National Library of Energy BETA

Sample records for flow simulation assisted

  1. GMINC - A MESH GENERATOR FOR FLOW SIMULATIONS IN FRACTURED RESERVOIRS

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    LBL-15227 . GMINC - A Mesh Generator for Flow Simulations InJ J GMINC - A Mesh Generator for Flow Simulations Inibution Gt~INC - A Mesh Generator for Flow Simulations In

  2. ASCR Workshop on Turbulent Flow Simulations at the Exascale:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASCR Workshop on Turbulent Flow Simulations at the Exascale: Opportunities and Challenges ASCR Workshop on Turbulent Flow Simulations at the Exascale: Opportunities and Challenges...

  3. Mesoscale Simulations of Particulate Flows with Parallel Distributed...

    Office of Scientific and Technical Information (OSTI)

    Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Citation Details In-Document Search Title: Mesoscale Simulations of Particulate...

  4. Mesoscale simulations of particulate flows with parallel distributed...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique Citation Details In-Document Search Title: Mesoscale simulations...

  5. Numerical Simulation of Laminar Reacting Flows with Complex Chemistry

    E-Print Network [OSTI]

    Bell, John B.

    Numerical Simulation of Laminar Reacting Flows with Complex Chemistry M S Day and J B Bell Lawrence Simulation of Laminar Reacting Flows 2 1. Introduction Detailed modelling of time-dependent reacting ows

  6. Flume simulation of sedimentation in recirculating flow

    SciTech Connect (OSTI)

    Schmidt, J.C. (Middlebury College, VT (USA)); Rubin, D.M. (Geological Survey, Menlo Park, CA (USA)); Ikeda, H. (Univ. of Tsukuba (Japan))

    1990-05-01

    A 4-m-wide flume at the University of Tsukuba Environmental Research Center was used to simulate flow conditions near debris fans in bedrock gorges. Flow was constricted to 2 m by a semicircular obstruction. During the authors experiments (discharge = 600 L/sec; Froude number of constricted flow = 1) a zone of recirculating current extended 25-30 m downstream from the separation point at the constriction. The pattern and velocity of surface flow was determined using time-lapse photography; subsurface velocity was measured with a two-dimensional electromagnetic current meter. During 32-hr of run time, a fine, very coarse sand mixture was fed into the flow at a rate between 0.5-1 kg/sec. Oscillation ripples developed beneath the separation surface that bounds the recirculation zone, and upstream-migrating dunes and ripples developed within the recirculation zone upstream from the reattachment point. A mid-channel expansion bar was deposited downstream from the reattachment point. Sedimentation within the recirculation zone continued by vertical aggradation and by upstream migration of dunes and ripples. Sediments within the recirculation zone were areally sorted with the finest sediment deposited near the separation point. These patterns are consistent with field observations of bars along the Colorado River in the Grand Canyon.

  7. High Fidelity Simulation of Complex Suspension Flow for Practical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A visualization of the flow of concrete, a complex suspension A visualization of the flow of concrete, a complex suspension. In this snapshot of the simulation, the stress on each...

  8. SU-E-J-66: Evaluation of a Real-Time Positioning Assistance Simulator...

    Office of Scientific and Technical Information (OSTI)

    Kinect Purpose: The purpose of this study is to investigate the feasibility of a low cost, small size positioning assistance simulator system for skull radiography using...

  9. Numerical Simulation of Laminar Reacting Flows with Complex Chemistry

    E-Print Network [OSTI]

    Bell, John B.

    Numerical Simulation of Laminar Reacting Flows with Complex Chemistry M S Day and J B Bell Lawrence: 47.40.Fw, 82.40.Py Submitted to: Combust. Theory Modelling #12;Numerical Simulation of Laminar

  10. Direct Numerical Simulation of the Flow in a Pebble Bed 

    E-Print Network [OSTI]

    Ward, Paul

    2014-06-24

    at Argonne National Laboratory, to conduct both large eddy simulation (LES) and direct numerical simulation (DNS) of fluid flow through a single face-centered cubic sphere lattice with periodic boundary conditions. Multiple LES were conducted with varying...

  11. Model Order Reduction in Porous Media Flow Simulation and Optimization 

    E-Print Network [OSTI]

    Ghasemi, Mohammadreza

    2015-05-06

    Subsurface flow modeling and simulation is ubiquitous in many energy related processes, including oil and gas production. These models are usually large scale and simulating them can be very computationally demanding, particularly in work...

  12. Direct numerical simulation of turbulent reacting flows

    SciTech Connect (OSTI)

    Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  13. Numerical simulation model for vertical flow in geothermal wells

    SciTech Connect (OSTI)

    Tachimori, M.

    1982-01-01

    A numerical simulation model for vertical flow in geothermal wells is presented. The model consists of equations for the conservation of mass, momentum, and energy, for thermodynamic state of water, for friction losses, for slip velocity relations, and of the criteria for various flow regimes. A new set of correlations and criteria is presented for two-phase flow to improve the accuracy of predictions; bubbly flow - Griffith and Wallis correlation, slug flow - Nicklin et al. one, annular-mist flow - Inoue and Aoki and modified by the author. The simulation method was verified by data from actual wells.

  14. Methods for Numerical Flow Simulation Rolf Rannacher

    E-Print Network [OSTI]

    models of laminar hemodynamical flows. We discuss space and time dis- cretization with emphasis as flow control and model calibration. We concen- trate on laminar flows in which all relevant spatial-Stokes equations The continuum mechanical model of the flow of a viscous Newtonian fluid is the system

  15. Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow

    E-Print Network [OSTI]

    Marchese, Francis

    Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow Flow

  16. MULTITARGET ERROR ESTIMATION AND ADAPTIVITY IN AERODYNAMIC FLOW SIMULATIONS

    E-Print Network [OSTI]

    Hartmann, Ralf

    MULTI­TARGET ERROR ESTIMATION AND ADAPTIVITY IN AERODYNAMIC FLOW SIMULATIONS RALF HARTMANN of Scientific Computing, TU Braunschweig, Germany (Ralf.Hartmann@dlr.de). 1 #12; 2 R. HARTMANN

  17. MULTITARGET ERROR ESTIMATION AND ADAPTIVITY IN AERODYNAMIC FLOW SIMULATIONS

    E-Print Network [OSTI]

    Hartmann, Ralf

    MULTITARGET ERROR ESTIMATION AND ADAPTIVITY IN AERODYNAMIC FLOW SIMULATIONS RALF HARTMANN Abstract, Germany (Ralf.Hartmann@dlr.de). 1 #12;2 R. HARTMANN quantity under consideration. However, in many

  18. Implicit runge-kutta methods to simulate unsteady incompressible flows 

    E-Print Network [OSTI]

    Ijaz, Muhammad

    2009-05-15

    A numerical method (SIMPLE DIRK Method) for unsteady incompressible viscous flow simulation is presented. The proposed method can be used to achieve arbitrarily high order of accuracy in time-discretization which is otherwise ...

  19. Grid adaptation for functional outputs of compressible flow simulations

    E-Print Network [OSTI]

    Venditti, David Anthony, 1973-

    2002-01-01

    An error correction and grid adaptive method is presented for improving the accuracy of functional outputs of compressible flow simulations. The procedure is based on an adjoint formulation in which the estimated error in ...

  20. A MONTE CARLO SIMULATION OF WATER FLOW IN VARIABLY ...

    E-Print Network [OSTI]

    1910-10-30

    Se utiliza un m?etodo de simulaci?on Monte Carlo para estudiar el flujo de aguas ... A Monte Carlo simulation method is employed to study groundwater flow in ...

  1. Numerical simulation of flow separation control by oscillatory fluid injection 

    E-Print Network [OSTI]

    Resendiz Rosas, Celerino

    2005-08-29

    In this work, numerical simulations of flow separation control are performed. The sep-aration control technique studied is called 'synthetic jet actuation'. The developed code employs a cell centered finite volume scheme which handles viscous...

  2. Numerical simulation of electrokinetically driven micro flows 

    E-Print Network [OSTI]

    Hahm, Jungyoon

    2005-11-01

    are systematically studied. As a first application, flow and species transport control in a grooved micro-channel using local electrokinetic forces are studied. Locally applied electric fields, zeta potential patterned grooved surfaces, and geometry are manipulated...

  3. Multiscale CFD simulations of entrained flow gasification

    E-Print Network [OSTI]

    Kumar, Mayank, Ph. D. Massachusetts Institute of Technology

    2011-01-01

    The design of entrained flow gasifiers and their operation has largely been an experience based enterprise. Most, if not all, industrial scale gasifiers were designed before it was practical to apply CFD models. Moreover, ...

  4. NUMERICAL SIMULATION OF INCOMPRESSIBLE FLOWS IN ...

    E-Print Network [OSTI]

    to transitions to turbulence in rotating flows and to design corresponding dynamic ..... but possess special structures such that the equation (c1B + c2D)x = f can.

  5. Water and Mercury Pipe Flow Simulation in FLUENTSimulation in FLUENT

    E-Print Network [OSTI]

    McDonald, Kirk

    Water and Mercury Pipe Flow Simulation in FLUENTSimulation in FLUENT Yan Zhan, Foluso Ladeinde;Straight Pipe flow Ph i l bl-- Physical problem Isothermal mercury/ water flow through a 60D straight pipe* Mercury 1500 41.844 m 4.04 m/s 18.5 bar 15.67 bar Water 1500 331.404 m 4.04 m/s 18.5 bar 18.291bar *uave

  6. Submarine landslide flows simulation through centrifuge modelling

    E-Print Network [OSTI]

    Gue, Chang Shin

    2012-05-08

    .3.2   Development of Scaling laws for soil fl ow through analytical solutions ................................................................................................. 84   3.3.3   Discussion of the proposed scal ing laws for soil flow... ) ............................................................ 28 Figure 2.12: The mechanistic illustration of conditions leading to: (a) failure in soils (b) onset of liquefaction (aft er Locat and Lee) ......... . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 2.13: Possible...

  7. Mesoscale simulations of polymer dynamics in microchannel flows

    E-Print Network [OSTI]

    L. Cannavacciuolo; R. G. Winkler; G. Gompper

    2007-09-24

    The non-equilibrium structural and dynamical properties of flexible polymers confined in a square microchannel and exposed to a Poiseuille flow are investigated by mesoscale simulations. The chain length and the flow strength are systematically varied. Two transport regimes are identified, corresponding to weak and strong confinement. For strong confinement, the transport properties are independent of polymer length. The analysis of the long-time tumbling dynamics of short polymers yields non-periodic motion with a sublinear dependence on the flow strength. We find distinct differences for conformational as well as dynamical properties from results obtained for simple shear flow.

  8. Simulation of noise-assisted transport via optical cavity networks

    E-Print Network [OSTI]

    Filippo Caruso; Nicolò Spagnolo; Chiara Vitelli; Fabio Sciarrino; Martin B. Plenio

    2010-10-26

    Recently, the presence of noise has been found to play a key role in assisting the transport of energy and information in complex quantum networks and even in biomolecular systems. Here we propose an experimentally realizable optical network scheme for the demonstration of the basic mechanisms underlying noise-assisted transport. The proposed system consists of a network of coupled quantum optical cavities, injected with a single photon, whose transmission efficiency can be measured. Introducing dephasing in the photon path this system exhibits a characteristic enhancement of the transport efficiency that can be observed with presently available technology.

  9. Integration of an Aggregate Flow Model with a Traffic Flow Simulator

    E-Print Network [OSTI]

    Integration of an Aggregate Flow Model with a Traffic Flow Simulator Robert Hoffman , Dengfeng Sun restrictions to aircraft movement are applied by air traffic controllers and traffic managers in response to demand overages or capacity shortfalls in sectors of airspace. To estimate and assess the efficiency

  10. Following the flow: tracer particles in astrophysical fluid simulations

    E-Print Network [OSTI]

    Genel, Shy; Nelson, Dylan; Sijacki, Debora; Springel, Volker; Hernquist, Lars

    2013-01-01

    We present two independent numerical schemes for passive tracer particles in the hydrodynamical moving-mesh code Arepo, and compare their performance for various problems, from simple tests to cosmological simulations. The purpose of tracer particles is to allow the flow to be followed in a Lagrangian way, reliably tracing the evolution of the fluid. Such tracer particles can subsequently measure any local instantaneous fluid property, thereby recording the thermodynamical history of individual fluid parcels. We begin by discussing "velocity field tracers", which are advected according to the local velocity field of the fluid, and which have been commonly used in the literature. We find that such tracers do not in general follow the mass flow correctly, particularly in complex flows, and explain why this is the case. This weakness of the method can result in orders-of-magnitude biases in simulations of driven turbulence and in cosmological simulations of structure formation, rendering the velocity field trace...

  11. FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat Transport Simulator(aka FALCON) FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat...

  12. Hydrodynamic stability of inverted annular flow in an adiabatic simulation

    SciTech Connect (OSTI)

    DeJarlais, G.; Ishii, M.; Linehan, J.

    1983-07-01

    Inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from large aspect ratio nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, break-up mode, and dispersed core droplet sizes were recorded at approximately 750 data points. Inverted annular flow destabilization lead to inverted slug flow at low relative velocities, and to dispersed droplet flow at high relative velocities. For both of these transitions from inverted annular flow, core break-up length correlations were developed by extending work on free liquid jets to include this coaxial, jet disintegration phenomenon. The results show length dependence upon D/SUB J/, Re/SUB J/, We/SUB J/, ..cap alpha.. and We/SUB G. Correlations for core shape, break-up mechanisms and dispersed core droplet size were also developed, by extending the results of free jet stability, roll wave entrainment, and churn turbulent droplet stability studies.

  13. Hydrodynamic stability of inverted annular flow in an adiabatic simulation

    SciTech Connect (OSTI)

    De Jarlais, G.; Ishii, M.; Linehan, J.

    1984-01-01

    Inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from large aspect ratio nozzle, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, break-up mode, and dispersed core droplet sizes were recorded at approximately 750 data points. Inverted annular flow destabilization lead to inverted slug flow at low relative velocities, and to dispersed droplet flow at high relative velocities. For both of these transitions from inverted annular flow, core break-up length correlations were developed by extending work on free liquid jets to include this coaxial, jet disintegration phenomenon. The results show length dependence upon D/sub J/, Re/sub J/, ..cap alpha.. and We/sub G, rel/. Correlations for core shape, break-up mechanisms and dispersed core droplet size were also developed, by extending the results of free jet stability, roll wave entrainment, and churn turbulent droplet stability studies.

  14. Simulation of Gravity Flow of Granular Materials in Silos

    E-Print Network [OSTI]

    and handle vast quantities of raw materials in granular form. The material is usually retrieved throughSimulation of Gravity Flow of Granular Materials in Silos Pierre A. Gremaud1 and John V. Matthews1 materials in silos under the action of gravity is considered. In the case of a Mohr-Coulomb material

  15. Flow Forcing Techniques for Numerical Simulation of Combustion Instabilities

    E-Print Network [OSTI]

    Nicoud, Franck

    Flow Forcing Techniques for Numerical Simulation of Combustion Instabilities A. KAUFMANN* and F of combustion instabilities in gas turbine combustors require the knowledge of flame transfer functions. Those flame) and for one case where a CFD code is necessary (a laminar Bunsen-type flame). © 2002

  16. MPSalsa 3D Simulations of Chemically Reacting Flows

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

    This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

  17. Simulation of salt migrations in density dependent groundwater flow

    E-Print Network [OSTI]

    Vuik, Kees

    Simulation of salt migrations in density dependent groundwater flow E.S. van Baaren Master's Thesis for the salt migration in the groundwater underneath the polders near the coast. The problem description of this thesis is to investigate the possibilities of modelling salt migrations in density dependent groundwater

  18. Implicit LES Simulation of Two phase Turbulent Jet Flow

    E-Print Network [OSTI]

    McDonald, Kirk

    Implicit LES Simulation of Two phase Turbulent Jet Flow Feb. 27th 2014 Yan 1 #12;Studied ProblemsD 2120 297 629,640 2 #12;Results 3JetDiameter Case · VOF 3 Initialization (t = 0 s) Z Z #12;Results 3JetDiameter Case (click to watch the movie) 4 · VOF 0 Jet

  19. Large-eddy simulation of turbulent circular jet flows

    SciTech Connect (OSTI)

    Jones, S. C.; Sotiropoulos, F.; Sale, M. J.

    2002-07-01

    This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energy’s Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.

  20. Simulations of Turbulent Flows with Strong Shocks and Density Variations

    SciTech Connect (OSTI)

    Zhong, Xiaolin

    2012-12-13

    In this report, we present the research efforts made by our group at UCLA in the SciDAC project ���¢��������Simulations of turbulent flows with strong shocks and density variations���¢�������. We use shock-fitting methodologies as an alternative to shock-capturing schemes for the problems where a well defined shock is present. In past five years, we have focused on development of high-order shock-fitting Navier-Stokes solvers for perfect gas flow and thermochemical non-equilibrium flow and simulation of shock-turbulence interaction physics for very strong shocks. Such simulation has not been possible before because the limitation of conventional shock capturing methods. The limitation of shock Mach number is removed by using our high-order shock-fitting scheme. With the help of DOE and TeraGrid/XSEDE super computing resources, we have obtained new results which show new trends of turbulence statistics behind the shock which were not known before. Moreover, we are also developing tools to consider multi-species non-equilibrium flows. The main results are in three areas: (1) development of high-order shock-fitting scheme for perfect gas flow, (2) Direct Numerical Simulation (DNS) of interaction of realistic turbulence with moderate to very strong shocks using super computing resources, and (3) development and implementation of models for computation of mutli-species non-quilibrium flows with shock-fitting codes.

  1. Hydrodynamic stability of inverted annular flow in an adiabatic simulation

    SciTech Connect (OSTI)

    De Jarlais, G.; Ishii, M.; Linehan, J.

    1986-02-01

    Inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from large aspect ratio nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, breakup mode, and dispersed core droplet sizes were recorded at approximately 750 data points. Inverted annular flow destabilization led to inverted slug flow at low relative velocities, and to dispersed droplet flow, core breakup length correlations were developed by extending work on free liquid jets to include this coaxial, jet disintegration phenomenon. The results show length dependence upon D/sub J/, Re/sub J/, We/sub J/, ..cap alpha.., and We/sub G/,rel. Correlations for core shape, breakup mechanisms, and dispersed core droplet size were also developed, by extending the results of free jet stability, roll wave entrainment, and churn turbulent droplet stability studies.

  2. Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes

    SciTech Connect (OSTI)

    Carrillo, Jose-Antonio Goudon, Thierry Lafitte, Pauline

    2008-08-10

    In this work, we propose asymptotic preserving numerical schemes for the bubbling and flowing regimes of particles immersed in a fluid treated by two-phase flow models. The description comprises compressible Euler equations for the dense phase (fluid) and a kinetic Fokker-Planck equation for the disperse phase (particles) coupled through friction terms. We show numerical simulations in the relevant case of gravity in the one-dimensional case demonstrating the overall behavior of the schemes.

  3. Numerical simulation of water flow around a rigid fishing net

    E-Print Network [OSTI]

    Roger Lewandowski; Géraldine Pichot

    2006-12-20

    This paper is devoted to the simulation of the flow around and inside a rigid axisymmetric net. We describe first how experimental data have been obtained. We show in detail the modelization. The model is based on a Reynolds Averaged Navier-Stokes turbulence model penalized by a term based on the Brinkman law. At the out-boundary of the computational box, we have used a "ghost" boundary condition. We show that the corresponding variational problem has a solution. Then the numerical scheme is given and the paper finishes with numerical simulations compared with the experimental data.

  4. GMINC: a mesh generator for flow simulations in fractured reservoirs

    SciTech Connect (OSTI)

    Pruess, K.

    1983-03-01

    GMINC is a pre-processor computer program for generating geometrical meshes to be used in modeling fluid and heat flow in fractured porous media. It is based on the method of multiple interacting continua (MINC) as developed by Pruess and Narasimhan. The meshes generated by GMINC are in integral finite difference form, and are compatible with the simulators SHAFT79 and MULKOM. Applications with other integral finite difference simulators are possible, and require slight modifications in input/output formats. This report describes methodology and application of GMINC, including preparation of input decks and sample problems. A rather comprehensive overview of the MINC-method is also provided to make the presentation self-contained as a guide for modeling of flow in naturally fractured media.

  5. Simulations of ductile flow in brittle material processing

    SciTech Connect (OSTI)

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  6. A Study of mixing in computer simulated laminar flow systems 

    E-Print Network [OSTI]

    McFarland, Allison Anne

    1984-01-01

    1984 Major Subject: Chemical Engineering A STUDY OF MIXING IN COMPUTER SIMULATED LAMINAR FLOW SYSTEMS A Thesis by ALLISON ANNE MCFARLAND Approved as to style and content by: Gary B. Tatterson (Chairman) ries J. Glover (Member) A. Ted Watson...: Dr. Gary B. Tatterson Mixing is a process that reduces nonuniformities or gradients in composition, properties, or temperature of material in bulk. It is a basic part of many chemical engineering processes, yet the theoretical understanding...

  7. Simulation of High Density Pedestrian Flow: Microscopic Model

    E-Print Network [OSTI]

    Dridi, Mohamed H

    2015-01-01

    In recent years modelling crowd and evacuation dynamics has become very important, with increasing huge numbers of people gathering around the world for many reasons and events. The fact that our global population grows dramatically every year and the current public transport systems are able to transport large amounts of people, heightens the risk of crowd panic or crush. Pedestrian models are based on macroscopic or microscopic behaviour. In this paper, we are interested in developing models that can be used for evacuation control strategies. This model will be based on microscopic pedestrian simulation models, and its evolution and design requires a lot of information and data. The people stream will be simulated, based on mathematical models derived from empirical data about pedestrian flows. This model is developed from image data bases, so called empirical data, taken from a video camera or data obtained using human detectors. We consider the individuals as autonomous particles interacting through socia...

  8. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

    SciTech Connect (OSTI)

    Tchelepi, Hamdi

    2014-11-14

    A multiscale linear-solver framework for the pressure equation associated with flow in highly heterogeneous porous formations was developed. The multiscale based approach is cast in a general algebraic form, which facilitates integration of the new scalable linear solver in existing flow simulators. The Algebraic Multiscale Solver (AMS) is employed as a preconditioner within a multi-stage strategy. The formulations investigated include the standard MultiScale Finite-Element (MSFE) andMultiScale Finite-Volume (MSFV) methods. The local-stage solvers include incomplete factorization and the so-called Correction Functions (CF) associated with the MSFV approach. Extensive testing of AMS, as an iterative linear solver, indicate excellent convergence rates and computational scalability. AMS compares favorably with advanced Algebraic MultiGrid (AMG) solvers for highly detailed three-dimensional heterogeneous models. Moreover, AMS is expected to be especially beneficial in solving time-dependent problems of coupled multiphase flow and transport in large-scale subsurface formations.

  9. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations

    E-Print Network [OSTI]

    Rutqvist, J.

    2011-01-01

    geomechanics and reservoir simulation. Society of Petroleumporous flow and geomechanics. Society of Petroleum Engineers

  10. Simulation of Flow and Transport at the Micro (Pore) Scale

    SciTech Connect (OSTI)

    Trebotich, D; Miller, G H

    2007-04-05

    An important problem in porous media involves the ability of micron and submicron-sized biological particles such as viruses or bacteria to move in groundwater systems through geologic media characterized by rock or mixed gravel, clay and sand materials. Current simulation capabilities require properly upscaled (continuum) models of colloidal filtration and adsorption to augment existing theories of fluid flow and chemical transport. Practical models typically address flow and transport behavior in aquifers over distances of 1 to 10 km where, for example, fluid momentum balance is governed by the simple Darcy's Law as a function of a pressure gradient, elevation gradient and a medium-dependent permeability parameter. In addition to fluid advection, there are multiple transport processes occurring in these systems including diffusion, dispersion and chemical interactions with solids or other aqueous chemical species. Particle transport is typically modeled in the same way as dissolved species, except that additional loss terms are incorporated to model particle filtration (physical interception), adsorption (chemical interception) and inactivation. Proper resolution of these processes at the porous medium continuum scale constitutes an important closure problem in subsurface science. We present a new simulation capability based on enabling technologies developed for microfluidics applications to model transport of colloidal-sized particles at the microscale, with relevance to the pore scale in geophysical subsurface systems. Particulate is represented by a bead-rod polymer model and is fully-coupled to a Newtonian solvent described by Navier-Stokes. Finite differences are used to discretize the interior of the domain; a Cartesian grid embedded boundary/volume-of-fluid method is used near boundaries and interfaces. This approach to complex geometry is amenable to direct simulation on grids obtained from surface extractions of tomographic image data. Short-range interactions are included in the particle model. This capability has been previously demonstrated on polymer flow in spatially-resolved packed bed (3D) and post array (2D) systems. We also discuss the advantages of this approach for the development of high-resolution adaptive algorithms for multiscale continuum-particle and mesoscale coarse-grained molecular dynamics models.

