National Library of Energy BETA

Sample records for flow turbine technology

  1. MHK Technologies/Uppsala Cross flow Turbine | Open Energy Information

    Open Energy Info (EERE)

    Cross flow Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Cross flow Turbine.gif Technology Profile Primary Organization...

  2. MHK Technologies/GreenFlow Turbines | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization Gulfstream Technologies Technology Type Click here Cross Flow Turbine Technology Description Targeted at commercial sites with large water flow...

  3. MHK Technologies/Cross Flow Turbine | Open Energy Information

    Open Energy Info (EERE)

    Flow Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Marine Renewable Technologies Technology...

  4. MHK Technologies/MRL Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Type Click here Axial Flow Turbine Technology...

  5. MHK Technologies/Turbines OWC | Open Energy Information

    Open Energy Info (EERE)

    Aerodynamic Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Description The patent pending Neo Aerodynamic turbine invented by Phi...

  6. Turbine imaging technology assessment

    SciTech Connect (OSTI)

    Moursund, R. A.; Carlson, T. J.

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  7. MHK Technologies/SmarTurbine | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage SmarTurbine.jpg Technology Profile Primary Organization Free Flow Power Corporation Project(s) where this technology is utilized *MHK Projects...

  8. Maglev Wind Turbine Technologies | Open Energy Information

    Open Energy Info (EERE)

    Maglev Wind Turbine Technologies Jump to: navigation, search Name: Maglev Wind Turbine Technologies Place: Sierra Vista, Arizona Zip: 85635 Sector: Wind energy Product: The new...

  9. Turbine Imaging Technology Assessment

    SciTech Connect (OSTI)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  10. Turbine blade tip flow discouragers

    DOE Patents [OSTI]

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  11. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its ...

  12. Technologies for Evaluating Fish Passage Through Turbines

    Broader source: Energy.gov [DOE]

    This report evaluated the feasibility of two types of technologies to observe fish and near neutrally buoyant drogues as they move through hydropower turbines.

  13. Liquid cooled counter flow turbine bucket

    DOE Patents [OSTI]

    Dakin, James T.

    1982-09-21

    Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

  14. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance...

    Energy Savers [EERE]

    to evaluate and optimize the technical and environmental performance and cost factors of its hydrokinetic SmarTurbines(tm)-turbines that generate energy from free-flowing rivers. ...

  15. MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information

    Open Energy Info (EERE)

    Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal...

  16. MHK Technologies/Open Centre Turbine | Open Energy Information

    Open Energy Info (EERE)

    Centre Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Open Centre Turbine.jpg Technology Profile Primary Organization OpenHydro Group...

  17. MHK Technologies/Blue Motion Energy marine turbine | Open Energy...

    Open Energy Info (EERE)

    Blue Motion Energy marine turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Blue Motion Energy marine turbine.jpg Technology Profile...

  18. Wuxi Bamboo Wind Turbine Blade Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Bamboo Wind Turbine Blade Technology Co Ltd Jump to: navigation, search Name: Wuxi Bamboo Wind Turbine Blade Technology Co Ltd Place: Wuxi, Jiangsu Province, China Sector: Wind...

  19. MHK Technologies/OCGen turbine generator unit TGU | Open Energy...

    Open Energy Info (EERE)

    OCGen turbine generator unit TGU < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OCGen turbine generator unit TGU.jpg Technology Profile...

  20. MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy...

    Open Energy Info (EERE)

    Tidal Turbine SRTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Scotrenewables Tidal Turbine SRTT.jpg Technology Profile Primary...

  1. MHK Technologies/Tidal Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s)...

  2. MHK Technologies/Water Wall Turbine | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search << Return to the MHK database homepage Water Wall Turbine.png Technology Profile Primary Organization Water Wall Turbine Technology Type Click...

  3. MHK Technologies/THOR Ocean Current Turbine | Open Energy Information

    Open Energy Info (EERE)

    THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary...

  4. MHK Technologies/Gorlov Helical Turbine | Open Energy Information

    Open Energy Info (EERE)

    Gorlov Helical Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Gorlov Helical Turbine.jpg Technology Profile Primary Organization GCK...

  5. MHK Technologies/Rotech Tidal Turbine RTT | Open Energy Information

    Open Energy Info (EERE)

    Rotech Tidal Turbine RTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Rotech Tidal Turbine RTT.jpg Technology Profile Primary Organization...

  6. MHK Technologies/Anaconda bulge tube drives turbine | Open Energy...

    Open Energy Info (EERE)

    Anaconda bulge tube drives turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Anaconda bulge tube drives turbine.jpg Technology Profile...

  7. MHK Technologies/Tidal Stream Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream Turbine.jpg Technology Profile Primary Organization StatoilHydro co owned...

  8. MHK Technologies/Savanious Turbine | Open Energy Information

    Open Energy Info (EERE)

    Savanious Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Savanious Turbine.jpg Technology Profile Primary Organization Rugged...

  9. MHK Technologies/Benkatina Turbine | Open Energy Information

    Open Energy Info (EERE)

    Benkatina Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Benkatina Turbine.jpg Technology Profile Primary Organization Leviathan...

  10. MHK Technologies/SeaUrchin Vortex Reaction Turbine | Open Energy...

    Open Energy Info (EERE)

    SeaUrchin Vortex Reaction Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaUrchin Vortex Reaction Turbine.jpg Technology Profile...

  11. MHK Technologies/Ocean Current Linear Turbine | Open Energy Informatio...

    Open Energy Info (EERE)

    Current Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary...

  12. MHK Technologies/Davidson Hill Venturi DHV Turbine | Open Energy...

    Open Energy Info (EERE)

    Davidson Hill Venturi DHV Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Davidson Hill Venturi DHV Turbine.jpg Technology Profile...

  13. MHK Technologies/EnCurrent Turbine | Open Energy Information

    Open Energy Info (EERE)

    EnCurrent Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage EnCurrent Turbine.jpg Technology Profile Primary Organization New Energy...

  14. MHK Technologies/Wells Turbine for OWC | Open Energy Information

    Open Energy Info (EERE)

    Turbine for OWC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wells Turbine for OWC.png Technology Profile Primary Organization Voith Hydro...

  15. MHK Technologies/Gorlov Helical Turbine GHT | Open Energy Information

    Open Energy Info (EERE)

    Gorlov Helical Turbine GHT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Gorlov Helical Turbine GHT.jpg Technology Profile Primary...

  16. MHK Technologies/The Davis Hydro Turbine | Open Energy Information

    Open Energy Info (EERE)

    turbine foils to move proportionately faster than the speed of the surrounding water Computer optimized cross flow design ensures that the rotation of the turbine is...

  17. Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbines Hydrogen Turbine photo Hydrogen Turbines The NETL Hydrogen Turbine Program manages a research, development, and demonstration (RD&D) portfolio of projects designed to remove environmental concerns about the future use of fossil fuels through development of revolutionary, near-zero-emission advanced turbine technologies. More Information Advanced Research The American Recovery and Reinvestment Act (ARRA) funds gas turbine technology research and development to improve the efficiency,

  18. Seven Universities Selected To Conduct Advanced Turbine Technology...

    Broader source: Energy.gov (indexed) [DOE]

    by the U.S. Department of Energy (DOE) to conduct advanced turbine technology studies under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. ...

  19. Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SWIFT) Facility Wind Turbine Controller Ground Testing - Sandia Energy Energy Search Icon ... Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller Ground Testing Home...

  20. Turbine Inflow Characterization at the National Wind Technology Center

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  1. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  2. Recovery Act - Refinement of Cross Flow Turbine Airfoils

    SciTech Connect (OSTI)

    McEntee, Jarlath

    2013-08-30

    Ocean Renewable Power Company, LLC (ORPC) is a global leader in hydrokinetic technology and project development. ORPC develops hydrokinetic power systems and eco-conscious projects that harness the power of oceans and rivers to create clean, predictable renewable energy. ORPC’s technology consists of a family of modular hydrokinetic power systems: the TidGen® Power System, for use at shallow to medium-depth tidal sites; the RivGen™ Power System, for use at river and estuary sites; and the OCGen® Power System, presently under development, for use at deep tidal and offshore ocean current sites. These power systems convert kinetic energy in moving water into clean, renewable, grid-compatible electric power. The core technology component for all ORPC power systems is its patented turbine generator unit (TGU). The TGU uses proprietary advanced design cross flow (ADCF) turbines to drive an underwater permanent magnet generator mounted at the TGU’s center. It is a gearless, direct-drive system that has the potential for high reliability, requires no lubricants and releases no toxins that could contaminate the surrounding water. The hydrokinetic industry shows tremendous promise as a means of helping reduce the U.S.’s use of fossil fuels and dependence on foreign oil. To exploit this market opportunity, cross-flow hydrokinetic devices need to advance beyond the pre-commercial state and more systematic data about the structure and function of cross-flow hydrokinetic devices is required. This DOE STTR project, “Recovery Act - Refinement of Cross Flow Turbine Airfoils,” refined the cross-flow turbine design process to improve efficiency and performance and developed turbine manufacturing processes appropriate for volume production. The project proposed (1) to overcome the lack of data by extensively studying the properties of cross flow turbines, a particularly competitive design approach for extracting hydrokinetic energy and (2) to help ORPC mature its pre

  3. Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow

    SciTech Connect (OSTI)

    Steward, W. Gene

    1999-11-14

    Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

  4. News From the 2012 Turbine Technology Symposium | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News From the 2012 Turbine Technology Symposium Click to email this to a friend (Opens in ... News From the 2012 Turbine Technology Symposium Jon Slepski 2012.11.29 Hi, my name is Jon ...

  5. MHK Technologies/HydroCoil Turbine | Open Energy Information

    Open Energy Info (EERE)

    HydroCoil Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HydroCoil Turbine.jpg Technology Profile Primary Organization HydroCoil...

  6. MHK Technologies/Deep water capable hydrokinetic turbine | Open...

    Open Energy Info (EERE)

    water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Hills Inc...

  7. MHK Technologies/Zero Impact Water Current Turbine | Open Energy...

    Open Energy Info (EERE)

    Impact Water Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Green Wave Energy Corp...

  8. MHK Technologies/Horizontal Axis Logarithmic Spiral Turbine ...

    Open Energy Info (EERE)

    Horizontal Axis Logarithmic Spiral Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Golden...

  9. DOE Taps Universities for Turbine Technology Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Taps Universities for Turbine Technology Science DOE Taps Universities for Turbine Technology Science July 16, 2009 - 1:00pm Addthis Washington, D.C. - The U.S. Department of Energy announced the selection of three projects under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program. University researchers will investigate the chemistry and physics of advanced turbines, with the goal of promoting clean and efficient operation when fueled with coal-derived synthesis gas

  10. Characterisation of a small viscous flow turbine

    SciTech Connect (OSTI)

    Lemma, E.; Deam, R.T.; Toncich, D.; Collins, R.

    2008-10-15

    The result of experimental and numerical study that was undertaken to determine the performance characteristics of viscous flow turbines is presented. It is anticipated that these devices may find use in applications such as small power sources for electronic appliances and micro-combined heat and power applications. In the numerical work that was carried out to broaden the experimental results, commercial CFD solver Fluent 6.2 was used while accompanying software, Gambit 3.2, was used for performing the necessary pre-processing. The results of the experimental study indicate that the adiabatic efficiency of these machines is around 25%. The main reasons for the low efficiency have been identified to be, parasitic losses in the bearing, viscous losses in the end walls, and other dissipative losses in the plenum chamber that also significantly contribute to the low efficiencies of these devices. If these parasitic losses can be minimised the turbine could potentially operate with an adiabatic expansion efficiency close to the theoretical limit of around 40%. (author)

  11. HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM

    SciTech Connect (OSTI)

    Richard Tuthill

    2002-07-18

    The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the

  12. Combined Heat and Power Technology Fact Sheets Series: Steam Turbines

    Broader source: Energy.gov (indexed) [DOE]

    Steam Turbines Steam turbines are a mature technology and have been used since the 1880s for electricity production. Most of the electricity generated in the United States is produced by steam turbines integrated in central station power plants. In addition to central station power, steam turbines are also commonly used for combined heat and power (CHP) instal- lations (see Table 1 for summary of CHP attributes). Applications Based on data from the CHP Installation Database, 1 there are 699

  13. Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Eagles are Making Wind Turbines Safer for Birds PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind Farms - Technology Hybrids Show Best Potential Mitigating Wind-Radar ...

  14. DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research

    Broader source: Energy.gov [DOE]

    Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy’s University Turbine Systems Research Program have been selected by the U.S. Department of Energy for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative cooling techniques to maintain integrity of turbine components.

  15. Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control: Preprint

    SciTech Connect (OSTI)

    Schreck, S.; Robinson, M.

    2007-08-01

    This paper describes wind turbine flow fields that can cause adverse aerodynamic loading and can impact active aerodynamic control methodologies currently contemplated for wind turbine applications.

  16. DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin; White, Jonathan

    2011-09-01

    The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

  17. Wavy flow cooling concept for turbine airfoils

    DOE Patents [OSTI]

    Liang, George

    2010-08-31

    An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

  18. Wind Turbine Inspection Technology Reaches New Heights | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Inspection Technology Reaches New Heights Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new ...

  19. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing | Department of Energy Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing December 30, 2014 - 11:04am Addthis On December 29, the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) released a third round of Requests for Proposals (RFPs) under DOE's Distributed Wind Competitiveness Improvement Project (CIP). The CIP aims to help U.S.

  20. Hydropower R&D: Recent Advances in Turbine Passage Technology

    SciTech Connect (OSTI)

    Rinehart, Bennie Nelson; Cada, G. F.

    2000-04-01

    The purpose of this report is to describe the recent and planned R&D activities across the U.S. related to survival of fish entrained in hydroelectric turbines. In this report, we have considered studies that are intended to develop new information that can be used to mitigate turbine-passage mortality. This review focuses on the effects on fish of physical or operational modifications to turbines, comparisons to survival in other downstream passage routes (e.g., bypass systems and spillways), and applications of new modeling, experimental, and technological approaches to develop a greater understanding of the stresses associated with turbine passage. In addition, the emphasis is on biological studies, as opposed to the engineering studies (e.g., turbine index testing) that re often carried out in support of fish passage mitigation efforts.

  1. Hydropower R&D: Recent advances in turbine passage technology

    SciTech Connect (OSTI)

    ?ada, Glenn F.; Rinehart, Ben N.

    2000-04-01

    The purpose of this report is to describe the recent and planned R&D activities across the U.S. related to survival of fish entrained in hydroelectric turbines. In this report, we have considered studies that are intended to develop new information that can be used to mitigate turbine-passage mortality. This review focuses on the effects on fish of physical or operational modifications to turbines, comparisons to survival in other downstream passage routes (e.g., bypass systems and spillways), and applications of new modeling, experimental, and technological approaches to develop a greater understanding of the stresses associated with turbine passage. In addition, the emphasis is on biological studies, as opposed to the engineering studies (e.g., turbine index testing) that are often carried out in support of fish passage mitigation efforts.

  2. Flow visualization study of the MOD-2 wind turbine wake

    SciTech Connect (OSTI)

    Liu H.T.; Waite, J.W.; Hiester, T.R.; Tacheron, P.H.; Srnsky, R.A.

    1983-06-01

    The specific objectives of the study reported were: to determine the geometry of the MOD-2 wind turbine wake in terms of wake height and width as a function of downstream distance under two conditions of atmospheric stability; to estimate the mean velocity deficit at several downstream stations in the turbine wake; and to investigate the behavior of the rotor-generated vortices, particularly their configuration and persistence. The background of the wake problem is briefly examined, including a discussion of the critical issues that the flow visualization study addresses. Experimental techniques and data analysis methods are described in detail. (LEW)

  3. MHK Technologies/Tocardo | Open Energy Information

    Open Energy Info (EERE)

    Primary Organization Teamwork Technology See Tocardo Technology Type Click here Axial Flow Turbine Technology Description Turbine is placed in river or inshore locations and...

  4. MHK Technologies/Enermar | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Cross Flow Turbine Technology Description The Enermar Kobold turbine is a unidirectional vertical axis...

  5. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is

  6. Pressure balanced drag turbine mass flow meter

    DOE Patents [OSTI]

    Dacus, Michael W.; Cole, Jack H.

    1982-01-01

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  7. Pressure balanced drag turbine mass flow meter

    DOE Patents [OSTI]

    Dacus, M.W.; Cole, J.H.

    1980-04-23

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  8. DOE Technology Successes - "Breakthrough" Gas Turbines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Successes - "Breakthrough" Gas Turbines DOE Technology Successes - "Breakthrough" Gas Turbines For years, gas turbine manufacturers faced a barrier that, for all practical purposes, capped power generating efficiencies for turbine-based power generating systems. The barrier was temperature. Above 2300 degrees F, available cooling technologies were insufficient to protect the turbine blades and other internal components from heat degradation. Since higher

  9. MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information

    Open Energy Info (EERE)

    here Axial Flow Turbine Technology Description Oscillating water column type with turbines and generators Technology Dimensions Technology Nameplate Capacity (MW) 5 Device...

  10. ATTAP: Advanced Turbine Technology Applications Project. Annual report, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Purpose of ATTAP is to bring the automotive gas turbine engine to a technology state at which industry can make commercialization decisions. Activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing.

  11. Large Eddy Simulation of two phase flow combustion in gas turbines |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Simulation of two phase flow combustion in gas turbines PI Name: Thierry Poinsot PI Email: poinsot@cerfacs.fr Institution: CERFACS Allocation Program: INCITE Allocation Hours at ALCF: 10,000,000 Year: 2011 Research Domain: Chemistry Research in CombustiLETFLOC (Large Eddy Simulation of two phase flow combustion in gas turbines) aims at improving our knowledge of two phase flows and their combustion in gas turbines. This will allow a better assesment of

  12. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...

    Broader source: Energy.gov (indexed) [DOE]

    up to 1,000 square meters improve their turbine designs and manufacturing processes to ... Manufacturing Process Upgrades; Turbine Certification (for wind turbines with ...

  13. Rotationally Augmented Flow Structures and Time Varying Loads on Turbine Blades: Preprint

    SciTech Connect (OSTI)

    Schreck, S. J.

    2007-01-01

    To better understand wind turbine flow physics, time dependent blade surface pressure data were acquired from the NREL Unsteady Aerodynamics Experiment.

  14. A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation

    SciTech Connect (OSTI)

    Dr. Adam London

    2008-06-20

    The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

  15. Turbine FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine FAQs faq-header-big.jpg TURBINES - BASICS Q: What is a turbine? A: A turbine is a mechanical device that extracts energy from a fluid flow and turns it into useful work. A ...

  16. MHK Technologies/SMART Monofloat | Open Energy Information

    Open Energy Info (EERE)

    Axial Flow Turbine Technology Readiness Level Click here TRL 9: Commercial-Scale Production Application Technology Description The Smart Hydro Power turbine was developed to...

  17. MHK Technologies/SMART Duofloat | Open Energy Information

    Open Energy Info (EERE)

    Axial Flow Turbine Technology Readiness Level Click here TRL 9: Commercial-Scale Production Application Technology Description The Smart Hydro Power turbine was developed to...

