The siliceous sinter that precipitated around their vents has the characteristics of geyserite, a dense laminated deposit of presumed abiogenic origin, that was precipitated from waters too hot (>73C) to support microbes other than thermophilic bacteria. Petrographic and SEM examinations of the sinters show that they incorporate columnar stromatolites and silicified, laminated stromatolitic mats that contain well-preserved filamentous microbes. At both localities the microbes lack evidence of desiccation or shrinkage, which implies that they were silicified rapidly at or shortly after their death. Although boiling and very hot (>90 C) waters were discharged, temperatures at many sites surrounding the vents remained sufficiently low and moist to support a microbial community that included thermophilic bacteria and cyanobacteria. In these cooler niches, the microbes and their biofilms served as highly favorable templates for the nucleation and growth of amorphous silica, and collectively provided a microbial framework for the laminated accretionary sinter. Some columnar, spicular, and stratiform geyserites are probably not abiotic precipitates, but are true silica stromatolites.

  6. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospiracrunogena XCL-2

    SciTech Connect (OSTI)

    Scott, Kathleen M.; Sievert, Stefan M.; Abril, Fereniki N.; Ball,Lois A.; Barrett, Chantell J.; Blake, Rodrigo A.; Boller, Amanda J.; Chain, Patrick S.G.; Clark, Justine A.; Davis, Carisa R.; Detter, Chris; Do, Kimberly F.; Dobrinski, Kimberly P.; Faza, BrandonI.; Fitzpatrick,Kelly A.; Freyermuth, Sharyn K.; Harmer, Tara L.; Hauser, Loren J.; Hugler, Michael; Kerfeld, Cheryl A.; Klotz, Martin G.; Kong, William W.; Land, Miriam; Lapidus, Alla; Larimer, Frank W.; Longo, Dana L.; Lucas,Susan; Malfatti, Stephanie A.; Massey, Steven E.; Martin, Darlene D.; McCuddin, Zoe; Meyer, Folker; Moore, Jessica L.; Ocampo, Luis H.; Paul,John H.; Paulsen, Ian T.; Reep, Douglas K.; Ren, Qinghu; Ross, Rachel L.; Sato, Priscila Y.; Thomas, Phaedra; Tinkham, Lance E.; Zeruth, Gary T.

    2006-08-23

    Presented here is the complete genome sequence ofThiomicrospira crunogena XCL-2, representative of ubiquitouschemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-seahydrothermal vents. This gammaproteobacterium has a single chromosome(2,427,734 bp), and its genome illustrates many of the adaptations thathave enabled it to thrive at vents globally. It has 14 methyl-acceptingchemotaxis protein genes, including four that may assist in positioningit in the redoxcline. A relative abundance of CDSs encoding regulatoryproteins likely control the expression of genes encoding carboxysomes,multiple dissolved inorganic nitrogen and phosphate transporters, as wellas a phosphonate operon, which provide this species with a variety ofoptions for acquiring these substrates from the environment. T. crunogenaXCL-2 is unusual among obligate sulfur oxidizing bacteria in relying onthe Sox system for the oxidation of reduced sulfur compounds. A 38 kbprophage is present, and a high level of prophage induction was observed,which may play a role in keeping competing populations of close relativesin check. The genome has characteristics consistent with an obligatelychemolithoautotrophic lifestyle, including few transporters predicted tohave organic allocrits, and Calvin-Benson-Bassham cycle CDSs scatteredthroughout the genome.

  7. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    SciTech Connect (OSTI)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  8. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    SciTech Connect (OSTI)

    Rue, David

    2013-09-30

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis

  9. CO{sub 2} Capture from Flue Gas Using Solid Molecular Basket Sorbents

    SciTech Connect (OSTI)

    Fillerup, Eric; Zhang, Zhonghua; Peduzzi, Emanuela; Wang, Dongxiang; Guo, Jiahua; Ma, Xiaoliang; Wang, Xiaoxing; Song, Chunshan

    2012-08-31

    The objective of this project is to develop a new generation of solid, regenerable polymeric molecular basket sorbent (MBS) for more cost-efficient capture and separation of CO{sub 2} from flue gas of coal-fired power plants. The primary goal is to develop a cost-effective MBS sorbent with better thermal stability. To improve the cost-effectiveness of MBS, we have explored commercially available and inexpensive support to replace the more expensive mesoporous molecular sieves like MCM-41 and SBA- 15. In addition, we have developed some advanced sorbent materials with 3D pore structure such as hexagonal mesoporous silica (HMS) to improve the CO{sub 2} working capacity of MBS, which can also reduce the cost for the whole CO{sub 2} capture process. During the project duration, the concern regarding the desorption rate of MBS sorbents has been raised, because lower desorption rate increases the desorption time for complete regeneration of the sorbent which in turn leads to a lower working capacity if the regeneration time is limited. Thus, the improvement in the thermal stability of MBS became a vital task for later part of this project. The improvement in the thermal stability was performed via increasing the polymer density either using higher molecular weight PEI or PEI cross-linking with an organic compound. Moreover, we have used the computational approach to estimate the interaction of CO{sub 2} with different MBSs for the fundamental understanding of CO{sub 2} sorption, which may benefit the development, design and modification of the sorbents and the process.

  10. Sulfur gas emissions from stored flue gas desulfurization solids. Final report

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1981-10-01

    The emissions of volatile, sulfur-containing compounds from the surfaces of 13 flue gas desulfurization (FGD) solids field storage sites have been characterized. The sulfur gas emissions from these storage surfaces were determined by measuring the sulfur gas enhancement of sulfur-free sweep air passing through a dynamic emission flux chamber placed over selected sampling areas. Samples of the enclosure sweep air were cryogenically concentrated in surface-deactivated Pyrex U traps. Analyses were conducted by wall-coated, open-tubular, capillary column, cryogenic, temperature-programmed gas chromatography using a sulfur-selective flame photometric detector. Several major variables associated with FGD sludge production processes were examined in relation to the measured range and variations in sulfur fluxes including: the sulfur dioxide scrubbing reagent used, sludge sulfite oxidation, unfixed or stabilized (fixed) FGD solids, and ponding or landfill storage. The composition and concentration of the measured sulfur gas emissions were found to vary with the type of solids, the effectiveness of rainwater drainage from the landfill surface, the method of impoundment, and the sulfate/sulfite ratio of the solids. The FGD solids emissions may contain hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide in varying concentrations and ratios. In addition, up to four unidentified organo-sulfur compounds were found in the emissions from four different FGD solids. The measured, total sulfur emissions ranged from less than 0.01 to nearly 0.3 kg of sulfur per day for an equivalent 40.5 hectare (100 acre) FGD solids impoundment surface.

  11. Effects of flue gas components on the reaction of Ca(OH){sub 2} with SO{sub 2}

    SciTech Connect (OSTI)

    Liu, C.F.; Shih, S.M.

    2006-12-20

    A differential fixed-bed reactor was employed to study the effects of the flue gas components, H{sub 2}O, CO{sub 2}, NOx, and O{sub 2}, on the reaction between Ca(OH){sub 2} and SO{sub 2} under conditions similar to those in the bag filters of a spray-drying flue gas desulfurization (FGD) system. The presence of CO{sub 2} with SO{sub 2} in the gas phase enhanced the sulfation of Ca(OH){sub 2} only when NOx was also present. When either NOx (mainly NO) or O{sub 2} was present with SO{sub 2}, the enhancement effect was slight, but became great when both NOx and O{sub 2} were present, and was even greater when CO{sub 2} was also present. The great enhancement effect exerted by the presence of NOx/O{sub 2} resulted from the rise in the NO{sub 2} concentration, which enhanced the oxidation of HSO{sub 3}- and SO{sub 3}{sup 2-} to SO{sub 4}{sup 2-} in the water layer adsorbed on Ca(OH){sub 2} surface and the formation of deliquescent salts of calcium nitrite and nitrate. The enhancement effect due to the presence of NOx/O{sub 2} was more pronounced when the relative humidity was above that at which the salts deliquesced; the extent of sulfation was more than twice that obtained when SO{sub 2} alone was present. The presence of H{sub 2}O, CO{sub 2}, NOx, and O{sub 2} in the flue gas is beneficial to the SO{sub 2} capture in the low-temperature dry and semidry FGD processes. The presence of NOx/O{sub 2} also enhanced CO{sub 2} removal when SO{sub 2} was absent.

  12. Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system

    SciTech Connect (OSTI)

    Bolinsky, F.T. (Pure Air, Allentown, PA (United States)); Ross, J. (Northern Indiana Public Service Co., Hammond, IN (United States)); Dennis, D.S. (United Engineers and Constructors, Inc., Denver, CO (United States). Stearns-Roger Div.); Huston, J.S. (Environmental Alternatives, Inc., Warren NJ (USA))

    1991-01-01

    Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO{sub 2}) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO{sub 2} will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO{sub 2} is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs.

  13. CO[sub 2] capture from the flue gas of conventional fossil-fuel-fired power plants

    SciTech Connect (OSTI)

    Wolsky, A.M.; Daniels, E.J.; Jody, B.J. )

    1994-08-01

    Research has been conducted at Argonne National Laboratory to identify and evaluate the advantages and deficiencies of several technologies, both commercially available and alternative technologies, for capturing CO[sub 2] from the flue gas of utility boilers that use air as an oxidant (the current universal practice). The technologies include chemical solvent, cryogenic, membrane, physical absorption, and physical adsorption methods. In general, technologies for capturing CO[sub 2] are expensive and energy-intensive. Therefore, they result in a substantial overall increase in the cost of power generation. Research to improve the performance and economics of these technologies is discussed. 20 refs., 6 figs., 1 tab.

  14. Superfund Record of Decision (EPA Region 8): Anaconda Smelter site, (Operable Unit 11 - Flue Dust), Deer Lodge County, Anaconda, MT. (Second remedial action), September 1991

    SciTech Connect (OSTI)

    Not Available

    1991-09-23

    The 6,000-acre Anaconda Smelter site is a former copper and ore processing facility in Deer Lodge County, Montana. Land use in the area is predominantly residential. The site is bounded on the north and east, respectively, by the Warm Springs Creek and Mill Creek, both of which are potential sources of drinking water. From 1884 until 1980 when activities ceased, the site was used for ore processing and smelting operations. In 1988, EPA conducted an investigation to determine the nature and extent of the flue dust contamination. A 1988 ROD addressed the Mill Creek Operable Unit (OU15) and documented the relocation of residents from the community surrounding the smelter site as the selected remedial action. The Record of Decision (ROD) addresses the Flue Dust Operable Unit (OU11). The primary contaminants of concern affecting this site from the flue dust materials are metals including arsenic, cadmium, and lead. The selected remedial action for the site is included.

  15. Gaseous fission product management for molten salt reactors and vented fuel systems

    SciTech Connect (OSTI)

    Messenger, S. J.; Forsberg, C.; Massie, M.

    2012-07-01

    Fission gas disposal is one of the unresolved difficulties for Molten Salt Reactors (MSRs) and advanced reactors with vented fuel systems. As these systems operate, they produce many radioactive isotopes of xenon and krypton (e.g. {sup 135}Xe t{sub 1/2} = 9.14 hours and {sup 85}Kr t{sub 1/2}= 10.73 years). Removing these gases proves vital to the success of such reactor designs for two reasons. First, the gases act as large neutron sinks which decrease reactivity and must be counterbalanced by increasing fuel loading. Second, for MSRs, inert fission product gases naturally separate quickly from high temperature salts, thus creating high vapor pressure which poses safety concerns. For advanced reactors with solid vented fuel, the gases are allowed to escape into an off-gas system and thus must be managed. Because of time delays in transport of fission product gases in vented fuel systems, some of the shorter-lived radionuclides will decay away thereby reducing the fission gas source term relative to an MSR. To calculate the fission gas source term of a typical molten salt reactor, we modeled a 1000 MWe graphite moderated thorium MSR similar to that detailed in Mathieu et al. [1]. The fuel salt used in these calculations was LiF (78 mole percent) - (HN)F 4 (22 mole percent) with a heavy nuclide composition of 3.86% {sup 233}U and 96.14% {sup 232}Th by mass. Before we can remove the fission product gases produced by this reactor configuration, we must first develop an appropriate storage mechanism. The gases could be stored in pressurized containers but then one must be concerned about bottle failure. Methods to trap noble gases in matrices are expensive and complex. Alternatively, there are direct storage/disposal options: direct injection into the Earth or injecting a grout-based product into the Earth. Advances in drilling technologies, hydro fracture technologies, and methods for the sequestration of carbon dioxide from fossil fuel plants are creating new options

  16. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Fauth, D.J.; Filburn, T.P.; Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energys National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2

  17. Selective CO 2 Capture from Flue Gas Using Metal–Organic Frameworks-A Fixed Bed Study

    SciTech Connect (OSTI)

    Liu, Jian; Tian, Jian; Thallapally, Praveen K.; McGrail, B. Peter

    2012-05-03

    It is important to capture carbon dioxide from flue gas which is considered to be the main reason to cause global warming. CO2/N2 separation by novel adsorbents is a promising method to reduce CO2 emission but effect of water and CO2/N2 selectivity is critical to apply the adsorbents into practical applications. A very well known, Metal Organic Framework, NiDOBDC (Ni-MOF-74 or CPO-27-Ni) was synthesized through a solvothermal reaction and the sample (500 to 800 microns) was used in a fixed bed CO2/N2 breakthrough study with and without H2O. The Ni/DOBDC pellet has a high CO2 capacity of 3.74 mol/kg at 0.15 bar and a high CO2/N2 selectivity of 38, which is much higher than those of reported MOFs and zeolites under dry condition. Trace amount of water can impact CO2 adsorption capacity as well as CO2/N2 selectivity for the Ni/DOBDC. However, Ni/DOBDC can retain a significant CO2 capacity and CO2/N2 selectivity at 0.15 bar CO2 with 3% RH water. These results indicate a promising future to use the Ni/DOBDC in CO2 capture from flue gas.

  18. Confined zone dispersion flue gas desulfurization demonstration. Quarterly report No. 8, August 17, 1992--November 16, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-09-27

    The CZD process involves injecting a finely atomized slurry of reactive lime into the flue gas duct work of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct confined in an envelope of hot gas between the wet zone and the duct walls. The lime slurry reacts with part of the SO{sub 2} in the gas, and the reaction products dry to form solid particles. A solids collector, typically an electrostatic precipitator (ESP) downstream from the point of injection, captures the reaction products along with the fly ash entrained in the flue gas. The goal of this demonstration is to prove the technical and economic feasibility of the CZD technology on a commercial scale. The process is expected to achieve 50% SO{sub 2} removal at lower capital and O&M costs than other systems. To achieve its objectives, the project is divided into the following three phases: Phase 1: Design and Permitting, Phase 2: Construction and Start-up, Phase 3: Operation and Disposition. Phase 1 activities were completed on January 31, 1991. Phase 2 activities were essentially concluded on July 31, 1991, and Phase 3a, Parametric Testing, was initiated on July 1, 1991. This Quarterly Technical Progress Report covers Phase 3b activities from August 17, 1992 through November 16, 1992.

  19. COMPARISON OF VENTED AND ABSOLUTE PRESSURE TRANSDUCERS FOR WATER-LEVEL MONITORING IN HANFORD SITE CENTRAL PLATEAU WELLS

    SciTech Connect (OSTI)

    MCDONALD JP

    2011-09-08

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The

  20. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems

    SciTech Connect (OSTI)

    Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan

    2009-09-15

    A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

  1. Field-scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as an oxygen source with moisture and nutrient addition. Appendices. Doctoral thesis

    SciTech Connect (OSTI)

    Miller, R.N.

    1990-01-01

    This document contains appendices regarding a reprint on a field scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as a oxygen source with moisture and nutrient addition.

  2. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard

    2003-12-01

    ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

  3. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-10-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

  4. System for removing solids from a used lime or limestone slurry scrubbing liquor in flue gas desulfurization

    SciTech Connect (OSTI)

    Randolph, A.D.