  11. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2013-01-01

    for estimates of the oil and gas flow rate from the Macondoteam and carried out oil and gas flow simulations using theoil-gas system. The flow of oil and gas was simulated using

  12. Mass and charge flow in nanopores: numerical simulation via mesoscale models

    E-Print Network [OSTI]

    Cecconi, Fabio

    Mass and charge flow in nanopores: numerical simulation via mesoscale models Mauro Chinappi1 at nanoscale is here addressed via a recent developed mesoscale approach. In particular the flow

  13. Pore-Scale Simulation Of Experimentally Realizable, Oscillatory Flow In Porous Rock

    E-Print Network [OSTI]

    Olson, John F.

    1999-01-01

    We report new simulations of oscillating flow in porous rock. Our goal is to better understand the frequency dependence of pore-scale fluid motion, which should ultimately

  14. Modeling fluid flow through single fracture using experimental, stochastic, and simulation approaches 

    E-Print Network [OSTI]

    Alfred, Dicman

    2004-09-30

    This research presents an approach to accurately simulate flow experiments through a fractured core using experimental, stochastic, and simulation techniques. Very often, a fracture is assumed as a set of smooth parallel plates separated by a...

  15. GPU accelerated flow solver for direct numerical simulation of turbulent flows

    SciTech Connect (OSTI)

    Salvadore, Francesco [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy)] [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy); Bernardini, Matteo, E-mail: matteo.bernardini@uniroma1.it [Department of Mechanical and Aerospace Engineering, University of Rome ‘La Sapienza’ – via Eudossiana 18, 00184 Rome (Italy)] [Department of Mechanical and Aerospace Engineering, University of Rome ‘La Sapienza’ – via Eudossiana 18, 00184 Rome (Italy); Botti, Michela [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy)] [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy)

    2013-02-15

    Graphical processing units (GPUs), characterized by significant computing performance, are nowadays very appealing for the solution of computationally demanding tasks in a wide variety of scientific applications. However, to run on GPUs, existing codes need to be ported and optimized, a procedure which is not yet standardized and may require non trivial efforts, even to high-performance computing specialists. In the present paper we accurately describe the porting to CUDA (Compute Unified Device Architecture) of a finite-difference compressible Navier–Stokes solver, suitable for direct numerical simulation (DNS) of turbulent flows. Porting and validation processes are illustrated in detail, with emphasis on computational strategies and techniques that can be applied to overcome typical bottlenecks arising from the porting of common computational fluid dynamics solvers. We demonstrate that a careful optimization work is crucial to get the highest performance from GPU accelerators. The results show that the overall speedup of one NVIDIA Tesla S2070 GPU is approximately 22 compared with one AMD Opteron 2352 Barcelona chip and 11 compared with one Intel Xeon X5650 Westmere core. The potential of GPU devices in the simulation of unsteady three-dimensional turbulent flows is proved by performing a DNS of a spatially evolving compressible mixing layer.

  16. Numerical Simulations of Subsonic and Transonic Open-Cavity Flows

    E-Print Network [OSTI]

    to Graduate Research Assistant, Department of Mechanical Engineering and Florida Center for Advanced Aero Center for Advanced Aero-Propulsion, agn13@my.fsu.edu. Assistant Professor, Department of Mechanical Engineering and Florida Center for Advanced Aero-Propulsion, ktaira@fsu.edu. §Eminent Scholar and Professor

  17. On the extrapolation of acoustic waves from flow simulations with vortical outflow

    E-Print Network [OSTI]

    On the extrapolation of acoustic waves from flow simulations with vortical outflow M. C. M. Wright of Lighthill's acoustic analogy as a way to extrapolate radiated waves from simulations of unsteady flows acoustical predictions when entropy fluctuations or vorticity pass across the extrapolation surface

  18. 3-D Time-Accurate CFD Simulations of Wind Turbine Rotor Flow Fields

    E-Print Network [OSTI]

    -dimensional flow properties of rotating blades are an essential feature of any wind turbine aerodynamic-rotating simulations, some aspects of the physics of wind turbine aerodynamics and noise must be obtained from rotating3-D Time-Accurate CFD Simulations of Wind Turbine Rotor Flow Fields Nilay Sezer-Uzol and Lyle N

  19. Numerical simulation of flow and mixing behavior of solids on a moving grate combustion system

    E-Print Network [OSTI]

    Columbia University

    Numerical simulation of flow and mixing behavior of solids on a moving grate combustion system by #12;ii Numerical simulation of flow and mixing behavior of solids on a moving grate combustion system, and to a large extent influences the combustion process. Municipal solid waste (MSW) is not a uniform fuel

  20. Numerical simulation of vortical flows in the near field of jets from notched circular nozzles

    E-Print Network [OSTI]

    Liu, Feng

    Numerical simulation of vortical flows in the near field of jets from notched circular nozzles Keywords: Jet Vortex Computational fluid dynamics Direct numerical simulation Non-circular nozzles a b s t r a c t The vortex dominated flows in the near field of jets from notched circular nozzles

  1. An energy preserving formulation for the simulation of multiphase turbulent flows.

    E-Print Network [OSTI]

    Fuster, Daniel

    scheme for the simulation of turbulent mul- tiphase flows. The method is based on the discretizationAn energy preserving formulation for the simulation of multiphase turbulent flows. Abstract formulation reduces the numerical diffusion with respect to previous formulations dealing with multiple phases

  2. LATEX TikZposter Simulation of two-phase flow for

    E-Print Network [OSTI]

    Ábrahám, Erika

    LATEX TikZposter Simulation of two-phase flow for direct steam-generating solar thermal power Aachen University Simulation of two-phase flow for direct steam-generating solar thermal power plants University Concentrating solar thermal power plants Concentrating solar thermal power (CSP) plants

  3. Large-Eddy Simulation of a Turbulent Flow around a Multi-Perforated Plate

    E-Print Network [OSTI]

    Mendez, Simon

    Large-Eddy Simulation of a Turbulent Flow around a Multi-Perforated Plate Simon Mendez1 , Franck and used in Reynolds-Averaged Navier-Stokes methods cannot predict momen- tum/heat transfer on perforated plate are reported. Large-Eddy Simulations of the flow created by an infinite multi-perforated plate

  4. Numeric Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based

    E-Print Network [OSTI]

    Le Roy, Robert J.

    Numeric Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based Continuous is dedicated to under- standing the fluid flow and heat transfer mechanisms occurring in continuous flow PCR are discussed in detail. The importance of each heat transfer mechanism for different situations is also

  5. Mesoscale Simulations of Particulate Flows with Parallel Distributed

    Office of Scientific and Technical Information (OSTI)

    Distributed Lagrange Multiplier Technique Kanarska, Y 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS; ACCURACY; CONVERGENCE; FLUID FLOW; IMPLEMENTATION; MODIFICATIONS;...

  6. Bluff Body Flow Simulation Using a Vortex Element Method

    SciTech Connect (OSTI)

    Anthony Leonard; Phillippe Chatelain; Michael Rebel

    2004-09-30

    Heavy ground vehicles, especially those involved in long-haul freight transportation, consume a significant part of our nation's energy supply. it is therefore of utmost importance to improve their efficiency, both to reduce emissions and to decrease reliance on imported oil. At highway speeds, more than half of the power consumed by a typical semi truck goes into overcoming aerodynamic drag, a fraction which increases with speed and crosswind. Thanks to better tools and increased awareness, recent years have seen substantial aerodynamic improvements by the truck industry, such as tractor/trailer height matching, radiator area reduction, and swept fairings. However, there remains substantial room for improvement as understanding of turbulent fluid dynamics grows. The group's research effort focused on vortex particle methods, a novel approach for computational fluid dynamics (CFD). Where common CFD methods solve or model the Navier-Stokes equations on a grid which stretches from the truck surface outward, vortex particle methods solve the vorticity equation on a Lagrangian basis of smooth particles and do not require a grid. They worked to advance the state of the art in vortex particle methods, improving their ability to handle the complicated, high Reynolds number flow around heavy vehicles. Specific challenges that they have addressed include finding strategies to accurate capture vorticity generation and resultant forces at the truck wall, handling the aerodynamics of spinning bodies such as tires, application of the method to the GTS model, computation time reduction through improved integration methods, a closest point transform for particle method in complex geometrics, and work on large eddy simulation (LES) turbulence modeling.

  7. Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2013-01-01

    for estimates of the oil and gas flow rate from the Macondooil-gas system. The flow of oil and gas was simulated usingmaximal flow rates of oil and gas. With the conceptual model

  8. Thermal barrier coating deposition by rarefied gas jet assisted processes: Simulations of deposition on a stationary airfoil

    E-Print Network [OSTI]

    Wadley, Haydn

    Thermal barrier coating deposition by rarefied gas jet assisted processes: Simulations) The uniform coating of a complex shaped substrate, such as a gas turbine airfoil, by collisionless physical thermal barrier coating are used to investigate fundamental aspects of the deposition process, including

  9. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    E-Print Network [OSTI]

    Li, Xian-Xiang

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification ...

  10. Journal of Biomechanics 39 (2006) 20642073 Multiphase hemodynamic simulation of pulsatile flow

    E-Print Network [OSTI]

    Harilal, S. S.

    2006-01-01

    Journal of Biomechanics 39 (2006) 2064­2073 Multiphase hemodynamic simulation of pulsatile flow by Malek et al., (1999). The biomechanical environment in the cardiovascular system almost certainly plays

  11. Simulation and visualization of fields and energy flows in electric circuits with idealized geometries

    E-Print Network [OSTI]

    Ohannessian, Mesrob I., 1981-

    2005-01-01

    This thesis develops a method to simulate and visualize the fields and energy flows in electric circuits, using a simplified physical model based on an idealized geometry. The physical models combine and extend previously ...

  12. ASCR Workshop on Turbulent Flow Simulations at the Exascale: Opportunities and Challenges

    Broader source: Energy.gov [DOE]

    The need for accurate simulation of turbulent flows is evident across the US Department of Energy applied-science and engineering portfolio, including combustion, plasma physics, nuclear-reactor...

  13. Numerical simulation of flow distribution for pebble bed high temperature gas cooled reactors 

    E-Print Network [OSTI]

    Yesilyurt, Gokhan

    2004-09-30

    to be investigated. No detailed complete calculations for this kind of reactor to address these local phenomena are available. This work is an attempt to bridge this gap by evaluating this effect. I.2 TURBULENCE MODEL SELECTION The simulation of these local... number of numerical studies on flows around spherical bodies, none of them use the necessary turbulence models that are required to simulate flow where strong separation exists. With the development of high performance computers built for applications...

  14. Simulation of heavy oil reservoir performance using a non-Newtonian flow model 

    E-Print Network [OSTI]

    Narahara, Gene Masao

    1983-01-01

    SIMULATION OF HEAVY OIL RESERVOIR PERFORMANCE USING A NON-NEWTONIAN FLOW MODEL A Thesis by GENE MASAO NARAHARA Submitted to the Graduate College of Texas AILM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1983 Major Subject: Petroleum Engineering SIMULATION OF HEAVY OIL RESERVOIR PERFORMANCE USING A NON-NEWTONIAN FLOW MODEL A Thesis by GENE MASAO NARAHARA Approved as to style and content by: lng . U an of Committee) R. . Morse...

  15. Direct numerical simulation of turbulent Taylor–Couette flow

    E-Print Network [OSTI]

    2007-08-23

    Brindley (1984) proposed a mathematical model by partitioning the flow into interior. (Taylor ... A comprehensive verification for several parameters was conducted, ... The cylinder axis is aligned with the z-axis of the coordinate system

  16. Sediment Transport in Shallow Subcritical Flow Disturbed by Simulated Rainfall 

    E-Print Network [OSTI]

    Machemehl, J. L.

    1968-01-01

    Studies were conducted in a closed system recirculating research flume to evaluate the relative effects of high intensity rainfall on von Karman's universal constant and the sediment transport capacity of shallow flow The tests in this study were...

  17. Numerical simulation of three-dimensional electrical flow through geomaterials 

    E-Print Network [OSTI]

    Akhtar, Anwar Saeed

    1998-01-01

    95 99 V ELECTRICAL FLOW AROUND AN ELECTRICAL CONE PENETROMETER 104 5. 1 INTRODUCTION 5. 2 ANALYTICAL SOLUTION FOR ELECTRICAL FLOW AROUND AN ELECTRICAL CONE PENETROMETER 5. 3 NUMERICAL INVESTIGATION 5. 4 COMPARISON OF ANALYTICAL AND NUMERICAL... RESULTS 5. 5 CONCLUSION AND APPLICATION 5. 5. 1 Utilization of Numerical Results 104 106 110 113 115 116 VI EXPERIMENTAL EQUIPMENT DESIGN 121 6. 1 INTRODUCTION 6. 2 ELECTRICAL POWER SOURCE 6. 3 ELECTRICAL RESISTIVITY CONE PENETROMETER 6. 4...

  18. Capabilities of Numerical Simulation of Multiphase Flows in Centrifugal Pumps using Modern CFD Software

    E-Print Network [OSTI]

    Kochevsky, A N

    2005-01-01

    The paper describes capabilities of numerical simulation of liquid flows with solid and/or gas admixtures in centrifugal pumps using modern commercial CFD software packages, with the purpose to predict performance curves of the pumps treating such media. In particular, the approaches and multiphase flow models available in the package CFX-5 are described; their advantages and disadvantages are analyzed.

  19. Energy-Conserving Simulation of Incompressible Electro-Osmotic and Pressure-Driven Flow

    E-Print Network [OSTI]

    Bowman,John C.

    Energy-Conserving Simulation of Incompressible Electro-Osmotic and Pressure-Driven Flow Jahrul Alam in Theoretical and Computational Fluid Dynamics) Abstract. A numerical model for electro-osmotic flow asymmetric concentration profile that arises when an external pressure drop is imposed on electro-osmotic

  20. Multiscale Modeling and Simulations of Flows in Naturally Fractured Karst Reservoirs

    E-Print Network [OSTI]

    Popov, Peter

    ) and a free flow region, where the fluid (oil, water, gas) meets no resistance form the surrounding rock [13Multiscale Modeling and Simulations of Flows in Naturally Fractured Karst Reservoirs Peter Popov1-Brinkman equations can naturally be used to model additional physical effects pertaining to vugular media

  1. NUMERICAL SIMULATIONS OF LONG TERM UNSATURATED FLOW AND ACID MINE DRAINAGE AT WASTE ROCK PILES

    E-Print Network [OSTI]

    Aubertin, Michel

    NUMERICAL SIMULATIONS OF LONG TERM UNSATURATED FLOW AND ACID MINE DRAINAGE AT WASTE ROCK PILES Omar present a numerical modeling study of unsaturated water flow and acid mine drainage in idealized (but of oxygen diffusion and acid mine drainage through the waste rock piles showed that oxygen is generally

  2. MULTIPHASE FLOW SIMULATION WITH VARIOUS BOUNDARY CONDITIONS Z. CHEN, R. E. EWING, and M. ESPEDAL

    E-Print Network [OSTI]

    Ewing, Richard E.

    be incorporated into the pressure­saturation formu­ lation. INTRODUCTION In petroleum reservoir simulation in a fractional flow formulation, i.e., in terms of a saturation and a global pressure. It is shown that most.e., in terms of a saturation and a global pressure [5], [9]. The main reason for this fractional flow approach

  3. Numerical simulation of air/water multiphase flows for ceramic sanitary ware design by multiple GPUs

    E-Print Network [OSTI]

    8 Numerical simulation of air/water multiphase flows for ceramic sanitary ware design by multiple and manufacturing of plumbing products such as ceramic sanitary wares. In order to re-produce the complex/water multiphase flows for ceramic sanitary ware design by multiple GPUs Being a world-wide leading company, TOTO

  4. Acoustic modeling of perforated plates with bias flow for Large-Eddy Simulations

    E-Print Network [OSTI]

    Mendez, Simon

    Acoustic modeling of perforated plates with bias flow for Large-Eddy Simulations S. Mendez a,, J. D of California, Los Angeles, Los Angeles, CA 90095, USA. Abstract The study of the acoustic effect of perforated to provide data on the flow around a perforated plate and the associated acoustic damping is demonstrated

  5. Mechanistic Foam Flow Simulation in Heterogeneous and Multidimensional Porous Media

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    , and thermal reservoir simulator and created a fully functional, mechanistic foam simulator. Because foam, field-scale model for foam displacement is currently in use. The population-balance method for modeling that is analogous to energy and species mass balances7, 8. Accordingly, a separate conservation equation is written

  6. Quantum Simulator for Transport Phenomena in Fluid Flows

    E-Print Network [OSTI]

    Mezzacapo, A; Lamata, L; Egusquiza, I L; Succi, S; Solano, E

    2015-01-01

    Transport phenomena are one of the most challenging problems in computational physics. We present a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics problems within a lattice kinetic formalism. This quantum simulator is obtained by exploiting the analogies between Dirac and lattice Boltzmann equations. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.

  7. Evaluation of flow redistribution due to flow blockage in rod bundles using COBRA code simulation. Final report. [PWR

    SciTech Connect (OSTI)

    Prelewicz, D.A.; Caruso, M.A.

    1981-01-01

    During a Loss-of-Coolant Accident, fuel rod cladding may reach temperatures approaching 2200/sup 0/F. At these temperatures, swelling and rupture of the cladding may occur. The resulting flow blockage will affect steam flow and heat transfer in the bundle during the period of reflooding. The COBRA-IV-I subchannel computer code was used to simulate flow redistribution due to sleeve blockages in the FLECHT-SEASET 21-rod bundle and plate blockages in the JAERI Slab Core Test Facility. Sensitivity studies were conducted to determine the effects of spacer grid and blockage interaction, sleeve shape effects, sleeve length effects, blockage magnitude and distribution, thermally induced mixing and bundle average velocity on flow redistribution. Pressure drop due to sleeve blockages was also calculated for several blockage configurations.

  8. Level Set Based Simulations of Two-Phase Oil-Water Flows in Pipes

    E-Print Network [OSTI]

    Soatto, Stefano

    the assumption that the densities of the two uids are di#11;erent and that the viscosity of the oil core is veryLevel Set Based Simulations of Two-Phase Oil-Water Flows in Pipes Hyeseon Shim July 31, 2000 Abstract We simulate the axisymmetric pipeline transportation of oil and water numerically under

  9. Coherent structures in Dissipative Particle Dynamics simulations of the transition to turbulence in compressible shear flows

    E-Print Network [OSTI]

    van de Meent, Jan-Willem; Somfai, Ellak; Sultan, Eric; van Saarloos, Wim

    2008-01-01

    We present simulations of coherent structures in compressible flows near the transition to turbulence using the Dissipative Particle Dynamics (DPD) method. The structures we find are remarkably consistent with experimental observations and DNS simulations of incompressible flows, despite a difference in Mach number of several orders of magnitude. The bifurcation from the laminar flow is bistable and shifts to higher Reynolds numbers when the fluid becomes more compressible. This work underlines the robustness of coherent structures in the transition to turbulence and illustrates the ability of particle-based methods to reproduce complex non-linear instabilities.

  10. Flow-History-Dependent Behavior in Entangled Polymer Melt Flow with Multiscale Simulation

    E-Print Network [OSTI]

    Takahiro Murashima; Takashi Taniguchi

    2011-10-05

    Polymer melts represent the flow-history-dependent behavior. To clearly show this behavior, we have investigated flow behavior of an entangled polymer melt around two cylinders placed in tandem along the flow direction in a two dimensional periodic system. In this system, the polymer states around a cylinder in downstream side are different from the ones around another cylinder in upstream side because the former ones have a memory of a strain experienced when passing around the cylinder in upstream side but the latter ones do not have the memory. Therefore, the shear stress distributions around two cylinders are found to be different from each other. Moreover, we have found that the averaged flow velocity decreases accordingly with increasing the distance between two cylinders while the applied external force is constant. While this behavior is consistent with that of the Newtonian fluid, the flow-history-dependent behavior enhances the reduction of the flow resistance.

  11. Probing protein orientation near charged nanosurfaces for simulation-assisted biosensor design

    E-Print Network [OSTI]

    Christopher D. Cooper; Natalia C. Clementi; Lorena A. Barba

    2015-08-20

    Protein-surface interactions are ubiquitous in biological processes and bioengineering, yet are not fully understood. In biosensors, a key factor determining the sensitivity and thus the performance of the device is the orientation of the ligand molecules on the bioactive device surface. Adsorption studies thus seek to determine how orientation can be influenced by surface preparation. In this work, protein orientation near charged nanosurfaces is obtained under electrostatic effects using the Poisson-Boltzmann equation, in an implicit-solvent model. Sampling the free energy for protein GB1D4' at a range of tilt and rotation angles with respect to the charged surface, we calculated the probability of the protein orientations and observed a dipolar behavior. This result is consistent with published experimental studies and combined Monte Carlo and molecular dynamics simulations using this small protein, validating our method. More relevant to biosensor technology, antibodies such as immunoglobulin G are still a formidable challenge to molecular simulation, due to their large size. We obtained the probability distribution of orientations for the iso-type IgG2a at varying surface charge and salt concentration. This iso-type was not found to have a preferred orientation in previous studies, unlike the iso-type IgG1 whose larger dipole moment was assumed to make it easier to control. We find that the preferred orientation of IgG2a can be favorable for biosensing with positive surface charge of 0.05C/m$^{2}$ or higher and 37mM salt concentration. The results also show that local interactions dominate over dipole moment for this protein. Improving immunoassay sensitivity may thus be assisted by numerical studies using our method (and open-source code), guiding changes to fabrication protocols or protein engineering of ligand molecules to obtain more favorable orientations.

  12. Simulation of bilinear flow in single matrix block drainage 

    E-Print Network [OSTI]

    Branajaya, Romi Triaji

    2005-02-17

    kf,. The fracture half-length reflects on a/b aspect ratio. The analytical solution for hydraulic fracture developed by Cinco-Ley and Guppy serves as the validation of matrix block drainage. Analysis on the flow regimes which occurred for different...

  13. Large Eddy Simulations of Jet Flow Interactions Within Rod Bundles 

    E-Print Network [OSTI]

    Salpeter, Nathaniel O.

    2010-07-14

    The present work investigates the turbulent jet flow mixing of downward impinging jets within a staggered rod bundle based on previous experimental work. The two inlet jets had Reynold's numbers of 11,160 and 6,250 and were chosen to coincide...

  14. FLUID FLOW AND PARTICLE DEPOSITION SIMULATIONS IN THE HUMAN NOSE

    E-Print Network [OSTI]

    Reimers, Martin

    Nose AS) developing a patented concept for efficient nasal delivery of drugs and vaccines. The objective- filled spaces, i.e. the sinuses. The olfactory mucosa #12;is situated in the roof of the nasal cavity and vaccines. The narrow flow passages offer many challenges for efficient nasal delivery of drugs and vaccines

  15. AIAA 2004-4082 Simulation of 3D Flows of

    E-Print Network [OSTI]

    Zha, Gecheng

    Flows of Propulsion Systems Using an Efficient Low Diffusion E-CUSP Upwind Scheme Zongjun Hu and Gecheng dissipation. For the scalar dissipation Riemann solver schemes, there are generally two types: H- CUSP schemes is consistent with the characteristic directions.8 The scheme has low diffusion and is able to capture crisp

  16. Pore-scale lattice Boltzmann simulation of laminar and turbulent flow through a sphere pack

    E-Print Network [OSTI]

    Fattahia, Ehsan; Wohlmuth, Barbara; Rüde, Ulrich; Manhart, Michael; Helmig, Rainer

    2015-01-01

    The lattice Boltzmann method can be used to simulate flow through porous media with full geometrical resolution. With such a direct numerical simulation, it becomes possible to study fundamental effects which are difficult to assess either by developing macroscopic mathematical models or experiments. We first evaluate the lattice Boltzmann method with various boundary handling of the solid-wall and various collision operators to assess their suitability for large scale direct numerical simulation of porous media flow. A periodic pressure drop boundary condition is used to mimic the pressure driven flow through the simple sphere pack in a periodic domain. The evaluation of the method is done in the Darcy regime and the results are compared to a semi-analytic solution. Taking into account computational cost and accuracy, we choose the most efficient combination of the solid boundary condition and collision operator. We apply this method to perform simulations for a wide range of Reynolds numbers from Stokes flo...

  17. Quantum Simulator for Transport Phenomena in Fluid Flows

    E-Print Network [OSTI]

    A. Mezzacapo; M. Sanz; L. Lamata; I. L. Egusquiza; S. Succi; E. Solano

    2015-08-19

    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.