  18. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its challenges, and path forward 20percent_summary_chap2.pdf (1.31 MB) More Documents & Publications 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Testing, Manufacturing, and Component Development Projects U.S. Offshore Wind Manufacturing and Supply Chain

  19. Low Wind Speed Technology Phase II: Offshore Floating Wind Turbine Concepts: Fully Coupled Dynamic Response Simulations; Massachusetts Institute of Technology

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    This fact sheet describes a subcontract with Massachusetts Institute of Technology to study dynamic response simulations to evaluate floating platform concepts for offshore wind turbines.

  20. MHK Technologies/Osprey | Open Energy Information

    Open Energy Info (EERE)

    Return to the MHK database homepage Osprey.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The Osprey...

  1. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOE Patents [OSTI]

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  2. Utility advanced turbine systems (ATS) technology readiness testing

    SciTech Connect (OSTI)

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  3. MHK Technologies/Seadov | Open Energy Information

    Open Energy Info (EERE)

    Click here Axial Flow Turbine Technology Description 3 wind turbines power the reverse osmosis plant on board to desalinate the ocean water into potable water Subject to site...

  4. Utility Advanced Turbine Systems (ATS) technology readiness testing

    SciTech Connect (OSTI)

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  5. Utility Advanced Turbine Systems (ATS) Technology Readiness Testing

    SciTech Connect (OSTI)

    1998-10-29

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

  6. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1998-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

  7. New National Wind Potential Estimates for Modern and Near-Future Turbine Technologies (Poster)

    SciTech Connect (OSTI)

    Roberts, J. O.

    2014-01-01

    Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

  8. MHK Technologies/HyPEG | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization Hydrokinetic Laboratory Technology Type Click here Axial Flow Turbine Technology Description Their Hydro kinetically Powered Electrical Generators...

  9. Marine Current Turbines Ltd | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: BS34 8PD Sector: Marine and Hydrokinetic Product: Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in...

  10. Examination of forced unsteady separated flow fields on a rotating wind turbine blade

    SciTech Connect (OSTI)

    Huyer, S. [Univ. of Colorado, Boulder, CO (US)] [Univ. of Colorado, Boulder, CO (US)

    1993-04-01

    The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

  11. Precision Flow Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Precision Flow Technologies Place: Saugerties, New York Zip: 12477 Product: New York-based, firm focused on the design and...

  12. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  13. Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction

    SciTech Connect (OSTI)

    None

    2008-02-01

    This report analyzes the status of wind energy technology in 2002 and describes the potential for technology advancements to reduce the cost and increase the performance of wind turbines.

  14. Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

    Office of Energy Efficiency and Renewable Energy (EERE)

    Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

  15. MHK Technologies/The Ocean Hydro Electricity Generator Plant...

    Open Energy Info (EERE)

    The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The O H E...

  16. MHK Technologies/Ocean Energy Rig | Open Energy Information

    Open Energy Info (EERE)

    the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The Ocean...

  17. Turbine systems and methods for using internal leakage flow for cooling

    SciTech Connect (OSTI)

    Hernandez, Nestor; Gazzillo, Clement; Boss, Michael J.; Parry, William; Tyler, Karen J.

    2010-02-09

    A cooling system for a turbine with a first section and a second section. The first section may include a first line for diverting a first flow with a first temperature from the first section, a second line for diverting a second flow with a second temperature less than the first temperature from the first section, and a merged line for directing a merged flow of the first flow and the second flow to the second section.

  18. Assessment of research needs for wind turbine rotor materials technology

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  19. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Unknown

    1999-04-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  20. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Wind Turbine Technology Summary Slides Anatomy of a 1.5-MW wind turbine Nacelle enclosing: * Low-speed shaft * Gearbox * Generator, 1.5 MW * Electrical controls * Blade pitch controls Rotor Hub Tower, 80 m Minivan Rotor blades: * Shown feathered * Length, 37-m Larger and taller turbines are needed to capture optimal wind resources Wind power is competitive with wholesale prices Source: Wiser and Bolinger, 2009 Note: Wholesale price range reflects flat block of power across 23 pricing

  1. Turbine exhaust diffuser flow path with region of reduced total flow area

    DOE Patents [OSTI]

    Orosa, John A.

    2012-12-25

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub that has an upstream end and a downstream end. The outer boundary has a region in which the outer boundary extends radially inward toward the hub. The region can begin at a point that is substantially aligned with the downstream end of the hub or, alternatively, at a point that is proximately upstream of the downstream end of the hub. The region directs at least a portion of an exhaust flow in the diffuser toward the hub. As a result, the exhaust diffuser system and method can achieve the performance of a long hub system while enjoying the costs of a short hub system.

  2. Vertical-axis wind turbines -- The current status of an old technology

    SciTech Connect (OSTI)

    Berg, D.E.

    1996-12-31

    Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

  3. Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control

    SciTech Connect (OSTI)

    Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y.

    2006-07-01

    The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

  4. MHK Technologies/Denniss Auld Turbine | Open Energy Information

    Open Energy Info (EERE)

    and reliability and reduces the need for maintenance. The turbine uses a sensor system with a pressure transducer that measures the pressure exerted on the ocean floor by...

  5. Hydropower R&D: Recent Advances in Turbine Passage Technology...

    Broader source: Energy.gov (indexed) [DOE]

    In this report, we have considered studies that are intended to develop new information that can be used to mitigate turbine-passage mortality. hydroadvancesinturbinepassage.pd...

  6. Testimonials- Partnerships in Battery Technologies- Capstone Turbine Corporation

    Broader source: Energy.gov [DOE]

    Robert Gleason, Senior Vice President of Product Development for Capstone Turbine Corporation describes the benefits of a strategic partnership with the U.S. Department of Energy.

  7. Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines

    SciTech Connect (OSTI)

    Downs, James

    2014-12-29

    In this Advanced Turbine Program-funded Phase III project, Florida Turbine Technologies, Inc. (FTT) has developed and tested, at a pre-commercial prototypescale, spar-shell turbine airfoils in a commercial gas turbine. The airfoil development is based upon FTT’s research and development to date in Phases I and II of Small Business Innovative Research (SBIR) grants. During this program, FTT has partnered with an Original Equipment Manufacturer (OEM), Siemens Energy, to produce sparshell turbine components for the first pre-commercial prototype test in an F-Class industrial gas turbine engine and has successfully completed validation testing. This project will further the commercialization of this new technology in F-frame and other highly cooled turbine airfoil applications. FTT, in cooperation with Siemens, intends to offer the spar-shell vane as a first-tier supplier for retrofit applications and new large frame industrial gas turbines. The market for the spar-shell vane for these machines is huge. According to Forecast International, 3,211 new gas turbines units (in the >50MW capacity size range) will be ordered in ten years from 2007 to 2016. FTT intends to enter the market in a low rate initial production. After one year of successful extended use, FTT will quickly ramp up production and sales, with a target to capture 1% of the market within the first year and 10% within 5 years (2020).

  8. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    SciTech Connect (OSTI)

    Murray, Nathan E.

    2012-03-12

    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives

  9. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances ...

  10. MHK Technologies/Wave Rotor | Open Energy Information

    Open Energy Info (EERE)

    Project(s) where this technology is utilized *MHK ProjectsC Energy Technology Resource Click here Wave Technology Type Click here Axial Flow Turbine Technology Readiness Level...

  11. MHK Technologies/Canal Power | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description...

  12. Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) ceramic design manual

    SciTech Connect (OSTI)

    1997-10-01

    This ceramic component design manual was an element of the Advanced Turbine Technology Applications Project (ATTAP). The ATTAP was intended to advance the technological readiness of the ceramic automotive gas turbine engine as a primary power plant. Of the several technologies requiring development before such an engine could become a commercial reality, structural ceramic components represented the greatest technical challenge, and was the prime focus of the program. HVTE-TS, which was created to support the Hybrid Electric Vehicle (HEV) program, continued the efforts begun in ATTAP to develop ceramic components for an automotive gas turbine engine. In HVTE-TS, the program focus was extended to make this technology applicable to the automotive gas turbine engines that form the basis of hybrid automotive propulsion systems consisting of combined batteries, electric drives, and on-board power generators as well as a primary power source. The purpose of the ceramic design manual is to document the process by which ceramic components are designed, analyzed, fabricated, assembled, and tested in a gas turbine engine. Interaction with ceramic component vendors is also emphasized. The main elements of the ceramic design manual are: an overview of design methodology; design process for the AGT-5 ceramic gasifier turbine rotor; and references. Some reference also is made to the design of turbine static structure components to show methods of attaching static hot section ceramic components to supporting metallic structures.

  13. Practical application of large eddy simulation to film cooling flow analysis on gas turbine airfoils

    SciTech Connect (OSTI)

    Takata, T.; Takeishi, K.; Kawata, Y.; Tsuge, A.

    1999-07-01

    Large eddy simulation (LES) using body-fitted coordinates is applied to solve film cooling flow on turbine blades. The turbulent model was tuned using the experimental flow field and adiabatic film cooling effectiveness measurements for a single row of holes on a flat plate surface. The results show the interaction between the main stream boundary layer and injected film cooling air generates kidney and horseshoe shaped vortices. Comparison of the temperature distribution between experimental results and present analysis has been conducted. The non-dimensional temperature distribution at x/d = 1 is dome style and quantitatively agrees with experimental results. LES was also applied to solve film cooling on a turbine airfoil. If LES was applied to solve whole flow field domain large CPU time would make the solution impractical. LES, using body-fitted coordinates, is applied to solve the non-isotropic film cooling flow near the turbine blade. The cascade flow domain, with a pitch equal to one film cooling hole spacing, is solved using {kappa}-{epsilon} model. By using such a hybrid numerical method, CPU time is reduced and numerical accuracy is insured. The analytical results show the interaction between the flow blowing through film cooling holes and mainstream on the suction and pressure surfaces of the turbine airfoil. They also show the fundamental structure of the film cooling air flow is governed by arch internal secondary flow and horseshoe vortices which have a similar structure to film cooling air flow blowing through a cooling hole on a flat plate. In the flow field, the effect of turbulent structure on curvature (relaminarization) and flow pattern, involving the interaction between main flow and the cooling jet, are clearly shown. Film cooling effectiveness on the blade surface is predicted from the results of the thermal field calculation and is compared with the test result.

  14. MHK Technologies/TREK | Open Energy Information

    Open Energy Info (EERE)

    the MHK database homepage TREK.jpg Technology Profile Primary Organization Renewable Energy Research Technology Type Click here Axial Flow Turbine Technology Description Each...

  15. MHK Technologies/Atlantisstrom | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization Atlantisstrom Technology Resource Click here CurrentTidal Technology Type Click here Cross Flow Turbine Technology Description Five drop shaped...

  16. MHK Technologies/Hydroomel | Open Energy Information

    Open Energy Info (EERE)

    search << Return to the MHK database homepage Technology Profile Primary Organization Eco cinetic Technology Type Click here Axial Flow Turbine Technology Readiness Level Click...

  17. MHK Technologies/Sabella subsea tidal turbine | Open Energy Informatio...

    Open Energy Info (EERE)

    surface. These turbines are stabilised by gravity andor are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and...

  18. Advanced Turbine Technology (ATTAP) Applications Project. 1992 Annual report

    SciTech Connect (OSTI)

    1993-12-01

    ATTAP activities during the past year included reference powertrain design (RPD) updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. RPD revisions included updating the baseline vehicle as well as the turbine RPD. Comparison of major performance parameters shows that the turbine engine installation exceeds critical fuel economy, emissions, and performance goals, and meets overall ATTAP objectives.

  19. Turbulent Flow Effects on the Biological Performance of Hydro-Turbines

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-08-25

    The hydro-turbine industry uses Computational Fluid Dynamics (CFD) tools to predict the flow conditions as part of the design process for new and rehabilitated turbine units. Typically the hydraulic design process uses steady-state simulations based on Reynolds-Averaged Navier-Stokes (RANS) formulations for turbulence modeling because these methods are computationally efficient and work well to predict averaged hydraulic performance, e.g. power output, efficiency, etc. However, in view of the increasing emphasis on environmental concerns, such as fish passage, the consideration of the biological performance of hydro-turbines is also required in addition to hydraulic performance. This leads to the need to assess whether more realistic simulations of the turbine hydraulic environment -those that resolve unsteady turbulent eddies not captured in steady-state RANS computations- are needed to better predict the occurrence and extent of extreme flow conditions that could be important in the evaluation of fish injury and mortality risks. In the present work, we conduct unsteady, eddy-resolving CFD simulations on a Kaplan hydro-turbine at a normal operational discharge. The goal is to quantify the impact of turbulence conditions on both the hydraulic and biological performance of the unit. In order to achieve a high resolution of the incoming turbulent flow, Detached Eddy Simulation (DES) turbulence model is used. These transient simulations are compared to RANS simulations to evaluate whether extreme hydraulic conditions are better captured with advanced eddy-resolving turbulence modeling techniques. The transient simulations of key quantities such as pressure and hydraulic shear flow that arise near the various components (e.g. wicket gates, stay vanes, runner blades) are then further analyzed to evaluate their impact on the statistics for the lowest absolute pressure (nadir pressures) and for the frequency of collisions that are known to cause mortal injury in fish

  20. Mid-section of a can-annular gas turbine engine with an improved rotation of air flow from the compressor to the turbine

    DOE Patents [OSTI]

    Little, David A.; Schilp, Reinhard; Ross, Christopher W.

    2016-03-22

    A midframe portion (313) of a gas turbine engine (310) is presented and includes a compressor section with a last stage blade to orient an air flow (311) at a first angle (372). The midframe portion (313) further includes a turbine section with a first stage blade to receive the air flow (311) oriented at a second angle (374). The midframe portion (313) further includes a manifold (314) to directly couple the air flow (311) from the compressor section to a combustor head (318) upstream of the turbine section. The combustor head (318) introduces an offset angle in the air flow (311) from the first angle (372) to the second angle (374) to discharge the air flow (311) from the combustor head (318) at the second angle (374). While introducing the offset angle, the combustor head (318) at least maintains or augments the first angle (372).

  1. MHK Technologies/TidEl | Open Energy Information

    Open Energy Info (EERE)

    Flow Turbine Technology Description The TidEl device consists of twin horizontal axis turbines The device is moored to the sea floor but the twin turbines are free to move and...

  2. Evaluation of behavior and survival of fish exposed to an axial-flow hydrokinetic turbine

    SciTech Connect (OSTI)

    Amaral, Stephen V.; Bevelhimer, Mark S.; ?ada, Glenn F.; Giza, Daniel J.; Jacobson, Paul T.; McMahon, Brian J.; Pracheil, Brenda M.

    2015-02-06

    Previous studies have evaluated fish injury and mortality at hydrokinetic (HK) turbines, but because these studies focused on the impacts of these turbines in situ they were unable to evaluate fish responses to controlled environmental characteristics (e.g., current velocity and light or dark conditions). In this study, we used juvenile hybrid Striped Bass (HSB; Striped Bass Morone saxatilis White Bass M. chrysops; N D 620), Rainbow Trout Oncorhynchus mykiss (N D 3,719), and White Sturgeon Acipenser transmontanus (N D 294) in a series of laboratory experiments to (1) evaluate the ability of fish to avoid entrainment through an axial-flow HK turbine, (2) evaluate fish injury and survival associated with turbine entrainment, and (3) compare the effects of different HK turbines on fish. We found that the probability of turbine entrainment was species dependent and highest for HSB. Across species, current velocity influenced entrainment probability. Among entrained fish, observed survival rates were generally >0.95. The probability of injury for surviving entrained fish only differed from that for nonentrained fish for Rainbow Trout and in general was not >0.20. The probability of injury following entrainment was greater only for HSB, although there were no differences in injury rates between fish that were turbine entrained and those that were not, suggesting that injuries were not turbine related. Taking turbine entrainment, survival, and injury estimates together allowed us to estimate the probability of a randomly selected fish in a population proximate to an HK turbine surviving passage or remaining uninjured after passage. For species and current velocities for which there was a significant effect due to entrainment, we estimated, for instance, that HSB had a survival probability of 0.95 and that Rainbow Trout and White Sturgeon had a >0.99 probability of survival. By combining these estimates with those from previous studies, we

  3. Evaluation of behaviour and survival of fish exposed to an axial-flow hydrokinetic turbine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amaral, Stephen; Bevelhimer, Mark S; Cada, Glenn F; Giza, Daniel; Jacobsen, Paul; McMahon, Brian; Pracheil, Brenda M

    2015-01-01

    Previous studies have evaluated fish injury and mortality at hydrokinetic (HK) turbines, but because these studies focused on the impacts of these turbines in situ they were unable to evaluate fish responses to controlled environmental characteristics (e.g., current velocity and light or dark conditions). In this study, we used juvenile hybrid Striped Bass (HSB; Striped Bass Morone saxatilis White Bass M. chrysops; N D 620), Rainbow Trout Oncorhynchus mykiss (N D 3,719), and White Sturgeon Acipenser transmontanus (N D 294) in a series of laboratory experiments to (1) evaluate the ability of fish to avoid entrainment through an axial-flow HKmoreturbine, (2) evaluate fish injury and survival associated with turbine entrainment, and (3) compare the effects of different HK turbines on fish. We found that the probability of turbine entrainment was species dependent and highest for HSB. Across species, current velocity influenced entrainment probability. Among entrained fish, observed survival rates were generally >0.95. The probability of injury for surviving entrained fish only differed from that for nonentrained fish for Rainbow Trout and in general was not >0.20. The probability of injury following entrainment was greater only for HSB, although there were no differences in injury rates between fish that were turbine entrained and those that were not, suggesting that injuries were not turbine related. Taking turbine entrainment, survival, and injury estimates together allowed us to estimate the probability of a randomly selected fish in a population proximate to an HK turbine surviving passage or remaining uninjured after passage. For species and current velocities for which there was a significant effect due to entrainment, we estimated, for instance, that HSB had a survival probability of 0.95 and that Rainbow Trout and White Sturgeon had a >0.99 probability of survival. Similarly, by combining these estimates with those from previous studies, we derived total

  4. Evaluation of behavior and survival of fish exposed to an axial-flow hydrokinetic turbine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amaral, Stephen V.; Bevelhimer, Mark S.; ?ada, Glenn F.; Giza, Daniel J.; Jacobson, Paul T.; McMahon, Brian J.; Pracheil, Brenda M.

