Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Flow Test At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP) JumpColrado Area

2

Flow Test At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs ActualInformationAlum Area (DOE GTP) Jump

3

Flow Test At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)Open Energy

4

Flow Test At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal AreaWister Area (DOE GTP) Jump

5

Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test AtFlow

6

Flow Test At Hot Pot Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test AtFlowHot

7

Flow Test At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test At Fort

8

Flow Test At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test At

9

Flow Test At Mccoy Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test

10

Flow Test At Pilgrim Hot Springs Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow TestPilgrim

11

Flow Test At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)FlowArea (DOE GTP)

12

Flow Test At Snake River Plain Region (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow

13

Flow Test At Black Warrior Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP) Jump to:

14

Flow Test At Flint Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP) Jump to:

15

Flow Test At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP) Jump to:Jemez

16

Flow Test At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)Open EnergyMcgee

17

Flow Test At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNew River

18

Flow Test At Newberry Caldera Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNew

19

Flow Test At Rye Patch Area (DOE GTP, 2011) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOEEnergyEnergyDOE GTP,

20

gtp_flow_power_estimator.xlsx  

Broader source: Energy.gov [DOE]

This simple spreadsheet model estimates either the flow rate required to produce a specified level of power output, or the power output that can be produced from a specified flow rate.

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Flowing Electrical Conductivity At Jemez Pueblo Area (DOE GTP) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)FlowAreaEnergy

22

Data Flow Testing Neelam Gupta  

E-Print Network [OSTI]

Data Flow Testing Neelam Gupta The University of Arizona, Tucson, Arizona and Rajiv Gupta The University of Arizona, Tucson, Arizona Software testing techniques are designed to execute a program on a set of test cases that provide suÃ?cient coverage under some speci#12;c well-de#12;ned test coverage criterion

Gupta, Rajiv

23

Flow Test At Crump's Hot Springs Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs ActualInformationAlum Area (DOE

24

Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs

25

Flow Test At San Emidio Desert Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOEEnergyEnergyDOE

26

Flow Test At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOEEnergyEnergyDOE

27

Flow Test At Soda Lake Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOEEnergyEnergyDOESoda

28

Flow Test At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNewFlow Test

29

Structural Testing: An Introduction Flow Graphs Path Testing Conclusions Path Testing  

E-Print Network [OSTI]

Structural Testing: An Introduction Flow Graphs Path Testing Conclusions Path Testing Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing, 2013 Mousavi: Path Testing #12;Structural Testing: An Introduction Flow Graphs Path Testing Conclusions Outline Structural

Mousavi, Mohammad

30

Structural Testing: An Introduction Flow Graphs Path Testing Conclusions Path Testing  

E-Print Network [OSTI]

Structural Testing: An Introduction Flow Graphs Path Testing Conclusions Path Testing Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing, 2012 Mousavi: Path Testing #12;Structural Testing: An Introduction Flow Graphs Path Testing Conclusions Outline Structural

Mousavi, Mohammad

31

Flow Test At Coso Geothermal Area (1978) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs ActualInformationAlum Area (DOE GTP)Flow

32

Integrated Lateral Flow Test Strip with Electrochemical Sensor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lateral Flow Test Strip with Electrochemical Sensor for Quantification of Phosphorylated Cholinesterase: Biomarker of Integrated Lateral Flow Test Strip with Electrochemical Sensor...

33

Review of flow battery testing at Sandia  

SciTech Connect (OSTI)

Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper will update previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60-sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data will be described for these batteries and cells.

Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

1984-01-01T23:59:59.000Z

34

Final report for the flow excursion follow-on testing  

SciTech Connect (OSTI)

The purpose of the Mark 22 Flow Excursion Follow-On testing was to investigate the theory that approximately 15% of the flow bypassed the primary flow channels in previous testing, whereas the design called for only a 3% bypass. The results of the follow-on tests clearly confirmed this theory. The testing was performed in two phases. During the first phase, characterization tests performed during the earlier test program were repeated.

Nash, C.A.; Walters, T.W.

1992-08-05T23:59:59.000Z

35

Category:Flow Test | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind FarmAdd a new Federal Oil andFlow Test

36

Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Flow Test Activity Date 2002 - 2002 Usefulness not useful...

37

allosteric gtp activation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Translocation of proteins across the endoplasmic reticulum membrane is a GTP-dependent process. The signal recognition particle (SRP) and the SRP receptor both contain subunits...

38

Flow Test At Valles Caldera - Sulphur Springs Geothermal Area (Musgrave, Et  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)FlowArea (DOE

39

Flow Test At Raft River Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNewFlow

40

Flow Test At Raft River Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNewFlow6

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Results of no-flow rotary drill bit comparison testing  

SciTech Connect (OSTI)

This document describes the results of testing of a newer rotary sampling bit and sampler insert called the No-Flow System. This No-Flow System was tested side by side against the currently used rotary bit and sampler insert, called the Standard System. The two systems were tested using several ''hard to sample'' granular non-hazardous simulants to determine which could provide greater sample recovery. The No-Flow System measurably outperformed the Standard System in each of the tested simulants.

WITWER, K.S.

1998-11-30T23:59:59.000Z

42

GTP ARRA Spreadsheet | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy IncFOR EGS HomeInformationGTP

43

Tubulin Polymerization with GTP/GMPCPP/Taxol I. Solutions & Supplies  

E-Print Network [OSTI]

Tubulin Polymerization with GTP/GMPCPP/Taxol I. Solutions & Supplies BRB80 (1X): 80 mM PIPES, 1 m' at 90K at 2¡C. We especially recommend this clarification when polymerization includes GMPCPP and prior to microinjection. III. GTP Polymerization 1. On ice mix unlabeled tubulin and labeled tubulin

Mitchison, Tim

44

Flight test measurements and theoretical lift prediction for flow energizers  

E-Print Network [OSTI]

OF SCIENCE May 1986 Major Subject: Aerospace Engineering FLIGHT TEST MEASUREMENTS AND THEORETICAL LIFT PREDICTION FOR FLOW ENERGIZERS A Thesis by AHIT ARAVIND PRADHAN Approved as to style and content by: Donald T. Mard (Chairman of Committee...) Howard L. Chevalier (Member) Garng H. Huang (Member) gg~j(EC( C, Clogs' Malter E. Haisler (Head of Department) Hay 1986 ABSTRACT Flight Test Measurements and Theoretical Lift prediction for Flow Energizers. (May 1986) Amit Aravind Pradhan, B...

Pradhan, Amit Aravind

1986-01-01T23:59:59.000Z

45

Hanford Tank Farms Waste Certification Flow Loop Test Plan  

SciTech Connect (OSTI)

A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

2010-01-01T23:59:59.000Z

46

Non-equilibrium self-assembly of a filament coupled to ATP/GTP hydrolysis  

E-Print Network [OSTI]

We study the stochastic dynamics of growth and shrinkage of single actin filaments or microtubules taking into account insertion, removal, and ATP/GTP hydrolysis of subunits. The resulting phase diagram contains three different phases: a rapidly growing phase, an intermediate phase and a bound phase. We analyze all these phases, with an emphasis on the bound phase. We also discuss how hydrolysis affects force-velocity curves. The bound phase shows features of dynamic instability, which we characterize in terms of the time needed for the ATP/GTP cap to disappear as well as the time needed for the filament to reach a length of zero, i.e., (to collapse) for the first time. We obtain exact expressions for all these quantities, which we test using Monte Carlo simulations.

Padinhateeri Ranjith; David Lacoste; Kirone Mallick; Jean-Francois Joanny

2008-09-12T23:59:59.000Z

47

Flow tests of the Gladys McCall well  

SciTech Connect (OSTI)

This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 md (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor pills'' directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.

Randolph, P.L.; Hayden, C.G.; Rogers, L.A. (Institute of Gas Technology, Chicago, IL (United States))

1992-04-01T23:59:59.000Z

48

GTP Adds Meeting on the National Geothermal Data System Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and activities of the NGDS team. The meeting will take place at the Hyatt Regency Crystal City in Arlington, VA, on Monday, May 17, 2010, just preceding the GTP Peer Review...

49

Reversing Flow Test Facility. Technical report, March 1986  

SciTech Connect (OSTI)

The Reversing Flow Test Facility (RFTF) is intended for the study of fluid flow and heat transfer under the reversing-flow conditions that occur in Stirling engines. the facility consists of four major parts: (1) Mechanical Drive - two cylinders with cam-driven pistons which generate the reversing gas flow, (2) Test Section - a U-shaped section containing instrumented test pieces, (3) Instruments -l high-speed transducers for measuring gas pressure and temperature, piston positions, and other system parameters, and (4) Data Acquisition System - a computer-based system able to acquire, store, display and analyze the data from the instruments. The RFTF can operate at pressures up to 8.0 MPa, hot-side temperatures to 800/sup 0/C, and flow-reversal frequencies to 50 Hz. Operation to data has used helium as the working gas at pressures of 3.0 and 6.0 MPa, at ambient temperature, and at frequencies from 1 to 50 Hz. The results show that both frictional and inertial parts of the pressure drop are significant in the heater, coolers and connecting tubes; the inertial part is negligible in the regenerators. In all cases, the frictional part of the pressure drop is nearly in phase with the mass flow. 18 refs., 22 figs., 13 tabs.

Roach, P.D.

1986-04-01T23:59:59.000Z

50

Intracellular GTP level determines cell's fate toward differentiation and apoptosis  

SciTech Connect (OSTI)

Since the adequate supply of guanine nucleotides is vital for cellular activities, limitation of their syntheses would certainly result in modulation of cellular fate toward differentiation and apoptosis. The aim of this study was to set a correlation between the intracellular level of GTP and the induction of relevant signaling pathways involved in the cell's fate toward life or death. In that regard, we measured the GTP level among human leukemia K562 cells exposed to mycophenolic acid (MPA) or 3-hydrogenkwadaphnin (3-HK) as two potent inosine monophosphate dehydrogenase inhibitors. Our results supported the maturation of the cells when the intracellular GTP level was reduced by almost 30-40%. Under these conditions, 3-HK and/or MPA caused up-regulation of PKC{alpha} and PI3K/AKT pathways. Furthermore, co-treatment of cells with hypoxanthine plus 3-HK or MPA, which caused a reduction of about 60% in the intracellular GTP levels, led to apoptosis and activation of mitochondrial pathways through inverse regulation of Bcl-2/Bax expression and activation of caspase-3. Moreover, our results demonstrated that attenuation of GTP by almost 60% augmented the intracellular ROS and nuclear localization of p21 and subsequently led to cell death. These results suggest that two different threshold levels of GTP are needed for induction of differentiation and/or ROS-associated apoptosis. - Graphical abstract: Display Omitted

Meshkini, Azadeh; Yazdanparast, Razieh, E-mail: yazdan@ibb.ut.ac; Nouri, Kazem

2011-06-15T23:59:59.000Z

51

Design verification and cold-flow modeling test report  

SciTech Connect (OSTI)

This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, and TRW proprietary information has been excluded.

Not Available

1993-07-01T23:59:59.000Z

52

Test experience with multiterminal HVDC load flow and stability programs  

SciTech Connect (OSTI)

A powerful new set of load flow and stability programs for the study of HVdc systems has recently been completed. During the development of the programs novel applications of multiterminal HVdc systems were investigated, firstly on a large test system and later on actual utility models. This paper describes the test systems used, the HVdc systems studied and some of the interesting system related aspects of the HVdc system performance.

Chapman, D.G.; Davies, J.B. (Manitoba HVDC Research Centre, Winnipeg, Manitoba (CA)); McNichol, J.R. (Manitoba Hydro, Winnipeg, Manitoba (CA)); Gulachenski, E.M.; Doe, S. (New England Power Service Co., Westboro, MA (US)); Balu, N.J. (EPRI, Palo Alto, CA (US))

1988-07-01T23:59:59.000Z

53

Analysis of Alcove 8/Niche 3 Flow and Transport Tests  

SciTech Connect (OSTI)

The purpose of this report is to document analyses of the Alcove 8/Niche 3 flow and transport tests, with a focus on the large-infiltration-plot tests and compare pre-test model predictions with the actual test observations. The tests involved infiltration that originated from the floor of Alcove 8 (located in the Enhanced Characterization of Repository Block (ECRB) Cross Drift) and observations of seepage and tracer transport at Niche 3 (located in the Main Drift of the Exploratory Studies Facility (ESF)). The test results are relevant to drift seepage and solute transport in the unsaturated zone (UZ) of Yucca Mountain. The main objective of this analysis was to evaluate the modeling approaches used and the importance of the matrix diffusion process by comparing simulation and actual test observations. The pre-test predictions for the large plot test were found to differ from the observations and the reasons for the differences were documented in this report to partly address CR 6783, which concerns unexpected test results. These unexpected results are discussed and assessed with respect to the current baseline unsaturated zone radionuclide transport model in Sections 6.2.4, 6.3.2, and 6.4.

H.H. Liu

2006-09-01T23:59:59.000Z

54

Flammable gas interlock spoolpiece flow response test report  

SciTech Connect (OSTI)

The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.

Schneider, T.C., Fluor Daniel Hanford

1997-03-24T23:59:59.000Z

55

A review of flow battery testing at Sandia  

SciTech Connect (OSTI)

Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper updates previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data are described for these batteries and cells.

Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

1984-08-01T23:59:59.000Z

56

Field Test of a DHW Distribution System: Temperature and Flow Analyses (Presentation)  

SciTech Connect (OSTI)

This presentation discusses a field test of a DHW distribution system in an occupied townhome. It includes measured fixture flows and temperatures, a tested recirculation system, evaluated disaggregation of flow by measured temperatures, Aquacraft Trace Wizard analysis, and comparison.

Barley, C. D.; Hendron, B.; Magnusson, L.

2010-05-13T23:59:59.000Z

57

Dixie Valley Six Well Flow Test | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermal Area JumpSix Well Flow Test

58

Hollow cylinder dynamic pressurization and radial flow through permeability tests for cementitous materials  

E-Print Network [OSTI]

pressurization test is a potential solution for measuring concrete permeability. The hollow cylinder dynamic pressurization (HDP) test is compared with the radial flow through (RFT) test and the solid cylinder dynamic pressurization (SDP) test to assess...

Jones, Christopher Andrew

2009-05-15T23:59:59.000Z

59

Multispectral Imaging At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum Area (DOE GTP) Jump to:

60

Multispectral Imaging At Fort Bliss Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum Area (DOE GTP) JumpOpen

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Multispectral Imaging At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum Area (DOE GTP)

62

A data flow-based structural testing technique for FBD programs Eunkyoung Jee a  

E-Print Network [OSTI]

(Nuclear Regulatory Commission) [3] mandates that software unit testing for safety-critical systemsA data flow-based structural testing technique for FBD programs Eunkyoung Jee a , Junbeom Yoo b Available online 10 March 2009 Keywords: Software testing Structural testing Test coverage criteria

63

Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson,Mcgee Mountain Area (DOE GTP)

64

Slim Holes At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's HotMaui Area (DOE GTP)

65

FMI Log At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale,OpenFAOSTATOpenMaui Area (DOE GTP)

66

Pre-test CFD Calculations for a Bypass Flow Standard Problem  

SciTech Connect (OSTI)

The bypass flow in a prismatic high temperature gas-cooled reactor (HTGR) is the flow that occurs between adjacent graphite blocks. Gaps exist between blocks due to variances in their manufacture and installation and because of the expansion and shrinkage of the blocks from heating and irradiation. Although the temperature of fuel compacts and graphite is sensitive to the presence of bypass flow, there is great uncertainty in the level and effects of the bypass flow. The Next Generation Nuclear Plant (NGNP) program at the Idaho National Laboratory has undertaken to produce experimental data of isothermal bypass flow between three adjacent graphite blocks. These data are intended to provide validation for computational fluid dynamic (CFD) analyses of the bypass flow. Such validation data sets are called Standard Problems in the nuclear safety analysis field. Details of the experimental apparatus as well as several pre-test calculations of the bypass flow are provided. Pre-test calculations are useful in examining the nature of the flow and to see if there are any problems associated with the flow and its measurement. The apparatus is designed to be able to provide three different gap widths in the vertical direction (the direction of the normal coolant flow) and two gap widths in the horizontal direction. It is expected that the vertical bypass flow will range from laminar to transitional to turbulent flow for the different gap widths that will be available.

Rich Johnson

2011-11-01T23:59:59.000Z

67

An evaluation of pressure and flow measurement in the Molten Salt Test Loop (MSTL) system.  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL allows customers and researchers to test components in flowing, molten nitrate salt at plant-like conditions for pressure, flow, and temperature. An important need in thermal storage systems that utilize molten salts is for accurate flow and pressure measurement at temperatures above 535%C2%B0C. Currently available flow and pressure instrumentation for molten salt is limited to 535%C2%B0C and even at this temperature the pressure measurement appears to have significant variability. It is the design practice in current Concentrating Solar Power plants to measure flow and pressure on the cold side of the process or in dead-legs where the salt can cool, but this practice won't be possible for high temperature salt systems. For this effort, a set of tests was conducted to evaluate the use of the pressure sensors for flow measurement across a device of known flow coefficient Cv. To perform this task, the pressure sensors performance was evaluated and was found to be lacking. The pressure indicators are severely affected by ambient conditions and were indicating pressure changes of nearly 200psi when there was no flow or pressure in the system. Several iterations of performance improvement were undertaken and the pressure changes were reduced to less than 15psi. The results of these pressure improvements were then tested for use as flow measurement. It was found that even with improved pressure sensors, this is not a reliable method of flow measurement. The need for improved flow and pressure measurement at high temperatures remains and will need to be solved before it will be possible to move to high temperature thermal storage systems with molten salts.

Gill, David Dennis; Kolb, William J.; Briggs, Ronald J.

2013-07-01T23:59:59.000Z

68

ANALYSIS OF HIGH PRESSURE TESTS ON WET GAS FLOW METERING WITH A VENTURI METER  

E-Print Network [OSTI]

ANALYSIS OF HIGH PRESSURE TESTS ON WET GAS FLOW METERING WITH A VENTURI METER P. Gajan , Q, 64018 Pau cedex, France pierre.gajan@onera.fr Abstract This work deals with the flow metering of wet gas on the CEESI facilities are presented. They are performed at 75 bars with 0.6 beta ratio Venturi meter

69

ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase...  

Open Energy Info (EERE)

ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase II HDR Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ICFT- An Initial...

70

Experimental investigation of an oscillating circular piston positive displacement flowmeter: II - Leakage flows and wear tests.  

E-Print Network [OSTI]

Experimental data from an oscillating circular piston positive displacement flowmeter are described which focused on leakage flows and wear. This is the second part of a two part paper on the experimental tests, the first part concerned piston...

Morton, Charlotte E; Baker, Roger C; Hutchings, Ian M

71

Test report, air flow control device for 241-SY waste tankventilation  

SciTech Connect (OSTI)

This documents the testing of a passively operated, constant air flow control device for in-duct applications on waste tank ventilation systems in the 50-1000 SCFM range.

Tuck, J.A.

1997-06-03T23:59:59.000Z

72

Preliminary tests using magnetic resonance imaging of two-phase flow patterns and transitions  

SciTech Connect (OSTI)

This paper presents the results of preliminary tests used to establish the feasibility of using magnetic resonance imaging (MRI) to examine and quantitatively characterize two-phase flow patterns and flow transitions. These tests were performed at the University of California, San Francisco (UCSF) School of Medicine MRI Center as a collaborative research effort with Oregon State University (OSU). Special scanning sequences designed by UCSF for flow imaging were implemented in the tests. UCSF operated the MRI facility, and OSU constructed and operated a cocurrent air-water flow loop consisting of a 1-in.-diam test section capable of producing air superficial velocities j[sub g] ranging from 0.3 to 14 m/s, and water superficial velocities j[sub l] ranging from 0.08 to 1.3 m/s.

Reyes, J.N. Jr.; Lafi, A.Y. (Oregon State Univ., Corvallis, OR (United States)); Saloner, D. (Univ. of California, San Francisco, CA (United States))

1993-01-01T23:59:59.000Z

73

Nevada National Security Site Underground Test Area (UGTA) Flow...  

Office of Environmental Management (EM)

December 12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation Nevada National Security Site Underground Test Area...

74

Instrumentation of a light twin aircraft for flow energizer flight tests  

E-Print Network [OSTI]

INSTRUMDITATION OF A LIGHT TWIN AIRCRAFT FOR FLOW ENERGIZER FLIGHT TESTS A Thesis by ROBERT SUSUMU BINFORD Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree of HASTER... OF SCIENCE August 1986 MaJor SubJect: Aerospace Engineering INSTRUMENTATION OF A LIGHT TWIN AIRCRAFT FOR FLOW ENERGIZER FLIGHT TESTS A Thesis by ROBERT SUSUMU BINFORD Approved as to style and content by: Donald T. Ward (Chairman of Committee) Cyrus...

Binford, Robert Susumu

1986-01-01T23:59:59.000Z

75

Single Tube Test Program Demand Curve Data Tables. Columbia University Flow Instability Experimental Program, Volume 9  

SciTech Connect (OSTI)

This report is one of a series of reports which document the flow instability testing conducted by Columbia University during 1989, through 1992. This testing was completed as part of AX1811457. Data files were transmitted to SRS in a DOS compatible format. This report volume provides a hardcopy version of the electronic media data files.

Coutts, D.A.

1993-09-01T23:59:59.000Z

76

Department of Mechanical Engineering Fall 2009 Air Products-Entrained Particle Flow Test Rig  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Fall 2009 Air Products-Entrained Particle Flow Test are causing catalyst plugging. Objectives Air Products requested that a test rig be constructed to entrain the hydrogen reforming facilities and aid Air Products in understanding the plugging problem. Approach

Demirel, Melik C.

77

CFD Simulation and Experimental Testing of Multiphase Flow Inside the MVP Electrical Submersible Pump  

E-Print Network [OSTI]

to test the pump at different operating conditions. The pump is modeled and tested at two speeds; 3300 and 3600 rpm, using air-water mixtures with GVFs of 0, 5, 10, 25, 32 and 35%. The flow loop is controlled to produce different suction pressures up...

Rasmy Marsis, Emanuel 1983-

2012-08-16T23:59:59.000Z

78

Effect of flow leakage on the benchmarking of FLOWTRAN with Mark-22 mockup flow excursion test data from Babcock and Wilcox  

SciTech Connect (OSTI)

This report presents a revised analysis of the Babcock and Wilcox (B and W) downflow flow excursion tests that accounts for leakage between flow channels in the test assembly. Leak rates were estimated by comparing results from the downflow tests with those for upflow tests conducted using an identical assembly with some minor modifications. The upflow test assembly did not contain leaks. This revised analyses shows that FLOWTRAN with the SRS working criterion conservatively predicts onset of flow instability without using a local peaking factor to model heat transfer variations near the ribs.

Chen, Kuo-Fu.

1992-10-01T23:59:59.000Z

79

Results mixed from pulsating flow tests of orifice-plate meters  

SciTech Connect (OSTI)

This paper reports that laboratory tests on several commercially available orifice-plate meters for use in pulsating flow indicate that none yields acceptable accuracy. These tests suggested, however, that if the objective of monitoring pulsating flow is to indicate or quantify pulsation magnitudes for comparisons, then at least two instruments are acceptable. Use of such meters, particularly in low flow rate gathering systems, can be a viable alternative to attempting to reduce the intensity (amplitude and frequency) of pulsation by expensive installation and maintenance of chokes and bottles. Phillips Petroleum Co. set out to find a meter that would be sensitive enough to measure pulsating hydrocarbon flows with acceptable accuracy using the orifice plate. Several orifice measurement systems were simultaneously investigated at the Southwest Research Institute, San Antonio (SwRI).

Arasi, J.A. (Phillips Petroleum Co., Tananger (Norway))

1992-10-05T23:59:59.000Z

80

Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the underground testing areas on a regional scale. The groundwater flow model was used in conjunction with a particle-tracking code to define the pathlines followed by groundwater particles originating from 415 points associated with 253 nuclear test locations. Three of the most rapid pathlines were selected for transport simulations. These pathlines are associated with three nuclear test locations, each representing one of the three largest testing areas. These testing locations are: BOURBON on Yucca Flat, HOUSTON on Central Pahute Mesa, and TYBO on Western Pahute Mesa. One-dimensional stochastic tritium transport simulations were performed for the three pathlines using the Monte Carlo method with Latin hypercube sampling. For the BOURBON and TYBO pathlines, sources of tritium from other tests located along the same pathline were included in the simulations. Sensitivity analyses were also performed on the transport model to evaluate the uncertainties associated with the geologic model, the rates of groundwater flow, the tritium source, and the transport parameters. Tritium concentration predictions were found to be mostly sensitive to the regional geology in controlling the horizontal and vertical position of transport pathways. The simulated concentrations are also sensitive to matrix diffusion, an important mechanism governing the migration of tritium in fractured carbonate and volcanic rocks. Source term concentration uncertainty is most important near the test locations and decreases in importance as the travel distance increases. The uncertainty on groundwater flow rates is as important as that on matrix diffusion at downgradient locations. The risk assessment was performed to provide conservative and bounding estimates of the potential risks to human health and the environment from tritium in groundwater. Risk models were designed by coupling scenario-specific tritium intake with tritium dose models and cancer and genetic risk estimates using the Monte Carlo method. Estimated radiation doses received by individuals from chronic exposure to tritium, and the corre

None

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Continuous-flow stirred-tank reactor 20-L demonstration test: Final report  

SciTech Connect (OSTI)

One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

Lee, D.D.; Collins, J.L.

2000-02-01T23:59:59.000Z

82

Structure and Mutational Analysis of the Archaeal GTP:AdoCbi-P Guanylyltransferase (CobY) from Methanocaldococcus jannaschii: Insights into GTP Binding and Dimerization  

SciTech Connect (OSTI)

In archaea and bacteria, the late steps in adenosylcobalamin (AdoCbl) biosynthesis are collectively known as the nucleotide loop assembly (NLA) pathway. In the archaeal and bacterial NLA pathways, two different guanylyltransferases catalyze the activation of the corrinoid. Structural and functional studies of the bifunctional bacterial guanylyltransferase that catalyze both ATP-dependent corrinoid phosphorylation and GTP-dependent guanylylation are available, but similar studies of the monofunctional archaeal enzyme that catalyzes only GTP-dependent guanylylation are not. Herein, the three-dimensional crystal structure of the guanylyltransferase (CobY) enzyme from the archaeon Methanocaldococcus jannaschii (MjCobY) in complex with GTP is reported. The model identifies the location of the active site. An extensive mutational analysis was performed, and the functionality of the variant proteins was assessed in vivo and in vitro. Substitutions of residues Gly8, Gly153, or Asn177 resulted in {ge}94% loss of catalytic activity; thus, variant proteins failed to support AdoCbl synthesis in vivo. Results from isothermal titration calorimetry experiments showed that MjCobY{sup G153D} had 10-fold higher affinity for GTP than MjCobY{sup WT} but failed to bind the corrinoid substrate. Results from Western blot analyses suggested that the above-mentioned substitutions render the protein unstable and prone to degradation; possible explanations for the observed instability of the variants are discussed within the framework of the three-dimensional crystal structure of MjCobY{sup G153D} in complex with GTP. The fold of MjCobY is strikingly similar to that of the N-terminal domain of Mycobacterium tuberculosis GlmU (MtbGlmU), a bifunctional acetyltransferase/uridyltransferase that catalyzes the formation of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc).

Newmister, Sean A.; Otte, Michele M.; Escalante-Semerena, Jorge C.; Rayment, Ivan (UW)

2012-02-08T23:59:59.000Z

83

Sampling Point Compliance Tests for 325 Building at Set-Back Flow Conditions  

SciTech Connect (OSTI)

The stack sampling system at the 325 Building (Radiochemical Processing Laboratory [RPL]) was constructed to comply with the American National Standards Institute’s (ANSI’s) Guide to Sampling Airborne Radioactive Materials in Nuclear Facilities (ANSI N13.1-1969). This standard provided prescriptive criteria for the location of radionuclide air-sampling systems. In 1999, the standard was revised (Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities [ANSI/Health Physics Society [HPS] 13.1-1999]) to provide performance-based criteria for the location of sampling systems. Testing was conducted for the 325 Building stack to determine whether the sampling system would meet the updated criteria for uniform air velocity and contaminant concentration in the revised ANSI/HPS 13.1-1999 standard under normal operating conditions (Smith et al. 2010). Measurement results were within criteria for all tests. Additional testing and modeling was performed to determine whether the sampling system would meet criteria under set-back flow conditions. This included measurements taken from a scale model with one-third of the exhaust flow and computer modeling of the system with two-thirds of the exhaust flow. This report documents the results of the set-back flow condition measurements and modeling. Tests performed included flow angularity, uniformity of velocity, gas concentration, and particle concentration across the duct at the sampling location. Results are within ANSI/HPS 13.1-1999 criteria for all tests. These tests are applicable for the 325 Building stack under set-back exhaust flow operating conditions (980 - 45,400 cubic feet per minute [cfm]) with one fan running. The modeling results show that criteria are met for all tests using a two-fan configuration exhaust (flow modeled at 104,000 cfm). Combined with the results from the earlier normal operating conditions, the ANSI/HPS 13.1-1999 criteria for all tests are met for all configurations: one, two, or three fans (normal).