  18. Flow of colloidal solids and fluids through constrictions: dynamical density functional theory versus simulation

    E-Print Network [OSTI]

    Urs Zimmermann; Frank Smallenburg; Hartmut Löwen

    2015-12-02

    Using both dynamical density functional theory and particle-resolved Brownian dynamics simulations, we explore the flow of two-dimensional colloidal solids and fluids driven through a linear channel with a geometric constriction. The flow is generated by a constant external force acting on all colloids. The initial configuration is equilibrated in the absence of flow and then the external force is switched on instantaneously. Upon starting the flow, we observe four different scenarios: a complete blockade, a monotonic decay to a constant particle flux (typical for a fluid), a damped oscillatory behaviour in the particle flux, and a long-lived stop-and-go behaviour in the flow (typical for a solid). The dynamical density functional theory describes all four situations but predicts infinitely long undamped oscillations in the flow which are always damped in the simulations. We attribute the mechanisms of the underlying stop-and-go flow to symmetry conditions on the flowing solid. Our predictions are verifiable in real-space experiments on magnetic colloidal monolayers which are driven through structured microchannels and can be exploited to steer the flow throughput in microfluidics.

  19. Dispersion of swimming algae in laminar and turbulent channel flows: theory and simulations

    E-Print Network [OSTI]

    Croze, O A; Ahmed, M; Bees, M A; Brandt, L

    2012-01-01

    Algal swimming is often biased by environmental cues, e.g. gravitational and viscous torques drive cells towards downwelling fluid (gyrotaxis). In view of biotechnological applications, it is important to understand how such biased swimming affects cell dispersion in a flow. Here, we study the dispersion of gyrotactic swimming algae in laminar and turbulent channel flows. By direct numerical simulation (DNS) of cell motion within upwelling and downwelling channel flows, we evaluate time-dependent measures of dispersion for increasing values of the flow Peclet (Reynolds) numbers, Pe (Re). Furthermore, we derive an analytical `swimming Taylor-Aris dispersion' theory, using flow-dependent transport parameters given by existing microscopic models. In the laminar regime, DNS results and analytical predictions compare very well, providing the first confirmation that cells' response to flow is best described by the generalized-Taylor-dispersion microscopic model. We predict that cells drift along a channel faster th...

  20. A Hybrid Multiscale Framework for Subsurface Flow and Transport Simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scheibe, Timothy D.; Yang, Xiaofan; Chen, Xingyuan; Hammond, Glenn E.

    2015-06-01

    Extensive research efforts have been invested in reducing model errors to improve the predictive ability of biogeochemical earth and environmental system simulators, with applications ranging from contaminant transport and remediation to impacts of biogeochemical elemental cycling (e.g., carbon and nitrogen) on local ecosystems and regional to global climate. While the bulk of this research has focused on improving model parameterizations in the face of observational limitations, the more challenging type of model error/uncertainty to identify and quantify is model structural error which arises from incorrect mathematical representations of (or failure to consider) important physical, chemical, or biological processes, properties, ormore »system states in model formulations. While improved process understanding can be achieved through scientific study, such understanding is usually developed at small scales. Process-based numerical models are typically designed for a particular characteristic length and time scale. For application-relevant scales, it is generally necessary to introduce approximations and empirical parameterizations to describe complex systems or processes. This single-scale approach has been the best available to date because of limited understanding of process coupling combined with practical limitations on system characterization and computation. While computational power is increasing significantly and our understanding of biological and environmental processes at fundamental scales is accelerating, using this information to advance our knowledge of the larger system behavior requires the development of multiscale simulators. Accordingly there has been much recent interest in novel multiscale methods in which microscale and macroscale models are explicitly coupled in a single hybrid multiscale simulation. A limited number of hybrid multiscale simulations have been developed for biogeochemical earth systems, but they mostly utilize application-specific and sometimes ad-hoc approaches for model coupling. We are developing a generalized approach to hierarchical model coupling designed for high-performance computational systems, based on the Swift computing workflow framework. In this presentation we will describe the generalized approach and provide two use cases: 1) simulation of a mixing-controlled biogeochemical reaction coupling pore- and continuum-scale models, and 2) simulation of biogeochemical impacts of groundwater – river water interactions coupling fine- and coarse-grid model representations. This generalized framework can be customized for use with any pair of linked models (microscale and macroscale) with minimal intrusiveness to the at-scale simulators. It combines a set of python scripts with the Swift workflow environment to execute a complex multiscale simulation utilizing an approach similar to the well-known Heterogeneous Multiscale Method. User customization is facilitated through user-provided input and output file templates and processing function scripts, and execution within a high-performance computing environment is handled by Swift, such that minimal to no user modification of at-scale codes is required.« less

  1. Simulation of relativistically colliding laser-generated electron flows

    E-Print Network [OSTI]

    Yang, Xiaohu; Sarri, Gianluca; Borghesi, Marco

    2012-01-01

    The plasma dynamics resulting from the simultaneous impact, of two equal, ultra-intense laser pulses, in two spatially separated spots, onto a dense target is studied via particle-in-cell (PIC) simulations. The simulations show that electrons accelerated to relativistic speeds, cross the target and exit at its rear surface. Most energetic electrons are bound to the rear surface by the ambipolar electric field and expand along it. Their current is closed by a return current in the target, and this current configuration generates strong surface magnetic fields. The two electron sheaths collide at the midplane between the laser impact points. The magnetic repulsion between the counter-streaming electron beams separates them along the surface normal direction, before they can thermalize through other beam instabilities. This magnetic repulsion is also the driving mechanism for the beam-Weibel (filamentation) instability, which is thought to be responsible for magnetic field growth close to the internal shocks of ...

  2. A Hybrid Multiscale Framework for Subsurface Flow and Transport Simulations

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; Yang, Xiaofan; Chen, Xingyuan; Hammond, Glenn E.

    2015-01-01

    Extensive research efforts have been invested in reducing model errors to improve the predictive ability of biogeochemical earth and environmental system simulators, with applications ranging from contaminant transport and remediation to impacts of biogeochemical elemental cycling (e.g., carbon and nitrogen) on local ecosystems and regional to global climate. While the bulk of this research has focused on improving model parameterizations in the face of observational limitations, the more challenging type of model error/uncertainty to identify and quantify is model structural error which arises from incorrect mathematical representations of (or failure to consider) important physical, chemical, or biological processes, properties, or system states in model formulations. While improved process understanding can be achieved through scientific study, such understanding is usually developed at small scales. Process-based numerical models are typically designed for a particular characteristic length and time scale. For application-relevant scales, it is generally necessary to introduce approximations and empirical parameterizations to describe complex systems or processes. This single-scale approach has been the best available to date because of limited understanding of process coupling combined with practical limitations on system characterization and computation. While computational power is increasing significantly and our understanding of biological and environmental processes at fundamental scales is accelerating, using this information to advance our knowledge of the larger system behavior requires the development of multiscale simulators. Accordingly there has been much recent interest in novel multiscale methods in which microscale and macroscale models are explicitly coupled in a single hybrid multiscale simulation. A limited number of hybrid multiscale simulations have been developed for biogeochemical earth systems, but they mostly utilize application-specific and sometimes ad-hoc approaches for model coupling. We are developing a generalized approach to hierarchical model coupling designed for high-performance computational systems, based on the Swift computing workflow framework. In this presentation we will describe the generalized approach and provide two use cases: 1) simulation of a mixing-controlled biogeochemical reaction coupling pore- and continuum-scale models, and 2) simulation of biogeochemical impacts of groundwater – river water interactions coupling fine- and coarse-grid model representations. This generalized framework can be customized for use with any pair of linked models (microscale and macroscale) with minimal intrusiveness to the at-scale simulators. It combines a set of python scripts with the Swift workflow environment to execute a complex multiscale simulation utilizing an approach similar to the well-known Heterogeneous Multiscale Method. User customization is facilitated through user-provided input and output file templates and processing function scripts, and execution within a high-performance computing environment is handled by Swift, such that minimal to no user modification of at-scale codes is required.

  3. CFD Simulation and Experimental Testing of Multiphase Flow Inside the MVP Electrical Submersible Pump 

    E-Print Network [OSTI]

    Rasmy Marsis, Emanuel 1983-

    2012-08-16

    results for both the void fraction and pressure distribution agreed with the experimental results. Medvitz et al. (2002) used multiphase CFD analysis to study the cavitating flow inside a centrifugal pump. The authors used the two-phase homogenous RANS... equations. The simulation included both steady state and transient analysis for different flow coefficients and different cavitation numbers and could successfully predict cavitation inside the pump. Gonzalez et al. (2002) conducted many CFD analyses...

  4. Mesoscale flows in large aspect ratio simulations of turbulent compressible convection

    E-Print Network [OSTI]

    F. Rincon; F. Lignieres; M. Rieutord

    2006-11-28

    We present the results of a very large aspect ratio (42.6) numerical simulation of fully compressible turbulent convection in a polytropic atmosphere, and focus on the properties of large-scale flows. Mesoscale patterns dominate the turbulent energy spectrum. We show that these structures, which had already been observed in Boussinesq simulations by Cattaneo et al. (2001), have a genuine convective origin and do not result directly from collective interactions of the smaller scales of the flow, even though their growth is strongly affected by nonlinear transfers. If this result is relevant to the solar photosphere, it suggests that the dominant convective mode below the Sun's surface may be at mesoscales.

  5. Hypersonic nonequilibrium flow simulations over a blunt body using bgk simulations 

    E-Print Network [OSTI]

    Jain, Sunny

    2009-05-15

    . The objective of this thesis is to develop improved computational tools for hypersonic aerodynamics accounting for non-equilibrium effects. A survey of the fundamental theory and mathematical modeling pertaining to modeling high temperature flow physics...

  6. Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows

    SciTech Connect (OSTI)

    Sankaran Sundaresan

    2010-02-14

    Gas-particle flows in fluidized beds and riser reactors are inherently unstable, and they manifest fluctuations over a wide range of length and time scales. Two-fluid models for such flows reveal unstable modes whose length scale is as small as ten particle diameters. Yet, because of limited computational resources, gas-particle flows in large fluidized beds are invariably simulated by solving discretized versions of the two-fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not resolve the small-scale spatial structures which are known to affect the macroscale flow structures both qualitatively and quantitatively. Thus there is a need to develop filtered two-fluid models which are suitable for coarse-grid simulations and capturing the effect of the small-scale structures through closures in terms of the filtered variables. The overall objective of the project is to develop validated closures for filtered two-fluid models for gas-particle flows, with the transport gasifier as a primary, motivating example. In this project, highly resolved three-dimensional simulations of a kinetic theory based two-fluid model for gas-particle flows have been performed and the statistical information on structures in the 100-1000 particle diameters length scale has been extracted. Based on these results, closures for filtered two-fluid models have been constructed. The filtered model equations and closures have been validated against experimental data and the results obtained in highly resolved simulations of gas-particle flows. The proposed project enables more accurate simulations of not only the transport gasifier, but also many other non-reacting and reacting gas-particle flows in a variety of chemical reactors. The results of this study are in the form of closures which can readily be incorporated into existing multi-phase flow codes such as MFIX (www.mfix.org). Therefore, the benefits of this study can be realized quickly. The training provided by this project has prepared a PhD student to enter research and development careers in DOE laboratories or chemicals/energy-related industries.

  7. Flow simulation of the Component Development Integration Facility magnetohydrodynamic power train system

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.

    1997-11-01

    This report covers application of Argonne National Laboratory`s (ANL`s) computer codes to simulation and analysis of components of the magnetohydrodynamic (MHD) power train system at the Component Development and Integration Facility (CDIF). Major components of the system include a 50-MWt coal-fired, two-stage combustor and an MHD channel. The combustor, designed and built by TRW, includes a deswirl section between the first and the second-stage combustor and a converging nozzle following the second-stage combustor, which connects to the MHD channel. ANL used computer codes to simulate and analyze flow characteristics in various components of the MHD system. The first-stage swirl combustor was deemed a mature technology and, therefore, was not included in the computer simulation. Several versions of the ICOMFLO computer code were used for the deswirl section and second-stage combustor. The MGMHD code, upgraded with a slag current leakage submodel, was used for the MHD channel. Whenever possible data from the test facilities were used to aid in calibrating parameters in the computer code, to validate the computer code, or to set base-case operating conditions for computations with the computer code. Extensive sensitivity and parametric studies were done on cold-flow mixing in the second-stage combustor, reacting flow in the second-stage combustor and converging nozzle, and particle-laden flow in the deswirl zone of the first-stage combustor, the second-stage combustor, and the converging nozzle. These simulations with subsequent analysis were able to show clearly in flow patterns and various computable measures of performance a number of sensitive and problematical areas in the design of the power train. The simulations of upstream components also provided inlet parameter profiles for simulation of the MHD power generating channel. 86 figs., 18 tabs.

  8. Practical application of large eddy simulation to film cooling flow analysis on gas turbine airfoils

    SciTech Connect (OSTI)

    Takata, T.; Takeishi, K.; Kawata, Y.; Tsuge, A.

    1999-07-01

    Large eddy simulation (LES) using body-fitted coordinates is applied to solve film cooling flow on turbine blades. The turbulent model was tuned using the experimental flow field and adiabatic film cooling effectiveness measurements for a single row of holes on a flat plate surface. The results show the interaction between the main stream boundary layer and injected film cooling air generates kidney and horseshoe shaped vortices. Comparison of the temperature distribution between experimental results and present analysis has been conducted. The non-dimensional temperature distribution at x/d = 1 is dome style and quantitatively agrees with experimental results. LES was also applied to solve film cooling on a turbine airfoil. If LES was applied to solve whole flow field domain large CPU time would make the solution impractical. LES, using body-fitted coordinates, is applied to solve the non-isotropic film cooling flow near the turbine blade. The cascade flow domain, with a pitch equal to one film cooling hole spacing, is solved using {kappa}-{epsilon} model. By using such a hybrid numerical method, CPU time is reduced and numerical accuracy is insured. The analytical results show the interaction between the flow blowing through film cooling holes and mainstream on the suction and pressure surfaces of the turbine airfoil. They also show the fundamental structure of the film cooling air flow is governed by arch internal secondary flow and horseshoe vortices which have a similar structure to film cooling air flow blowing through a cooling hole on a flat plate. In the flow field, the effect of turbulent structure on curvature (relaminarization) and flow pattern, involving the interaction between main flow and the cooling jet, are clearly shown. Film cooling effectiveness on the blade surface is predicted from the results of the thermal field calculation and is compared with the test result.

  9. Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Cooper, C.A.

    1990-01-01

    Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s{sub {minus}1}. An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm{sup 3}. This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s{sup {minus}1}), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model.

  10. Groundwater flow with energy transport and waterice phase change: Numerical simulations, benchmarks, and application to

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    Groundwater flow with energy transport and water­ice phase change: Numerical simulations saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes propor for groundwater and energy transport with ice formation and melting are proposed that may be used by other

  11. Flow Simulations of a Rotating MidSized Rim Driven Wind Turbine

    E-Print Network [OSTI]

    Maccabe, Barney

    Flow Simulations of a Rotating MidSized Rim Driven Wind Turbine Bryan E. Kaiser1 , Andrew B: poroseva@unm.edu Introduction Conventional horizontal axis wind turbines (HAWTs) require relatively high free stream wind velocities that limit the geographic areas suitable for wind energy

  12. Incompressible Multiphase flow and Encapsulation simulations using the moment of fluid method 1

    E-Print Network [OSTI]

    Sussman, Mark

    , spray cooling, icing, combustion and agricultural irrigation. The instability of the interface, mass, it is still very difficult to capture the detailed flow fields. Computational fluid dynamics (CFD) has, stress fields, and vorticity are easily extracted from CFD simulations. Three major challenges exist

  13. Towards Numerical Simulation of Cavitating Flows in Complex M. Mattson and K. Mahesh

    E-Print Network [OSTI]

    Mahesh, Krishnan

    Towards Numerical Simulation of Cavitating Flows in Complex Geometries M. Mattson and K. Mahesh (Aerospace Engineering and Mechanics, University of Minnesota) 27th Symposium on Naval Hydrodynamics Seoul of bubbles in complex geometries, with specific applica- tion to modeling cavitation instabilities

  14. Low level jet development during a numerically simulated return flow event 

    E-Print Network [OSTI]

    Igau, Richard Charles

    1994-01-01

    The evolution of the southerly low level jet during a return flow event is studied using output from the Penn State/NCAR Mesoscale Model (Version 4). Three geographically different southerly low level jets (LLJ's) develop in the simulation: one over...

  15. An analysis of flow-simulation scales and seismic response P. L. Stoffa*

    E-Print Network [OSTI]

    Bangerth, Wolfgang

    -gas reservoir during production. Numerical experiments show that saturation fronts can be effectively tracked that saturations are the key factor for tracking changes during production for an oil-gas reservoir. The reservoir, the question which scales flow simulations need to resolve to accurately capture reservoir changes during

  16. Society of Petroleum Engineers Staggered In Time Coupling of Reservoir Flow Simulation and Geomechanical Defor-

    E-Print Network [OSTI]

    Peszynska, Malgorzata

    Society of Petroleum Engineers SPE 51920 Staggered In Time Coupling of Reservoir Flow Simulation, The University of Texas at Austin Copyright 1999, Society of Petroleum Engineers, Inc. Thispaperwas by the Society of Petroleum Engineers and are subject to correction by the author(s). The material, as presented

  17. Simulating Vibrational Energy Flow in Proteins: Relaxation Rate and Mechanism for Heme Cooling in Cytochrome c

    E-Print Network [OSTI]

    Straub, John E.

    Simulating Vibrational Energy Flow in Proteins: Relaxation Rate and Mechanism for Heme Cooling 02215 ReceiVed: April 30, 2003; In Final Form: July 24, 2003 The rate and mechanism of the kinetic was found to proceed via a spatially anisotropic "funneling" mechanism as a single-exponential process

  18. The Numerical Simulation Of A Transitional Flow In The VKI-GENOA Turbine Cascade

    E-Print Network [OSTI]

    Yershov, Sergiy; Yakovlev, Viktor; Gryzun, Maria

    2015-01-01

    This study presents a numerical simulation of a 3D viscous flow in the VKI-Genoa cascade that takes into account the laminar-turbulent transition. The numerical simulation is performed using the Reynolds-averaged Navier-Stokes equations and the two-equation k-omega SST turbulence model. The algebraic Production Term Modification model is used for modeling the laminar-turbulent transition. Computations of both fully turbulent and transitional flows are carried out. The contours of the Mach number, the turbulence kinetic energy, the entropy function, as well as limiting streamlines are presented. The analysis of the numerical results demonstrates the influence of the laminar-turbulent transition on the secondary flow pattern. The comparison between the present computational results and the existing experimental and numerical data shows that the proposed approach reflects sufficiently the physics of the laminar-turbulent transition in turbine cascades.

  19. Apparatus and method for interaction phenomena with world modules in data-flow-based simulation

    DOE Patents [OSTI]

    Xavier, Patrick G. (Albuquerque, NM); Gottlieb, Eric J. (Corrales, NM); McDonald, Michael J. (Albuquerque, NM); Oppel, III, Fred J. (Albuquerque, NM)

    2006-08-01

    A method and apparatus accommodate interaction phenomenon in a data-flow-based simulation of a system of elements, by establishing meta-modules to simulate system elements and by establishing world modules associated with interaction phenomena. World modules are associated with proxy modules from a group of meta-modules associated with one of the interaction phenomenon. The world modules include a communication world, a sensor world, a mobility world, and a contact world. World modules can be further associated with other world modules if necessary. Interaction phenomenon are simulated in corresponding world modules by accessing member functions in the associated group of proxy modules. Proxy modules can be dynamically allocated at a desired point in the simulation to accommodate the addition of elements in the system of elements such as a system of robots, a system of communication terminals, or a system of vehicles, being simulated.

  20. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bakosi, J.; Christon, M. A.; Lowrie, R. B.; Pritchett-Sheats, L. A.; Nourgaliev, R. R.

    2013-07-12

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore »out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less

  1. Adaptive and Efficient Computing for Subsurface Simulation within ParFlow

    SciTech Connect (OSTI)

    Tiedeman, H; Woodward, C S

    2010-11-16

    This project is concerned with the PF.WRF model as a means to enable more accurate predictions of wind fluctuations and subsurface storage. As developed at LLNL, PF.WRF couples a groundwater (subsurface) and surface water flow model (ParFlow) to a mesoscale atmospheric model (WRF, Weather Research and Forecasting Model). It was developed as a unique tool to address coupled water balance and wind energy questions that occur across traditionally separated research regimes of the atmosphere, land surface, and subsurface. PF.WRF is capable of simulating fluid, mass, and energy transport processes in groundwater, vadose zone, root zone, and land surface systems, including overland flow, and allows for the WRF model to both directly drive and respond to surface and subsurface hydrologic processes and conditions. The current PF.WRF model is constrained to have uniform spatial gridding below the land surface and matching areal grids with the WRF model at the land surface. There are often cases where it is advantageous for land surface, overland flow and subsurface models to have finer gridding than their atmospheric counterparts. Finer vertical discretization is also advantageous near the land surface (to properly capture feedbacks) yet many applications have a large vertical extent. However, the surface flow is strongly dependent on topography leading to a need for greater lateral resolution in some regions and the subsurface flow is tightly coupled to the atmospheric model near the surface leading to a need for finer vertical resolution. In addition, the interactions (e.g. rain) will be highly variable in space and time across the problem domain so an adaptive scheme is preferred to a static strategy to efficiently use computing and memory resources. As a result, this project focussed on algorithmic research required for development of an adaptive simulation capability in the PF.WRF system and its subsequent use in an application problem in the Central Valley of California. This report documents schemes of use for a future implementation of an adaptive grid capability within the ParFlow subsurface flow simulator in PF.WRF. The methods describe specific handling of the coarse/fine boundaries within a cell-centered discretization of the nonlinear parabolic Richards equation model for variable saturated flow. In addition, we describe development of a spline fit and table lookup method implemented within ParFlow to enhance computational efficiency of variably saturated flow calculations.

  2. J. Non-Newtonian Fluid Mech. 142 (2007) 3662 On the numerical simulation of Bingham visco-plastic flow

    E-Print Network [OSTI]

    Guidoboni, Giovanna

    2007-01-01

    J. Non-Newtonian Fluid Mech. 142 (2007) 36­62 Review On the numerical simulation of Bingham visco-plastic various results and methods concerning the numerical simulation of Bingham visco-plastic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2. On the modeling of Bingham viscous plastic flow

  3. Nature of turbulent transport across sheared zonal flows: insights from gyro-kinetic simulations

    SciTech Connect (OSTI)

    Sanchez, Raul [ORNL; Newman, David E [University of Alaska; Leboeuf, Jean-Noel [JNL Scientific, Inc., Casa Grande, AZ; Decyk, Viktor [University of California, Los Angeles

    2011-01-01

    The traditional view regarding the reduction of turbulence-induced transport across a stable sheared flow invokes a reduction of the characteristic length scale in the direction perpendicular to the flow as a result of the shearing and stretching of eddies caused by the differential pull exerted in the direction of the flow. A reduced effective transport coefficient then suffices to capture the reduction, that can then be readily incorporated into a transport model. However, recent evidence from gyrokinetic simulations of the toroidal ion-temperature-gradient mode suggests that the dynamics of turbulent transport across sheared flows changes in a more fundamental manner, and that the use of reduced effective transport coefficients fails to capture the full dynamics that may exhibit both subdiffusion and non-Gaussian statistics. In this contribution, after briefly reviewing these results, we propose some candidates for the physical mechanisms responsible for endowing transport with such non-diffusive characteristics, backing these proposals with new numerical gyrokinetic data

  4. Injured? Workers' Compensation Flow Chart Please contact Risk Management and Safety if assistance is needed, 895-5404 or 895-4226, rms.unlv.edu

    E-Print Network [OSTI]

    Walker, Lawrence R.

    Injured? Workers' Compensation Flow Chart Please contact Risk Management and Safety if assistance is able. The C-1 form is sent/faxed to Risk Management and Safety as soon as possible. Supervisor to the appropriate Safety Office Employee completes the C-1 form. The C-1 form is sent/faxed to Risk Management

  5. PHYSICAL REVIEW A 83, 013811 (2011) Simulation of noise-assisted transport via optical cavity networks

    E-Print Network [OSTI]

    Roma "La Sapienza", Università di

    2011-01-01

    been found to play a key role in assisting the transport of energy and information in complex quantum transmission efficiency can be measured. Introducing dephasing in the photon path, this system exhibits a characteristic enhancement of the transport efficiency that can be observed with presently available technology

  6. Mathematical Simulation of the Gas-Particles Reaction Flows in Incineration of Metal-Containing Waste

    SciTech Connect (OSTI)

    Ojovan, M. I.; Klimov, V. L.; Karlina, O. K.