    1981-10-13

    The flue gas desulfurization process using a lime or limestone slurry scrubbing solution produces used liquor containing calcium sulfite or sulfate (Typically gypsum). Precipitated particles are removed by feeding the used scrubbing liquor to an agitated crystallization zone to grow crystals and directing part of the used scrubbing liquor from that zone to a quiescent crystallization zone, in which particles are settled back into the agitated zone. An underflow stream from the agitated zone containing large crystals is combined with an overflow stream from the quiescent zone, which combined stream is clarified with the fines being returned to the scrubber and the large crystals being removed as a waste product. Apparatus for performing the above process in which the agitated and quiescent crystallization zones form part of a single crystallization vessel, and the two zones are separated by a baffle.

  5. Fluid/particle separation and coal cleaning: Progress, potential advances, and their effects on FGD (flue-gas desulfurization)

    SciTech Connect (OSTI)

    Livengood, C.D.; Doctor, R.D.

    1989-01-01

    Argonne National Laboratory (ANL) has been investigating several approaches to SO{sub 2} and NO{sub x} control that could play significant roles in future emission-control strategies. These techniques include greater application of an existing technology, physical coal cleaning (PCC), as a precombustion complement to FGD, and the combined removal of NO{sub x} and SO{sub 2} in flue-gas cleanup (FGC) systems based on spray drying (a wet/dry process) or in-duct injection of dry sorbents. This paper discusses the results of some of that research with particular attention to the beneficial role of fabric filtration in the dry and wet/dry FGC processes. 7 refs., 5 figs.

  6. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas. Quarterly report, April-June 1980

    SciTech Connect (OSTI)

    Johnson, I.; Swift, W.M.; Lee, S.H.D.; Boyd, W.A.

    1980-07-01

    In the application of pressurized fluidized-bed combustors (PFBC) to the generation of electricity, hot corrosion of gas turbine components by alkali metal compounds is a potential problem. The objective of this investigation is to develop a method for removing these gaseous alkali metal compounds from the high-pressure high-temperature gas from a PFBC before the gas enters the gas turbine. A granular-bed filter, using either diatomaceous earth or activated bauxite as the bed material, is the concept currently being studied. Results are presented for the testing of diatomaceous earth for alkali vapor sorption at 800/sup 0/C and 9-atm pressure, using a simulated flue gas. Activated bauxite sorbent can be regenerated by leaching with water, and the kinetics of the leaching is under study.

  7. Study investigates eletron beam scrubbing for removal of (SO{sub 2}) and (NO{sub x}) from flue gas

    SciTech Connect (OSTI)

    1996-03-01

    A beam of high-energy electrons can be used to initiate simultaneous oxidation of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) in flue gas from coal-fired power plants. This process, known as electron beam dry scrubbing (EBDS), has been under development since 1970 and shows great promise as it continues towards commercialization. One obstacle, the high cost and low power of conventional electron beam generator, may be overcome through integration of an advanced electron beam generator being developed by Science Applications International Corporation (SAIC - McLean, Virginia). SAIC was funded to (1) design, construct, and test a prototype of its continuously pulsed, high- average-power electron beam generator; and (2) evaluate the performance and economics of EBDS with the advanced electron beam generator as applied to high-sulfur coal-fired power plants. Results of the EBDS evaluation are reported in this paper. 1 ref., 1 fig., 3 tabs.

  8. The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs

    SciTech Connect (OSTI)

    Miller, William A

    2006-01-01

    Field data show that stone-coated metal shakes and S-mission tile, which exploit the use of infraredblocking color pigments (IrBCPs), along with underside venting reduce the heat flow penetrating the conditioned space of a residence by 70% compared with the amount of heat flow penetrating roofs with conventional asphalt shingles. Stone-coated metal roof products are typically placed on battens and counter-battens and nailed through the battens to the roof deck. The design provides venting on the underside of the metal roof that reduces the heat flow penetrating a home. The Metal Construction Association (MCA) and its affiliate members installed stone-coated metal roofs with shake and S-mission tile profiles and a painted metal shake roof on a fully instrumented attic test assembly at Oak Ridge National Laboratory (ORNL). Measurements of roof, deck, attic, and ceiling temperatures; heat flows; solar reflectance; thermal emittance; and ambient weather were recorded for each of the test roofs and also for an adjacent attic cavity covered with a conventional pigmented and direct nailed asphalt shingle roof. All attic assemblies had ridge and soffit venting; the ridge was open to the underside of the stone-coated metal roofs. A control assembly with a conventional asphalt shingle roof was used for comparing deck and ceiling heat transfer rates.

  9. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, March 11, 1993--June 11, 1993

    SciTech Connect (OSTI)

    Sublette, K.L.

    1993-11-01

    There are two basic approaches to addressing the problem of SO{sub 2} and NO{sub x} emissions: (1) desulfurize (and denitrogenate) the feedstock prior to or during combustion; or (2) scrub the resultant SO{sub 2} and oxides of nitrogen from the boiler flue gases. The flue gas processing alternative has been addressed in this project via microbial reduction of SO{sub 2} and NO{sub x} by sulfate-reducing bacteria

  10. Fundamental mechanisms in flue gas conditioning. Topical report No. 2, Literature review and assembly of theories on the interactions of ash and conditioning agents

    SciTech Connect (OSTI)

    Bush, P.V.; Snyder, T.R.

    1992-01-09

    The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ask properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

  11. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator

    SciTech Connect (OSTI)

    Zhong Zhaoping . E-mail: zzhong@seu.edu.cn; Jin Baosheng; Huang Yaji; Zhou Hongcang; Lan Jixiang

    2006-07-01

    This paper describes the experimental study of dioxins removal from flue gas from a co-combustion municipal solid waste and coal incinerator by means of a fluidized absorption tower and a fabric filter. A test rig has been set up. The flow rate of flue gas of the test rig is 150-2000 m{sup 3}/h. The system was composed of a humidification and cooling system, an absorption tower, a demister, a slurry make-up tank, a desilter, a fabric filter and a measurement system. The total height of the absorption tower was 6.5 m, and the diameter of the reactor pool was 1.2 m. When the absorbent was 1% limestone slurry, the recirculation ratio was 3, the jet rate was 5-15 m/s and the submerged depth of the bubbling pipe under the slurry was 0.14 m, the removal efficiency for dioxins was 99.35%. The concentration of dioxins in the treated flue gas was 0.1573 x 10{sup -13} kg/Nm{sup 3} and the concentration of oxygen was 11%. This concentration is comparable to the emission standards of other developed countries.

  12. NATURAL CO2 FLOW FROM THE LOIHI VENT: IMPACT ON MICROBIAL PRODUCTION AND FATE OF THE CO2

    SciTech Connect (OSTI)

    Richard B. Coffin; Thomas J. Boyd; David L. Knies; Kenneth S. Grabowski; John W. Pohlman; Clark S. Mitchell

    2004-02-27

    The program for International Collaboration on CO{sub 2} Ocean Sequestration was initiated December 1997. Preliminary steps involved surveying a suite of biogeochemical parameters off the coast of Kona on the Big Island of Hawaii. The preliminary survey was conducted twice, in 1999 and 2000, to obtain a thorough data set including measurements of pH, current profiles, CO{sub 2} concentrations, microbial activities, and water and sediment chemistries. These data were collected in order to interpret a planned CO{sub 2} injection experiment. After these preliminary surveys were completed, local environment regulation forced moving the project to the coast north east of Bergen, Norway. The preliminary survey along the Norwegian Coast was conducted during 2002. However, Norwegian government revoked a permit, approved by the Norwegian State Pollution Control Authority, for policy reasons regarding the CO{sub 2} injection experiment. As a result the research team decided to monitor the natural CO{sub 2} flow off the southern coast of the Big Island. From December 3rd-13th 2002 scientists from four countries representing the Technical Committee of the International Carbon Dioxide Sequestration Experiment examined the hydrothermal venting at Loihi Seamount (Hawaiian Islands, USA). Work focused on tracing the venting gases, the impacts of the vent fluids on marine organisms, and CO{sub 2} influence on biogeochemical cycles. The cruise on the R/V Ka'imikai-O-Kanaloa (KOK) included 8 dives by the PISCES V submarine, 6 at Loihi and 2 at a nearby site in the lee of the Big Island. Data for this final report is from the last 2 dives on Loihi.

  13. Confined zone dispersion flue gas desulfurization demonstration. Volume 1, Quarterly report No. 4, August 1, 1991--October 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-27

    The confined zone dispersion (CZD) process involves flue gas post-treatment, physically located between a boiler`s outlet and its particulate collector, which in the majority of cases is an electrostatic precipitator. The features that distinguish this process from other similar injection processes are: Injection of an alkaline slurry directly into the duct, instead of injection of dry solids into the duct ahead of a fabric filter. Use of an ultrafine calcium/magnesium hydroxide, type S pressure-hydrated dolomitic lime. This commercial product is made from plentiful, naturally occurring dolomite. Low residence time, made possible by the high effective surface area of the Type S lime. Localized dispersion of the reagent. Slurry droplets contact only part of the gas while the droplets are drying, to remove up to 50 percent of the S0{sub 2} and significant amounts of NO{sub x}. The process uses dual fluid rather than rotary atomizers. Improved electrostatic precipitator performance via gas conditioning from the increased water vapor content, and lower temperatures. Supplemental conditioning with S0{sub 3} is not believed necessary for satisfactory removal of particulate matter.

  14. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    1997-05-01

    On September 30, 1993, the US Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate two technologies for the placement of coal combustion residues in abandoned underground coal mines, and will assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement, using virtually dry materials, and (2) hydraulic placement, using a {open_quotes}paste{close_quotes} mixture of materials with about 70% solids. Phase II of the overall program began April 1, 1996. The principal objective of Phase II is to develop and fabricate the equipment for placing the coal combustion by-products underground, and to conduct a demonstration of the technologies on the surface. Therefore, this quarter has been largely devoted to developing specifications for equipment components, visiting fabrication plants throughout Southern Illinois to determine their capability for building the equipment components in compliance with the specifications, and delivering the components in a timely manner.

  15. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October--December 1994

    SciTech Connect (OSTI)

    Chugh, Y.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

    1995-01-01

    On September 30, 1993, the US Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative agreement entitled ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines`` (DE-FC21-93MC30252). Under the agreement, Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. The major event during the quarter was the demonstration of the SEEC, Inc. technology for loading and transporting coal combustion residues in the SEEC developed Collapsible Intermodal Containers (CIC). The demonstration was held on November 17, 1994, at the Illinois Power Company Baldwin power plant, and was attended by about eighty (80) invited guest. Also during the quarter meetings were held with Peabody Coal Company officials to finalize the area in the Peabody No. 10 mine to be used for the placement of coal combustion residues. Work under the Materials Handling and Systems Economics area continued, particularly in refining the costs and systems configuration and in economic evaluation of various systems using equipment leasing rather than equipment purchases. Likewise, work progressed on residues characterization, with some preparations being made for long-term testing.

  16. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature range during Coal Combustion

    SciTech Connect (OSTI)

    Panagiotis Smirniotis

    2002-09-17

    A number basic sorbents based on CaO were synthesized, characterized with novel techniques and tested for sorption of CO{sub 2} and selected gas mixtures simulating flue gas from coal fired boilers. Our studies resulted in highly promising sorbents which demonstrated zero affinity for N{sub 2}, O{sub 2}, SO{sub 2}, and NO very low affinity for water, ultrahigh CO{sub 2} sorption capacities, and rapid sorption characteristics, CO{sub 2} sorption at a very wide temperature range, durability, and low synthesis cost. One of the 'key' characteristics of the proposed materials is the fact that we can control very accurately their basicity (optimum number of basic sites of the appropriate strength) which allows for the selective chemisorption of CO{sub 2} at a wide range of temperatures. These unique characteristics of this family of sorbents offer high promise for development of advanced industrial sorbents for the effective CO{sub 2} removal.

  17. Flue Gas Perification Utilizing SOx/NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion

    SciTech Connect (OSTI)

    Kevin Fogash

    2010-09-30

    The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO2 stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO2 derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

  18. Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.; Brackebusch, F.; Carpenter, J.

    1998-12-31

    This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

  19. Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO{sub 2} Derived from Oxyfuel Combustion

    SciTech Connect (OSTI)

    Fogash, Kevin

    2010-09-30

    The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO{sub 2} stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO{sub 2} derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

  20. Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO₂ Capture from Post-Combustion Flue Gases

    SciTech Connect (OSTI)

    Chen, Shiaoguo

    2015-09-30

    A novel Gas Pressurized Stripping (GPS) post-combustion carbon capture (PCC) process has been developed by Carbon Capture Scientific, LLC, CONSOL Energy Inc., Nexant Inc., and Western Kentucky University in this bench-scale project. The GPS-based process presents a unique approach that uses a gas pressurized technology for CO₂ stripping at an elevated pressure to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over the MEA process. To meet project goals and objectives, a combination of experimental work, process simulation, and technical and economic analysis studies were applied. The project conducted individual unit lab-scale tests for major process components, including a first absorption column, a GPS column, a second absorption column, and a flasher. Computer simulations were carried out to study the GPS column behavior under different operating conditions, to optimize the column design and operation, and to optimize the GPS process for an existing and a new power plant. The vapor-liquid equilibrium data under high loading and high temperature for the selected amines were also measured. The thermal and oxidative stability of the selected solvents were also tested experimentally and presented. A bench-scale column-based unit capable of achieving at least 90% CO₂ capture from a nominal 500 SLPM coal-derived flue gas slipstream was designed and built. This integrated, continuous, skid-mounted GPS system was tested using real flue gas from a coal-fired boiler at the National Carbon Capture Center (NCCC). The technical challenges of the GPS technology in stability, corrosion, and foaming of selected solvents, and environmental, health and

  1. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1995

    SciTech Connect (OSTI)

    1997-05-01

    On September 30, 1993, the U.S. Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SITJC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC-30252). Under the agreement SIUC will develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mine workings, and assess the environmental impact of such underground placements. This report discusses the technical progress achieved during the period October 1 - December 31, 1995. Rapid Aging Test columns were placed in operation during the second quarter of 1995, and some preliminary data were acquired during this quarter. These data indicate that the highly caustic pH is initially generated in the pneumatic mix, but that such pH is short lived. The initial pH rapidly declines to the range of 8 to 9. Leachates in this pH range will have little or no effect on environmental concerns. Dedicated sampling equipment was installed in the groundwater monitoring wells at the proposed placement site at the Peabody Number 10 mine. Also, the groundwater monitoring wells were {open_quotes}developed{close_quotes} during the quarter to remove the fines trapped in the sand pack and screen. A new procedure was used in this process, and proved successful. A series of tests concerning the geotechnical characteristics of the pneumatic mixes were conducted. Results show that both moisture content and curing time have a direct effect on the strength of the mixes. These are, of course, the expected general results. The Christmas holidays and the closing of the University during an extended period affected the progress of the program during the quarter. However, the program is essentially on schedule, both technically and fiscally, and any delays will be overcome during the first quarter of 1996.

  2. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, January--March 1995

    SciTech Connect (OSTI)

    Chugh, Y.; Dutta, D.; Esling, S.

    1995-04-01

    On September 30, 1993, the U.S. Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC 30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, as well as the management plan and the test plan for the overall program, and a discussion of these will not be repeated here. Rather, this report, will set forth the technical progress made during the period January 1 through March 31, 1995. The demonstration of the SEEC, Inc. technology for the transporting of coal combustion residues was completed with the unloading and final disposition of the three Collapsible Intermodal Containers (CIC). The loading and transport by rail of the three CIC`s was quire successful; however some difficulties were encountered in the unloading of the containers. A full topical report on the entire SEEC demonstration is being prepared. As a result of the demonstration some modifications of the SEEC concept may be undertaken. Also during the quarter the location of the injection wells at the Peabody No. 10 mine demonstration site were selected. Peabody Coal Company has developed the specifications for the wells and sought bids for the actual drilling. It is expected that the wells will be drilled early in May.

  3. Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect (OSTI)

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-07-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, and a discussion of these is not repeated here. Rather, this report discusses the technical progress made during the period April 1 - June 30, 1995. A final topical report on the SEEC, Inc. demonstration of its technology for the transporting of coal combustion residues was completed during the quarter, although final printing of the report was accomplished early in July, 1995. The SEEC technology involves the use of Collapsible Intermodal Containers (CIC`s) developed by SEEC, and the transportation of such containers - filled with fly ash or other coal combustion residues - on rail coal cars or other transportation means. Copies of the final topical report, entitled {open_quotes}The Development and Testing of Collapsible Intermodal Containers for the Handling and Transport of Coal Combustion Residues{close_quotes} were furnished to the Morgantown Energy Technology Center. The Rapid Aging Test colums were placed in operation during the quarter. This test is to determine the long-term reaction of both the pneumatic and hydraulic mixtures to brine as a leaching material, and simulates the conditions that will be encountered in the actual underground placement of the coal combustion residues mixtures. The tests will continue for about one year.