Ballinger, Marcel Y.; Glissmeyer, John A.; Barnett, J. M.; Recknagle, Kurtis P.; Yokuda, Satoru T.

2011-05-31T23:59:59.000Z

84

Columbia University Flow Instability Experimental Program, Volume 10: Critical Heat Flux Test Program data tables  

SciTech Connect (OSTI)

This report is one of a series of reports which document the flow instability testing conducted by Columbia University during 1989 through 1992. This report volume provides a hardcopy version of the twenty-six electronic media data files: CO515(A-D).DAT, CO525(A-G). DAT, CO530(A-K).DAT, CO718(A-E).DAT.

Coutts, D.A.

1993-09-01T23:59:59.000Z

85

December 11, 2008 11:0 WSPC/INSTRUCTION FILE GTP-PPL SELFISH ROUTING IN THE PRESENCE  

E-Print Network [OSTI]

December 11, 2008 11:0 WSPC/INSTRUCTION FILE GTP-PPL SELFISH ROUTING IN THE PRESENCE OF NETWORK;December 11, 2008 11:0 WSPC/INSTRUCTION FILE GTP-PPL 2 Parallel Processing Letters created by routers which

Mavronicolas, Marios

86

The Role of Magnesium for Geometry and Charge in GTP Hydrolysis, Revealed by Quantum Mechanics/Molecular Mechanics Simulations  

E-Print Network [OSTI]

The Role of Magnesium for Geometry and Charge in GTP Hydrolysis, Revealed by Quantum Mechanics, People's Republic of China ABSTRACT The coordination of the magnesium ion in proteins by triphosphates conversion. For example, in Ras the magnesium ion contributes to the catalysis of GTP hydrolysis

Gerwert, Klaus

87

Flow Test At Chena Geothermal Area (Holdmann, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP) Jump

88

Flow Test At Coso Geothermal Area (1985-1986) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP) JumpColrado

89

Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1994) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)

90

Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs ActualInformationAlum Area (DOE GTP) Jump|

91

Flow Test At Chena Area (Benoit, Et Al., 2007) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs ActualInformationAlum Area (DOE GTP)

92

Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP) Jump

93

Flow Test At Lake City Hot Springs Area (Warpinski, Et Al., 2004) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP) JumpEnergy

94

Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP) JumpEnergyOpen

95

Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)

96

Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)Open Energy

97

Flow Test At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2008)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)Open

98

Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report  

SciTech Connect (OSTI)

Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

1998-07-01T23:59:59.000Z

99

Two-dimensional modeling of sodium boiling in a simulated LMFBR loss-of-flow test  

SciTech Connect (OSTI)

Loss-of-flow (LOF) accidents are of major importance in LMFBR safety. Tests have been performed to simulate the simultaneous failure of all primary pumps and reactor shutdown systems in a 37-pin electrically heated test bundle installed in the KNS sodium boiling loop at the Institute of Reactor Development, Karlsruhe. The tests simulated LOF conditions of the German prototype LMFBR, the SNR 300. The main objectives of these tests were to characterize the transient boiling development to cladding dryout and to provide data for validation of sodium boiling codes. One particular LOF test, designated L22, at full power was selected as a benchmark exercise for comparison of several codes at the Eleventh Meeting of the Liquid Metal Boiling Working Group (LMBWG) held in Grenoble, France, in October 1984. In this paper, the results of the calculations performed at ORNL with the two-dimensional (2-D) boiling code THORAX are presented.

Rose, S.D.

1984-01-01T23:59:59.000Z

100

Heat extracted from the long term flow test in the Fenton Hill HDR reservoir  

SciTech Connect (OSTI)

A long-term flow test was carried out in the Fenton Hill HDR Phase-2 reservoir for 14 months during 1992-1993 to examine the potential for supplying thermal energy at a sustained rate as a commercial demonstration of HDR technology. The test was accomplished in several segments with changes in mean flowrate due to pumping conditions. Re-test estimates of the extractable heat content above a minimum useful temperature were based on physical evidence of the size of the Fenton Hill reservoir. A numerical model was used to estimate the extent of heat extracted during the individual flow segments from the database of measured production data during the test. For a reservoir volume of 6.5x10{sup 6}m{sup 3}, the total heat content above a minimum temperature of 150{degree} C was 1.5x10{sup 15}J. For the total test period at the three sustained mean flowrates, the integrated heat extracted was 0.088x10{sup 15}J, with no discernable temperature decline of the produced fluid. The fraction of energy extracted above the abandonment temperature was 5.9%. On the basis of a constant thermal energy extraction rate, the lifetime of the reservoir (without reservoir growth) to the abandonment temperature would be 13.3 years, in good agreement with the pre-test estimate of 15.0 years for the given reservoir volume.

Kruger, Paul; Robinson, Bruce

1994-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

TBC-Domain GAPs for Rab GTPases Accelerate GTP Hydrolysis by a Dual-Finger Mechanism  

SciTech Connect (OSTI)

Rab GTPases regulate membrane trafficking by cycling between inactive (GDP-bound) and active (GTP-bound) conformations. The duration of the active state is limited by GTPase-activating proteins (GAPs), which accelerate the slow intrinsic rate of GTP hydrolysis. Proteins containing TBC (Tre-2, Bub2 and Cdc16) domains are broadly conserved in eukaryotic organisms and function as GAPs for Rab GTPases as well as GTPases that control cytokinesis. An exposed arginine residue is a critical determinant of GAP activity in vitro and in vivo. It has been expected that the catalytic mechanism of TBC domains would parallel that of Ras and Rho family GAPs. Here we report crystallographic, mutational and functional analyses of complexes between Rab GTPases and the TBC domain of Gyp1p. In the crystal structure of a TBC-domain-Rab-GTPase-aluminium fluoride complex, which approximates the transition-state intermediate for GTP hydrolysis, the TBC domain supplies two catalytic residues in trans, an arginine finger analogous to Ras/Rho family GAPs and a glutamine finger that substitutes for the glutamine in the DxxGQ motif of the GTPase. The glutamine from the Rab GTPase does not stabilize the transition state as expected but instead interacts with the TBC domain. Strong conservation of both catalytic fingers indicates that most TBC-domain GAPs may accelerate GTP hydrolysis by a similar dual-finger mechanism.

Pan,X.; Eathiraj, S.; Lambright, D.

2006-01-01T23:59:59.000Z

102

Polymerization of proteins actin and tubulin: the role of nucleotides ATP, GTP  

E-Print Network [OSTI]

Polymerization of proteins actin and tubulin: the role of nucleotides ATP, GTP P. Ballone Institut in both requires complexation by a nucleotide (adenosine triphosphate (ATP) and guanosine triphosphate suggest that this arises from the softening on polymerization of vibrational modes localized near ATP

103

Multi-phase flow well test analysis in multi-layer reservoirs  

SciTech Connect (OSTI)

This paper investigates the performance of an oil well under multi-phase flow test conditions when the reservoir pressure falls below the bubble point pressure and is correspond with the performance of dissolved gas reservoirs. The model reservoir comprises two commingled layer, where a well test is conducted on a fully perforated interval. The water phase is assumed immobile. The main objective of this work is to interpret the flowing well pressure response and to predict reservoir characteristics based on its performance. The work presented is based on a constant terminal rate analysis, but it can also applied to constant bottomhole pressure and can be used to predict the Inflow Performance Relationship (IPR).

Jatmiko, W.; Archer, J.S. [Imperial College, London (United Kingdom); Daltaban, T.S.

1996-12-31T23:59:59.000Z

104

Design, testing and two-dimensional flow modeling of a multiple-disk fan  

SciTech Connect (OSTI)

A multiple-disk Tesla type fan has been designed, tested and analyzed two-dimensionally using the conservation of angular momentum principle. Experimental results showed that such multiple-disk fans exhibited exceptionally low performance characteristics, which could be attributed to the low viscosity, tangential nature of the flow, and large mechanical energy losses at both suction and discharge sections that are comparable to the total input power. By means of theoretical analysis, local and overall shearing stresses on the disk surfaces have been determined based on tangential and radial velocity distributions of the air flow of different volume flow rates at prescribed disk spaces and rotational speeds. Then the total power transmitted by rotating disks to air flow, and the power acquired by the air flow in the gap due to transfer of angular momentum have been obtained by numerically integrating shearing stresses over the disk surfaces. Using the measured shaft and hydraulic powers, these quantities were utilized to evaluate mechanical energy losses associated with the suction and discharge sections of the fan. (author)

Engin, Tahsin; Oezdemir, Mustafa; Cesmeci, Sevki [Department of Mechanical Engineering, The University of Sakarya, Esentepe Campus, 54187 Sakarya (Turkey)

2009-11-15T23:59:59.000Z

105

Grout long radius flow testing to support Saltstone disposal Unit 5 design  

SciTech Connect (OSTI)

The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as “Saltstone”. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a “mega vault” and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (saltstone premix plus water) were designed to simulate slurry with the reference saltstone rheology and a saltstone with extra water from the process flushing operation. Long-radius flow tests were run using approximately 4.6 cubic meters of each of these mixes. In both tests the pump rate was 0.063 liters/second (1 gpm). A higher pump rate, 0.19 liters/second (3 gpm), was used in a third long-radius flow test. The angle of repose of the grout wedges increased as a function of time in all three tests. The final angles of repose were measured at 3.0º, 2.4º, and 0.72º. The pump rate had the largest effect on the radial flow distance and slope of the grout surface. The slope on the pour placed at 0.19 liters/second (3 gpm) was most representative of the slope on the grout currently being pumped into SDU 2 which is estimated to be 0.7º to 0.9º. The final grout heights at 1/3 of a meter from the discharge point were 115, 105, and 38 cm. Entrapped air (? 0.25 cm bubbles) was also observed in all of the mixes. The entrapped air appeared to be released from the flows within about 3.1 meters (10 feet) of the discharge point. The bleed water was clear but had a thin layer of floating particulates. The bleed water should be retrievable by a drain water collection system in SDU 6 assuming the system does not get clogged. Layering was observed and was attributed to intervals when the hopper was being cleaned. Heat from the hydration reactions was noticeable to the touch.

Stefanko, D. B.; Langton, C. A.; Serrato, M. G.; Brooks, T. E. II; Huff, T. H.

2013-02-24T23:59:59.000Z

106

Grout Long Radius Flow Testing to Support Saltstone Disposal Unit 6 Design - 13352  

SciTech Connect (OSTI)

The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as 'Saltstone'. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a 'mega vault' and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; Saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (Saltstone premix plus water) were designed to simulate slurry with the reference Saltstone rheology and a Saltstone with extra water from the process flushing operation. Long-radius flow tests were run using approximately 4.6 cubic meters of each of these mixes. In both tests the pump rate was 0.063 liters/second (1 gpm). A higher pump rate, 0.19 liters/second (3 gpm), was used in a third long-radius flow test. The angle of repose of the grout wedges increased as a function of time in all three tests. The final angles of repose were measured at 3.0 deg., 2.4 deg., and 0.72 deg.. The pump rate had the largest effect on the radial flow distance and slope of the grout surface. The slope on the pour placed at 0.19 liters/second (3 gpm) was most representative of the slope on the grout currently being pumped into SDU 2 which is estimated to be 0.7 deg. to 0.9 deg. The final grout heights at 1/3 of a meter from the discharge point were 115, 105, and 38 cm. Entrapped air (? 0.25 cm bubbles) was also observed in all of the mixes. The entrapped air appeared to be released from the flows within about 3.1 meters (10 feet) of the discharge point. The bleed water was clear but had a thin layer of floating particulates. The bleed water should be retrievable by a drain water collection system in SDU 6 assuming the system does not get clogged. Layering was observed and was attributed to intervals when the hopper was being cleaned. Heat from the hydration reactions was noticeable to the touch. (authors)

Stefanko, D.B.; Langton, C.A.; Serrato, M.G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29808 (United States); Brooks, T.E. II; Huff, T.H. [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

107

Status of Proof-Of-Concept testing at the Coal-Fired-Flow Facility, 1993  

SciTech Connect (OSTI)

Proof-of-concept (POC) testing, and collection and evaluation of data continued at the Coal-Fired-Flow Facility during the past year. Following four preliminary tests firing Rosebud coal in 1991 to establish base conditions for the Rosebud coal POC tests, three POC tests were run in 1992, and a fourth test early in 1993. Major equipment additions or modifications included installation of a wet electrostatic precipitator (ESP), which replaced a badly deteriorated venturi. This component also provides improved capability to meet Tennessee pollution regulations while operating the dry ESP and/or baghouse off design, or if one of these two control devices does not function properly. Improvements were also made to the dry ESP prior to the 1993 test, which appear to have improved the performance of this equipment. This paper will present an overview of the major results obtained during the Rosebud coal POC tests, including the performance of the dry and wet electrostatic precipitators. Differences between the Rosebud and Illinois coals will be described, but it is emphasized that these observations are based on incomplete results for the Rosebud coal.

Attig, R.C.; Chapman, J.N.; Johanson, N.R.

1993-06-01T23:59:59.000Z

108

ICFT: An initial closed-loop flow test of the Fenton Hill Phase II HDR reservoir  

SciTech Connect (OSTI)

A 30-day closed-loop circulation test of the Phase II Hot Dry Rock reservoir at Fenton Hill, New Mexico, was conducted to determine the thermal, hydraulic, chemical, and seismic characteristics of the reservoir in preparation for a long-term energy-extraction test. The Phase II heat-extraction loop was successfully tested with the injection of 37,000 m/sup 3/ of cold water and production of 23,300 m/sup 3/ of hot water. Up to 10 MW/sub t/ was extracted when the production flow rate reached 0.0139 m/sup 3//s at 192/degree/C. By the end of the test, the water-loss rate had decreased to 26% and a significant portion of the injected water was recovered; 66% during the test and an additional 20% during subsequent venting. Analysis of thermal, hydraulic, geochemical, tracer, and seismic data suggests the fractured volume of the reservoir was growing throughout the test. 19 refs., 64 figs., 19 tabs.

Dash, Z.V. (ed.); Aguilar, R.G.; Dennis, B.R.; Dreesen, D.S.; Fehler, M.C.; Hendron, R.H.; House, L.S.; Ito, H.; Kelkar, S.M.; Malzahn, M.V.

1989-02-01T23:59:59.000Z

109

A Validation Process for the Groundwater Flow and Transport Model of the Faultless Nuclear Test at Central Nevada Test Area  

SciTech Connect (OSTI)

Many sites of groundwater contamination rely heavily on complex numerical models of flow and transport to develop closure plans. This has created a need for tools and approaches that can be used to build confidence in model predictions and make it apparent to regulators, policy makers, and the public that these models are sufficient for decision making. This confidence building is a long-term iterative process and it is this process that should be termed ''model validation.'' Model validation is a process not an end result. That is, the process of model validation cannot always assure acceptable prediction or quality of the model. Rather, it provides safeguard against faulty models or inadequately developed and tested models. Therefore, development of a systematic approach for evaluating and validating subsurface predictive models and guiding field activities for data collection and long-term monitoring is strongly needed. This report presents a review of model validation studies that pertain to groundwater flow and transport modeling. Definitions, literature debates, previously proposed validation strategies, and conferences and symposia that focused on subsurface model validation are reviewed and discussed. The review is general in nature, but the focus of the discussion is on site-specific, predictive groundwater models that are used for making decisions regarding remediation activities and site closure. An attempt is made to compile most of the published studies on groundwater model validation and assemble what has been proposed or used for validating subsurface models. The aim is to provide a reasonable starting point to aid the development of the validation plan for the groundwater flow and transport model of the Faultless nuclear test conducted at the Central Nevada Test Area (CNTA). The review of previous studies on model validation shows that there does not exist a set of specific procedures and tests that can be easily adapted and applied to determine the validity of site-specific groundwater models. This is true for both deterministic and stochastic models, with the latter posing a more difficult and challenging problem when it comes to validation. This report then proposes a general validation approach for the CNTA model, which addresses some of the important issues recognized in previous validation studies, conferences, and symposia as crucial to the process. The proposed approach links model building, model calibration, model predictions, data collection, model evaluations, and model validation in an iterative loop. The approach focuses on use of collected validation data to reduce model uncertainty and narrow the range of possible outcomes of stochastic numerical models. It accounts for the stochastic nature of the numerical CNTA model, which used Monte Carlo simulation approach. The proposed methodology relies on the premise that absolute validity is not even a theoretical possibility and is not a regulatory requirement. Rather, it highlights the importance of testing as many aspects of the model as possible and using as many diverse statistical tools as possible for rigorous checking and confidence building in the model and its predictions. It is this confidence that will eventually allow for regulator and public acceptance of decisions based on the model predictions.

Ahmed Hassan

2003-01-01T23:59:59.000Z

110

Piping flow erosion in water retaining structures: inferring erosion rates from hole erosion tests and quantifying the failure time  

E-Print Network [OSTI]

Piping flow erosion in water retaining structures: inferring erosion rates from hole erosion tests-en-Provence Cedex 5, France E-mail: stephane.bonelli@cemagref.fr Abstract The piping flow erosion process, involving structures. Such a pipe can be imputed to roots or burrows. The coefficient of erosion must be known in order

Paris-Sud XI, Université de

111

Standard Test Method for Resin Flow of Carbon Fiber-Epoxy Prepreg  

E-Print Network [OSTI]

1.1 This test method covers the determination of the amount of resin flow that will take place from prepreg tape or sheet under given conditions of temperature and pressure. 1.2 The values stated in SI units are to be regarded as standard. The values in parentheses are for reference only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

1999-01-01T23:59:59.000Z

112

Gas Flux Sampling At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMaui Area (DOE GTP) Jump

113

Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules  

SciTech Connect (OSTI)

Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

2011-10-01T23:59:59.000Z

114

Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures  

SciTech Connect (OSTI)

Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic gradients between aquifer types are downward throughout most of the study area; however, flow from the alluvial-volcanic aquifer into the underlying carbonate aquifer, where both aquifers are present, is believed to be minor because of an intervening confining unit. Limited exchange of water between aquifer types occurs by diffuse flow through the confining unit, by focused flow along fault planes, or by direct flow where the confining unit is locally absent. Interflow between regional aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form intermediate and regional flow systems. The implications of these flow systems in controlling transport of radionuclides away from the underground test areas at the Nevada Test Site are briefly discussed. Additionally, uncertainties in the delineation of aquifers, the development of potentiometric contours, and the identification of flow systems are identified and evaluated. Eleven tributary flow systems and three larger flow systems are mapped in the Nevada Test Site area. Flow systems within the alluvial-volcanic aquifer dominate the western half of the study area, whereas flow systems within the carbonate aquifer are most prevalent in the southeastern half of the study area. Most of the flow in the regional alluvial-volcanic aquifer that moves through the underground testing area on Pahute Mesa is discharged to the land surface at springs and seeps in Oasis Valley. Flow in the regional carbonate aquifer is internally compartmentalized by major geologic structures, primarily thrust faults, which constrain flow into separate corridors. Contaminants that reach the regional carbonate aquifer from testing areas in Yucca and Frenchman Flats flow toward downgradient discharge areas through the Alkali Flat-Furnace Creek Ranch or Ash Meadows flow systems and their tributaries.

Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

2010-01-25T23:59:59.000Z

115

Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor  

SciTech Connect (OSTI)

A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m{sup 3}/hr.

Polzin, Kurt A.; Godfroy, Thomas J. [NASA Marshall Space Flight Center Propulsion Research and Technology Applications Branch/ER24, MSFC, AL 35812 (United States)

2008-01-21T23:59:59.000Z

116

Wind Tunnel and Flight Testing of Active Flow Control on a UAV  

E-Print Network [OSTI]

Active flow control has been extensively explored in wind tunnel studies but successful in-flight implementation of an active flow control technology still remains a challenge. This thesis presents implementation of active flow control technology...

Babbar, Yogesh

2011-08-08T23:59:59.000Z

117

Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests  

SciTech Connect (OSTI)

Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative to volcanic-rock units is exemplified by the large difference in their estimated maximum hydraulic conductivity; 4,000 and 400 feet per day, respectively. Simulated minimum estimates of hydraulic conductivity are inexact and represent the lower detection limit of the method. Minimum thicknesses of lithologic intervals also were defined for comparing AnalyzeHOLE results to hydraulic properties in regional ground-water flow models.

Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

2010-02-12T23:59:59.000Z

118

Thermal Gradient Holes At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:the NatureOpenOpenAlum Area (DOE GTP)

119

Slim Holes At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's HotMaui Area (DOE GTP)New

120

Well Log Techniques At Newberry Caldera Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & Associates Jump to:ProjectInformation GTP)

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

2-M Probe At Pilgrim Hot Springs Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR14 CCRInformation Sladek,DOE GTP)

122

Density Log at Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has beenFinancialSilver Peak Area (DOE GTP) Jump

123

Development Wells At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has Type Term TitleSilver Peak Area (DOE GTP)

124

Pressure Temperature Log At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimate Action ProjectWister Area (DOE GTP)

125

Comparison of the results of short-term static tests and single-pass flow-through tests with LRM glass.  

SciTech Connect (OSTI)

Static dissolution tests were conducted to measure the forward dissolution rate of LRM glass at 70 C and pH(RT) 11.7 {+-} 0.1 for comparison with the rate measured with single-pass flow-through (SPFT) tests in an interlaboratory study (ILS). The static tests were conducted with monolithic specimens having known geometric surface areas, whereas the SPFT tests were conducted with crushed glass that had an uncertain specific surface area. The error in the specific surface area of the crushed glass used in the SPFT tests, which was calculated by modeling the particles as spheres, was assessed based on the difference in the forward dissolution rates measured with the two test methods. Three series of static tests were conducted at 70 C following ASTM standard test method C1220 using specimens with surfaces polished to 600, 800, and 1200 grit and a leachant solution having the same composition as that used in the ILS. Regression of the combined results of the static tests to the affinity-based glass dissolution model gives a forward rate of 1.67 g/(m{sup 2}d). The mean value of the forward rate from the SPFT tests was 1.64 g/(m{sup 2}d) with an extended uncertainty of 1.90 g/(m{sup 2}d). This indicates that the calculated surface area for the crushed glass used in the SPFT tests is less than 2% higher than the actual surface area, which is well within the experimental uncertainties of measuring the forward dissolution rate using each test method. These results indicate that the geometric surface area of crushed glass calculated based on the size of the sieves used to isolate the fraction used in a test is reliable. In addition, the C1220 test method provides a means for measuring the forward dissolution rate of borosilicate glasses that is faster, easier, and more economical than the SPFT test method.

Ebert, W. L.; Chemical Engineering

2007-01-29T23:59:59.000Z

126

Columbia University flow instability experimental program: Volume 12. Single annulus transient test program data tables: Part 1  

SciTech Connect (OSTI)

The single annulus test program was designed to investigate the onset of flow instability in an annular geometry similar to the fuel assemblies used in the Savannah River Site production reactors. Data files were transmitted from Columbia University to Savannah River Site in a DOS compatible format. This report provides a hardcopy version of the electronic media data files.

Coutts, D.A.

1993-09-01T23:59:59.000Z

127

Capillary test specimen, system, and methods for in-situ visualization of capillary flow and fillet formation  

DOE Patents [OSTI]

A capillary test specimen, method, and system for visualizing and quantifying capillary flow of liquids under realistic conditions, including polymer underfilling, injection molding, soldering, brazing, and casting. The capillary test specimen simulates complex joint geometries and has an open cross-section to permit easy visual access from the side. A high-speed, high-magnification camera system records the location and shape of the moving liquid front in real-time, in-situ as it flows out of a source cavity, through an open capillary channel between two surfaces having a controlled capillary gap, and into an open fillet cavity, where it subsequently forms a fillet on free surfaces that have been configured to simulate realistic joint geometries. Electric resistance heating rapidly heats the test specimen, without using a furnace. Image-processing software analyzes the recorded images and calculates the velocity of the moving liquid front, fillet contact angles, and shape of the fillet's meniscus, among other parameters.

Hall, Aaron C. (Albuquerque, NM); Hosking, F. Michael (Albuquerque, NM),; Reece, Mark (Albuquerque, NM)

2003-06-24T23:59:59.000Z

128

Flow tests of the Willis Hulin Well. Volume III. Final report for the period October 1985--October 1990  

SciTech Connect (OSTI)

The initial flow test of the Hulin well was done to obtain brine and gas samples and to get a first measure of the reservoir properties. The 20,602 to 20,690-foot interval was perforated and tested in two short-term draw-down and buildup tests. This zone had an initial pressure of 17,308 psia and temperature of 339 F. The total dissolved solids of 207,000 mg/L (mostly sodium chloride) is higher than for previously tested Gulf Coast geopressured-geothermal wells. The gas content in the brine of 31 to 32 SCF/STB indicates that the brine is at or near saturation with natural gas. The permeability, as deduced from the draw-down and buildup tests, is 13 md for the lower 80-foot-thick sand member. The duration of the tests was too short to determine the lateral extent of the reservoir; but declining measured values for static bottomhole pressure prior to each flow test suggests a relatively small reservoir. When the uppermost interval in the zone of interest (20,220 to 20,260 feet) was perforated such that flow from this zone would commingle with flow from the lower zone, little to no free gas was observed. It had been speculated before the test that there might be free gas in this upper zone. These speculations were generally deduced from logs after assuming the formation contained brine that had a salinity between 70,000 and 100,000 mg/L. The actual salinity was more than twice that number. it is now apparent that the amount of free gas, if any, is too small to make a significant contribution to production in a short-term test. This does not preclude the possibility of mobilization of gas by higher drawdown or coning down from an offsetting gas cap in one or more of the sand members. However, there was no evidence that this was occurring in this test. No measurements of the reservoir parameters, such as permeability, were made for the shallowest interval tested. But substantially lower drawdown for the commingled zones suggests either higher permeability or lower skin for the shallower perforated interval. Hydrate formation in the upper part of the wellbore was a problem. To circumvent this problem, about 10 barrels of diesel were pumped into the top of the well after each flow to displace the brine down to a level in the well where the temperature was too high for hydrates to form. Calculations of saturation index indicated that calcium carbonate scale would also form in the well if the pressure was drawn down too far. Thus all the flow tests were performed at low flow rates to preclude formation of scale in the wellbore. Scale inhibitor was injected into the surface flow lines to control possible scale formation in the surface equipment. Corrosion inhibitor was also injected, and coupon monitoring indicated a corrosion rate of less than 5 mils per year.

Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

1992-02-01T23:59:59.000Z

129

Experimental investigation of a flow monitoring instrument in an upper plenum of an air-water reflood test facility. [PWR  

SciTech Connect (OSTI)

Instrumentation was developed for measuring fluid phenomena in the upper plenum of pressurized water reactor reflood facilities. In particular, the instrumentation measured two-phase flow velocity and void fraction. The principle of operation of the instrumentation scheme was based on the measurement of electrical impedance. The technique of analysis of random signals from two spatially separated impedance sensors was employed to measure two-phase flow velocity. A relative admittance technique was used to determine void fraction. The performance of the instrumentaton was studied in an air-water test facility.

Combs, S.K.; Hardy, J.E.

1980-01-01T23:59:59.000Z

130

Test and evaluation of constant-flow devices for use in SSN AFFF proportioning systems. Interim report, January-May 1986  

SciTech Connect (OSTI)

Constant flow devices, which deliver a constant flow of liquid over a range of upstream and downstream pressures, have been suggested as an alternative to orifice plates for proportioning AFFF in SSN 21 fire-suppression systems. Operational and performance characteristics of two lightweight, inexpensive, commercially available constant-flow devices have significant advantages over orifice plates. Both models tested, however, showed performance degradation when subjected to simulated service conditions. A constant flow device with improved resistance to wear and to AFFF exposure is desirable. Since the constant-flow control devices tested improves proportioning efficiency but do not have optimum characteristics, investigation of improved devices or methods is recommended.