    2015-02-06

    Previous studies have evaluated fish injury and mortality at hydrokinetic (HK) turbines, but because these studies focused on the impacts of these turbines in situ they were unable to evaluate fish responses to controlled environmental characteristics (e.g., current velocity and light or dark conditions). In this study, we used juvenile hybrid Striped Bass (HSB; Striped Bass Morone saxatilis White Bass M. chrysops; N D 620), Rainbow Trout Oncorhynchus mykiss (N D 3,719), and White Sturgeon Acipenser transmontanus (N D 294) in a series of laboratory experiments to (1) evaluate the ability of fish to avoid entrainment through an axial-flow HKmoreturbine, (2) evaluate fish injury and survival associated with turbine entrainment, and (3) compare the effects of different HK turbines on fish. We found that the probability of turbine entrainment was species dependent and highest for HSB. Across species, current velocity influenced entrainment probability. Among entrained fish, observed survival rates were generally >0.95. The probability of injury for surviving entrained fish only differed from that for nonentrained fish for Rainbow Trout and in general was not >0.20. The probability of injury following entrainment was greater only for HSB, although there were no differences in injury rates between fish that were turbine entrained and those that were not, suggesting that injuries were not turbine related. Taking turbine entrainment, survival, and injury estimates together allowed us to estimate the probability of a randomly selected fish in a population proximate to an HK turbine surviving passage or remaining uninjured after passage. For species and current velocities for which there was a significant effect due to entrainment, we estimated, for instance, that HSB had a survival probability of 0.95 and that Rainbow Trout and White Sturgeon had a >0.99 probability of survival. By combining these estimates with those from previous studies, we derived total passage

  5. NREL Collaborates to Improve Wind Turbine Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering the cost of energy. Unintended gearbox failures have a significant impact on the cost of wind farm operations. In 2007, the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC), which follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers, and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. NREL and other GRC partners have been able to identify shortcomings in the design, testing, and operation of wind turbines that contribute to reduced gearbox reliability. In contrast to private investigations of these problems, GRC findings are quickly shared among GRC participants, including many wind turbine manufacturers and equipment suppliers. Ultimately, the findings are made public for use throughout the wind industry. This knowledge will result in increased gearbox reliability and an overall reduction in the cost of wind energy. Project essentials include the development of two redesigned and heavily instrumented representative gearbox designs. Field and dynamometer tests are conducted on the gearboxes to build an understanding of how selected loads and events translate into bearing and gear response. The GRC evaluates and validates current wind turbine, gearbox, gear and bearing analytical tools/models, develops new tools/models, and recommends improvements to design and certification standards, as required. In addition, the GRC is investigating condition monitoring methods to improve turbine reliability. Gearbox deficiencies are the result of many factors, and the GRC team recommends efficient and cost-effective improvements in order to expand the industry knowledge base and facilitate immediate improvements in the gearbox life cycle.

  6. MHK Technologies/Current Catcher | Open Energy Information

    Open Energy Info (EERE)

    Primary Organization Offshore Islands Ltd Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Description The Current...

  7. MHK Technologies/Tidal Barrage | Open Energy Information

    Open Energy Info (EERE)

    < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Barrage.jpg Technology Profile Technology Type Click here Cross Flow Turbine...

  8. MHK Technologies/DeltaStream | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition ...

  9. MHK Technologies/CurrentStar | Open Energy Information

    Open Energy Info (EERE)

    Technology Profile Primary Organization Bourne Energy Technology Type Click here Axial Flow Turbine Technology Description The CurrentStar series is designed to harness the...

  10. MHK Technologies/KESC Tidal Generator | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early...

  11. MHK Technologies/Evopod E35 | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 78: Open Water System Testing &...

  12. Rotor bore and turbine rotor wheel/spacer heat exchange flow circuit

    DOE Patents [OSTI]

    Caruso, Philip M.; Eldrid, Sacheverel Quentin; Ladhani, Azad A.; DeMania, Alan Richard; Palmer, Gene David; Wilson, Ian David; Rathbun, Lisa Shirley; Akin, Robert Craig

    2002-01-01

    In a turbine having closed-circuit steam-cooling passages about the rim of the rotor during steady-state operation, compressor discharge air is supplied to the rotor bore for passage radially outwardly into the wheel space cavities between the wheels and spacers. Communicating slots and channels in the spacers and wheels at circumferentially spaced positions enable egress of the compressor discharge air into the hot gas flow path. At turbine startup, cooling air flows through the closed-circuit steam passages to cool the outer rim of the rotor while compressor discharge air pre-warms the wheels and spacers. At steady-state, cooling steam is supplied in the closed-circuit steam-cooling passages and compressor discharge air is supplied through the bore and into the wheel space cavities to cool the rotor.

  13. Large Eddy Simulation of Two-Phase Flow Combustion in Gas Turbines |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Fields of temperature and pressure in a simulation of a complete helicopter combustion chamber performed on the IBM Blue Gene/P at the ALCF (July 2010). Large Eddy Simulation of Two-Phase Flow Combustion in Gas Turbines PI Name: Thierry Poinsot PI Email: poinsot@cerfacs.fr Institution: CERFACS Allocation Program: INCITE Allocation Hours at ALCF: 8 Million Year: 2010 Research Domain: Chemistry The increase of computer power has allowed science to make

  14. Large-Eddy Simulation of Two-Phase Flow Combustion in Gas Turbines |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Large-Eddy Simulation of Two-Phase Flow Combustion in Gas Turbines PI Name: Thierry Poinsot PI Email: poinsot@cerfacs.fr Institution: CERFACS Allocation Program: INCITE Allocation Hours at ALCF: 10,000,000 Year: 2012 Research Domain: Chemistry Using the capability of the Blue Gene/P supercomputer, CERFACS has been performing top-of-the-line, quality simulations on highly complex cases to numerically model a real combustor. The project focuses on Large

  15. MHK Technologies/Open HydroTurbine | Open Energy Information

    Open Energy Info (EERE)

    CrestEnergy Project(s) where this technology is utilized *MHK ProjectsPaimpol Brehat tidal farm Technology Resource Click here CurrentTidal Technology Description See Open...

  16. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE – RADAR INTERFERENCE MITIGATION TECHNOLOGIES

    Broader source: Energy.gov [DOE]

    These documents include a final report on the Interagency Field Test & Evaluation (IFT&E) program and summaries of three field tests designed to measure the impact of wind turbines on current air surveillance radars and the effectiveness of private sector technologies in mitigating that interference.

  17. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in COAL IGCC Powerplants

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2004-09-30

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, has been re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for Coal IGCC powerplants. The new program has been re-titled as ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants'' to better match the new scope. This technical progress report summarizes the work accomplished in the reporting period April 1, 2004 to August 31, 2004 on the revised Re-Directed and De-Scoped program activity. The program Tasks are: Task 1--IGCC Environmental Impact on high Temperature Materials: This first materials task has been refocused to address Coal IGCC environmental impacts on high temperature materials use in gas turbines and remains in the program. This task will screen material performance and quantify the effects of high temperature erosion and corrosion of hot gas path materials in Coal IGCC applications. The materials of interest will include those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: This second task develops and demonstrates new sensor technologies to determine the in-service health of advanced technology Coal IGCC powerplants, and remains in the program with a reduced scope. Its focus is now on only two critical sensor need areas for advanced Coal IGCC gas turbines: (1) Fuel Quality Sensor for detection of fuel impurities that could lead to rapid component degradation, and a Fuel Heating Value Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware.

  18. Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures.

    SciTech Connect (OSTI)

    Cairns, Douglas S. (Montana State University, Bozeman, MT); Rossel, Scott M. (Montana State University, Bozeman, MT)

    2004-06-01

    Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.

  19. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control

    DOE Patents [OSTI]

    Orosa, John; Montgomery, Matthew

    2014-02-11

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

  20. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2005-12-01

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas turbine combustion systems. This task was

  1. NREL Identifies Investments for Wind Turbine Drivetrain Technologies (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    examines current U.S. manufacturing and supply chain capabilities for advanced wind turbine drivetrain technologies. Innovative technologies are helping boost the capacity and operating reliability of conventional wind turbine drivetrains. With the proper manufacturing and supply chain capabilities in place, the United States can better develop and deploy these advanced technologies- increasing the competitiveness of the U.S. wind industry and reducing the levelized cost of energy (LCOE).

  2. Single Rotor Turbine

    DOE Patents [OSTI]

    Platts, David A.

    2004-10-26

    A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

  3. Reliability of excess-flow check-valves in turbine lubrication systems

    SciTech Connect (OSTI)

    Dundas, R.E.

    1996-12-31

    Reliability studies on excess-flow check valves installed in a gas turbine lubrication system for prevention of spray fires subsequent to fracture or separation of lube lines were conducted. Fault-tree analyses are presented for the case of failure of a valve to close when called upon by separation of a downstream line, as well as for the case of accidental closure during normal operation, leading to interruption of lubricating oil flow to a bearing. The probabilities of either of these occurrences are evaluated. The results of a statistical analysis of accidental closure of excess-flow check valves in commercial airplanes in the period 1986--91 are also given, as well as a summary of reliability studies on the use of these valves in residential gas installations, conducted under the sponsorship of the Gas Research Institute.

  4. Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.

    SciTech Connect (OSTI)

    Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake

    2013-05-01

    This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

  5. MHK Technologies/Vertical Axis Venturi System | Open Energy Informatio...

    Open Energy Info (EERE)

    Primary Organization Warrior Girl Corporation Technology Type Click here Axial Flow Turbine Technology Description The proprietary venturi system uses two venturies one on the...

  6. MHK Technologies/Current Power | Open Energy Information

    Open Energy Info (EERE)

    Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description The...

  7. MHK Technologies/Maelstrom Energy | Open Energy Information

    Open Energy Info (EERE)

    Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description A...

  8. MHK Technologies/TidalStar | Open Energy Information

    Open Energy Info (EERE)

    search << Return to the MHK database homepage TidalStar.jpg Technology Profile Primary Organization Bourne Energy Technology Type Click here Axial Flow Turbine...

  9. Category:Marine and Hydrokinetic Technologies | Open Energy Informatio...

    Open Energy Info (EERE)

    Centipod MHK TechnologiesCETO Wave Energy Technology MHK TechnologiesClosed Cycle OTEC MHK TechnologiesCoRMaT MHK TechnologiesCross Flow Turbine MHK TechnologiesCurrent...

  10. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  11. Power-Gen `95. Book III: Generation trends. Volume 1 - current fossil fuel technologies. Volume 2 - advanced fossil fuel technologies. Volume 3 - gas turbine technologies I

    SciTech Connect (OSTI)

    1995-12-31

    This document is Book III of Power-Gen 1995 for the Americas. I contains papers on the following subjects: (1) Coal technologies, (2) atmospheric fluidized bed combustion, (3) repowering, (4) pressurized fluidized bed combustion, (5) combined cycle facilities, and (6) aeroderivitive and small gas turbines.

  12. Turbine-Fact-Sheets | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Turbines FE0023975 TurboGT(tm) Gas Turbine with ArticReturn(tm) Cooling Florida Turbine Technologies, Inc. Hydrogen Turbines FE0023983 Rotating Detonation Combustion for ...

  13. Aerodynamic pressure and flow-visualization measurement from a rotating wind turbine blade

    SciTech Connect (OSTI)

    Butterfield, C.P.

    1988-11-01

    Aerodynamic, load, flow-visualization, and inflow measurements have been made on a 10-m, three-bladed, downwind, horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor was used to record nighttime and daytime video images of tufts attached to the low-pressure side of a constant-chord, zero-twist blade. Load measurements were made using strain gages mounted at every 10% of the blade's span. Pressure measurements were made at 80% of the blade's span. Pressure taps were located at 32 chordwise positions, revealing pressure distributions comparable with wind tunnel data. Inflow was measured using a vertical-plane array of eight propvane and five triaxial (U-V-W) prop-type anemometers located 10 m upwind in the predominant wind direction. One objective of this comprehensive research program was to study the effects of blade rotation on aerodynamic behavior below, near, and beyond stall. To this end, flow patterns are presented here that reveal the dynamic and steady behavior of flow conditions on the blade. Pressure distributions are compared to flow patterns and two-dimensional wind tunnel data. Separation boundary locations are shown that change as a function of spanwise location, pitch angle, and wind speed. 6 refs., 23 figs., 1 tab.

  14. Exit blade geometry and part-load performance of small axial flow propeller turbines: An experimental investigation

    SciTech Connect (OSTI)

    Singh, Punit; Nestmann, Franz

    2010-09-15

    A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle could be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)

  15. GCK Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    patented the Gorlov Helical Turbine (GHT), designed for hydroelectric applications in free flowing low head water courses. References: GCK Technology Inc1 This company is...

  16. Low Speed Technology for Small Turbine Development Reaction Injection Molded 7.5 Meter Wind Turbine Blade

    SciTech Connect (OSTI)

    David M. Wright; DOE Project Officer - Keith Bennett

    2007-07-31

    An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

  17. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    SciTech Connect (OSTI)

    Guntur, S.; Schreck, S.; Sorensen, N. N.; Bergami, L.

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  18. Large Eddy Simulation of a Wind Turbine Airfoil at High Freestream-Flow Angle

    SciTech Connect (OSTI)

    2015-04-13

    A simulation of the airflow over a section of a wind turbine blade, run on the supercomputer Mira at the Argonne Leadership Computing Facility. Simulations like these help identify ways to make turbine blades more efficient.

  19. Renaissance in Flow-Cell Technologies: Recent Advancements and Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities | Department of Energy Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities Presentation by Mike Perry, United Technologies Research Center, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012_perry.pdf (2.33 MB) More Documents & Publications Flow Cells for Energy Storage Workshop Summary Report Energy Storage

  20. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

    SciTech Connect (OSTI)

    Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

    2006-08-01

    Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

  1. Hydropower R&D: Recent Advances in Turbine Passage Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE/ID-10753 Hydropower R&D: Recent Advances in Turbine Passage Technology Glenn F. Čada Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee and Ben N. Rinehart Idaho National Engineering and Environmental Laboratory Idaho Falls, Idaho Published April 2000 Prepared for the U.S. Department of Energy Idaho Operations Office ABSTRACT The purpose of this report is to describe the recent and planned R&D activities across the U.S. related to survival of fish

  2. MHK Technologies/W2 POWER | Open Energy Information

    Open Energy Info (EERE)

    Type Click here Axial Flow Turbine Technology Description Point absorbers for waves pump water to a Peltor turbine But on the same platform we also combine this with offshore...

  3. Dynamically Adjustable Wind Turbine Blades: Adaptive Turbine Blades, Blown Wing Technology for Low-Cost Wind Power

    SciTech Connect (OSTI)

    2010-02-02

    Broad Funding Opportunity Announcement Project: Caitin is developing wind turbines with a control system that delivers compressed air from special slots located in the surface of its blades. The compressed air dynamically adjusts the aerodynamic performance of the blades, and can essentially be used to control lift, drag, and ultimately power. This control system has been shown to exhibit high levels of control in combination with an exceptionally fast response rate. The deployment of such a control system in modern wind turbines would lead to better management of the load on the system during peak usage, allowing larger blades to be deployed with a resulting increase in energy production.

  4. Utility advanced turbine systems (ATS) technology readiness testing. Technical progress report, January 1--March 31, 1998

    SciTech Connect (OSTI)

    1998-08-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished in 1Q98.

  5. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING: PHASE 3R

    SciTech Connect (OSTI)

    1999-09-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q99.

  6. Preliminary assessment of the Velocity Pump Reaction Turbine as a geothermal total-flow expander

    SciTech Connect (OSTI)

    Demuth, O.J.

    1985-01-01

    A preliminary evaluation was made of the Velocity Pump Reaction Turbine (VPRT) as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360/sup 0/F geothermal resource, 60/sup 0/F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120/sup 0/F condensing temperature, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.47 to 0.77, with plant geofluid effectivenss values ranging as high as 9.5 Watt hr/lbm geofluid. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam systems and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant. 13 refs., 5 figs.

  7. Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander

    SciTech Connect (OSTI)

    Demuth, O.J.

    1984-06-01

    A preliminary evaluation was made of the Velocity Pump Reaction Turbine (VPRT) as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360/sup 0/ geothermal resource, 60/sup 0/F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120/sup 0/F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.47 to 0.77, with plant geofluid effectiveness values ranging as high as 9.5 Watt hr/lbm geofluid for the 360/sup 0/F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.

  8. Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine

    SciTech Connect (OSTI)

    Rob O. Hovsapian; Various

    2014-06-01

    The onshore land where wind farms with conventional wind turbines can be places is limited by various factors including a requirement for relatively high wind speed for turbines' efficient operations. Where such a requirement cannot be met, mid-and small-sized turbines can be a solution. In the current paper simulations for near and for wakes behind a mid-sized Rim Driven Wind Turbine developed by Keuka Energy LLC is analyzed. The purposes of this study is to better understand the wake structure for more efficient wind farm planning. Simulations are conducted with the commercial CFD software STARCCM+

  9. Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology

    SciTech Connect (OSTI)

    Ramana, Chintalapalle; Choudhuri, Ahsan

    2013-01-31

    Thermal barrier coatings (TBCs) are critical technologies for future gas turbine engines of advanced coal based power generation systems. TBCs protect engine components and allow further increase in engine temperatures for higher efficiency. In this work, nanostructured HfO{sub 2}-based coatings, namely Y{sub 2}O{sub 3}-stabilized HfO{sub 2} (YSH), Gd{sub 2}O{sub 3}-stabilized HfO{sub 2} (GSH) and Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}-HfO{sub 2} (YSZH) were investigated for potential TBC applications in hydrogen turbines. Experimental efforts are aimed at creating a fundamental understanding of these TBC materials. Nanostructured ceramic coatings of YSH, GSH and YSZH were grown by physical vapor deposition methods. The effects of processing parameters and ceramic composition on the microstructural evolution of YSH, GSH and YSZH nanostructured coatings was studied using combined X-ray diffraction (XRD) and Electron microscopy analyses. Efforts were directed to derive a detailed understanding of crystal-structure, morphology, and stability of the coatings. In addition, thermal conductivity as a function of composition in YSH, YSZH and GSH coatings was determined. Laboratory experiments using accelerated test environments were used to investigate the relative importance of various thermo-mechanical and thermo-chemical failure modes of TBCs. Effects of thermal cycling, oxidation and their complex interactions were evaluated using a syngas combustor rig.

  10. MHK Technologies/C Plane | Open Energy Information

    Open Energy Info (EERE)

    Type Click here Cross Flow Turbine Technology Description The Aquantis C Plane is a dual horizontal axis rotor device with two nacelles housing power generation systems Mooring...

  11. Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction: July 9, 2005 - July 8, 2006

    SciTech Connect (OSTI)

    Cohen, J.; Schweizer, T.; Laxson, A.; Butterfield, S.; Schreck, S.; Fingersh, L.; Veers, P.; Ashwill, T.

    2008-02-01

    This report analyzes the status of wind energy technology in 2002 and describes the potential for technology advancements to reduce the cost and increase the performance of wind turbines.

  12. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual

  13. Advanced IGCC/Hydrogen Gas Turbine Development

    SciTech Connect (OSTI)

    York, William; Hughes, Michael; Berry, Jonathan; Russell, Tamara; Lau, Y. C.; Liu, Shan; Arnett, Michael; Peck, Arthur; Tralshawala, Nilesh; Weber, Joseph; Benjamin, Marc; Iduate, Michelle; Kittleson, Jacob; Garcia-Crespo, Andres; Delvaux, John; Casanova, Fernando; Lacy, Ben; Brzek, Brian; Wolfe, Chris; Palafox, Pepe; Ding, Ben; Badding, Bruce; McDuffie, Dwayne; Zemsky, Christine

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  14. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  15. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect (OSTI)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energys (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  16. Fuel Cell Technologies Overview: 2012 Flow Cells for Energy Storage...

    Broader source: Energy.gov (indexed) [DOE]

    and Dimitrios Papageorgopoulos, U.S. Department of Energy Fuel Cell Technologies Program, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. ...

  17. Renaissance in Flow-Cell Technologies: Recent Advancements and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Mike Perry, United Technologies Research Center, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. PDF icon flowcells2012perry...

  18. 2015 University Turbine Systems Research Workshop | netl.doe...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference Proceedings 2015 University Turbine Systems Research Workshop The 2015 UTSR ... Energy's Advanced Turbines Program by NETL Turbine Technology Manager Richard Dennis. ...