  4. Method of characterizing VOC concentration in vented waste drums with multiple layers of confinement using limited sampling data

    SciTech Connect (OSTI)

    Liekhus, K.J.; Vaughn, M.E.; Jensen, B.A.; Connolly, M.J.

    1994-11-01

    Characterization of transuranic waste destined for the Waste Isolation Pilot Plant currently requires detailed characterization of the volatile organic compound (VOC) concentration in the void volume headspaces (drum headspace, the large polymer bag headspace, and the innermost layers of confinement headspace) of the waste drums. A test program is underway at the Idaho National Engineering Laboratory (INEL) to determine if the drum headspace VOC concentration is representative of the concentration in the entire drum void space and demonstrate that the VOC concentration in the innermost layer of confinement can be estimated using a model incorporating diffusion and permeation transport principles and limited waste drum sampling data. A comparison of model predictions of VOC concentration in the innermost layer of confinement with actual measurement from transuranic waste drums demonstrate that this method may be useful in characterizing VOC concentration in a vented waste drum.

  5. Optimization of the blankholder force distribution with application to the stamping of a car front door panel (Numisheet'99)

    SciTech Connect (OSTI)

    Ayed, L. Ben; Delameziere, A.; Batoz, J.L.; Knopf-Lenoir, C.

    2005-08-05

    New materials such as dual phase steel or aluminium and complex geometries of industrial parts increase the difficulties to obtain a defect free part by stamping. One way of solution is a better regulation of the blankholder pressures. Our work is based on an original idea of Siegert, Haeussermann and Haller. The goal is to control the movement of the blank under the blankholder. Thanks to a deformable flexible blankholder, it is possible to create some independent zones. In each zone, a blankholder force can be applied on the sheet, so that a strong force can hold the blank in a zone, and a smaller one can let it move in another zone. The methodology is presented as well as some results dealing with the optimization of the blankholder force considering the drawing of a front door panel (Numisheet'99 benchmark test). The numerical simulations are performed using ABAQUS Explicit. The parameters of the finite element model (mesh density, speed of punch) are set to achieve a good prediction with a minimum simulation time. The objective function is defined to minimize the work of the punch. Three inequality constraints functions were defined to avoid necking and wrinkling. To avoid necking, the major stress of the blank is limited to a value, which is determined by using the modified maximum force criterion (MMFC). To avoid wrinkling, under the blankholder, the angle between the blankholder surface and an element of the blank is limited to a value set by the user, as proposed by Gelin and Labergere. However, in the useful part of the workpiece, the major stress is limited to a value, which was proposed by Brunet, Batoz and Bouabdallah. For the localization of the optimum, we use a response surface method computed with a diffuse approximation and coupled with an adaptative strategy to update the research space.

  6. Research and Education of CO{sub 2} Separation from Coal Combustion Flue Gases with Regenerable Magnesium Solutions

    SciTech Connect (OSTI)

    Lee, Joo-Youp

    2013-09-30

    A novel method using environment-friendly chemical magnesium hydroxide (Mg(OH){sub 2}) solution to capture carbon dioxide from coal-fired power plants flue gas has been studied under this project in the post-combustion control area. The project utilizes the chemistry underlying the CO{sub 2}-Mg(OH){sub 2} system and proven and well-studied mass transfer devices for high levels of CO{sub 2} removal. The major goals of this research were to select and design an appropriate absorber which can absorb greater than 90% CO{sub 2} gas with low energy costs, and to find and optimize the operating conditions for the regeneration step. During the project period, we studied the physical and chemical characteristics of the scrubbing agent, the reaction taking place in the system, development and evaluation of CO{sub 2} gas absorber, desorption mechanism, and operation and optimization of continuous operation. Both batch and continuous operations were performed to examine the effects of various parameters including liquid-to-gas ratio, residence time, lean solvent concentration, pressure drop, bed height, CO{sub 2} partial pressure, bubble size, pH, and temperature on the absorption. The dissolution of Mg(OH){sub 2} particles, formation of magnesium carbonate (MgCO{sub 3}), and vapor-liquid-solid equilibrium (VLSE) of the system were also studied. The dissolution of Mg(OH){sub 2} particles and the steady release of magnesium ions into the solution was a crucial step to maintain a level of alkalinity in the CO{sub 2} absorption process. The dissolution process was modeled using a shrinking core model, and the dissolution reaction between proton ions and Mg(OH){sub 2} particles was found to be a rate-controlling step. The intrinsic surface reaction kinetics was found to be a strong function of temperature, and its kinetic expression was obtained. The kinetics of MgCO{sub 3} formation was also studied in terms of different pH values and temperatures, and was enhanced under high p

  7. Influence of CO{sub 2} and O{sub 2} on the reaction of Ca(OH){sub 2} under spray-drying flue gas desulfurization conditions

    SciTech Connect (OSTI)

    Ho, C.S.; Shih, S.M.; Lee, C.D.

    1996-11-01

    The influence of CO{sub 2} and O{sub 2} in the flue gas on the reaction of hydrated lime sorbent with SO{sub 2} was studied using a fixed-bed differential reactor under conditions prevailing in the spray-drying flue gas desulfurization process. With the presence of CO{sub 2}, the sulfation and carbonation reactions of Ca(OH){sub 2} took place simultaneously until Ca(OH){sub 2} ceased to react. The CaCO{sub 3} produced reacted further to form CaSO{sub 3}{center_dot}{1/2}H{sub 2}O. The apparent sulfation rate, total reaction rate, and final total conversion of Ca(OH){sub 2} were greater than those for the case without CO{sub 2}. The final total conversion was about 1.45 times that for the latter case at the conditions of 1,000 ppm SO{sub 2}, 60 C, and 70% relative humidity. The same effect was observed whether CO{sub 2} was present with O{sub 2} or not. Kinetic expressions obtained by assuming chemical reaction control and considering the surface coverage by product crystals best represented the kinetic data.

  8. The doors were officially

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    but the new facilities will support missions that were consolidated in 1996 to ... Nevada National Security Site to Support Wide Variety of National Security Missions ...

  9. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  10. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, Kwan H.; Ahluwalia, Rajesh K.

    1985-01-01

    A process and apparatus for removing sulfur oxide from combustion gas to form Na.sub.2 SO.sub.4 and for reducing the harmful effects of Na.sub.2 SO.sub.4 on auxiliary heat exchangers in which a sodium compound is injected into the hot combustion gas forming liquid Na.sub.2 SO.sub.4 in a gas-gas reaction and the resultant gas containing Na.sub.2 SO.sub.4 is cooled to below about 1150.degree. K. to form particles of Na.sub.2 SO.sub.4 prior to contact with at least one heat exchanger with the cooling being provided by the recycling of combustion gas from a cooled zone downstream from the introduction of the cooling gas.

  11. Laboratory determination of gas-side mass transfer coefficients applicable to soil-venting systems for removing petroleum hydrocarbons from vadose-zone soils. Master's thesis

    SciTech Connect (OSTI)

    Van Valkenburg, M.E.

    1991-01-01

    Contamination of the subsurface environment by organic solvents has become a national problem. The EPA's Superfund list (40 CFR Part 300, 1990) continues to grow, with continual discovery of new hazardous waste sites. Various techniques are employed to remediate these sites, including excavation and removal of the contaminated soil for proper disposal, pumping and treatment of contaminated ground water and an organic phase if present, containment by slurried soil-bentonite cut-off barriers, in situ biological treatment of the organic wastes, and vadose zone soil venting for gas absorption of volatiles. Each technique, or combination, may have merit at a given site. The soil venting process, an inexpensive but relatively successful technique for removal of contaminants from the vadose (unsaturated) zone, is the focus of the research.

  12. Nonradioactive Air Emissions Notice of Construction (NOC) Application for the Central Waste Complex (CSC) for Storage of Vented Waste Containers

    SciTech Connect (OSTI)

    KAMBERG, L.D.

    2000-04-01

    This Notice of Construction (NOC) application is submitted for the storage and management of waste containers at the Central Waste Complex (CWC) stationary source. The CWC stationary source consists of multiple sources of diffuse and fugitive emissions, as described herein. This NOC is submitted in accordance with the requirements of Washington Administrative Code (WAC) 173-400-110 (criteria pollutants) and 173-460-040 (toxic air pollutants), and pursuant to guidance provided by the Washington State Department of Ecology (Ecology). Transuranic (TRU) mixed waste containers at CWC are vented to preclude the build up of hydrogen produced as a result of radionuclide decay, not as safety pressure releases. The following activities are conducted within the CWC stationary source: Storage and inspection; Transfer and staging; Packaging; Treatment; and Sampling. This NOC application is intended to cover all existing storage structures within the current CWC treatment, storage, and/or disposal (TSD) boundary, as well as any storage structures, including waste storage pads and staging areas, that might be constructed in the future within the existing CWC boundary.

  13. Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.

    SciTech Connect (OSTI)

    Lawrence C. Boyd Jr.; Dr. Vinod K. Sikka

    2006-12-29

    Energy Industries of Ohio was the lead organization for a consortium that examined the current situation involving the service life of electric arc and basic oxygen furnace hoods, roofs and side vents. Republic Engineered Products (REP), one of the project partners, installed a full-scale Al-Bronze “skirt” in their BOF at their Lorain OH facility, believed to be the first such installation of this alloy in this service. In 24 months of operation, the Al-Bronze skirt has processed a total of 4,563 heats, requiring only 2 shutdowns for maintenance, both related to physical damage to the skirt from operational mishaps. Yearly energy savings related to the REP facility are projected to be ~ 10 billion Btu's with significant additional environmental and productivity benefits. In recognition of the excellent results, this project was selected as the winner of the Ohio’s 2006 Governor’s Award for Excellence in Energy, the state’s award for outstanding achievements in energy efficiency.

  14. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    SciTech Connect (OSTI)

    Zanfir, Monica; Solunke, Rahul; Shah, Minish

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon's catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full

  15. Radioactive Air Emissions Notice of Construction for the 105-KW Basin integrated water treatment system filter vessel sparging vent

    SciTech Connect (OSTI)

    Kamberg, L.D.

    1998-02-23

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the Integrated Water Treatment System (IWTS) Filter Vessel Sparging Vent at 105-KW Basin. Additionally, the following description, and references are provided as the notices of startup, pursuant to 40 CFR 61.09(a)(1) and (2) in accordance with Title 40 Code of Federal Regulations, Part 61, National Emission Standards for Hazardous Air Pollutants. The 105-K West Reactor and its associated spent nuclear fuel (SNF) storage basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The IWTS, which has been described in the Radioactive Air Emissions NOC for Fuel Removal for 105-KW Basin (DOE/RL-97-28 and page changes per US Department of Energy, Richland Operations Office letter 97-EAP-814) will be used to remove radionuclides from the basin water during fuel removal operations. The purpose of the modification described herein is to provide operational flexibility for the IWTS at the 105-KW basin. The proposed modification is scheduled to begin in calendar year 1998.

  16. Building America Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings, New York, New York

    SciTech Connect (OSTI)

    2015-10-15

    Exhaust ventilation and corresponding outdoor air strategies are being implemented in high-performance new construction multifamily buildings to meet program or code requirements for improved indoor air quality, but a lack of clear design guidance is resulting in poor performance of these systems despite the best intentions of the programs or standards. CARB's 2014 'Evaluation of Ventilation Strategies in New Construction Multifamily Buildings' consistently demonstrated that commonly used outdoor air strategies are not performing as expected. Of the four strategies evaluated in 2014, the exhaust ventilation system that relied on outdoor air from a pressurized corridor was ruled out as a potential best practice due to its conflict with meeting requirements within most fire codes. Outdoor air that is ducted directly to the apartments was a strategy determined to have the highest likelihood of success, but with higher first costs and operating costs. Outdoor air through space conditioning systems was also determined to have good performance potential, with proper design and execution. The fourth strategy, passive systems, was identified as the least expensive option for providing outdoor air directly to apartments, with respect to both first costs and operating costs. However, little is known about how they actually perform in real-world conditions or how to implement them effectively. Based on the lack of data available on the performance of these low-cost systems and their frequent use in the high-performance building programs that require a provision for outdoor air, this research project sought to further evaluate the performance of passive vents.

  17. Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No. 12, December 1, 1993--February 28, 1994

    SciTech Connect (OSTI)

    1994-12-31

    The NOXSO process is a dry, post-combustion flue gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from the flue gas of a coal-fired utility boiler. In the process, the SO{sub 2} is reduced to sulfur by-product and the NO{sub x} is reduced to nitrogen and oxygen. It is predicted that the process can economically remove 90% of the acid rain precursor gases from the flue gas stream in a retrofit or new facility. The objective of the NOXSO Demonstration Project is to design, construct, and operate a flue gas treatment system utilizing the NOXSO process. The effectiveness of the process will be demonstrated by achieving significant reductions in emissions of sulfur and nitrogen oxides. In addition, sufficient operating data will be obtained to confirm the process economics and provide a basis to guarantee performance on a commercial scale. The project is presently in the project definition and preliminary design phase. Data obtained during pilot plant testing which was completed on July 30, 1993 is being incorporated in the design of the commercial size plant. A suitable host site to demonstrate the NOXSO process on a commercial scale is presently being sought. The plant general arrangement has been revised to incorporate principles used in the design of fluidized catalytic cracking (FCC) plants. A NOXSO plant availability analysis was prepared using operating experience from the recently completed pilot plant as a basis. The impact of water desorption in the sorbent heater and water adsorption in the sorbent cooler has been quantified and incorporated into the NOXSO process simulator. NOXSO process economics has been updated based on the present design. Capital cost for a 500 MW plant designed to remove 98% of the SO{sub 2} and 85% of the NO{sub x} is estimated at $247/kW.

  18. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, December 11, 1992--March 11, 1993

    SciTech Connect (OSTI)

    Sublette, K.L.

    1993-12-31

    This report describes the potential of sulfate reducing bacteria to fix sulfur derived from flue gas desulfurization. The first section reviews the problem, the second section reviews progress of this study to use desulfovibrio desulfuricans for this purpose. The final section related progress during the current reporting period. This latter section describes studies to immobilize the bacteria in co-culture with floc-forming anaerobes, use of sewage sludges in the culture media, and sulfate production from sulfur dioxide.

  19. wipp _vents.png

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1998 1 1999-2000 Winter Fuels Outlook Introduction This winter--defined as the period from October 1999 to March 2000--is expected to witness both higher space heating fuel demand and prices than those during the previous winter season, during which an economic slide in several emerging markets and a warmer-than- normal winter helped to depress both consumption and prices. Several factors have contributed to the marked oil price increases since the lows of last winter. These are: economic

  20. Vented nuclear fuel element

    DOE Patents [OSTI]

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  1. Packed-Bed Reactor Study of NETL Sample 196c for the Removal of Carbon Dioxide from Simulated Flue Gas Mixture

    SciTech Connect (OSTI)

    Hoffman, James S.; Hammache, Sonia; Gray, McMahan L.; Fauth Daniel J.; Pennline, Henry W.

    2012-04-24

    An amine-based solid sorbent process to remove CO2 from flue gas has been investigated. The sorbent consists of polyethylenimine (PEI) immobilized onto silica (SiO2) support. Experiments were conducted in a packed-bed reactor and exit gas composition was monitored using mass spectrometry. The effects of feed gas composition (CO2 and H2O), temperature, and simulated steam regeneration were examined for both the silica support as well as the PEI-based sorbent. The artifact of the empty reactor was also quantified. Sorbent CO2 capacity loading was compared to thermogravimetric (TGA) results to further characterize adsorption isotherms and better define CO2 working capacity. Sorbent stability was monitored by periodically repeating baseline conditions throughout the parametric testing and replacing with fresh sorbent as needed. The concept of the Basic Immobilized Amine Sorbent (BIAS) Process using this sorbent within a system where sorbent continuously flows between the absorber and regenerator was introduced. The basic tenet is to manipulate or control the level of moisture on the sorbent as it travels around the sorbent circulation path between absorption and regeneration stages to minimize its effect on regeneration heat duty.