Williams, F.W.; Back, G.G.; Burns, R.E.; Quellette, R.J.; Scheffey, J.L.

1986-11-04T23:59:59.000Z

131

Function: GTP:-`type/gradedmonom` -define a type 'gradedmonom' Calling Sequence  

E-Print Network [OSTI]

:with(Clifford):with(GTP): > type(e1 &t e1,gradedmonom),type(Pi*(e1we2 &t e1 &t e2),gradedmonom); Cliplus has been loaded Id &t e1 Id &t e2 Id &t e1we2 e1 &t Id e1 &t e1 e1 &t e2 e1 &t e1we2, , , , , , , ,[:= e2 &t Id e2 &t e1 e2 &t e2 e2 &t e1we2 e1we2 &t Id e1we2 &t e1 e1we2 &t e2, , , , , , , e1we2 &t e1we2] > map

Ablamowicz, Rafal

132

The fabrication of a vanadium-stainless steel test section for MHD testing of insulator coatings in flowing lithium  

SciTech Connect (OSTI)

To test the magnetohydrodynamic (MHD) pressure drop reduction performance of candidate insulator coatings for the ITER Vanadium/Lithium Breeding Blanket, a test section comprised of a V- 4Cr-4Ti liner inside a stainless steel pipe was designed and fabricated. Theoretically, the MHD pressure drop reduction benefit resulting, from an electrically insulating coating on a vanadium- lined pipe is identical to the benefit derived from an insulated pipe fabricated of vanadium alone. A duplex test section design consisting of a V alloy liner encased in a SS pressure boundary provided protection for vanadium from atmospheric contamination during operation at high temperature and obviated any potential problems with vanadium welding while also minimizing the amount of V alloy material required. From the MHD and insulator coating- point of view, the test section outer SS wall and inner V alloy liner can be modeled simply as a wall having a sandwich construction. Two 52.3 mm OD x 2.9 m long V-alloy tubes were fabricated by Century Tubes from 64 mm x 200 mm x 1245 mm extrusions produced by Teledyne Wah Chang. The test section`s duplex structure was subsequently fabricated at Century Tubes by drawing down a SS pipe (2 inch schedule 10) over one of the 53.2 mm diameter V tubes.

Reed, C.B.; Mattas, R.F.; Smith, D.L.; Chung, H.; Tsai, H.-C. [Argonne National Lab., IL (United States); Morgan, G.D.; Wille, G.W. [McDonnell Douglas Aerospace, St. Louis, MO (United States). High Energy Systems; Johnson, W.R. [General Atomics, San Diego, CA (United States); Young, C. [Century Tubes, Inc., San Diego, CA (United States)

1996-12-31T23:59:59.000Z

133

Modeling of Groundwater Flow and Radionuclide Transport at the Climax Mine sub-CAU, Nevada Test Site  

SciTech Connect (OSTI)

The Yucca Flat-Climax Mine Corrective Action Unit (CAU) on the Nevada Test Site comprises 747 underground nuclear detonations, all but three of which were conducted in alluvial, volcanic, and carbonate rocks in Yucca Flat. The remaining three tests were conducted in the very different hydrogeologic setting of the Climax Mine granite stock located in Area 15 at the northern end of Yucca Flat. As part of the Corrective Action Investigation (CAI) for the Yucca Flat-Climax Mine CAU, models of groundwater flow and radionuclide transport will be developed for Yucca Flat. However, two aspects of these CAU-scale models require focused modeling at the northern end of Yucca Flat beyond the capability of these large models. First, boundary conditions and boundary flows along the northern reaches of the Yucca Flat-Climax Mine CAU require evaluation to a higher level of detail than the CAU-scale Yucca Flat model can efficiently provide. Second, radionuclide fluxes from the Climax tests require analysis of flow and transport in fractured granite, a unique hydrologic environment as compared to Yucca Flat proper. This report describes the Climax Mine sub-CAU modeling studies conducted to address these issues, with the results providing a direct feed into the CAI for the Yucca Flat-Climax Mine CAU. Three underground nuclear detonations were conducted for weapons effects testing in the Climax stock between 1962 and 1966: Hard Hat, Pile Driver, and Tiny Tot. Though there is uncertainty regarding the position of the water table in the stock, it is likely that all three tests were conducted in the unsaturated zone. In the early 1980s, the Spent Fuel Test-Climax (SFT-C) was constructed to evaluate the feasibility of retrievable, deep geologic storage of commercial nuclear reactor wastes. Detailed mapping of fractures and faults carried out for the SFT-C studies greatly expanded earlier data sets collected in association with the nuclear tests and provided invaluable information for subsequent modeling studies at Climax. The objectives of the Climax Mine sub-CAU work are to (1) provide simulated heads and groundwater flows for the northern boundaries of the Yucca Flat-Climax Mine CAU model, while incorporating alternative conceptualizations of the hydrogeologic system with their associated uncertainty, and (2) provide radionuclide fluxes from the three tests in the Climax stock using modeling techniques that account for groundwater flow in fractured granite. Meeting these two objectives required two different model scales. The northern boundary groundwater fluxes were addressed using the Death Valley Regional Flow System (DVRFS) model (Belcher, 2004) developed by the U.S. Geological Survey as a modeling framework, with refined hydrostratigraphy in a zone north of Yucca Flat and including Climax stock. Radionuclide transport was simulated using a separate model confined to the granite stock itself, but linked to regional groundwater flow through boundary conditions and calibration targets.

K. Pohlmann; M. Ye; D. Reeves; M. Zavarin; D. Decker; J. Chapman

2007-09-28T23:59:59.000Z

134

TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada  

SciTech Connect (OSTI)

Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa; Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; ,; Guy Roemer

2002-09-01T23:59:59.000Z

135

A groundwater flow and transport model of long-term radionuclide migration in central Frenchman flat, Nevada test site  

SciTech Connect (OSTI)

A set of groundwater flow and transport models were created for the Central Testing Area of Frenchman Flat at the former Nevada Test Site to investigate the long-term consequences of a radionuclide migration experiment that was done between 1975 and 1990. In this experiment, radionuclide migration was induced from a small nuclear test conducted below the water table by pumping a well 91 m away. After radionuclides arrived at the pumping well, the contaminated effluent was discharged to an unlined ditch leading to a playa where it was expected to evaporate. However, recent data from a well near the ditch and results from detailed models of the experiment by LLNL personnel have convincingly demonstrated that radionuclides from the ditch eventually reached the water table some 220 m below land surface. The models presented in this paper combine aspects of these detailed models with concepts of basin-scale flow to estimate the likely extent of contamination resulting from this experiment over the next 1,000 years. The models demonstrate that because regulatory limits for radionuclide concentrations are exceeded only by tritium and the half-life of tritium is relatively short (12.3 years), the maximum extent of contaminated groundwater has or will soon be reached, after which time the contaminated plume will begin to shrink because of radioactive decay. The models also show that past and future groundwater pumping from water supply wells within Frenchman Flat basin will have negligible effects on the extent of the plume.

Kwicklis, Edward Michael [Los Alamos National Laboratory; Becker, Naomi M [Los Alamos National Laboratory; Ruskauff, Gregory [NAVARRO-INTERA, LLC.; De Novio, Nicole [GOLDER AND ASSOC.; Wilborn, Bill [US DOE NNSA NSO

2010-11-10T23:59:59.000Z

136

Soil Testing Following Flooding, Overland Flow of Wastewater and other Freshwater Disasters  

E-Print Network [OSTI]

Freshwater flooding can seriously affect soil fertility and the physical and chemical properties of soil. This publication explains how to reclaim flooded soil. Having the soil tested for microbes, pesticides, hydrocarbons and other contaminants...

Provin, Tony; Feagley, Sam E.; Pitt, John L.; McFarland, Mark L.

2009-05-26T23:59:59.000Z

137

Design, build and test of an axial flow hydrokinetic turbine with fatigue analysis  

E-Print Network [OSTI]

OpenProp is an open source propeller and turbine design and analysis code that has been in development since 2007 by MIT graduate students under the supervision of Professor Richard Kimball. In order to test the performance ...

Ketcham, Jerod W

2010-01-01T23:59:59.000Z

138

Final Report: Pilot-scale Cross-flow Filtration Test - Envelope A + Entrained Solids  

SciTech Connect (OSTI)

This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company.This filter technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. This plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

Duignan, M.R.

2000-06-27T23:59:59.000Z

139

Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1.  

SciTech Connect (OSTI)

In this paper the performance results of the RedFlow zinc-bromide module (ZBM) Gen 2.0 are reported for Phase 1 of testing, which includes initial characterization of the module. This included physical measurement, efficiency as a function of charge and discharge rates, efficiency as a function of maximum charge capacity, duration of maximum power supplied, and limited cycling with skipped strip cycles. The goal of this first phase of testing was to verify manufacturer specifications of the zinc-bromide flow battery. Initial characterization tests have shown that the ZBM meets the manufacturer's specifications. Further testing, including testing as a function of temperature and life cycle testing, will be carried out during Phase 2 of the testing, and these results will be issued in the final report, after Phase 2 testing has concluded.

Ferreira, Summer Rhodes; Rose, David Martin

2012-02-01T23:59:59.000Z

140

A study of pumps for the Hot Dry Rock Geothermal Energy extraction experiment (LTFT (Long Term Flow Test))  

SciTech Connect (OSTI)

A set of specifications for the hot dry rock (HDR) Phase II circulation pumping system is developed from a review of basic fluid pumping mechanics, a technical history of the HDR Phase I and Phase II pumping systems, a presentation of the results from experiment 2067 (the Initial Closed-Loop Flow Test or ICFT), and consideration of available on-site electrical power limitations at the experiment site. For the Phase II energy extraction experiment (the Long Term Flow Test or LTFT) it is necessary to provide a continuous, low maintenance, and highly efficient pumping capability for a period of twelve months at variable flowrates up to 420 gpm and at surface injection pressures up to 5000 psi. The pumping system must successfully withstand attacks by corrosive and embrittling gases, erosive chemicals and suspended solids, and fluid pressure and temperature fluctuations. In light of presently available pumping hardware and electric power supply limitations, it is recommended that positive displacement multiplex plunger pumps, driven by variable speed control electric motors, be used to provide the necessary continuous surface injection pressures and flowrates for LTFT. The decision of whether to purchase the required circulation pumping hardware or to obtain contractor provided pumping services has not been made.

Tatro, C.A.

1986-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin  

SciTech Connect (OSTI)

Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized masses to avoid presenting classified information. As only linear processes are modeled, the results can be readily scaled by the true classified masses for use in the risk assessment. The modeling timeframe for the risk assessment was set at 1,000 years, though some calculations are extended to 2,000 years. This first section of the report endeavors to orient the reader with the environment of Amchitka and the specifics of the underground nuclear tests. Of prime importance are the geologic and hydrologic conditions of the subsurface. A conceptual model for groundwater flow beneath the island is then developed and paired with an appropriate numerical modeling approach in section 2. The parameters needed for the model, supporting data for them, and data uncertainties are discussed at length. The calibration of the three flow models (one for each test) is then presented. At this point the conceptual radionuclide transport model is introduced and its numerical approach described in section 3. Again, the transport parameters and their supporting data and uncertainties are the focus. With all of the processes and parameters in place, the first major modeling phase can be discussed in section 4. In this phase, a parametric uncertainty analysis is performed to determine the sensitivity of the transport modeling results to the uncertainties present in the parameters. This analysis is motivated by the recognition of substantial uncertainty in the subsurface conditions on the island and the need to incorporate that uncertainty into the modeling. The conclusion of the first phase determines the parameters to hold as uncertain through the main flow and transport modeling. This second, main phase of modeling is presented in section 5, with the contaminant breakthrough behavior of each test site addressed. This is followed by a sensitivity analysis in section 6, regarding the importance of additional processes that could not be supported in the main modeling effort due to lack of data. Finally, the results for the individual sites are compared, the sensitivities discussed,

Ahmed Hassan; Karl Pohlmann; Jenny Chapman

2002-11-19T23:59:59.000Z

142

Automatic Test Generation for Data-Flow Reactive Systems with time constraints  

E-Print Network [OSTI]

instantaneously. We present a conformance relation for this model and we propose a test generation method using(V ) the set of variable assignments for V . Given G G(V ) and a valuation v Dom(V ), we write v |= G when G(v) true. Given a valuation v = (v1, · · · , vn) of V and A A(V ), we define the valuations v[A] as v

Boyer, Edmond

143

Large scale test rig for flow visualization and leakage measurement of labyrinth seals  

E-Print Network [OSTI]

dimensions of the two categories of seals considered showing:(a) seal without annular groove and (b) seal with annular groove. 38 4. 2 Schematic of test facility layout showing by-pass valve. 41 5. 1 Design dimension variables for: (a) seal without.... g Gravitational constant. Nondimensional leakage resistance coefficient. I Length of straight run of pipe. P? Bulk pressure at inlet of seal. Bulk presure at outlet of seal. Cavity leakage Reynolds number. Stator step size. V, ? Bulk velocity...

Broussard, Daniel Harold

1991-01-01T23:59:59.000Z

144

Current trends and innovations in porometry and porosimetry applicable to battery separator testing and development: Introducing the Micro-Flow Porometer  

SciTech Connect (OSTI)

Pore structure of separators is a critical property for efficiency of batteries and fuel cells. As such, porosity characterization is of great interest to those developing, as well as those manufacturing, these materials. This paper discusses the two most frequently used techniques for porosity characterization: porosimetry and porometry. The strengths and limitations of both testing techniques is discussed with a focus on appropriate test selection to obtain optimal results. This paper also describes the new user-friendly instruments now available from Porous Materials Inc. (PMI) and the recent advances that have made these techniques more useful for those involved with product development, product improvement, and quality control in the battery separator industry. This paper introduces the new Micro-Flow Porometer, which is capable of testing flow rates as low as .0001 cc/min. The usefulness of the Micro-Flow Porometer for battery separator testing is discussed and additional advances in porosimetry is introduced.

Stillwell, C.R.; Gupta, K.M. [Porous Materials Inc., Ithaca, NY (United States)

1996-11-01T23:59:59.000Z

145

Flow tests of the Gladys McCall well. Appendix A, Gladys McCall Site (Cameron Parish, LA): Final report, October 1985--October 1990  

SciTech Connect (OSTI)

This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 md (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor ``pills`` directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.

Randolph, P.L.; Hayden, C.G.; Rogers, L.A. [Institute of Gas Technology, Chicago, IL (United States)

1992-04-01T23:59:59.000Z

146

RMOTC - Testing - Flow Assurance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115, 2001Data

147

Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

The Phase II Frenchman Flat groundwater flow model is a key element in the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) corrective action strategy for the Underground Test Area (UGTA) Frenchman Flat corrective action unit (CAU). The objective of this integrated process is to provide an estimate of the vertical and horizontal extent of contaminant migration for each CAU to predict contaminant boundaries. A contaminant boundary is the model-predicted perimeter that defines the extent of radionuclide-contaminated groundwater from underground testing above background conditions exceeding the ''Safe Drinking Water Act'' (SDWA) standards. The contaminant boundary will be composed of both a perimeter boundary and a lower hydrostratigraphic unit (HSU) boundary. The computer model will predict the location of this boundary within 1,000 years and must do so at a 95 percent level of confidence. Additional results showing contaminant concentrations and the location of the contaminant boundary at selected times will also be presented. These times may include the verification period, the end of the five-year proof-of-concept period, as well as other times that are of specific interest. This report documents the development and implementation of the groundwater flow model for the Frenchman Flat CAU. Specific objectives of the Phase II Frenchman Flat flow model are to: (1) Incorporate pertinent information and lessons learned from the Phase I Frenchman Flat CAU models. (2) Develop a three-dimensional (3-D), mathematical flow model that incorporates the important physical features of the flow system and honors CAU-specific data and information. (3) Simulate the steady-state groundwater flow system to determine the direction and magnitude of groundwater fluxes based on calibration to Frenchman Flat hydrogeologic data. (4) Quantify the uncertainty in the direction and magnitude of groundwater flow due to uncertainty in parameter values and alternative component conceptual models (e.g., geology, boundary flux, and recharge).

John McCord

2006-05-01T23:59:59.000Z

148

Estimation of unsaturated zone traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential-flow model  

SciTech Connect (OSTI)

Traveltimes for contaminant transport by water from a point in the unsaturated zone to the saturated zone are a concern at Rainier Mesa and Shoshone Mountain in the Nevada Test Site, Nevada. Where nuclear tests were conducted in the unsaturated zone, contaminants must traverse hundreds of meters of variably saturated rock before they enter the saturated zone in the carbonate rock, where the regional groundwater system has the potential to carry them substantial distances to a location of concern. The unsaturated-zone portion of the contaminant transport path may cause a significant delay, in addition to the time required to travel within the saturated zone, and thus may be important in the overall evaluation of the potential hazard from contamination. Downward contaminant transport through the unsaturated zone occurs through various processes and pathways; this can lead to a broad distribution of contaminant traveltimes, including exceedingly slow and unexpectedly fast extremes. Though the bulk of mobile contaminant arrives between the time-scale end members, the fastest contaminant transport speed, in other words the speed determined by the combination of possible processes and pathways that would bring a measureable quantity of contaminant to the aquifer in the shortest time, carries particular regulatory significance because of its relevance in formulating the most conservative hazard-prevention scenarios. Unsaturated-zone flow is usually modeled as a diffusive process responding to gravity and pressure gradients as mediated by the unsaturated hydraulic properties of the materials traversed. The mathematical formulation of the diffuse-flow concept is known as Richards' equation, which when coupled to a solute transport equation, such as the advection-dispersion equation, provides a framework to simulate contaminant migration in the unsaturated zone. In recent decades awareness has increased that much fluid flow and contaminant transport within the unsaturated zone takes place as preferential flow, faster than would be predicted by the coupled Richards' and advection-dispersion equations with hydraulic properties estimated by traditional means. At present the hydrologic community has not achieved consensus as to whether a modification of Richards' equation, or a fundamentally different formulation, would best quantify preferential flow. Where the fastest contaminant transport speed is what needs to be estimated, there is the possibility of simplification of the evaluation process. One way of doing so is by a two-step process in which the first step is to evaluate whether significant preferential flow and solute transport is possible for the media and conditions of concern. The second step is to carry out (a) a basic Richards' and advection-dispersion equation analysis if it is concluded that preferential flow is not possible or (b) an analysis that considers only the fastest possible preferential-flow processes, if preferential flow is possible. For the preferential-flow situation, a recently published model describable as a Source-Responsive Preferential-Flow (SRPF) model is an easily applied option. This report documents the application of this two-step process to flow through the thick unsaturated zones of Rainier Mesa and Shoshone Mountain in the Nevada Test Site. Application of the SRPF model involves distinguishing between continuous and intermittent water supply to preferential flow paths. At Rainier Mesa and Shoshone Mountain this issue is complicated by the fact that contaminant travel begins at a location deep in the subsurface, where there may be perched water that may or may not act like a continuous supply, depending on such features as the connectedness of fractures and the nature of impeding layers. We have treated this situation by hypothesizing both continuous and intermittent scenarios for contaminant transport to the carbonate aquifer and reporting estimation of the fastest speed for both of these end members.

Brian A. Ebel; John R. Nimmo

2009-09-11T23:59:59.000Z

149

Design and Development of a Test Facility to Study Two-Phase Steam/Water Flow in Porous Media  

SciTech Connect (OSTI)

The concept of relative permeability is the key concept in extending Darcy's law for single phase flow through porous media to the two-phase flow regime. Relative permeability functions are needed for simulation studies of two-phase geothermal reservoirs. These are poorly known inspite of considerable theoretical and experimental investigations during the last decade. Since no conclusive results exist, many investigators use ad hoc parametrization, or adopt results obtined from flow of oil and gas (Corey, 1954). It has been shown by Reda and Eaton (1980) that this can lead to serious deficiencies. Sensitivity of the relative permeability curves for prediction of mass flow rate and flowing enthalpy into geothermal wells has been studied by many investigators (e.g. Eaton and Reda (1980), Bodvarsson et al (1980), Sun and Ershagi (1979) etc.). It can be concluded from these studies that the beehavior of a two-phase steam/water reservoir depends greatly on the relative permeability curves used. Hence, there exists a need for obtaining reliable relative permeability functions.

Verma, Ashok K.; Pruess, Karsten; Bodvarsson, G.S.; Tsang, C.F.; Witherspoon, Paul A.

1983-12-15T23:59:59.000Z

150

Results of brine flow testing and disassembly of a crushed salt/bentonite block seal at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The Small-Scale Seal Performance Tests, Series C, a set of in situ experiments conducted at the Waste Isolation Pilot Plant, are designed to evaluate the performance of various seal materials emplaced in large (0.9-m-diameter) boreholes. This report documents the results of fluid (brine) flow testing and water and clay content analyses performed on one emplaced seal comprised of 100% salt blocks and 50%/50% crushed salt/bentonite blocks and disassembled after nearly three years of brine injection testing. Results from the water content analyses of 212 samples taken from within this seal show uniform water content throughout the 50%/50% salt/bentonite blocks with saturations about 100%. Clay content analyses from the 100% salt endcaps of the seal show a background clay content of about 1% by weight uniformly distributed, with the exception of samples taken at the base of the seal at the borehole wall interface. These samples show clay contents up to 3% by weight, which suggests some bentonite may have migrated under pressure to that interface. Results of the brine-flow testing show that the permeability to brine for this seal was about 2 to 3 {times} 10{sup {minus}4} darcy (2 to 3 {times} 10{sup {minus}16} m{sup 2}).

Finley, R.E. [Sandia National Labs., Albuquerque, NM (United States); Jones, R.L. [Tech. Reps., Inc., Albuquerque, NM (United States)

1994-03-01T23:59:59.000Z

151

TECHNETIUM RETENTION IN WTP LAW GLASS WITH RECYCLE FLOW-SHEET DM10 MELTER TESTING VSL-12R2640-1 REV 0  

SciTech Connect (OSTI)

Melter tests were conducted to determine the retention of technetium and other volatiles in glass while processing simulated Low Activity Waste (LAW) streams through a DM10 melter equipped with a prototypical off-gas system that concentrates and recycles fluid effiuents back to the melter feed. To support these tests, an existing DM10 system installed at Vitreous State Laboratory (VSL) was modified to add the required recycle loop. Based on the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW off-gas system design, suitably scaled versions of the Submerged Bed Scrubber (SBS), Wet Electrostatic Precipitator (WESP), and TLP vacuum evaporator were designed, built, and installed into the DM10 system. Process modeling was used to support this design effort and to ensure that issues associated with the short half life of the {sup 99m}Tc radioisotope that was used in this work were properly addressed and that the system would be capable of meeting the test objectives. In particular, this required that the overall time constant for the system was sufficiently short that a reasonable approach to steady state could be achieved before the {sup 99m}Tc activity dropped below the analytical limits of detection. The conceptual design, detailed design, flow sheet development, process model development, Piping and Instrumentation Diagram (P&ID) development, control system design, software design and development, system fabrication, installation, procedure development, operator training, and Test Plan development for the new system were all conducted during this project. The new system was commissioned and subjected to a series of shake-down tests before embarking on the planned test program. Various system performance issues that arose during testing were addressed through a series of modifications in order to improve the performance and reliability of the system. The resulting system provided a robust and reliable platform to address the test objectives.

Abramowitz, Howard [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Brandys, Marek [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Cecil, Richard [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; D'Angelo, Nicholas [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Matlack, Keith S. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Muller, Isabelle S. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Pegg, Ian L. [Energy Solutions, Federal EPC, Inc., Columbia, MD (United States); Callow, Richard A. [Energy Solutions, Federal EPC, Inc., Columbia, MD (United States); Joseph, Innocent

2012-12-11T23:59:59.000Z

152

Final Report: Pilot-Scale X-Flow Filtration Test - Env C Plus Entrained Solids Plus Sr/TRU  

SciTech Connect (OSTI)

This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company. This filtration technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. The plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

Duignan, M.R.

2000-07-27T23:59:59.000Z

153

TRAC-PF1/MOD-1 analysis of Loss-Of-Flow Test L9-4  

SciTech Connect (OSTI)

Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in pressurized water reactors (PWRs) and for many thermal-hydraulic experimental facilities. As part of our independent assessment of code version TRAC-PF1/MOD1, we analyzed Loss-of-Fluid Test (LOFT) L9-4 and compared the test data to the calculated results. This was an anticipated-transient-without-scram test in which the pumps were tripped, the steam generator main feedwater discontinued, and the main steam-outlet valve closed. This data comparison is the first extensive test of TRAC's reactor-kinetics models. The comparisons show that TRAC can calculate the power generation within a nuclear reactor if the program is supplied with adequate reactor-kinetics input specifications. The data comparisons also indicate that TRAC calculated the thermal-hydraulic parameters within LOFT well with only minor discrepancies. A number of models within TRAC-PF1/MOD1 were verified for the first time. They include the reactor-kinetics models, the trip-activated time-step controls, and the LOFT pump-coastdown calculations. In general, the final input description is adequate to analyze the experiment. The calculations indicate the importance and difficulty of obtaining accurate and applicable reactor-kinetics input data. They also indicate the need to include the effects of xenon-poisoning buildup in the analysis.

Meier, J.

1985-01-01T23:59:59.000Z

154

A Comprehensive Review of the Tests Completed on the Flow Loop at the Energy Systems Laboratory (Draft)  

E-Print Network [OSTI]

-calibration of the equipment is the best way to ensure field accuracy. The calibration laboratory was built to provide a close at hand facility where the majority of this work could be performed. The flowloop was built to provide a means of calibrating the thermal monitoring... the receiving tank.backto thesupply tank. An orifice plate assembly has been installed to provide a secondary standard. The orifice plate is located in the vertical rise between the test section and the receiving tank. A differential pressure transducer with a 0...

Robinson, J.

1992-01-01T23:59:59.000Z

155

PROOF COPY [GTP-08-1324] 002001GTP [GTP-08-1324]002001GTP  

E-Print Network [OSTI]

.edu S. K. Aggarwal Department of Mechanical and Industrial Engineering, University of Illinois and vapor/gas, when the local pressure drops below the vapor pressure of the fluid. Funda- mentally, the liquid to vapor transition can occur by heating the fluid at a constant pressure, known as boiling

Aggarwal, Suresh K.

156

Interlaboratory study of the reproducibility of the single-pass flow-through test method : measuring the dissolution rate of LRM glass at 70 {sup {degree}}C and pH 10.  

SciTech Connect (OSTI)

An international interlaboratory study (ILS) was conducted to evaluate the precision with which single-pass flow-through (SPFT) tests can be conducted by following a method to be standardized by the American Society for Testing and Materials - International. Tests for the ILS were conducted with the low-activity reference material (LRM) glass developed previously for use as a glass test standard. Tests were conducted at 70 {+-} 2 C using a LiCl/LiOH solution as the leachant to impose an initial pH of about 10 (at 70 C). Participants were provided with LRM glass that had been crushed and sieved to isolate the -100 +200 mesh size fraction, and then washed to remove fines. Participants were asked to conduct a series of tests using different solution flow rate-to-sample mass ratios to generate a range of steady-state Si concentrations. The glass dissolution rate under each test condition was calculated using the steady-state Si concentration and solution flow rate that were measured in the test. The glass surface area was estimated from the mass of glass used in the test and the Si content of LRM glass was known. A linear relationship between the rate and the steady-state Si concentration (at Si concentrations less than 10 mg/L) was used to estimate the forward dissolution rate, which is the rate in the absence of dissolved Si. Participants were asked to sample the effluent solution at least five times after reaction times of between 3 and 14 days to measure the Si concentration and flow rate, and to verify that steady-state was achieved. Results were provided by seven participants and the data sets provided by five participants were sufficient to determine the forward rates independently.

Ebert, W. L.; Chemical Engineering

2006-02-28T23:59:59.000Z

157

A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada  

SciTech Connect (OSTI)

Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock’s ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock’s primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of stratigraphic information in the development of HSUs is important to assure individual HSUs are internally consistent, correlatable, and mappable throughout all the model areas.