  19. MHK Technologies/CoRMaT | Open Energy Information

    Open Energy Info (EERE)

    MHK database homepage CoRMaT.jpg Technology Profile Technology Type Click here Axial Flow Turbine Technology Description The CoRMat employs two closely spaced contra rotating...

  20. Bore II - Advanced Wellbore Technology Characterizes Groundwater Flow and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contamination - Energy Innovation Portal Geothermal Geothermal Energy Analysis Energy Analysis Find More Like This Return to Search Bore II - Advanced Wellbore Technology Characterizes Groundwater Flow and Contamination Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryBore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and

  1. Controlling the secondary flow in a turbine cascade by three-dimensional airfoil design and endwall contouring

    SciTech Connect (OSTI)

    Duden, A.; Fottner, L.; Raab, I.

    1999-04-01

    A highly loaded turbine cascade has been redesigned with the objective to reduce the secondary flow by applying endwall contouring and three-dimensional airfoil design in the endwall regions. The overall loading and the axial area ratio of the cascade have been kept constant. With the tools of a three-dimensional design environment, a systematic study has been carried out regarding several features of the endwall pressure distribution and their influence on the secondary flow. Two optimized configurations have been investigated in a high-speed cascade wind tunnel. The flow field traverses showed improvements concerning the radial extent of the secondary flow and a decrease in secondary loss of 26%. Unfortunately this reduction was counterbalanced by increased profile losses and higher inlet losses due to increased blockage. The striking feature of the cascade with endwall contouring and three-dimensional airfoil design was a significant reduction of the exit flow angle deviations connected with the secondary flow. The predictions obtained by the three-dimensional Navier-Stokes solver TRACE{_}S showed a remarkable agreement with the experimental results.

  2. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames

    SciTech Connect (OSTI)

    Stopper, U.; Aigner, M.; Ax, H.; Meier, W.; Sadanandan, R.; Stoehr, M.; Bonaldo, A.

    2010-04-15

    Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW. The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions. Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence-chemistry interaction. (author)

  3. Steam turbine development for advanced combined cycle power plants

    SciTech Connect (OSTI)

    Oeynhausen, H.; Bergmann, D.; Balling, L.; Termuehlen, H.

    1996-12-31

    For advanced combined cycle power plants, the proper selection of steam turbine models is required to achieve optimal performance. The advancements in gas turbine technology must be followed by advances in the combined cycle steam turbine design. On the other hand, building low-cost gas turbines and steam turbines is desired which, however, can only be justified if no compromise is made in regard to their performance. The standard design concept of two-casing single-flow turbines seems to be the right choice for most of the present and future applications worldwide. Only for very specific applications it might be justified to select another design concept as a more suitable option.

  4. Annual Report: Turbines (30 September 2012)

    SciTech Connect (OSTI)

    Alvin, Mary Anne; Richards, George

    2012-09-30

    The FY12 NETL-RUA Turbine Thermal Management effort supported the Department of Energy (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach includes explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address Development and design of aerothermal and materials concepts in FY12-13. Design and manufacturing of these advanced concepts in FY13. Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. The Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of aerothermal and heat transfer, coatings and materials development, design integration and testing, and a secondary flow rotating rig.

  5. Miniaturized Turbine Offers Desalination Solution | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integrating GE's experience with steam turbine, oil & gas compressors, 3D printing and ... GE is a world leader in the development and application of steam turbine technology, with ...

  6. Coalescing Wind Turbine Wakes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the globalmore » meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions« less

  7. Coalescing Wind Turbine Wakes

    SciTech Connect (OSTI)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions

  8. Low Wind Speed Technology Phase II: Investigation of the Application of Medium-Voltage Variable-Speed Drive Technology to Improve the Cost of Energy from Low Wind Speed Turbines; Behnke, Erdman and Whitaker Engineering, Inc.

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    This fact sheet describes a subcontract with Behnke, Erdman & Whitaker Engineering, Inc. to test the feasibility of applying medium-voltage variable-speed drive technology to low wind speed turbines.

  9. A TECHNOLOGY ASSESSMENT AND FEASIBILITY EVALUATION OF NATURAL GAS ENERGY FLOW MEASUREMENT ALTERNATIVES

    SciTech Connect (OSTI)

    Kendricks A. Behring II; Eric Kelner; Ali Minachi; Cecil R. Sparks; Thomas B. Morrow; Steven J. Svedeman

    1999-01-01

    Deregulation and open access in the natural gas pipeline industry has changed the gas business environment towards greater reliance on local energy flow rate measurement. What was once a large, stable, and well-defined source of natural gas is now a composite from many small suppliers with greatly varying gas compositions. Unfortunately, the traditional approach to energy flow measurement [using a gas chromatograph (GC) for composition assay in conjunction with a flow meter] is only cost effective for large capacity supplies (typically greater than 1 to 30 million scfd). A less costly approach will encourage more widespread use of energy measurement technology. In turn, the US will benefit from tighter gas inventory control, more efficient pipeline and industrial plant operations, and ultimately lower costs to the consumer. An assessment of the state and direction of technology for natural gas energy flow rate measurement is presented. The alternative technologies were ranked according to their potential to dramatically reduce capital and operating and maintenance (O and M) costs, while improving reliability and accuracy. The top-ranked technologies take an unconventional inference approach to the energy measurement problem. Because of that approach, they will not satisfy the fundamental need for composition assay, but have great potential to reduce industry reliance on the GC. Technological feasibility of the inference approach was demonstrated through the successful development of data correlations that relate energy measurement properties (molecular weight, mass-based heating value, standard density, molar ideal gross heating value, standard volumetric heating value, density, and volume-based heating value) to three inferential properties: standard sound speed, carbon dioxide concentration, and nitrogen concentration (temperature and pressure are also required for the last two). The key advantage of this approach is that inexpensive on-line sensors may be used

  10. MHK Technologies/Submergible Power Generator | Open Energy Information

    Open Energy Info (EERE)

    Type Click here Axial Flow Turbine Technology Description The design of the SPG leverages water flows in varying scenarios to generate electricity While the focus of the C2C...

  11. MHK Technologies/FRI El Sea Power System | Open Energy Information

    Open Energy Info (EERE)

    FRI El Sea Power System.jpg Technology Profile Primary Organization FRI EL Sea Power S r l Technology Type Click here Axial Flow Turbine Technology Description The device is...

  12. Performance and market evaluation of the bladeless turbine

    SciTech Connect (OSTI)

    Garrett-Price, B.A.; Barnhart, J.S.; Eschbach, E.J.

    1982-10-01

    The three-inch diameter prototype bladeless turbine was tested with air over a range of inlet pressures from 20 to 100 psia and speeds of 10, 20, 30 and 40 thousand rpm. The peak efficiency of 22.5 percent was recorded at a pressure of 98 psia and a speed of 40,000 rpm. Efficiency increased slightly with speed and inlet pressure over the range of test conditions. The test program was somewhat hindered by mechanical failures. The turbine bearings in particular were unreliable, with two instances of outright failure and numerous cases of erratic performance. A model of the bladeless turbine was developed to aid in interpreting the experimental results. A macroscopic approach, incorporating several favorable assumptions, was taken to place a reasonable upper bound on turbine efficiency. The model analytically examines the flow through the air inlet nozzles and the interaction between the fluid jet and the turbine blades. The analysis indicates that the maximum possible efficiency of a tangential flow turbine with straight axial blades is 50 percent. This is a direct consequence of turning the fluid only 90 degrees relative to the turbine blade. The adoption of the bladeless turbine as the expander in an Organic Rankine Cycle (ORC) will depend to a great extent on the efficiency of the turbine. The market potential for ORC technology will also impact the adoption of the bladeless turbine. Other expanders have demonstrated efficiencies of 60 to 80% in ORC systems. The Gamell turbine had a peak test efficiency of 22.5% and a maximum theoretical efficiency of 50%. Costs of the turbine are highly uncertain, relying to a great extent on cost reductions achieved through quantity production and through learning.

  13. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost

    Broader source: Energy.gov [DOE]

    Free Flow Power is working to enable American utilities to generate power from river sites not suited to conventional hydropower generation.

  14. Experience in the Application of Single-Beam Ultrasonic Flow Meters for Turbines

    SciTech Connect (OSTI)

    Krasilnikov, A. M.; Dmitriev, S. G.; Karyakin, V. A.

    2002-03-15

    Experience in the use of ultrasonic flow meters at the Bratskaya and Vilyuiskaya HPP is described. The article is of interest to field engineers.

  15. EERE Success Story—Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost

    Office of Energy Efficiency and Renewable Energy (EERE)

    Free Flow Power is working to enable American utilities to generate power from river sites not suited to conventional hydropower generation.

  16. Development of a transonic front stage of an axial flow compressor for industrial gas turbines

    SciTech Connect (OSTI)

    Katoh, Y.; Ishii, H.; Tsuda, Y.; Yanagida, M. . Mechanical Engineering Research Lab.); Kashiwabara, Y. . Dept. of Mechanical Systems Engineering)

    1994-10-01

    This paper describes the aerodynamic blade design of a highly loaded three-stage compressor, which is a model compressor for the front stage of an industrial gas turbine. Test results are presented that confirm design performance. Some surge and rotating stall measurement results are also discussed. The first stator blade in this test compressor operates in the high subsonic range at the inlet. To reduce the pressure loss due to blade surface shock waves, a shock-free airfoil is designed to replace the first stator blade in an NACA-65 airfoil in a three-stage compressor. Comparison of the performance of both blades shows that the shock-free airfoil blade reduces pressure loss. This paper also presents some experimental results for MCA (multicircular arc) airfoils, which are used for first rotor blades.

  17. Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Technical progress report, October 1--December 31, 1997

    SciTech Connect (OSTI)

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 4Q97.

  18. Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect (OSTI)

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  19. Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, January 1--March 31, 1997

    SciTech Connect (OSTI)

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 1Q97.

  20. Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    1997-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q97.

  1. Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, October 1--December 31, 1996

    SciTech Connect (OSTI)

    1997-06-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

  2. Single casing reheat turbine

    SciTech Connect (OSTI)

    Matsushima, Tatsuro; Nishimura, Shigeo

    1999-07-01

    For conventional power plants, regenerative reheat steam turbines have been accepted as the most practical method to meet the demand for efficient and economical power generation. Recently the application of reheat steam turbines for combined cycle power plant began according to the development of large-capacity high temperature gas turbine. The two casing double flow turbine has been applied for this size of reheat steam turbine. The single casing reheat turbine can offer economical and compact power plant. Through development of HP-LP combined rotor and long LP blading series, Mitsubishi Heavy Industries, Ltd. had developed a single casing reheat steam turbine series and began to use it in actual plants. Six units are already in operation and another seven units are under manufacturing. Multiple benefits of single casing reheat turbine are smaller space requirements, shorter construction and erection period, equally good performance, easier operation and maintenance, shorter overhaul period, smaller initial investment, lower transportation expense and so on. Furthermore, single exhaust steam turbine makes possible to apply axial exhaust type, which will lower the height of T/G foundation and T/G housing. The single casing reheat turbine has not only compact and economical configuration itself but also it can reduce the cost of civil construction. In this paper, major developments and design features of the single casing reheat turbine are briefly discussed and operating experience, line-up and technical consideration for performance improvement are presented.

  3. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Sustainable Manufacturing - Flow of Materials through Industry Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Manufacturing-Flow of Materials through Industry Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Sustainable Manufacturing-Flow of Materials through Industry is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology

  4. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03

    both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

  5. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  6. Turbine disc sealing assembly

    SciTech Connect (OSTI)

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  7. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    SciTech Connect (OSTI)

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of these changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.

  8. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of thesemore » changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.« less

  9. Annual Report: Turbine Thermal Management (30 September 2013)

    SciTech Connect (OSTI)

    Alvin, Mary Anne; Richards, George

    2014-04-10

    The FY13 NETL-RUA Turbine Thermal Management effort supported the Department of Energy’s (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach included explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE’s advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address: • Development and design of aerothermal and materials concepts in FY12-13. • Design and manufacturing of these advanced concepts in FY13. • Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. In addition to a Project Management task, the Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of heat transfer, materials development, and secondary flow control. These include: • Aerothermal and Heat Transfer • Coatings and Materials Development • Design Integration and Testing • Secondary Flow Rotating Rig.

  10. Single rotor turbine engine

    DOE Patents [OSTI]

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  11. Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components

    SciTech Connect (OSTI)

    Ludtka, Gerard Michael; Dehoff, Ryan R.; Szabo, Attila; Ucok, Ibrahim

    2016-01-01

    ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy. Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.

  12. DOE-Sponsored Research Improves Gas Turbine Performance

    Broader source: Energy.gov [DOE]

    Small Business Innovative Research Grants Achieve Commercialization Goals for Novel Gas Turbine Manufacturing Technology

  13. Advanced Wind Turbine Controls Reduce Loads (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.

  14. Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their

  15. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFEREN...

    Office of Environmental Management (EM)

    INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION TECHNOLOGIES INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION ...

  16. Wind Turbine Radar Interference Mitigation Working Group Releases New Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    While wind energy presents many benefits, spinning wind turbines can interfere with weather, air traffic control, and air surveillance radar systems. As advances in wind technology enable turbines...

  17. Hydro Review: Computational Tools to Assess Turbine Biological...

    Broader source: Energy.gov (indexed) [DOE]

    Computational Tools to Assess Turbine Biological Performance (483.71 KB) More Documents & Publications Hydropower R&D: Recent Advances in Turbine Passage Technology Environmental ...

  18. Simulating Turbine-Turbine Interaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulating Turbine-Turbine Interaction - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  19. Advanced Turbine Systems program conceptual design and product development. Quarterly report, February--April 1994

    SciTech Connect (OSTI)

    1995-02-01

    Task 8.5 (active clearance control) was replaced with a test of the 2600F prototype turbine (Task 8.1T). Test 8.1B (Build/Teardown of prototype turbine) was added. Tasks 4 (conversion of gas-fired turbine to coal-fired turbine) and 5 (market study) were kicked off in February. Task 6 (conceptual design) was also initiated. Task 8.1 (advanced cooling technology) now has an approved test plan. Task 8.4 (ultra low NOx combustion technology) has completed the code development and background gathering phase. Task 8.6 (two-phase cooling of turbine vanes) is proceeding well; initial estimates indicate that nearly 2/3 of required cooling flow can be eliminated.

  20. MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open...

    Open Energy Info (EERE)

    float can house point absorbers The hybrid wave power rig is based on the patented wave energy converter from 2005 Technology Dimensions Device Testing Date Submitted 48:21.4 <<...

  1. Types of Hydropower Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines Types of Hydropower Turbines There are two main types of hydro turbines: impulse and reaction. The type of hydropower turbine selected for a project is based on the height of standing water-referred to as "head"-and the flow, or volume of water, at the site. Other deciding factors include how deep the turbine must be set, efficiency, and cost. Terms used on this page are defined in the glossary. Impulse Turbine The impulse turbine generally uses the velocity of the water to

  2. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, Billy Joe; Whidden, Graydon Lane

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  3. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  4. Development of environmentally advanced hydropower turbine system design concepts

    SciTech Connect (OSTI)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr.

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  5. Development and validation of a radial inflow turbine model for simulation of the SNL S-CO2 split-flow loop.

    SciTech Connect (OSTI)

    Vilim, R. B.

    2012-07-31

    A one-dimensional model for a radial inflow turbine has been developed for super-critical carbon dioxide (S-CO{sub 2}) Brayton cycle applications. The model accounts for the main phenomena present in the volute, nozzle, and impeller of a single-stage turbine. These phenomena include internal losses due to friction, blade loading, and angle of incidence and parasitic losses due to windage and blade-housing leakage. The model has been added as a component to the G-PASS plant systems code. The model was developed to support the analysis of S-CO{sub 2} cycles in conjunction with small-scale loop experiments. Such loops operate at less than a MWt thermal input. Their size permits components to be reconfigured in new arrangements relatively easily and economically. However, the small thermal input combined with the properties of carbon dioxide lead to turbomachines with impeller diameters of only one to two inches. At these sizes the dominant phenomena differ from those in larger more typical machines. There is almost no treatment in the literature of turbomachines at these sizes. The present work therefore is aimed at developing turbomachine models that support the task of S-CO{sub 2} cycle analysis using small-scale tests. Model predictions were compared against data from an experiment performed for Sandia National Laboratories in the split-flow Brayton cycle loop currently located at Barber-Nichols Inc. The split-flow loop incorporates two turbo-alternator-compressor (TAC) units each incorporating a radial inflow turbine and a radial flow compressor on a common shaft. The predicted thermodynamic conditions at the outlet of the turbine on the main compressor shaft were compared with measured values at different shaft speeds. Two modifications to the original model were needed to better match the experiment data. First, a representation of the heat loss from the volute downstream of the sensed inlet temperature was added. Second, an empirical multiplicative factor was

  6. Wind Turbine Blade Design

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

  7. Radial-radial single rotor turbine

    DOE Patents [OSTI]

    Platts, David A.

    2006-05-16

    A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

  8. Aquantis C-Plane Ocean Current Turbine Project

    SciTech Connect (OSTI)

    Fleming, Alex

    2015-09-16

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  9. Mikro Systems Develops Unique Ceramic Core Casting Technology...

    Office of Science (SC) Website

    Technology Mikro's sophisticated gas turbine airfoil designs allow turbines to operate ... R&D Opportunity A key limitation of turbine efficiency has been the failure of parts at ...

  10. The value of steam turbine upgrades

    SciTech Connect (OSTI)

    Potter, K.; Olear, D.

    2005-11-01

    Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

  11. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    SciTech Connect (OSTI)

    Nix, Andrew Carl

    2015-03-23

    The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in

  12. Trends in gas turbine development

    SciTech Connect (OSTI)

    Day, W.H.

    1999-07-01

    This paper represents the Gas Turbine Association's view of the gas turbine industry's R and D needs following the Advanced Turbine Systems (ATS) Program which is funded by the U.S. Department of Energy (DOE). Some of this information was discussed at the workshop Next Generation Gas Turbine Power Systems, which was held in Austin, TX, February 9--10, 1999, sponsored by DOE-Federal Energy Technology Center (FETC), reference 1. The general idea is to establish public-private partnerships to reduce the risks involved in the development of new technologies which results in public benefits. The recommendations in this paper are focused on gas turbines > 30 MW output. Specific GTA recommendations on smaller systems are not addressed here. They will be addressed in conjunction with DOE-Energy Efficiency.

  13. Earth Turbines Inc | Open Energy Information

    Open Energy Info (EERE)

    Earth Turbines Inc Place: Hinesburg, Vermont Zip: 5461 Sector: Wind energy Product: Start-up company developing small-scale wind technology for the residential and commercial...

  14. Advanced horizontal axis wind turbines in windfarms

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The wind turbine section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  15. NREL: Wind Research - Advanced Research Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and meteorological towers upwind are instrumented to collect data. The National Wind Technology Center (NWTC) uses two large turbines to conduct advanced controls research. ...

  16. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  17. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  18. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  19. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect (OSTI)

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late

  20. Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    1996-12-31

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished during the period 2Q96.