    2002-02-26

    A ''quasi-equilibrium'' approach for thermodynamic calculation of chemical composition and properties of metal-containing fuel combustion products has been developed and used as a part of the mathematical model of heterogeneous reacting flow which carry burning and/or evaporating particles. By using of this approach, the applicable mathematical model has been devised, which allows defining the change in chemical composition and thermal characteristics of combustion products along the incineration chamber. As an example, the simulation results of the reacting flow of magnesium-sodium nitrate-organic mixture are presented. The simulation results on the gas phase temperature in the flow of combustion products are in good agreement with those obtained experimentally. The proposed method of ''quasi-equilibrium'' thermodynamic calculation and mathematical model provide a real possibility for performing of numerical experiments on the basis of mathematical simulation of nonequilibrium flows of combustion products. Numerical experiments help correctly to estimate the work characteristics in the process of treatment devices design saving time and costs.

  7. A hybrid stochastic-deconvolution model for large-eddy simulation of particle-laden flow

    SciTech Connect (OSTI)

    Micha?ek, W. R., E-mail: w.michalek@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Kuerten, J. G. M. [Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands) [Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Faculty EEMCS, University of Twente, 7500 AE Enschede (Netherlands); Zeegers, J. C. H.; Liew, R. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)] [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Pozorski, J. [Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland)] [Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland); Geurts, B. J. [Faculty EEMCS, University of Twente, 7500 AE Enschede (Netherlands) [Faculty EEMCS, University of Twente, 7500 AE Enschede (Netherlands); Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)

    2013-12-15

    We develop a hybrid model for large-eddy simulation of particle-laden turbulent flow, which is a combination of the approximate deconvolution model for the resolved scales and a stochastic model for the sub-grid scales. The stochastic model incorporates a priori results of direct numerical simulation of turbulent channel flow, which showed that the parameters in the stochastic model are quite independent of Reynolds and Stokes number. In order to correctly predict the flux of particles towards the walls an extra term should be included in the stochastic model, which corresponds to the term related to the well-mixed condition in Langevin models for particle dispersion in inhomogeneous turbulent flow. The model predictions are compared with results of direct numerical simulation of channel flow at a frictional Reynolds number of 950. The inclusion of the stochastic forcing is shown to yield a significant improvement over the approximate deconvolution model for the particles alone when combined with a Stokes dependent weight-factor for the well-mixed term.

  8. One- and two-dimensional Stirling machine simulation using experimentally generated reversing flow turbuulence models

    SciTech Connect (OSTI)

    Goldberg, L.F.

    1990-08-01

    The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year`s funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge.

  9. TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems

    SciTech Connect (OSTI)

    Moridis, G.J.; Pruess (editor), K.

    1992-11-01

    The TOUGH code [Pruess, 1987] for two-phase flow of water, air, and heat in penneable media has been exercised on a suite of test problems originally selected and simulated by C. D. Updegraff [1989]. These include five 'verification' problems for which analytical or numerical solutions are available, and three 'validation' problems that model laboratory fluid and heat flow experiments. All problems could be run without any code modifications (*). Good and efficient numerical performance, as well as accurate results were obtained throughout. Additional code verification and validation problems from the literature are briefly summarized, and suggestions are given for proper applications of TOUGH and related codes.

  10. Fluid--Structure Interaction : : Physiologic Simulation of Pulsatile Ventricular Assist Devices using Isogeometric Analysis

    E-Print Network [OSTI]

    Long, Christopher Curtis

    2013-01-01

    simulation of wind turbine aerodynamics: Validation studyand Y. Bazilevs. Wind turbine aerodynamics using ALE–VMS:routinely used for wind turbine aerodynamics [21, 76, 78

  11. SIMULATION AND MOCKUP OF SNS JET-FLOW TARGET WITH WALL JET FOR CAVITATION DAMAGE MITIGATION

    SciTech Connect (OSTI)

    Wendel, Mark W; Geoghegan, Patrick J; Felde, David K

    2014-01-01

    Pressure waves created in liquid mercury pulsed spallation targets at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory induce cavitation damage on the stainless steel target container. The cavitation damage is thought to limit the lifetime of the target for power levels at and above 1 MW. Severe through-wall cavitation damage on an internal wall near the beam entrance window has been observed in spent-targets. Surprisingly though, there is very little damage on the walls that bound an annular mercury channel that wraps around the front and outside of the target. The mercury flow through this channel is characterized by smooth, attached streamlines. One theory to explain this lack of damage is that the uni-directional flow biases the direction of the collapsing cavitation bubble, reducing the impact pressure and subsequent damage. The theory has been reinforced by in-beam separate effects data. For this reason, a second-generation SNS mercury target has been designed with an internal wall jet configuration intended to protect the concave wall where damage has been observed. The wall jet mimics the annular flow channel streamlines, but since the jet is bounded on only one side, the momentum is gradually diffused by the bulk flow interactions as it progresses around the cicular path of the target nose. Numerical simulations of the flow through this jet-flow target have been completed, and a water loop has been assembled with a transparent test target in order to visualize and measure the flow field. This paper presents the wall jet simulation results, as well as early experimental data from the test loop.

  12. Hull/Mooring/Riser coupled motion simulations of thruster-assisted moored platforms 

    E-Print Network [OSTI]

    Ryu, Sangsoo

    2005-02-17

    -MOORED FPSO.. 63 6.1 Introduction ??????????????.??????... 63 6.2 Description of Thruster-Assisted Turret-Moored FPSO.??...?. 64 6.2.1 FPSO Particulars ????????????????... 64 6.2.2 Mooring Line and Riser Particulars?????????... 66...??????????.?.??...?... 73 6.5.1 Review of Environmental Forces??????????... 73 6.5.2 Evaluation of Commanded Thrust??????????.. 78 6.5.3 Improvement of Global Motions of FPSO?.?.????... 81 6.5.4 Reduction of Mooring/Riser Top Tensions...

  13. Direct numerical simulations of fluid flow, heat transfer and phase changes

    SciTech Connect (OSTI)

    Juric, D.; Tryggvason, G.; Han, J.

    1997-04-01

    Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.

  14. Using Stochastic Discounted Cash Flow and Real Option Monte Carlo Simulation to Analyse the Impacts of Contingent Taxes on

    E-Print Network [OSTI]

    Using Stochastic Discounted Cash Flow and Real Option Monte Carlo Simulation to Analyse the Impacts in the presence of a windfall profits tax. Real options Monte Carlo simulation is used to characterise from the project. The results highlight that Monte Carlo simulation paired with the real option

  15. Large-eddy simulation of turbulent cavitating flow in a micro channel

    SciTech Connect (OSTI)

    Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Hickel, Stefan; Schmidt, Steffen J.; Adams, Nikolaus A. [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München (Germany)

    2014-08-15

    Large-eddy simulations (LES) of cavitating flow of a Diesel-fuel-like fluid in a generic throttle geometry are presented. Two-phase regions are modeled by a parameter-free thermodynamic equilibrium mixture model, and compressibility of the liquid and the liquid-vapor mixture is taken into account. The Adaptive Local Deconvolution Method (ALDM), adapted for cavitating flows, is employed for discretizing the convective terms of the Navier-Stokes equations for the homogeneous mixture. ALDM is a finite-volume-based implicit LES approach that merges physically motivated turbulence modeling and numerical discretization. Validation of the numerical method is performed for a cavitating turbulent mixing layer. Comparisons with experimental data of the throttle flow at two different operating conditions are presented. The LES with the employed cavitation modeling predicts relevant flow and cavitation features accurately within the uncertainty range of the experiment. The turbulence structure of the flow is further analyzed with an emphasis on the interaction between cavitation and coherent motion, and on the statistically averaged-flow evolution.

  16. Numerical simulation of a thermoacoustic refrigerator. I. Unsteady adiabatic flow around the stack

    SciTech Connect (OSTI)

    Worlikar, A.S.; Knio, O.M.

    1996-09-01

    A low Mach-number compressible flow model for the simulation of acoustically driven flow in a thermoacoustic stack is constructed. The model is based on the assumption that the acoustic wavelength is much larger than the characteristic hydrodynamic lengthscale. Thus, a simplified description of the flow is obtained which still retains the essential features of acoustically induced velocity oscillations near solid boundaries. A vorticity-based formulation of the governing equation is derived which relies on the Helmholtz decomposition of the velocity vector into irrotational and divergence-free components. Irrotational motion is used to represent the action of acoustic waves. Meanwhile the divergence-free velocity component is used to capture the nonlinear vortical perturbations due to no-slip boundaries. A simplified version of the model is applied to analyze unsteady flow in the neighborhood of an idealized thermo-acoustic stack which consists of a periodic array of thin plates placed in an acoustic standing wave. Computed results are used to analyze, for different stack configurations, the nonlinear response of the flow to different acoustic driving amplitudes and frequencies. In particular, it is shown that the flow is dominated by the motion of vortices which result from the shedding of boundary layers from the edges of the stack. The dependence of energy losses on stack configuration and operating conditions is also examined. 28 refs., 23 figs., 2 tabs.

  17. Numerical Simulation of the Flow of a Power Law Fluid in an Elbow Bend 

    E-Print Network [OSTI]

    Kanakamedala, Karthik

    2010-07-14

    equations are given by, ????? = ????? + ?? + ??? where, ? is the Laplacian operator ? is the density of the body ? is the body force ? is the velocity vector However, the fluid being dealt within the problem is a non-Newtonian power law fluid... parameters. This problem finds applications mainly in the food and polymer industries where non-Newtonian fluids flow through different piping sections. The elbow geometry used for performing the simulations consists of a straight portion of ??? both after...

  18. Rheological properties of soft-glassy flows from hydro-kinetic simulations

    E-Print Network [OSTI]

    R. Benzi; M. Bernaschi; M. Sbragaglia; S. Succi

    2014-02-28

    Based on numerical simulations of a lattice kinetic model for soft-glassy materials, we characterize the global rheology of a dense emulsion-like system, under three representative load conditions: Couette flow, time-oscillating Strain and Kolmogorov flow. It is found that in all cases the rheology is described by a Herschel-Bulkley (HB) relation, $\\sigma = {\\sigma}_{Y} + A S^{\\beta}$, with the yield stress ${\\sigma}_{Y}$ largely independent of the loading scenario. A proper rescaling of the HB parameters permits to describe heterogeneous flows with space-dependent stresses, based on the notion of cooperativity, as recently proposed to characterize the degree of non-locality of stress relaxation phenomena in soft-glassy materials.

  19. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    SciTech Connect (OSTI)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn; Zhang, Wendong, E-mail: wdzhang@tyut.edu.cn; Li, Gang; Hu, Jie [Micro and Nano-system Research Centre, College of Information Engineering, Taiyuan University of Technology, 030024, Taiyuan (China)] [Micro and Nano-system Research Centre, College of Information Engineering, Taiyuan University of Technology, 030024, Taiyuan (China); Zhou, Zhaoying, E-mail: zhouzy@mail.tsinghua.edu.cn; Yang, Xing; Dong, Hualai [MEMS Laboratory, Department of Precision Instruments, Tsinghua University, 100084, Beijing (China)] [MEMS Laboratory, Department of Precision Instruments, Tsinghua University, 100084, Beijing (China)

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.

  20. Computer assisted gamma and X-ray tomography: Applications to multiphase flow systems

    SciTech Connect (OSTI)

    Kumar, S.B.; Dudukovic, M.

    1998-01-01

    In process vessels, involving two or three phases it is often important not only to know the volume fraction (holdup) of each phase but also the spatial distribution of such holdups. This information is needed in control, trouble shooting and assessment of flow patterns and can be observed noninvasively by the application of Computed Tomography (CT). This report presents a complete overview of X-ray and gamma ray transmission tomography principles, equipment design to specific tasks and application in process industry. The fundamental principles of tomography, the algorithms for image reconstruction, the measurement method and the possible sources of error are discussed in detail. A case study highlights the methodology involved in designing a scanning system for the study of a given process unit, e.g., reactor, separations column etc. Results obtained in the authors` laboratory for the gas holdup distribution in bubble columns are also presented. Recommendations are made for the Advanced Fuels Development Unit (AFDU) in LaPorte, TX.

  1. Subsurface water flow simulated for hill slopes with spatially dependent soil hydraulic characteristics

    SciTech Connect (OSTI)

    Sharma, M.L.; Luxmoore, R.J.; DeAngelis, R.; Ward, R.C.; Yeh, G.T.

    1987-08-01

    Water flow through hill slopes consisting of five soil layers, with varying spatial dependence in hydraulic characteristics in the lateral plane was simulated by solving Richards' equation in three dimensions under varying rainfall intensities and for two complexities of terrain. By concepts of similar media the variability in soil hydraulic characteristics was expressed by a single dimensionless parameter, the scaling factor ..cap alpha... The moments of log normally distributed ..cap alpha.. were set as: Mean = 1.0 and standard deviation = 1.0. Four cases of spatial dependence of ..cap alpha.. in the lateral plane were selected for simulation, using exponential variogram functions ranging in spatial structure from random (no spatial dependence) to large dependence (large correlation lengths). The simulations showed that the rates of subsurface flow from the 30/sup 0/ hillslope, during and following rainfall, were significantly enhanced with an increase in spatial dependence. Subsurface drainage was also increased with increases in rainfall intensity and slop complexity. For hill slopes the relative effects of spatial dependence in soil hydraulic characteristics was smaller with 30/sup 0/ horizontal pitching than without pitching. Hill slopes with a random distribution of hydraulic characteristics provided greater opportunity for soil units with differing water capacities to interact than in cases with spatially correlated distributions. This greater interaction is associated with a greater lag in subsurface flow generation. These studies illustrate some of the expected effects of spatial dependence of soil hydraulic characteristics of the integrated hydrologic response of land areas.

  2. Characterization and fluid flow simulation of naturally fractured Frontier sandstone, Green River Basin, Wyoming

    SciTech Connect (OSTI)

    Harstad, H. [New Mexico Tech, Socorro, NM (United States); Teufel, L.W.; Lorenz, J.C.; Brown, S.R. [Sandia National Labs., Albuquerque, NM (United States). Geomechanics Dept.

    1996-08-01

    Significant gas reserves are present in low-permeability sandstones of the Frontier Formation in the greater Green River Basin, Wyoming. Successful exploitation of these reservoirs requires an understanding of the characteristics and fluid-flow response of the regional natural fracture system that controls reservoir productivity. Fracture characteristics were obtained from outcrop studies of Frontier sandstones at locations in the basin. The fracture data were combined with matrix permeability data to compute an anisotropic horizontal permeability tensor (magnitude and direction) corresponding to an equivalent reservoir system in the subsurface using a computational model developed by Oda (1985). This analysis shows that the maximum and minimum horizontal permeability and flow capacity are controlled by fracture intensity and decrease with increasing bed thickness. However, storage capacity is controlled by matrix porosity and increases linearly with increasing bed thickness. The relationship between bed thickness and the calculated fluid-flow properties was used in a reservoir simulation study of vertical, hydraulically-fractured and horizontal wells and horizontal wells of different lengths in analogous naturally fractured gas reservoirs. The simulation results show that flow capacity dominates early time production, while storage capacity dominates pressure support over time for vertical wells. For horizontal wells drilled perpendicular to the maximum permeability direction a high target production rate can be maintained over a longer time and have higher cumulative production than vertical wells. Longer horizontal wells are required for the same cumulative production with decreasing bed thickness.

  3. Numerical simulation of laminar plasma dynamos in a cylindrical von Karman flow

    SciTech Connect (OSTI)

    Khalzov, I. V.; Brown, B. P.; Schnack, D. D.; Forest, C. B. [University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706 (United States); Ebrahimi, F. [University of New Hampshire, 8 College Road, Durham, New Hampshire 03824 (United States)

    2011-03-15

    The results of a numerical study of the magnetic dynamo effect in cylindrical von Karman plasma flow are presented with parameters relevant to the Madison Plasma Couette Experiment. This experiment is designed to investigate a broad class of phenomena in flowing plasmas. In a plasma, the magnetic Prandtl number Pm can be of order unity (i.e., the fluid Reynolds number Re is comparable to the magnetic Reynolds number Rm). This is in contrast to liquid metal experiments, where Pm is small (so, Re>>Rm) and the flows are always turbulent. We explore dynamo action through simulations using the extended magnetohydrodynamic NIMROD code for an isothermal and compressible plasma model. We also study two-fluid effects in simulations by including the Hall term in Ohm's law. We find that the counter-rotating von Karman flow results in sustained dynamo action and the self-generation of magnetic field when the magnetic Reynolds number exceeds a critical value. For the plasma parameters of the experiment, this field saturates at an amplitude corresponding to a new stable equilibrium (a laminar dynamo). We show that compressibility in the plasma results in an increase of the critical magnetic Reynolds number, while inclusion of the Hall term in Ohm's law changes the amplitude of the saturated dynamo field but not the critical value for the onset of dynamo action.

  4. Numerical simulation of laminar plasma dynamos in a cylindrical von K\\'arm\\'an flow

    E-Print Network [OSTI]

    Khalzov, I V; Ebrahimi, F; Schnack, D D; Forest, C B; 10.1063/1.3559472

    2011-01-01

    The results of a numerical study of the magnetic dynamo effect in cylindrical von K\\'arm\\'an plasma flow are presented with parameters relevant to the Madison Plasma Couette Experiment. This experiment is designed to investigate a broad class of phenomena in flowing plasmas. In a plasma, the magnetic Prandtl number Pm can be of order unity (i.e., the fluid Reynolds number Re is comparable to the magnetic Reynolds number Rm). This is in contrast to liquid metal experiments, where Pm is small (so, Re>>Rm) and the flows are always turbulent. We explore dynamo action through simulations using the extended magnetohydrodynamic NIMROD code for an isothermal and compressible plasma model.We also study two-fluid effects in simulations by including the Hall term in Ohm's law. We find that the counter-rotating von K\\'arm\\'an flow results in sustained dynamo action and the self-generation of magnetic field when the magnetic Reynolds number exceeds a critical value. For the plasma parameters of the experiment, this field ...

  5. Simulation of the vacuum assisted resin transfer molding (VARTM) process and the development of light-weight composite bridging

    E-Print Network [OSTI]

    Robinson, Marc J.

    2008-01-01

    Assisted Resin Transfer Molding (VARTM). Polymer CompositesAssisted Resin Transfer Molding (VARTM): Model Verification.in the Reaction Injection Molding Process. AICheE Journal

  6. Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers

    SciTech Connect (OSTI)

    Wu, Yu-Shu; Chen, Zizhong; Kazemi, Hossein; Yin, Xiaolong; Pruess, Karsten; Oldenburg, Curt; Winterfeld, Philip; Zhang, Ronglei

    2014-09-30

    This report is the final scientific one for the award DE- FE0000988 entitled “Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers.” The work has been divided into six tasks. In task, “Development of a Three-Phase Non-Isothermal CO2 Flow Module,” we developed a fluid property module for brine-CO2 mixtures designed to handle all possible phase combinations of aqueous phase, sub-critical liquid and gaseous CO2, supercritical CO2, and solid salt. The thermodynamic and thermophysical properties of brine-CO2 mixtures (density, viscosity, and specific enthalpy of fluid phases; partitioning of mass components among the different phases) use the same correlations as an earlier fluid property module that does not distinguish between gaseous and liquid CO2-rich phases. We verified the fluid property module using two leakage scenarios, one that involves CO2 migration up a blind fault and subsequent accumulation in a secondary “parasitic” reservoir at shallower depth, and another investigating leakage of CO2 from a deep storage reservoir along a vertical fault zone. In task, “Development of a Rock Mechanical Module,” we developed a massively parallel reservoir simulator for modeling THM processes in porous media brine aquifers. We derived, from the fundamental equations describing deformation of porous elastic media, a momentum conservation equation relating mean stress, pressure, and temperature, and incorporated it alongside the mass and energy conservation equations from the TOUGH2 formulation, the starting point for the simulator. In addition, rock properties, namely permeability and porosity, are functions of effective stress and other variables that are obtained from the literature. We verified the simulator formulation and numerical implementation using analytical solutions and example problems from the literature. For the former, we matched a one-dimensional consolidation problem and a two-dimensional simulation of the Mandel-Cryer effect. For the latter, we obtained a good match of temperature and gas saturation profiles, and surface uplift, after injection of hot fluid into a model of a caldera structure. In task, “Incorporation of Geochemical Reactions of Selected Important Species,” we developed a novel mathematical model of THMC processes in porous and fractured saline aquifers, simulating geo-chemical reactions associated with CO2 sequestration in saline aquifers. Two computational frameworks, sequentially coupled and fully coupled, were used to simulate the reactions and transport. We verified capabilities of the THMC model to treat complex THMC processes during CO2 sequestration by analytical solutions and we constructed reactive transport models to analyze the THMC process quantitatively. Three of these are 1D reactive transport under chemical equilibrium, a batch reaction model with equilibrium chemical reactions, and a THMC model with CO2 dissolution. In task “Study of Instability in CO2 Dissolution-Diffusion-Convection Processes,” We reviewed literature related to the study of density driven convective flows and on the instability of CO2 dissolution-diffusion-convection processes. We ran simulations that model the density-driven flow instability that would occur during CO2 sequestration. CO2 diffused through the top of the system and dissolved in the aqueous phase there, increasing its density. Density fingers formed along the top boundary, and coalesced into a few prominent ones, causing convective flow that forced the fluid to the system bottom. These simulations were in two and three dimensions. We ran additional simulations of convective mixing with density contrast caused by variable dissolved CO2 concentration in saline water, modeled after laboratory experiments in which supercritical CO2 was circulated in the headspace above a brine saturated packed sand in a pressure vessel. As CO2 dissolved into the upper part of the saturated sand, liquid phase density increases causing instability and setting off convective mixing. We obtained good agreement

  7. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    SciTech Connect (OSTI)

    Seshadri, Vikram; Kaisare, Niket S.

    2010-11-15

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  8. Development and verification of a numerical simulator to calculate the bottom hole flowing pressures in multiphase systems 

    E-Print Network [OSTI]

    Rasool, Syed Ahmed

    1994-01-01

    A vast amount of research has been conducted on the subject of pressure drop in muldphase flow systems. The simulator developed for this research incorporates the Beggs and Brill model for pressure drop prediction with an ...

  9. Simulation of the Three-Dimensional Hinge Flow Fields of a Bileaflet Mechanical Heart Valve Under Aortic Conditions

    E-Print Network [OSTI]

    Simon, Hélène A.; Ge, Liang; Sotiropoulos, Fotis; Yoganathan, Ajit P.

    2010-01-01

    G. Rau. Leakage ?ow at mechanical heart valve prostheses:and the valve housing and forms two strong leakage jets onleakage ?ow rate Simulation of the Three-Dimensional Hinge Flow Fields through the closed valve

  10. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations

    E-Print Network [OSTI]

    Rutqvist, J.

    2011-01-01

    Analytical Methods in Geomechanics 17, 577–598. Liu, H.H. ,J.E. , 2003. Coupled geomechanics and reservoir simulation.coupling porous flow and geomechanics. Society of Petroleum

  11. Triadic resonances in non-linear simulations of a fluid flow in a precessing cylinder

    E-Print Network [OSTI]

    Giesecke, A; Gundrum, T; Herault, J; Stefani, F

    2015-01-01

    We present results from three-dimensional non-linear hydrodynamic simulations of a precession driven flow in cylindrical geometry. The simulations are motivated by a dynamo experiment currently under development at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in which the possibility of generating a magnetohydrodynamic dynamo will be investigated in a cylinder filled with liquid sodium and simultaneously rotating around two axes. In this study, we focus on the emergence of non-axisymmetric time-dependent flow structures in terms of inertial waves which - in cylindrical geometry - form so-called Kelvin modes. For a precession ratio ${\\rm{Po}}=\\Omega_p/\\Omega_c=0.014$ the amplitude of the forced Kelvin mode reaches up to one fourth of the rotation velocity of the cylindrical container confirming that precession provides a rather efficient flow driving mechanism even at moderate values of ${\\rm{Po}}$. More relevant for dynamo action might be free Kelvin modes with higher azimuthal wave number. These free Kelvin m...

  12. General Relativistic Hydrodynamic Simulation of Accretion Flow from a Stellar Tidal Disruption

    E-Print Network [OSTI]

    Shiokawa, Hotaka; Cheng, Roseanne M; Piran, Tsvi; Noble, Scott C

    2015-01-01

    We study how the matter dispersed when a supermassive black hole tidally disrupts a star joins an accretion flow. Combining a relativistic hydrodynamic simulation of the stellar disruption with a relativistic hydrodynamics simulation of the tidal debris motion, we track such a system until ~80% of the stellar mass bound to the black hole has settled into an accretion flow. Shocks near the stellar pericenter and also near the apocenter of the most tightly-bound debris dissipate orbital energy, but only enough to make the characteristic radius comparable to the semi-major axis of the most-bound material, not the tidal radius as previously thought. The outer shocks are caused by post-Newtonian effects, both on the stellar orbit during its disruption and on the tidal forces. Accumulation of mass into the accretion flow is non-monotonic and slow, requiring ~3--10x the orbital period of the most tightly-bound tidal streams, while the inflow time for most of the mass may be comparable to or longer than the mass accu...