Lance Prothro, Sigmund Drellack Jr., Jennifer Mercadante

2009-01-31T23:59:59.000Z

158

Flow Test | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHome Kyoung's pictureFlint

159

Development and adaptation of conduction and radiation heat-transfer computer codes for the CFTL. [Core Flow Test Loop; RODCON; HOTTEL  

SciTech Connect (OSTI)

RODCON and HOTTEL are two computational methods used to calculate thermal and radiation heat transfer for the Core Flow Test Loop (CFTL) analysis efforts. RODCON was developed at ORNL to calculate the internal temperature distribution of the fuel rod simulator (FRS) for the CFTL. RODCON solves the time-dependent heat transfer equation in two-dimensional (R angle) cylindrical coordinates at an axial plane with user-specified radial material zones and time- and position-variant surface conditions at the FRS periphery. Symmetry of the FRS periphery boundary conditions is not necessary. The governing elliptic, partial differential heat equation is cast into a fully implicit, finite-difference form by approximating the derivatives with a forward-differencing scheme with variable mesh spacing. The heat conduction path is circumferentially complete, and the potential mathematical problem at the rod center can be effectively ignored. HOTTEL is a revision of an algorithm developed by C.B. Baxi at the General Atomic Company (GAC) to be used in calculating radiation heat transfer in a rod bundle enclosed in a hexagonal duct. HOTTEL uses geometric view factors, surface emissivities, and surface areas to calculate the gray-body or composite view factors in an enclosure having multiple reflections in a nonparticipating medium.

Conklin, J.C.

1981-08-01T23:59:59.000Z

160

Single-Pass Flow-Through Test Elucidation of Weathering Behavior and Evaluation of Contaminant Release Models for Hanford Tank Residual Radioactive Waste  

SciTech Connect (OSTI)

Contaminant release models are required to evaluate and predict long-term environmental impacts of even residual amounts of high-level radioactive waste after cleanup and closure of radioactively contaminated sites such as the DOE’s Hanford Site. More realistic and representative models have been developed for release of uranium, technetium, and chromium from Hanford Site tanks C-202, C-203, and C-103 residual wastes using data collected with a single-pass flow-through test (SPFT) method. These revised models indicate that contaminant release concentrations from these residual wastes will be considerably lower than previous estimates based on batch experiments. For uranium, a thermodynamic solubility model provides an effective description of uranium release, which can account for differences in pore fluid chemistry contacting the waste that could occur through time and as a result of different closure scenarios. Under certain circumstances in the SPFT experiments various calcium rich precipitates (calcium phosphates and calcite) form on the surfaces of the waste particles, inhibiting dissolution of the underlying uranium phases in the waste. This behavior was not observed in previous batch experiments. For both technetium and chromium, empirical release models were developed. In the case of technetium, release from all three wastes was modeled using an equilibrium Kd model. For chromium release, a constant concentration model was applied for all three wastes.

Cantrell, Kirk J.; Carroll, Kenneth C.; Buck, Edgar C.; Neiner, Doinita; Geiszler, Keith N.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Addendum for the Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, NevadaTest Site, Nye County, Nevada, Revision 0 (page changes)  

SciTech Connect (OSTI)

This document, which makes changes to Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, S-N/99205--074, Revision 0 (May 2006) was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated June 20, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made: • Section 6.0 Conceptual Model Uncertainty Analyses. Please note that in this section figures showing the observed versus simulated well head (Figures 6-1, 6-5, 6-7, 6-16, 6-28, 6-30, 6-32, 6-34, 6-37, 6-42, 6-47, 6-52, 6-57, 6-62, 6-71, and 6-86) have a vertical break in scale on the y axis. • Section 7.0 Parameter Sensitivity Analysis. In Section 7.2, the parameter perturbation analysis defines two components of the objective function PHI. These two components include the WELL component that represents the head portion of the objective function as measured in wells and the FLUX component that represents the lateral boundary flux portion of the objective function. In the text and figures in Section 7.2, the phrases “well portion of the objective function” and “head portion of the objective function” are used interchangeably in discussions of the WELL component of the objective function.

John McCord

2007-05-01T23:59:59.000Z

162

Solderability test system  

DOE Patents [OSTI]

A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time. 11 figs.

Yost, F.; Hosking, F.M.; Jellison, J.L.; Short, B.; Giversen, T.; Reed, J.R.

1998-10-27T23:59:59.000Z

163

Solderability test system  

DOE Patents [OSTI]

A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time.

Yost, Fred (Cedar Crest, NM); Hosking, Floyd M. (Albuquerque, NM); Jellison, James L. (Albuquerque, NM); Short, Bruce (Beverly, MA); Giversen, Terri (Beverly, MA); Reed, Jimmy R. (Austin, TX)

1998-01-01T23:59:59.000Z

164

Cotton flow  

E-Print Network [OSTI]

Using the conformally invariant Cotton tensor, we define a geometric flow, the "Cotton flow", which is exclusive to three dimensions. This flow tends to evolve the initial metrics into conformally flat ones, and is somewhat orthogonal to the Yamabe flow, the latter being a flow within a conformal class. We define an entropy functional, and study the flow of nine homogeneous spaces both numerically and analytically. In particular, we show that the arbitrarily deformed homogeneous 3-sphere flows into the round 3-sphere. Two of the nine homogeneous geometries, which are degenerated by the Ricci flow, are left intact by the Cotton flow.

Ali Ulas Ozgur Kisisel; Ozgur Sarioglu; Bayram Tekin

2008-06-17T23:59:59.000Z

165

Gas Test Loop Booster Fuel Hydraulic Testing  

SciTech Connect (OSTI)

The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

Gas Test Loop Hydraulic Testing Staff

2006-09-01T23:59:59.000Z

166

Estimation of steady-state and transcient power distributions for the RELAP analyses of the 1963 loss-of-flow and loss-of-pressure tests at BR2.  

SciTech Connect (OSTI)

To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model and methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.

Dionne, B.; Tzanos, C. P. (Nuclear Engineering Division)

2011-05-23T23:59:59.000Z

167

Sanders, J. E.; and Merguerian, Charles, 1995b, New York City region: Unique testing ground for flow models of Quaternary continental glaciers.  

E-Print Network [OSTI]

Sanders, J. E.; and Merguerian, Charles, 1995b, New York City region: Unique testing ground City came from the NNE (from the "Labrador center"). When ice blocked the N end of Hudson Bay and Lake This Abstract: Sanders, J. E.; and Merguerian, Charles, 1995b, New York City region: Unique testing ground

Merguerian, Charles

168

Flow characteristics in an irregular spillway model  

E-Print Network [OSTI]

River Authority. TABLE OF CONTENTS Page ACKNOWLEDGEMENT TABLE OF CONTENTS V1 LIST OF FIGURES LIST OF TABLES INTRODUCTION REVIEW OF LITERATURE Open Channel Flow Spillways Physical Modeling METHODS AND PROCEDURES 5 5 10 16 20 RESULTS... Test Test Test Test Test Test Test Test Test Test Test Test Test Test Test Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ? PMF Test 27 27 29 29 32 35 38 43 43 49 49 52 56 63 63 65 65 DISCUSSION S...

Scott, Mary Charlene

1988-01-01T23:59:59.000Z

169

Test Automation Test Automation  

E-Print Network [OSTI]

Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

Mousavi, Mohammad

170

Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Project to assess and evaluate the effects of the underground nuclear weapons tests on groundwater beneath the Nevada Test Site (NTS) and vicinity. The framework for this evaluation is provided in Appendix VI, Revision No. 1 (December 7, 2000) of the Federal Facility Agreement and Consent Order (FFACO, 1996). Section 3.0 of Appendix VI ''Corrective Action Strategy'' of the FFACO describes the process that will be used to complete corrective actions specifically for the UGTA Project. The objective of the UGTA corrective action strategy is to define contaminant boundaries for each UGTA corrective action unit (CAU) where groundwater may have become contaminated from the underground nuclear weapons tests. The contaminant boundaries are determined based on modeling of groundwater flow and contaminant transport. A summary of the FFACO corrective action process and the UGTA corrective action strategy is provided in Section 1.5. The FFACO (1996) corrective action process for the Yucca Flat/Climax Mine CAU 97 was initiated with the Corrective Action Investigation Plan (CAIP) (DOE/NV, 2000a). The CAIP included a review of existing data on the CAU and proposed a set of data collection activities to collect additional characterization data. These recommendations were based on a value of information analysis (VOIA) (IT, 1999), which evaluated the value of different possible data collection activities, with respect to reduction in uncertainty of the contaminant boundary, through simplified transport modeling. The Yucca Flat/Climax Mine CAIP identifies a three-step model development process to evaluate the impact of underground nuclear testing on groundwater to determine a contaminant boundary (DOE/NV, 2000a). The three steps are as follows: (1) Data compilation and analysis that provides the necessary modeling data that is completed in two parts: the first addressing the groundwater flow model, and the second the transport model. (2) Development of a groundwater flow model. (3) Development of a groundwater transport model. This report presents the results of the first part of the first step, documenting the data compilation, evaluation, and analysis for the groundwater flow model. The second part, documentation of transport model data will be the subject of a separate report. The purpose of this document is to present the compilation and evaluation of the available hydrologic data and information relevant to the development of the Yucca Flat/Climax Mine CAU groundwater flow model, which is a fundamental tool in the prediction of the extent of contaminant migration. Where appropriate, data and information documented elsewhere are summarized with reference to the complete documentation. The specific task objectives for hydrologic data documentation are as follows: (1) Identify and compile available hydrologic data and supporting information required to develop and validate the groundwater flow model for the Yucca Flat/Climax Mine CAU. (2) Assess the quality of the data and associated documentation, and assign qualifiers to denote levels of quality. (3) Analyze the data to derive expected values or spatial distributions and estimates of the associated uncertainty and variability.

John McCord

2006-06-01T23:59:59.000Z

171

Vertical flow chemical detection portal  

DOE Patents [OSTI]

A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

Linker, K.L.; Hannum, D.W.; Conrad, F.J.

1999-06-22T23:59:59.000Z

172

Flow chamber  

DOE Patents [OSTI]

A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

Morozov, Victor (Manassas, VA)

2011-01-18T23:59:59.000Z

173

Geological flows  

E-Print Network [OSTI]

In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

Yu. N. Bratkov

2008-11-19T23:59:59.000Z

174

Flow visualization and leakage measurements of labyrinth seals  

E-Print Network [OSTI]

A large scale test rig is used to conduct an experimental investigation into the leakage resistance properties and flow characteristics of labyrinth seals. A novel test facility with multiple cavities that provides 2D, planar flow at a scale...

Johnson, James Wayne

1996-01-01T23:59:59.000Z

175

Multiphase cooling flows  

E-Print Network [OSTI]

I discuss the multiphase nature of the intracluster medium whose neglect can lead to overestimates of the baryon fraction of clusters by up to a factor of two. The multiphase form of the cooling flow equations are derived and reduced to a simple form for a wide class of self-similar density distributions. It is shown that steady-state cooling flows are \\emph{not} consistent with all possible emissivity profiles which can therefore be used as a test of the theory. In combination, they provide strong constraints on the mass distribution within the cooling radius.

Peter A. Thomas

1996-08-20T23:59:59.000Z

176

Cooling Flows or Heating Flows?  

E-Print Network [OSTI]

It is now clear that AGN heat cooling flows, largely by driving winds. The winds may contain a relativistic component that generates powerful synchrotron radiation, but it is not clear that all winds do so. The spatial and temporal stability of the AGN/cooling flow interaction are discussed. Collimation of the winds probably provides spatial stability. Temporal stability may be possible only for black holes with masses above a critical value. Both the failure of cooling flows to have adiabatic cores and the existence of X-ray cavities confirm the importance of collimated outflows. I quantify the scale of the convective flow that the AGN Hydra would need to drive if it balanced radiative inward flow by outward flow parallel to the jets. At least in Virgo any such flow must be confined to r<~20 kpc. Hydrodynamical simulations suggest that AGN outbursts cannot last longer than ~25 Myr. Data for four clusters with well studied X-ray cavities suggests that heating associated with cavity formation approximately balances radiative cooling. The role of cosmic infall and the mechanism of filament formation are briefly touched on.

James Binney

2003-10-08T23:59:59.000Z

177

UZ Flow Models and Submodels  

SciTech Connect (OSTI)

The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

Y. Wu

2004-11-01T23:59:59.000Z

178

THE ROTATING TARGET FLOW TEST FACILITY  

E-Print Network [OSTI]

@idom.com) Fernando Sordo, ESS Bilbao Tom McManamy, ORNL/SNS #12;Status of the RTFT 4th HPTW of a RotaAng Target for ESS · In 2009 ESS Bilbao worked out a preliminary design for a rotaZng target for ESS. · Disc formed by un-clad tungsten bricks cooled

McDonald, Kirk

179

Flow cytometer  

DOE Patents [OSTI]

A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

Van den Engh, G.

1995-11-07T23:59:59.000Z

180

SFTEL: Flow Cell | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flow Cell EMSL's Subsurface Flow and Transport Experimental Laboratory offers several meter-scale flow cells and columns for research in saturated and unsaturated porous media....

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Flow visualization and leakage measurements of worn labyrinth seals  

E-Print Network [OSTI]

A large-scale flow visualization test facility is used to conduct an experimental investigation into the leakage resistance and flow characteristics of worn labyrinth seals. Wear in labyrinth seals is a consequence of contact between the rotating...

Allen, Brian Frank

1997-01-01T23:59:59.000Z

182

Geologic flow characterization using tracer techniques  

SciTech Connect (OSTI)

A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included.

Klett, R. D.; Tyner, C. E.; Hertel, Jr., E. S.

1981-04-01T23:59:59.000Z

183

Scaling bounds on dissipation in turbulent flows  

E-Print Network [OSTI]

We present a new rigorous method for estimating statistical quantities in fluid dynamics such as the (average) energy dissipation rate directly from the equations of motion. The method is tested on shear flow, channel flow, Rayleigh--B\\'enard convection and porous medium convection.

Seis, Christian

2015-01-01T23:59:59.000Z

184

Sandia National Laboratories: PMTF Flow Loop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EBTS and EB-1200 vacuum chambers, and is used for infrared thermography in separate hotcold transient tests that assess the quality of brazed joints. The flow loop gives the...

185

Generalized one-dimensional, steady, compressible flow  

SciTech Connect (OSTI)

The present development and testing of a generalized method for analytically examining 1D steady flow of perfect gases allows area change, heat transfer, friction, and mass injection. Generalized flow functions are developed, and sample tables are calculated and tested for both simple cases and combined changes. Normal shocks are noted to occur from the supersonic portion of these loci to the subsonic portion, in a manner analogous to simple-change behavior. 9 refs.

Young, F.M. (Lamar Univ., Beaumont, TX (United States))

1993-01-01T23:59:59.000Z

186

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

and test combined geophysical techniques to characterize fluid flow, in relation to fracture orientations and fault distributions in a geothermal system. Average Overall Score:...

187

Mach flow angularity probes for scramjet engine flow path diagnostics  

SciTech Connect (OSTI)

Mach-flow angularity (MFA) probes were developed for use in scramjet flow path probe rakes. Prototype probes were fabricated to demonstrate the assembly processes (numerical control machining, furnace brazing, and electron beam welding). Tests of prototype probes confirmed the thermal durability margins and life cycle. Selected probes were calibrated in air at Mach numbers from 1.75 to 6.0. Acceptance criteria for the production probes stressed thermal durability and pressure (and, consequently, Mach number) measurement quality. This new water-cooled MFA probe has 0.397-cm shaft diameter and is capable of withstanding heat fluxes of 2.724 kW/sq cm.

Jalbert, P.A.; Hiers, R.S. Jr. [Sverdrup Technology, Inc., Arnold AFS, TN (United States)

1993-12-31T23:59:59.000Z

188

Low volume flow meter  

DOE Patents [OSTI]

The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

Meixler, Lewis D. (East Windsor, NJ)

1993-01-01T23:59:59.000Z

189

Flow characteristics in underground coal gasification  

SciTech Connect (OSTI)

During the underground coal gasification field test at the Hoe Creek site No. 2, Wyoming, helium pulses were introduced to develop information to characterize the flow field, and to estimate the coefficients in dispersion models of the flow. Quantitative analysis of the tracer response curves shows an increasing departure from a plug flow regime with time because of the combined effects of the free and forced convection in addition to the complex non-uniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery and characteristic velocity, as well as the split of the gas between the parallel streams in the model. 17 refs.

Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

1982-01-01T23:59:59.000Z

190

Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1  

SciTech Connect (OSTI)

This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

Nathan Bryant

2008-05-01T23:59:59.000Z

191

Propeller Flow Meter  

E-Print Network [OSTI]

Propeller flow meters are commonly used to measure water flow rate. They can also be used to estimate irrigation water use. This publication explains how to select, install, read and maintain propeller flow meters....

Enciso, Juan; Santistevan, Dean; Hla, Aung K.

2007-10-01T23:59:59.000Z

192

Dispersed flow film boiling  

E-Print Network [OSTI]

Dispersed flow consists of small liquid droplets entrained in a flowing vapor. This flow regime can occur in cryogenic equipment, in steam generators, and during nuclear reactor loss of coolant accidents. A theoretical ...

Yoder, Graydon L.

1980-01-01T23:59:59.000Z

193

Bacteria in shear flow  

E-Print Network [OSTI]

Bacteria are ubiquitous and play a critical role in many contexts. Their environment is nearly always dynamic due to the prevalence of fluid flow: creeping flow in soil, highly sheared flow in bodily conduits, and turbulent ...

Marcos, Ph.D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

194

Multiphase flow calculation software  

DOE Patents [OSTI]

Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

Fincke, James R. (Idaho Falls, ID)

2003-04-15T23:59:59.000Z

195

CFD analysis of laminar oscillating flows  

SciTech Connect (OSTI)

This paper describes a numerical simulations of oscillating flow in a constricted duct and compares the results with experimental and theoretical data. The numerical simulations were performed using the computational fluid dynamics (CFD) code CFX4.2. The numerical model simulates an experimental oscillating flow facility that was designed to test the properties and characteristics of oscillating flow in tapered ducts, also known as jet pumps. Jet pumps are useful devices in thermoacoustic machinery because they produce a secondary pressure that can counteract an unwanted effect called streaming, and significantly enhance engine efficiency. The simulations revealed that CFX could accurately model velocity, shear stress and pressure variations in laminar oscillating flow. The numerical results were compared to experimental data and theoretical predictions with varying success. The least accurate numerical results were obtained when laminar flow approached transition to turbulent flow.

Booten, C. W. Charles W.); Konecni, S. (Snezana); Smith, B. L. (Barton L.); Martin, R. A. (Richard A.)

2001-01-01T23:59:59.000Z

196

Flow characteristics in underground coal gasification  

SciTech Connect (OSTI)

During the Hoe Creek No. 2 (Wyoming) underground-coal-gasification field test, researchers introduced helium pulses to characterize the flow field and to estimate the coefficients in dispersion models of the flow. Flow models such as the axial-dispersion and parallel tanks-in-series models allowed interpretation of the in situ combustion flow field from the residence time distribution of the tracer gas. A quantitative analysis of the Hoe Creek tracer response curves revealed an increasing departure from a plug-flow regime with time, which was due to the combined effects of the free and forced convection in addition to the complex nonuniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery, and characteristic velocity, as well as the split of the gas between the parallel streams in the model.

Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

1982-01-01T23:59:59.000Z

197

An evaluation of heat flow transducers as a means of determining soil heat flow  

E-Print Network [OSTI]

provided to the Micrometeorology Section, Department of Oceanography and Meteorology, ARM College of Texas by the Signal Corps of the United States Army, under Contract No. DA 36-039 AMC-02195 (E). The heat flow plates used in this study were provided... surface soil heat flow. The results show that acceptable performance of the plates in the measurement of heat flow is possible although in general should not be expected without thorough testing, and even then there are restrictive considerations...

King, Barney L. D

2012-06-07T23:59:59.000Z

198

Flow Distances on Open Flow Networks  

E-Print Network [OSTI]

Open flow network is a weighted directed graph with a source and a sink, depicting flux distributions on networks in the steady state of an open flow system. Energetic food webs, economic input-output networks, and international trade networks, are open flow network models of energy flows between species, money or value flows between industrial sectors, and goods flows between countries, respectively. Flow distances (first-passage or total) between any given two nodes $i$ and $j$ are defined as the average number of transition steps of a random walker along the network from $i$ to $j$ under some conditions. They apparently deviate from the conventional random walk distance on a closed directed graph because they consider the openness of the flow network. Flow distances are explicitly expressed by underlying Markov matrix of a flow system in this paper. With this novel theoretical conception, we can visualize open flow networks, calculating centrality of each node, and clustering nodes into groups. We apply fl...

Guo, Liangzhu; Shi, Peiteng; Wang, Jun; Huang, Xiaohan; Zhang, Jiang

2015-01-01T23:59:59.000Z

199

Microgravity Flow Regime Transition Modeling  

E-Print Network [OSTI]

apparatus have been used in past flow regime mapping experiments such as Venturi, perforated pipe, annular, and t-junction mixers. The mixing apparatus used in a particular experiment determines the bubble size distribution at the inlet... pressure of 80 kPa was reported, however, the temperature was not. The orientation and location of the test section with respect to the aircraft are unknown. The mixing apparatus used in the experiment was a Venturi mixer. This data set does...

Shephard, Adam M.

2010-07-14T23:59:59.000Z

200

Portable wastewater flow meter  

DOE Patents [OSTI]

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1999-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Portable wastewater flow meter  

DOE Patents [OSTI]

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1990-01-01T23:59:59.000Z

202

A constitutive law for dense granular flows  

E-Print Network [OSTI]

A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

Pierre Jop; Yoël Forterre; Olivier Pouliquen

2006-12-05T23:59:59.000Z

203

Prematurely terminated slug tests  

SciTech Connect (OSTI)

A solution of the well response to a prematurely terminated slug test (PTST) is presented. The advantages of a PTST over conventional slug tests are discussed. A systematized procedure of a PTST is proposed, where a slug test is terminated in the midpoint of the flow point, and the subsequent shut-in data is recorded and analyzed. This method requires a downhole shut-in device and a pressure transducer, which is no more than the conventional deep-well slug testing. As opposed to slug tests, which are ineffective when a skin is present, more accurate estimate of formation permeability can be made using a PTST. Premature termination also shortens the test duration considerably. Because in most cases no more information is gained by completing a slug test to the end, the author recommends that conventional slug tests be replaced by the premature termination technique. This study is part of an investigation of the feasibility of geologic isolation of nuclear wastes being carried out by the US Department of Energy and the National Cooperative for the Storage of Radioactive Waste of Switzerland.

Karasaki, K. (Lawrence Berkeley Lab., CA (USA))

1990-07-01T23:59:59.000Z

204

Flow reversal power limit for the HFBR  

SciTech Connect (OSTI)

The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW.

Cheng, Lap Y.; Tichler, P.R.

1995-10-01T23:59:59.000Z

205

Test Images  

E-Print Network [OSTI]

Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

206

The magnetohydrodynamics Coal-Fired Flow Facility  

SciTech Connect (OSTI)

In this quarterly technical Progress report, UTSI reports on continued technical progress in developing the technology for the steam bottoming plant for an MHD Steam combined cycle Power plant. No testing was conducted during the quarter. Major activities were in preparation for the beginning of the 2000 hour POC testing on wester, low sulfur coal scheduled to start in April 1992. The report contains analyses of data from the previous tests in this series that were designed to prepare for the POC test series. Modifications to the flow train that are reported include the rearrangement of the lower temperature heat exchangers in the superheater test module (SHTM) to move the air heater upstream to a higher gas temperature, installation of a gas by-pass to keep the ash seed hopper tap open and installation of the new tubes to be tested in the steam cooled test sections. The major facility modification discussed is the installation of the wet electrostatic precipitator, to replace the venturi scrubber that has been used in previous testing, to take any flow that is not desired through the dry electrostatic precipitator or baghouse. Plans for future testing that are summarized include improvements in test operations, the details of arrangement of high temperature air heater materials for testing and the plans for advanced instrumentation by both UTSI and Mississippi State University.

Not Available

1993-02-01T23:59:59.000Z

207

Prediction of flow rates through an orifice at pressures corresponding to the transition between molecular and isentropic flow  

SciTech Connect (OSTI)

A model of compressible flow through an orifice, in the region of transition from free molecular to isentropic expansion flow, has been developed and tested for accuracy. The transitional or slip regime is defined as the conditions where molecular interactions are too many for free molecular flow modeling, yet not great enough for isentropic expansion flow modeling. Due to a lack of literature establishing a well-accepted model for predicting transitional flow, it was felt such work would be beneficial. The model is nonlinear and cannot be satisfactorily linearized for a linear regression analysis. Consequently, a computer routine was developed which minimized the sum of the squares of the residual flow for the nonlinear model. The results indicate an average accuracy within 15% of the measured flow throughout the range of test conditions. Furthermore, the results of the regression analysis indicate that the transitional regime lies between Knudsen numbers of approximately 2 and 45. 4 refs., 3 figs., 1 tab.

DeMuth, S.F.; Watson, J.S.

1985-01-01T23:59:59.000Z

208

Ultrasonic flow metering system  

DOE Patents [OSTI]

A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Mauseth, Jason A. (Pocatello, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

209

Geothermal: Sponsored by OSTI -- Analysis and testing the performance...  

Office of Scientific and Technical Information (OSTI)

Analysis and testing the performance of a centrifugal two phase flow separator Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

210

Elbow mass flow meter  

DOE Patents [OSTI]

Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

1994-01-01T23:59:59.000Z

211

CONTROL VALVE TESTING PROCEDURES AND EQUATIONS  

E-Print Network [OSTI]

a coefficient that is independent of valve size and constant for geometrically similar valves. However in the publication "Control Valve Flow Coefficients" by Rahmeyer and Driskell and published in the Pipeline Journal of ASCE. Testing Procedures The flow coefficient is experimentally determined for different valve openings

Rahmeyer, William J.

212

Diesel Engine Idling Test  

SciTech Connect (OSTI)

In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

Larry Zirker; James Francfort; Jordon Fielding

2006-02-01T23:59:59.000Z

213

A New Approach to Computing Max Flows using Electrical Flows  

E-Print Network [OSTI]

A New Approach to Computing Max Flows using Electrical Flows Yin Tat Lee (MIT) Satish Rao (UC-Kelner-Madry-Spielman-Teng'11]: approximate flow in time Uses electrical flows. 7 #12;Electrical Flows 3 1 S t 8 #12;Electrical Flows Identify Graph with Resistor Network R(e)=1/w(e) 1/3 S t 1 9 #12;Electrical Flows Electrical flow

Rajamani, Sriram K.

214

Low flow fume hood  

DOE Patents [OSTI]

A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.

Bell, Geoffrey C. (Pleasant Hill, CA); Feustel, Helmut E. (Albany, CA); Dickerhoff, Darryl J. (Berkeley, CA)

2002-01-01T23:59:59.000Z

215

Evaluation of flow capture techniques for measuring HVAC grilleairflows  

SciTech Connect (OSTI)

This paper discusses the accuracy of commercially available flow hoods for residential applications. Results of laboratory and field tests indicate these hoods can be inadequate to measure airflows in residential systems, and there can be large measurement discrepancies between different flow hoods. The errors are due to poor calibrations, sensitivity of the hoods to grille airflow non-uniformities, and flow changes from added flow resistance. It is possible to obtain reasonable results using some flow hoods if the field tests are carefully done, the grilles are appropriate, and grille location does not restrict flow hood placement. We also evaluated several simple flow capture techniques for measuring grille airflows that could be adopted by the HVAC industry and homeowners as simple diagnostics. These simple techniques can be as accurate as commercially available devices. Our test results also show that current calibration procedures for flow hoods do not account for field application problems. As a result, agencies such as ASHRAE or ASTM need to develop a new standard for flow hood calibration, along with a new measurement standard to address field use of flow capture techniques.

Walker, Iain S.; Wray, Craig P.

2002-11-01T23:59:59.000Z

216

Site-Scale Saturated Zone Flow Model  

SciTech Connect (OSTI)

The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being carried out in the model report, ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The velocity fields are calculated by the flow model, described herein, independent of the transport processes, and are then used as inputs to the transport model. Justification for this abstraction is presented in the model report, ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021 (BSC 2003 [164870]).

G. Zyvoloski

2003-12-17T23:59:59.000Z

217

Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems  

SciTech Connect (OSTI)

A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

2013-05-01T23:59:59.000Z

218

Experimental Investigation of Two-Phase Flow in Rock Salt  

SciTech Connect (OSTI)

This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.

Malama, Bwalya; Howard, Clifford L.