  1. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  2. Q&A About Electric Vehicle Flow Battery Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q&A About Electric Vehicle Flow Battery Technology Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Q&A About Electric Vehicle Flow Battery Technology GE Global Research 2013.08.30 This week, we announced a partnership with Berkeley Lab to develop a water-based, flow battery capable of more than just traditional,

  3. Turbine system

    DOE Patents [OSTI]

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  4. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  5. Method and apparatus for preventing overspeed in a gas turbine

    DOE Patents [OSTI]

    Walker, William E.

    1976-01-01

    A method and apparatus for preventing overspeed in a gas turbine in response to the rapid loss of applied load is disclosed. The method involves diverting gas from the inlet of the turbine, bypassing the same around the turbine and thereafter injecting the diverted gas at the turbine exit in a direction toward or opposing the flow of gas through the turbine. The injected gas is mixed with the gas exiting the turbine to thereby minimize the thermal shock upon equipment downstream of the turbine exit.

  6. A Review of Materials for Gas Turbines Firing Syngas Fuels

    SciTech Connect (OSTI)

    Gibbons, Thomas; Wright, Ian G

    2009-05-01

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

  7. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  8. Complex Flow Workshop Report

    SciTech Connect (OSTI)

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  9. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  10. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect (OSTI)

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2012-12-31

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and

  11. Simulating Collisions for Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  12. New Siemens Research Turbine Commissioned at NREL - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Siemens Research Turbine Commissioned at NREL Government-industry R&D partnership is ... a new 2.3 megawatt Siemens wind turbine at NREL's National Wind Technology Center. ...

  13. Simulating Turbine-Turbine Interaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulating Turbine-Turbine Interaction - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  14. Uncertainty analysis of integrated gasification combined cycle systems based on Frame 7H versus 7F gas turbines

    SciTech Connect (OSTI)

    Yunhua Zhu; H. Christopher Frey

    2006-12-15

    Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed. 38 refs., 11 figs., 5 tabs.

  15. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOE Patents [OSTI]

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  16. Wind Turbine Blade Testing System Using Base Excitation - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Find More Like This Return to Search Wind Turbine Blade Testing System Using Base Excitation Base Excitation Test System (B.E.T.S.) National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Recently, there has been a rapidly growing demand for renewable energy, including wind energy. To meet this demand, wind turbine designers are working to provide blade designs that allow a turbine connected to the wind turbine blades or to the rotor to

  17. EERE Success Story-Free Flow Power Partners to Improve Hydrokinetic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost EERE Success Story-Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost April ...

  18. Airborne Wind Turbine

    SciTech Connect (OSTI)

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  19. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Marra, John

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  20. On the Fatigue Analysis of Wind Turbines

    SciTech Connect (OSTI)

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  1. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  2. Robotic Wind Turbine Inspection | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advances Wind Turbine Inspection Through Robotic Trials Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Advances Wind Turbine Inspection Through Robotic Trials GE Global Research is advancing technology that will make the inspection of wind turbines faster and more reliable for customers. Currently, an inspector

  3. Companies Selected for Small Wind Turbine Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Companies Selected for Small Wind Turbine Project For more information contact: Terry Monrad (303) 972-9246 Golden, Colo., Nov. 27, 1996 -- In an effort to develop cost-effective, low-maintenance wind turbine systems, the Department of Energy's National Renewable Energy Laboratory (NREL) has selected four companies to participate in the Small Wind Turbine Project. The four companies are Windlite Co., Mountain View, Calif.; World Power Technologies, Duluth, Minn.; Cannon/Wind Eagle Corp.,

  4. Capstone Turbine Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capstone Turbine Project Capstone Turbine Project February 5, 2016 - 9:00am Addthis C370 Production Concept Layouts C370 Production Concept Layouts The standard small turbines currently on the market have little or no heat recovery capability and use conventional high temperature nickel alloys that limit engine efficiency. Significant amounts of energy could be saved if technologies were available to allow operation at higher temperatures with substantial heat recovery. To address this

  5. Main Bearing Dynamics in Three-Point Suspension Drivetrains for Wind Turbines; National Wind Technology Center (NWTC), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Sethuraman, Latha; Guo, Yi; Sheng, Shuangwen

    2015-05-18

    This work discusses the dynamics of main bearing behavior in three-point suspension drivetrains for wind turbines. Three failure mitigation approaches and preliminary results are presented.

  6. Aero Turbine | Open Energy Information

    Open Energy Info (EERE)

    Aero Turbine Jump to: navigation, search Name Aero Turbine Facility Aero Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AeroTurbine...

  7. Jet spoiler arrangement for wind turbine

    DOE Patents [OSTI]

    Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

    1983-09-15

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  8. Jet spoiler arrangement for wind turbine

    DOE Patents [OSTI]

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  9. Multiple piece turbine blade

    SciTech Connect (OSTI)

    Kimmel, Keith D

    2012-05-29

    A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

  10. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect (OSTI)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  11. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  12. Effects of Changing Atmospheric Conditions on Wind Turbine Performance (Poster)

    SciTech Connect (OSTI)

    Clifton, A.

    2012-12-01

    Multi-megawatt, utility-scale wind turbines operate in turbulent and dynamic winds that impact turbine performance in ways that are gradually becoming better understood. This poster presents a study made using a turbulent flow field simulator (TurbSim) and a Turbine aeroelastic simulator (FAST) of the response of a generic 1.5 MW wind turbine to changing inflow. The turbine power output is found to be most sensitive to wind speed and turbulence intensity, but the relationship depends on the wind speed with respect to the turbine's rated wind speed. Shear is found to be poorly correlated to power. A machine learning method called 'regression trees' is used to create a simple model of turbine performance that could be used as part of the wind resource assessment process. This study has used simple flow fields and should be extended to more complex flows, and validated with field observations.

  13. Environmental Mitigation Technology (Innovative System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine Environmental ...

  14. Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renaissance in Flow-Cell Technologies Recent Advancements and Future Opportunities Mike Perry Project Leader, Electrochemical Systems United Technologies Research Center ec c es UTC Proprietary Grand Challenges in Electrical Energy Storage (EES) SCALE & COST: Want to go from Wh to kWh to MWh...  El tri Vehicl  Grid-Scale $100/kWh GRIDS Program Target  Portable Devices > $500/kWh  Electric Vehicles $250/kWh BEEST Program Target Wh UTC Proprietary Batteries are currently < 1%

  15. Documentation, User Support, and Verification of Wind Turbine and Plant Models

    SciTech Connect (OSTI)

    Robert Zavadil; Vadim Zheglov; Yuriy Kazachkov; Bo Gong; Juan Sanchez; Jun Li

    2012-09-18

    As part of the Utility Wind Energy Integration Group (UWIG) and EnerNex's Wind Turbine Modeling Project, EnerNex has received ARRA (federal stimulus) funding through the Department of Energy (DOE) to further the progress of wind turbine and wind plant models. Despite the large existing and planned wind generation deployment, industry-standard models for wind generation have not been formally adopted. Models commonly provided for interconnection studies are not adequate for use in general transmission planning studies, where public, non-proprietary, documented and validated models are needed. NERC MOD (North American Electric Reliability Corporation) reliability standards require that power flow and dynamics models be provided, in accordance with regional requirements and procedures. The goal of this project is to accelerate the appropriate use of generic wind turbine models for transmission network analysis by: (1) Defining proposed enhancements to the generic wind turbine model structures that would allow representation of more advanced; (2) Comparative testing of the generic models against more detailed (and sometimes proprietary) versions developed by turbine vendors; (3) Developing recommended parameters for the generic models to best mimic the performance of specific commercial wind turbines; (4) Documenting results of the comparative simulations in an application guide for users; (5) Conducting technology transfer activities in regional workshops for dissemination of knowledge and information gained, and to engage electric power and wind industry personnel in the project while underway; (6) Designing of a "living" homepage to establish an online resource for transmission planners.

  16. Advanced Wind Turbine Drivetrain Concepts. Workshop Report

    SciTech Connect (OSTI)

    none,

    2010-12-01

    This report presents key findings from the Department of Energy’s Advanced Drivetrain Workshop, held on June 29-30, 2010, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  17. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect (OSTI)

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  18. SMART POWER TURBINE

    SciTech Connect (OSTI)

    Nirm V. Nirmalan

    2003-11-01

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably

  19. Briza Technologies | Open Energy Information

    Open Energy Info (EERE)

    Briza Technologies Jump to: navigation, search Name: Briza Technologies Place: Hillsborough, New Jersey Zip: 8844 Sector: Wind energy Product: Developing wind turbine technology....

  20. tidal turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tidal turbines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  1. wind turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  2. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf; Willett, Fred Thomas

    2000-01-01

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  3. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf; Willett, Fred Thomas

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  4. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  5. 10MW Class Direct Drive HTS Wind Turbine: Cooperative Research...

    Office of Scientific and Technical Information (OSTI)

    SEMICONDUCTOR; 20MW CLASS DIRECT DRIVE HTS WIND TURBINE; Commercialization and Technology Transfer Word Cloud More Like This Full Text preview image File size NAView Full Text ...

  6. Fuel Cell/Gas Turbine System Performance Studies

    Office of Scientific and Technical Information (OSTI)

    ... Table 6. Advantages of Fuel CellGas Turbine Technologies System has lower capital costs ... power generation. Additionally, the capital and life costs of the fuel cellgas ...

  7. Micro Hydro Kinetic Turbines from Smart Hydro Power | Open Energy...

    Open Energy Info (EERE)

    Hydro Kinetic Turbines from Smart Hydro Power Jump to: navigation, search << Return to the MHK database homepage Tauchturbine.jpg Technology Profile Project(s) where this...

  8. ITP Industrial Distributed Energy: Combustion Turbine CHP System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Combustion Turbine CHP System for Food Processing Industry Reducing Industry's Environmental Footprint and Easing Transmission Congestion Based at a...

  9. NREL: Wind Research - NREL and Clemson University Put Wind Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Clemson University Put Wind Turbine Drivetrains to the Test A photo of a large dynamometer at the National Wind Technology Center. NREL's 5-megawatt dynamometer test...

  10. SWiFT Turbines Full Dynamic Characterization Opens Doors for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Conference held in Orlando, Florida, last February. ... mode shapes of each main turbine component tested ... wind energy technologies, with a specific ...

  11. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  12. Active load control techniques for wind turbines.

    SciTech Connect (OSTI)

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  13. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  14. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    SciTech Connect (OSTI)

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  15. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  16. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  17. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    SciTech Connect (OSTI)

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  18. Turbines News | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News DOE to Invest $30 Million in Projects Developing Components for Advanced Turbine and Supercritical CO2-Based Power Cycles July 19, 2016 The U.S. Department of Energy's (DOE) National Energy Technology Laboratory has selected six Phase II projects, to further develop innovative technologies for advanced gas turbine components and supercritical carbon dioxide (sCO2) power cycles. The projects were selected from eleven projects that participated in Phase I that was recently completed by

  19. Intelligent Wind Turbine Program - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Wind Energy Find More Like This Return to Search Intelligent Wind Turbine Program Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing SummaryA unique LANL research team composed of world experts in structural health monitoring, modeling and simulation, and prognostic decision making has established a strong capability in wind energy research. The intelligent wind-turbine project has resulted in a U.S. patent application and copyrighted software,

  20. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    SciTech Connect (OSTI)

    Gunawan, Budi; Neary, Vincent S; Hill, Craig; Chamorro, Leonardo

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  1. Built Environment Wind Turbine Roadmap

    SciTech Connect (OSTI)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    The market currently encourages BWT deployment before the technology is ready for full-scale commercialization. To address this issue, industry stakeholders convened a Rooftop and Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the National Wind Technology Center, located at the U.S. Department of Energy’s National Renewable Energy Laboratory in Boulder, Colorado. This report summarizes the workshop.

  2. Wind Turbine System State Awareness - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System State Awareness Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing SummaryResearchers at the Los Alamos National Laboratory Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic wind loading. DescriptionResearchers at the Los Alamos National Laboratory (LANL) Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind

  3. Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application

    SciTech Connect (OSTI)

    Ashok K. Anand

    2005-12-16

    This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key

  4. Turbine adapted maps for turbocharger engine matching

    SciTech Connect (OSTI)

    Tancrez, M.; Galindo, J.; Guardiola, C.; Fajardo, P.; Varnier, O.

    2011-01-15

    This paper presents a new representation of the turbine performance maps oriented for turbocharger characterization. The aim of this plot is to provide a more compact and suited form to implement in engine simulation models and to interpolate data from turbocharger test bench. The new map is based on the use of conservative parameters as turbocharger power and turbine mass flow to describe the turbine performance in all VGT positions. The curves obtained are accurately fitted with quadratic polynomials and simple interpolation techniques give reliable results. Two turbochargers characterized in an steady flow rig were used for illustrating the representation. After being implemented in a turbocharger submodel, the results obtained with the model have been compared with success against turbine performance evaluated in engine tests cells. A practical application in turbocharger matching is also provided to show how this new map can be directly employed in engine design. (author)

  5. turbine | OpenEI Community

    Open Energy Info (EERE)

    turbine Home Future of Condition Monitoring for Wind Turbines Description: Research into third party software to aid in the development of better CMS in order to raise turbine...

  6. Western Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine Jump to: navigation, search Name: Western Turbine Place: Aurora, Colorado Zip: 80011 Sector: Wind energy Product: Wind Turbine Installation and Maintainance. Coordinates:...

  7. Turbine blade tip with offset squealer

    DOE Patents [OSTI]

    Bunker, Ronald Scott

    2001-01-01

    An industrial turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationary shroud. The rotating blade includes a root section, an airfoil having a pressure sidewall and a suction sidewall defining an outer periphery and a tip portion having a tip cap. An offset squealer is disposed on the tip cap. The offset squealer is positioned inward from the outer periphery of the rotating blade. The offset squealer increases the flow resistance and reduces the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  8. Passively cooled direct drive wind turbine

    DOE Patents [OSTI]

    Costin, Daniel P.

    2008-03-18

    A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

  9. Advanced Technology & Discovery at Bangalore | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... for gas turbines and Jenbacher engines, steam retrofit solutions, small oil and gas ... compressor, TAPS II combustor and turbine as part of eCore technologies for the ...

  10. Fish-Friendly Turbine Making a Splash in Water Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fish-Friendly Turbine Making a Splash in Water Power Fish-Friendly Turbine Making a Splash in Water Power October 21, 2011 - 10:29am Addthis A computer simulation of the Alden Fish-Friendly Turbine. A computer simulation of the Alden Fish-Friendly Turbine. Rajesh Dham Hydropower Technology Team Lead How does it work? The Alden turbine has three blades, no gaps, is bigger and rotates more slowly than typical hydro turbines. At peak performance, an Alden turbine should convert about 94 percent of

  11. Spectral Content and Spatial Scales in Unsteady Rotationally Augmented Flow Fields: Preprint

    SciTech Connect (OSTI)

    Schreck, S. J.

    2007-08-01

    This paper describes wind turbine flow fields that effect load predictions for design and analysis and the active aerodynamic control methodologies being considered for wind turbine applications.

  12. Near-wall serpentine cooled turbine airfoil

    SciTech Connect (OSTI)

    Lee, Ching-Pang

    2014-10-28

    A serpentine coolant flow path is formed by inner walls in a cavity between pressure and suction side walls of a turbine airfoil, the cavity partitioned by one or more transverse partitions into a plurality of continuous serpentine cooling flow streams each having a respective coolant inlet.

  13. NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology

    SciTech Connect (OSTI)

    Huskey, A.; Forsyth, T.

    2009-06-01

    This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

  14. Turbine inter-disk cavity cooling air compressor

    DOE Patents [OSTI]

    Little, David Allen

    2001-01-01

    A combustion turbine may have a cooling circuit for directing a cooling medium through the combustion turbine to cool various components of the combustion turbine. This cooling circuit may include a compressor, a combustor shell and a component of the combustion turbine to be cooled. This component may be a rotating blade of the combustion turbine. A pressure changing mechanism is disposed in the combustion turbine between the component to be cooled and the combustor shell. The cooling medium preferably flows from the compressor to the combustor shell, through a cooler, the component to the cooled and the pressure changing mechanism. After flowing through the pressure changing mechanism, the cooling medium is returned to the combustor shell. The pressure changing mechanism preferably changes the pressure of the cooling medium from a pressure at which it is exhausted from the component to be cooled to approximately that of the combustor shell.

  15. Control Sensitivity Study for a Hybrid Fuel Cell/Gas Turbine System

    SciTech Connect (OSTI)

    Banta, Larry; Absten, Jason; Tsai, Alex; Gemmen, R.S.; Tucker, D.A.

    2008-06-01

    The National Energy Technology Laboratory (NETL) has developed a hardware simulator to test the operating characteristics of Solid Oxide Fuel Cell/Gas Turbine (SOFC/GT) hybrid systems. The Hybrid Performance (HyPer) simulator has been described previously, and has contributed to the understanding of SOFC/GT system operation. HyPer contains not only the requisite elements of gas turbine/compressor/generator, recuperator, combustor, and associated piping, but also several air flow control valves that are proposed as system control mechanisms. It is necessary to know how operation of these valves affects the various entities such as cathode air flow, turbine speed, and various temperatures important to the safe and efficient operation of fuel cell/gas turbine hybrid systems. To determine the interactions among key variables, a series of experiments was performed in which the effect of modulating each of the key manipulated variables was recorded. This document outlines the test methods used and presents some of the data from those tests, along with analysis and interpretation of that data in the context of control system design.

  16. LASER STABILIZATION FOR NEAR ZERO NO{sub x} GAS TURBINE COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Vivek Khanna

    2002-09-30

    Historically, the development of new industrial gas turbines has been primarily driven by the intent to achieve higher efficiency, lower operating costs and lower emissions. Higher efficiency and lower cost is obtained through higher turbine operating temperatures, while reduction in emissions is obtained by extending the lean operating limit of the combustor. However reduction in the lean stability limit of operation is limited greatly by the chemistry of the combustion process and by the occurrence of thermo-acoustic instabilities. Solar Turbines, CFD Research Corporation, and Los Alamos National Laboratory have teamed to advance the technology associated with laser-assisted ignition and flame stabilization, to a level where it could be incorporated onto a gas turbine combustor. The system being developed is expected to enhance the lean stability limit of the swirl stabilized combustion process and assist in reducing combustion oscillations. Such a system has the potential to allow operation at the ultra-lean conditions needed to achieve NO{sub x} emissions below 5 ppm without the need of exhaust treatment or catalytic technologies. The research effort was focused on analytically modeling laser-assisted flame stabilization using advanced CFD techniques, and experimentally demonstrating the technology, using a solid-state laser and low-cost durable optics. A pulsed laser beam was used to generate a plasma pool at strategic locations within the combustor flow field such that the energy from the plasma became an ignition source and helped maintain a flame at ultra lean operating conditions. The periodic plasma generation and decay was used to nullify the fluctuations in the heat release from the flame itself, thus decoupling the heat release from the combustor acoustics and effectively reducing the combustion oscillations. The program was built on an existing technology base and includes: extending LANL's existing laser stabilization experience to a sub

  17. NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

  18. Property:Technology Resource | Open Energy Information

    Open Energy Info (EERE)

    CurrentTidal MHK TechnologiesDeep Water Pipelines + Ocean Thermal Energy Conversion (OTEC) MHK TechnologiesDeltaStream + CurrentTidal MHK TechnologiesDenniss Auld Turbine +...