  13. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    E-Print Network [OSTI]

    Bakosi, J; Lowrie, R B; Pritchett-Sheats, L A; Nourgaliev, R R

    2013-01-01

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3x3 and 5x5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carried out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the single-phase incompressible Navier-Stokes equations. The simulations explicitly resolve the la...

  14. Two-dimensional PIC simulations of ion-beam instabilities in Supernova-driven plasma flows

    E-Print Network [OSTI]

    M. E. Dieckmann; A. Meli; P. K. Shukla; L. O. C. Drury; A. Mastichiadis

    2008-04-16

    Supernova remnant (SNR) blast shells can reach the flow speed $v_s = 0.1 c$ and shocks form at its front. Instabilities driven by shock-reflected ion beams heat the plasma in the foreshock, which may inject particles into diffusive acceleration. The ion beams can have the speed $v_b \\approx v_s$. For $v_b \\ll v_s$ the Buneman or upper-hybrid instabilities dominate, while for $v_b \\gg v_s$ the filamentation and mixed modes grow faster. Here the relevant waves for $v_b \\approx v_s$ are examined and how they interact nonlinearly with the particles. The collision of two plasma clouds at the speed $v_s$ is modelled with particle-in-cell (PIC) simulations, which convect with them magnetic fields oriented perpendicular to their flow velocity vector. One simulation models equally dense clouds and the other one uses a density ratio of 2. Both simulations show upper-hybrid waves that are planar over large spatial intervals and that accelerate electrons to $\\sim$ 10 keV. The symmetric collision yields only short oscillatory wave pulses, while the asymmetric collision also produces large-scale electric fields, probably through a magnetic pressure gradient. The large-scale fields destroy the electron phase space holes and they accelerate the ions, which facilitates the formation of a precursor shock.

  15. DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY

    SciTech Connect (OSTI)

    Moses Bogere

    2011-08-31

    The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.

  16. Inflow/outflow boundary conditions for particle-based blood flow simulations: Application to arterial bifurcations and trees

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lykov, Kirill; Li, Xuejin; Lei, Huan; Pivkin, Igor V.; Karniadakis, George Em; Feng, James

    2015-08-28

    When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and RBCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain the flowmore »rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon validation of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the “all-or-nothing” phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Finally, we demonstrated the effectiveness of the new methodology in simulations of blood flow in vessels with multiple inlets and outlets, constructed using an angiogenesis mode« less

  17. Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized drift compression experiments

    E-Print Network [OSTI]

    Gilson, Erik

    Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift drift compression experiments Adam B. Sefkow, Ronald C. Davidson, and Erik P. Gilson Plasma Physics

  18. Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit

    SciTech Connect (OSTI)

    Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung; Huckaby, E. D.; Sun, Xin

    2014-10-01

    To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO2 from CO2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.

  19. All-optical cavity-based simulator of noise-assisted transport

    E-Print Network [OSTI]

    Viciani, Silvia; Bellini, Marco; Caruso, Filippo

    2015-01-01

    Recent theoretical and experimental efforts have shown the remarkable and counter-intuitive role of noise in enhancing the transport efficiency of complex systems. Here, we realize simple, scalable, and controllable optical fiber cavity networks that allow us to simulate the performance of transport networks for different conditions of interference, dephasing and disorder. In particular, we experimentally demonstrate that the transport efficiency reaches a maximum when varying the external dephasing noise, i.e. a bell-like shape behavior that had been predicted only theoretically. These optical platforms are very promising simulators of transport phenomena, and could be used, in particular, to design and test optimal topologies of artificial light-harvesting structures for future solar energy technologies.

  20. Development of the T+M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems

    SciTech Connect (OSTI)

    Kim, Jihoon; Moridis, George

    2013-05-22

    We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully accounts for leak-off in all directions during hydraulic fracturing. We first validate the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.

  1. Simulations for Complex Fluid Flow Problems from Berkeley Lab's Center for Computational Sciences and Engineering (CCSE)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Center for Computational Sciences and Engineering (CCSE) develops and applies advanced computational methodologies to solve large-scale scientific and engineering problems arising in the Department of Energy (DOE) mission areas involving energy, environmental, and industrial technology. The primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for compressible, incompressible, and low Mach number flows. The diverse range of scientific applications that drive the research typically involve a large range of spatial and temporal scales (e.g. turbulent reacting flows) and require the use of extremely large computing hardware, such as the 153,000-core computer, Hopper, at NERSC. The CCSE approach to these problems centers on the development and application of advanced algorithms that exploit known separations in scale; for many of the application areas this results in algorithms are several orders of magnitude more efficient than traditional simulation approaches.

  2. What flows in the chiral magnetic effect? -- Simulating the particle production with CP-breaking backgrounds

    E-Print Network [OSTI]

    Kenji Fukushima

    2015-08-23

    To address a question of whether the chiral magnetic current is a static polarization or a genuine flow of charged particles, we elucidate the numerical formulation to simulate the net production of right-handed particles and anomalous currents with CP-breaking background fields which cause an imbalance between particles and anti-particles. For a concrete demonstration we numerically impose pulsed electric and magnetic fields to confirm our answer to the question that the produced net particles flow in the dynamical chiral magnetic effect. The rate for the particle production and the chiral magnetic current generation is quantitatively consistent with the axial anomaly, while they appear with a finite response time. We emphasize the importance to quantify the response time that would suppress observable effects of the anomalous current.

  3. TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows

    SciTech Connect (OSTI)

    Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.

  4. General Relativistic Hydrodynamic Simulation of Accretion Flow from a Stellar Tidal Disruption

    E-Print Network [OSTI]

    Hotaka Shiokawa; Julian H. Krolik; Roseanne M. Cheng; Tsvi Piran; Scott C. Noble

    2015-01-18

    We study how the matter dispersed when a supermassive black hole tidally disrupts a star joins an accretion flow. Combining a relativistic hydrodynamic simulation of the stellar disruption with a relativistic hydrodynamics simulation of the tidal debris motion, we track such a system until ~80% of the stellar mass bound to the black hole has settled into an accretion flow. Shocks near the stellar pericenter and also near the apocenter of the most tightly-bound debris dissipate orbital energy, but only enough to make the characteristic radius comparable to the semi-major axis of the most-bound material, not the tidal radius as previously thought. The outer shocks are caused by post-Newtonian effects, both on the stellar orbit during its disruption and on the tidal forces. Accumulation of mass into the accretion flow is non-monotonic and slow, requiring ~3--10x the orbital period of the most tightly-bound tidal streams, while the inflow time for most of the mass may be comparable to or longer than the mass accumulation time. Deflection by shocks does, however, remove enough angular momentum and energy from some mass for it to move inward even before most of the mass is accumulated into the accretion flow. Although the accretion rate rises sharply and then decays roughly as a power-law, its maximum is ~0.1x the previous expectation, and the duration of the peak is ~5x longer than previously predicted. The geometric mean of the black hole mass and stellar mass inferred from a measured event timescale is therefore ~0.2x the value given by classical theory.

  5. A Molecular Dynamics Simulation of the Turbulent Couette Minimal Flow Unit

    E-Print Network [OSTI]

    Smith, E R

    2015-01-01

    A molecular dynamics (MD) simulation of planar Couette flow is presented for the minimal channel in which turbulence structures can be sustained. Evolution over a single breakdown and regeneration cycle is compared to computational fluid dynamics (CFD) simulations. Qualitative similar structures are observed and turbulent statistics show excellent quantitative agreement. The molecular scale law of the wall is presented in which stick-slip molecular wall-fluid interactions replace the no-slip conditions. The impact of grid resolution is explored and the observed structures are seen to be dependant on averaging time and length scales. The kinetic energy spectra show a range of scales are present in the molecular system and that spectral content is dependent on the grid resolution employed. The subgrid velocity of the molecules is compared to spatial averaged velocity using joint probability density functions. Molecular trajectories, diffusions and Lagrangian statistics are presented. The importance of sub-grid ...

  6. Turbulent flow over a house in a simulated hurricane boundary layer

    E-Print Network [OSTI]

    Taylor, Zachary; Gurka, Roi; Kopp, Gregory

    2009-01-01

    Every year hurricanes and other extreme wind storms cause billions of dollars in damage worldwide. For residential construction, such failures are usually associated with roofs, which see the largest aerodynamic loading. However, determining aerodynamic loads on different portions of North American houses is complicated by the lack of clear load paths and non-linear load sharing in wood frame roofs. This problem of fluid-structure interaction requires both wind tunnel testing and full-scale structural testing. A series of wind tunnel tests have been performed on a house in a simulated atmospheric boundary layer (ABL), with the resulting wind-induced pressures applied to the full-scale structure. The ABL was simulated for flow over open country terrain where both velocity and turbulence intensity profiles, as well as spectra, were matched with available full scale measurements for this type of terrain. The first set of measurements was 600 simultaneous surface pressure measurements over the entire house. A key...

  7. Numerical simulation of groundwater flow and contaminant transport at the K, L, and P areas of the Savannah River Site, Aiken, South Carolina

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    The Department of Energy (DOE) is preparing an Environmental Impact Statement (EIS) as part of the process for continuing operation of three reactors at the Savannah River Site (SRS). As required by the National Environmental Policy Act (NEPA), the EIS must address the potential environmental consequences to human health and the environment of this major federal action.'' Some of the possible consequences are related to subsurface transport of radionuclides released to seepage basins during normal reactor operation. To assist in the evaluation of the potential subsurface environmental impacts of these releases, Camp Dresser McKee Inc. (CDM) was contracted in June of 1989 to develop a three-dimensional groundwater flow and contaminant transport model which will simulate the movement of radionuclides at each of the reactor areas after they enter the groundwater system through the seepage basins. This report describes the development, calibration, and simulation results of the groundwater flow and contaminant transport model developed for this task. 10 refs., 63 figs., 11 tabs.

  8. CFD Simulation of 3D Flow field in a Gas Centrifuge

    SciTech Connect (OSTI)

    Dongjun Jiang; Shi Zeng

    2006-07-01

    A CFD method was used to study the whole flow field in a gas centrifuge. In this paper, the VSM (Vector Splitting Method) of the FVM (Finite Volume Method) was used to solve the 3D Navier-Stokes equations. An implicit second-order upwind scheme was adopted. The numerical simulation was successfully performed on a parallel cluster computer and a convergence result was obtained. The simulation shows that: in the withdrawal chamber, a strong detached shock wave is formed in front of the scoop; as the radial position increases, the shock becomes stronger and the distance to scoop front surface is smaller. An oblique shock forms in the clearance between the scoop and the centrifuge wall; behind the shock-wave, the radially-inward motion of gas is induced because of the imbalance of the pressure gradient and the centrifugal force. In the separation chamber, a countercurrent is introduced. This indicates that CFD method can be used to study the complex three-dimensional flow field of gas centrifuges. (authors)

  9. Hydrodynamical numerical simulation of wind production from black hole hot accretion flows at very large radii

    E-Print Network [OSTI]

    Bu, De-Fu; Gan, Zhao-Ming; Yang, Xiao-hong

    2015-01-01

    In previous works, it has been shown that strong winds exist in hot accretion flows around black holes. Those works focus only on the region close to the black hole thus it is unknown whether or where the wind production stops at large radii. In this paper, we investigate this problem based on hydrodynamical numerical simulations. For this aim, we have taken into account the gravity of both the central black hole and the nuclear star clusters. When calculating the latter, we assume that the velocity dispersion of stars is a constant and the gravitational potential of the nuclear star cluster $\\propto \\sigma^2 \\ln (r)$, where $\\sigma$ is the velocity dispersion of stars and $r$ is the distance from the center of the galaxy. Different from previous works, we focus on the region where the gravitational potential is dominated by the star cluster. We find that, same as the accretion flow at small radii, the mass inflow rate decreases inward and the flow is convectively unstable. However, trajectory analysis has sh...

  10. High-order accurate simulation of low-Mach laminar flow past two side-by-side cylinders using spectral difference method

    E-Print Network [OSTI]

    Jameson, Antony

    High-order accurate simulation of low-Mach laminar flow past two side-by-side cylinders using applications on simulating laminar flow past two side-by-side cylinders at various spacings. The high-by-side cylinders Investigations of the fluid flow and vortex dynamics about sim- ple configurations of two

  11. Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors

    SciTech Connect (OSTI)

    R. A. Berry

    2010-11-01

    Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single velocity and pressure, etc.) A unified, multi-scale approach is advocated to extend the necessary foundations and build the capability to simultaneously solve the fluid dynamic interface problems (interface resolution) as well as multiphase mixtures (homogenization).

  12. A Many-Task Parallel Approach for Multiscale Simulations of Subsurface Flow and Reactive Transport

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; Yang, Xiaofan; Schuchardt, Karen L.; Agarwal, Khushbu; Chase, Jared M.; Palmer, Bruce J.; Tartakovsky, Alexandre M.

    2014-12-16

    Continuum-scale models have long been used to study subsurface flow, transport, and reactions but lack the ability to resolve processes that are governed by pore-scale mixing. Recently, pore-scale models, which explicitly resolve individual pores and soil grains, have been developed to more accurately model pore-scale phenomena, particularly reaction processes that are controlled by local mixing. However, pore-scale models are prohibitively expensive for modeling application-scale domains. This motivates the use of a hybrid multiscale approach in which continuum- and pore-scale codes are coupled either hierarchically or concurrently within an overall simulation domain (time and space). This approach is naturally suited to an adaptive, loosely-coupled many-task methodology with three potential levels of concurrency. Each individual code (pore- and continuum-scale) can be implemented in parallel; multiple semi-independent instances of the pore-scale code are required at each time step providing a second level of concurrency; and Monte Carlo simulations of the overall system to represent uncertainty in material property distributions provide a third level of concurrency. We have developed a hybrid multiscale model of a mixing-controlled reaction in a porous medium wherein the reaction occurs only over a limited portion of the domain. Loose, minimally-invasive coupling of pre-existing parallel continuum- and pore-scale codes has been accomplished by an adaptive script-based workflow implemented in the Swift workflow system. We describe here the methods used to create the model system, adaptively control multiple coupled instances of pore- and continuum-scale simulations, and maximize the scalability of the overall system. We present results of numerical experiments conducted on NERSC supercomputing systems; our results demonstrate that loose many-task coupling provides a scalable solution for multiscale subsurface simulations with minimal overhead.

  13. Quasi Periodic Oscillations in a Radiative Transonic Flow: Results of a Coupled Monte Carlo-TVD Simulation

    E-Print Network [OSTI]

    Garain, Sudip K; Chakrabarti, Sandip K

    2013-01-01

    Low and intermediate frequency quasi-periodic oscillations (QPOs) in black hole candidates are believed to be due to oscillations of the Comptonizing regions in an accretion flow. Assuming that the general structure of an accretion disk is a Two Component Advective Flow (TCAF), we numerically simulate the light curves emitted from an accretion disk for different accretion rates and find how the QPO frequencies vary. We use a standard Keplerian disk residing at the equatorial plane as a source of soft photons. These soft photons, after suffering multiple scattering with the hot electrons of the low angular momentum, sub-Keplerian, flow emerge out as hard radiation. The hydrodynamic and thermal properties of the electron cloud is simulated using a Total Variation Diminishing (TVD) code. The TVD code is then coupled with a radiative transfer code which simulates the energy exchange between the electron and radiation using Monte Carlo technique. The resulting localized heating and cooling are included also. We fi...

  14. Numerical simulation of the non-isothermal developing flow of a nonlinear viscoelastic fluid in a rectangular channel 

    E-Print Network [OSTI]

    Nikoleris, Teo

    1988-01-01

    NUMERICAL SIMULATION OF THE NON-ISOTHERMAL DEVELOPING FLOXV OF A NONLINEAR VISCOELASTIC FLUID IN A RECTANGULAR CHANNEL A Thesis by TEO NIKOLERIS Submitted to the Graduate College of Texas A&M University in partial fulfillment... developing flow of a nonlinear viscoelas- tic fluid. The temperature dependence of the rheological parameters was imposed using an Arrhenius-like exponential relationship. The flow was creeping, at the early stages of thermal development and wall cooling...

  15. Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report

    SciTech Connect (OSTI)

    Sanjiva Lele

    2012-10-01

    The target of this SciDAC Science Application was to develop a new capability based on high-order and high-resolution schemes to simulate shock-turbulence interactions and multi-material mixing in planar and spherical geometries, and to study Rayleigh-Taylor and Richtmyer-Meshkov turbulent mixing. These fundamental problems have direct application in high-speed engineering flows, such as inertial confinement fusion (ICF) capsule implosions and scramjet combustion, and also in the natural occurrence of supernovae explosions. Another component of this project was the development of subgrid-scale (SGS) models for large-eddy simulations of flows involving shock-turbulence interaction and multi-material mixing, that were to be validated with the DNS databases generated during the program. The numerical codes developed are designed for massively-parallel computer architectures, ensuring good scaling performance. Their algorithms were validated by means of a sequence of benchmark problems. The original multi-stage plan for this five-year project included the following milestones: 1) refinement of numerical algorithms for application to the shock-turbulence interaction problem and multi-material mixing (years 1-2); 2) direct numerical simulations (DNS) of canonical shock-turbulence interaction (years 2-3), targeted at improving our understanding of the physics behind the combined two phenomena and also at guiding the development of SGS models; 3) large-eddy simulations (LES) of shock-turbulence interaction (years 3-5), improving SGS models based on the DNS obtained in the previous phase; 4) DNS of planar/spherical RM multi-material mixing (years 3-5), also with the two-fold objective of gaining insight into the relevant physics of this instability and aiding in devising new modeling strategies for multi-material mixing; 5) LES of planar/spherical RM mixing (years 4-5), integrating the improved SGS and multi-material models developed in stages 3 and 5. This final report is outlined as follows. Section 2 shows an assessment of numerical algorithms that are best suited for the numerical simulation of compressible flows involving turbulence and shock phenomena. Sections 3 and 4 deal with the canonical shock-turbulence interaction problem, from the DNS and LES perspectives, respectively. Section 5 considers the shock-turbulence inter-action in spherical geometry, in particular, the interaction of a converging shock with isotropic turbulence as well as the problem of the blast wave. Section 6 describes the study of shock-accelerated mixing through planar and spherical Richtmyer-Meshkov mixing as well as the shock-curtain interaction problem In section 7 we acknowledge the different interactions between Stanford and other institutions participating in this SciDAC project, as well as several external collaborations made possible through it. Section 8 presents a list of publications and presentations that have been generated during the course of this SciDAC project. Finally, section 9 concludes this report with the list of personnel at Stanford University funded by this SciDAC project.

  16. Numerical Simulation of Spectral and Timing Properties of a Two Component Advective Flow around a Black Hole

    E-Print Network [OSTI]

    Garain, Sudip K; Chakrabarti, Sandip K

    2013-01-01

    We study the spectral and timing properties of a two component advective flow (TCAF) around a black hole by numerical simulation. Several cases have been simulated by varying the Keplerian disk rate and the resulting spectra and lightcurves have been produced for all the cases. The dependence of the spectral states and quasi-periodic oscillation (QPO) frequencies on the flow parameters is discussed. We also find the earlier explanation of arising of QPOs as the resonance between infall time scale and cooling time scale remain valid even for Compton cooling.

  17. Elements of naturality in dynamical simulation frameworks for Hamiltonian, thermostatic, and Lindbladian flows on classical and quantum state-spaces

    E-Print Network [OSTI]

    John A. Sidles; Joseph L. Garbini; Jonathan P. Jacky; Rico A. R. Picone; Scott A. Harsila

    2010-07-12

    The practical focus of this work is the dynamical simulation of polarization transport processes in quantum spin microscopy and spectroscopy. The simulation framework is built-up progressively, beginning with state-spaces (configuration manifolds) that are geometrically natural, introducing coordinates that are algebraically natural; and finally specifying dynamical potentials that are physically natural; in each respect explicit criteria are given for "naturality." The resulting framework encompasses Hamiltonian flow (both classical and quantum), quantum Lindbladian processes, and classical thermostatic processes. Constructive validation and verification criteria are given for metric and symplectic flows on classical, quantum, and hybrid state-spaces, with particular emphasis to tensor network state-spaces. Both classical and quantum examples are presented, including dynamic nuclear polarization (DNP). A broad span of applications and challenges is discussed, ranging from the design and simulation of quantum spin microscopes to the design and simulation of quantum oracles.

  18. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    SciTech Connect (OSTI)

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is limited by initial conditions), so they should prove useful for testing accretion-jet theories and measuring a/M in systems such as SgrA* and M87.

  19. Ejection of matrix-polymer clusters in matrix-assisted laser evaporation: Coarse-grained molecular dynamics simulations

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Ejection of matrix-polymer clusters in matrix-assisted laser evaporation: Coarse-grained molecular, as related to the matrix-assisted laser evaporation (MAPLE) technique for polymer film deposition. Coarse- grained description of molecular matrix and polymer molecules is used in the model, allowing for large

  20. An isogeometric variational multiscale method for large-eddy simulation of coupled multi-ion transport in turbulent flow

    SciTech Connect (OSTI)

    Bauer, Georg; Gamnitzer, Peter [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany)] [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany); Gravemeier, Volker, E-mail: vgravem@lnm.mw.tum.de [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany) [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany); Emmy Noether Research Group “Computational Multiscale Methods for Turbulent Combustion”, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany); Wall, Wolfgang A. [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany)] [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany)

    2013-10-15

    Highlights: •We present a computational method for coupled multi-ion transport in turbulent flow. •The underlying formulation is a variational multiscale finite element method. •It is combined with the isogeometric concept for electrochemical systems. •Coupled multi-ion transport in fully turbulent Taylor–Couette flow is simulated. •This example is an important model problem for rotating cylinder electrodes. -- Abstract: Electrochemical processes, such as electroplating of large items in galvanic baths, are often coupled to turbulent flow. In this study, we propose an isogeometric residual-based variational multiscale finite element method for multi-ion transport in dilute electrolyte solutions under turbulent flow conditions. In other words, this means that the concepts of isogeometric discretization and variational multiscale methods are successfully combined for developing a method capable of simulating the challenging problem of coupled multi-ion transport in turbulent flow. We present a comprehensive three-dimensional computational method taking into account, among others, coupled convection–diffusion-migration equations subject to an electroneutrality constraint in combination with phenomenological electrode-kinetics modeling. The electrochemical subproblem is one-way coupled to turbulent incompressible flow via convection. Ionic mass transfer in turbulent Taylor–Couette flow is investigated, representing an important model problem for rotating-cylinder-electrode configurations. Multi-ion transport as considered here is an example for mass transport at high Schmidt number (Sc=1389). An isogeometric discretization is especially advantageous for the present problem, since (i) curved boundaries can be represented exactly, and (ii) it has been proven to provide very accurate solutions for flow quantities when being applied in combination with residual-based variational multiscale modeling. We demonstrate that the method is robust and provides results which are in good agreement with direct numerical simulation results as well as empirical mass-transfer correlations reported in literature.

  1. Cold Flow Simulations for a Pulse Detonation Rocket Ejector J. Tyler Nichols, Donald R. Wilson, Frank K. Lu

    E-Print Network [OSTI]

    Texas at Arlington, University of

    supersonic Mach numbers (2) A pulsed normal detonation wave mode at combustion chamber Mach numbers less thanCold Flow Simulations for a Pulse Detonation Rocket Ejector J. Tyler Nichols, Donald R. Wilson pulse detonation rocket (PDR) ejecting into a duct was fabricated and integrated into the supersonic

  2. Module Development and Simulation of the Variable Refrigerant Flow Air Conditioning System under Cooling Conditions in Energyplus 

    E-Print Network [OSTI]

    Zhou, Y.; Wu, J.; Wang, R.; Shiochi, S.

    2006-01-01

    As a high-efficiency air conditioning scheme, the variable refrigerant flow (VRF) air-conditioning system is finding its way into medium-sized office buildings. Based on a generic dynamic building energy simulation environment, EnergyPlus, a new...

  3. Direct Numerical Simulation of Pore-Scale Flow in a Bead Pack: Comparison with Magnetic Resonance Imaging Observations

    SciTech Connect (OSTI)

    Yang, Xiaofan; Scheibe, Timothy D.; Richmond, Marshall C.; Perkins, William A.; Vogt, Sarah J.; Codd, Sarah L.; Seymour, Joseph D.; Mckinley, Matthew I.