  2. Theoretical approach for enhanced mass transfer effects in-duct flue gas desulfurization processes. Volume 2, Duct spray drying: Final report

    SciTech Connect (OSTI)

    Jozewicz, W.; Rochelle, G.T.

    1992-01-29

    Removal of sulfur dioxide (SO{sub 2}) from the flue gas of coal- burning power plants can be achieved by duct spray drying using calcium hydroxide [Ca(OH){sub 2}] slurries. A primary objective of this research was to discover the aspects of mass transfer into Ca(OH){sub 2} slurries which limit SO{sub 2} absorption. A bench- scale stirred tank reactor with a flat gas/liquid interface was used to simulate SO{sub 2} absorption in a slurry droplet. The absorption rate of SO{sub 2} from gas concentrations of 500 to 5000 ppm was measured at 55{degrees}C in clear solutions and slurries of Ca(OH){sub 2} up to 1.0 M (7 wt percent). Results are reported in terms of the enhancement factor, {O}. This research will allow prediction of conditions where the absorption of SO{sub 2} in Ca(OH){sub 2} slurries can be enhanced by changes to liquid phase constituents (under which SO{sub 2} absorption is controlled by liquid film mass transfer). Experiments in the stirred tank have shown that SO{sub 2} absorption in a 1.0 M Ca(OH){sub 2} slurry was completely dominated by gas film mass transfer with a large excess of Ca(OH){sub 2} but becomes controlled by liquid film resistance at greater than 50 percent Ca(OH){sub 2} utilization. (VC)

  3. Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, [October 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Thomasson, E.M.; Chugh, Y.P.; Esling, S.; Honaker, R.; Paul, B.; Sevin, H.

    1994-01-01

    The ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines`` program is one of the largest programs ever undertaken by the Mining Engineering Department of Southern Illinois university, both in terms of complexity and in terms of funding. Total funding over the expected four-year extent of the program, including both Department of Energy, matching Southern Illinois University funds, and contributed funds, this program exceeds three million dollars. The number of cooperating organizations adds to the management complexity of the program. It was believed, therefore, that sound management plan and management base is essential for the efficient and effective conduct of the program. This first quarter period (i.e., October 1--December 31, 1993) was developed to establishing the management base, developing a sound management plan, developing a test plan, and developing sound fiscal management and control. Actual technical operations, such as residue sample acquisition, residue analyses, groundwater sample acquisition and analyses, and material handling studies will get underway early in the next quarter (i.e., January 1--March 31, 1994). Some early results of residue analyses and groundwater analyses should be available by the end of the second quarter. These results will be reported in the next Technical Progress Report.

  4. Separation of flue-gas scrubber sludge into marketable products. Fourth year, first quarterly technical progress report, September 1, 1996--December 31, 1996 (Quarter No. 13)

    SciTech Connect (OSTI)

    Kawatra, S.K.; Eisele, T.C.

    1996-12-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{circ}0.5H{sub 2}O), gypsum (CaSO{sub 4}{circ}2H{sub 2}O), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH)2), with miscellaneous objectionable impurities such as iron oxides, silicates, and magnesium, sodium, and potassium oxides or salts. These impurities prevent many sludges from being utilized as a replacement for natural gypsum, and as a result they must be disposed of in landfills, which presents a serious disposal problem. Knowledge of scrubber sludge characteristics is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather than landfilling them. This project is studying the use of minimal-reagent froth flotation as the purification process, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product.

  5. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect (OSTI)

    C. Jean Bustard; Charles Lindsey; Paul Brignac

    2006-05-01

    This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and increase carbon injection

  6. Driving Demand: Door-to-Door Outreach & Tracking Impacts (Text...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Obviously that was really - you know, through YouTube, through emails, through all sorts ... phone banking and emails for RSVP, so we would have a list of people that have RSVP'd. ...

  7. SUBMERGED GRAVEL SCRUBBER DEMONSTRATION AS A PASSIVE AIR CLEANER FOR CONTAINMENT VENTING AND PURGING WITH SODIUM AEROSOLS -- CSTF TESTS AC7 - AC10

    SciTech Connect (OSTI)

    HILLIARD, R K.; MCCORMACK, J D.; POSTMA, A K.

    1981-11-01

    Four large-scale air cleaning tests (AC7 - AC10) were performed in the Containment Systems Test Facility (CS'lF) to demonstrate the performance of a Submerged Gravel Scrubber for cleaning the effluent gas from a vented and purged breeder reactor containment vessel. The test article, comprised of a Submerged Gravel Scrubber (SGS) followed by a high efficiency fiber demister, had a design gas flow rate of 0.47 m{sup 3}/s (1000 ft{sup 3}/min) at a pressure drop of 9.0 kPa (36 in. H{sub 2}O). The test aerosol was sodium oxide, sodium hydroxide, or sodium carbonate generated in the 850-m{sup 3} CSTF vessel by continuously spraying sodium into the air-filled vessel while adding steam or carbon dioxide. Approximately 4500 kg (10,000 lb) of sodium was sprayed over a total period of 100 h during the tests. The SGS/Demister system was shown to be highly efficient (removing ~99.98% of the entering sodium aerosol mass), had a high mass loading capacity, and operated in a passive manner, with no electrical requirement. Models for predicting aerosol capture, gas cooling, and pressure drop are developed and compared with experimental results.

  8. Natural Gas Vented and Flared

    U.S. Energy Information Administration (EIA) Indexed Site

    165,360 165,928 209,439 212,848 260,394 288,743 1936-2014 Alaska 6,481 10,173 10,966 11,769 7,219 6,554 1967-2014 Alaska Onshore 5,271 8,034 9,276 9,244 5,670 5,779 1992-2014 Alaska State Offshore 1,210 2,139 1,690 2,525 1,549 776 1992-2014 Arkansas 141 425 494 0 NA NA 1967-2014 California 2,501 2,790 2,424 0 NA NA 1967-2014 California Onshore 2,501 2,790 2,424 NA NA NA 1992-2014 California State Offshore 0 0 0 NA NA NA 2003-2014 Federal Offshore California NA NA 2003-2014 Colorado 1,411 1,242

  9. Natural Gas Vented and Flared

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1991-2015 Montana NA NA NA NA NA NA 1996-2015 New Mexico NA NA NA NA NA NA 1996-2015 North Dakota NA NA NA NA NA NA 1996-2015 Ohio NA NA NA NA NA NA 1991-2015 ...

  10. CX_Vent_System.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  11. Natural Gas Vented and Flared

    U.S. Energy Information Administration (EIA) Indexed Site

    6-2016 Colorado NA NA NA NA NA NA 1996-2016 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2016 Kansas NA NA NA NA NA NA 1996-2016 Louisiana NA NA NA NA NA NA 1991-2016 Montana NA NA NA NA NA NA 1996-2016 New Mexico NA NA NA NA NA NA 1996-2016 North Dakota NA NA NA NA NA NA 1996-2016 Ohio NA NA NA NA NA NA 1991-2016 Oklahoma NA NA NA NA NA NA 1996-2016 Pennsylvania NA NA NA NA NA NA 1991-2016 Texas NA NA NA NA NA NA 1991-2016 Utah NA NA NA NA NA NA 1994-2016 West Virginia NA NA NA NA NA

  12. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1992--December 11, 1992

    SciTech Connect (OSTI)

    Sublette, K.L.

    1992-12-31

    With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans and have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.

  13. Blower Door Tests | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in a doorway, a variable-speed fan, a pressure gauge to measure the pressure differences inside and outside the home, and an airflow manometer and hoses for measuring airflow....

  14. List of Doors Incentives | Open Energy Information

    Open Energy Info (EERE)

    Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes AlabamaWISE Home Energy Program (Alabama)...

  15. Retrofitting Doors on Open Refrigerated Cases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Q2 (Jan-Mar) FY2012 FY2013 Legend Q2 (Jan-Mar) Q3 (Apr-Jun) Q4 (Jul-Sep) Q3 (Apr-Jun) Q4 (Jul-Sep) Q1 (Octt-Dec) * Met all original project milestones to date * Original project ...

  16. Fermilab | Science Next Door: Fermilab's Community Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2015 Facebook row spacer Twitter row spacer YouTube row spacer Subscribe | Fermilab Home row spacer row spacer row spacer row spacer row spacer Welcome to Science Next...

  17. Tour Opens Doors to Solar Homes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    across the nation Oct. 16. The Denver Metro tour will feature innovative houses in Denver, Golden, Littleton, Idaho Springs, Evergreen and Parker that tap energy from the sun. ...

  18. Safety Concern: Roll-up Doors

    Broader source: Energy.gov (indexed) [DOE]

    program, and workers' continual situational awareness. 10 CFR 851 , Worker Safety and Health Program, incorporates OSHA Standards contained in 29 CFR 1910. 29 CFR 1910.219(f)(3)...

  19. Blower Door Tests | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Avoiding uncomfortable drafts caused by cold air leaking in from the outdoors Determining how much mechanical ventilation might be needed to provide acceptable indoor air quality. ...

  20. Direct fired absorption machine flue gas recuperator

    DOE Patents [OSTI]

    Reimann, Robert C.; Root, Richard A.

    1985-01-01

    A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

  1. FlueGen Inc | Open Energy Information

    Open Energy Info (EERE)

    California Zip: 92614 Product: Irvine-based original equipment manufacturer (OEM) of air pollution control systems for the utility industry, including coal-fired power plants,...

  2. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect (OSTI)

    JoAnn Lighty; Geoffrey Silcox; Constance Senior; Joseph Helble; Balaji Krishnakumar

    2008-07-31

    The objective of this project was to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involved both experimental and modeling efforts. The team was comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective was to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. The results suggested that homogeneous mercury oxidation is below 10% which is not consistent with previous data of others and work which was completed early in this research program. Previous data showed oxidation above 10% and up to 100%. However, the previous data are suspect due to apparent oxidation occurring within the sampling system where hypochlorite ion forms in the KCl impinger, which in turn oxidized mercury. Initial tests with entrained iron oxide particles injected into a flame reactor suggest that iron present on fly ash particle surfaces can promote heterogeneous oxidation of mercury in the presence of HCl under entrained flow conditions. Using the data generated above, with homogeneous reactions accounting for less than 10% of the oxidation, comparisons were made to pilot- and full-scale data. The results suggest that heterogeneous reactions, as with the case of iron oxide, and adsorption on solid carbon must be taking place in the full-scale system. Modeling of mercury oxidation using parameters from the literature was conducted to further study the contribution of homogeneous pathways to Hg oxidation in coal combustion systems. Calculations from the literature used rate parameters developed in different studies, in some cases using transition state theory with a range of approaches and basis sets, and in other cases using empirical approaches. To address this, rate constants for the entire 8-step homogeneous Hg oxidation sequence were developed using an internally consistent transition state approach. These rate constants when combined with the appropriate sub-mechanisms produced lower estimates of the overall extent of homogeneous oxidation, further suggesting that heterogeneous pathways play an important role in Hg oxidation in coal-fired systems.

  3. Flue gas desulfurization gypsum and fly ash

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.

  4. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect (OSTI)

    JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Joseph Helble; Balaji Krishnakumar

    2006-07-31

    The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 3 results for the experimental and modeling tasks. Experiments have been completed on the effects of chlorine. However, the experiments with sulfur dioxide and NO, in the presence of water, suggest that the wet-chemistry analysis system, namely the impingers, is possibly giving erroneous results. Future work will investigate this further and determine the role of reactions in the impingers on the oxidation results. The solid-phase experiments have not been completed and it is anticipated that only preliminary work will be accomplished during this study.

  5. Insulation Troubles: A Story of a House That Never Stayed Warm, Part 2 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 Insulation Troubles: A Story of a House That Never Stayed Warm, Part 2 November 10, 2015 - 4:37pm Addthis An insulated door was an easy upgrade from the steel cellar door that let cold air into our house. Photo by Elizabeth Spencer An insulated door was an easy upgrade from the steel cellar door that let cold air into our house. Photo by Elizabeth Spencer Our contractors layered radiant barriers with dense-pack insulation and sealed air vents. Photo by Elizabeth

  6. Natural Gas Vented and Flared (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History U.S. 165,360 165,928 209,439 212,848 260,394 288,743 1936-2014 Federal Offshore Gulf of Mexico 14,754 13,971 15,502 16,296 14,619 15,123 1997-2014 Alabama 2,495 2,617 3,491 0 NA NA 1967-2014 Alaska 6,481 10,173 10,966 11,769 7,219 6,554 1967-2014 Arizona 0 0 0 0 0 0 1971-2014 Arkansas 141 425 494 0 NA NA 1967-2014 California 2,501 2,790 2,424 0 NA NA 1967-2014 Colorado 1,411 1,242 1,291 0 NA NA 1967-2014 Florida 0 0 0 0 0 0 1971-2014 Illinois 0 0 0 0 0 0

  7. Generator stator core vent duct spacer posts

    DOE Patents [OSTI]

    Griffith, John Wesley; Tong, Wei

    2003-06-24

    Generator stator cores are constructed by stacking many layers of magnetic laminations. Ventilation ducts may be inserted between these layers by inserting spacers into the core stack. The ventilation ducts allow for the passage of cooling gas through the core during operation. The spacers or spacer posts are positioned between groups of the magnetic laminations to define the ventilation ducts. The spacer posts are secured with longitudinal axes thereof substantially parallel to the core axis. With this structure, core tightness can be assured while maximizing ventilation duct cross section for gas flow and minimizing magnetic loss in the spacers.

  8. MECHANICAL SYSTEMS - MULTIFAMILY: Venting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    MARVIN S. FERTEL President and Chief Executive Officer 1201 F Street, NW, Suite 1100 Washington, DC 20004 P: 202.739.8125 msf@nei.org nei.org May 5, 2014 The Honorable Ernest Moniz Secretary of Energy U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 Dear Secretary Moniz: On behalf of the U.S. nuclear energy industry, the Nuclear Energy Institute 1 (NEI) appreciates the opportunity to provide comments on the Department of Energy's excess uranium inventory management

  9. Natural Gas Vented and Flared (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1973-2016 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2016 Alabama NA NA NA NA NA NA 1996-2016 Alaska NA NA NA NA NA NA 1991-2016 Arizona NA NA NA NA NA NA 1996-2016 Arkansas NA NA NA NA NA NA 1991-2016 California NA NA NA NA NA NA 1996-2016 Colorado NA NA NA NA NA NA 1996-2016 Florida NA NA NA NA NA NA 1996-2016 Illinois NA NA NA NA NA NA 1991-2016 Indiana NA NA NA NA NA NA 1991-2016 Kansas NA NA NA NA NA NA 1996-2016 Kentucky NA NA NA NA NA NA 1991-2016 Louisiana

  10. Development and installation of a high strength insulating castable for use behind buckstays and jambs of a 6-meter coke battery

    SciTech Connect (OSTI)

    Cox, F.S. ); Sich, G. ); Gladfelder, L.

    1993-01-01

    The 6-meter coke oven batteries at Armco Steel Company, L.P.'s Middletown Works experienced stand pipe base failure and numerous door fires with the original hammer-type double knife edge door design. These events resulted in deformation of the battery buckstay, armoring, tie rod, and jamb system. In 1983, these issues were addressed by releasing the jamb from the interlocking armor, replacing the jamb casting, and strengthening the buckstays in place through minimum capital expenditures. End flue refractory condition at that time was good, and little movement was measured. The 1983 repairs did not eliminate heating wall movement, and the heating wall refractories gradually deteriorated. The end flues required special maintenance attention. Broken brickwork from the refractory shapes surrounding the coke side inspection port inside the end flues blocked air ports and gas nozzles. Open brick joints between the nose brick allowed gas and heat to escape the flue toward the buckstays and jambs. This heat loss deformed jambs and reduced end flue temperatures. Jamb movement resulted in partial loss of contact between the top of the jambs and the lintel area above the jambs, resulting in some loss of brick above the jamb area. Improper coking of the coal charge at the end flues reduced yield and affected coke quality. Door emissions and pushing emissions became more difficult to control. A task group explored several strategies for solving these refractory problems. The strategies that were investigated varied widely in scope and cost. One low cost alternative explored (and the one eventually adopted) was to repair the coke side of the batteries. The scope of the repair included three components. Install a new jamb; Reseal the lintel area above the jamb with a castable refractory; and Reseal the area between the end flue and the buckstay/armor/jamb system with a castable refractory. This paper describes the project.