  19. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to become an international leader in offshore wind energy research. NREL's offshore wind turbine research capabilities focus on critical areas that reflect the long-term needs of the industry and DOE. National Wind Technology Center (NWTC) researchers are perpetually exploring new wind and water power concepts, materials, and

  20. Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

    SciTech Connect (OSTI)

    2010-02-22

    Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

  1. Deposition of Graded Thermal Barrier Coatings for Gas Turbine Blades -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Wind Energy Wind Energy Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Deposition of Graded Thermal Barrier Coatings for Gas Turbine Blades Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (825 KB) Technology Marketing SummarySandia has developed a method and apparatus for depositing thermal barrier coatings on gas turbine

  2. Advanced Combustion Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that will accelerate turbine performance and efficiency beyond current state-of-the-art and reduce the risk to market for novel and advanced turbine-based power cycles. ...

  3. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  4. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect (OSTI)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  5. Sliding vane geometry turbines

    SciTech Connect (OSTI)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  6. Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-05-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

  7. Wind Turbine Safety and Function Test Report for the ARE 442 Wind Turbine

    SciTech Connect (OSTI)

    van Dam, J.; Baker, D.; Jager, D.

    2010-02-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests that were performed on the turbines, including power performance, duration, noise, and power quality tests. Test results provide manufacturers with reports that can be used for small wind turbine certification. The test equipment includes an ARE 442 wind turbine mounted on a 100-ft free-standing lattice tower. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

  8. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  9. Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC-Requirements: Endwall Contouring, Leading Edge and Blade Tip Ejection under Rotating Turbine Conditions

    SciTech Connect (OSTI)

    Schobeiri, Meinhard; Han, Je-Chin

    2014-09-30

    This report deals with the specific aerodynamics and heat transfer problematic inherent to high pressure (HP) turbine sections of IGCC-gas turbines. Issues of primary relevance to a turbine stage operating in an IGCC-environment are: (1) decreasing the strength of the secondary flow vortices at the hub and tip regions to reduce (a), the secondary flow losses and (b), the potential for end wall deposition, erosion and corrosion due to secondary flow driven migration of gas flow particles to the hub and tip regions, (2) providing a robust film cooling technology at the hub and that sustains high cooling effectiveness less sensitive to deposition, (3) investigating the impact of blade tip geometry on film cooling effectiveness. The document includes numerical and experimental investigations of above issues. The experimental investigations were performed in the three-stage multi-purpose turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. For the numerical investigations a commercial Navier-Stokes solver was utilized.

  10. New Funding Opportunity to Develop Larger Wind Turbine Blades | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Funding Opportunity to Develop Larger Wind Turbine Blades New Funding Opportunity to Develop Larger Wind Turbine Blades March 16, 2015 - 2:47pm Addthis The Energy Department today announced $1.8 million in funding for the development of larger wind turbine blades that will help capture more power from wind resources and increase the efficiency of wind energy systems. This funding will support the research and development of technological innovations to improve the manufacturing,

  11. Nine Projects Selected for Funding through University Turbine Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Program | Department of Energy Nine Projects Selected for Funding through University Turbine Systems Research Program Nine Projects Selected for Funding through University Turbine Systems Research Program June 4, 2015 - 11:33am Addthis The Department of Energy's National Energy Technology Laboratory (NETL) has selected nine research and development projects to receive funding through the NETL-managed University Turbine Systems Research Program. The Program funds a portfolio of gas

  12. Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 1999 | Department of Energy Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. This study compares the costs of the principal emission control technologies being employed or nearing commercialization for control of oxides of

  13. Hydrogen Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable

  14. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, W.C.; Newby, R.A.; Bannister, R.L.

    1999-04-27

    A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

  15. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, Wen-Ching; Newby, Richard A.; Bannister, Ronald L.

    1999-01-01

    A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

  16. Marine and Hydrokinetic Technology Glossary | Open Energy Information

    Open Energy Info (EERE)

    1.4 Attentuator 1.5 Oscillating Wave Surge Converter 2 Current Power 2.1 Axial Flow Turbine 2.2 Cross Flow Turbine 2.3 Reciprocating Device 2.3.1 Oscillating Hydrofoil: (Example...

  17. Aerodynamic and aeroacoustic for wind turbine

    SciTech Connect (OSTI)

    Mohamed, Maizi; Rabah, Dizene

    2015-03-10

    This paper describes a hybrid approach forpredicting noise radiated from the rotating Wind Turbine (HAWT) blades, where the sources are extracted from an unsteady Reynolds-Averaged-Navier Stocks (URANS) simulation, ANSYS CFX 11.0, was used to calculate The near-field flow parameters around the blade surface that are necessary for FW-H codes. Comparisons with NREL Phase II experimental results are presented with respect to the pressure distributions for validating a capacity of the solver to calculate the near-field flow on and around the wind turbine blades, The results show that numerical data have a good agreement with experimental. The acoustic pressure, presented as a sum of thickness and loading noise components, is analyzed by means of a discrete fast Fourier transformation for the presentation of the time acoustic time histories in the frequency domain. The results convincingly show that dipole source noise is the dominant noise source for this wind turbine.

  18. Designing an ultrasupercritical steam turbine

    SciTech Connect (OSTI)

    Klotz, H.; Davis, K.; Pickering, E.

    2009-07-15

    Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

  19. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; van Dam, J.

    2010-11-01

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  20. Sandia Energy - CFD-Populated Empirical Turbine Wake Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameters that effect tidal turbine wakes, such as yaw angle to incident flow and vertical blockage ratio, may be incorporated as part of future revisions of the CFD populated...

  1. Gas turbines and acid rain - Looking at some solutions

    SciTech Connect (OSTI)

    May, W.

    1989-01-01

    This article examines the technology available for reducing the sulfur emissions of gas turbines that are implicated in the production of acid rain. The alternatives reviewed are limestone scrubbing, spray dryer absorption and limestone injection into boilers. The last process is not feasible for gas turbines and of the other two the author recommends limestone scrubbing.

  2. Determining effects of turbine blades on fluid motion

    DOE Patents [OSTI]

    Linn, Rodman Ray; Koo, Eunmo

    2012-05-01

    Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.

  3. Determining effects of turbine blades on fluid motion

    DOE Patents [OSTI]

    Linn, Rodman Ray; Koo, Eunmo

    2011-05-31

    Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.

  4. Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect (OSTI)

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G.; Ferber, M.K.; Hoffman, E.E.

    1995-12-31

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/ Manufacturing Technology Program which is coordinated by DOE Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this sub-element are aimed toward hastening the incorporation of new materials and components in gas turbines.

  5. Cooling/heating augmentation during turbine startup/shutdown using a seal positioned by thermal response of turbine parts and consequent relative movement thereof

    DOE Patents [OSTI]

    Schmidt, Mark Christopher

    2000-01-01

    In a turbine rotor, a thermal mismatch between various component parts of the rotor occurs particularly during transient operations such as shutdown and startup. A thermal medium flows past and heats or cools one part of the turbine which may have a deleterious thermal mismatch with another part. By passively controlling the flow of cooling medium past the one part in response to relative movement of thermally responsive parts of the turbine, the flow of thermal medium along the flow path can be regulated to increase or reduce the flow, thereby to regulate the temperature of the one part to maintain the thermal mismatch within predetermined limits.

  6. Energy 101: Wind Turbines - 2014 Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbines - 2014 Update Energy 101: Wind Turbines - 2014 Update

  7. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  8. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    SciTech Connect (OSTI)

    Frank Macri

    2003-10-01

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  9. Part A - Advanced turbine systems. Part B - Materials/manufacturing element of the Advanced Turbine Systems Program

    SciTech Connect (OSTI)

    Karnitz, M.A.

    1996-06-01

    The DOE Offices of Fossil Energy and Energy Efficiency and Renewable Energy have initiated a program to develop advanced turbine systems for power generation. The objective of the Advanced Turbine Systems (ATS) Program is to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for utility and industrial applications. One of the supporting elements of the ATS Program is the Materials/Manufacturing Technologies Task. The objective of this element is to address the critical materials and manufacturing issues for both industrial and utility gas turbines.

  10. Design and evaluation of small water turbines. Final report

    SciTech Connect (OSTI)

    Marquis, J.A.

    1983-02-17

    An evaluation was made of the design and hydromechanical performance characteristics for three basic turbine types: axial flow (Jonval), inward radial flow (Francis) and crossflow (Banki). A single commercially available turbine representative of each type and within the appropriate power range (<5hp) was obtained for evaluation. Specific turbine selections were based on price, availability and suitability for operation at heads of 50 feet or less and flows under 2 cubic feet per second. In general, the peak operating efficiencies of each unit tended to be lower than anticipated, falling in the range of 40 to 50%. With sufficient flow, however, significant useful power outputs up to 3 hp were obtained. While the radial flow turbine (a centrifugal pump operated as a turbine) had the lowest initial unit cost, the axial and cross flow designs exhibited more stable operation, particularly under transient loadings. The crossflow turbine had the added advantage that it was essentially self-cleaning. With further developmental effort and appropriate design modifications it should be possible to bring each of these microhydro designs to their full performance potential.

  11. 10 MW Supercritical CO2 Turbine Test (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    10 MW Supercritical CO2 Turbine Test Citation Details In-Document Search Title: 10 MW Supercritical CO2 Turbine Test The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved

  12. Testing America's Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing America's Wind Turbines Testing America's Wind Turbines View All Maps Addthis

  13. Serial cooling of a combustor for a gas turbine engine

    DOE Patents [OSTI]

    Abreu, Mario E.; Kielczyk, Janusz J.

    2001-01-01

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  14. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  15. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  16. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  17. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (OSTI)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  18. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  19. Industrial Advanced Turbine Systems Program overview

    SciTech Connect (OSTI)

    Esbeck, D.W.

    1995-12-31

    DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

  20. MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS ? PROJECT SUMMARY

    SciTech Connect (OSTI)

    M. A. Alvin

    2010-06-18

    Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ?1425-1760?C (?2600-3200?F) with pressures of ?300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas ? high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

  1. Rampressor Turbine Design

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2003-09-30

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  2. Hermetic turbine generator

    DOE Patents [OSTI]

    Meacher, John S.; Ruscitto, David E.

    1982-01-01

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  3. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  4. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  5. Property:Technology Type | Open Energy Information

    Open Energy Info (EERE)

    pages using this property. (previous 25) (next 25) M MHK Technologies14 MW OTECPOWER + OTEC - Closed Cycle MHK TechnologiesAnaconda bulge tube drives turbine + Oscillating Wave...

  6. Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Loads Database - Sandia Energy Energy Search Icon Sandia Home Locations ... Twitter Google + Vimeo Newsletter Signup SlideShare Sandia Wind Turbine Loads Database ...

  7. Wind turbine | Open Energy Information

    Open Energy Info (EERE)

    turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce...

  8. TGM Turbines | Open Energy Information

    Open Energy Info (EERE)

    Turbines Jump to: navigation, search Name: TGM Turbines Place: Sertaozinho, Sao Paulo, Brazil Zip: 14175-000 Sector: Biomass Product: Brazil based company who constructs and sells...

  9. wind-turbine fleet reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind-turbine fleet reliability - Sandia Energy Energy Search Icon Sandia Home Locations ... SunShot Grand Challenge: Regional Test Centers wind-turbine fleet reliability Home...

  10. Multi-pass cooling for turbine airfoils

    DOE Patents [OSTI]

    Liang, George

    2011-06-28

    An airfoil for a turbine vane of a gas turbine engine. The airfoil includes an outer wall having pressure and suction sides, and a radially extending cooling cavity located between the pressure and suction sides. A plurality of partitions extend radially through the cooling cavity to define a plurality of interconnected cooling channels located at successive chordal locations through the cooling cavity. The cooling channels define a serpentine flow path extending in the chordal direction. Further, the cooling channels include a plurality of interconnected chambers and the chambers define a serpentine path extending in the radial direction within the serpentine path extending in the chordal direction.

  11. Utility-Scale Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    turbines as greater than 1 megawatt. This technology class includes land-based and offshore wind projects. 1 Learn more about utility-scale wind at the links below....

  12. Gas turbine engine with radial diffuser and shortened mid section

    SciTech Connect (OSTI)

    Charron, Richard C.; Montgomery, Matthew D.

    2015-09-08

    An industrial gas turbine engine (10), including: a can annular combustion assembly (80), having a plurality of discrete flow ducts configured to receive combustion gas from respective combustors (82) and deliver the combustion gas along a straight flow path at a speed and orientation appropriate for delivery directly onto the first row (56) of turbine blades (62); and a compressor diffuser (32) having a redirecting surface (130, 140) configured to receive an axial flow of compressed air and redirect the axial flow of compressed air radially outward.

  13. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect (OSTI)

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges

  14. Turbines in the ocean

    SciTech Connect (OSTI)

    Smith, F.G.W.; Charlier, R.H.

    1981-09-01

    It is noted that the relatively high-speed ocean currents flowing northward along the east coast of the U.S. may be able to supply a significant proportion of the future electric power requirements of urban areas. The Gulf Stream core lies only about 20 miles east of Miami here its near-surface water reaches velocities of 4.3 miles per hour. Attention is called to the estimate that the energy available in the current of the Gulf Stream adjacent to Florida is approximately equivalent to that generated by 25 1,000-megawatt power plants. It is also contended that this power could be produced at competitive prices during the 1980s using large turbines moored below the ocean surface near the center of the Stream. Assuming an average ocean-current speed between 4 and 5 knots at the current core, the power density of a hydroturbine could reach 410 watts per square foot, about 100 times that of a wind-driven device of similar scale operating in an airflow of approximately 11 knots.

  15. Can Fish Morphological Characteristics be Used to Re-design Hydroelectric Turbines?

    SciTech Connect (OSTI)

    Cada, G. F.; Richmond, Marshall C.

    2011-07-19

    Safe fish passage affects not only migratory species, but also populations of resident fish by altering biomass, biodiversity, and gene flow. Consequently, it is important to estimate turbine passage survival of a wide range of susceptible fish. Although fish-friendly turbines show promise for reducing turbine passage mortality, experimental data on their beneficial effects are limited to only a few species, mainly salmon and trout. For thousands of untested species and sizes of fish, the particular causes of turbine passage mortality and the benefits of fish-friendly turbine designs remain unknown. It is not feasible to measure the turbine-passage survival of every species of fish in every hydroelectric turbine design. We are attempting to predict fish mortality based on an improved understanding of turbine-passage stresses (pressure, shear stress, turbulence, strike) and information about the morphological, behavioral, and physiological characteristics of different fish taxa that make them susceptible to the stresses. Computational fluid dynamics and blade strike models of the turbine environment are re-examined in light of laboratory and field studies of fish passage effects. Comparisons of model-predicted stresses to measured injuries and mortalities will help identify fish survival thresholds and the aspects of turbines that are most in need of re-design. The coupled model and fish morphology evaluations will enable us to make predictions of turbine-passage survival among untested fish species, for both conventional and advanced turbines, and to guide the design of hydroelectric turbines to improve fish passage survival.

  16. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  17. NREL and Alstom Celebrate Wind Turbine Installation - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Alstom Celebrate Wind Turbine Installation 3 MW, 60 Hz Alstom ECO 100 Now Fully Operational at National Wind Technology Center April 26, 2011 Golden, Colo., April 26, 2011 - Officials from the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL), along with officials from Alstom, today commemorated the successful installation and full capacity operation of a 3 megawatt Alstom ECO 100 wind turbine at NREL's National Wind Technology Center. This event

  18. WINDExchange: Siting Wind Turbines

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Siting Wind Turbines This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists,

  19. Ceramic Cerami Turbine Nozzle

    DOE Patents [OSTI]

    Boyd, Gary L.

    1997-04-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  20. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  1. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, J.E.; Norton, P.F.

    1996-12-17

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

  2. Viryd Technologies | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbines consistently produce more usable energy at a lower cost, with greater reliability. References "Viryd Technologies" Retrieved from "http:en.openei.orgw...

  3. NREL SBV Pilot Wind Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities to develop everything at one location-from small residential wind turbines and components to utility-scale offshore wind technologies. With the NWTC, partners...

  4. Shekel Technologies | Open Energy Information

    Open Energy Info (EERE)

    solar concentrators with gas turbines and energy storage for medium and large scale distributed electricity generation. References: Shekel Technologies1 This article is a stub....

  5. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  6. New Siemens Research Turbine - time lapse

    SciTech Connect (OSTI)

    2009-01-01

    The National Renewable Energy Laboratory (NREL) and Siemens Energy Inc. recently commissioned a new 2.3 megawatt Siemens wind turbine at NREL's National Wind Technology Center. This video shows a time lapse of the installation. The turbine is the centerpiece of a multi-year project to study the performance and aerodynamics of a new class of large, land-based machines — in what will be the biggest government-industry research partnership for wind power generation ever undertaken in the U.S.

  7. Success Story: Capstone Turbine Corporation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Profile story on Capstone Turbine Corporation for the American Energy and Manufacturing Competitiveness (AEMC) Summit.

  8. Wind Turbine Modeling for Computational Fluid Dynamics: December 2010 - December 2012

    SciTech Connect (OSTI)

    Tossas, L. A. M.; Leonardi, S.

    2013-07-01

    With the shortage of fossil fuel and the increasing environmental awareness, wind energy is becoming more and more important. As the market for wind energy grows, wind turbines and wind farms are becoming larger. Current utility-scale turbines extend a significant distance into the atmospheric boundary layer. Therefore, the interaction between the atmospheric boundary layer and the turbines and their wakes needs to be better understood. The turbulent wakes of upstream turbines affect the flow field of the turbines behind them, decreasing power production and increasing mechanical loading. With a better understanding of this type of flow, wind farm developers could plan better-performing, less maintenance-intensive wind farms. Simulating this flow using computational fluid dynamics is one important way to gain a better understanding of wind farm flows. In this study, we compare the performance of actuator disc and actuator line models in producing wind turbine wakes and the wake-turbine interaction between multiple turbines. We also examine parameters that affect the performance of these models, such as grid resolution, the use of a tip-loss correction, and the way in which the turbine force is projected onto the flow field.

  9. Technical evaluation: pressurized fluidized-bed combustion technology...

    Office of Scientific and Technical Information (OSTI)

    COMBUSTORS; TECHNOLOGY ASSESSMENT; ECONOMICS; ENVIRONMENTAL IMPACTS; PERFORMANCE; AIR POLLUTION CONTROL; DESIGN; EFFICIENCY; GAS TURBINES; HOT GAS CLEANUP; RESEARCH PROGRAMS; ...

  10. Cooled snubber structure for turbine blades

    SciTech Connect (OSTI)

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  11. Wind Turbine Micropitting Workshop: A Recap

    SciTech Connect (OSTI)

    Sheng, S.

    2010-02-01

    Micropitting is a Hertzian fatigue phenomenon that affects many wind turbine gearboxes, and it affects the reliability of the machines. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The U.S. Department of Energy has made a commitment to improving wind turbine reliability and the National Renewable Energy Laboratory (NREL) has started a gearbox reliability project. Micropitting as an issue that needed attention came to light through this effort. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of the issue by acknowledged experts, NREL hosted a wind turbine micropitting workshop, which was held at the National Wind Technology Center in Boulder, Colorado, on April 15 and 16, 2009.