    2013-04-01

    A significant body of current research is aimed at developing methods for numerical simulation of flow and transport in porous media that explicitly resolve complex pore and solid geometries, and at utilizing such models to study the relationships between fundamental pore-scale processes and macroscopic manifestations at larger (i.e., Darcy) scales. A number of different numerical methods for pore-scale simulation have been developed, and have been extensively tested and validated for simplified geometries. However, validation of pore-scale simulations of fluid velocity for complex, three-dimensional (3D) pore geometries that are representative of natural porous media is challenging due to our limited ability to measure pore-scale velocity in such systems. Recent advances in magnetic resonance imaging (MRI) offer the opportunity to measure not only the pore geometry, but also local fluid velocities under steady-state flow conditions in 3D and with high spatial resolution. In this paper, we present a 3D velocity field measured at sub-pore resolution (tens of micrometers) over a centimeter-scale 3D domain using MRI methods. We have utilized the measured pore geometry to perform 3D simulations of Navier-Stokes flow over the same domain using direct numerical simulation techniques. We present a comparison of the numerical simulation results with the measured velocity field. It is shown that the numerical results match the observed velocity patterns well overall except for a variance and small systematic scaling which can be attributed to the known experimental error in the MRI measurements. The comparisons presented here provide strong validation of the pore-scale simulation methods and new insights for interpretation of uncertainty in MRI measurements of pore-scale velocity. This study also provides a potential benchmark for future comparison of other pore-scale simulation methods.

  4. Elements of naturality in dynamical simulation frameworks for Hamiltonian, thermostatic, and Lindbladian flows on classical and quantum state-spaces

    E-Print Network [OSTI]

    Sidles, John A; Jacky, Jonathan P; Picone, Rico A R; Harsila, Scott A

    2010-01-01

    The practical focus of this work is the dynamical simulation of polarization transport processes in quantum spin microscopy and spectroscopy. The simulation framework is built-up progressively, beginning with state-spaces (configuration manifolds) that are geometrically natural, introducing coordinates that are algebraically natural; and finally specifying dynamical potentials that are physically natural; in each respect explicit criteria are given for "naturality." The resulting framework encompasses Hamiltonian flow (both classical and quantum), quantum Lindbladian processes, and classical thermostatic processes. Constructive validation and verification criteria are given for metric and symplectic flows on classical, quantum, and hybrid state-spaces, with particular emphasis to tensor network state-spaces. Both classical and quantum examples are presented, including dynamic nuclear polarization (DNP). A broad span of applications and challenges is discussed, ranging from the design and simulation of quantum...

  5. DISCRETE-TIME SIMULATION OF AIR-FLOW CUT-OFF IN PRESSURE-CONTROLLED Tamara Smyth, Jonathan Abel, Julius Smith

    E-Print Network [OSTI]

    Smyth, Tamara

    is similar to that of a leaky valve where the leakage decreases as the volume flow decreases. 1. INTRODUCTIONDISCRETE-TIME SIMULATION OF AIR-FLOW CUT-OFF IN PRESSURE-CONTROLLED VALVES Tamara Smyth, Jonathan of the differential equation govern- ing volume flow through a pressure-controlled valve is examined with particular

  6. A Convective-like Energy-Stable Open Boundary Condition for Simulations of Incompressible Flows

    E-Print Network [OSTI]

    Dong, Suchuan

    2015-01-01

    We present a new energy-stable open boundary condition, and an associated numerical algorithm, for simulating incompressible flows with outflow/open boundaries. This open boundary condition ensures the energy stability of the system, even when strong vortices or backflows occur at the outflow boundary. Under certain situations it can be reduced to a form that can be analogized to the usual convective boundary condition. One prominent feature of this boundary condition is that it provides a control over the velocity on the outflow/open boundary. This is not available with the other energy-stable open boundary conditions from previous works. Our numerical algorithm treats the proposed open boundary condition based on a rotational velocity-correction type strategy. It gives rise to a Robin-type condition for the discrete pressure and a Robin-type condition for the discrete velocity on the outflow/open boundary, respectively at the pressure and the velocity sub-steps. We present extensive numerical experiments on...

  7. Fully Nonlinear Edge Gyrokinetic Simulations of Kinetic Geodesic-Acoustic Modes and Boundary Flows

    SciTech Connect (OSTI)

    Xu, X Q; Belli, E; Bodi, K; Candy, J; Chang, C S; Cohen, B I; Cohen, R H; Colella, P; Dimits, A M; Dorr, M R; Gao, Z; Hittinger, J A; Ko, S; Krasheninnikov, S; McKee, G R; Nevins, W M; Rognlien, T D; Snyder, P B; Suh, J; Umansky, M V

    2008-09-18

    We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully nonlinear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following: (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high-q (tokamak safety factor), and are necessary to explain both the damping observed in our TEMPEST q-scans and experimental measurements of the scaling of the GAM amplitude with edge q{sub 95} in the absence of obvious evidence that there is a strong q dependence of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation, and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and flow characteristics qualitatively like those observed in experiments.

  8. COARSE-GRID SIMULATION OF REACTING AND NON-REACTING GAS-PARTICLE FLOWS

    SciTech Connect (OSTI)

    Sankaran Sundaresan

    2004-03-01

    The principal goal of this project, funded under the ''DOE Vision 21 Virtual Demonstration Initiative'' is virtual demonstration of circulating fluidized bed performance. We had proposed a ''virtual demonstration tool'', which is based on the open-domain CFD code MFIX. The principal challenge funded through this grant is to devise and implement in this CFD code sound physical models for the rheological characteristics of the gas-particle mixtures. Within the past year, which was the third year of the project, we have made the following specific advances. (a) We have completed a study of the impact of sub-grid models of different levels of detail on the results obtained in coarse-grid simulations of gas-particle flow. (b) We have also completed a study of a model problem to understand the effect of wall friction, which was proved in our earlier work to be very important for stable operation of standpipes in a circulating fluidized bed circuit. These are described in a greater detail in this report.

  9. Two-Dimensional Optical Measurement of Waves on Liquid Lithium Jet Simulating IFMIF Target Flow

    SciTech Connect (OSTI)

    Kazuhiro Itoh; Hiroyuki Koterazawa [University of Hyogo, 1-3-3, Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo (Japan); Taro Itoh; Yutaka Kukita [Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, 464-8603 (Japan); Hiroo Kondo; Nobuo Yamaoka; Hiroshi Horiike [Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Mizuho Ida; Hideo Nakamura; Hiroo Nakamura [Japan Atomic Energy Agency (Japan); Takeo Muroga [National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, GIFU, 509-5292 (Japan)

    2006-07-01

    Waves on a liquid-lithium jet flow, simulating a proposed high-energy beam target design, have been measured using an optical technique based on specular reflection of a single laser beam on the jet surface. The stream-wise and spanwise fluctuations of the local free-surface slope were least-square fitted with a sinusoidal curve to makeup the signals lost due to the constriction in the optical arrangement. The waveform was estimated with an assumption that wave phase speed can be calculated using the dispersion relation for linear capillary-gravity waves. The direction of propagation on the jet surface was also evaluated so that the wave amplitudes, calculated by integral of slope angle signal, agree consistently in stream-wise and spanwise direction. These measurements and analyses show that the waves at the measurement location for a jet velocity of 1.2 m/s can best be represented by oblique waves with an inclination of 1.23 rad, a wavelength of 3.8 mm and a wave amplitude of about 0.05 mm. (authors)

  10. Direct Vlasov simulations of electron-attracting cylindrical Langmuir probes in flowing plasmas

    SciTech Connect (OSTI)

    Sánchez-Arriaga, G.; Pastor-Moreno, D.

    2014-07-15

    Current collection by positively polarized cylindrical Langmuir probes immersed in flowing plasmas is analyzed using a non-stationary direct Vlasov-Poisson code. A detailed description of plasma density spatial structure as a function of the probe-to-plasma relative velocity U is presented. Within the considered parametric domain, the well-known electron density maximum close to the probe is weakly affected by U. However, in the probe wake side, the electron density minimum becomes deeper as U increases and a rarified plasma region appears. Sheath radius is larger at the wake than at the front side. Electron and ion distribution functions show specific features that are the signature of probe motion. In particular, the ion distribution function at the probe front side exhibits a filament with positive radial velocity. It corresponds to a population of rammed ions that were reflected by the electric field close to the positively biased probe. Numerical simulations reveal that two populations of trapped electrons exist: one orbiting around the probe and the other with trajectories confined at the probe front side. The latter helps to neutralize the reflected ions, thus explaining a paradox in past probe theory.

  11. Theoretical and Numerical Simulation of Non-Newtonian Fluid Flow in Propped Fractures 

    E-Print Network [OSTI]

    Ouyang, Liangchen

    2013-12-10

    The flow of non-Newtonian fluids in porous media is important in many applications, such as polymer processing, heavy oil flow, and gel cleanup in propped fractures. Residual polymer gel in propped fractures results in low fracture conductivity...

  12. Direct numerical simulations of multiphase flow with applications to basaltic volcanism and planetary evolution

    E-Print Network [OSTI]

    Suckale, Jenny

    2011-01-01

    Multiphase flows are an essential component of natural systems: They affect the explosivity of volcanic eruptions, shape the landscape of terrestrial planets, and govern subsurface flow in hydrocarbon reservoirs. Advancing ...

  13. Multi-material incompressible flow simulation using the moment-of-fluid method

    SciTech Connect (OSTI)

    Garimella, R V; Schofield, S P; Lowrie, R B; Swartz, B K; Christon, M A; Dyadechko, V

    2009-01-01

    The Moment-of-Fluid interface reconstruction technique is implemented in a second order accurate, unstructured finite element variable density incompressible Navier-Stokes solver. For flows with multiple materials, MOF significantly outperforms existing first and second order interface reconstruction techniques. For two material flows, the performance of MOF is similar to other interface reconstruction techniques. For strongly driven bouyant flows, the errors in the flow solution dominate and all the interface reconstruction techniques perform similarly.

  14. Society of Petroleum Engineers Staggered In Time Coupling of Reservoir Flow Simulation and Geomechanical Defor-

    E-Print Network [OSTI]

    Minkoff, Susan E.

    ) the flow of oil, gas, and water fluid phases in the reservoir while the lat- ter has been specialized

  15. Discrete Fracture Reservoir Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discrete Fracture Reservoir Simulation Shale Gas Flow Simulation Shale Gas Flow Simulation FRACGENNFFLOW, fractured reservoir modeling software developed by NETL's Geological and...

  16. Global Hall-MHD simulations of magnetorotational instability in a plasma Couette flow experiment

    SciTech Connect (OSTI)

    Ebrahimi, F.; Lefebvre, B.; Bhattacharjee, A.; Forest, C. B.

    2011-06-15

    Global MHD and Hall-MHD numerical simulations relevant to the Madison plasma Couette flow experiment (MPCX) have been performed using the extended MHD code NIMROD. The MPCX has been constructed to study the magnetorotational instability (MRI) in a plasma. The two-fluid Hall effect, which is relevant to some astrophysical situations such as protostellar disks, is also expected to be important in the MPCX. Here, we first derive the local Hall dispersion relation including viscosity, extending earlier work by Balbus and Terquem [Astrophys. J. 552, 235 (2001)]. The predictions of the local analysis are then compared with nonlocal calculations of linear stability of the MRI for a parameter range relevant to the MPCX. It is found that the MHD stability limit and mode structure are altered by the Hall term, and nonlocal analysis is necessary to obtain quantitatively reliable predictions for MPCX. Two-fluid physics also significantly changes the nonlinear evolution and saturation of the axisymmetric MRI. Both the Reynolds and Maxwell stresses contribute significantly to momentum transport. In the Hall regime, when the magnetic field is parallel to the rotation axis, the Maxwell stress is larger than the Reynolds stress (similar to the MHD regime). However, when the magnetic field is antiparallel to the rotation axis in the Hall regime, the Reynolds stress is much larger than the Maxwell stress. To further study the role of non-axisymmetric modes, we have also carried out fully nonlinear MHD computations. Non-axisymmetric modes play an increasingly important role as the magnetic Reynolds number increases and grow to large amplitudes in a saturated turbulent state.

  17. Computational fluid dynamics simulation of the air/suppressant flow in an uncluttered F18 engine nacelle

    SciTech Connect (OSTI)

    Lopez, A.R.; Gritzo, L.A.; Hassan, B.

    1997-06-01

    For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.

  18. Comparative Analysis of Natural Convection Flows Simulated by both the Conservation and Incompressible Forms of the Navier-Stokes Equations in a Differentially-Heated Square Cavity

    SciTech Connect (OSTI)

    Richard C. Martineau; Ray A. Berry; Aurélia Esteve; Kurt D. Hamman; Dana A. Knoll; Ryosuke Park; William Taitano

    2009-01-01

    This report illustrates a comparative study to analyze the physical differences between numerical simulations obtained with both the conservation and incompressible forms of the Navier-Stokes equations for natural convection flows in simple geometries. The purpose of this study is to quantify how the incompressible flow assumption (which is based upon constant density advection, divergence-free flow, and the Boussinesq gravitational body force approximation) differs from the conservation form (which only assumes that the fluid is a continuum) when solving flows driven by gravity acting upon density variations resulting from local temperature gradients. Driving this study is the common use of the incompressible flow assumption in fluid flow simulations for nuclear power applications in natural convection flows subjected to a high heat flux (large temperature differences). A series of simulations were conducted on two-dimensional, differentially-heated rectangular geometries and modeled with both hydrodynamic formulations. From these simulations, the selected characterization parameters of maximum Nusselt number, average Nusselt number, and normalized pressure reduction were calculated. Comparisons of these parameters were made with available benchmark solutions for air with the ideal gas assumption at both low and high heat fluxes. Additionally, we generated body force, velocity, and divergence of velocity distributions to provide a basis for further analysis. The simulations and analysis were then extended to include helium at the Very High Temperature gas-cooled Reactor (VHTR) normal operating conditions. Our results show that the consequences of incorporating the incompressible flow assumption in high heat flux situations may lead to unrepresentative results. The results question the use of the incompressible flow assumption for simulating fluid flow in an operating nuclear reactor, where large temperature variations are present. The results show that the use of the incompressible flow assumption with the Boussinesq gravitational body force approximation should be restricted to flows where the density change of a fluid particle along a pathline is negligible.

  19. Computer Simulation of Reservoir Depletion and Oil Flow from the Macondo Well Following the Deepwater

    E-Print Network [OSTI]

    ................................................................................................................................................... 2 Reservoir Model ............................................................................................................................................. 7 Uncertainty Analysis........................................................................................................................................... 8 Tables Table 1. Reservoir and fluid properties used in the reservoir simulation model

  20. A Flux-Limited Numerical Method for the MHD Equations to Simulate Propulsive Plasma Flows

    E-Print Network [OSTI]

    Choueiri, Edgar

    to be effective tools in plasma propulsion research, a higher order accu- rate solver that captures MHD shocks approach, numerical simulations are valuable tools in plasma thruster research. More- over, simulations can Simula- tions The importance of numerical simulation in advancing plasma thruster research was realized

  1. SU-E-J-66: Evaluation of a Real-Time Positioning Assistance Simulator System for Skull Radiography Using the Microsoft Kinect

    SciTech Connect (OSTI)

    Kurata, T; Ono, M; Kozono, K; Fukuyoshi, R; Sato, S [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Toyofuku, F [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan)

    2014-06-01

    Purpose: The purpose of this study is to investigate the feasibility of a low cost, small size positioning assistance simulator system for skull radiography using the Microsoft Kinect sensor. A conventional radiographic simulator system can only measure the three-dimensional coordinates of an x-ray tube using angle sensors, but not measure the movement of the subject. Therefore, in this study, we developed a real-time simulator system using the Microsoft Kinect to measure both the x-ray tube and the subject, and evaluated its accuracy and feasibility by comparing the simulated and the measured x-ray images. Methods: This system can track a head phantom by using Face Tracking, which is one of the functions of the Kinect. The relative relationship between the Kinect and the head phantom was measured and the projection image was calculated by using the ray casting method, and by using three-dimensional CT head data with 220 slices at 512 × 512 pixels. X-ray images were thus obtained by using a computed radiography (CR) system. We could then compare the simulated projection images with the measured x-ray images from 0 degrees to 45 degrees at increments of 15 degrees by calculating the cross correlation coefficient C. Results: The calculation time of the simulated projection images was almost real-time (within 1 second) by using the Graphics Processing Unit(GPU). The cross-correlation coefficients C are: 0.916; 0.909; 0.891; and, 0.886 at 0, 15, 30, and 45 degrees, respectively. As a result, there were strong correlations between the simulated and measured images. Conclusion: This system can be used to perform head positioning more easily and accurately. It is expected that this system will be useful for learning radiographic techniques by students. Moreover, it could also be used for predicting the actual x-ray image prior to x-ray exposure in clinical environments.

  2. Simulating Electron Transport and Synchrotron Emission in Radio Galaxies: Shock Acceleration and Synchrotron Aging in Three-Dimensional Flows

    E-Print Network [OSTI]

    I. L. Tregillis; T. W. Jones; Dongsu Ryu

    2001-04-18

    We present the first three-dimensional MHD radio galaxy simulations that explicitly model transport of relativistic electrons, including diffusive acceleration at shocks as well as radiative and adiabatic cooling in smooth flows. We discuss three simulations of light Mach 8 jets, designed to explore the effects of shock acceleration and radiative aging on the nonthermal particle populations that give rise to synchrotron and inverse-Compton radiations. We also conduct detailed synthetic radio observations of our simulated objects. We have gained several key insights from this approach: 1. The jet head in these multidimensional simulations is extremely complex. The classical jet termination shock is often absent, but motions of the jet terminus spin a ``shock-web complex'' within the backflowing jet material of the head. 2. Understanding the spectral distribution of energetic electrons in these simulations relies partly upon understanding the shock-web complex, for it can give rise to distributions that confound interpretation in terms of the standard model for radiative aging of radio galaxies. 3. The magnetic field outside of the jet itself becomes very intermittent and filamentary in these simulations, yet adiabatic expansion causes most of the cocoon volume to be occupied by field strengths considerably diminished below the nominal jet value. Thus population aging rates vary considerably from point to point.

  3. Simulating surface and subsurface initiation of macropore flow Markus Weilera,*, Felix Naefb,1

    E-Print Network [OSTI]

    Weiler, Markus

    soil sections extracted from each study profile. The MDA was calculated for different sets of surface infiltration in macroporous soils. q 2003 Elsevier Science B.V. All rights reserved. Keywords: Macropore flow; Micro-topography; Preferential flow; Earthworm burrows; Infiltration 1. Introduction Macropores

  4. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

    SciTech Connect (OSTI)

    Rafa, S. Molins; Trebotich, D.; Steefel, C. I.; Shen, C.

    2012-02-01

    The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO{sub 2}. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute to the discrepancy commonly observed between laboratory-determined and continuum-scale or field rates. Here, the dependence of mineral dissolution rates on the pore structure of the porous media is investigated by means of pore scale modeling of flow and multicomponent reactive transport. The pore scale model is comprised of high performance simulation tools and algorithms for incompressible flow and conservative transport combined with a general-purpose multicomponent geochemical reaction code. The model performs direct numerical simulation of reactive transport based on an operator-splitting approach to coupling transport and reactions. The approach is validated with a Poiseuille flow single-pore experiment and verified with an equivalent 1D continuum-scale model of a capillary tube packed with calcite spheres. Using the case of calcite dissolution as an example, the high resolution model is used to demonstrate that non-uniformity in the flow field at the pore scale has the effect of decreasing the overall reactivity of the system, even when systems with identical reactive surface area are considered. The effect becomes more pronounced as the heterogeneity of the reactive grain packing increases, particularly where the flow slows sufficiently such that the solution approaches equilibrium locally and the average rate becomes transport-limited.

  5. Numerical Simulation of the Flow Field in 3D Eccentric Annular and 2D Centered Labyrinth Seals for Comparison with Experimental LDA Data 

    E-Print Network [OSTI]

    Vijaykumar, Anand

    2011-02-22

    The flow field in an annular seal is simulated for synchronous circular whirl orbits with 60Hz whirl frequency and a clearance/radius ratio of 0.0154 using the Fluent Computational Fluid Dynamics (CFD) code. Fluent's Moving ...

  6. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    SciTech Connect (OSTI)

    Smith, F.; Flach, G.

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  7. Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations

    E-Print Network [OSTI]

    Hartmann, Ralf

    Leichta,b , Ralf Hartmann,a,b aInstitute of Aerodynamics and Flow Technology, DLR (German Aerospace Center.Leicht@dlr.de (Tobias Leicht), Ralf.Hartmann@dlr.de (Ralf Hartmann) Preprint submitted to Journal of Computational

  8. Resistive MHD Simulations of Laminar Round Jets with Application to Magnetic Nozzle Flows 

    E-Print Network [OSTI]

    Araya, Daniel

    2012-02-14

    This thesis investigates fundamental flows of resistive magnetohydrodynamics (MHD) by a new numerical tool based on the gas-kinetic method. The motivation for this work stems from the need to analyze the mechanisms of plasma detachment...

  9. A Novel Approach For the Simulation of Multiple Flow Mechanisms and Porosities in Shale Gas Reservoirs 

    E-Print Network [OSTI]

    Yan, Bicheng

    2013-07-15

    The state of the art of modeling fluid flow in shale gas reservoirs is dominated by dual porosity models that divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control...

  10. Spectral element/smoothed profile method for turbulent flow simulations of waterjet propulsion systems

    E-Print Network [OSTI]

    Luo, Xian

    We have developed fast numerical algorithms [1] for flows with complex moving domains, e.g. propellers in free-space and impellers in waterjets, by combining the smoothed profile method (SPM, [2, 3, 4]) with the spectral ...

  11. Modeling, Analysis and Simulation of Multiscale Preferential Flow - 8/05-8/10 - Final Report

    SciTech Connect (OSTI)

    Ralph Showalter; Malgorzata Peszynska

    2012-07-03

    The research agenda of this project are: (1) Modeling of preferential transport from mesoscale to macroscale; (2) Modeling of fast flow in narrow fractures in porous media; (3) Pseudo-parabolic Models of Dynamic Capillary Pressure; (4) Adaptive computational upscaling of flow with inertia from porescale to mesoscale; (5) Adaptive modeling of nonlinear coupled systems; and (6) Adaptive modeling and a-posteriori estimators for coupled systems with heterogeneous data.

  12. PROBABILISTIC SIMULATION OF SUBSURFACE FLUID FLOW: A STUDY USING A NUMERICAL SCHEME

    SciTech Connect (OSTI)

    Buscheck, Timothy Eric

    1980-03-01

    There has been an increasing interest in probabilistic modeling of hydrogeologic systems. The classical approach to groundwater modeling has been deterministic in nature, where individual layers and formations are assumed to be uniformly homogeneous. Even in the case of complex heterogeneous systems, the heterogeneities describe the differences in parameter values between various layers, but not within any individual layer. In a deterministic model a single-number is assigned to each hydrogeologic parameter, given a particular scale of interest. However, physically there is no such entity as a truly uniform and homogeneous unit. Single-number representations or deterministic predictions are subject to uncertainties. The approach used in this work models such uncertainties with probabilistic parameters. The resulting statistical distributions of output variables are analyzed. A numerical algorithm, based on axiomatic principles of probability theory, performs arithmetic operations between probability distributions. Two subroutines are developed from the algorithm and incorporated into the computer program TERZAGI, which solves groundwater flow problems in saturated, multi-dimensional systems. The probabilistic computer program is given the name, PROGRES. The algorithm has been applied to study the following problems: one-dimensional flow through homogeneous media, steady-state and transient flow conditions, one-dimensional flow through heterogeneous media, steady-state and transient flow conditions, and two-dimensional steady-stte flow through heterogeneous media. The results are compared with those available in the literature.

  13. PANS method of turbulence: simulation of high and low Reynolds number flows past a circular cylinder 

    E-Print Network [OSTI]

    Lakshmipathy, Sunil

    2006-04-12

    cylinder are performed at ReD 140,000 and ReD 3900 using the PANS model. The high Reynolds number PANS results are compared with experimental results from Cantwell and Coles, Large Eddy Simulation results from Breuer, and Detached Eddy Simulation results...

  14. The matching of 3D Rolie-Poly viscoelastic numerical simulations with experimental polymer melt flow

    E-Print Network [OSTI]

    Jimack, Peter

    Kingdom J. Embery and D. Auhl IRC in Polymer Science and Technology, Department of Physics and AstronomyThe matching of 3D Rolie-Poly viscoelastic numerical simulations with experimental polymer melt of commercial viscoelastic polymer melts. Numerical simulation techniques have steadily advanced over the last

  15. Analysis of turbulent transport and mixing in transitional Rayleigh/Taylor unstable flow using direct numerical simulation data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schilling, Oleg; Mueschke, Nicholas J.