  11. Clean Air Act Title V: Knocking on your door

    SciTech Connect (OSTI)

    Hosford, R.B. )

    1993-01-15

    The Clean Air Act Amendments of 1990 made several significant changes in the clean air program. One of the key elements of the Amendments was the inclusion of an operating permit program in Title V. The purpose of the program is to establish a central point for tracking all applicable air quality requirements for every source required to obtain a permit. This article provides a brief description of the most significant provisions. In addition, the subject of permit modification is discussed in some detail.

  12. WENDI Opens the Door to Wind Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For example, its keyword-based search instantly gives access to thousands of recent IEEE ... The ORNL Wind Program works to improve the environmental performance of wind systems. For ...

  13. Sandia Energy - Caterpillar, Sandia CRADA Opens Door to Multiple...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Capabilities Systems Analysis Modeling Modeling & Analysis Modeling Modeling & Analysis Materials Science Computational Modeling & Simulation Sensors & Optical Diagnostics...

  14. Retrofitting Doors on Open Refrigerated Cases | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - 2013 BTO Peer Review Better Buildings Alliance Equipment Performance Specifications - 2013 BTO Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013...

  15. Metal Oxide Semiconductor Nanoparticles Open the Door to New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for targeting, initiation and control of in vitro and in vivo chemical reactions in biological molecules Commercial applications include synthetic DNARNA endonucleases, gene...

  16. Vinyl Kraft Windows and Doors | Open Energy Information

    Open Energy Info (EERE)

    Business and legal services;Consulting;Energy auditsweatherization; Installation; Maintenance and repair;Manufacturing; Retail product sales and distribution Phone Number:...

  17. Community Power Works' Success Opens Doors to its Future

    Broader source: Energy.gov [DOE]

    Community Power Works is preparing for the next phase of the program with support from the City of Seattle's Office of Sustainability and Environment (OSE) and Clean Energy Works, the Portland, Oregon-based nonprofit organization that received seed funding from the Better Buildings Neighborhood Program and previously operated as Clean Energy Works Oregon. The partners will help Community Power Works develop a business plan and explore funding opportunities.

  18. Solar Home Tour and Exhibitor Showcase Open Doors to Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To see how Andrews and 15 others are tapping into the energy of the sun, take the Denver Metro Tour of Solar Homes, hosted by the Colorado Renewable Energy Society (CRES), from 10 ...

  19. An Optimized Swinging Door Algorithm for Wind Power Ramp Event...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... An applica- tion of the optimized SDA is provided to ascertain the op- timal parameter of the original SDA. Measured wind power data from the Electric Reliability Council of Texas ...

  20. Shutting the Door on Cold Weather | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Philipp Klebert, center, celebrates after learning Vienna University of Technology placed first in the U.S. Department of Energy Solar Decathlon 2013 at Orange County Great Park in Irvine, California. | Photo by Stefano Paltera, U.S. Department of Energy Solar Decathlon Philipp Klebert, center, celebrates after learning Vienna University of Technology placed first in the U.S. Department of Energy Solar Decathlon 2013 at Orange County Great Park in Irvine, California. | Photo by Stefano Paltera,

  1. Updating the Doors and Windows | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Impact Minimization Technologies | Department of Energy October 6, EERE's Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Energy Bat Impact Minimization Technologies and Field Testing Opportunities." This funding would help address environmental siting and permitting challenges associated with responsibly developing and operating wind energy facilities in locations with sensitive bat species. As wind energy continues to grow as a renewable

  2. Sandia National Laboratories: Out the door: DOE aims to expand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    private sector to boost the economy and create jobs, says the head of the department's new Office of Technology Transitions. "Tech transfer is a mission of the DOE and all our...

  3. Energy Performance Ratings for Windows, Doors, and Skylights...

    Office of Environmental Management (EM)

    pressure difference across it. It's expressed in units of cubic feet per minute per square foot of frame area (cfmft2). A product with a low air leakage rating is tighter than...

  4. EECBG Success Story: Another Door Opens: Marion Invests in Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batzel EECBG Success Story: Missouri Water Treatment Plant Upgraded An aerial shot of Oro Valley, Ariz.'s town hall campus shows proposed solar locations. | Photo courtesy of...

  5. Strategic Planning Opens Doors for Isolated Alaskan Village

    Broader source: Energy.gov [DOE]

    Through the Office of Indian Energy’s 2012 Strategic Technical Assistance Response Team (START) Program, the Organized Village of Kake in Alaska received assistance with community-based energy planning, energy awareness and training programs, and identification and implementation of renewable energy and energy efficiency opportunities.

  6. Energy Efficiency Hits from the Doors (and Windows)

    Broader source: Energy.gov [DOE]

    Our 1970's-vintage house always seemed a bit too welcoming when howling winter winds swept up Colorado's foothills.

  7. SWiFT Turbines Full Dynamic Characterization Opens Doors for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Conference held in Orlando, Florida, last February. ... mode shapes of each main turbine component tested ... wind energy technologies, with a specific ...

  8. National Labs Open Doors to Displaced Japanese Researchers |...

    Energy Savers [EERE]

    ... Photo of the Week: The VULCAN Diffractometer Dr Jeremy Smith | Photo Courtesy of ORNL 10 Questions for a Biophysicist: Jeremy Smith Named in honor of American inventor Thomas Alva ...

  9. Compression stripping of flue gas with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L.; O'Connor, William K.

    2005-05-31

    A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SO.sub.X and NO.sub.X and CO.sub.2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO.sub.2, SO.sub.2, and H.sub.2 O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

  10. Testing in flue gas cleaning systems of waste incineration plants

    SciTech Connect (OSTI)

    Wallen, B.; Bergquist, A.; Nordstroem, J.

    1995-07-01

    Test racks containing creviced, welded coupons of stainless steels (SS), nickel-based alloys, and titanium were exposed in gas cleaning systems in municipal waste incineration plants. The environments in the cleaning systems were very corrosive. The best corrosion resistance was shown by the superaustenitic SS UNS S32654 and the nickel-based alloys UNS N10276 (C-276) and N06022 (C-22). Titanium performed poorly and was attacked by excessive uniform corrosion.

  11. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption

    SciTech Connect (OSTI)

    Tim Fout

    2007-06-30

    A new process, phase enhanced absorption, was invented. The method is carried out in an absorber, where a liquid carrier (aqueous solution), an organic mixture (or organic compound), and a gas mixture containing a gas to be absorbed are introduced from an inlet. Since the organic mixture is immiscible or at least partially immiscible with the liquid carrier, the organic mixture forms a layer or small parcels between the liquid carrier and the gas mixture. The organic mixture in the absorber improves mass transfer efficiency of the system and increases the absorption rate of the gas. The organic mixture serves as a transportation media. The gas is finally accumulated in the liquid carrier as in a conventional gas-liquid absorption system. The presence of the organic layer does not hinder the regeneration of the liquid carrier or recovery of the gas because the organic layer is removed by a settler after the absorption process is completed. In another aspect, the system exhibited increased gas-liquid separation efficiency, thereby reducing the costs of operation and maintenance. Our study focused on the search of the organic layer or transportation layer to enhance the absorption rate of carbon dioxide. The following systems were studied, (1) CO{sub 2}-water system and CO{sub 2}-water-organic layer system; (2) CO{sub 2}-Potassium Carbonate aqueous solution system and CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system. CO{sub 2}-water and CO{sub 2}-Potassium Carbonate systems are the traditional gas-liquid absorption processes. The CO{sub 2}-water-organic layer and CO{sub 2}-Potassium Carbonate-organic layer systems are the novel absorption processes, phase enhanced absorption. As we mentioned early, organic layer is used for the increase of absorption rate, and plays the role of transportation of CO{sub 2}. Our study showed that the absorption rate can be increased by adding the organic layer. However, the enhanced factor is highly depended on the liquid mass transfer coefficients for the CO{sub 2}-water-organic layer system. For the CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system, the enhanced factor is not only dependent on the liquid mass transfer coefficients, but also the chemical reaction rates.

  12. Compression Stripping of Flue Gas with Energy Recovery

    SciTech Connect (OSTI)

    Ochs, Thomas L.; O'Connor, William K.

    2005-05-31

    A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SOX and NOX and CO2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO2, SO2, and H2O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

  13. CO2 Capture from Flue Gas by Phase Transitional Absorption

    SciTech Connect (OSTI)

    Liang Hu

    2009-06-30

    A novel absorption process called Phase Transitional Absorption was invented. What is the Phase Transitional Absorption? Phase Transitional Absorption is a two or multi phase absorption system, CO{sub 2} rich phase and CO{sub 2} lean phase. During Absorption, CO{sub 2} is accumulated in CO{sub 2} rich phase. After separating the two phases, CO{sub 2} rich phase is forward to regeneration. After regeneration, the regenerated CO{sub 2} rich phase combines CO{sub 2} lean phase to form absorbent again to complete the cycle. The advantage for Phase Transitional Absorption is obvious, significantly saving on regeneration energy. Because CO{sub 2} lean phase was separated before regeneration, only CO{sub 2} rich phase was forward to regeneration. The absorption system we developed has the features of high absorption rate, high loading and working capacity, low corrosion, low regeneration heat, no toxic to environment, etc. The process evaluation shows that our process is able to save 80% energy cost by comparing with MEA process.

  14. Catalysts for oxidation of mercury in flue gas

    DOE Patents [OSTI]

    Granite, Evan J.; Pennline, Henry W.

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  15. Characterization of suspended flue gas particle systems with...

    Office of Scientific and Technical Information (OSTI)

    These comparisons were used to evaluate the two instruments at their present state of development. Authors: Montagna, J C ; Smith, G W ; Teats, F G ; Voge, G J ; Jonke, A A ...

  16. Sulfur gas emissions from stored flue-gas-desulfurization sludges

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1980-01-01

    In field studies conducted for the Electric Power Research Institute by the University of Washington (1978) and the University of Idaho (1979), 13 gas samples from sludge storage sites at coal-burning power plants were analyzed by wall-coated open-tube cryogenic capillary-column gas chromatography with a sulfur-selective flame-photometric detector. Hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide were identified in varying concentrations and ratios in the emissions from both operating sludge ponds and landfills and from FGD sludge surfaces that had been stored in the open for 3-32 mo or longer. Other sulfur compounds, probably propanethiols, were found in emissions from some sludges. Chemical ''stabilization/fixation'' sulfate-sulfite ratio, sludge water content, and temperature were the most significant variables controlling sulfur gas production. The average sulfur emissions from each of the 13 FGD storage sites ranged from 0.01 to 0.26 g/sq m/yr sulfur.

  17. Recovery of Water from Boiler Flue Gas Using Condensing Heat...

    Office of Scientific and Technical Information (OSTI)

    DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water ...

  18. Nebraska Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 1,558 1,263 834 2,137 1,398 797 60 0 0 1980's 0 194 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 5 12 23 29 17 5 2 9 2010's 24 21 0

  19. Nevada Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0

  20. New Mexico Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,992 5,987 4,058 1970's 2,909 2,823 5,696 3,791 1,227 1,642 1,519 5,065 8,163 4,636 1980's 5,211 6,877 4,767 6,236 6,335 5,869 4,080 3,811 3,582 4,419 1990's 1,679 1,365 1,626 1,581 1,963 2,144 2,700 2,786 2,673 2,715 2000's 3,130 3,256 2,849 2,347 3,525 3,533 2,869 929 803 481 2010's 1,586 4,360 12,259 21,053 22,143

  1. New York Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 7 2,926 2,883 3,744 2,400 3,773 3,720 2,802 4,012 5,036 1990's 375 1 13 14 11 0 3 5 5 5 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  2. North Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 25,795 22,050 22,955 1970's 19,862 2,686 20,786 22,533 17,860 2,155 2,737 1,116 6,788 26,932 1980's 7,975 698 1 996 2,018 2,984 6,853 2,771 2,771 2,050 1990's 3,642 2,603 2,197 2,337 2,492 4,300 2,957 3,534 4,371 2,693 2000's 3,290 3,166 2,791 2,070 2,198 3,260 7,460 10,500 25,700 26,876 2010's 24,582 49,652 79,564 102,855 129,384

  3. Oregon Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  4. Alabama Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 360 422 795 1970's 656 308 966 1,890 1,492 1,107 1,088 1,180 1,695 1,497 1980's 3,175 2,485 2,806 1,793 1,829 1,426 1,310 1,356 1,824 1,503 1990's 1,933 2,193 1,799 1,798 2,650 2,935 1,853 1,563 1,462 1,085 2000's 1,262 1,039 1,331 1,611 2,316 2,485 3,525 2,372 1,801 2,495 2010's 2,617 3,491 0

  5. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira...

    Office of Scientific and Technical Information (OSTI)

    Susan 4 ; Malfatti, Stephanie 9 ; Massey, Steven E 1 ; Martin, Darlene D 1 ; ... H 12 ; Paulsen, Ian T 13 ; Reep, Douglas K 1 ; Ren, Qinghu 13 ; Ross, Rachel L ...

  6. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospiracrunogen...

    Office of Scientific and Technical Information (OSTI)

    A. ; Massey, Steven E. ; Martin, Darlene D. ; McCuddin, Zoe ; Meyer, Folker ; Moore, Jessica L. ; Ocampo, Luis H. ; Paul,John H. ; Paulsen, Ian T. ; Reep, Douglas K. ; Ren, ...

  7. Other States Natural Gas Vented and Flared (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    654 1995 667 594 663 634 643 626 643 663 603 553 567 578 1996 549 538 625 620 693 703 709 715 676 708 682 690 1997 133 124 135 142 147 142 149 177 160 150 159 161 1998 147 134...

  8. Building America Case Study: Design Guidance for Passive Vents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PERFORMANCE CRITERIA * Continuous exhaust: >3 required ASHRAE 62.2 outdoor air CFM * ... ASHRAE Standard 62.2, or similar, can be used to determine the whole-house ventilation ...

  9. Alaska Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,390 24,258 32,543 1970's 34,808 33,880 21,590 4,979 11,524 10,401 6,554 15,644 8,492 4,526 1980's 4,820 5,630 6,946 5,027 11,670 6,296 8,862 15,603 9,018 9,786 1990's 10,727 10,784 14,097 22,485 13,240 8,736 7,070 8,269 8,171 7,098 2000's 7,546 7,686 7,312 6,345 6,088 6,429 7,125 6,458 10,023 6,481 2010's 10,173 10,966 11,769 7,219 6,554

  10. Arkansas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 997 895 1,326 1970's 226 1,734 2,649 1,947 1,716 1,318 1,227 1,153 869 471 1980's 394 552 973 973 2,225 824 1,760 1,068 1,110 1,110 1990's 284 208 371 409 313 313 270 134 45 6,005 2000's 206 431 251 354 241 241 12 11 114 141 2010's 425 494 0

  11. Arkansas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 23 13 12 7 13 28 28 30 36 9 5 5 1992 33 29 32 31 30 29 30 30 30 32 32 33 1993 36 32 35 33 34 32 33 33 33 35 35 37 1994 27 25 27 25 26 25 25 26 25 27 27 28 1995 27 24 27 25 26 25 25 26 25 27 27 28 1996 17 23 8 0 31 45 28 29 25 19 25 21 1997 5 0 6 7 7 8 13 32 16 4 19 17 1998 2 0 2 2 2 3 4 11 5 1 6 6 1999 607 269 535 439 561 494 583 216 469 689 668 472 2000 1 0 1 16 21 17 23 23 27 23 24 30 2001 2 1 2 33 45 35 48 48 57 47 50 63 2002 12 15 29

  12. California Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 97 103 109 107 107 104 108 107 104 108 106 108 1997 111 113 85 88 213 140 121 108 122 171 175 144 1998 235 192 246 157 166 129 173 167 152 132 127 76 1999 165 135 173 110 116 91 121 117 106 92 89 53 2000 266 218 279 178 188 146 196 189 172 149 144 86 2001 207 169 217 138 146 114 152 146 134 116 111 67 2002 324 265 340 216 228 178 238 230 209 181 175 105 2003 266 228 237 343 405 431 342 333 276 316 593 170 2004 217 186 193 280 331 352 279

  13. Colorado Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 112 77 78 91 100 89 100 106 97 121 155 102 1997 173 188 180 168 228 187 188 102 189 192 185 199 1998 92 166 98 92 98 115 222 83 82 92 95 10 1999 70 71 70 65 68 66 66 66 63 67 65 64 2000 67 64 68 65 68 66 67 68 65 69 69 70 2001 77 69 75 71 73 74 73 78 76 79 78 83 2002 83 75 84 79 79 77 79 80 72 80 72 75 2003 96 86 95 92 95 92 94 96 94 98 95 90 2004 99 89 98 94 98 95 97 99 97 101 98 93 2005 103 94 103 99 103 99 102 104 102 106 102 98 2006

  14. Indiana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  15. Kansas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 63 63 63 61 62 57 57 55 56 58 59 61 1997 60 55 60 59 62 60 58 54 50 54 54 54 1998 55 50 54 52 52 52 45 48 48 51 49 50 1999 52 44 47 46 46 47 46 46 44 45 44 46 2000 47 43 45 50 45 44 45 45 42 42 41 41 2001 42 37 41 40 41 39 41 41 39 40 39 40 2002 40 36 40 38 40 39 39 39 36 37 36 37 2003 36 32 36 35 36 34 36 36 35 35 34 34 2004 34 32 34 33 34 33 35 34 33 33 32 32 2005 32 30 32 32 32 30 32 33 31 32 31 31 2006 30 27 30 30 30 30 31 32 31 30 31

  16. Alaska Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    514 674 605 615 1996 682 532 552 569 588 618 691 545 634 560 528 570 1997 798 623 646 666 687 723 808 637 741 654 618 666 1998 788 615 639 658 679 715 799 630 733 647 610 658...