2014-07-01T23:59:59.000Z

219

Analysis of pressure drops under reversing flow conditions  

SciTech Connect (OSTI)

This paper examines pressure-drop data from the Reversing Flow Test Facility (RFTF) at Argonne National Laboratory (ANL). The data comprise part of an initial series of measurements conducted with pressurized helium gas under reversing flow conditions. The characteristics of fluid pressure drops in compressible, reversing flows are discussed in the paper and compared with pressure-drop measurements for steady, incompressible flows. The methodology used to calculate instantaneous mass flows in the test section of the RFTF is summarized. The measured pressure drops are analyzed in terms of their frictional and inertial components. Pressure-drop data are presented for both tubes and wire mesh regenerators over a range of flow reversal frequencies. The results are discussed with reference to other experimental data and analytical models available in the literature. 10 refs., 6 figs., 2 tabs.

Krazinski, J.L.; Holtz, R.E.; Uherka, K.L.; Lottes, P.A.

1986-01-01T23:59:59.000Z

220

In-service filter testing  

SciTech Connect (OSTI)

This report contains the observations, test results, and conclusions of three separate in-service tests beginning in November 1979 and concluding in September 1983. The in-service tests described in this report produced encouraging results on filters constructed with fiberglass medium containing 5% Nomex and separators of aluminum foil coated with a thin film of vinyl-epoxy polymer. Filters containing medium with Kevlar fiber additives demonstrated they merited further evaluation. Other types of filters tested include separatorless filters (Flanders SuperFlow) and one filter with fiberglass separators. Asbestos-containing filters were used for comparison until their supply was exhausted. All filters tested were judged to have performed satisfactorily under the test conditions.

Terada, K.; Woodard, R.W.; Jensen, R.T.

1985-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Two-phase flow in horizontal wells  

SciTech Connect (OSTI)

Flow in horizontal wells and two-phase flow interaction with the reservoir were investigated experimentally and theoretically. Two-phase flow behavior has been recognized as one of the most important problems in production engineering. The authors designed and constructed a new test facility suitable for acquiring data on the relationship between pressure drop and liquid holdup along the well and fluid influx from the reservoir. For the theoretical work, an initial model was proposed to describe the flow behavior in a horizontal well configuration. The model uses the inflow-performance-relationship (IPR) approach and empirical correlations or mechanistic models for wellbore hydraulics. Although good agreement was found between the model and experimental data, a new IPR apart from the extension of Darcy`s law must be investigated extensively to aid in the proper design of horizontal wells.

Ihara, Masaru [Japan National Oil Corp., Chiba (Japan); Yanai, Koji [Nippon Kokan Corp., Yokohama (Japan); Yanai, Koji

1995-11-01T23:59:59.000Z

222

Reactivity initiated accident test series Test RIA 1-4  

SciTech Connect (OSTI)

The Reactivity Initiated Accident (RIA) Test RIA 1-4, the first 9-rod fuel rod bundle RIA Test to be performed at BWR hot startup conditions, was completed on April 16, 1980. The test was performed in the Power Burst Facility (PBF). Objective for Test RIA 1-4 was to provide information regarding loss-of-coolable fuel rod geometry following a RIA event for a peak fuel enthalpy equivalent to the present licensing criteria of 280 cal/g. The most severe RIA is the postulated Boiling Water Reactor (BWR) control rod drop during reactor startup. Therefore the test was conducted at BWR hot startup coolant conditions (538 K, 6.45 MPa, 0.8 1/sec). The test sequence began with steady power operation to condition the fuel, establish a short-lived fission product inventory, and calibrate the calorimetric measurements and core power chambers, neutron flux and gamma flux detectors. The test train was removed from the in-pile tube (IPT) to replace one of the fuel rods with a nominally identical irradiated rod and twelve flux wire monitors. A 2.8 ms period power burst was then performed. Coolant flow measurements were made before and after the power burst to characterize the flow blockage that occurred as a result of fuel rod failure.

Martinson, Z.R.; El-Genk, M.S.; Fukuda, S.K.; LaPointe, R.E.; Osetek, D.J.

1980-05-01T23:59:59.000Z

223

Turbulent flow in graphene  

E-Print Network [OSTI]

We demonstrate the possibility of a turbulent flow of electrons in graphene in the hydrodynamic region, by calculating the corresponding turbulent probability density function. This is used to calculate the contribution of the turbulent flow to the conductivity within a quantum Boltzmann approach. The dependence of the conductivity on the system parameters arising from the turbulent flow is very different from that due to scattering.

Kumar S. Gupta; Siddhartha Sen

2010-06-05T23:59:59.000Z

224

LM-MHD free-surface flow experiments in MTOR  

E-Print Network [OSTI]

LM-MHD free-surface flow experiments in MTOR Neil Morley for the APEX Participants VLT Conference concentrators · Free jet · Recirculating cell · Soaker Hose (not discussed here) Slide 5 #12;LM In LM Out #12;LM Jet test for NSTX module simulation · Jet flow is introduced into the high field region between

California at Los Angeles, University of

225

Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles  

E-Print Network [OSTI]

Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles Abstract The lack of sound and vibration while starting the drive system of an electric vehicle (EV) is one of the major differences the energy level to the driver. With Energy Flow (see Figure 1), we test if there will be a benefit in terms

226

Heat transfer and pressure drop in tape generated swirl flow  

E-Print Network [OSTI]

The heat transfer and pressure drop characteristics of water in tape generated swirl flow were investigated. The test sections were electrically heated small diameter nickel tubes with tight fitting full length Inconel ...

Lopina, Robert F.

1967-01-01T23:59:59.000Z

227

Test Comparability  

E-Print Network [OSTI]

KU ScholarWorks | http://kuscholarworks.ku.edu Test Comparability 2010 by Christine Keller and David Shulenburger This work has been made available by the University of Kansas Libraries’ Office of Scholarly Communication and Copyright. Please... and Shulenburger, David. “Test comparability,” with Christine Keller in the Letters section of Change, September/October 2010, p. 6. Published version: http://www.changemag.org/Archives/Back%20 Issues/September-October%202010/letters-to-editor.html Terms of Use...

Keller, Christine; Shulenburger, David E.

2010-01-01T23:59:59.000Z

228

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network [OSTI]

At normal rates of geothermal wells, turbulent flow is fullyeffects in two- phase geothermal well tests were studied (of salt precipitation around geothermal wells and of methane

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

229

Productivity & Energy Flow  

E-Print Network [OSTI]

1 Productivity & Energy Flow Ecosystem approach, focuses: on flow of energy, water, and nutrients (capture) of energy by autotrophs Gross (total) Net (total ­ costs) Secondary productivity- capture of energy by herbivores http://sciencebitz.com/?page_id=204 What Controls the Primary Productivity

Mitchell, Randall J.

230

Elbow mass flow meter  

DOE Patents [OSTI]

The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

1994-08-16T23:59:59.000Z

231

Microelectromechanical flow control apparatus  

DOE Patents [OSTI]

A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

Okandan, Murat (NE Albuquerque, NM)

2009-06-02T23:59:59.000Z

232

Software Testing and Maintenance 1 Regression Testing  

E-Print Network [OSTI]

1 Software Testing and Maintenance 1 Regression Testing Introduction Test Selection Test Minimization Test Prioritization Summary Software Testing and Maintenance 2 What is it? Regression testing refers to the portion of the test cycle in which a program is tested to ensure that changes do not affect

Lei, Jeff Yu

233

Test Automation Ant JUnit Test Automation  

E-Print Network [OSTI]

Test Automation Ant JUnit Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2012 Mousavi: Test Automation #12;Test Automation Ant JUnit Outline Test Automation Ant JUnit Mousavi: Test Automation #12;Test Automation Ant JUnit Why? Challenges of Manual Testing

Mousavi, Mohammad

234

In Situ Field Testing of Processes  

SciTech Connect (OSTI)

The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR.

J. Wang

2001-12-14T23:59:59.000Z

235

Generating Test Data from SOFL Specifications \\Lambda A. Jefferson Offutt  

E-Print Network [OSTI]

Generating Test Data from SOFL Specifications \\Lambda A. Jefferson Offutt ISSE Department, 4A4@cs.hiroshima­cu.ac.jp Abstract Software testing can only be formalized and quantified when a solid basis for test generation can be defined. Tests are commonly generated from the source code, control flow graphs, design representations

Offutt, Jeff

236

Elliptic flow phenomenon at ATLAS  

E-Print Network [OSTI]

We summarize measurements of elliptic flow and higher order flow harmonics performed by the ATLAS experiment at the LHC. Results on event-averaged flow measurements and event-plane correlations in Pb+Pb collisions are discussed along with the event-by-event flow measurements. Further, we summarize results on flow in p+Pb collisions.

Martin Spousta

2014-06-20T23:59:59.000Z

237

Flow conditions of fresh mortar and concrete in different pipes  

SciTech Connect (OSTI)

The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

Jacobsen, Stefan, E-mail: stefan.jacobsen@ntnu.n [Norwegian University of Science and Technology, Dept of Structural Engineering, Trondheim (Norway); Haugan, Lars; Hammer, Tor Arne [SINTEF Byggforsk AS Building and Infrastructure, Trondheim (Norway); Kalogiannidis, Evangelos [Norwegian University of Science and Technology, Dept of Structural Engineering, Trondheim (Norway)

2009-11-15T23:59:59.000Z

238

A SOLAR TEST COLLECTOR FOR EVALUATION OF BOTH SELECTIVE AND NON-SELECTIVE ABSORBERS  

E-Print Network [OSTI]

6974 Rev. e. ' A SOLAR TEST COLLECTOR FOR EVALUATION OF BOTHFig. L r2 r2 Solar test collector flow chart. Type Slope (-2. ai ei ai/ei SOlar test collector in operation, side view.

Lampert, C.M.

2011-01-01T23:59:59.000Z

239

Verification Testing Test Driven Development Testing with JUnit Verification  

E-Print Network [OSTI]

Verification Testing Test Driven Development Testing with JUnit Verification Any activity should be verified. #12;Verification Testing Test Driven Development Testing with JUnit Approaches to verification 1 Testing 2 Static Analysis · Peer review · Insepction/Walk-through/Structured review · Formal

Peters, Dennis

240

Shroud leakage flow discouragers  

DOE Patents [OSTI]

A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

Bailey, Jeremy Clyde (Middle Grove, NY); Bunker, Ronald Scott (Niskayuna, NY)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Bypass Flow Study  

SciTech Connect (OSTI)

The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

Richard Schultz

2011-09-01T23:59:59.000Z

242

Magnetically stimulated fluid flow patterns  

ScienceCinema (OSTI)

Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

Martin, Jim; Solis, Kyle

2014-08-06T23:59:59.000Z

243

Optical flow switching  

E-Print Network [OSTI]

Present-day networks are being challenged by dramatic increases in bandwidth demand of emerging applications. We will explore a new transport, ldquooptical flow switchingrdquo, that will enable significant growth and ...

Chan, Vincent W. S.

244

Olefin Autoxidation in Flow  

E-Print Network [OSTI]

Handling hazardous multiphase reactions in flow brings not only safety advantages but also significantly improved performance, due to better mass transfer characteristics. In this paper, we present a continuous microreactor ...

Neuenschwander, Ulrich

245

Parallel flow diffusion battery  

DOE Patents [OSTI]

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, H.C.; Cheng, Y.S.

1984-01-01T23:59:59.000Z

246

Verifying Test Hypotheses -HOL/TestGen Verifying Test Hypotheses -HOL/TestGen  

E-Print Network [OSTI]

Verifying Test Hypotheses - HOL/TestGen Verifying Test Hypotheses - HOL/TestGen An Experiment in Test and Proof Thomas Malcher January 20, 2014 1 / 20 #12;Verifying Test Hypotheses - HOL/TestGen HOL/TestGen Outline Introduction Test Hypotheses HOL/TestGen - Demo Verifying Test Hypotheses Conclusion 2 / 20 #12

247

Microgrid Testing  

SciTech Connect (OSTI)

With the publication of IEEE 1574.4 Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems, there is an increasing amount of attention on not only the design and operations of microgrids, but also on the proper operation and testing of these systems. This standard provides alternative approaches and good practices for the design, operation, and integration of microgrids. This includes the ability to separate from and reconnect to part of the utility grid while providing power to the islanded power system. This presentation addresses the industry need to develop standardized testing and evaluation procedures for microgrids in order to assure quality operation in the grid connected and islanded modes of operation.

Shirazi, M.; Kroposki, B.

2012-01-01T23:59:59.000Z

248

KJRR-FAI Hydraulic Flow Testing Input Package  

SciTech Connect (OSTI)

The INL, in cooperation with the KAERI via Cooperative Research And Development Agreement (CRADA), undertook an effort in the latter half of calendar year 2013 to produce a conceptual design for the KJRR-FAI campaign. The outcomes of this effort are documented in further detail elsewhere [5]. The KJRR-FAI was designed to be cooled by the ATR’s Primary Coolant System (PCS) with no provision for in-pile measurement or control of the hydraulic conditions in the irradiation assembly. The irradiation assembly was designed to achieve the target hydraulic conditions via engineered hydraulic losses in a throttling orifice at the outlet of the irradiation vehicle.

N.E. Woolstenhulme; R.B. Nielson; D.B. Chapman

2013-12-01T23:59:59.000Z

249

Integrated Lateral Flow Test Strip with Electrochemical Sensor for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface

250

Nevada National Security Site Underground Test Area (UGTA) Flow and  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 PrintingNeed for An Integrated Risk Model NeedStreams

251

Underground Flow Measurement and Particle Release Test | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Fuel Qualification Program |SankarDevelopment |

252

Slug Test Data Analysis in Reservoirs with Double Porosity Behaviour  

SciTech Connect (OSTI)

Pressure analysis for a slug test which corresponds to the flow period of a Drill Stem test is extended to wells in reservoirs with double-porosity behaviour. Solutions are obtained for either pseudo-steady state or transient interporosity flow. The distinctive specific features of both solutions are identified. Results presented are applicable to both naturally-fractured and layered reservoirs with the more permeable layer connecting to the wellbore. Type curves based on the pseudo-steady or transient interporosity flow are presented. These type curves are similar to the existing homogenous single layer type curve with addition of interporosity flow lines indicating double-porosity behaviour.

Mateen, Khalid; Ramey, Henry J. Jr.

1983-12-15T23:59:59.000Z

253

Section 13: Flow control 1 Section 13: Flow control  

E-Print Network [OSTI]

Geometries for Energyefficient Flow Around Bodies Abstract 14:30 ­ 14:50: Elfriede Friedmann (Universität

Kohlenbach, Ulrich

254

Experimental characterization of spin motor nozzle flow.  

SciTech Connect (OSTI)

The Mach number in the inviscid core of the flow exiting scarfed supersonic nozzles was measured using pitot probes. Nozzle characterization experiments were conducted in a modified section of an obsolete M = 7.3 test section/nozzle assembly on Sandia's Hypersonic Wind Tunnel. By capitalizing on existing hardware, the cost and time required for tunnel modifications were significantly reduced. Repeatability of pitot pressure measurements was excellent, and instrumentation errors were reduced by optimizing the pressure range of the transducers used for each test run. Bias errors in probe position prevented us from performing a successful in situ calibration of probe angle effects using pitot probes placed at an angle to the nozzle centerline. The abrupt throat geometry used in the Baseline and Configuration A and B nozzles modeled the throat geometry of the flight vehicle's spin motor nozzles. Survey data indicates that small (''unmeasurable'') differences in the nozzle throat geometries produced measurable flow asymmetries and differences in the flow fields generated by supposedly identical nozzles. Therefore, data from the Baseline and Configuration A and B nozzles cannot be used for computational fluid dynamics (CFD) code validation. Configuration C and D nozzles replaced the abrupt throat geometry of Baseline and Configuration A and B nozzles with a 0.500-inch streamwise radius of curvature in the throat region. This throat geometry eliminated the flow asymmetries, flow separation in the nozzle throat, and measurable differences between the flow fields from identical nozzles that were observed in Baseline/A/B nozzles. Data from Configuration C and D nozzles can be used for CFD code validation.

Erven, Rocky J.; Peterson, Carl Williams; Henfling, John Francis

2006-11-01T23:59:59.000Z

255

Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I.Skillicorn 1 Azimuthal asymmetry  

E-Print Network [OSTI]

Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I.Skillicorn 1 Azimuthal asymmetry using energy flow method Azimuthal angle distribution at Q2 >100 GeV2 Energy flow method.Ukleja on behalf of the ZEUS Collaboration #12; Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I

256

SHINE Vacuum Pump Test Verification  

SciTech Connect (OSTI)

Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this case the ''booster pump'' is an Adixen Molecular Drag Pump (MDP 5011) and the backing pump is an Edwards (nXDS15iC) scroll pump. Various configurations of the two pumps and associated lengths of 3/4 inch tubing (0 feet to 300 feet) were used in combination with hydrogen and nitrogen flow rates ranging from 25-400 standard cubic centimeters per minute (sccm) to determine whether the proposed pump configuration meets the design criteria for SHINE. The results of this study indicate that even under the most severe conditions (300 feet of tubing and 400 sccm flow rate) the Adixen 5011 MDP can serve as a booster pump to transport gases from the accelerator (NDAS) to the TPS. The Target Gas Receiving System pump (Edwards nXDS15iC) located approximately 300 feet from the accelerator can effectively back the Adixen MDP. The molecular drag pump was able to maintain its full rotational speed even when the flow rate was 400 sccm hydrogen or nitrogen and 300 feet of tubing was installed between the drag pump and the Edwards scroll pump. In addition to maintaining adequate rotation, the pressure in the system was maintained below the target pressure of 30 torr for all flow rates, lengths of tubing, and process gases. This configuration is therefore adequate to meet the SHINE design requirements in terms of flow and pressure.

Morgan, Gregg A; Peters, Brent

2013-09-30T23:59:59.000Z

257

Flow Battery System Design for Manufacturability.  

SciTech Connect (OSTI)

Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

2014-10-01T23:59:59.000Z

258

Assembly flow simulation of a radar  

SciTech Connect (OSTI)

A discrete event simulation model has been developed to predict the assembly flow time of a new radar product. The simulation was the key tool employed to identify flow constraints. The radar, production facility, and equipment complement were designed, arranged, and selected to provide the most manufacturable assembly possible. A goal was to reduce the assembly and testing cycle time from twenty-six weeks to six weeks. A computer software simulation package (SLAM II) was utilized as the foundation a for simulating the assembly flow time. FORTRAN subroutines were incorporated into the software to deal with unique flow circumstances that were not accommodated by the software. Detailed information relating to the assembly operations was provided by a team selected from the engineering, manufacturing management, inspection, and production assembly staff. The simulation verified that it would be possible to achieve the cycle time goal of six weeks. Equipment and manpower constraints were identified during the simulation process and adjusted as required to achieve the flow with a given monthly production requirement. The simulation is being maintained as a planning tool to be used to identify constraints in the event that monthly output is increased. ``What-if`` studies have been conducted to identify the cost of reducing constraints caused by increases in output requirement.

Rutherford, W.C.; Biggs, P.M.

1993-10-01T23:59:59.000Z

259

Evaluation of flow hood measurements for residential register flows  

SciTech Connect (OSTI)

Flow measurement at residential registers using flow hoods is becoming more common. These measurements are used to determine if the HVAC system is providing adequate comfort, appropriate flow over heat exchangers and in estimates of system energy losses. These HVAC system performance metrics are determined by using register measurements to find out if individual rooms are getting the correct airflow, and in estimates of total air handler flow and duct air leakage. The work discussed in this paper shows that commercially available flow hoods are poor at measuring flows in residential systems. There is also evidence in this and other studies that flow hoods can have significant errors even when used on the non-residential systems they were originally developed for. The measurement uncertainties arise from poor calibrations and the sensitivity of exiting flow hoods to non-uniformity of flows entering the device. The errors are usually large--on the order of 20% of measured flow, which is unacceptably high for most applications. Active flow hoods that have flow measurement devices that are insensitive to the entering airflow pattern were found to be clearly superior to commercially available flow hoods. In addition, it is clear that current calibration procedures for flow hoods may not take into account any field application problems and a new flow hood measurement standard should be developed to address this issue.

Walker, I.S.; Wray, C.P.; Dickerhoff, D.J.; Sherman, M.H.

2001-09-01T23:59:59.000Z

260

Piezoelectric axial flow microvalve  

SciTech Connect (OSTI)

This invention is directed to a fuel cell operable with a quantity of fuel and a quantity of an oxidizer to produce electrical power, the fuel cell including a fuel cell body including a labyrinth system structured to permit the fuel and the oxidizer to flow therethrough; at least a first catalyst in fluid communication with the labyrinth; and at least a first microvalve operably disposed within at least a portion of the labyrinth. The microvalve utilizes a deflectable member operable upon the application of a voltage from a voltage source. The microvalve includes an elongated flow channel formed therein and extending substantially longitudinally between the first and second ends to permit substantially longitudinal flow of the fluid therethrough and between the first and second ends; and the deflectable member disposed on the valve body, the deflectable member including at least a first piezoelectric portion that is piezoelectrically operable to deflect the deflectable member between an open position and a closed position upon the application of a voltage, the deflectable member in the closed position being operable to resist the flow of the fluid through the flow channel.

Gemmen, Randall; Thornton, Jimmy; Vipperman, Jeffrey S.; Clark, William W.

2007-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Radio frequency (RF) heated supersonic flow laboratory  

SciTech Connect (OSTI)

A unique supersonic flow apparatus which employs an inductively-coupled, radio frequency (RF) torch to supply high enthalpy source gas to the nozzle inlet is described. The main features of this system are the plasma tube, a cooled nozzle assembly, and a combustion/expansion chamber with a heat exchanger. A description of these components with current test data is presented. In addition, a discussion of anticipated experiments utilizing this system is included.

Wantuck, P.; Watanabe, H.

1990-01-01T23:59:59.000Z

262

Development of slotted orifice flow conditioner  

E-Print Network [OSTI]

concentric rings of radial slots. The porosity of each ring varied so that the conditioner generated a six step parabolic profile similar to the profile tested with Fluent The overall porosity of the parabolic conditioner was 25. 1'/o, which is lower than... 19 Velocity Profile Procedure . Co Measurement Procedure Data Reduction . . . . . . 19 21 22 RESULTS 24 LDA Velocity Profile and Turbulence Intensity Analysis 24 Tube Bundle, Uniform Slotted Orifice Flow Conditioner . . Parabolic Slotted...

Ihfe, Larry Michael

1994-01-01T23:59:59.000Z

263

Binary fish passage models for uniform and nonuniform flows  

SciTech Connect (OSTI)

Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow prediction of the percentage 43 of fish passing would be particularly useful near flow speed thresholds where binary 44 passage models are clearly limited.

Neary, Vincent S [ORNL

2011-01-01T23:59:59.000Z

264

Electrocapturing flow cell  

DOE Patents [OSTI]

A flow cell for electrophoretically-assisted capturing analytes from a flow. The flow cell includes a specimen chamber, a first membrane, a second membrane, a first electrode chamber, and a second electrode chamber. The specimen chamber may have a sample inlet and a sample outlet. A first portion of the first membrane may be coupled to a first portion of the specimen chamber. A first portion of the second membrane may be coupled to a second portion of the specimen chamber. The first electrode chamber may be configured to accept a charge. A portion of the first electrode chamber may be coupled to a second portion of the first membrane. A second electrode chamber may be configured to accept an opposite charge. A portion of the second electrode chamber may be coupled to a second portion of the second membrane.

Morozov, Victor (Manassas, VA)

2011-04-05T23:59:59.000Z

265

Workshop on hypersonic flow  

SciTech Connect (OSTI)

An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

Povinelli, L.A.

1990-01-01T23:59:59.000Z

266

Prototype to Test WHY prototype to test  

E-Print Network [OSTI]

Prototype to Test METHOD WHY prototype to test HOW to prototype to test Prototyping to test or design space. The fundamental way you test your prototypes is by letting users experience them and react to them. In creating prototypes to test with users you have the opportunity to examine your solution

Prinz, Friedrich B.

267

Testing with JUnit Testing with JUnit  

E-Print Network [OSTI]

Testing with JUnit Testing with JUnit Running a test case: 1 Get the component to a known state (set up). 2 Cause some event (the test case). 3 Check the behaviour. · Record pass/fail · Track statistics · Typically we want to do a lot of test cases so it makes sense to automate. · Test cases

Peters, Dennis

268

Laboratory Evaluation of EGS Shear Stimulation-Test 001  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

this is the results of an initial setup-shakedon test in order to develop the plumbing system for this test design. a cylinder of granite with offset holes was jacketed and subjected to confining pressure and low temperature (85C) and pore water pressure. flow through the sample was developed at different test stages.

Bauer, Steve

269

Laboratory Evaluation of EGS Shear Stimulation-Test 001  

SciTech Connect (OSTI)

this is the results of an initial setup-shakedon test in order to develop the plumbing system for this test design. a cylinder of granite with offset holes was jacketed and subjected to confining pressure and low temperature (85C) and pore water pressure. flow through the sample was developed at different test stages.

Bauer, Steve

2014-07-29T23:59:59.000Z

270

Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions  

DOE Patents [OSTI]

The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

McGrail, Bernard P. (Pasco, WA); Martin, Paul F. (Richland, WA); Lindenmeier, Clark W. (Richland, WA)

1999-01-01T23:59:59.000Z

271

Hydrogeologic investigations at the Nevada Test Site  

SciTech Connect (OSTI)

The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices and, since 1963, all nuclear detonations there have been underground. Most tests are conducted in vertical shafts with a small percentage conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks or alluvium. In the testing areas the water table is 450--700 m below the surface. Pre- and post- event geologic investigations are conducted for each test location and long-term studies assess the impact of underground testing on a more regional scale. Studies in progress have not identified any impact on the regional ground water system from testing, but some local effects have been recognized. In some areas where several large tests have been conducted below the water table, water levels hundreds of meters above the regional water table have been measured and radioactivity has been discovered associated with fractures in a few holes. Flow-through and straddle packer testing has revealed unexpectedly high hydraulic pressures at depth. Recently, a multiple completion monitoring well installed to study three zones has confirmed the existence of a significant upward hydraulic gradient. These observations of local pressurization and fracture flow are being further explored to determine the influence of underground nuclear testing on the regional hydrogeologic system.

Hawkins, W L [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States); Trudeau, D A [Geological Survey, Las Vegas, NV (United States)] [Geological Survey, Las Vegas, NV (United States); Drellack, S L [Raytheon Services Nevada, Inc., Mercury, NV (United States)] [Raytheon Services Nevada, Inc., Mercury, NV (United States)

1992-01-01T23:59:59.000Z

272

Trip Report-Produced-Water Field Testing  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

Sullivan, Enid J. [Los Alamos National Laboratory

2012-05-25T23:59:59.000Z

273

ENERGY FLOWS CLIMATE CHANGE  

E-Print Network [OSTI]

ENERGY FLOWS FORCINGS CLIMATE CHANGE A REALLY TOUGH PROBLEM Stephen E. Schwartz, BNL, 7-20-11 www average temperature 15°C or 59°F #12;ATMOSPHERIC RADIATION Power per area Energy per time per area Unit" temperature to radiative flux. #12;GLOBAL ENERGY BALANCE Global and annual average energy fluxes in watts per

Schwartz, Stephen E.

274

Flow cytometry apparatus  

DOE Patents [OSTI]

An obstruction across the flow chamber creates a one dimensional convergence of a sheath fluid. A passageway in the construction directs flat cells near to the area of one dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates.

Pinkel, Daniel (Walnut Creek, CA)

1991-01-01T23:59:59.000Z

275

AGN and Cooling Flows  

E-Print Network [OSTI]

For two decades the steady-state cooling-flow model has dominated the literature of cluster and elliptical-galaxy X-ray sources. For ten years this model has been in severe difficulty from a theoretical point of view, and it is now coming under increasing pressure observationally. For two decades the steady-state cooling-flow model has dominated the literature of cluster and elliptical-galaxy X-ray sources. For ten years this model has been in severe difficulty from a theoretical point of view, and it is now coming under increasing pressure observationally. A small number of enthusiasts have argued for a radically different interpretation of the data, but had little impact on prevailing opinion because the unsteady heating picture that they advocate is extremely hard to work out in detail. Here I explain why it is difficult to extract robust observational predictions from the heating picture. Major problems include the variability of the sources, the different ways in which a bi-polar flow can impact on X-ray emission, the weakness of synchrotron emission from sub-relativistic flows, and the sensitivity of synchrotron emission to a magnetic field that is probably highly localized.

James Binney

2001-03-23T23:59:59.000Z

276

U.S. Geothermal Announces More Test Results From the Neal Hot...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a renewable energy company focused on the production of electricity from geothermal energy, announced today results from a second, higher rate flow test of the first full...