  12. Advanced Turbine Systems (ATS) program conceptual design and product development

    SciTech Connect (OSTI)

    1996-08-31

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  13. Composite turbine bucket assembly

    DOE Patents [OSTI]

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  14. Turbine blade vibration dampening

    DOE Patents [OSTI]

    Cornelius, Charles C.; Pytanowski, Gregory P.; Vendituoli, Jonathan S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  15. Turbine blade vibration dampening

    DOE Patents [OSTI]

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  16. Howden Wind Turbines Ltd | Open Energy Information

    Open Energy Info (EERE)

    Howden Wind Turbines Ltd Jump to: navigation, search Name: Howden Wind Turbines Ltd Place: United Kingdom Sector: Wind energy Product: Howden was a manufacturer of wind turbines in...

  17. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the ...

  18. Category:Wind turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind turbine Jump to: navigation, search Pages in category "Wind turbine" This category contains only the following page. W Wind turbine Retrieved from "http:en.openei.orgw...

  19. Luther College Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Luther College Wind Turbine Jump to: navigation, search Name Luther College Wind Turbine Facility Luther College Wind Turbine Sector Wind energy Facility Type Community Wind...

  20. Capstone Turbine Corp | Open Energy Information

    Open Energy Info (EERE)

    Turbine Corp Jump to: navigation, search Name: Capstone Turbine Corp Place: Chatsworth, California Zip: 91311 Product: Capstone Turbine Corp produces low-emission microturbine...

  1. Williams Stone Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Stone Wind Turbine Jump to: navigation, search Name Williams Stone Wind Turbine Facility Williams Stone Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status...

  2. Portsmouth Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Portsmouth Wind Turbine Facility Portsmouth Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service...

  3. Charlestown Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Charlestown Wind Turbine Jump to: navigation, search Name Charlestown Wind Turbine Facility Charlestown Wind Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. GC China Turbine Corp | Open Energy Information

    Open Energy Info (EERE)

    GC China Turbine Corp Jump to: navigation, search Name: GC China Turbine Corp Place: Wuhan, Hubei Province, China Sector: Wind energy Product: China-base wind turbine manufacturer....

  5. From medium-sized to megawatt turbines...

    SciTech Connect (OSTI)

    Dongen, W. van

    1996-12-31

    One of the world`s first 500 kW turbines was installed in 1989 in the Netherlands. This forerunner of the current NedWind 500 kW range also represents the earliest predesign of the NedWind megawatt turbine. After the first 500 kW turbines with steel rotor blades and rotor diameter of 34 m, several design modifications followed, e.g. the rotor diameter was increased to 35 m and a tip brake was added. Later polyester blades were introduced and the rotor diameter was increased with 5 in. The drive train was also redesigned. Improvements on the 500 kW turbine concept has resulted in decreased cost, whereas annual energy output has increased to approx. 1.3 million kWh. Wind energy can substantially contribute to electricity supply. Maximum output in kiloWatthours is the target. Further improvement of the existing technology and implementation of flexible components may well prove to be a way to increase energy output, not only in medium or large sized wind turbines. 7 figs.

  6. The 1.5 MW wind turbine of tomorrow

    SciTech Connect (OSTI)

    De Wolff, T.J.; Sondergaard, H.

    1996-12-31

    The Danish company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2300 wind turbine generators with a total name plate capacity that is exceeding 350 MW. This paper will describe two major wind turbine technology developments that Nordtank has accomplished during the last year: Site Optimization of Nordtank wind turbines: Nordtank has developed a flexible design concept for its WTGs in the 500/600 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Nordtank`s 1.5 MW wind turbine: In September 1995, Nordtank was the first company to install a commercial 1.5 NM WTG. This paper will document the development process, the design as well as operations of the Nordtank 1.5 MW WTG.

  7. Duration Test Report for the SWIFT Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, I.; Hur, J.

    2013-01-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Duration testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

  8. Duration Test Report for the Ventera VT10 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2013-06-01

    This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small wind turbines. Five turbines were tested at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of round one of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality. Test results will provide manufacturers with reports that can be used to fulfill part of the requirements for small wind turbine certification. The test equipment included a grid-connected Ventera Energy Corporation VT10 wind turbine mounted on an 18.3-m (60-ft) self-supporting lattice tower manufactured by Rohn.

  9. Safety and Function Test Report for the SWIFT Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, I.; Hur, J.

    2013-01-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Safety and Function testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, duration, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

  10. Understanding Trends in Wind Turbine Prices Over the Past Decade

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2011-10-26

    Taking a bottom-up approach, this report examines seven primary drivers of wind turbine prices in the United States, with the goal of estimating the degree to which each contributed to the doubling in turbine prices from 2002 through 2008, as well as the subsequent decline in prices through 2010 (our analysis does not extend into 2011 because several of these drivers are best gauged on a full-year basis due to seasonality issues). The first four of these drivers can be considered, at least to some degree, endogenous influences – i.e., those that are largely within the control of the wind industry – and include changes in: 1) Labor costs, which have historically risen during times of tight turbine supply; 2) Warranty provisions, which reflect technology performance and reliability, and are most often capitalized in turbine prices; 3) Turbine manufacturer profitability, which can impact turbine prices independently of costs; and 4) Turbine design, which for the purpose of this analysis is principally manifested through increased turbine size. The other three drivers analyzed in this study can be considered exogenous influences, in that they can impact wind turbine costs but fall mostly outside of the direct control of the wind industry. These exogenous drivers include changes in: 5) Raw materials prices, which affect the cost of inputs to the manufacturing process; 6) Energy prices, which impact the cost of manufacturing and transporting turbines; and 7) Foreign exchange rates, which can impact the dollar amount paid for turbines and components imported into the United States.

  11. Turbine nozzle positioning system

    DOE Patents [OSTI]

    Norton, P.F.; Shaffer, J.E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

  12. Turbine nozzle positioning system

    DOE Patents [OSTI]

    Norton, Paul F.; Shaffer, James E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

  13. Gas turbine engine

    DOE Patents [OSTI]

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  14. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  15. UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY

    SciTech Connect (OSTI)

    Lawrence P. Golan; Richard A. Wenglarz

    2004-07-01

    The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.

  16. Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine

    SciTech Connect (OSTI)

    Capstone Turbine Corporation

    2007-12-31

    In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

  17. Wind Turbine Tribology Seminar - A Recap

    SciTech Connect (OSTI)

    Errichello, R.; Sheng, S.; Keller, J.; Greco, A.

    2012-02-01

    Tribology is the science and engineering of interacting surfaces in relative motion. It includes the study and application of the principles of friction, lubrication, and wear. It is an important phenomenon that not only impacts the design and operation of wind turbine gearboxes, but also their subsequent maintenance requirements and overall reliability. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The Wind Turbine Tribology Seminar was convened to explore the state-of-the-art in wind turbine tribology and lubricant technologies, raise industry awareness of a very complex topic, present the science behind each technology, and identify possible R&D areas. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of tribology by acknowledged experts, the National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL), and the U.S. Department of Energy (DOE) hosted a wind turbine tribology seminar. It was held at the Renaissance Boulder Flatiron Hotel in Broomfield, Colorado on November 15-17, 2011. This report is a summary of the content and conclusions. The presentations given at the meeting can be downloaded. Interested readers who were not at the meeting may wish to consult the detailed publications listed in the bibliography section, obtain the cited articles in the public domain, or contact the authors directly.

  18. Shroud leakage flow discouragers

    DOE Patents [OSTI]

    Bailey, Jeremy Clyde; Bunker, Ronald Scott

    2002-01-01

    A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

  19. MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS

    SciTech Connect (OSTI)

    M. A. Alvin

    2009-06-12

    Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach 1425-1760C with pressures of 300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require durable thermal barrier coatings (TBCs), high temperature creep resistant metal substrates, and effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in TBCs and aerothermal cooling. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) at the Office of Research and Development (ORD) has initiated a research project effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers, to develop advanced materials, aerothermal configurations, as well as non-destructive evaluation techniques for use in advanced land-based gas turbine applications. This paper reviews technical accomplishments recently achieved in each of these areas.

  20. Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.

    SciTech Connect (OSTI)

    Not Available

    2004-11-01

    Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a

  1. Materials for advanced ultrasupercritical steam turbines

    SciTech Connect (OSTI)

    Purgert, Robert; Shingledecker, John; Saha, Deepak; Thangirala, Mani; Booras, George; Powers, John; Riley, Colin; Hendrix, Howard

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  2. SwanTurbines | Open Energy Information

    Open Energy Info (EERE)

    SwanTurbines Jump to: navigation, search Name: SwanTurbines Place: United Kingdom Product: SwanTurbines is developing a tidal stream turbine. The company is currently working on a...

  3. Insert metering plates for gas turbine nozzles

    DOE Patents [OSTI]

    Burdgick, Steven S.; Itzel, Gary; Chopra, Sanjay; Abuaf, Nesim; Correia, Victor H.

    2004-05-11

    The invention comprises a metering plate which is assembled to an impingement insert for use in the nozzle of a gas turbine. The metering plate can have one or more metering holes and is used to balance the cooling flow within the nozzle. A metering plate with multiple holes reduces static pressure variations which result from the cooling airflow through the metering plate. The metering plate can be assembled to the insert before or after the insert is inserted into the nozzle.

  4. Building the Basic PVC Wind Turbine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building the Basic PVC Wind Turbine Building the Basic PVC Wind Turbine Below is information about the student activity/lesson plan from your search. Grades 5-8, 9-12 Subject Wind Energy Summary This plan shows how to make a rugged and inexpensive classroom wind turbine that can be used for lab bench-based blade design experiments. While a few specialized parts are needed (a hub and DC motor), the rest of the components are easily found at most hardware stores. Curriculum Technology, Science

  5. MHK Technologies/The Multi Energy Device | Open Energy Information

    Open Energy Info (EERE)

    Energy Device utilizes pressure differences to create a water flow that drives a water turbine and generator The water turbine can be integrated into the device or can be situated...

  6. Investigations on Marine Hydrokinetic Turbine Foil Structural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Hydrokinetic Turbine Foil Structural Health Monitoring Presented at GMREC METS - ... Investigations on Marine Hydrokinetic Turbine Foil Structural Health Monitoring ...

  7. International Effort Advances Offshore Wind Turbine Design Codes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy International Effort Advances Offshore Wind Turbine Design Codes International Effort Advances Offshore Wind Turbine Design Codes September 12, 2014 - 12:16pm Addthis For the past several years, the U.S. Department of Energy's National Renewable Energy Laboratory has teamed with the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) in Germany to lead an international effort under the International Energy Agency's (IEA) Task 30 to improve the tools

  8. Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Larger Wind Turbine Blades Upcoming Funding Opportunity to Develop Larger Wind Turbine Blades February 20, 2015 - 4:55pm Addthis On February 20, 2015 EERE's Wind Program announced a Notice of Intent to issue a funding opportunity titled "U.S. Wind Manufacturing: Larger Blades to Access Greater Wind Resources and Lower Costs." This funding will support the research and development of technological innovations to improve the manufacturing, transportation, and

  9. Characterization of a Solid Oxide Fuel Cell Gas Turbine Hybrid System Based on a Factorial Design of Experiments Using Hardware Simulation

    SciTech Connect (OSTI)

    Restrepo, Bernardo; Banta, Larry E.; Tucker, David

    2012-10-01

    A full factorial experimental design and a replicated fractional factorial design were carried out using the Hybrid Performance (HyPer) project facility installed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy to simulate gasifer/fuel cell/turbine hybrid power systems. The HyPer facility uses hardware in the loop (HIL) technology that couples a modified recuperated gas turbine cycle with hardware driven by a solid oxide fuel cell model. A 34 full factorial design (FFD) was selected to study the effects of four factors: cold-air, hot-air, bleed-air bypass valves, and the electric load on different parameters such as cathode and turbine inlet temperatures, pressure and mass flow. The results obtained, compared with former results where the experiments were made using one-factor-at-a-time (OFAT), show that no strong interactions between the factors are present in the different parameters of the system. This work also presents a fractional factorial design (ffd) 34-2 in order to analyze replication of the experiments. In addition, a new envelope is described based on the results of the design of experiments (DoE), compared with OFAT experiments, and analyzed in an off-design integrated fuel cell/gas turbine framework. This paper describes the methodology, strategy, and results of these experiments that bring new knowledge concerning the operating state space for this kind of power generation system.

  10. Complex Flow Workshop Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complex Flow Workshop Report Complex Flow Workshop Report A discussion on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales. complex_flow_workshop_report.pdf (7.35 MB) More Documents & Publications Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow Offshore Resource Assessment and Design Conditions Public Meeting Summary Report

  11. Turbine inner shroud and turbine assembly containing such inner shroud

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran; Corman, Gregory Scot; Dean, Anthony John; DiMascio, Paul Stephen; Mirdamadi, Massoud

    2001-01-01

    A turbine inner shroud and a turbine assembly. The turbine assembly includes a turbine stator having a longitudinal axis and having an outer shroud block with opposing and longitudinally outward facing first and second sides having open slots. A ceramic inner shroud has longitudinally inward facing hook portions which can longitudinally and radially surround a portion of the sides of the outer shroud block. In one attachment, the hook portions are engageable with, and are positioned within, the open slots.

  12. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect (OSTI)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  13. System for pressure modulation of turbine sidewall cavities

    DOE Patents [OSTI]

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A system and method are provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  14. Method for pressure modulation of turbine sidewall cavities

    DOE Patents [OSTI]

    Leone, Sal Albert; Book, Matthew David; Banares, Christopher R.

    2002-01-01

    A method is provided for controlling cooling air flow for pressure modulation of turbine components, such as the turbine outer sidewall cavities. The pressure at which cooling and purge air is supplied to the turbine outer side wall cavities is modulated, based on compressor discharge pressure (Pcd), thereby to generally maintain the back flow margin (BFM) so as to minimize excessive leakage and the consequent performance deterioration. In an exemplary embodiment, the air pressure within the third stage outer side wall cavity and the air pressure within the fourth stage outer side wall cavity are each controlled to a respective value that is a respective prescribed percentage of the concurrent compressor discharge pressure. The prescribed percentage may be determined from a ratio of the respective outer side wall pressure to compressor discharge pressure at Cold Day Turn Down (CDTD) required to provide a prescribed back flow margin.

  15. NEXT GENERATION TURBINE SYSTEM STUDY

    SciTech Connect (OSTI)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  16. Static seal for turbine engine

    SciTech Connect (OSTI)

    Salazar, Santiago; Gisch, Andrew

    2014-04-01

    A seal structure for a gas turbine engine, the seal structure including first and second components located adjacent to each other and forming a barrier between high and low pressure zones. A seal cavity is defined in the first and second components, the seal cavity extending to either side of an elongated gap extending generally in a first direction between the first and second components. A seal member is positioned within the seal cavity and spans across the elongated gap. The seal member includes first and second side edges extending into each of the components in a second direction transverse to the first direction, and opposing longitudinal edges extending between the side edges generally parallel to the first direction. The side edges include a groove formed therein for effecting a reduction of gas flow around the seal member at the side edges.

  17. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants

    SciTech Connect (OSTI)

    2015-08-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.

  18. Turbine stator vane segment having internal cooling circuits

    DOE Patents [OSTI]

    Jones, Raymond Joseph; Burns, James Lee; Bojappa, Parvangada Ganapathy; Jones, Schotsch Margaret

    2003-01-01

    A turbine stator vane includes outer and inner walls each having outer and inner chambers and a vane extending between the outer and inner walls. The vane includes first, second, third, fourth and fifth cavities for flowing a cooling medium. The cooling medium enters the outer chamber of the outer wall, flows through an impingement plate for impingement cooling of the outer band wall defining in part the hot gas path and through openings in the first, second and fourth cavities for flow radially inwardly, cooling the vane. The spent cooling medium flows into the inner wall and inner chamber for flow through an impingement plate radially outwardly to cool the inner wall. The spent cooling medium flows through the third cavity for egress from the turbine vane segment from the outer wall. The first, second or third cavities contain inserts having impingement openings for impingement cooling of the vane walls. The fifth cavity provides air cooling for the trailing edge.

  19. Wind Turbine System State Awareness

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2011-02-08

    Researchers at the Los Alamos National Laboratory Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic wind loading....

  20. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  1. Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Technology at Florida Atlantic University, are ... Marine & Hydrokinetic Technologies WIND AND WATER POWER ... Renewable Power Company's Turbine Generator Unit, NRELPIX ...

  2. Viryd Technologies Ningbo Shentong JV | Open Energy Information

    Open Energy Info (EERE)

    Technologies & Ningbo Shentong JV Place: China Sector: Wind energy Product: China-based joint venture to manufacture wind turbines. References: Viryd Technologies & Ningbo...

  3. Controlled pilot oxidizer for a gas turbine combustor

    DOE Patents [OSTI]

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  4. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    SciTech Connect (OSTI)

    Albrecht H. Mayer

    2000-07-15

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  5. Electrical generation using a vertical-axis wind turbine

    SciTech Connect (OSTI)

    Clark, R.N.

    1982-12-01

    Traditionally, windmills have been of the propeller or multiblade types, both of which have their rotational axis parallel to the flow of the wind. A vertical-axis wind turbine has its rotational axis perpendicular to the flow of wind and requires no orientation to keep the rotor in the windstream. The vertical-axis wind turbine operates on the same principle as an airfoil and produces lift and drag as any airfoil. A newly designed 100-kW vertical-axis wind turbine has been operated for one year at the USDA Conservation and Production Research Laboratory, Bushland, TX. The turbine has an induction generator and supplies power to a sprinkler irrigation system with excess power being sold to the electric utility. The turbine begins producing power at 5.5 m/s windspeed and reaches its rated output of 100-kW at 15 m/s. The unit has obtained a peak efficiency of 48% at a windspeed of 8 m/s or 81% of theoretical maximum. Using 17 years of windspeed data from the National Weather Service, the annual energy output is estimated at 200,000 kWh. The unit has experienced several operational problems during its initial testing. Guy cables were enlarged to provide greater stiffness to reduce blade stress levels, lightning shorted the main contactor, and the brake system required a complete redesign and modification. The turbine was operational about 60% of the time.

  6. Evolution of Westinghouse heavy-duty power generation and industrial combustion turbines

    SciTech Connect (OSTI)

    Scalzo, A.J.; Bannister, R.L.; DeCorso, M.; Howard, G.S.

    1996-04-01

    This paper reviews the evolution of heavy-duty power generation and industrial combustion turbines in the United States from a Westinghouse Electric Corporation perspective. Westinghouse combustion turbine genealogy began in March of 1943 when the first wholly American designed and manufactured jet engine went on test in Philadelphia, and continues today in Orlando, Florida, with the 230 MW, 501G combustion turbine. In this paper, advances in thermodynamics, materials, cooling, and unit size will be described. Many basic design features such as two-bearing rotor, cold-end drive, can-annular internal combustors, CURVIC{sup 2} clutched turbine disks, and tangential exhaust struts have endured successfully for over 40 years. Progress in turbine technology includes the clean coal technology and advanced turbine systems initiatives of the US Department of Energy.

  7. Advanced coal-fueled gas turbine systems reference system definition update

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

  8. TEDANN: Turbine engine diagnostic artificial neural network

    SciTech Connect (OSTI)

    Kangas, L.J.; Greitzer, F.L.; Illi, O.J. Jr.