  17. Issues related to venting of attics and cathedral ceilings

    SciTech Connect (OSTI)

    TenWolde, A.; Rose, W.B.

    1999-07-01

    Current model building codes require attic ventilation in all US climates. Originally, these requirements were strictly based on concerns for condensation in attics during winter in cold climates, and they were based on limited technical information. Nevertheless, attic ventilation has become the uncontested strategy to minimize condensation and ice dams during winter and extreme attic temperatures during summer. However, other strategies exist that address each of these problems as well as or better than attic ventilation. This paper examines issues such as summer attic temperatures, ice dams, and shingle durability and discusses the relative merits of attic ventilation compared to alternative design approaches in various climates. The authors support current recommendations for attic ventilation in cold and mixed climates but recommend that attic ventilation be treated as a design option in warm, humid climates. The authors review the new information on attic and roof ventilation in the 1997 ASHRAE Handbook--Fundamentals and discuss the reasons for the changes.

  18. Structure and Stratigraphy Beneath a Young Phreatic Vent: South...

    Open Energy Info (EERE)

    deformation. Authors John C. Eichelberger, Thomas A. Vogel, Leland W. Younker, C. Dan Miller, Grant H. Heiken and Kenneth H. Wohletz Published Journal Journal of Geophysical...

  19. Texas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,478 2,147 2,113 2,353 3,203 2,833 3,175 2,684 2,296 2,457 2,750 2,150 1992 1,337 1,107 1,379 1,254 1,439 1,833 2,083 1,970 2,009 1,630 1,835 1,812 1993 3,276 3,172 2,618 2,863 2,492 2,286 2,563 2,471 2,865 3,708 2,934 3,238 1994 3,225 3,330 3,515 3,403 3,959 4,686 3,429 2,766 3,188 3,543 3,122 3,871 1995 3,543 3,658 3,862 3,738 4,350 5,148 3,768 3,039 3,503 3,893 3,430 4,252 1996 3,461 3,537 3,340 3,922 3,459 4,520 4,339 3,794 3,556

  20. Utah Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,000 2,906 2,802 1970's 2,852 2,926 5,506 7,664 5,259 1,806 1,048 691 469 560 1980's 2,439 2,740 3,682 1,572 1,766 1,161 1990's 1,338 1,625 1,284 2,153 3,363 35,069 27,277 16,790 19,365 13,835 2000's 1,941 1,847 955 705 688 595 585 1,005 1,285 1,398 2010's 2,080 1,755 0

  1. West Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  2. Indiana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0

  3. Kansas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,630 2,529 2,666 1970's 2,713 2,669 2,681 2,377 889 846 831 783 861 801 1980's 737 641 431 436 467 514 450 458 578 509 1990's 557 628 642 670 715 723 716 680 605 555 2000's 527 481 456 420 398 378 365 363 373 353 2010's 323 307 0

  4. Louisiana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 161,849 166,439 158,852 1970's 154,089 103,564 63,667 102,091 31,572 25,459 31,467 33,251 29,807 26,061 1980's 22,851 23,042 19,781 25,651 25,008 25,013 24,173 25,290 22,835 21,898 1990's 20,660 20,415 20,538 19,580 19,689 18,729 21,705 21,928 19,543 21,509 2000's 20,266 11,750 10,957 9,283 5,015 5,228 6,665 6,496 4,021 4,336 2010's 4,578 6,302 0 3,912 4,143

  5. Maryland Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  6. Michigan Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,861 1,120 808 1970's 809 1,032 1,117 1,268 1,612 2,042 2,291 2,736 2,960 1980's 3,433 3,310 3,320 3,324 3,324 3,324 3,324 3,705 3,324 4,070 1990's 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 2000's 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 3,324 2010's 3,324 3,324 0

  7. Mississippi Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,098 5,910 8,097 1970's 7,233 5,090 3,672 10,767 10,787 11,862 13,599 13,514 36,273 38,417 1980's 16,627 12,188 10,799 8,694 9,862 4,097 4,845 4,112 5,512 4,201 1990's 3,628 2,799 3,076 2,222 1,928 2,234 2,677 2,742 2,798 2,745 2000's 2,477 2,961 3,267 3,501 3,812 3,944 4,575 5,909 7,504 7,875 2010's 8,685 9,593 0

  8. Missouri Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 0 0

  9. Montana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,022 12,551 26,458 1970's 5,203 4,917 4,222 3,691 3,901 3,202 2,070 1,095 1,408 1,689 1980's 1,705 1,896 1,667 1,549 1,285 1,460 1,468 1,181 1,146 1,099 1990's 886 772 763 758 551 417 596 1,120 1,274 317 2000's 488 404 349 403 1,071 629 1,173 3,721 6,863 7,001 2010's 5,722 4,878 0

  10. Convection venting lensed reflector-type compact fluorescent lamp system

    DOE Patents [OSTI]

    Pelton, B.A.; Siminovitch, M.

    1997-07-29

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures. 12 figs.

  11. Ohio Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 12 11 12 12 12 12 12 12 12 12 12 12 2011 8 7 8 7 8 7 8 8 7 8 7 8 2012 8 7 8 7 8 7 8 8 7 8 7 8 2013 25 23 25 25 25 25 25 25 25 25 25 25 2014 30 27 30 29 30 29 30 30 29 30 29 30 2015 8 8 8 8 8 27 30 30 29 30 29 30 2016 33 30 33 32 47 46

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Ohio Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  12. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 21 19 21 20 21 20 21 21 20 21 20 21 2011 22 20 22 21 22 21 22 22 21 22 21 22 2012 22 20 22 21 22 21 22 22 21 22 21 22 2013 29 27 29 28 29 28 29 29 28 29 28 29 2014 34 31 34 33 34 33 34 34 33 34 33 34 2015 24 22 24 24 24 32 34 34 33 34 33 34 2016 38 35 38 37 44 43

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  13. Oregon Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 16 14 16 15 16 15 16 16 15 16 15 16 2011 12 11 12 12 12 12 12 12 12 12 12 12 2012 12 11 12 12 12 12 12 12 12 12 12 12 2013 13 12 13 13 13 13 13 13 13 13 13 13 2014 15 14 15 15 15 15 15 15 15 15 15 15 2015 14 12 14 13 14 14 15 15 15 15 15 15 2016 17 15 17 17 16 15

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  14. Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 25 23 25 24 25 24 25 25 24 25 24 25 2011 25 23 25 24 25 24 25 25 24 25 24 25 2012 25 24 25 24 25 24 25 25 24 25 24 25 2013 26 24 26 26 26 26 26 26 26 26 26 26 2014 31 28 31 30 31 30 31 31 30 31 30 31 2015 28 26 28 27 28 29 31 31 30 31 30 31 2016 35 31 35 33 37 36 Feet)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3

  15. South Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Vehicle Fuel Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.13 4.08 4.19 3.17 3.89 3.76 3.48 4.95 4.83 2000's 4.48 -- 4.14 -- -- -- -- -- -- -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  16. Tennessee Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 1 1 1 1 1 1 1 1 1 1 1 1 2011 1 1 1 1 1 1 1 1 1 1 1 1 2012 1 1 1 1 1 1 1 1 1 1 1 1 2013 7 7 7 7 7 7 7 7 7 7 7 7 2014 9 8 9 8 9 8 9 9 8 9 8 9 2015 2 1 2 2 2 8 9 9 8 9 8 9 2016 10 9 10 9 21 20

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.29 4.11 4.35 4.63 5.69 5.08 5.49

  17. Texas Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 198 179 198 192 198 192 198 198 192 198 192 198 2011 187 169 187 181 187 181 187 187 181 187 181 187 2012 187 175 187 181 187 181 187 187 181 187 181 187 2013 255 230 255 247 255 247 255 255 247 255 247 255 2014 300 271 300 290 300 290 300 300 290 300 290 300 2015 210 190 210 203 210 276 300 300 290 300 290 300 2016 333 301 333 322 393 380

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Vehicle Fuel Price

  18. Utah Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 17 16 17 17 17 17 17 17 17 17 17 17 2011 25 22 25 24 25 24 25 25 24 25 24 25 2012 24 23 24 24 24 24 24 24 24 24 24 24 2013 19 17 19 18 19 18 19 19 18 19 18 19 2014 22 20 22 22 22 22 22 22 22 22 22 22 2015 28 25 28 27 28 21 22 22 22 22 22 22 2016 25 22 25 24 24 23

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  19. West Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 1 1 1 1 1 1 1 1 1 1 1 1 2014 1 1 1 1 1 1 1 1 1 1 1 1 2015 0 0 0 0 0 1 1 1 1 1 1 1 2016 1 1 1 1 1 1 Feet)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) West Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.90 2.90 3.82 2.08 2.20

  20. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 1 1 1 1 1 1 1 1 1 1 1 1 2011 2 1 2 2 2 2 2 2 2 2 2 2 2012 2 2 2 2 2 2 2 2 2 2 2 2 2013 2 2 2 2 2 2 2 2 2 2 2 2 2014 2 2 2 2 2 2 2 2 2 2 2 2 2015 2 2 2 2 2 2 2 2 2 2 2 2 2016 2 2 2 2 2 2

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5.66 5.74 5.66 4.62 5.34 5.24 5.56 6.30

  1. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting...

    Broader source: Energy.gov (indexed) [DOE]

    to Recover Low-Pressure Waste Steam Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators

  2. Assessment of Literature Related to Combustion Appliance Venting...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  3. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,498 13,038 17,632 1970's 18,419 3,860 8,376 6,618 6,102 3,223 1,916 699 559 1,830 1980's 1,117 983 2,149 5,233 3,271 1,330 2,413 25,107 45,342 47,793 1990's 63,216 82,854 89,736 126,362 126,722 148,721 145,452 140,147 8,711 9,002 2000's 9,945 7,462 12,356 16,685 16,848 31,161 31,661 47,783 42,346 42,530 2010's 42,101 57,711 45,429 34,622 29,641

  4. Utah Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 646 1995 696 4,590 4,767 4,382 4,389 4,603 4,932 5,137 1996 5,088 4,788 2,269 2,009 2,564 1,687 1,695 1,724 1,229 1,255 1,547 1,422 1997 2,411 2,381 1,594 942 490 1,391 1,344 1,185 1,114 1,130 1,058 1,750 1998 909 697 700 689 1,194 1,161 2,299 2,625 2,235 2,226 2,258 2,373 1999 1,462 1,480 993 1,254 1,131 1,316 904 776 1,291 1,249 894 1,084 2000 158 65 69 100 91 626 87 119 185 220 123 99 2001 129 98 83 55 49 47 79 274 242 254 469 68 2002

  5. West Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  6. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,712 5,109 6,529 6,408 6,948 6,430 7,035 7,792 7,475 7,837 7,649 7,930 1992 7,430 7,009 7,475 7,039 5,797 7,809 8,770 8,218 7,442 7,505 7,662 7,580 1993 10,674 10,789 10,568 10,480 11,572 12,350 10,996 8,163 9,912 10,526 9,870 10,463 1994 11,590 11,569 11,181 10,129 9,324 10,365 10,174 10,394 10,578 10,635 10,629 10,155 1995 13,046 11,867 11,628 12,102 14,419 12,911 12,917 10,472 12,302 12,592 11,896 12,569 1996 13,000 12,042 12,951

  7. California Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 1,153 1,041 1,153 1,116 1,153 1,116 1,153 1,153 1,116 1,153 1,116 1,153 2011 1,245 1,125 1,245 1,205 1,245 1,205 1,245 1,245 1,205 1,245 1,205 1,245 2012 1,243 1,162 1,243 1,203 1,243 1,203 1,243 1,243 1,203 1,243 1,203 1,243 2013 1,199 1,083 1,199 1,161 1,199 1,161 1,199 1,199 1,161 1,199 1,161 1,199 2014 1,408 1,272 1,408 1,363 1,408 1,363 1,408 1,408 1,363 1,408 1,363 1,408 2015 1,398 1,263 1,398 1,353 1,398 1,299 1,408 1,408 1,363

  8. Colorado Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 21 19 21 20 21 20 21 21 20 21 20 21 2011 24 22 24 23 24 23 24 24 23 24 23 24 2012 24 22 24 23 24 23 24 24 23 24 23 24 2013 23 21 23 22 23 22 23 23 22 23 22 23 2014 27 24 27 26 27 26 27 27 26 27 26 27 2015 27 24 27 26 27 25 27 27 26 27 26 27 2016 30 27 30 29 31 30

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  9. Florida Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 5 5 5 5 5 5 5 5 5 5 5 5 2011 7 6 7 7 7 7 7 7 7 7 7 7 2012 7 7 7 7 7 7 7 7 7 7 7 7 2013 15 13 15 14 15 14 15 15 14 15 14 15 2014 18 16 18 17 18 17 18 18 17 18 17 18 2015 8 7 8 8 8 16 18 18 17 18 17 18 2016 19 18 19 19 27 26

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2.75

  10. Indiana Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 4 4 4 4 4 4 4 4 4 4 4 4 2011 1 1 1 1 1 1 1 1 1 1 1 1 2012 1 1 1 1 1 1 1 1 1 1 1 1 2013 2 2 2 2 2 2 2 2 2 2 2 2 2014 2 2 2 2 2 2 2 2 2 2 2 2 2015 2 1 2 2 2 2 2 2 2 2 2 2 2016 2 2 2 2 8 7

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.69 4.71 4.25 5.23 5.11 7.13 7.20 5.53

  11. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 2 2 2 2 2 2 2 2 2 2 2 2 2014 2 2 2 2 2 2 2 2 2 2 2 2 2015 0 0 0 0 0 2 2 2 2 2 2 2 2016 3 2 3 3 4 4

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.78 5.30 4.62 5.10 5.54 6.68 6.75 6.68

  12. Louisiana Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 1 1 1 1 1 1 1 1 1 1 1 1 2011 1 1 1 1 1 1 1 1 1 1 1 1 2012 1 1 1 1 1 1 1 1 1 1 1 1 2013 4 4 4 4 4 4 4 4 4 4 4 4 2014 5 4 5 4 5 4 5 5 4 5 4 5 2015 1 1 1 1 1 4 5 5 4 5 4 5 2016 5 5 5 5 5 5

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.24 3.56 4.30 3.47 2.36 2.99 3.53 5.57

  13. Maryland Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 17 16 17 17 17 17 17 17 17 17 17 17 2011 19 17 19 18 19 18 19 19 18 19 18 19 2012 19 17 19 18 19 18 19 19 18 19 18 19 2013 17 15 17 17 17 17 17 17 17 17 17 17 2014 20 18 20 19 20 19 20 20 19 20 19 20 2015 21 19 21 20 21 19 20 20 19 20 19 20 2016 22 20 22 22 22 22