277

Review and selection of unsaturated flow models  

SciTech Connect (OSTI)

Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.

Reeves, M.; Baker, N.A.; Duguid, J.O. [INTERA, Inc., Las Vegas, NV (United States)

1994-04-04T23:59:59.000Z

278

Hanford Tank Farms Waste Feed Flow Loop Phase VI: PulseEcho System Performance Evaluation  

SciTech Connect (OSTI)

This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.

2012-11-21T23:59:59.000Z

279

Pressure Change Measurement Leak Testing Errors  

SciTech Connect (OSTI)

A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.

Pryor, Jeff M [ORNL] [ORNL; Walker, William C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

280

Constant pressure high throughput membrane permeation testing system  

DOE Patents [OSTI]

The disclosure relates to a membrane testing system for individual evaluation of a plurality of planar membranes subjected to a feed gas on one side and a sweep gas on a second side. The membrane testing system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each membrane testing cell is ported by a retentate multiport valve for sampling or venting, and a stream of permeate gas from each membrane testing cell is ported by a permeate multiport valve for sampling or venting. Back pressure regulators and mass flow controllers act to maintain substantially equivalent gas pressures and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves cyclically, allowing for gas sampling of different membrane cells over an extended period of time.

Albenze, Erik J.; Hopkinson, David P.; Luebke, David R.

2014-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Effects of external pressure on the terminal lymphatic flow rate  

E-Print Network [OSTI]

pressure applied to the skin of the canine cause the terminal lymphat- ic flow rate to increase until the external pressure reaches 60mm Hg. At an external pressure of 60mm Hg reduced lymphatic flow is observed in some of the test animals. At 75mm Hg... resulting from the external pressure begins to col- lapse the lymph vessels. External pressure between 60 and 75mm Hg restricts or completely occludes the terminal lymphatic flow rate. ACKNOWLEDGENENTS I would like to express my appreciation...

Seale, James Lewis

1981-01-01T23:59:59.000Z

282

SATURATED ZONE IN-SITU TESTING  

SciTech Connect (OSTI)

The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid transport parameters. (4) Comparisons of sorption parameter estimates for a reactive solute tracer (lithium ion) derived from the C-wells field tracer tests and laboratory tests using C-wells core samples. (5) Sorption parameter estimates for lithium ion derived from laboratory tests using alluvium samples from ATC well NC-EWDP-19D. These estimates will allow a comparison of laboratory- and field-derived sorption parameters to be made in saturated alluvium if cross-hole tracer tests are conducted at the ATC.

P.W. REIMUS

2004-11-08T23:59:59.000Z

283

Engine Tests of an Active PM Filter Regeneration System  

Broader source: Energy.gov (indexed) [DOE]

HERE (tm) 10 Diesel Particulate Filter Flow Direction 10 Liter, Non-catalyzed, Silicon Carbide CLEAN AIR STARTS HERE (tm) 11 XFC(tm) Engine Testing: No DPF installed Device out...

284

MECHANICAL TEST LAB CAPABILITIES  

E-Print Network [OSTI]

MECHANICAL TEST LAB CAPABILITIES · Static and cyclic testing (ASTM and non-standard) · Impact drop testing · Slow-cycle fatigue testing · High temperature testing to 2500°F · ASTM/ Boeing/ SACMA standard testing · Ability to design and fabricate non-standard test fixtures and perform non-standard tests

285

Accelerated Testing Validation  

E-Print Network [OSTI]

the University of California. Accelerated Testing Validationmaterials requires relevant Accelerated Stress Tests (ASTs),

Mukundan, Rangachary

2013-01-01T23:59:59.000Z

286

Dynamic Testing of Gasifier Refractory  

SciTech Connect (OSTI)

The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF has been completed. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Screening tests are in currently in progress. Detailed analysis of corrosion rates from the first tests is in progress.

Michael D. Mann; Devdutt Shukla; Xi Hong; John P. Hurley

2004-09-27T23:59:59.000Z

287

Test Preparation Options Free Test Prep Websites  

E-Print Network [OSTI]

Test Preparation Options Free Test Prep Websites ACT: http: http://www.collegeboard.com/student/testing/sat/prep_one/test.html http://www.number2.com://testprep.princetonreview.com/CourseSearch/Search.aspx?itemCode=17&productType=F&rid=1&zip=803 02 Test Prep Classes Front Range Community College: Classes

Stowell, Michael

288

Test and Test Equipment Joshua Lottich  

E-Print Network [OSTI]

Test and Test Equipment Joshua Lottich CMPE 640 11/23/05 #12;Testing Verifies that manufactured chip meets design specifications. Cannot test for every potential defect. Modeling defects as faults allows for passing and failing of chips. Ideal test would capture all defects and pass only chips

Patel, Chintan

289

Orion Flight Test Exploration Flight Test-1  

E-Print Network [OSTI]

Orion Flight Test Exploration Flight Test-1 PRESS KIT/December 2014 www.nasa.gov NP-2014-11-020-JSC National Aeronautics and Space Administration #12;#12;Orion Flight Test December 2014 Contents Section Page ........................................................................................... 28 i #12;Orion Flight Test ii December 2014 #12;Orion Flight Test December 2014 Flight Overview

Waliser, Duane E.

290

Analysis of flow patterns and flow mechanisms in soils  

E-Print Network [OSTI]

Analysis of flow patterns and flow mechanisms in soils Dissertation Co-directed by the University of paths, varying flow mechanism or changing soil physical properties (stratification). Thus, in stratified-28Jan2010 #12;This doctoral thesis was prepared at the Department of Soil Physics, University

Paris-Sud XI, Université de

291

Prediction of annular liquid-gas flow with entrainment: cocurrent vertical pipe flow with no gravity  

SciTech Connect (OSTI)

A fully developed and adiabatic two-phase annular model with liquid entrainment is derived for flow in a pipe with negligible gravity effects. The model subdivides the flow cross section into three regions: a liquid film, a gas core of constant density, and a transition wavy layer between them. The combination of a constant velocity and a density varying exponentially with distance from the wall is employed in the transition layer. Extensive comparisons of the model are made with air-water and steam-water test data, and the results generally are satisfactory over a wide range of conditions and for all the important characteristics of this flow pattern. A simplified model is developed to permit rapid and approximate calculations.

Levy, S.; Healzer, J.M.

1980-05-01T23:59:59.000Z

292

Radial flow pulse jet mixer  

DOE Patents [OSTI]

The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

VanOsdol, John G.

2013-06-25T23:59:59.000Z

293

The Big Flow  

E-Print Network [OSTI]

The late infall of cold dark matter onto an isolated galaxy, such as our own, produces streams and caustics in its halo. The outer caustics are topological spheres whereas the inner caustics are rings. The self-similar model of galactic halo formation predicts that the caustic ring radii $a_n$ follow the approximate law $a_n \\sim 1/n$. In a study of 32 extended and well-measured external galactic rotation curves evidence was found for this law. In the case of the Milky Way, the locations of eight sharp rises in the rotation curve fit the prediction of the self-similar model at the 3% level. Moreover, a triangular feature in the IRAS map of the galactic plane is consistent with the imprint of a ring caustic upon the baryonic matter. These observations imply that the dark matter in our neighborhood is dominated by a single flow. Estimates of that flow's density and velocity vector are given.

P. Sikivie

2001-12-04T23:59:59.000Z

294

Structural power flow measurement  

SciTech Connect (OSTI)

Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

Falter, K.J.; Keltie, R.F.

1988-12-01T23:59:59.000Z

295

New sensor for measurement of low air flow velocity. Phase I final report  

SciTech Connect (OSTI)

The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

1995-08-01T23:59:59.000Z

296

Neutrino Factory Mercury Flow Loop  

E-Print Network [OSTI]

Neutrino Factory Mercury Flow Loop V. GravesV. Graves C. Caldwell IDS-NF Videoconference March 9, 2010 #12;Flow Loop Review · 1 cm dia nozzle, 20 m/s jet requires 1.57 liter/sec mercury flow (94 2 liter/min 24 9 gpm)mercury flow (94.2 liter/min, 24.9 gpm). · MERIT experiment showed that a pump

McDonald, Kirk

297

Orifice flow measurement uncertainty  

SciTech Connect (OSTI)

A computer program is now available from Union Carbide that evaluates the total flow uncertainty of orifice flowmeter systems. Tolerance values for every component in the system and the sensitivity of the measured flowrate to each component can be established using historical data and published hardware specifications. Knowing the tolerance and sensitivity values, a total measurement uncertainty can be estimated with a 95% confidence level. This computer program provides a powerful design tool to ensure correct component matching and total metering system optimization.

Samples, C.R.

1984-04-01T23:59:59.000Z

298

Convective heat flow probe  

DOE Patents [OSTI]

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

299

Numerical Investigations of Magnetohydrodynamic Hypersonic Flows.  

E-Print Network [OSTI]

??Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow are presented for both laminar and turbulent flow over a cylinder and flow entering a scramjet inlet. ANSYS… (more)

Guarendi, Andrew N

2013-01-01T23:59:59.000Z

300

Minimizing Test Time through Test FlowOptimization in 3D-SICs.  

E-Print Network [OSTI]

?? 3D stacked ICs (3D-SICs) with multiple dies interconnected by through-silicon-vias(TSVs) are considered as a technology driver and proven to have overwhelming advantagesover traditional ICs… (more)

DASH, ASSMITRA

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Reducing Uncertainty for the DeltaQ Duct Leakage Test  

SciTech Connect (OSTI)

The thermal distribution system couples the HVAC components to the building envelope, and shares many properties of the buildings envelope including moisture, conduction and most especially air leakage performance. Duct leakage has a strong influence on air flow rates through building envelopes (usually resulting in much greater flows than those due to natural infiltration) because unbalanced duct air flows and leaks result in building pressurization and depressurization. As a tool to estimate this effect, the DeltaQ duct leakage test has been developed over the past several years as an improvement to existing duct pressurization tests. It focuses on measuring the air leakage flows to outside at operating conditions that are required for envelope infiltration impacts and energy loss calculations for duct systems. The DeltaQ test builds on the standard envelope tightness blower door measurement techniques by repeating the tests with the system air handler off and on. The DeltaQ test requires several assumptions to be made about duct leakage and its interaction with the duct system and building envelope in order to convert the blower door results into duct leakage at system operating conditions. This study examined improvements to the DeltaQ test that account for some of these assumptions using a duct system and building envelope in a test laboratory. The laboratory measurements used a purpose-built test chamber coupled to a duct system typical of forced air systems in US homes. Special duct leaks with controlled air-flow were designed and installed into an airtight duct system. This test apparatus allowed the systematic variation of the duct and envelope leakage and accurate measurement of the duct leakage flows for comparison to DeltaQ test results. This paper will discuss the laboratory test apparatus design, construction and operation, the various analysis techniques applied to the calculation procedure and present estimates of uncertainty in measured duct leakage.

Walker, Iain S.; Sherman, Max H.; Dickerhoff, Darryl J.

2004-05-01T23:59:59.000Z

302

Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho  

SciTech Connect (OSTI)

Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

Glaspey, Douglas J.

2008-01-30T23:59:59.000Z

303

Brine flow in heated geologic salt.  

SciTech Connect (OSTI)

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

304

Flow-controlled magnetic particle manipulation  

DOE Patents [OSTI]

Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.

Grate, Jay W [West Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA; Holman, David A [Las Vegas, NV

2011-02-22T23:59:59.000Z

305

The magnetohydrodynamics Coal-Fired Flow Facility  

SciTech Connect (OSTI)

In this quarterly technical progress report, UTSI reports on progress on a multi-task contract to develop the technology for the steam bottoming plant for an MHD Steam Combined Cycle power plant. Two proof-of-concept (POC) tests totaling 614 hours of coal fired operation were conducted during the quarter using low sulfur Montana Rosebud coal. The results of these tests are summarized. Operational aspects of the particulate control devices being evaluated, a dry electrostatic precipitator (ESP) and a reverse air baghouse, are discussed. A sootblowing control system for the convective heat transfer surfaces that senses the need to clean the tubes by temperatures is described. Environmental reporting includes measurement of levels of ground water wells over time and the remote air quality measurements of impact of the stack emissions from the two tests. Results of testing candidate ceramic tubes for a recuperative high temperature air heater are included. Analyses of the tube materials tested in the 2000 hour test series previously completed on high sulfur Illinois No. 6 coal are summarized. Facility maintenance and repair activities for the DOE Coal Fired Flow Facility are summarized. The major facility modification discussed is the completion of the installation of a Wet ESP with rotary vacuum filter which is replacing the venturi scrubber as the primary facility particulate control device for any exhaust gases that are not routed through the dry ESP or baghouse.

Not Available

1993-02-01T23:59:59.000Z

306

Dynamic Testing of Gasifier Refractory  

SciTech Connect (OSTI)

The University of North Dakota (UND) Chemical Engineering Department in conjunction with the UND Energy & Environmental Research Center (EERC) have initiated a program to thoroughly examine the combined chemical (reaction and phase change) and physical (erosion) effects experienced by a variety of refractory materials during both normal operation and thermal cycling under slagging coal gasification conditions. The goal of this work is to devise a mechanism of refractory loss under these conditions. The controlled-atmospheric dynamic corrodent application furnace (CADCAF) is being utilized to simulate refractory/slag interactions under dynamic conditions that more realistically simulate the environment in a slagging coal gasifier than any of the static tests used previously by refractory manufacturers and researchers. Shakedown testing of the CADCAF is in progress. Samples of slag and refractory from the Tampa Electric Polk Power Station have been obtained for testing in the CADCAF. The slag has been dried and sieved to the size needed for our flowing slag corrosion tests. Testing is expected to begin in October.

Michael D. Mann; Devdutt Shukla; John P. Hurley

2003-09-27T23:59:59.000Z

307

Past Test One  

E-Print Network [OSTI]

MA 366: Introduction to Di?'erential Equations. Fall 2001, Test One. Instructor: Yip o This test booklet has FIVE QUESTIONS, totaling 50 points for the whole test.

308

Test Advising Framework.  

E-Print Network [OSTI]

??Test cases are represented in various formats depending on the process, the technique or the tool used to generate the tests. While different test case… (more)

Wang, Yurong

2013-01-01T23:59:59.000Z

309

Directed Test Suite Augmentation.  

E-Print Network [OSTI]

??Test suite augmentation techniques are used in regression testing to identify code elements affected by changes and to generate test cases to cover those elements.… (more)

Xu, Zhihong

2013-01-01T23:59:59.000Z

310

Field scale evaluation of the In Situ Permeable Flow Sensor and assessment of river-aquifer interaction at the Brazos River Hydrologic Field Site / by Andrew Scott Alden  

E-Print Network [OSTI]

perturbation technique to quantify the magnitude and direction of ground water flow in three dimensions. In the first phase of testing, Flow Sensor results and piezometric data from monitoring wells at the site were used to monitor interactions between...

Alden, Andrew Scott

1996-01-01T23:59:59.000Z

311

Advanced Vehicle Testing - Beginning-of-Test Battery Testing...  

Broader source: Energy.gov (indexed) [DOE]

2.5 V Thermal Mgmt.: Passive, Vacuum-Sealed Unit Pack Weight: 294 kg BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 6,696 mi Date of...

312

Saturated Zone In-Situ Testing  

SciTech Connect (OSTI)

The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid transport parameters. (4) Comparisons of sorption parameter estimates for a reactive solute tracer (lithium ion) derived from both the C-wells field tracer tests and laboratory tests using C-wells core samples. (5) Sorption parameter estimates for lithium ion derived from laboratory tests using alluvium samples from NC-EWDP-19D1 (one of the wells at the ATC) so that a comparison of laboratory- and field-derived sorption parameters can be made in saturated alluvium if cross-hole tracer tests are conducted at the ATC.

P. W. Reimus; M. J. Umari

2003-12-23T23:59:59.000Z

313

The magnetic flywheel flow meter: Theoretical and experimental contributions  

SciTech Connect (OSTI)

The development of contactless flow meters is an important issue for monitoring and controlling of processes in different application fields, like metallurgy, liquid metal casting, or cooling systems for nuclear reactors and transmutation machines. Shercliff described in his book “The Theory of Electromagnetic Flow Measurement, Cambridge University Press, 1962” a simple and robust device for contact-less measurements of liquid metal flow rates which is known as magnetic flywheel. The sensor consists of several permanent magnets attached on a rotatable soft iron plate. This arrangement will be placed closely to the liquid metal flow to be measured, so that the field of the permanent magnets penetrates into the fluid volume. The flywheel will be accelerated by a Lorentz force arising from the interaction between the magnetic field and the moving liquid. Steady rotation rates of the flywheel can be taken as a measure for the mean flow rate inside the fluid channel. The present paper provides a detailed theoretical description of the sensor in order to gain a better insight into the functional principle of the magnetic flywheel. Theoretical predictions are confirmed by corresponding laboratory experiments. For that purpose, a laboratory model of such a flow meter was built and tested on a GaInSn-loop under various test conditions.

Buchenau, D., E-mail: d.buchenau@hzdr.de; Galindo, V.; Eckert, S. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstraße 400, 01328 Dresden (Germany)

2014-06-02T23:59:59.000Z

314

Two-phase flow characteristics in multiple orifice valves  

SciTech Connect (OSTI)

This work presents an experimental investigation on the characteristics of two-phase flow through multiple orifice valve (MOV), including frictional pressure drop and void fraction. Experiments were carried out using an MOV with three different sets of discs with throat thickness-diameter ratios (s/d) of 1.41, 1.66 and 2.21. Tests were run with air and water flow rates ranging between 1.0 and 3.0 m{sup 3}/h, respectively. The two-phase flow patterns established for the experiment were bubbly and slug. Two-phase frictional multipliers, frictional pressure drop and void fraction were analyzed. The determined two-phase multipliers were compared against existing correlations for gas-liquid flows. None of the correlations tested proved capable of predicting the experimental results. The large discrepancy between predicted and measured values points at the role played by valve throat geometry and thickness-diameter ratio in the hydrodynamics of two-phase flow through MOVs. A modification to the constants in the two-phase multiplier equation used for pipe flow fitted the experimental data. A comparison between computed frictional pressure drop, calculated with the modified two-phase multiplier equation and measured pressure drop yielded better agreement, with less than 20% error. (author)

Alimonti, Claudio [Sapienza University of Rome, Department ICMA, Via Eudossiana 18, 00184 Roma (Italy); Falcone, Gioia; Bello, Oladele [The Harold Vance Department of Petroleum Engineering, Texas A and M University, 3116 TAMU, Richardson Building, College Station, TX 77843 (United States)

2010-11-15T23:59:59.000Z

315

Introduction Statistical Tests  

E-Print Network [OSTI]

Introduction Statistical Tests Experiment Summary Statistical Significance Testing Machine Learning Lab, ASU Surendra Singhi April 29, 2005 Surendra Singhi Statistical Significance Testing #12;Introduction Statistical Tests Experiment Summary Outline 1 Introduction Preliminary Stuff Sources of Variation

Liu, Huan

316

Testing dynamically reconfigurable FPGAs  

E-Print Network [OSTI]

In this work, testing methods are proposed to test the ics. logic resources and the interconnect structure of dynamically reconfigurable FPGAS. Testing methods are also proposed for testing the dedicated CPU interface in these FPGAS. A BIST...

Ruiwale, Sameer Jagadish

1998-01-01T23:59:59.000Z

317

Inhibition of slug front corrosion in multiphase flow conditions  

SciTech Connect (OSTI)

Corrosion at the slug front at the bottom of a pipeline is identified as one of the worst cases of corrosion occurring in the pipeline which carries unprocessed multiphase production with a high level of CO{sub 2} gas. One objective of the study in recommending a subsea completion to shore was to determine if commercial corrosion inhibitors can control this type of corrosion using carbon steel pipeline. Thus, inhibitors which showed excellent performance in the lab using the Rotating Cylinder Electrode system (RCE) were further evaluated to confirm their performance in a flow loop simulating the test conditions predicted from the flow modeling for the proposed pipeline. The performance profile of two commercial inhibitors were determined in a 4 in. flow loop at 7O C, 100 psig CO{sub 2} partial pressure in corrosive brines with or without ethylene glycol and/or light hydrocarbon. Results showed that the carbon steel pipeline could be adequately protected at low temperature using a commercial corrosion inhibitor to meet the designed life of the pipeline. Ethylene glycol, which is used in the pipeline to prevent hydrate formation, reduces the corrosivity of the brine and gives no effect on inhibitor performance under the slug flow conditions. A good agreement in inhibitor performance was observed between the flow loop and the RCE testing. The uninhibited corrosion rate of the test brine in this study is in good agreement with the predicted value using deWaard and Williams correlation for CO{sub 2} corrosion.

Chen, H.J. [Chevron Petroleum Technology Co., La Habra, CA (United States); Jepson, W.P. [Ohio Univ., Athens, OH (United States)

1998-12-31T23:59:59.000Z

318

Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

1993-05-01T23:59:59.000Z

319

Bull Test ID 1140 2013 Florida Bull Test  

E-Print Network [OSTI]

Bull Test ID 1140 2013 Florida Bull Test #12;Bull Test ID 1141 2013 Florida Bull Test #12;Bull Test ID 1142 2013 Florida Bull Test #12;Bull Test ID 1143 2013 Florida Bull Test #12;Bull Test ID 1144 2013 Florida Bull Test #12;Bull Test ID 1145 2013 Florida Bull Test #12;Bull Test ID 1146 2013 Florida

Jawitz, James W.

320

Bull Test ID 1098 2013 Florida Bull Test  

E-Print Network [OSTI]

Bull Test ID 1098 2013 Florida Bull Test #12;Bull Test ID 1099 2013 Florida Bull Test #12;Bull Test ID 1100 2013 Florida Bull Test #12;Bull Test ID 1101 2013 Florida Bull Test #12;Bull Test ID 1102 2013 Florida Bull Test #12;Bull Test ID 1103 2013 Florida Bull Test #12;Bull Test ID 1104 2013 Florida

Jawitz, James W.

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Bull Test ID 1181 2013 Florida Bull Test  

E-Print Network [OSTI]

Bull Test ID 1181 2013 Florida Bull Test #12;Bull Test ID 1182 2013 Florida Bull Test #12;Bull Test ID 1183 2013 Florida Bull Test #12;Bull Test ID 1184 2013 Florida Bull Test #12;Bull Test ID 1185 2013 Florida Bull Test #12;Bull Test ID 1186 2013 Florida Bull Test #12;Bull Test ID 1187 2013 Florida

Jawitz, James W.

322

Bull Test ID 1160 2013 Florida Bull Test  

E-Print Network [OSTI]

Bull Test ID 1160 2013 Florida Bull Test #12;Bull Test ID 1161 2013 Florida Bull Test #12;Bull Test ID 1162 2013 Florida Bull Test #12;Bull Test ID 1163 2013 Florida Bull Test #12;Bull Test ID 1164 2013 Florida Bull Test #12;Bull Test ID 1165 2013 Florida Bull Test #12;Bull Test ID 1166 2013 Florida

Jawitz, James W.

323

Bull Test ID 1118 2013 Florida Bull Test  

E-Print Network [OSTI]

Bull Test ID 1118 2013 Florida Bull Test #12;Bull Test ID 1119 2013 Florida Bull Test #12;Bull Test ID 1120 2013 Florida Bull Test #12;Bull Test ID 1121 2013 Florida Bull Test #12;Bull Test ID 1122 2013 Florida Bull Test #12;Bull Test ID 1123 2013 Florida Bull Test #12;Bull Test ID 1124 2013 Florida

Jawitz, James W.

324

Bull Test ID 1077 2013 Florida Bull Test  

E-Print Network [OSTI]

14th Annual Florida Bull Test #12;Bull Test ID 1077 2013 Florida Bull Test #12;Bull Test ID 1078 2013 Florida Bull Test #12;Bull Test ID 1079 2013 Florida Bull Test #12;Bull Test ID 1080 2013 Florida Bull Test #12;Bull Test ID 1081 2013 Florida Bull Test #12;Bull Test ID 1082 2013 Florida Bull Test #12

Jawitz, James W.

325

Sandia National Laboratories: PolyFlow Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center inInsights forAwardsPolyFlow Engineering

326

Fluid flow monitoring device  

DOE Patents [OSTI]

A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

1993-11-30T23:59:59.000Z

327

Fluid flow monitoring device  

DOE Patents [OSTI]

A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

1993-01-01T23:59:59.000Z

328

Radial flow heat exchanger  

DOE Patents [OSTI]

A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

Valenzuela, Javier (Hanover, NH)

2001-01-01T23:59:59.000Z

329

Annular flow diverter valve  

DOE Patents [OSTI]

A valve for diverting flow from the center of two concentric tubes to the annulus between the tubes or, operating in the reverse direction, for mixing fluids from concentric tubes into a common tube and for controlling the volume ratio of said flow consists of a toroidal baffle disposed in sliding engagement with the interior of the inner tube downstream of a plurality of ports in the inner tube, a plurality of gates in sliding engagement with the interior of the inner tube attached to the baffle for movement therewith, a servomotor having a bullet-shaped plug on the downstream end thereof, and drive rods connecting the servomotor to the toroidal baffle, the servomotor thereby being adapted to move the baffle into mating engagement with the bullet-shaped plug and simultaneously move the gates away from the ports in the inner tube and to move the baffle away from the bullet-shaped plug and simultaneously move the gates to cover the ports in the inner tube.

Rider, Robert L. (Walkersville, MD)

1980-01-01T23:59:59.000Z

330

Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report  

SciTech Connect (OSTI)

Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations.

Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States); Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A. [INTERA, Inc., Austin, TX (United States)

1993-12-01T23:59:59.000Z

331

Thermal Energy Measurement with Tangential Paddlewheel Flow Meters: Summary of Experimental Results and in-situ Diagnostics  

E-Print Network [OSTI]

paddlewheel flow meters, and several new methods for in-situ diagnostic measures for ascertaining whether or not a flow meter is experiencing fluctuating flow conditions or if a flow meter is suffering a degraded signal due to shaft wear. INTRODUCTION Flow... section where it passes across the candidate sensor that is placed in the inter-changeable test section, through the orifice plate and finally into the is combined with Btu meter the threshold can be much higher than the published threshold of the flow...

Haberl, J. S.; Watt, J. B.

1994-01-01T23:59:59.000Z

332

Unit Testing Discussion C  

E-Print Network [OSTI]

Unit Testing Discussion C #12;Unit Test public Method is smallest unit of code Input/output transformation Test if the method does what it claims Not exactly black box testing #12;Test if (actual result Expected Computed Input #12;Functionality Computation ­ Easy to test Time based Asynchronous interaction

Massachusetts at Amherst, University of

333

Concolic Testing Koushik Sen  

E-Print Network [OSTI]

Concolic testing automates test input generation by com­ bining the concrete and symbolic (concolic) execution of the code under test. Traditional test input generation tech­ niques use either (1) concrete test inputs from these constraints. In contrast, concolic testing tightly couples both concrete

Sen, Koushik

334

Concolic Testing Koushik Sen  

E-Print Network [OSTI]

Concolic testing automates test input generation by com- bining the concrete and symbolic (concolic) execution of the code under test. Traditional test input generation tech- niques use either (1) concrete test inputs from these constraints. In contrast, concolic testing tightly couples both concrete

Sen, Koushik

335

Shock-induced turbulent flow in baffle systems  

SciTech Connect (OSTI)

Experiments are described on shock propagation through 2-D aligned and staggered baffle systems. Flow visualization was provided by shadow and schlieren photography, recorded by the Cranz-Schardin camera. Also single-frame, infinite-fringe, color interferograms were used. Intuition suggests that this is a rather simple 2-D shock diffraction problem. However, flow visualization reveals that the flow rapidly evolved into a complex 3-D turbulent mixing problem. Mushroom-shaped mixing regions blocked the flow into the next baffle orifice. Thus energy was transferred from the directed kinetic energy (induced by the shock) to rotational energy of turbulent mixing, and then dissipated by molecular effects. These processes dramatically dissipate the strength of the shock wave. The experiments provide an excellent test case that could be used to assess the accuracy of computer code calculations of such problems.