    2010-10-18

    Data from a 1152X760X1280 direct numerical simulation (DNS) of a transitional Rayleigh-Taylor mixing layer modeled after a small Atwood number water channel experiment is used to comprehensively investigate the structure of mean and turbulent transport and mixing. The simulation had physical parameters and initial conditions approximating those in the experiment. The budgets of the mean vertical momentum, heavy-fluid mass fraction, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate equations are constructed using Reynolds averaging applied to the DNS data. The relative importance of mean and turbulent production, turbulent dissipationmore »and destruction, and turbulent transport are investigated as a function of Reynolds number and across the mixing layer to provide insight into the flow dynamics not presently available from experiments. The analysis of the budgets supports the assumption for small Atwood number, Rayleigh/Taylor driven flows that the principal transport mechanisms are buoyancy production, turbulent production, turbulent dissipation, and turbulent diffusion (shear and mean field production are negligible). As the Reynolds number increases, the turbulent production in the turbulent kinetic energy dissipation rate equation becomes the dominant production term, while the buoyancy production plateaus. Distinctions between momentum and scalar transport are also noted, where the turbulent kinetic energy and its dissipation rate both grow in time and are peaked near the center plane of the mixing layer, while the heavy-fluid mass fraction variance and its dissipation rate initially grow and then begin to decrease as mixing progresses and reduces density fluctuations. All terms in the transport equations generally grow or decay, with no qualitative change in their profile, except for the pressure flux contribution to the total turbulent kinetic energy flux, which changes sign early in time (a countergradient effect). The production-to-dissipation ratios corresponding to the turbulent kinetic energy and heavy-fluid mass fraction variance are large and vary strongly at small evolution times, decrease with time, and nearly asymptote as the flow enters a self-similar regime. The late-time turbulent kinetic energy production-to-dissipation ratio is larger than observed in shear-driven turbulent flows. The order of magnitude estimates of the terms in the transport equations are shown to be consistent with the DNS at late-time, and also confirms both the dominant terms and their evolutionary behavior. These results are useful for identifying the dynamically important terms requiring closure, and assessing the accuracy of the predictions of Reynolds-averaged Navier-Stokes and large-eddy simulation models of turbulent transport and mixing in transitional Rayleigh-Taylor instability-generated flow.« less

  16. Analysis of turbulent transport and mixing in transitional Rayleigh/Taylor unstable flow using direct numerical simulation data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schilling, Oleg [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mueschke, Nicholas J. [Texas A and M Univ., College Station, TX (United States)

    2010-01-01

    Data from a 1152X760X1280 direct numerical simulation (DNS) of a transitional Rayleigh-Taylor mixing layer modeled after a small Atwood number water channel experiment is used to comprehensively investigate the structure of mean and turbulent transport and mixing. The simulation had physical parameters and initial conditions approximating those in the experiment. The budgets of the mean vertical momentum, heavy-fluid mass fraction, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate equations are constructed using Reynolds averaging applied to the DNS data. The relative importance of mean and turbulent production, turbulent dissipation and destruction, and turbulent transport are investigated as a function of Reynolds number and across the mixing layer to provide insight into the flow dynamics not presently available from experiments. The analysis of the budgets supports the assumption for small Atwood number, Rayleigh/Taylor driven flows that the principal transport mechanisms are buoyancy production, turbulent production, turbulent dissipation, and turbulent diffusion (shear and mean field production are negligible). As the Reynolds number increases, the turbulent production in the turbulent kinetic energy dissipation rate equation becomes the dominant production term, while the buoyancy production plateaus. Distinctions between momentum and scalar transport are also noted, where the turbulent kinetic energy and its dissipation rate both grow in time and are peaked near the center plane of the mixing layer, while the heavy-fluid mass fraction variance and its dissipation rate initially grow and then begin to decrease as mixing progresses and reduces density fluctuations. All terms in the transport equations generally grow or decay, with no qualitative change in their profile, except for the pressure flux contribution to the total turbulent kinetic energy flux, which changes sign early in time (a countergradient effect). The production-to-dissipation ratios corresponding to the turbulent kinetic energy and heavy-fluid mass fraction variance are large and vary strongly at small evolution times, decrease with time, and nearly asymptote as the flow enters a self-similar regime. The late-time turbulent kinetic energy production-to-dissipation ratio is larger than observed in shear-driven turbulent flows. The order of magnitude estimates of the terms in the transport equations are shown to be consistent with the DNS at late-time, and also confirms both the dominant terms and their evolutionary behavior. These results are useful for identifying the dynamically important terms requiring closure, and assessing the accuracy of the predictions of Reynolds-averaged Navier-Stokes and large-eddy simulation models of turbulent transport and mixing in transitional Rayleigh-Taylor instability-generated flow.

  17. Analysis of turbulent transport and mixing in transitional Rayleigh–Taylor unstable flow using direct numerical simulation data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schilling, Oleg; Mueschke, Nicholas J.

    2010-10-18

    Data from a 1152X760X1280 direct numerical simulation (DNS) of a transitional Rayleigh-Taylor mixing layer modeled after a small Atwood number water channel experiment is used to comprehensively investigate the structure of mean and turbulent transport and mixing. The simulation had physical parameters and initial conditions approximating those in the experiment. The budgets of the mean vertical momentum, heavy-fluid mass fraction, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate equations are constructed using Reynolds averaging applied to the DNS data. The relative importance of mean and turbulent production, turbulent dissipationmore »and destruction, and turbulent transport are investigated as a function of Reynolds number and across the mixing layer to provide insight into the flow dynamics not presently available from experiments. The analysis of the budgets supports the assumption for small Atwood number, Rayleigh/Taylor driven flows that the principal transport mechanisms are buoyancy production, turbulent production, turbulent dissipation, and turbulent diffusion (shear and mean field production are negligible). As the Reynolds number increases, the turbulent production in the turbulent kinetic energy dissipation rate equation becomes the dominant production term, while the buoyancy production plateaus. Distinctions between momentum and scalar transport are also noted, where the turbulent kinetic energy and its dissipation rate both grow in time and are peaked near the center plane of the mixing layer, while the heavy-fluid mass fraction variance and its dissipation rate initially grow and then begin to decrease as mixing progresses and reduces density fluctuations. All terms in the transport equations generally grow or decay, with no qualitative change in their profile, except for the pressure flux contribution to the total turbulent kinetic energy flux, which changes sign early in time (a countergradient effect). The production-to-dissipation ratios corresponding to the turbulent kinetic energy and heavy-fluid mass fraction variance are large and vary strongly at small evolution times, decrease with time, and nearly asymptote as the flow enters a self-similar regime. The late-time turbulent kinetic energy production-to-dissipation ratio is larger than observed in shear-driven turbulent flows. The order of magnitude estimates of the terms in the transport equations are shown to be consistent with the DNS at late-time, and also confirms both the dominant terms and their evolutionary behavior. Thus, these results are useful for identifying the dynamically important terms requiring closure, and assessing the accuracy of the predictions of Reynolds-averaged Navier-Stokes and large-eddy simulation models of turbulent transport and mixing in transitional Rayleigh-Taylor instability-generated flow.« less

  18. Object-Oriented Modelling and Simulation of Air Flow in Data Centres Based on a Quasi-3D Approach for Energy Optimisation

    E-Print Network [OSTI]

    Como, Giacomo

    Object-Oriented Modelling and Simulation of Air Flow in Data Centres Based on a Quasi-3D Approach. To this end, different solutions were proposed. On one side, researchers have focused on how to adapt is much faster and more economical than building an actual layout. However, a CFD simulation can last 24

  19. Large-Eddy Simulation of Swirling Turbulent Jet Flows in Absence of Vortex Breakdown

    E-Print Network [OSTI]

    Heinz, Stefan

    simulation method to studies of the mechanism of swirl effects shows the following. Swirl breaks apart, n i 2 N0; 1 = kinematic viscosity T = Reynolds-averaged Navier­Stokes turbulent viscosity

  20. Increasing the parallel efficiency of multi-scale, space-time simulations of turbulent flows

    E-Print Network [OSTI]

    Vuik, Kees

    of preliminary research for the Master of Science's degree in Applied Mathematics at the faculty of Electrical of aircraft and civil structures. The cheapest and also most flexible source of data is a numerical simulation

  1. Simulation of the quality of irrigation return flow from rice fields 

    E-Print Network [OSTI]

    Gerst, Michael Dean

    1982-01-01

    salt balance. The model predicted an emphasis on precipitation to supplement irrigation for managing irrigation water to reduce salt input, salt losses, and salt loading of the soil. Low simulated cation exchange capacities (CEC) resulted in high... predicted sales in the run-off and drainage waters. High simulated soil CEC resulted in low predicted salts in the runoff and drainage waters. The effect of fertilizer was shown to increase the cation concen- tration in the floodwater and to increase...

  2. Curved plate damper test and simulations with snubbers, through- flow, and flexible plate effects 

    E-Print Network [OSTI]

    Gadangi, Ravindra Kumar

    1992-01-01

    through- flow, implying that tbe exit orifice is closed during the dynamic excitation of the damper plate. The energy is dissipated by the viscous shear of the fluid and orifice pressure drop. Damping coefficient is estimated by using a least...) . 3. 2 Comparison of results (concentrated load at the center) 3. 3 Comparison of results(fluid element model) 3. 4 Comparison oi' flows 4. 1 EfFects of variation of inlet orifice diameter 4. 2 EfFects of variation of damper clearance 4. 3 Ef...

  3. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations

    SciTech Connect (OSTI)

    Rutqvist, J.

    2010-06-01

    This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC{sup 3D} geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO{sub 2} Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO{sub 2} storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC{sup 3D} for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.

  4. Accounting for finite-size effects in simulations of disperse particle-laden flows

    E-Print Network [OSTI]

    Apte, Sourabh V.

    , fluidized bed combustion, aerosol transport, and bubbly flows) involve millions of dispersed particles settling, (b) fluidization by a gaseous jet, and (c) fluidization by lift in a channel. The finite, and densities in the form of droplets, solid particles, or bubbles are dis- persed in a continuum (gaseous

  5. A splitting method for numerical simulation of free surface flows of incompressible fluids with surface tension

    E-Print Network [OSTI]

    Olshanskii, Maxim A.

    and accurate numerical methods for computing flows with free surfaces and interfaces, see, e.g., [1, 2 is studied in a series of numerical experiments. Institute of Numerical Mathematics, Russian Academy@math.uh.edu Department of Energy Resources Engineering, Stanford University and Institute of Numerical Mathematics

  6. RESEARCH PAPER Simulation-based analysis of flow due to traveling-plane-wave

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    : 28 March 2007 Ó Springer-Verlag 2007 Abstract One of the propulsion mechanisms of micro- organisms flows with mechanical micropumps remains somewhat a challenge. Propulsion mechanisms of microorganisms be placed in a channel and actuated for pumping of the fluid by means of introducing a series of traveling

  7. Turbulence prediction in two- and three-dimensional bundle flows using Large Eddy Simulation 

    E-Print Network [OSTI]

    Ibrahim, Wael Abdul-Hamid

    1994-01-01

    to practical engineering problems such as the flow-induced vibration of steam generator tubes. A universal model for all scales of turbulence is unlikely. Thus, the influence of the large-scale structures is directly computed by LES, while the smaller eddies...

  8. User's Guide of TOUGH2-EGS. A Coupled Geomechanical and Reactive Geochemical Simulator for Fluid and Heat Flow in Enhanced Geothermal Systems Version 1.0

    SciTech Connect (OSTI)

    Fakcharoenphol, Perapon; Xiong, Yi; Hu, Litang; Winterfeld, Philip H.; Xu, Tianfu; Wu, Yu-Shu

    2013-05-01

    TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transport calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.

  9. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    SciTech Connect (OSTI)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative to volcanic-rock units is exemplified by the large difference in their estimated maximum hydraulic conductivity; 4,000 and 400 feet per day, respectively. Simulated minimum estimates of hydraulic conductivity are inexact and represent the lower detection limit of the method. Minimum thicknesses of lithologic intervals also were defined for comparing AnalyzeHOLE results to hydraulic properties in regional ground-water flow models.

  10. Shock-Wave Heating Model for Chondrule Formation: Hydrodynamic Simulation of Molten Droplets exposed to Gas Flows

    E-Print Network [OSTI]

    Miura, H; Miura, Hitoshi; Nakamoto, Taishi

    2006-01-01

    Millimeter-sized, spherical silicate grains abundant in chondritic meteorites, which are called as chondrules, are considered to be a strong evidence of the melting event of the dust particles in the protoplanetary disk. One of the most plausible scenarios is that the chondrule precursor dust particles are heated and melt in the high-velocity gas flow (shock-wave heating model). We developed the non-linear, time-dependent, and three-dimensional hydrodynamic simulation code for analyzing the dynamics of molten droplets exposed to the gas flow. We confirmed that our simulation results showed a good agreement in a linear regime with the linear solution analytically derived by Sekiya et al. (2003). We found that the non-linear terms in the hydrodynamical equations neglected by Sekiya et al. (2003) can cause the cavitation by producing negative pressure in the droplets. We discussed that the fragmentation through the cavitation is a new mechanism to determine the upper limit of chondrule sizes. We also succeeded t...

  11. Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback

    E-Print Network [OSTI]

    Muratov, Alexander L; Faucher-Giguere, Claude-Andre; Hopkins, Philip F; Quataert, Eliot; Murray, Norman

    2015-01-01

    We present an analysis of the galaxy-scale gaseous outflows from the FIRE (Feedback in Realistic Environments) simulations. This suite of hydrodynamic cosmological zoom simulations provides a sample of halos where star-forming giant molecular clouds are resolved to z=0, and features an explicit stellar feedback model on small scales. In this work, we focus on quantifying the gas mass ejected out of galaxies in winds and how this material travels through the halo. We correlate these quantities to star formation in galaxies throughout cosmic history. Our simulations reveal that a significant portion of every galaxy's evolution, particularly at high redshift, is dominated by bursts of star formation, which are followed by powerful gusts of galactic outflow that sweep up a large fraction of gas in the interstellar medium and send it through the circumgalactic medium. The dynamical effect of these outflows can significantly limit the amount of star formation within the affected galaxy. At low redshift, however, su...

  12. On the simulation of shock-driven material mixing in high-Re flows (u)

    SciTech Connect (OSTI)

    Grinstein, Fernando F [Los Alamos National Laboratory

    2009-01-01

    Implicit large eddy simulation proposes to effectively rely on the use of subgrid modeling and filtering provided implicitly by physics capturing numerics. Extensive work has demonstrated that predictive simulations of turbulent velocity fields are possible using a class of high resolution, non-oscillatory finite-volume (NFV) numerical algorithms. Truncation terms associated with NFV methods implicitly provide subgrid models capable of emulating the physical dynamics of the unresolved turbulent velocity fluctuations by themselves. The extension of the approach to the substantially more difficult problem of under-resolved material mixing by an under-resolved velocity field has not yet been investigated numerically, nor are there any theories as to when the methodology may be expected to be successful. Progress in addressing these issues in studies of shock-driven scalar mixing driven by Ritchmyer-Meshkov instabilities will be reported in the context of ongoing simulations of shock-tube laboratory experiments.

  13. Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine

    SciTech Connect (OSTI)

    Rob O. Hovsapian; Various

    2014-06-01

    The onshore land where wind farms with conventional wind turbines can be places is limited by various factors including a requirement for relatively high wind speed for turbines' efficient operations. Where such a requirement cannot be met, mid-and small-sized turbines can be a solution. In the current paper simulations for near and for wakes behind a mid-sized Rim Driven Wind Turbine developed by Keuka Energy LLC is analyzed. The purposes of this study is to better understand the wake structure for more efficient wind farm planning. Simulations are conducted with the commercial CFD software STARCCM+

  14. Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation

    SciTech Connect (OSTI)

    Shang, Yu; Lin, Yu; Yu, Guoqiang; Li, Ting; Chen, Lei; Toborek, Michal

    2014-05-12

    Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (?D{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of ?D{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo stroke model of mouse. Computer simulations shows that the high-order (N???5) linear algorithm was more accurate in extracting ?D{sub B} (errors?simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.

  15. Numerical simulation of a thermoacoustic refrigerator. 2: Stratified flow around the stack

    SciTech Connect (OSTI)

    Worlikar, A.S.; Knio, O.M.; Klein, R.

    1998-08-10

    The unsteady, two-dimensional, thermally stratified flow in the neighborhood of an idealized thermoacoustic stack is analyzed using a low-Mach-number model that extends the adiabatic flow scheme developed in part 1 (Journal of Computational Physics 127, 424 (1996)). The extension consists of incorporation of numerical solvers for the energy equations in the fluid and the stack plates, and construction and implementation of fast Poisson solver for the velocity potential based on a domain decomposition/boundary Green`s function technique. The unsteady computations are used to predict the steady-state, acoustically generated temperature gradient across a two-dimensional couple and to analyze its dependence on the amplitude of the prevailing resonant wave. Computed results are compared to theoretical predictions and experimental data.

  16. Numerical Simulation of Rarefied-Gas Flows about a Rotating Cylinder

    E-Print Network [OSTI]

    Riabov, Vladimir V.

    -Gas Flows, Aerodynamic Coefficients. PACS: 47.11.Mn, 47.27 ek, 47.32 Ef, 47.45 n, 47.85 Gj. NOMENCLATURE Cx. The lift and drag coefficients Cy,FM and Cx,FM , respectively, can be calculated using the formulae [6]: Cy,FM = Cy (0) + Cy (W), Cy (W) = ( /2) t W (1) Cx,FM = Cx (0) + Cx (W), Cx (W) = 0 (2) where the parameter

  17. Numerical simulation of flow and heat transfer of internal cooling passage in gas turbine blade 

    E-Print Network [OSTI]

    Su, Guoguang

    2007-04-25

    for efficient energy utilization; one of the most powerful means of achieving higher efficiency in industrial gas turbine engines is to raise the turbine inlet temperature (TIT). Sophisticated cooling techniques must be employed to cool the components... for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method. 2.1 The Governing Equation and Chimera Method For unsteady incompressible flow, the continuty equation and momentum...

  18. A front-tracking method for the simulation of three-phase flow in porous media

    E-Print Network [OSTI]

    Stanford University, Dept. of Petroleum Engineering, 88 Green Earth Sciences Bldg., Stanford, CA 94305, USA, in- compressible fluids can be described by a 2×2 nongenuinely nonlinear, hyperbolic system. We in turn leads to simulation models with a very large number of grid blocks. As a result, there is ­and

  19. 9TH INTERNATIONAL SYMPOSIUM ON FLOW VISUALISATION, 2000 STOCHASTIC MODELING AND SIMULATION OF

    E-Print Network [OSTI]

    Interrante, Victoria

    INTRODUCTION There are three general methods of implementing CFD for turbulence simulations [17]: Reynolds and non-premixed combustion. In these applications, fuel and oxidizer are introduced, mix, and react. However, because of mixing and varying hydro-chemical conditions, combustion systems are susceptible

  20. High-Performance Reactive Fluid Flow Simulations Using Adaptive Mesh Refinement on Thousands of Processors

    E-Print Network [OSTI]

    Rhoads, James

    Thermonuclear Flashes at the University of Chicago. FLASH is a modular, adaptive mesh, parallel simulation code to thermonuclear reactions in supernovae and novae. The FLASH code was designed to study thermonuclear flashes Thermonuclear Flashes, The University of Chicago, Chicago, IL 60637 2 Center for Applied Scientific Computing

  1. J. Non-Newtonian Fluid Mech. 153 (2008) 2533 Viscoelastic flow simulation of polytetrafluoroethylene (PTFE)

    E-Print Network [OSTI]

    Feng, James J.

    2008-01-01

    of polytetrafluoroethylene (PTFE) paste extrusion Pramod D. Patil, Isaias Ochoa, James J. Feng, Savvas G. Hatzikiriakos 17 November 2007 Abstract Polytetrafluoroethylene (PTFE) is known to be a polymer that shows inherent-hardening; Finite element simulations; Hyperelasticity 1. Introduction Polytetrafluoroethylene (PTFE) paste

  2. Simulation of three-dimensional laminar flow and heat transfer in an array of parallel microchannels 

    E-Print Network [OSTI]

    Mlcak, Justin Dale

    2009-05-15

    ranges from 50 to 400. A constant heat flux of 90 W/cm2 is applied to the northern face of the computational domain, which simulates thermal energy generation from an integrated circuit. A simplified model is validated against analytical fully developed...

  3. An extended Krylov subspace method to simulate single-phase fluid flow phenomena in axisymmetric

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    Mail Code CO300, Austin, TX 78712, USA b Baker Atlas, 2001 Rankin Road, Houston, TX 77073, USA c-difference, finite-element, and boundary inte- gral methods have been successfully used to simulate single-4900. E-mail addresses: falpak@pe.utexas.edu (F.O. Alpak), cverdin@uts.cc.utexas.edu (C. Torres

  4. Modeling electrospinning process and a numerical scheme using Lattice Boltzmann method to simulate viscoelastic fluid flows 

    E-Print Network [OSTI]

    Karra, Satish

    2009-05-15

    [35] developed a stability analysis for the ax- isymmetric Rayleigh instability as well as the non-axisymmetric whipping instability in Newtonian fluids. According to them, the Rayleigh instability due to electrical forces is equivalent to the surface... for viscoelasticity between the beads. . . . . . . . 19 7 Typical result for the discrete particle model showing the bending loop in the jet. Top view shows that the envelope of the jet trajectory is a cone. The number of beads for this simulation N = 100 and non...

  5. Study of Particle Rotation Effect in Gas-Solid Flows using Direct Numerical Simulation with a Lattice Boltzmann Method

    SciTech Connect (OSTI)

    Kwon, Kyung; Fan, Liang-Shih; Zhou, Qiang; Yang, Hui

    2014-09-30

    A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a fluid is accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. The simulation results agree well with the theories for the short- and long-time behavior of the drag force. Flows through non-rotational and rotational spheres in simple cubic arrays and random arrays are simulated over the entire range of packing fractions, and both low and moderate particle Reynolds numbers to compare the simulated results with the literature results and develop a new drag force formula, a new lift force formula, and a new torque formula. Random arrays of solid particles in fluids are generated with Monte Carlo procedure and Zinchenko's method to avoid crystallization of solid particles over high solid volume fractions. A new drag force formula was developed with extensive simulated results to be closely applicable to real processes over the entire range of packing fractions and both low and moderate particle Reynolds numbers. The simulation results indicate that the drag force is barely affected by rotational Reynolds numbers. Drag force is basically unchanged as the angle of the rotating axis varies.

  6. Identification of whistling ability of a single hole orifice from an incompressible flow simulation

    SciTech Connect (OSTI)

    Lacombe, Romain; Moussou, Pierre

    2012-07-01

    Pure tone noise from orifices in pipe result from vortex shedding with lock-in. Acoustic amplification at the orifice is coupled to resonant condition to create self-sustained oscillations. One key feature of this phenomenon is hence the ability of an orifice to amplify acoustic waves in a given range of frequencies. Here a numerical investigation of the linear response of an orifice is undertaken, with the support of experimental data for validation. The study deals with a sharp edge orifice. Its diameter equals to 0.015 m and its thickness to 0.005 m. The pipe diameter is 0.030 m. An air flow with a Mach number 0.026 and a Reynolds number 18000 in the main pipe is present. At such a low Mach number; the fluid behavior can reasonably be described as locally incompressible. The incompressible Unsteady Reynolds Averaged Navier-Stokes (URANS) equations are solved with the help of a finite volume fluid mechanics software. The orifice is submitted to an average flow velocity, with superimposed small harmonic perturbations. The harmonic response of the orifice is the difference between the upstream and downstream pressures, and a straightforward calculation brings out the acoustic impedance of the orifice. Comparison with experiments shows that the main physical features of the whistling phenomenon are reasonably reproduced. (authors)

  7. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; Cossement, Daniel; Tamburello, David; Anton, Donald

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes withmore »the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.« less

  8. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    SciTech Connect (OSTI)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; Cossement, Daniel; Tamburello, David; Anton, Donald

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes with the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.

  9. Direct Numerical Simulation of Surfactant-Stabilized Emulsions Morphology and Shear Viscosity in Starting Shear Flow

    SciTech Connect (OSTI)

    Roar Skartlien; Espen Sollum; Andreas Akselsen; Paul Meakin

    2012-07-01

    A 3D lattice Boltzmann model for two-phase flow with amphiphilic surfactant was used to investigate the evolution of emulsion morphology and shear stress in starting shear flow. The interfacial contributions were analyzed for low and high volume fractions and varying surfactant activity. A transient viscoelastic contribution to the emulsion rheology under constant strain rate conditions was attributed to the interfacial stress. For droplet volume fractions below 0.3 and an average capillary number of about 0.25, highly elliptical droplets formed. Consistent with affine deformation models, gradual elongation of the droplets increased the shear stress at early times and reduced it at later times. Lower interfacial tension with increased surfactant activity counterbalanced the effect of increased interfacial area, and the net shear stress did not change significantly. For higher volume fractions, co-continuous phases with a complex topology were formed. The surfactant decreased the interfacial shear stress due mainly to advection of surfactant to higher curvature areas. Our results are in qualitative agreement with experimental data for polymer blends in terms of transient interfacial stresses and limited enhancement of the emulsion viscosity at larger volume fractions where the phases are co-continuous.