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  14. Michigan Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 22 20 22 21 22 21 22 22 21 22 21 22 2011 28 25 28 27 28 27 28 28 27 28 27 28 2012 28 26 28 27 28 27 28 28 27 28 27 28 2013 29 26 29 28 29 28 29 29 28 29 28 29 2014 34 31 34 33 34 33 34 34 33 34 33 34 2015 32 29 32 31 32 32 34 34 33 34 33 34 2016 38 35 38 37 42 4

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  15. Mississippi Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 2 2 2 2 2 2 2 2 2 2 2 2 2014 2 2 2 2 2 2 2 2 2 2 2 2 2015 0 0 0 0 0 2 2 2 2 2 2 2 2016 2 2 2 2 7 7 Feet)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.82 1.63 2.51 2.76 2.79 2.91

  16. Missouri Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 1 1 1 1 1 1 1 1 1 1 1 1 2011 1 0 1 0 1 0 1 1 0 1 0 1 2012 1 0 1 0 1 0 1 1 0 1 0 1 2013 4 3 4 3 4 3 4 4 3 4 3 4 2014 4 4 4 4 4 4 4 4 4 4 4 4 2015 1 1 1 1 1 4 4 4 4 4 4 4 2016 5 4 5 4 10 10

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.37 2.74 3.19 3.79 3.38 3.04 2000's

  17. Montana Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  18. Nebraska Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 3 2 3 2 3 2 3 3 2 3 2 3 2011 3 3 3 3 3 3 3 3 3 3 3 3 2012 3 3 3 3 3 3 3 3 3 3 3 3 2013 4 4 4 4 4 4 4 4 4 4 4 4 2014 5 4 5 5 5 5 5 5 5 5 5 5 2015 3 3 3 3 3 4 5 5 5 5 5 5 2016 5 5 5 5 5 5

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.67 2010's 15.10 15.29 - = No Data

  19. Nevada Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 71 64 71 69 71 69 71 71 69 71 69 71 2011 50 45 50 49 50 49 50 50 49 50 49 50 2012 50 47 50 48 50 48 50 50 48 50 48 50 2013 51 46 51 49 51 49 51 51 49 51 49 51 2014 60 54 60 58 60 58 60 60 58 60 58 60 2015 56 51 56 54 56 55 60 60 58 60 58 60 2016 66 60 66 64 92 89

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  20. New Mexico Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 25 23 25 25 25 25 25 25 25 25 25 25 2011 21 19 21 21 21 21 21 21 21 21 21 21 2012 21 20 21 21 21 21 21 21 21 21 21 21 2013 13 12 13 13 13 13 13 13 13 13 13 13 2014 16 14 16 15 16 15 16 16 15 16 15 16 2015 24 22 24 23 24 14 16 16 15 16 15 16 2016 17 16 17 17 15 14

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) New Mexico Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  1. New York Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 305 275 305 295 305 295 305 305 295 305 295 305 2011 328 297 328 318 328 318 328 328 318 328 318 328 2012 326 305 326 316 326 316 326 326 316 326 316 326 2013 282 254 282 273 282 273 282 282 273 282 273 282 2014 331 299 331 320 331 320 331 331 320 331 320 331 2015 367 332 367 355 367 305 331 331 320 331 320 331 2016 367 332 367 356 347 33

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) New York Natural Gas Vehicle Fuel Price

  2. North Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas

  3. Kansas Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,630 2,529 2,666 1970's 2,713 2,669 2,681 2,377 889 846 831 783 861 801 1980's 737 641 431 436...

  4. Condensing Furnace Venting Part 2: Evaluation of Same-Chimney...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  5. Alabama Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 194 200 140 132 106 82 205 152 157 192 159 134 1997 134 110 90 112 98 125 119 114 118 91 227 224 1998 125 101 87 104 91 ...

  6. Louisiana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,788 1,684 1,571 1,593 1,807 1,690 2,042 1,781 1,437 1,867 1,649 1,505 1992 1,707 1,639 1,564 1,775 1,752 2,153 1,623 1,737 1,907 1,568 1,595 1,518 1993 1,588 1,460 1,500 1,708 1,614 1,590 1,778 1,711 2,014 1,500 1,482 1,636 1994 1,597 1,468 1,509 1,717 1,623 1,599 1,788 1,720 2,025 1,509 1,490 1,645 1995 1,519 1,396 1,435 1,633 1,544 1,521 1,701 1,636 1,926 1,435 1,418 1,565 1996 1,545 1,443 1,514 1,471 1,528 1,939 2,042 2,033 1,985

  7. Maryland Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  8. Michigan Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 277 277 277 277 277 277 277 277 277 277 277 277 1997 277 277 277 277 277 277 277 277 277 277 277 277 1998 277 277 277 277 277 277 277 277 277 277 277 277 1999 277 277 277 277 277 277 277 277 277 277 277 277 2000 277 277 277 277 277 277 277 277 277 277 277 277 2001 277 277 277 277 277 277 277 277 277 277 277 277 2002 277 277 277 277 277 277 277 277 277 277 277 277 2003 277 277 277 277 277 277 277 277 277 277 277 277 2004 277 277 277 277

  9. Mississippi Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 217 199 223 219 237 234 239 235 213 224 218 220 1997 214 202 214 209 221 223 218 242 235 258 250 256 1998 250 222 245 225 233 220 238 232 235 234 227 236 1999 230 217 247 232 239 233 234 231 226 223 214 219 2000 205 161 204 193 213 198 210 214 205 223 216 235 2001 236 216 234 241 248 236 265 266 242 260 251 267 2002 259 299 266 255 266 262 267 274 276 280 267 298 2003 293 261 282 277 284 285 244 304 306 323 305 337 2004 319 321 331 325

  10. Missouri Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0

  11. Montana Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 32 38 34 40 43 27 63 59 60 71 67 62 1997 67 60 71 62 66 83 72 92 47 118 186 195 1998 189 147 159 177 107 76 155 129 136 0 0 0 1999 47 54 50 52 56 58 0 0 0 0 0 0 2000 43 39 41 44 49 44 44 36 36 39 43 28 2001 36 32 40 35 36 36 35 33 34 32 28 27 2002 30 25 27 31 31 30 28 32 30 29 28 27 2003 34 28 30 33 34 36 32 32 29 30 43 43 2004 49 41 37 81 85 91 97 125 135 150 125 55 2005 42 36 52 46 57 57 60 55 52 56 51 66 2006 74 75 73 86 111 99 94 87

  12. Nebraska Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 1 0 0 2003 1 1 1 1 1 1 1 1 1 1 1 1 2004 2 1 1 2 2 1 3 2 2 2 2 2 2005 4 3 2 2 2 1 2 3 2 3 3 3 2006 5 2 2 1

  13. Nevada Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  14. New Mexico Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 236 220 240 230 241 229 217 221 212 215 216 223 1997 241 220 245 236 243 225 235 239 231 240 217 213 1998 231 211 235 227 233 215 226 229 221 230 209 205 1999 232 210 231 226 225 229 230 235 224 235 229 212 2000 289 245 293 242 287 251 285 246 240 278 233 242 2001 249 226 245 237 213 175 179 384 317 237 505 288 2002 304 207 214 254 269 249 266 263 247 216 202 159 2003 179 154 198 210 234 226 221 285 199 193 127 121 2004 124 128 292 275

  15. California Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,565 2,780 3,074 1970's 2,499 575 1,999 1,560 1,537 1,288 1,038 960 1,253 1980's 1,386 1,907 1,907 1,135 2,116 2,200 2,750 2,734 2,733 2,731 1990's 1,244 1,429 751 580 830 1,250 1,268 1,590 1,952 1,367 2000's 2,210 1,717 2,690 3,940 3,215 2,120 1,562 1,879 2,127 2,501 2010's 2,790 2,424 0

  16. Colorado Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,656 1,514 1,326 1970's 7,126 2,843 4,758 3,008 2,957 2,516 1,836 1,528 1,108 1,199 1980's 796 1,195 1,223 1,360 1,000 1,821 1,577 2,360 4,593 3,961 1990's 4,719 2,890 1,868 2,024 2,476 1,510 1,230 2,178 1,244 802 2000's 805 908 935 1,123 1,158 1,215 1,291 1,333 1,501 1,411 2010's 1,242 1,291 0

  17. Convection venting lensed reflector-type compact fluorescent lamp system

    DOE Patents [OSTI]

    Pelton, Bruce A.; Siminovitch, Michael

    1997-01-01

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures.

  18. New York Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 1 0 0 0 0 0 0 0 0 0 1992 1 1 1 1 1 1 1 1 1 1 1 1 1993 1 1 1 1 1 1 1 1 1 1 1 1 1994 1 1 1 1 1 1 1 1 1 1 1 1 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 1 0 0 1 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  19. North Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 232 193 232 176 230 258 269 324 298 334 213 199 1997 229 264 293 280 303 313 258 301 327 330 321 315 1998 308 301 334 380 418 459 435 425 310 328 345 330 1999 231 194 245 204 202 206 231 307 232 227 202 212 2000 225 218 226 237 257 271 292 327 293 333 311 300 2001 269 246 276 255 245 263 289 283 250 260 281 249 2002 231 221 210 235 250 238 258 245 257 222 210 214 2003 196 167 193 174 167 161 158 171 164 181 168 170 2004 197 157 166 150

  20. Oregon Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0

  1. South Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 384 350 382 380 382 376 405 418 397 439 445 486 1992 455 445 448 468 497 447 465 459 438 450 440 465 1993 463 417 484 453 478 459 497 500 495 545 507 435 1994 385 324 383 373 409 424 506 590 595 591 601 625 1995 640 570 637 609 617 602 617 637 578 526 540 549 1996 533 516 618 620 662 658 680 685 650 689 657 669 1997 128 123 129 135 139 134 135 145 143 146 140 143 1998 145 134 148 145 129 114 122 121 118 119 114 117 1999 147 136 151 148

  2. Differential vent and bar actuated circulating valve and method

    SciTech Connect (OSTI)

    Brieger, E. F.

    1985-07-16

    A tool for use downhole in a borehole for carrying out a backsurging method whereby existing open perforations are cleaned. The tool comprises an annular body having spaced cylindrical walls, each of which reciprocatingly receives spaced pistons which move individually relative to one another. A port is formed through each of the walls of each of the cylinders with the first port being normally closed by a first piston and the second port being normally open. The second piston is moved to close the second port. The tool is placed on the end of a tubing string or within a tool string and run downhole into the borehole. A packer device enables the pressure between the lower annulus, the upper annulus, and the tubing to be adjusted relative to one another. A bar is then dropped down the tubing string, contacts the second piston and moves the second piston to cover the second port. The tubing pressure is reduced to provide a pressure differential between the lower annulus and the interior of the tubing. The first valve automatically opens when a predetermined pressure differential is achieved between the tubing and lower annulus, thereby providing a predetermined pressure differential across the old perforations, and cleaning debris therefrom upon the opening of the first port.

  3. South Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 4 5 5 5 1980's 5 52 54 85 165 194 140 0 0 0 1990's 3,648 4,844 5,476 5,732 5,805 7,122 7,636 1,639 1,526 1,555 2000's 1,806 2,043 1,880 2,100 2,135 2,071 1,931 2,177 2,073 2,160 2010's 2,136 2,120 0

  4. Texas Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 129,403 124,584 111,499 1970's 100,305 70,222 59,821 36,133 34,431 31,295 30,402 27,340 25,556 27,350 1980's 28,837 32,907 33,061 28,420 32,256 30,776 26,050 29,325 31,832 29,770 1990's 28,247 30,638 19,689 34,486 42,037 46,183 45,382 47,922 25,949 35,675 2000's 32,010 26,823 27,379 23,781 26,947 38,654 43,169 36,682 42,541 41,234 2010's 39,569 35,248 47,530 76,113 81,755

  5. MHK ISDB/Sensors/Vented Tide Sensor | Open Energy Information

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  6. MHK ISDB/Sensors/Vented Wave Sensor | Open Energy Information

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  7. MHK ISDB/Sensors/Vented Pressure Sensor | Open Energy Information

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  8. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Door "B"

  9. Dampers for Natural Draft Heaters: Technical Report

    SciTech Connect (OSTI)

    Lutz, James D.; Biermayer, Peter; King, Derek

    2008-10-27

    Energy required for water heating accounts for approximately 40percent of national residential natural gas consumption in California. With water heating contributing such a substantial portion of natural gas consumption, it is important to pay attention to water heater efficiencies. This paper reports on an investigation of a patented, buoyancy-operated flue damper. It is an add-on design to a standard atmospherically vented natural-draft gas-fired storage water heater. The flue damper was expected to reduce off-cycle standby losses, which would lead to improvements in the efficiency of the water heater. The test results showed that the Energy Factor of the baseline water heater was 0.576. The recovery efficiency was 0.768. The standby heat loss coefficient was 10.619 (BTU/hr-oF). After the damper was installed, the test results show an Energy Factor for the baseline water heater of 0.605. The recovery efficiency was 0.786. The standby heat loss coefficient was 9.135 (BTU/hr-oF). The recovery efficiency increased 2.3percent and the standby heat loss coefficient decreased 14percent. When the burner was on, the baseline water heater caused 28.0 CFM of air to flow from the room. During standby, the flow was 12.4 CFM. The addition of the damper reduced the flow when the burner was on to 23.5 CFM. During standby, flow with the damper was reduced to 11.1 CFM. The flue damper reduced off-cycle standby losses, and improved the efficiency of the water heater. The flue damper also improved the recovery efficiency of the water heater by restricting on-cycle air flows through the flue.With or without the flue damper, off-cycle air flow upthe stack is nearly half the air flow rate as when the burner is firing.

  10. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  11. Condensing heat-exchanger systems for oil-fired residential/commercial furnaces and boilers Phase I and II

    SciTech Connect (OSTI)

    Ball, D.A.; White, E.L.; Lux, J.J. Jr.; Locklin, D.W.

    1982-10-01

    The objective of the program reported was to provide supporting research to aid in the development and demonstration of oil-fired residential and commercial heating equipment that will operate in a condensing mode. Materials for heat exchangers are screened through coupon testing in a furnace simulator test rig and in an alternate immersion test rig. Condensate from oil-fired systems is characterized. Some general issues related to field application are treated, including heat exchanger fouling, venting of combustion gases, disposal of flue gas condensate, other means of condensate disposal, and evaluation of codes and standards. A heat transfer analysis is presented for general heat exchangers. (LEW)

  12. Detecting terrorist nuclear weapons at sea: The 10th door problem

    SciTech Connect (OSTI)

    Slaughter, D R

    2008-09-15

    While screening commercial cargo containers for the possible presence of WMD is important and necessary smugglers have successfully exploited the many other vehicles transporting cargo into the US including medium and small vessels at sea. These vessels provide a venue that is currently not screened and widely used. Physics limits that make screening of large vessels prohibitive impractical do not prohibit effective screening of the smaller vessels. While passive radiation detection is probably ineffective at sea active interrogation may provide a successful approach. The physics limits of active interrogation of ships at sea from standoff platforms are discussed. Autonomous platforms that could carry interrogation systems at sea, both airborne and submersible, are summarized and their utilization discussed. An R&D program to investigate the limits of this approach to screening ships at sea is indicated and limitations estimated.

  13. Keys to Access: Argonne-INCREASE partnership opens doors to collaborat...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lacking access to world-class research tools limits the types of questions a cancer researcher or aerospace engineer can ask. This lack of access also limits their ability to...

  14. AHEM Lab Opens Doors to New Technology Test Bed at NREL (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    NREL studies smart sensors and dynamic control systems to help homeowners conserve energy, save money, and live comfortably.

  15. Project Title: New Non SNM Door (4503) Program or Program Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exercises and simulation DB 1.3 - Routine maintenance and custodial services DB 1.4 - Air conditioning installation for existing equipment DB 1.5 - Cooling water system...

  16. Wind and Water Power Program - Wind Power Opens Door To Diverse Opportunities (Green Jobs)

    SciTech Connect (OSTI)

    2010-04-01

    The strong projected growth of wind power will require a stream of trained and qualified workers to manufacture, construct, operate, and maintain the wind energy facilities.

  17. New optics technology opens door to high-resolution atomic-level...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arising from the wedging constitutes proof of principle that wedging is a viable technology, thereby constituting a significant advancement toward a new frontier in X-ray...