Kuhl, A.L. [Lawrence Livermore National Lab., CA (United States); Reichenbach, H. [Fraunhofer-Institut fuer Kurzzeitdynamik - Ernst-Mach-Institut (EMI), Freiburg im Breisgau (Germany)

1993-07-01T23:59:59.000Z

336

Report on Hydrologic Flow in Low-Permeability Media  

SciTech Connect (OSTI)

We demonstrate that under normal conditions (under which there are no intersections between tunnels/drifts and conductive geological structures, such as faults), the water flow velocity in the damage zone, as a result of non-Darcian flow behavior, is extremely small such that solute transport is dominated by diffusion, rather than advection. We show that unless non-Darcian flow behavior is considered, significant errors can occur in the “measured” relative-permeability values. We propose a hypothesis to consider the temperature impact based on limited test results from the petroleum literature. To consider the bedding effects, we present an empirical relationship between water flux and hydraulic gradient for non-Darcian water flow in anisotropic cases.

Liu, Hui-Hai; Birkholzer, Jens

2013-11-13T23:59:59.000Z

337

Predicting the pressure driven flow of gases through micro-capillaries and micro-orifices  

SciTech Connect (OSTI)

A large body of experimentally measured gas flow rates were obtained from the literature and then compared to the predictions obtained with constitutive flow equations. This was done to determine whether the equations apply to the predictions of gas flow rates from leaking containment vessels used to transport radioactive materials. The experiments consisted of measuring the volumetric pressure-driven flow of gases through micro-capillaries and micro-orifices. The experimental results were compared to the predictions obtained with the equations given in ANSI N14.5 the American National Standard for Radioactive Materials-Leakage Tests on Package for Shipment. The equations were applied to both (1) the data set according to the recommendations given in ANSI N14.5 and (2) globally to the complete data set. It was found that: The continuum and molecular flow equation provided good agreement between the experimental and calculated flow rates for flow rates less than about 1 atm{center_dot}cm{sup 3}/s. The choked flow equation resulted in over-prediction of the flow rates for flow rates less than about 1 atm-cm{sup 3}/s. For flow rates higher than 1 atm{center_dot}cm{sup 3}/s, the molecular and continuum flow equation over-predicted the measured flow rates and the predictions obtained with the choked flow equation agreed well with the experimental values. Since the flow rates of interest for packages used to transport radioactive materials are almost always less than 1 atm{center_dot}cm{sup 3}/s, it is suggested that the continuum and molecular flow equation be used for gas flow rate predictions related to these applications.

Anderson, B.L.; Carlson, R.W.; Fischer, L.E. [Lawrence Livermore National Lab., CA (United States)

1994-11-01T23:59:59.000Z

338

Piezoelectric Microvalve for Flow Control in Polymer Electrolyte Fuel Cells  

SciTech Connect (OSTI)

Maldistribution of fuel across the cells of a fuel cell stack is an issue that can contribute to poor cell performance and possible cell failure. It has been proposed that an array of microvalves could promote even distribution of fuel across a fuel cell stack. A piezoelectric microvalve has been developed for this purpose. This valve can be tuned to a nominal flow rate (and failure position) from which the actuator would either increase or decrease the flow rate and fuel. The valve can successfully regulate the flow of fuel from 0.7 to 1.1 slpm of hydrogen in the range of temperatures from 80° to 100°C and has been tested over pressure drops from 0.5 to 1 psi. A bank of these valves is currently being tested in a four-cell stack at the U.S. Department of Energy National Energy Technology Laboratory.

Bucci, B.A. (Univ. of Pittsburgh); Vipperman, J.S. (Univ. of Pittsburgh); Clark, W. (Univ. of Pittsburgh); Hensel, J.P.; Thornton, J.D.; Kim. S. (LG Electronics Inc.)

2006-11-01T23:59:59.000Z

339

Barometric pressure transient testing applications at the Nevada Test Site: formation permeability analysis. Final report  

SciTech Connect (OSTI)

The report evaluates previous investigations of the gas permeability of the rock surrounding emplacement holes at the Nevada Test Site. The discussion sets the framework from which the present uncertainty in gas permeability can be overcome. The usefulness of the barometric pressure testing method has been established. Flow models were used to evaluate barometric pressure transients taken at NTS holes U2fe, U19ac and U20ai. 31 refs., 103 figs., 18 tabs. (ACR)

Hanson, J.M.

1984-12-01T23:59:59.000Z

340

Position paper -- Tank ventilation system design air flow rates  

SciTech Connect (OSTI)

The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

Goolsby, G.K.

1995-01-04T23:59:59.000Z

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Prediction of annular liquid-gas flow with entrainment: cocurrent vertical pipe flow with gravity. [PWR; BWR  

SciTech Connect (OSTI)

A simplified semi-empirical model is developed for annular two-phase (gas-liquid) flow with liquid entrainment in a vertical pipe. Gravity effects are included. Model predictions are compared to test data obtained with air-water, air-trichloroethane, and steam-water mixtures. The agreement is generally good between model and test results for pressure drop, liquid film thickness and wavyness, and liquid entrainment.

Levy, S.; Healzer, J.M.

1980-09-01T23:59:59.000Z

342

Active combustion flow modulation valve  

DOE Patents [OSTI]

A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

2013-09-24T23:59:59.000Z

343

An Investigation of the Return Flow from Irrigated Land  

E-Print Network [OSTI]

assembling and testing the following components of an overall water-salt-nutrients balance model: a.: Water and heat flow model to calculate the influence of moisture and temperature gradients on the movement of water between the source(s) and sinks within...

Brown, K. W.; Gerard, C. J.; DeMichele, D. W.; Sharpe, P. J. H.; Hipp, B. W.

344

Error estimation and adaptive mesh refinement for aerodynamic flows  

E-Print Network [OSTI]

Error estimation and adaptive mesh refinement for aerodynamic flows Ralf Hartmann, Joachim Held-oriented mesh refinement for single and multiple aerodynamic force coefficients as well as residual-based mesh refinement applied to various three-dimensional lam- inar and turbulent aerodynamic test cases defined

Hartmann, Ralf

345

Rapidly Solving an Online Sequence of Maximum Flow Problems  

E-Print Network [OSTI]

... an interdictor allocates a finite amount of resources to remove arcs from a net- ... is, the next maximum flow problem in the sequence differs from the previous one by ..... the appropriate reoptimization case and then taking the appropriate action to ..... Our first set of computational experiments tested the performance of our ...

2008-02-29T23:59:59.000Z

346

Regionally compartmented groundwater flow on Mars Keith P. Harrison1  

E-Print Network [OSTI]

the basis for such a test. Specifically, we use groundwater models to predict regions of cryosphere that groundwater flow was likely regionally compartmented. Furthermore, the consistent occurrence of modeled. Geophys. Res., 114, E04004, doi:10.1029/2008JE003300. 1. Introduction [2] Groundwater is thought to have

Harrison, Keith

347

Test Series 2. 3 detailed test plan  

SciTech Connect (OSTI)

Test Series 2.3 is chronologically the second of the five sub-series of tests which comprise Test Series 2, the second major Test Series as part of the combustion research phase to be carried out at the Grimethorpe Experimental Pressurised Fluidised Bed Combustion Facility. Test Series 2.3 will consist of 700 data gathering hours which is expected to require some 1035 coal burning hours. The tests will be performed using US supplied coal and dolomite. This will be the first major series of tests on the Facility with other than the UK datum coal and dolomite. The document summarises the background to the facility and the experimental program. Described are modifications which have been made to the facility following Test Series 2.1 and a series of Screening Tests. Detailed test objectives are specified as are the test conditions for the experiments which comprise the test series. The test results will provide information on the effects of the bed temperature, excess air level, Ca/S ratio, number of coal feed lines, and combustion efficiency and sulphur retention. A significant aspect of the test series will be part load tests which will investigate the performance of the facility under conditions of turn down which simulate load following concepts specified for two combined cycle concepts, i.e., their CFCC combined cycle and a turbo charged combined cycle. The material test plan is also presented. The principal feature of the materials programme is the planned exposure of a set of static turbine blade specimens in a cascade test loop to the high temperature, high pressure flue gas. A schedule for the programme is presented as are contingency plans.

Not Available

1983-12-01T23:59:59.000Z

348

Culvert Retrofit Testing  

E-Print Network [OSTI]

water flow conditions and to relate fish passage success tocondition. Backwatering influences passage success throughsuccess at 1.5 cfs is not a function of baffling conditions,

May, Christopher; Thom, Ron

2007-01-01T23:59:59.000Z

349

Differential probes aid flow measurement  

SciTech Connect (OSTI)

Nonconstricting differential pressure flow probes which help solve the problems of clogging, wear, and pressure loss at the Seawater Filtration Facility in Saudi Arabia are described. Treated seawater is pumped into oil-bearing formations for secondary recovery. Figures showing principle of operation for probes, installation schematic and long-term accuracy results (flow probes vs. orifice meters) are presented. The new diamond-shaped design flow sensor offers accurate flow measurement with low permanent pressure loss, which translates into cost savings for the operator.

Mesnard, D.R.

1982-07-01T23:59:59.000Z

350

Review of air flow measurement techniques  

SciTech Connect (OSTI)

Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

McWilliams, Jennifer

2002-12-01T23:59:59.000Z

351

Achieving Software Quality with Testing Coverage Measures: Metrics, Tools, and Applications  

E-Print Network [OSTI]

Achieving Software Quality with Testing Coverage Measures: Metrics, Tools, and Applications J. R of data flow testing, describes a software testing and analysis tool called ATAC, which measures the effectiveness of testing data, and presents two case studies connecting software quality with the control

Lyu, Michael R.

352

Hydrodynamic cavitation and boiling in refrigerant (R-123) flow inside microchannels  

E-Print Network [OSTI]

Hydrodynamic cavitation and boiling in refrigerant (R-123) flow inside microchannels Brandon cavitation has on heat transfer. The fluid medium is refrigerant R-123 flowing through 227 lm hydraulic diameter microchannels. The cavitation is instigated by the inlet orifice. Adiabatic tests were con- ducted

Peles, Yoav

353

Section 11: Interfacial flows 1 Section 11: Interfacial flows  

E-Print Network [OSTI]

Abstract 15:10 ­ 15:30: Martin Lübke, Olaf Wünsch (Universität Kassel): Two-Phase Flow in Single- Screw Extruders Abstract S11.4: Capillary Flows Wed, 16:00­18:00 Chair: Dieter Bothe S1|03­123 16:00 ­ 16:20: K

Kohlenbach, Ulrich

354

Analysis of flow patterns and flow mechanisms in soils  

E-Print Network [OSTI]

Analysis of flow patterns and flow mechanisms in soils Dissertation Co-directed by the University mechanism or changing soil physical properties (stratification). Thus, in stratified soil, we restricted was prepared at the Department of Soil Physics, University of Bayreuth, and at the Hydrogeological Laboratory

Avignon et des Pays de Vaucluse, Université de

355

Visualization of flow boiling in an annular heat exchanger under reduced gravity conditions  

E-Print Network [OSTI]

This work examines the effects of gravitational acceleration on the flow boiling process. A test facility focusing on an annular heat exchanger was designed, built out of borosilicate glass, and flown on NASA's KC-135 reduced gravity airplane...

Westheimer, David Thomas

2000-01-01T23:59:59.000Z

356

Green Water Flow Kinematics and Impact Pressure on a Three Dimensional Model Structure  

E-Print Network [OSTI]

Flow kinematics of green water due to plunging breaking waves interacting with a simplified, three-dimensional model structure was investigated in laboratory. Two breaking wave conditions were tested: one with waves impinging and breaking...

Ariyarathne, Hanchapola Appuhamilage Kusalika Suranjani

2011-10-21T23:59:59.000Z

357

Large-scale experimental investigation of flow characteristics in labyrinth seal geometries  

E-Print Network [OSTI]

order to determine the flow characteristics and leakage resistance properties of advanced labyrinth seals. A unique water test facility is used to acquire leakage resistance measurements for two-dimensional, planar models of multi-cavity, stepped...

Younger, James Stanton

1994-01-01T23:59:59.000Z

358

MHD coal-fired flow facility. Annual technical progress report, October 1979-September 1980  

SciTech Connect (OSTI)

The University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Faclity (CFFF) and the Energy Conversion Facility (ECF).

Alstatt, M.C.; Attig, R.C.; Brosnan, D.A.

1981-03-01T23:59:59.000Z

359

LABORATORY EVALUATION OF THE DELTA Q TEST FOR DUCT LEAKAGE  

SciTech Connect (OSTI)

Using a residential-size duct system in a controlled laboratory setting, the repeatability and accuracy of the Delta Q test for air leakage in residential duct systems have been measured. More than 100 Delta Q tests were performed. These were compared with results using fan pressurization and also with results of a procedure (Delta Q Plus) that uses leakage hole-size information to select the leakage pressures to be used in the Delta Q algorithm. The average error in supply or return leakage for the fan-pressurization test was 6.4% of system fan flow. For the Delta Q test it was 3.4% of fan flow, while for Delta Q Plus it was 1.9% of fan flow.

ANDREWS,J.W.

2003-05-01T23:59:59.000Z

360

Effect of flow fluctuations and nonflow on elliptic flow methods  

SciTech Connect (OSTI)

We discuss how the different estimates of elliptic flow are influenced by flow fluctuations and nonflow effects. It is explained why the event-plane method yields estimates between the two-particle correlation methods and the multiparticle correlation methods. It is argued that nonflow effects and fluctuations cannot be disentangled without other assumptions. However, we provide equations where, with reasonable assumptions about fluctuations and nonflow, all measured values of elliptic flow converge to a unique mean v_2,PP elliptic flow in the participant plane and, with a Gaussian assumption on eccentricity fluctuations, can be converted to the mean v_2,RP in the reaction plane. Thus, the 20percent spread in observed elliptic flow measurements from different analysis methods is no longer mysterious.

Ollitrault, Jean-Yves; Poskanzer, Arthur M.; Voloshin, Sergei A.

2009-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Liquid-flow reactor and method of using  

SciTech Connect (OSTI)

The tendency of liquid hydrocarbon-based fuels, such as kerosene, diesel fuel, and jet fuel toward the formation of fuel-insoluble solids during thermal stress in an aircraft fuel system is assessed by an accelerated test method comprising passing a predetermined quantity of a sample of fuel through a heated test section maintained at a predetermined temperature, at a predetermined fuel flow rate. A metal test strip, weighed before the test, is clamped in the heated test section during the test. It is weighed again after the test and the weight of solids buildup during the test is determined. It is related directly to the tendency of the fuel to form fuel-insoluble solids during thermal stress. A filter is weighed before the test. It is then connected to the outlet of the test section, and liquid fuel leaving the test section during the test is passed through it. The filter is then weighed a second time and the weight increase of the filter due to its capture of fuel-insoluble solids is calculated. It also is directly related to the tendency of the fuel to form fuel-insoluble solids during thermal stress.

Hardy, D.R.; Beal, E.J.; Burnett, J.C.

1992-04-30T23:59:59.000Z

362

105K West Isolation Barrier Acceptance Test results  

SciTech Connect (OSTI)

The objective of this document is to report and interpret the findings of the isolation barrier acceptance tests performed in 105KW/100K. The tests were performed in accordance with the test plan and acceptance test procedure. The test report contains the test data. This document compares the test data against the criteria. A discussion of the leak rate analytical characterization describes how the flow characteristics flow rate will be determined using the test data from the test report. Two modes of water loss were considered; basin and/or discharge chute leakage, and evaporation. An initial test established baseline leakage data and instrumentation performance. Test 2 evaluated the sealing performance of the isolation barrier by inducing an 11 in. (27.9 cm) level differential across the barrier. The leak rate at this 11 in. (27.9 cm) level is extrapolated to the 16 ft. (4.9 m) level differential postulated in the DBE post seismic event. If the leak rate, adjusted for evaporation and basin leakage (determined from Test 1), is less than the SAR limit of 1,500 gph (5,680 lph) at a 16 ft (4.9 m) level differential, the barriers pass the acceptance test.

McCracken, K.J. [ICF Kaiser Hanford Co., Richland, WA (United States); Irwin, J.J. [Westinghouse Hanford Co., Richland, WA (United States)

1995-05-18T23:59:59.000Z

363

Network Flow Optimization under Uncertainty  

E-Print Network [OSTI]

Network model in words Minimize the cost of satisfying demands for electric energy By: imports, exports and electricity Subject to: conservation of energy flows (net after losses), lower and upper bounds on flows is a reactive approach: how would the optimal solution have changed if I'd only known? · Proactive approaches

Tesfatsion, Leigh

364

Redox Flow Batteries, a Review  

SciTech Connect (OSTI)

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

365

APPLICATION FO FLOW FORMING FOR USE IN RADIOACTIVE MATERIAL PACKAGING DESIGNS  

SciTech Connect (OSTI)

This paper reports on the development and testing performed to demonstrate the use of flow forming as an alternate method of manufacturing containment vessels for use in radioactive material shipping packaging designs. Additionally, ASME Boiler and Pressure Vessel Code, Section III, Subsection NB compliance along with the benefits compared to typical welding of containment vessels will be discussed. SRNL has completed fabrication development and the testing on flow formed containment vessels to demonstrate the use of flow forming as an alternate method of manufacturing a welded 6-inch diameter containment vessel currently used in the 9975 and 9977 radioactive material shipping packaging. Material testing and nondestructive evaluation of the flow formed parts demonstrate compliance to the minimum material requirements specified in applicable parts of ASME Boiler and Pressure Vessel Code, Section II. Destructive burst testing shows comparable results to that of a welded design. The benefits of flow forming as compared to typical welding of containment vessels are significant: dimensional control is improved due to no weld distortion; less final machining; weld fit-up issues associated with pipes and pipe caps are eliminated; post-weld non-destructive testing (i.e., radiography and die penetrant tests) is not necessary; and less fabrication steps are required. Results presented in this paper indicate some of the benefits in adapting flow forming to design of future radioactive material shipping packages containment vessels.

Blanton, P.; Eberl, K.; Abramczyk, G.

2012-07-11T23:59:59.000Z

366

Directed random testing  

E-Print Network [OSTI]

Random testing can quickly generate many tests, is easy to implement, scales to large software applications, and reveals software errors. But it tends to generate many tests that are illegal or that exercise the same parts ...

Pacheco, Carlos, Ph.D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

367

Test Herrera Report Template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

development are described in detail in the following section. The model was run in six test sites: Test Site 1 is along the Cowlitz River (Segment 3); Test Site 2 includes the...

368

ZiaTest  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ZiaTest ZiaTest Description This test executes a new proposed standard benchmark method for MPI startup that is intended to provide a realistic assessment of both launch and...

369

Interpretation of Colloid-Homologue Tracer Test 10-03, Including Comparisons to Test 10-01  

SciTech Connect (OSTI)

This presentation covers the interpretations of colloid-homologue tracer test 10-03 conducted at the Grimsel Test Site, Switzerland, in 2010. It also provides a comparison of the interpreted test results with those of tracer test 10-01, which was conducted in the same fracture flow system and using the same tracers than test 10-03, but at a higher extraction flow rate. A method of correcting for apparent uranine degradation in test 10-03 is presented. Conclusions are: (1) Uranine degradation occurred in test 10-03, but not in 10-01; (2) Uranine correction based on apparent degradation rate in injection loop in test 11-02 seems reasonable when applied to data from test 10-03; (3) Colloid breakthrough curves quite similar in the two tests with similar recoveries relative to uranine (after correction); and (4) Much slower apparent desorption of homologues in test 10-03 than in 10-01 (any effect of residual homologues from test 10-01 in test 10-03?).

Reimus, Paul W. [Los Alamos National Laboratory

2012-06-26T23:59:59.000Z

370

Wavy flow cooling concept for turbine airfoils  

DOE Patents [OSTI]

An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

Liang, George (Palm City, FL)

2010-08-31T23:59:59.000Z

371

Siemens SOFC Test Article and Module Design  

SciTech Connect (OSTI)

Preliminary design studies of the 95 kWe-class SOFC test article continue resulting in a stack architecture of that is 1/3 of 250 kWe-class SOFC advanced module. The 95 kWeclass test article is envisioned to house 20 bundles (eight cells per bundle) of Delta8 cells with an active length of 100 cm. Significant progress was made in the conceptual design of the internal recirculation loop. Flow analyses were initiated in order to optimize the bundle row length for the 250 kWeclass advanced module. A preferred stack configuration based on acceptable flow and thermal distributions was identified. Potential module design and analysis issues associated with pressurized operation were identified.

None

2011-03-31T23:59:59.000Z

372

Vendor System Vulnerability Testing Test Plan  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) prepared this generic test plan to provide clients (vendors, end users, program sponsors, etc.) with a sense of the scope and depth of vulnerability testing performed at the INL’s Supervisory Control and Data Acquisition (SCADA) Test Bed and to serve as an example of such a plan. Although this test plan specifically addresses vulnerability testing of systems applied to the energy sector (electric/power transmission and distribution and oil and gas systems), it is generic enough to be applied to control systems used in other critical infrastructures such as the transportation sector, water/waste water sector, or hazardous chemical production facilities. The SCADA Test Bed is established at the INL as a testing environment to evaluate the security vulnerabilities of SCADA systems, energy management systems (EMS), and distributed control systems. It now supports multiple programs sponsored by the U.S. Department of Energy, the U.S. Department of Homeland Security, other government agencies, and private sector clients. This particular test plan applies to testing conducted on a SCADA/EMS provided by a vendor. Before performing detailed vulnerability testing of a SCADA/EMS, an as delivered baseline examination of the system is conducted, to establish a starting point for all-subsequent testing. The series of baseline tests document factory delivered defaults, system configuration, and potential configuration changes to aid in the development of a security plan for in depth vulnerability testing. The baseline test document is provided to the System Provider,a who evaluates the baseline report and provides recommendations to the system configuration to enhance the security profile of the baseline system. Vulnerability testing is then conducted at the SCADA Test Bed, which provides an in-depth security analysis of the Vendor’s system.b a. The term System Provider replaces the name of the company/organization providing the system being evaluated. This can be the system manufacturer, a system user, or a third party organization such as a government agency. b. The term Vendor (or Vendor’s) System replaces the name of the specific SCADA/EMS being tested.

James R. Davidson

2005-01-01T23:59:59.000Z

373

Development of a new duct leakage test: DeltaQ  

SciTech Connect (OSTI)

Duct leakage is a key factor in determining energy losses from forced air heating and cooling systems. Several studies (Francisco and Palmiter 1997 and 1999, Andrews et al. 1998, and Siegel et al. 2001) have shown that the duct system efficiency cannot be reliably determined without good estimates of duct leakage. Specifically, for energy calculations, it is the duct leakage air flow to outside at operating conditions that is required. Existing test methods either precisely measure the size of leaks (but not the flow through them at operating conditions), or measure these flows with insufficient accuracy. The DeltaQ duct leakage test method was developed to provide improved estimates of duct leakage during system operation. In this study we developed the analytical calculation methods and the test procedures used in the DeltaQ test. As part of the development process, we have estimated uncertainties in the test method (both analytically and based on field data) and designed automated test procedures to increase accuracy and reduce the contributions of operator errors in performing field tests. In addition, the test has been evaluated in over 100 houses by several research teams to show that it can be used in a wide range of houses and to aid in finding limits or problems in field applications. The test procedure is currently being considered by ASTM as an update of an existing duct leakage standard.

Walker,I.S.; Sherman,M.H.; Wempen, J.; Wang, D.; McWilliams, J.A.; Dickerhoff, D.J.

2001-08-01T23:59:59.000Z

374

Drill stem test method and apparatus  

SciTech Connect (OSTI)

This patent describes an apparatus for causing formation fluid to flow upwardly during a drill stem test of a fluid well. The apparatus consists of: a drill string positioned in the bore of the fluid well and seated with a packer seal; the drill string containing a first opening below the packer through which formation fluid can flow into the drill string; means for creating a second opening in the drill string above the packer through which treatment fluid can flow; and jet pump means including a fluid crossover, the jet pump means being mounted within the drill string for increasing the rate of flow of the treatment fluid near the second opening a substantial amount such that the upward flow of the treatment fluid draws the formation fluid upwardly therewith, the means for creating the second opening including a sleeve initially surrounding and covering the fluid crossover, and means for moving the sleeve in response to fluid pressure from within the drill string to uncover the second opening.

Snider, P.M.

1989-07-11T23:59:59.000Z

375

Lateral flow devices  

DOE Patents [OSTI]

An analytical test for an analyte comprises (a) a base, having a reaction area and a visualization area, (b) a capture species, on the base in the visualization area, comprising nucleic acid, and (c) analysis chemistry reagents, on the base in the reaction area. The analysis chemistry reagents comprise (i) a substrate comprising nucleic acid and a first label, and (ii) a reactor comprising nucleic acid. The analysis chemistry reagents can react with a sample comprising the analyte and water, to produce a visualization species comprising nucleic acid and the first label, and the capture species can bind the visualization species.

Mazumdar, Debapriya (Urbana, IL); Liu, Juewen (Urbana, IL); Lu, Yi (Champaign, IL)

2010-09-21T23:59:59.000Z

376

An analysis of an application of radioactive ionization for gas flow metering  

E-Print Network [OSTI]

fulfillment of the requirements for ths legree of MASTER OF SC1ENCE May 1959 Major Subject: Electrical Engines x ing AN ANALYSIS OF AN APPLICATION OF RADIOACTIVE IONIZATION FOR l 1 '~, '1 1 ', '1 ' 1 1 "1 g 1 n \\ '& \\ GAS FLOW METERING A...'s Apparatus Z. An Ezperimental Flow Meter . 3. Mark I Meter and Test Equipment 4. Electrical Circuit 5. Current vs. Flow Rate Curve for Mark I Meter. . . . . . . . . . . . . 6. Current vs. Flow Rate for DifferentSource Spacings. . . . . . . . . . 7...

Lam, Carroll Frank

2012-06-07T23:59:59.000Z

377

IN SITU FIELD TESTING OF PROCESSES  

SciTech Connect (OSTI)

The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and analyses provide data useful for refining and confirming the understanding of flow, drift seepage, and transport processes in the UZ. The UZ testing activities included measurement of permeability distribution, quantification of the seepage of water into the drifts, evaluation of fracture-matrix interaction, study of flow along faults, testing of flow and transport between drifts, characterization of hydrologic heterogeneity along drifts, estimation of drying effects on the rock surrounding the drifts due to ventilation, monitoring of moisture conditions in open and sealed drifts, and determination of the degree of minimum construction water migration below drift. These field tests were conducted in two underground drifts at Yucca Mountain, the Exploratory Studies Facility (ESF) drift, and the cross-drift for Enhanced Characterization of the Repository Block (ECRB), as described in Section 1.2. Samples collected in boreholes and underground drifts have been used for additional hydrochemical and isotopic analyses for additional understanding of the UZ setting. The UZ transport tests conducted at the nearby Busted Butte site (see Figure 1-4) are also described in this scientific analysis report.

J.S.Y. YANG

2004-11-08T23:59:59.000Z

378

Turbine blade tip flow discouragers  

DOE Patents [OSTI]

A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

Bunker, Ronald Scott (Niskayuna, NY)

2000-01-01T23:59:59.000Z

379

Concentrator E-F11 water test  

SciTech Connect (OSTI)

This document is the Process Test Report for performing operation testing with water of the modified E-F11 concentrator in PUREX on water. The test was performed to determine the effects of the following concentrator modifications; routing concentrator off-gasses via the PUREX air tunnel to the main stack, blanking of condenser cooling water, blanking of process condensate route to a crib, restricting flow to steam tube bundles, and routing of steam condensate to TK-F12. The test was successful. Concentrator boil-off rates of 6--7 gpm were achieved while the overheads exited the PUREX plant in vapor form. With minor recommended modifications, this process is recommended for use in processing PUREX deactivation flush solutions and other miscellaneous wastes accumulated during the completion of the deactivation project.

Ethington, P.R.

1994-02-25T23:59:59.000Z

380

Multiscale Simulations for Polymeric Flow  

E-Print Network [OSTI]

Multiscale simulation methods have been developed based on the local stress sampling strategy and applied to three flow problems with different difficulty levels: (a) general flow problems of simple fluids, (b) parallel (one-dimensional) flow problems of polymeric liquids, and (c) general (two- or three-dimensional) flow problems of polymeric liquids. In our multiscale methods, the local stress of each fluid element is calculated directly by performing microscopic or mesoscopic simulations according to the local flow quantities instead of using any constitutive relations. For simple fluids (a), such as the Lenard-Jones liquid, a multiscale method combining MD and CFD simulations is developed based on the local equilibrium assumption without memories of the flow history. (b), the multiscale method is extended to take into account the memory effects that arise in hydrodynamic stress due to the slow relaxation of polymer-chain conformations. The memory of polymer dynamics on each fluid element is thus resolved by performing MD simulations in which cells are fixed at the mesh nodes of the CFD simulations.For general (two- or three-dimensional) flow problems of polymeric liquids (c), it is necessary to trace the history of microscopic information such as polymer-chain conformation, which carries the memories of past flow history, along the streamline of each fluid element. A Lagrangian-based CFD is thus implemented to correctly advect the polymer-chain conformation consistently with the flow. On each fluid element, coarse-grained polymer simulations are carried out to consider the dynamics of entangled polymer chains that show extremely slow relaxation compared to microscopic time scales.