    1994-03-17

    The initial focus of TEDANN is on AGT-1500 fuel flow dynamics: that is, fuel flow faults detectable in the signals from the Electronic Control Unit`s (ECU) diagnostic connector. These voltage signals represent the status of the Electro-Mechanical Fuel System (EMFS) in response to ECU commands. The EMFS is a fuel metering device that delivers fuel to the turbine engine under the management of the ECU. The ECU is an analog computer whose fuel flow algorithm is dependent upon throttle position, ambient air and turbine inlet temperatures, and compressor and turbine speeds. Each of these variables has a representative voltage signal available at the ECU`s J1 diagnostic connector, which is accessed via the Automatic Breakout Box (ABOB). The ABOB is a firmware program capable of converting 128 separate analog data signals into digital format. The ECU`s J1 diagnostic connector provides 32 analog signals to the ABOB. The ABOB contains a 128 to 1 multiplexer and an analog-to-digital converter, CP both operated by an 8-bit embedded controller. The Army Research Laboratory (ARL) developed and published the hardware specifications as well as the micro-code for the ABOB Intel EPROM processor and the internal code for the multiplexer driver subroutine. Once the ECU analog readings are converted into a digital format, the data stream will be input directly into TEDANN via the serial RS-232 port of the Contact Test Set (CTS) computer. The CTS computer is an IBM compatible personal computer designed and constructed for tactical use on the battlefield. The CTS has a 50MHz 32-bit Intel 80486DX processor. It has a 200MB hard drive and 8MB RAM. The CTS also has serial, parallel and SCSI interface ports. The CTS will also host a frame-based expert system for diagnosing turbine engine faults (referred to as TED; not shown in Figure 1).

  9. Compound cooling flow turbulator for turbine component

    DOE Patents [OSTI]

    Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J

    2014-11-25

    Multi-scale turbulation features, including first turbulators (46, 48) on a cooling surface (44), and smaller turbulators (52, 54, 58, 62) on the first turbulators. The first turbulators may be formed between larger turbulators (50). The first turbulators may be alternating ridges (46) and valleys (48). The smaller turbulators may be concave surface features such as dimples (62) and grooves (54), and/or convex surface features such as bumps (58) and smaller ridges (52). An embodiment with convex turbulators (52, 58) in the valleys (48) and concave turbulators (54, 62) on the ridges (46) increases the cooling surface area, reduces boundary layer separation, avoids coolant shadowing and stagnation, and reduces component mass.

  10. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  11. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, William N.

    1985-01-01

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  12. Turbine nozzle attachment system

    DOE Patents [OSTI]

    Norton, Paul F.; Shaffer, James E.

    1995-01-01

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

  13. Gas turbine sealing apparatus

    DOE Patents [OSTI]

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  14. Turbine nozzle attachment system

    DOE Patents [OSTI]

    Norton, P.F.; Shaffer, J.E.

    1995-10-24

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

  15. Auli Technology | Open Energy Information

    Open Energy Info (EERE)

    Auli Technology Jump to: navigation, search Name: Auli Technology Place: Brazil Zip: 12.223.900 Sector: Wind energy Product: 500kW to 800kW wind turbine designer and manufacturer...

  16. Redox Flow Batteries for Grid-scale Energy Storage - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Energy Storage Energy Storage Find More Like This Return to Search Redox Flow Batteries for Grid-scale Energy Storage Pacific Northwest National Laboratory Contact PNNL About This Technology A schematic of an upgraded vanadium redox batter shows how using both hydrochloric and sulfuric acids in the electrolyte significantly improves the battery&#39;s performance and could also improve the electric grid&#39;s reliability and help connect more wind turbines and solar panels to

  17. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  18. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Gary Grider (second from right) with the 2015 Richard P. Feynman Innovation Prize. Also pictured (left to right): Duncan McBranch, Chief Technology Officer of Los Alamos National Laboratory; Terry Wallace, Program Associate Director for Global Security at Los Alamos; and Lee

  19. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  20. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The HiWAIS technology is a significant step forward in the warfighter support arena. Honeybees for Explosive Detection Honeybees for Explosive Detection Los Alamos researchers have ...

  1. Ceramic gas turbine shroud

    DOE Patents [OSTI]

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  2. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  3. Multiple piece turbine airfoil

    SciTech Connect (OSTI)

    Kimmel, Keith D; Wilson, Jr., Jack W.

    2010-11-02

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

  4. Development of a more fish tolerant turbine runner advanced hydropower turbine project. Final report

    SciTech Connect (OSTI)

    Cook, T.C.; Hecker, G.E.; Faulkner, H.B.; Jansen, W.

    1997-01-01

    The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. Flow characteristics of the new runner were analyzed using two- dimensional and three-dimensional Computational Fluid Dynamic (CFD) models. The basic runner geometry was initially selected using the two-dimensional model. The three-dimensional model was used to investigate the flow characteristics in detail through the entire runner and to refine the design by eliminating potential problem areas at the leading and trailing edges. Results of the analyses indicated that the runner has characteristics which should provide safe fish passage with an overall power efficiency of approximately 90%. The size of the new runner, which is larger than conventional turbine runners with the same design flow and head, will provide engineering, fabrication, and installation.challenges related to the turbine components and the civil works. A small reduction in the overall efficiency would reduce the size of the runner considerably, would simplify the turbine manufacturing operations, and would allow installation of the new turbine at more hydroelectric sites.

  5. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Applications - Volume I, January 2000 | Department of Energy Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications - Volume I, January 2000 Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications - Volume I, January 2000 In this January 2000 report, Arthur D. Little provides an assessment of the opportunities for micropower and fuel cell/gas turbine hybrid technologies in the industrial sector for

  6. Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platforms is Demonstrated | Department of Energy Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated August 17, 2015 - 10:04am Addthis Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated Alana Duerr Alana Duerr Ph.D., Ocean Engineer (New West Technologies) More than 4,000 gigawatts of estimated

  7. Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project 13_aquantismhk_da_alexfleming.pptx (2.33 MB) More Documents & Publications Aquantis 2.5MW Ocean Current Generation Device 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies CX-005670: Categorical

  8. Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meet Certification Requirements | Department of Energy Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements October 1, 2015 - 1:04pm Addthis Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office On October 1, the Energy

  9. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    2008-12-01

    General Electric Global Research will define, develop, and test new fuel nozzle technology concepts for gas turbine operation on a wide spectrum of opportunity fuels and/or fuel blends. This will enable gas turbine operation on ultra-low Btu fuel streams such as very weak natural gas, highly-diluted industrial process gases, or gasified waste streams that are out of the capability range of current turbine systems.

  10. Microsoft Word - Turbine Manufactures MOU FINAL_5-31-08_.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    this Memorandum of Understanding (MOU), the U.S. Department of Energy (DOE) and the signing members of the wind turbine industry (the Parties) agree to work cooperatively to define and develop the framework for appropriate technology R&D and siting strategies for realizing 20% Wind Energy by 2030. The Parties intend to address several specific needs in the following areas: * Turbine Reliability and Operability R&D to create more reliable components, improve turbine capacity factors, and

  11. Comparison of Second-Order Loads on a Semisubmersible Floating Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Gueydon, S.; Duarte, T.; Jonkman, J.; Bayati, I.; Sarmento, A.

    2014-03-01

    As offshore wind projects move to deeper waters, floating platforms become the most feasible solution for supporting the turbines. The oil and gas industry has gained experience with floating platforms that can be applied to offshore wind projects. This paper focuses on the analysis of second-order wave loading on semisubmersible platforms. Semisubmersibles, which are being chosen for different floating offshore wind concepts, are particularly prone to slow-drift motions. The slack catenary moorings usually result in large natural periods for surge and sway motions (more than 100 s), which are in the range of the second-order difference-frequency excitation force. Modeling these complex structures requires coupled design codes. Codes have been developed that include turbine aerodynamics, hydrodynamic forces on the platform, restoring forces from the mooring lines, flexibility of the turbine, and the influence of the turbine control system. In this paper two different codes are employed: FAST, which was developed by the National Renewable Energy Laboratory, and aNySIM, which was developed by the Maritime Research Institute Netherlands. The hydrodynamic loads are based on potential-flow theory, up to the second order. Hydrodynamic coefficients for wave excitation, radiation, and hydrostatic forces are obtained with two different panel codes, WAMIT (developed by the Massachusetts Institute of Technology) and DIFFRAC (developed by MARIN). The semisubmersible platform, developed for the International Energy Agency Wind Task 30 Offshore Code Comparison Collaboration Continuation project is used as a reference platform. Irregular waves are used to compare the behavior of this platform under slow-drift excitation loads. The results from this paper highlight the effects of these loads on semisubmersible-type platforms, which represent a promising solution for the commercial development of the offshore deepwater wind resource.

  12. Advanced wind turbine design studies: Advanced conceptual study. Final report

    SciTech Connect (OSTI)

    Hughes, P; Sherwin, R

    1994-08-01

    In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

  13. Dissipation of turbulence in the wake of a wind turbine

    SciTech Connect (OSTI)

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  14. Dissipation of turbulence in the wake of a wind turbine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  15. Technology Performance Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Meeting * Open invitation for peer review 12 | Building Technologies Office ... data flows with Building Component Library * Seamless information flow from ...

  16. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    DOE Patents [OSTI]

    Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  17. Laboratory Demonstration of a New American Low-Head Hydropower Turbine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine 68b_hydrogreen_small_hydro_ch_11.ppt (278 KB) More Documents & Publications Real World Demonstration of a New American Low-Head Hydropower Unit Turbine Aeration Physical Modeling and Software Design Scalable Low-head Axial-type Venturi-flow Energy Scave

  18. Optical monitoring system for a turbine engine

    DOE Patents [OSTI]

    Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

    2013-05-14

    The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

  19. High efficiency turbine blade coatings.

    SciTech Connect (OSTI)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  20. Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines

    SciTech Connect (OSTI)

    Maples, B.; Hand, M.; Musial, W.

    2010-10-01

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

  1. NREL: Technology Transfer - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing technologies and equipment for wind turbine blades up to 100 m in length September ... to the nation's current energy challenges by reducing dependence on foreign oil. ...

  2. National Energy Technology Laboratory | Open Energy Information

    Open Energy Info (EERE)

    as its scientists, engineers, and analysts advance not only coal- and natural-gas-based power systems, but vehicle technologies, fuel cells, hydrogen turbines, water conservation...

  3. NREL: Technology Transfer - NREL, Collaborators Complete Gearbox...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to create an innovative drivetrain. The innovative, medium speed, medium-voltage wind turbine drivetrain design was developed with CREE, DNV KEMA, Romax Technology, and...

  4. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect (OSTI)

    Joseph Rabovitser

    2009-06-30

    , pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  5. Combustor assembly in a gas turbine engine

    SciTech Connect (OSTI)

    Wiebe, David J; Fox, Timothy A

    2015-04-28

    A combustor assembly in a gas turbine engine includes a combustor device, a fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner surrounded by the flow sleeve. The fuel injection system provides fuel to be mixed with the pressurized air and ignited in the liner to create combustion products. The intermediate duct is disposed between the liner and the transition duct so as to define a path for the combustion products to flow from the liner to the transition duct. The intermediate duct is associated with the liner such that movement may occur therebetween, and the intermediate duct is associated with the transition duct such that movement may occur therebetween. The flow sleeve includes structure that defines an axial stop for limiting axial movement of the intermediate duct.

  6. NUMERICAL SIMULATIONS OF THE EFFECTS OF CHANGING FUEL FOR TURBINES FIRED BY NATURAL GAS AND SYNGAS

    SciTech Connect (OSTI)

    Sabau, Adrian S; Wright, Ian G

    2007-01-01

    Gas turbines in integrated gasification combined cycle (IGCC) power plants burn a fuel gas (syngas) in which the proportions of hydrocarbons, H2, CO, water vapor, and minor impurity levels may vary significantly from those in natural gas, depending on the input feed to the gasifier and the gasification process. A data structure and computational methodology is presented for the numerical simulation of a turbine thermodynamic cycle for various fuel types, air/fuel ratios, and coolant flow rates. The approach used allowed efficient handling of turbine components and different variable constraints due to fuel changes. Examples are presented for a turbine with four stages and cooled blades. The blades were considered to be cooled in an open circuit, with air provided from appropriate compressor stages. Results are presented for the temperatures of the hot gas, alloy surface (coating-superalloy interface), and coolant, as well as for cooling flow rates. Based on the results of the numerical simulations, values were calculated for the fuel flow rates, airflow ratios, and coolant flow rates required to maintain the superalloy in the first stage blade at the desired temperature when the fuel was changed from natural gas (NG) to syngas (SG). One NG case was conducted to assess the effect of coolant pressure matching between the compressor extraction points and corresponding turbine injection points. It was found that pressure matching is a feature that must be considered for high combustion temperatures. The first series of SG simulations was conducted using the same inlet mass flow and pressure ratios as those for the NG case. The results showed that higher coolant flow rates and a larger number of cooled turbine rows were needed for the SG case. Thus, for this first case, the turbine size would be different for SG than for NG. In order to maintain the original turbine configuration (i.e., geometry, diameters, blade heights, angles, and cooling circuit characteristics) for

  7. Starting of turbine engines

    SciTech Connect (OSTI)

    Shekleton, J.R.

    1990-05-01

    This patent describes a relatively small turbine engine. It comprises: a rotary turbine wheel; a rotary compressor coupled to the turbine wheel; an annular combustor for receiving air from the compressor and fuel from a fuel source combusting the same and providing gases of combustion to the turbine wheel to drive the same; substantially identical main fuel injectors including fuel injecting nozzles angularly spaced about the compressor; fuel and air from the compressor being introduced into the combustor generally in the tangential direction; a fuel pump; a control schedule valve; and first and second main fuel solenoid valves. The first valve being operable to connect a minority of the injectors to the control schedule valve and the fuel pump for starting the engine, there being an even number of the injectors and the minority of injectors consisting of two diametrically opposite injectors; the first and second valves being operable to connect all of the injectors to the control schedule valve and the pump for causing normal operation of the engine; the engine further being characterized by the absence of start fuel injectors for the combustor.

  8. Turbine vane structure

    DOE Patents [OSTI]

    Irwin, John A.

    1980-08-19

    A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

  9. Double-rotor rotary engine and turbine

    SciTech Connect (OSTI)

    Lin, A.S.

    1990-04-03

    This patent describes a double-rotor engine. It comprises: a base; a housing rotatably mounted to the base and forming a radial cylinder; an output shaft rotatably mounted concentric with the housing and having an arm rigidly extending therefrom within the housing; a piston slidingly engaging the cylinder and forming a combustion chamber with the cylinder; means for admitting a fuel-air mixture into the cylinder; means for releasing combustion products from the cylinder following operation of the expanding means; turbine means operatively connected between the base and the housing, the turbine means providing a torque reaction against the housing in response to flow of the combustion products from the releasing means; and stop means on the shaft for limiting the relative movement between the shaft and the housing.

  10. Turbine airfoil with ambient cooling system

    DOE Patents [OSTI]

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  11. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect (OSTI)

    Gates, S.

    1995-12-31

    Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

  12. Wind turbine reliability : a database and analysis approach.

    SciTech Connect (OSTI)

    Linsday, James; Briand, Daniel; Hill, Roger Ray; Stinebaugh, Jennifer A.; Benjamin, Allan S.

    2008-02-01

    The US wind Industry has experienced remarkable growth since the turn of the century. At the same time, the physical size and electrical generation capabilities of wind turbines has also experienced remarkable growth. As the market continues to expand, and as wind generation continues to gain a significant share of the generation portfolio, the reliability of wind turbine technology becomes increasingly important. This report addresses how operations and maintenance costs are related to unreliability - that is the failures experienced by systems and components. Reliability tools are demonstrated, data needed to understand and catalog failure events is described, and practical wind turbine reliability models are illustrated, including preliminary results. This report also presents a continuing process of how to proceed with controlling industry requirements, needs, and expectations related to Reliability, Availability, Maintainability, and Safety. A simply stated goal of this process is to better understand and to improve the operable reliability of wind turbine installations.

  13. Assessment of U.S. Manufacturing Capability for Next-Generation Wind Turbine Drivetrains

    SciTech Connect (OSTI)

    Cotrell, J.; Stelhy, T.

    2013-09-01

    Robust U.S. wind turbine manufacturing capabilities and supply chains are important for the United States to reduce the cost of electricity generated from wind turbines. These capabilities and supply chains are also critical to the invention and commercialization of new wind turbine technologies while providing high-quality jobs. The development of advanced drivetrain technologies for windturbine applications is advancing the state of the art for drivetrain design by producing higher capacity and operating reliability than conventional drivetrains. Advanced drivetrain technologies such as medium-speed and direct-drive generators, silicon-carbide (SiC) IGBT-based power electronics, and high torque density speed increasers require different manufacturing and supply chaincapabilities that present both risks and opportunities for U.S. wind turbine manufacturers and the wind industry as a whole. The primary objective of this project is to assess how advanced drivetrain technologies and trends will impact U.S. wind turbine manufacturing and its supply chains. The U.S. Department of Energy and other industry participants will use the information from this study toidentify domestic manufacturing gaps, barriers, and opportunities for developing U.S. wind turbine manufacturing capabilities and supply chains for next-generation drivetrain technologies. This report also includes recommendations for prioritizing technology areas for possible investments by public, private, or nonprofit entities that will reduce the cost of wind-generated electricity. Suchinvestments foster opportunities to invent and commercialize new wind turbine technologies, and provide high-quality jobs in the United States.

  14. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect (OSTI)

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  15. Turbine blade tip gap reduction system

    SciTech Connect (OSTI)

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  16. Ceramic Stationary Gas Turbine Development. Technical progress report, April 1, 1993--October 31, 1994

    SciTech Connect (OSTI)

    1994-12-01

    This report summarizes work performed by Solar Technologies Inc. and its subcontractors, during the period April 1, 1993 through October 31, 1994 under Phase II of the DOE Ceramic Stationary Gas Turbine Development program. The objective of the program is to improve the performance of stationary gas turbines in cogeneration through the implementation of selected ceramic components.

  17. 1.5 MW turbine installation at NREL's NWTC on Aug. 21

    ScienceCinema (OSTI)

    None

    2013-05-29

    Generating 20 percent of the nation's electricity from clean wind resources will require more and bigger wind turbines. NREL is installing two large wind turbines at the National Wind Technology Center to examine some of the industry's largest machines and address issues to expand wind energy on a commercial scale.

  18. Advanced Wind Turbine Drivetrain Concepts: Workshop Report, June 29-30, 2010

    SciTech Connect (OSTI)

    DOE, EERE

    2010-12-01

    This report presents key findings from the Department of Energy's Advanced Drivetrain Workshop, held on June 29-30, 2010 in Broomfield, Colorado, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  19. Keeping America Competitive: Bringing Down the Cost of Small Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Bringing Down the Cost of Small Wind Turbines Keeping America Competitive: Bringing Down the Cost of Small Wind Turbines January 23, 2013 - 2:26pm Addthis Bison standing in front of a 10 kW wind turbine manufactured by Bergey Windpower Company. | Photo by Northwest Seed, NREL. Bison standing in front of a 10 kW wind turbine manufactured by Bergey Windpower Company. | Photo by Northwest Seed, NREL. Mark Higgins Operations Supervisor, Wind & Water Power Technologies

  20. Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)

    SciTech Connect (OSTI)

    Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D.; Schreck, S.

    2012-01-01

    Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.