  18. Opening Doors of Opportunity to Develop the Future Nuclear Workforce - 13325

    SciTech Connect (OSTI)

    Mets, Mindy

    2013-07-01

    The United States' long-term demand for highly skilled nuclear industry workers is well-documented by the Nuclear Energy Institute. In addition, a study commissioned by the SRS Community Reuse Organization concludes that 10,000 new nuclear workers are needed in the two-state region of Georgia and South Carolina alone. Young adults interested in preparing for these nuclear careers must develop specialized skills and knowledge, including a clear understanding of the nuclear workforce culture. Successful students are able to enter well-paying career fields. However, the national focus on nuclear career opportunities and associated training and education programs has been minimal in recent decades. Developing the future nuclear workforce is a challenge, particularly in the midst of competition for similar workers from various industries. In response to regional nuclear workforce development needs, the SRS Community Reuse Organization established the Nuclear Workforce Initiative (NWI{sup R}) to promote and expand nuclear workforce development capabilities by facilitating integrated partnerships. NWI{sup R} achievements include a unique program concept called NWI{sup R} Academies developed to link students with nuclear career options through firsthand experiences. The academies are developed and conducted at Aiken Technical College and Augusta Technical College with support from workforce development organizations and nuclear employers. Programs successfully engage citizens in nuclear workforce development and can be adapted to other communities focused on building the future nuclear workforce. (authors)

  19. AHEM Lab Opens Doors to New Technology Test Bed at NREL (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An automated home energy management (AHEM) system can do the same with any energy-consuming component of the home. For example, these systems can turn off lights or adjust the ...

  20. Residents Learn to Open Their Doors to Energy Efficiency in Michigan...

    Energy Savers [EERE]

    targeted communities. Neighborhood sweeps are intensive, house-by-house mini-campaigns designed to convince homeowners to complete a home energy upgrade. The program hoped that ...

  1. EECBG Success Story: Another Door Opens: Marion Invests in Energy Efficiency

    Broader source: Energy.gov [DOE]

    City Hall in Marion, Ohio is getting a much needed renovation with energy efficiency upgrades, thanks to an Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  2. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Brent Constantz; Randy Seeker; Martin Devenney

    2010-06-30

    Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO{sub 2} to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM{trademark} was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which is a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.

  3. Anatomy of an upgraded pulverized coal facility: Combustion modification through flue gas scrubbing

    SciTech Connect (OSTI)

    Watts, J.U.; Savichky, W.J.; O`Dea, D.T.

    1997-12-31

    Regeneration is a biological term for formation or creating anew. In the case of Milliken station, a species of steam generation (Tangentus coali) regeneration refers to refitting critical systems with the latest technological advances to reduce emissions while maintaining or improving performance. The plant has undergone a series of operations which provided anatomical changes as well as a face lift. Each of the two units were place in suspended animation (outage) to allow these changes to be made. The paper describes the project which includes retrofitting combustion systems, pulverizers, boiler liners, scrubbers, and control room. This retrofit is meant to increase thermal efficiency while reducing the formation of nitrogen oxides.

  4. Management of dry flue gas desulfurization by-products in underground mines

    SciTech Connect (OSTI)

    Sevim, H.

    1997-06-01

    Disposal of coal combustion by-products (CCBs) in an environmentally sound manner is a major issue facing the coal and utility industries in the US today. Disposal into abandoned sections of underground coal mines may overcome many of the surface disposal problems along with added benefits such as mitigation of subsidence and acid mine drainage. However, many of the abandoned underground coal mines are located far from power plants, requiring long distance hauling of by-products which will significantly contribute to the cost of disposal. For underground disposal to be economically competitive, the transportation and handling cost must be minimized. This requires careful selection of the system and optimal design for efficient operation. The materials handling and system economics research addresses these issues. Transportation and handling technologies for CCBs were investigated from technical, environmental and economic points of view. Five technologies were found promising: (1) Pneumatic Trucks, (2) Pressure Differential Rail Cars, (3) Collapsible Intermodal Containers, (4) Cylindrical Intermodal Tanks, and (5) Coal Hopper Cars with Automatic Retractable Tarping. The first two technologies are currently being utilized in transporting by-products from power plants to disposal sites, whereas the next three are either in development or in conceptualization phases. In this research project, engineering design and cost models were developed for the first four technologies. The engineering design models are in the form of spreadsheets and serve the purpose of determining efficient operating schedules and sizing of system components.

  5. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    SciTech Connect (OSTI)

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2014-10-07

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  6. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOE Patents [OSTI]

    Yang, W.C.; Newby, R.A.; Lippert, T.E.

    1997-08-05

    The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

  7. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOE Patents [OSTI]

    Yang, Wen-Ching; Newby, Richard A.; Lippert, Thomas E.

    1997-01-01

    The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

  8. OpenEI Community - natural gas+ condensing flue gas heat recovery...

    Open Energy Info (EERE)

    groupincrease-natural-gas-energy-efficiency

  9. Flue gas cleanup using the Moving-Bed Copper Oxide Process (Journal...

    Office of Scientific and Technical Information (OSTI)

    Authors: Pennline, Henry W. ; Hoffman, James S. Publication Date: 2013-10-01 OSTI Identifier: 1129900 Report Number(s): NETL-PUB-255 Resource Type: Journal Article Resource ...

  10. Application of holographic neural networks for flue gas emissions prediction in the Burnaby incinerator

    SciTech Connect (OSTI)

    Zheng, L.; Dockrill, P.; Clements, B.

    1997-12-31

    This article describes the development of a parametric prediction system (PPS) for various emission species at the Burnaby incinerator. The continuous emissions monitoring system at the Burnaby incinerator is shared between three boilers and therefore actual results are only available 5 minutes out of every 15 minutes. The PPS was developed to fill in data for the 10 minutes when the Continuous Emission Monitor (CEM) is measuring the other boilers. It bases its prediction on the last few actual readings taken and parametrically predicts CO, SO2 and NOx. The Burnaby Incinerator is located in the commercial/industrial area of South Burnaby, British Columbia. It consists of three separate lines, each burning ten tonnes of garbage per hour and producing about three tonnes of steam for every tonne of garbage burned. The air pollution control system first cools the combustion products with water injection and then scrubs them with very fine hydrated lime. Carbon is added to the lime to enhance the scrubbing of the combustion products. The CEM monitors the levels of oxygen, carbon monoxide, nitrogen oxides, sulphur dioxide and opacity. In 1996, an expert system was installed on one of boilers at the Burnaby Incinerator plant to determine if it could improve the plant=s operations and reduce overall emission. As part of the expert system, the PPS was developed. Holographic Neural Technology (HNeT), developed by AND Corporation of Toronto, Ontario, is a novel neural network technology using complex numbers in its architecture. Compared to the traditional neural networks, HNeT has some significant advantage. It is more resilient against converging on local minima; is faster training and executing; less prone to over fitting; and, in most cases, has significantly lower error. Selection of independent variabs, training set preparation, testing neural nets and other related issue will be discussed.

  11. Experimental investigation of a molecular gate membrane for separation of carbon dioxide from flue gas

    SciTech Connect (OSTI)

    Kazama, S.; Kai, T.; Kouketsu, T.; Matsui, S.; Yamada, K.; Hoffman, J.S.; Pennline, H.W.

    2006-09-01

    Commercial-sized modules of the PAMAM dendrimer composite membrane with high CO2/N2 selectivity and CO2 permeance were developed according to the In-situ Modification (IM) method. This method utilizes the interfacial precipitation of membrane materials on the surface of porous, commercially available polysulfone (PSF) ultrafiltration hollow fiber membrane substrates. A thin layer of amphiphilic chitosan, which has a potential affinity for both hydrophobic PSF substrates and hydrophilic PAMAM dendrimers, was employed as a gutter layer directly beneath the inner surface of the substrate by the IM method. PAMAM dendrimers were then impregnated into the chitosan gutter layer to form a hybrid active layer for CO2 separation. Permeation experiments of the PAMAM dendrimer composite membrane were carried out using a humidified mixed CO2 / N2 feed gas at a pressure difference up to 97 kPa at ambient temperature. When conducted with CO2 (5%) / N2 (95%) feed gas at a pressure difference of 97 kPa, the PAMAM composite membrane exhibited an excellent CO2/N2 selectivity of 150 and a CO2 permeance of 1.7×10-7 m3(STP) m-2 s-1 kPa-1. The impact of various process parameters on the permeability and selectivity was also examined.

  12. Clean coal reference plants: Pulverized coal boiler with flue gas desulfurization. Topical report

    SciTech Connect (OSTI)

    1995-09-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications.

  13. Simulation of spray drying absorber for removal of HC1 in flue gas from incinerators

    SciTech Connect (OSTI)

    Uchida, S.; Tsuchiga, K.

    1984-04-01

    A theoretical study on the spray drying absorber in an HC1 removal process by lime slurries has been performed with a mathematical model which describes heat and mass transfer and fluid flows in the absorber. From heat and mass balances and a force balance for a moving droplet in the absorber, a set of first-order, nonlinear differential equations relating the amount of water, the gas and droplet temperatures, the drop velocity, the HC1 partial pressure, etc., along the axial direction of the tower was formulated. These relationships were numerically solved to give characteristic profiles in the tower. The results of the simulation based on this model were compared with experimental data and showed satisfactory agreement.

  14. Load Preheating Using Flue Gases from a Fuel-Fired Heating System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and if the downstream processes can accommodate increased melter production. Reference W. Trinks et al. Industrial Furnaces, Sixth Edition. New York: John Wiley & Sons, Inc. 2003.

  15. Dry additives-reduction catalysts for flue waste gases originating from the combustion of solid fuels

    SciTech Connect (OSTI)

    1995-12-31

    Hard coal is the basic energy generating raw material in Poland. In 1990, 60% of electricity and thermal energy was totally obtained from it. It means that 100 million tons of coal were burned. The second position is held by lignite - generating 38% of electricity and heat (67.3 million tons). It is to be underlined that coal combustion is particularly noxious to the environment. The coal composition appreciably influences the volume of pollution emitted in the air. The contents of incombustible mineral parts - ashes - oscillates from 2 to 30%; only 0.02 comes from plants that had once originated coal and cannot be separated in any way. All the rest, viz. the so-called external mineral substance enters the fuel while being won. The most indesirable hard coal ingredient is sulfur whose level depends on coal sorts and its origin. The worse the fuel quality, the more sulfur it contains. In the utilization process of this fuel, its combustible part is burnt: therefore, sulfur dioxide is produced. At the present coal consumption, the SO{sub 2} emission reaches the level of 3.2 million per year. The intensifies the pressure on working out new coal utilization technologies, improving old and developing of pollution limiting methods. Research is also directed towards such an adaptation of technologies in order that individual users may also make use thereof (household furnaces) as their share in the pollution emission is considerable.

  16. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue...

    Office of Scientific and Technical Information (OSTI)

    ... up to 80% of the total energy cost for carbon sequestration. ... with substantially lower regeneration energy requirements. ... Energy Technology Innovation Project, Kennedy School ...

  17. An overview of carbon monoxide generation and release by home appliances

    SciTech Connect (OSTI)

    Batey, J.

    1997-09-01

    Carbon monoxide (CO) is an odorless, colorless and tasteless gas which is highly toxic and can be produced by many combustion sources commonly found within homes. Potential sources include boilers and furnaces, water heaters, space heaters, stoves, ovens, clothes dryers, wood stoves, fireplaces, charcoal grilles, automobiles, cigarettes, oil lamps, and candles. Any fuel that contains carbon can form CO including, natural gas, propane, kerosene, fuel oil, wood, and coal. Exposure to elevated CO levels typically requires its production by a combustion source and its release into the home through a venting system malfunction. The health effects of CO range from headaches and flue-like symptoms to loss of concentration, coma and death depending on the concentration of CO and the exposure time. At levels of only 1%, which is the order of magnitude produced by automobile exhaust, carbon monoxide can cause death in less than 3 minutes. While most combustion equipment operate with low CO levels, many operating factors can contribute to elevated CO levels in the home including: burner adjustment, combustion air supply, house air-tightness, exhaust fan operation, cracked heat exchangers, vent blockages, and flue pipe damage. Test data on CO emissions is presented from a wide range of sources including Brookhaven National Laboratory, Gas Research Institute, American Gas Association, the US Environmental Protection Agency, and the US Consumer Product Safety Commission for many potential CO sources in and near the home.

  18. U.S. Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA NA 1974 NA NA NA NA NA NA NA NA NA NA NA NA 1975 NA NA NA NA NA NA NA NA NA NA NA NA 1976 NA NA NA NA NA NA NA NA NA NA NA NA 1977 NA NA NA NA NA NA NA NA NA NA NA NA 1978 NA NA NA NA NA NA NA NA NA NA NA NA 1979 NA NA NA NA NA NA NA NA NA NA NA NA 1980 12,000 10,000 10,000 10,000 11,000 9,000 9,000 10,000 12,000 10,000 10,000 11,000 1981 10,000 10,000 9,000 8,000 7,000 8,000 9,000 10,000 7,000 7,000 6,000

  19. Multiloop integral system test (MIST): Test Group 35, Noncondensibles and venting

    SciTech Connect (OSTI)

    Gloudemans, J.R. . Nuclear Power Div.)

    1989-07-01

    The multiloop integral system test (MIST) was a scaled 2-by-4 (2 hot legs and 4 cold legs) physical model of a Babcock Wilcox (B W), lowered-loop, nuclear steam supply system (NSSS). MIST was designed to operate at typical plant pressures and temperatures. Experimental data obtained from this facility during post-small-break loss-of-coolant accident (SBLOCA) testing are used for computer code benchmarking. The MIST interactions are of intrinsic interest because they may provide insight into expected plant behavior. MIST was necessarily atypical of a plant in certain important respects, however. The MIST interactions therefore are not to be applied directly to a plant. 5 refs., 239 figs., 11 tabs.

  20. Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge

    SciTech Connect (OSTI)

    Toner, Brandy M.; Santelli, Cara M.; Marcus, Matthew A.; Wirth, Richard; Chan, Clara S.; McCollom, Thomas; Bach, Wolfgang; Edwards, Katrina J.

    2008-05-22

    Here we examine Fe speciation within Fe-encrusted biofilms formed during 2-month seafloor incubations of sulfide mineral assemblages at the Main Endeavor Segment of the Juan de Fuca Ridge. The biofilms were distributed heterogeneously across the surface of the incubated sulfide and composed primarily of particles with a twisted stalk morphology resembling those produced by some aerobic Fe-oxidizing microorganisms. Our objectives were to determine the form of biofilm-associated Fe, and identify the sulfide minerals associated with microbial growth. We used micro-focused synchrotron-radiation X-ray fluorescence mapping (mu XRF), X-ray absorption spectroscopy (mu EXAFS), and X-ray diffraction (mu XRD) in conjunction with focused ion beam (FIB) sectioning, and highresolution transmission electron microscopy (HRTEM). The chemical and mineralogical composition of an Fe-encrusted biofilm was queried at different spatial scales, and the spatial relationship between primary sulfide and secondary oxyhydroxide minerals was resolved. The Fe-encrusted biofilms formed preferentially at pyrrhotite-rich (Fe1-xS, 0<_ x<_ 0.2) regions of the incubated chimney sulfide. At the nanometer spatial scale, particles within the biofilm exhibiting lattice fringing and diffraction patterns consistent with 2-line ferrihydrite were identified infrequently. At the micron spatial scale, Fe mu EXAFS spectroscopy and mu XRD measurements indicate that the dominant form of biofilm Fe is a short-range ordered Fe oxyhydroxide characterized by pervasive edge-sharing Fe-O6 octahedral linkages. Double corner-sharing Fe-O6 linkages, which are common to Fe oxyhydroxide mineral structures of 2-line ferrihydrite, 6-line ferrihydrite, and goethite, were not detected in the biogenic iron oxyhydroxide (BIO). The suspended development of the BIO mineral structure is consistent with Fe(III) hydrolysis and polymerization in the presence of high concentrations of Fe-complexing ligands. We hypothesize that microbiologically produced Fe-complexing ligands may play critical roles in both the delivery of Fe(II) to oxidases, and the limited Fe(III) oxyhydroxide crystallinity observed within the biofilm. Our research provides insight into the structure and formation of naturally occurring, microbiologically produced Fe oxyhydroxide minerals in the deep-sea. We describe the initiation of microbial seafloor weathering, and the morphological and mineralogical signals that result from that process. Our observations provide a starting point from which progressively older and more extensively weathered seafloor sulfide minerals may be examined, with the ultimate goal of improved interpretation of ancient microbial processes and associated biological signatures.