Takahiro Murashima; Takashi Taniguchi; Ryoichi Yamamoto; Shugo Yasuda

2011-01-06T23:59:59.000Z

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The transition from two phase bubble flow to slug flow  

E-Print Network [OSTI]

The process of transition from bubble to slug flow in a vertical pipe has been studied analytically and experimentally. An equation is presented which gives the agglomeration time as a function of void fraction, channel ...

Radovcich, Nick A.

1962-01-01T23:59:59.000Z

382

Flow distribution channels to control flow in process channels  

DOE Patents [OSTI]

The invention describes features that can be used to control flow to an array of microchannels. The invention also describes methods in which a process stream is distributed to plural microchannels.

Tonkovich, Anna Lee; Arora, Ravi; Kilanowski, David

2014-10-28T23:59:59.000Z

383

Moving Bed, Granular Bed Filter Development Program: Option 1, Component Test Facility. Task 3, Test plan  

SciTech Connect (OSTI)

In the base contract, Combustion Power Co. developed commercial designs for a moving granular-bed filter (GBF). The proposed filter is similar to previous designs in terms of its shape and method of filtration. The commercial designs have scaled the filter from a 5 ft diameter to as large as a 20 ft diameter filter. In Task 2 of the Moving Bed-Granular Filter Development Program, all technical concerns related to the further development of the filter are identified. These issues are discussed in a Topical Report which has been issued as part of Task 2. Nineteen issues are identified in this report. Along with a discussion of these issues are the planned approaches for resolving each of these issues. These issues will be resolved in either a cold flow component test facility or in pilot scale testing at DOE`s Power System Development Facility (PSDF) located at Southem Company Services` Wilsonville facility. Task 3 presents a test plan for resolving those issues which can be addressed in component test facilities. The issues identified in Task 2 which will be addressed in the component test facilities are: GBF scale-up; effect of filter cone angle and sidewall materials on medium flow and ash segregation; maximum gas filtration rate; lift pipe wear; GBF media issues; mechanical design of the gas inlet duct; and filter pressure drop. This document describes a test program to address these issues, with testing to be performed at Combustion Power Company`s facility in Belmont, California.

Haas, J.C.; Purdhomme, J.W.; Wilson, K.B.

1994-04-01T23:59:59.000Z

384

Gas flow characterization of restrictive flow orifice devices  

SciTech Connect (OSTI)

A restrictive flow orifice (RFO) can be used to limit the uncontrolled release of system media upon component or line failure in a gas handling system and can thereby enhance the system safety. This report describes a new RFO product available from the Swagelok Companies and specifies the gas flow characteristics of this device. A family of four different sizes of RFO devices is documented.

Shrouf, R.G. [Sandia National Labs., Albuquerque, NM (United States). Safety Engineering Dept.; Page, S.R. [Albuquerque Valve and Fitting Co., NM (United States)

1997-07-01T23:59:59.000Z

385

Insertable fluid flow passage bridgepiece and method  

DOE Patents [OSTI]

A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

Jones, Daniel O. (Glenville, NV)

2000-01-01T23:59:59.000Z

386

Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus  

SciTech Connect (OSTI)

This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

Johnston, B.S.; May, C.P.

1992-10-01T23:59:59.000Z

387

Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus  

SciTech Connect (OSTI)

This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

Johnston, B.S.; May, C.P.

1992-01-01T23:59:59.000Z

388

WET SOLIDS FLOW ENHANCEMENT  

SciTech Connect (OSTI)

The yield locus, tensile strength and fracture mechanisms of wet granular materials were studied. The yield locus of a wet material was shifted to the left of that of the dry specimen by a constant value equal to the compressive isostatic stress due to pendular bridges. for materials with straight yield loci, the shift was computed from the uniaxial tensile strength, either measured in a tensile strength tester or calculated from the correlation, and the angle of internal friction of the material. The predicted shift in the yield loci due to different moisture contents compare well with the measured shift in the yield loci of glass beads, crushed limestone, super D catalyst and Leslie coal. Measurement of the void fraction during the shear testing was critical to obtain the correct tensile strength theoretically or experimentally.

Unknown

2001-03-25T23:59:59.000Z

389

PWR FLECHT SEASET 21-rod bundle flow blockage task data and analysis report. NRC/EPRI/Westinghouse Report No. 11. Appendices K-P  

SciTech Connect (OSTI)

This report presents data and limited analysis from the 21-Rod Bundle Flow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Separate Effects and Systems Effects Test Program (FLECHT SEASET). The tests consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. Steam cooling and hydraulic characteristics tests were also conducted. These tests were utilized to determine effects of various flow blockage configurations (shapes and distributions) on reflooding behavior, to aid in development/assessment of computational models in predicting reflooding behavior of flow blockage configurations, and to screen flow blockage configurations for future 163-rod flow blockage bundle tests.

Loftus, M.J.; Hochreiter, L.E.; Lee, N.; McGuire, M.F.; Wenzel, A.H.; Valkovic, M.M.

1982-09-01T23:59:59.000Z

390

Capillary flows in flexible structures  

E-Print Network [OSTI]

Interactions between capillary and elastic effects are relevant to a variety of applications, from micro- and nano-scale manufacturing to biological systems. In this thesis, we investigate capillary flows in extremely ...

Hoberg, Theresa B. (Theresa Blinn)

2013-01-01T23:59:59.000Z

391

2007 Estimated International Energy Flows  

SciTech Connect (OSTI)

An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

Smith, C A; Belles, R D; Simon, A J

2011-03-10T23:59:59.000Z

392

particle flow for nonlinear filters  

E-Print Network [OSTI]

particle flow for nonlinear filters Fred Daum 19 June 2012 Copyright © 2012 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a trademark of Raytheon Company. 1 #12;discrete time

Dobigeon, Nicolas

393

Fluid Flow Modeling in Fractures  

E-Print Network [OSTI]

In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

Sarkar, Sudipta

2004-01-01T23:59:59.000Z

394

Mechanical design of flow batteries  

E-Print Network [OSTI]

The purpose of this research is to investigate the design of low-cost, high-efficiency flow batteries. Researchers are searching for next-generation battery materials, and this thesis presents a systems analysis encompassing ...

Hopkins, Brandon J. (Brandon James)

2013-01-01T23:59:59.000Z

395

Field Flows of Dark Energy  

E-Print Network [OSTI]

Field Flows of Dark Energy Robert N. Cahn, Roland de Putter,July 8, 2008) Scalar ?eld dark energy evolving from a longthe key aspects of the dark energy evolution during much of

Cahn, Robert N.

2010-01-01T23:59:59.000Z

396

Longitudinal dispersion in vegetated flow  

E-Print Network [OSTI]

Vegetation is ubiquitous in rivers, estuaries and wetlands, strongly influencing both water conveyance and mass transport. The plant canopy affects both mean and turbulent flow structure, and thus both advection and ...

Murphy, Enda

2006-01-01T23:59:59.000Z

397

Pipe Flow System Holly Guest  

E-Print Network [OSTI]

numbers #12;Pipe Flow System Form #12;Components Form Fitting Loss Coefficient, k Globe valve, fully open 10 Angle valve, fully open 5 Swing check valve, fully open 2.5 Gate valve, fully open .2 Shortradius

Clement, Prabhakar

398

Multiscale modeling in granular flow  

E-Print Network [OSTI]

Granular materials are common in everyday experience, but have long-resisted a complete theoretical description. Here, we consider the regime of slow, dense granular flow, for which there is no general model, representing ...

Rycroft, Christopher Harley

2007-01-01T23:59:59.000Z

399

Subcooled flow boiling of fluorocarbons  

E-Print Network [OSTI]

A study was conducted of heat transfer and hydrodynamic behavior for subcooled flow boiling of Freon-113, one of a group of fluorocarbons suitable for use in cooling of high-power-density electronic components. Problems ...

Murphy, Richard Walter

1971-01-01T23:59:59.000Z

400

Minimum Stream Flow Standards (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations apply to all dams and structures which impound or divert waters on rivers or their tributaries, with some exceptions. The regulations set standards for minimum flow (listed in the...

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Automation of radiochemical analysis by applying flow  

E-Print Network [OSTI]

of detection systems, including scintillation counting, a-spectrometers, proportional counters, mass spectrometry and spectrophotometry. ª 2010 Published by Elsevier Ltd. Keywords: Flow-analysis technique; Flow

Sánchez, David

402

MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER  

E-Print Network [OSTI]

MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER "ENGINEERING APPLICATIONS OF FRACTAL and multiphase flow & heat transfer will be stressed. This paper will begin by reviewing some important concepts

Lahey, Richard T.

403

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

404

Equidistribution results for geodesic flows  

E-Print Network [OSTI]

Using the works of Ma\\~n\\'e \\cite{Ma} and Paternain \\cite{Pat} we study the distribution of geodesic arcs with respect to equilibrium states of the geodesic flow on a closed manifold, equipped with a $\\mathcal{C}^{\\infty}$ Riemannian metric. We prove large deviations lower and upper bounds and a contraction principle for the geodesic flow in the space of probability measures of the unit tangent bundle. We deduce a way of approximating equilibrium states for continuous potentials.

Abdelhamid Amroun

2011-09-15T23:59:59.000Z

405

Function: GTP:-`&t` -graded tensor product Calling Sequence  

E-Print Network [OSTI]

the oak property of first order theories, which is a syntactical condition that we2 show to be sufficient

Ablamowicz, Rafal

406

GTP energy production from low-temperature resources, coproduced fluids,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas asWind Supply Opportunityand

407

GTP to Present at Upcoming Geothermal Forum | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas asWind Supply Opportunityandto

408

Magnetotellurics At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson, 2012) | Open

409

Magnetotellurics At Mccoy Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson,

410

Magnetotellurics At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson,Mcgee MountainOpen Energy

411

Core Analysis At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop, Inc Jump to: navigation,

412

Core Analysis At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop, Inc Jump to: navigation,2009)

413

Cuttings Analysis At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergy Information MountainWister Area

414

Development Wells At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpen EnergyAlum Area

415

Development Wells At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpenMaui Area (DOE

416

Development Wells At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpenMauiArea (DOE

417

GTP energy production from low-temperature resources, coproduced...  

Office of Environmental Management (EM)

Word - fDE-FOA-0000109.rtf Microsoft Word - FOA cover sheet.doc DISCLAIMER: Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems...

418

Thermochronometry At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010) |

419

Multispectral Imaging At Glass Buttes Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:MoeInformation MulkCalvin,

420

Multispectral Imaging At Silver Peak Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:MoeInformation

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Rock Density At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm It is classified as ASHRAE

422

Slim Holes At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) | OpenSixthSkypointDoD

423

Cuttings Analysis At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump to:Roadmap Meeting

424

Cuttings Analysis At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump to:Roadmap MeetingInformation

425

Cuttings Analysis At Flint Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump to:Roadmap2003) Jump

426

Cuttings Analysis At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump to:Roadmap2003)Information2003)

427

Cuttings Analysis At Mccoy Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump

428

Magnetotellurics At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain: EnergyMagnetJemez Pueblo Area

429

Magnetotellurics At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain: EnergyMagnetJemez Pueblo1988)New

430

Magnetotellurics At Newberry Caldera Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain: EnergyMagnetJemez

431

Aeromagnetic Survey At Glass Buttes Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-VentaAddisonInformation

432

Aeromagnetic Survey At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information Lightning Dock Area (Cunniff & Bowers, 2005)

433

Radiometrics At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aREC Solar JumpRGSRadiant EnergyRadioFort

434

Reflection Survey At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs|Reflection Survey At|

435

Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMauiSL Jump to:Colrado Area

436

Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMauiSL Jump to:Colrado Area

437

Gas Sampling At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMauiSL Jump

438

Gas Sampling At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMauiSL JumpRye PatchWister

439

Gas Sampling At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMauiSL JumpRye

440

Geothermometry At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - A SurveyInformationEnergyFishFort

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geothermometry At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - AInformation| Open EnergyNew

442

Geothermometry At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico -Information Shevenell, Et Al.,The

443

FMI Log At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMA -Single-Well and Cross-Well

444

Pressure Temperature Log At Colrado Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimate Action Project JumpCoop Jump

445

Geothermometry At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation, searchTo encourage the<Geothermal/PowerUse)DOE

446

Geothermometry At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation, searchToInformation Edmiston & Benoit,

447

Ground Magnetics At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to: navigation,2004)EnergyGroundAt Alum

448

Observation Wells At Mccoy Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest BasinOahu, Hawaii:EnergyOpen

449

Static Temperature Survey At Wister Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°,St.StanlyEnergyInformation Wister Area (DOE

450

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) | Open EnergyHot Springs

451

Hydroprobe At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,isHydroHydrogenHydrophen

452

Field Mapping At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg BradleyFerrotec

453

Hydroprobe At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybridsCarCalifornia, 1985

454

Validation Analysis of the Shoal Groundwater Flow and Transport Model  

SciTech Connect (OSTI)

Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of groundwater withdrawal activities in the area. The conceptual and numerical models were developed based upon regional hydrogeologic investigations conducted in the 1960s, site characterization investigations (including ten wells and various geophysical and geologic studies) at Shoal itself prior to and immediately after the test, and two site characterization campaigns in the 1990s for environmental restoration purposes (including eight wells and a year-long tracer test). The new wells are denoted MV-1, MV-2, and MV-3, and are located to the northnortheast of the nuclear test. The groundwater model was generally lacking data in the north-northeastern area; only HC-1 and the abandoned PM-2 wells existed in this area. The wells provide data on fracture orientation and frequency, water levels, hydraulic conductivity, and water chemistry for comparison with the groundwater model. A total of 12 real-number validation targets were available for the validation analysis, including five values of hydraulic head, three hydraulic conductivity measurements, three hydraulic gradient values, and one angle value for the lateral gradient in radians. In addition, the fracture dip and orientation data provide comparisons to the distributions used in the model and radiochemistry is available for comparison to model output. Goodness-of-fit analysis indicates that some of the model realizations correspond well with the newly acquired conductivity, head, and gradient data, while others do not. Other tests indicated that additional model realizations may be needed to test if the model input distributions need refinement to improve model performance. This approach (generating additional realizations) was not followed because it was realized that there was a temporal component to the data disconnect: the new head measurements are on the high side of the model distributions, but the heads at the original calibration locations themselves have also increased over time. This indicates that the steady-state assumption of the groundwater model is in error. To test the robustness of the model d

A. Hassan; J. Chapman

2008-11-01T23:59:59.000Z

455

Subcritical dynamos in shear flows  

E-Print Network [OSTI]

Identifying generic physical mechanisms responsible for the generation of magnetic fields and turbulence in differentially rotating flows is fundamental to understand the dynamics of astrophysical objects such as accretion disks and stars. In this paper, we discuss the concept of subcritical dynamo action and its hydrodynamic analogue exemplified by the process of nonlinear transition to turbulence in non-rotating wall-bounded shear flows. To illustrate this idea, we describe some recent results on nonlinear hydrodynamic transition to turbulence and nonlinear dynamo action in rotating shear flows pertaining to the problem of turbulent angular momentum transport in accretion disks. We argue that this concept is very generic and should be applicable to many astrophysical problems involving a shear flow and non-axisymmetric instabilities of shear-induced axisymmetric toroidal velocity or magnetic fields, such as Kelvin-Helmholtz, magnetorotational, Tayler or global magnetoshear instabilities. In the light of several recent numerical results, we finally suggest that, similarly to a standard linear instability, subcritical MHD dynamo processes in high-Reynolds number shear flows could act as a large-scale driving mechanism of turbulent flows that would in turn generate an independent small-scale dynamo.

F. Rincon; G. I. Ogilvie; M. R. E. Proctor; C. Cossu

2008-05-09T23:59:59.000Z

456

Pressure and flow characteristics of restrictive flow orifice devices.  

SciTech Connect (OSTI)

A Restrictive Flow Orifice (RFO) can be used to enhance the safe design of a pressure system in several ways. Pressure systems frequently incorporate a regulator and relief valve to protect the downstream equipment from accidental overpressure caused by regulator failure. Analysis frequently shows that in cases of high-flow regulator failure, the downstream pressure may rise significantly above the set pressure of the relief valve. This is due to limited flow capacity of the relief valve. A different regulator or relief valve may need to be selected. A more economical solution to this problem is to use an RFO to limit the maximum system flow to acceptable limits within the flow capacity of the relief valve, thereby enhancing the overpressure protection of laboratory equipment. An RFO can also be used to limit the uncontrolled release of system fluid (gas or liquid) upon component or line failure. As an example, potential asphyxiation hazards resultant from the release of large volumes of inert gas from a 'house' nitrogen system can be controlled by the use of an RFO. This report describes a versatile new Sandia-designed RFO available from the Swagelok Company and specifies the gas flow characteristics of this device. Two sizes, 0.010 and 0.020 inch diameter RFOs are available. These sizes will allow enhanced safety for many common applications. This new RFO design are now commercially available and provide advantages over existing RFOs: a high pressure rating (6600 psig); flow through the RFO is equal for either forward or reverse directions; they minimize the potential for leakage by incorporating the highest quality threaded connections; and can enhance the safety of pressure systems.

Shrouf, Roger D.

2003-06-01T23:59:59.000Z

457

The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels  

SciTech Connect (OSTI)

Two-phase air-water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37-42.36 and 0.005-3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications. (author)

Saisorn, Sira [Energy Division, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

2010-05-15T23:59:59.000Z

458

Coarse-coal hydrotransport studies using the separate effects test stand: FY 1980-1981  

SciTech Connect (OSTI)

The Separate Effects Test Stand (SETS) was built to evaluate the rotating pipe-wheel stand concept for hydrotransport testing and to obtain hydrotransport data in support of the US Department of Energy's Hydraulic Transport Research Facility (HTRF). The SETS program involved three phases of testing. The first phase was to evaluate the wheel test stand as an adequate mechanism for testing the hydrotransport of coarse-particle coal through pipe. The second phase was to obtain preliminary data on coal head loss (flow pressure drop) during hydrotransport. The third phase was to determine the effects of coal hydrotransport on water quality. Other data obtained during the program included pipe wear and the size degradation of coal particles. The SETS was tested with water only and the resultant head loss data were compared with head loss values recorded for water flow in staight pipe. These tests were run to determine how well the SETS modeled straight pipe flow.

Powers, T.B.

1981-09-01T23:59:59.000Z

459

Implicit Large Eddy Simulation of Cavitation in Micro Channel Flows  

E-Print Network [OSTI]

We present a numerical method for Large Eddy Simulations (LES) of compressible two-phase flows. The method is validated for the flow in a micro channel with a step-like restriction. This setup is representative for typical cavitating multi-phase flows in fuel injectors and follows an experimental study of Iben et al., 2010. While a diesel-like test fuel was used in the experiment, we solve the compressible Navier-Stokes equations with a barotropic equation of state for water and vapor and a simple phase-change model based on equilibrium assumptions. Our LES resolve all wave dynamics in the compressible fluid and the turbulence production in shear layers.

Hickel, S; Schmidt, S J

2014-01-01T23:59:59.000Z

460

Check for peroxides every 6 months. opened test 1 test 2 test 3  

E-Print Network [OSTI]

Check for peroxides every 6 months. opened test 1 test 2 test 3 date initials Check for peroxides every 6 months. opened test 1 test 2 test 3 date initials Check for peroxides every 6 months. Test strips can be obtained from EH&S, 5-8200 opened test 1 test 2 test 3 date initials Check for peroxides

Pawlowski, Wojtek

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Automatic Test Factoring for Java  

E-Print Network [OSTI]

Test factoring creates fast, focused unit tests from slow system-widetests; each new unit test exercises only a subset of the functionalityexercised by the system test. Augmenting a test suite with factoredunit tests ...

Saff, David

2005-06-08T23:59:59.000Z

462

Testing and performance characteristics of a 1-kW free piston Stirling engine  

SciTech Connect (OSTI)

A 1 kW single cylinder free piston Stirling engine, configured as a research engine, was tested with helium working gas. The engine features a posted displacer and dashpot load. The test results show the engine power output and efficiency to be lower than those observed during acceptance tests by the manufacturer. Engine tests results are presented for operation at the two heater head temperatures and with two regenerator porosities, along with flow test results for the heat exchangers.

Schreiber, J.

1983-04-01T23:59:59.000Z

463

Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury  

SciTech Connect (OSTI)

ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into an actual SNS target.

Wendel, Mark W [ORNL; Riemer, Bernie [ORNL; Abdou, Ashraf A [ORNL

2012-01-01T23:59:59.000Z

464

Sample introduction apparatus for a flow cytometer  

DOE Patents [OSTI]

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning HPLC tubing and fittings may be used in a manner which facilitates removable of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

Van den Engh, Ger (Seattle, WA)

1998-01-01T23:59:59.000Z

465

Sample introduction system for a flow cytometer  

DOE Patents [OSTI]

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

Engh, G. van den

1997-02-11T23:59:59.000Z

466

Sample introduction system for a flow cytometer  

DOE Patents [OSTI]

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

Van den Engh, Ger (Seattle, WA)

1997-01-01T23:59:59.000Z

467

Sample introduction apparatus for a flow cytometer  

DOE Patents [OSTI]

A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning HPLC tubing and fittings may be used in a manner which facilitates removable of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

Van den Engh, G.

1998-03-10T23:59:59.000Z

468

Quantitative imaging of turbulent and reacting flows  

SciTech Connect (OSTI)

Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

469

Development test report for the high pressure water jet system nozzles  

SciTech Connect (OSTI)

The high pressure water jet nozzle tests were conducted to identify optimum water pressure, water flow rate, nozzle orifice size and fixture configuration needed to effectively decontaminate empty fuel storage canisters in KE-Basin. This report gives the tests results and recommendations from the these tests.

Takasumi, D.S.

1995-09-28T23:59:59.000Z

470

Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments  

E-Print Network [OSTI]

Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments Feline Tests Feline Tests Acid Fast Stain (for bacteria) M-F 1-2 days 1 Tests, Equine Cushings Tests , Feline Adrenal Function Tests, or Appendix C. Endocrinology22.00 ACTH

Keinan, Alon

471

Sandia National Laboratories: Mechanical Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyNuclear Energy Systems Laboratory (NESL) Brayton LabMechanical Testing Mechanical Testing Mechanical Testing Overview Mechanical 1-2 (2008). Standard Test Methods for...

472

I/O Test  

E-Print Network [OSTI]

IO TEST is intended as a hardware testing and debugging aid for use with the PDP-6 and its associated input multiplexer (analog to digital converter) and output multiplexer (digital to analog converter). While all characters ...

Beeler, Michael

1967-10-01T23:59:59.000Z

473

Stochastic models for turbulent reacting flows  

SciTech Connect (OSTI)

The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

474

Flow Duration Curve Load Duration Curve  

E-Print Network [OSTI]

Flow Duration Curve Load Duration Curve 1. Develop Flow Duration Curve 2. Estimate load given flow and concentration data--select appropriate conversion factors 3. Develop Load Duration Curve 4. Plot observed data with Load Duration Curve What are they? How do you make one? Describes the percent of time a flow rate

475

SHORT-TUBE SUBCRITICAL FLOW Enerag Division  

E-Print Network [OSTI]

#12;SHORT-TUBE SUBCRITICAL FLOW Y. C. Mei Enerag Division Oak Ridge National Laboratory Oak Ridge-tube subcritical flow. For short tubes used as refrigerant expansion devices, the orifice model is found inadequate-TUBE SUBCRITICAL FLOW INTRODUCTION Much theoretical and experimental work regarding short tube fluid flow has

Oak Ridge National Laboratory

476

AnalyzeHOLE: An Integrated Wellbore Flow Analysis Tool  

SciTech Connect (OSTI)

Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically displaying pertinent results.

Keith J. Halford

2009-10-01T23:59:59.000Z

477

Articles about Testing  

Broader source: Energy.gov [DOE]

Stories about testing facilities, capabilities, and certification featured by the U.S. Department of Energy (DOE) Wind Program.

478

Coaxial test fixture  

DOE Patents [OSTI]

This invention pertains to arrangements for performing electrical tests on contact material samples, and in particular for testing contact material test samples in an evacuated environment under high current loads. Frequently, it is desirable in developing high-current separable contact material, to have at least a preliminary analysis of selected candidate conductor materials. Testing of material samples will hopefully identify materials unsuitable for high current electrical contact without requiring incorporation of the materials into a completed and oftentimes complex structure.

Praeg, W.F.

1984-03-30T23:59:59.000Z

479

Corrosion test cell for bipolar plates  

DOE Patents [OSTI]

A corrosion test cell for evaluating corrosion resistance in fuel cell bipolar plates is described. The cell has a transparent or translucent cell body having a pair of identical cell body members that seal against opposite sides of a bipolar plate. The cell includes an anode chamber and an cathode chamber, each on opposite sides of the plate. Each chamber contains a pair of mesh platinum current collectors and a catalyst layer pressed between current collectors and the plate. Each chamber is filled with an electrolyte solution that is replenished with fluid from a much larger electrolyte reservoir. The cell includes gas inlets to each chamber for hydrogen gas and air. As the gases flow into a chamber, they pass along the platinum mesh, through the catalyst layer, and to the bipolar plate. The gas exits the chamber through passageways that provide fluid communication between the anode and cathode chambers and the reservoir, and exits the test cell through an exit port in the reservoir. The flow of gas into the cell produces a constant flow of fresh electrolyte into each chamber. Openings in each cell body is member allow electrodes to enter the cell body and contact the electrolyte in the reservoir therein. During operation, while hydrogen gas is passed into one chamber and air into the other chamber, the cell resistance is measured, which is used to evaluate the corrosion properties of the bipolar plate.

Weisbrod, Kirk R. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

480

Soil Testing and Research  

E-Print Network [OSTI]

Soil Testing and Research Analytical Laboratory Copyright © 2014 University of Minnesota Soil Testing and Research Analytical Laboratory Department of Soil, Water and Climate College of Food payable to the University of Minnesota We also accept the following credit cards: Soil Testing

Ciocan-Fontanine, Ionut

Note: This page contains sample records for the topic "flow test gtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

SMVCIR Dimensionality Test  

E-Print Network [OSTI]

the dimensionality test and testing it. The dimensionality test is based on the singular values of the kernel of the spanning set of the vector space. The asymptotic distribution of the spanning set is found by using the central limit theorem, delta method...

Lindsey, Charles D.

2011-08-08T23:59:59.000Z

482

Power System Equipment Module Test Project  

SciTech Connect (OSTI)

The technology of electric power generation when applying the binary process to hydrothermal resources had not yet been demonstrated in the United States. Accordingly, on November 10, 1977, the Electric Power Research Institute and the Department of Energy, acting through the Lawrence Berkeley Laboratory, agreed to cofund the Power System Equipment Module Test Project. The Power System Equipment Module Test Project consisted of a field test program to accomplish the objectives listed below while heating hydrocarbon fluids to above their critical points, expanding these fluids, and subsequently, condensing them below their critical points: (1) Verify the performance of state-of-the-art heat exchangers in geothermal service; (2) Verify the heat exchangers' performance heating either selected pure light hydrocarbons or selected mixtures of light hydrocarbons in the vicinity of their respective critical pressures and temperatures; (3) Establish overall heat transfer coefficients that might be used for design of commercial-size geothermal power plants using the same geothermal brine and light hydrocarbon working fluids; (4) Perform and investigate the above under representative fluid operating conditions during which the production wells would be pumped. The project was accomplished by diverting approximately 200 gpm of the flow from one of Magma Power Company's geothermal wells in the East Mesa Geothermal Field. After the heat was removed from the geothermal brine flow, the cooled flow was returned to Magma Power Company and recombined with the main brine stream for disposal by reinjection. Approximately five thermal megawatts was transferred from geothermal brine to hydrocarbon working fluids in a closed system. This heat was removed from the working fluids in a condenser and subsequently rejected to the environment by a wet cooling tower. The thermodynamic performance of both the working fluids and the system components was measured during the test program to achieve the project's objectives.

Schilling, J.R.

1980-12-01T23:59:59.000Z

483