  10. Shock-Wave Heating Model for Chondrule Formation: Hydrodynamic Simulation of Molten Droplets exposed to Gas Flows

    E-Print Network [OSTI]

    Hitoshi Miura; Taishi Nakamoto

    2006-11-09

    Millimeter-sized, spherical silicate grains abundant in chondritic meteorites, which are called as chondrules, are considered to be a strong evidence of the melting event of the dust particles in the protoplanetary disk. One of the most plausible scenarios is that the chondrule precursor dust particles are heated and melt in the high-velocity gas flow (shock-wave heating model). We developed the non-linear, time-dependent, and three-dimensional hydrodynamic simulation code for analyzing the dynamics of molten droplets exposed to the gas flow. We confirmed that our simulation results showed a good agreement in a linear regime with the linear solution analytically derived by Sekiya et al. (2003). We found that the non-linear terms in the hydrodynamical equations neglected by Sekiya et al. (2003) can cause the cavitation by producing negative pressure in the droplets. We discussed that the fragmentation through the cavitation is a new mechanism to determine the upper limit of chondrule sizes. We also succeeded to reproduce the fragmentation of droplets when the gas ram pressure is stronger than the effect of the surface tension. Finally, we compared the deformation of droplets in the shock-wave heating with the measured data of chondrules and suggested the importance of other effects to deform droplets, for example, the rotation of droplets. We believe that our new code is a very powerful tool to investigate the hydrodynamics of molten droplets in the framework of the shock-wave heating model and has many potentials to be applied to various problems.

  11. Simulations of Blood Flow in Plain Cylindrical and Constricted Vessels with Single Cell Resolution

    E-Print Network [OSTI]

    Florian Janoschek; Federico Toschi; Jens Harting

    2011-05-31

    Understanding the physics of blood is challenging due to its nature as a suspension of soft particles and the fact that typical problems involve different scales. This is valid also for numerical investigations. In fact, many computational studies either neglect the existence of discrete cells or resolve relatively few cells very accurately. The authors recently developed a simple and highly efficient yet still particulate model with the aim to bridge the gap between currently applied methods. The present work focuses on its applicability to confined flows in vessels of diameters up to 100 micrometres. For hematocrit values below 30 percent, a dependence of the apparent viscosity on the vessel diameter in agreement with experimental literature data is found.

  12. User's guide of TOUGH2-EGS-MP: A Massively Parallel Simulator with Coupled Geomechanics for Fluid and Heat Flow in Enhanced Geothermal Systems VERSION 1.0

    SciTech Connect (OSTI)

    Xiong, Yi; Fakcharoenphol, Perapon; Wang, Shihao; Winterfeld, Philip H.; Zhang, Keni; Wu, Yu-Shu

    2013-12-01

    TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporated into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.

  13. Two-dimensional hydrodynamic simulation of an accretion flow with radiative cooling in a close binary system

    E-Print Network [OSTI]

    Jun'ichi Sato; Keisuke Sawada; Naofumi Ohnishi

    2003-04-14

    Two-dimensional numerical simulations of an accretion flow in a close binary system are performed by solving the Euler equations with radiative transfer. In the present study, the specific heat ratio is assumed to be constant while radiative cooling effect is included as a non-adiabatic process. The cooling effect of the disc is considered by discharging energy in the vertical directions from the top and bottom surfaces of the disc. We use the flux-limited diffusion approximation to calculate the radiative heat flux values. Our calculations show that a disc structure appears and the spiral shocks are formed on the disc. These features are similar to that observed in the case of an adiabatic gas with a lower specific heat ratio, $\\gamma=1.01$. It is found that when radiative cooling effect is accounted for, the mass of the disc becomes larger than that assuming $\\gamma=5/3$, and smaller than that assuming $\\gamma=1.01$. It is concluded that employing an adiabatic gas with a lower specific heat ratio is almost a valid assumption for simulating accretion disc with radiative cooling effect.

  14. Time cycle analysis and simulation of material flow in MOX process layout

    SciTech Connect (OSTI)

    Chakraborty, S.; Saraswat, A.; Danny, K.M.; Somayajulu, P.S.; Kumar, A.

    2013-07-01

    The (U,Pu)O{sub 2} MOX fuel is the driver fuel for the upcoming PFBR (Prototype Fast Breeder Reactor). The fuel has around 30% PuO{sub 2}. The presence of high percentages of reprocessed PuO{sub 2} necessitates the design of optimized fuel fabrication process line which will address both production need as well as meet regulatory norms regarding radiological safety criteria. The powder pellet route has highly unbalanced time cycle. This difficulty can be overcome by optimizing process layout in terms of equipment redundancy and scheduling of input powder batches. Different schemes are tested before implementing in the process line with the help of a software. This software simulates the material movement through the optimized process layout. The different material processing schemes have been devised and validity of the schemes are tested with the software. Schemes in which production batches are meeting at any glove box location are considered invalid. A valid scheme ensures adequate spacing between the production batches and at the same time it meets the production target. This software can be further improved by accurately calculating material movement time through glove box train. One important factor is considering material handling time with automation systems in place.

  15. Freund Publishing House Ltd. International Journal of Nonlinear Sciences and Numerical Simulation 4, 239-250, 2003 Traffic Flow CA Model in Which Only the Cars Following

    E-Print Network [OSTI]

    Simulation 4, 239-250, 2003 Traffic Flow CA Model in Which Only the Cars Following the Trail of the Ahead Car from the NS model in that only the cars following the trail of the ahead car can be delayed. In other words, a car with spacing ahead longer than the car velocity limit M can not be delayed in the new model

  16. A hybrid finite-difference/boundary element procedure for the simulation of turbulent MHD duct flow at finite magnetic Reynolds numbers

    E-Print Network [OSTI]

    Bandaru, Vinodh; Krasnov, Dmitry; Schumacher, Jörg

    2015-01-01

    A conservative coupled finite difference-boundary element computational procedure for the simulation of turbulent magnetohydrodynamic flow in a straight rectangular duct at finite magnetic Reynolds number is presented. The flow is assumed to be periodic in the streamwise direction and is driven by a mean pressure gradient. The duct walls are considered to be electrically insulating. The co-evolution of the velocity and magnetic fields as described respectively by the Navier-Stokes and the magnetic induction equations, together with the coupling of the magnetic field between the conducting domain and the non-conducting exterior is solved using the magnetic field formulation. The aim is to simulate localized magnetic fields interacting with turbulent duct flow. Detailed verification of the implementation of the numerical scheme is conducted in the limiting case of low magnetic Reynolds number by comparing with the results obtained using a quasistatic approach that has no coupling with the exterior. The rigorous...

  17. Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model

    SciTech Connect (OSTI)

    Pohlmann Karl,Ye Ming

    2012-03-01

    Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.

  18. House Simulation Protocols Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House Simulation Protocols Report House Simulation Protocols Report Report cover Building America's House Simulation Protocols report is designed to assist researchers in tracking...

  19. Numerical simulation of the flow field and the lifting forces in the bristle tip region of a brush seal 

    E-Print Network [OSTI]

    Phung, Anh Ngoc

    1995-01-01

    , bristle diameter, bristle free length, seal backplate diameter, and lift-off gap. Numerical flow visualization illustrates the three-dimensional flow field, showing the circumferential, axial, and radial components of velocity near the bristle surface...

  20. Forests, Water, and the Atmosphere in Northern California: Insights from Sap-Flow Data Analysis and Numerical Atmospheric Model Simulations

    E-Print Network [OSTI]

    Link, Percy

    2015-01-01

    to differences in forecasted wind energy of 15-40% of a windover complex sites. Wind Energy, 16(8):1131–1147. Black,assisted control. Wind Energy. Carvalho, D. , Rocha, A. ,

  1. Dynamic Simulation of Unsteady Flow of Water in Unsaturated Soils and its Application to Subirrigation System Design 

    E-Print Network [OSTI]

    Hiler, E. A.; Bhuiyan, S. I.

    1971-01-01

    Two computer programs were developed. One simulated vertical unsteady infiltration through the surface into a homogeneous unsaturated soil. Simulation results were obtained for three different soils--Yolo light clay, ...

  2. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect (OSTI)

    Freedman, Vicky L.

    2008-01-30

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represents initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial conditions for steady-state flow runs, simulations were executed to investigate the relative effects on contaminant transport from the increased upland fluxes. Contaminant plumes were analyzed for 1) peak concentrations and arrival times at downstream points of compliance, 2) the area of the aquifer contaminated at or above the drinking water standard (DWS), and 3) the total activity remaining in the domain at the end of the simulation. In addition to this analysis, unit source release simulations from a hypothetical tracer were executed to determine relative travel times from the Central Plateau. The results of this study showed that increases in the lateral recharge had limited impact on regional flow directions but accelerated contaminant transport. Although contaminant concentrations may have initially increased for the more mobile contaminants (tritium, technetium-99, and iodine-129), the accelerated transport caused dilution and a more rapid decline in concentrations relative to the Base Case (no additional flux). For the low-mobility uranium-238, higher lateral recharge caused increases in concentration, but these concentrations never approached the DWS. In this preliminary investigation, contaminant concentrations did not exceed the DWS study metric. With the increases in upland fluxes, more mass was transported out of the aquifer, and concentrations were diluted with respect to the base case where no additional flux was considered.

  3. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect (OSTI)

    Freedman, Vicky L.

    2007-03-09

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investi¬gate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a quali¬tative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represent initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simula¬tion period with the three flow fields. The four radionuclides are current contaminants of concern (COCs) in the Central Plateau and include tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial condi¬tions for steady-state flow runs, simulations were executed to investigate the relative effects on contam¬inant transport from the increased upland fluxes. Contaminant plumes were analyzed for 1) peak concen¬trations and arrival times at downstream points of compliance, 2) the area of the aquifer contaminated at or above the drinking water standard (DWS), and 3) the total activity remaining in the domain at the end of the simulation. In addition to this analysis, unit source release simulations from a hypothetical tracer were executed to determine relative travel times from the Central Plateau. The results of this study showed that increases in the upland boundary fluxes 1) had little impact on regional flow directions and 2) accelerated contaminant transport. Although contaminant concentrations have initially increased for the more mobile contaminants (tritium, technetium-99, and iodine-129), the accelerated transport caused dilution and a more rapid decline in concentrations relative to the Base Case (no additional flux). For the low-mobility uranium-238, higher upland fluxes caused increases in concentration, but these concentrations never exceeded the DWS. No significant effects on contaminant concentrations were identified at the Core Zone, Columbia River, or buffer zone area separating these two compliance boundaries. When lateral recharge at the upland boundaries was increased, more mass was transported out of the aquifer and discharged into the Columbia River. These concentrations, however, were diluted with respect to the Base Case, where no potential leakage from the proposed reservoir was considered.

  4. Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part II: Uncertainties in River Routing Simulation Related to Flow

    E-Print Network [OSTI]

    Boyer, Edmond

    the entire globe. RRMs have been introduced into earth system models (ESMs) to convert the runoff simulated

  5. Modeling gas flow in PEMFC channels: Part I e Flow pattern transitions and pressure drop in a simulated ex situ channel

    E-Print Network [OSTI]

    Kandlikar, Satish

    . Heat exchangers, refrigeration systems, and mini-tube condensers have adopted minichannels for two-phase flow in the gas channels of a proton exchange membrane fuel cell (PEMFC) is studied with an ex situ and horizontal orientations with two GDLs, e Baseline (Mitsubishi Rayon Co. MRC 105 with 5 wt.% PTFE and coated

  6. A Parallel Implementation of the TOUGH2 Software Package for Large Scale Multiphase Fluid and Heat Flow Simulations

    E-Print Network [OSTI]

    Elmroth, Erik

    of Energy's civilian nuclear waste management for the evaluation of the Yucca Mountain site as a repository groundwater flow related problems such as nuclear waste isolation, environmental remediation, and geothermal 6 blocks in a Yucca Mountain nuclear waste site study. Keywords. Ground water flow, grid

  7. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-12-31

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

  8. Simulations on the Nonlinear Mode Coupling in Multiple-scale Drift-type Turbulence with Coherent Flow Structures

    E-Print Network [OSTI]

    Lin, Zhihong

    and electron transport. Furthermore, the effect of ITG generated zonal flows regarded as a wave-type mean flow are generated as a beat wave or a modulational instability. Meanwhile, they act back on the turbulence, China 2) Graduate School of Energy Science, Kyoto University, 611-0011 Gokasho, Uji, Japan 3) Department

  9. A Parallel Implementation of the TOUGH2 Software Package for Large Scale Multiphase Fluid and Heat Flow Simulations

    E-Print Network [OSTI]

    Elmroth, Erik

    with ¢¡¤£¦¥§ ¨¡© blocks in a Yucca Mountain nuclear waste site study. Keywords. Ground water flow, grid partitioning management for the evaluation of the Yucca Mountain site as a repository for nuclear wastes. In this context of developing a 3D flow model of the Yucca Mountain site, involving computational grids of to blocks

  10. Simulation of three-dimensional multi-phase flow characteristics in the deswirl section of the CDIF MHD power train

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Petrick, M.

    1994-06-01

    A three-dimensional, two-phase, turbulent flow computer code was used to predict flow characteristics of seed particles and coal gas in the deswirl section of the CDIF MHD power train system. Seed material which has a great effect on the overall performance of the MHD system is injected in the deswirl against the swirling coal gas flow coming from the first stage combustor. While testing the MHD system, excessive seed material (70% more than theoretical value) was required to achieve design operating conditions. Calculations show that the swirling coal gas flow turns a 90 degree angle to minimize the swirl motion before entering a second stage combustor and many seed particles are too slow to react to the flow turning and deposit on the walls of the deswirl section. Some seed material deposited on the walls is covered by slag layer and removed from the gas flow. The reduction of seed material in the gas flow decreases MHD power generation significantly. A computational experiment was conducted and its results show that seed injection on the wall can be minimized by simply changing the seed injection and an optimum location was identified. If seed is injected from the location of choice, the seed deposition is reduced by a factor of 10 compared to the original case.

  11. Computational fluid dynamics assessment: Volume 1, Computer simulations of the METC (Morgantown Energy Technology Center) entrained-flow gasifier: Final report

    SciTech Connect (OSTI)

    Celik, I.; Chattree, M.

    1988-07-01

    An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situations in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.

  12. Autonomous Grounding of the Optical Flow Detectors in a Simulated Visuomotor System of the fly using Behaviorally Meaningful Actions 

    E-Print Network [OSTI]

    Parulkar, Amey

    2015-08-12

    and translation, by pooling information from elementary motion detectors (EMDs) in the lower level. In this sense, neuronal responses (spikes) from these optical flow detectors in the fly carry highly encoded signals. In this thesis, I investigate how such highly...

  13. A locally conservative variational multiscale method for the simulation of porous media flow with multiscale source terms

    E-Print Network [OSTI]

    Dub, Francois-Xavier

    2008-01-01

    Multiscale phenomena are ubiquitous to flow and transport in porous media. They manifest themselves through at least the following three facets: (1) effective parameters in the governing equations are scale dependent; (2) ...

  14. A Robust Four-Fluid Transient Flow Simulator as an Analysis and Decision Making Tool for Dynamic Kill Operation 

    E-Print Network [OSTI]

    Haghshenas, Arash

    2013-04-24

    The worst scenario of drilling operation is blowout which is uncontrolled flow of formation fluid into the wellbore. Blowouts result in environmental damage with potential risk of injuries and fatalities. Although not all blowouts result in disaster...

  15. Low Speed Virtual Wind Tunnel Simulation For Educational Studies In Introducing Computational Fluid Dynamics And Flow Visualization

    E-Print Network [OSTI]

    Yang, Cher-Chiang

    2008-05-05

    imagine how the stall occurs over an airfoil or how the turbulent air looks like after separation happens. In this case, a (flow separation) picture will definitely speak more than a thousand words (or equations). Computational Fluid Dynamics offers...

  16. Assisted fusion

    E-Print Network [OSTI]

    German Kälbermann

    2009-10-19

    A model of nuclear fusion consisting of a wave packet impinging into a well located between square one dimensional barriers is treated analytically. The wave function inside the well is calculated exactly for the assisted tunneling induced by a perturbation mimicking a constant electric field with arbitrary time dependence. Conditions are found for the enhancement of fusion.

  17. A four-equation two-phase flow model for sodium boiling simulation of LMFBR fuel assemblies

    E-Print Network [OSTI]

    Schor, Andrei L.

    1982-01-01

    A three-dimensional numerical model for the simulation of sodium boiling transients has been developed. The model uses mixture mass and energy equations, while employing a separate momentum equation for each phase. Thermal ...

  18. Towards practical implementation of computational solution of the Kinematic -wave Model for simulating traffic-flow scenarios 

    E-Print Network [OSTI]

    Kumar, Nishant

    2004-11-15

    The Kinematic-wave model is one of the models proposed to simulate vehicular traffic. It has not received widespread use because of poor understanding of associated interface conditions and early use of incorrect numerical schemes used. This thesis...

  19. Simulation of fluid flow mechanisms in high permeability zones (Super-K) in a giant naturally fractured carbonate reservoir 

    E-Print Network [OSTI]

    Abu-Hassoun, Amer H.

    2009-05-15

    the Super-K Zone was investigated. It is known that these zones are connected to naturally occurring fractures. Fluid flow in naturally fractured reservoirs is a very difficult mechanism to understand. To accomplish this mission, the Super-K Zone...

  20. Mathematical analysis and numerical simulation of multi-phase multi-component flow in heterogeneous porous media

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    methods Mathematical modelling CO2 storage Enhanced oil recovery Groundwater contamination Multi-phase multi-component flow processes are fundamental to engineering applications in hydrocarbon and geothermal The transport of dissolved chemical components (e.g., CO2, NaCl, CH4) in different fluid phases (e.g., water

  1. A low diffusive Lagrange-Remap scheme for the simulation of violent air-water free-surface flows.

    E-Print Network [OSTI]

    using a five-equation model. In this paper, we explore a simplified variant approach for gas-liquid petroleum, the sizing of Liquified Natural Gas (LNG) carriers, processes of phase separation, waste water of the flows and the process optimization in the industrial case. For gas-liquid applications involving fast

  2. Numerical Simulation of Flow and Heat Transfer in Internal Multi-Pass Cooling Channel within Gas Turbine Blade 

    E-Print Network [OSTI]

    Chu, Hung-Chieh 1979-

    2012-11-16

    four-pass channel with two different inlet settings. The main flowing channel was rectangular channel (AR=2:1) with hydraulic diameter (Dh ) equals to 2/3 inch (16.9 mm). The first and fourth channel were set as different aspect ratio (AR=2:1; AR=1...

  3. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data

    E-Print Network [OSTI]

    Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

    2010-01-01

    Calibration Using GRACE Data and Base Flow Estimates [ 17 ]ESTIMATION USING GRACE DATA base flow data. In this casemeasured GRACE data and estimated base flow simultaneously

  4. Experiment and computational fluid dynamics (CFD) simulation of urea-based selective noncatalytic reduction (SNCR) in a pilot-scale flow reactor

    SciTech Connect (OSTI)

    Thanh D.B. Nguyen; Young-Il Lim; Seong-Joon Kim; Won-Hyeon Eom; Kyung-Seun Yoo [Hankyong National University, Jungangno (Republic of Korea). Laboratory of Functional Analysis of Complex Systems (FACS)

    2008-11-15

    A turbulent reacting flow computational fluid dynamics (CFD) model involving a droplet size distribution function in the discrete droplet phase is first built for selective noncatalytic reduction (SNCR) processes using urea solution as a NOx removal reagent. The model is validated with the experimental data obtained from a pilot-scale urea-based SNCR reactor installed with a 150 kW gas burner. New kinetic parameters of seven chemical reactions for the urea-based NOx reduction are identified and incorporated into the three-dimensional turbulent flow CFD model. The two-phase droplet model with the non-uniform droplet size is also combined with the CFD model to predict the trajectory of the droplets and to examine the mixing between the flue gas and reagents. The maximum NO reduction efficiency of about 80%, experimentally measured at the reactor outlet, is obtained at 940{degree}C and a normalized stoichiometric ratio (NSR) = 2.0 under the conditions of 11% excess air and low CO concentration (10-15 ppm). At the reaction temperature of 940{degree}C, the difference of a maximum of 10% between experiments and simulations of the NO reduction percentage is observed for NSR = 1.0, 1.5, and 2.0. The ammonia slip is overestimated in CFD simulation at low temperatures, especially lower than 900{degree}C. However, the CFD simulation results above 900{degree}C show a reasonable agreement with the experimental data of NOx reduction and ammonia slip as a function of the NSR. 31 refs., 3 figs., 6 tabs.

  5. FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanical Deformation/Fracture Generation Simulator

    Office of Energy Efficiency and Renewable Energy (EERE)

    This research will develop a fully coupled, fully implicit approach for EGS stimulation and reservoir simulation. Solve all governing equations simultaneously in fully implicit way. Enable massively parallel performance and scalability. Apply state of the art nonlinear PDE solvers: Jacobian Free Newton Krylov (JFNK) method.

  6. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. Part I: macroscopic effects of the electron flows

    E-Print Network [OSTI]

    Muñoz, P A; Kilian, P; Büchner, J; Jenko, F

    2015-01-01

    In this work, we extend a comparison between gyrokinetic (GK) and fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field started by TenBarge et al. [Phys. Plasmas 21, 020708 (2014)]. By using a different set of kinetic PIC and GK simulation codes (ACRONYM and GENE, respectively), we analyze the limits of applicability of the GK approach when comparing to the force free kinetic simulations in the low guide field (bg) regime. Here we report the first part of a much more extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (beta_i = 0.01), it is shown that magnetic reconnection only displays similar features between both plasma models for higher kinetic PIC guide fields (bg>30) in the secondary magnetic islands than in the region close to the X points or separatrices (bg>5). Kinetic PIC low guide field runs (53) to be negligible due to the reduced reconnection rate and fluctuation level.

  7. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data

    E-Print Network [OSTI]

    Lo, Min-Hui; Famiglietti, James S; Yeh, P. J.-F.; Syed, T. H

    2010-01-01

    model using GRACE water storage and estimated base flow data,model using GRACE water storage and estimated base flow datawith esti- mated base flow data in the model calibration.

  8. PIC simulation of a strong double layer in a nonrelativistic plasma flow: Electron acceleration to ultrarelativistic speeds

    E-Print Network [OSTI]

    M E Dieckmann; A Bret

    2008-12-09

    Two charge- and current neutral plasma beams are modelled with a one-dimensional PIC simulation. The beams are uniform and unbounded. The relative speed between both beams is 0.4c. One beam is composed of electrons and protons and one out of protons and negatively charged oxygen (dust). All species have the temperature 9 keV. A Buneman instability develops between the electrons of the first beam and the protons of the second beam. The wave traps the electrons, which form plasmons. The plasmons couple energy into the ion acoustic waves, which trap the protons of the second beam. A proton phase space hole grows, which develops through its interaction with the oxygen and the heated electrons into a rarefaction pulse. This pulse drives a strong ion acoustic double layer, which accelerates a beam of electrons to about 50 MeV, which is comparable to the proton kinetic energy. The proton distribution eventually evolves into an electrostatic shock. Beams of charged particles moving at such speeds may occur in the foreshock of supernova remnant shocks. This double layer is thus potentially relevant for the electron acceleration (injection) into the diffusive shock acceleration by supernova remnants shocks.

  9. Petrophysical analysis of regional-scale thermal properties for improved simulations of geothermal installations and basin-scale heat and fluid flow

    E-Print Network [OSTI]

    Hartmann, Andreas; Clauser, Christoph

    2008-01-01

    Development of geothermal energy and basin-scale simulations of fluid and heat flow both suffer from uncertain physical rock properties at depth. Therefore, building better prognostic models are required. We analysed hydraulic and thermal properties of the major rock types in the Molasse Basin in Southern Germany. On about 400 samples thermal conductivity, density, porosity, and sonic velocity were measured. Here, we propose a three-step procedure with increasing complexity for analysis of the data set: First, univariate descriptive statistics provides a general understanding of the data structure, possibly still with large uncertainty. Examples show that the remaining uncertainty can be as high as 0.8 W/(m K) or as low as 0.1 W/(m K). This depends on the possibility to subdivide the geologic units into data sets that are also petrophysically similar. Then, based on all measurements, cross-plot and quick-look methods are used to gain more insight into petrophysical relationships and to refine the analysis. Be...

  10. Executive Assistant to the Vice-President

    E-Print Network [OSTI]

    Michelson, David G.

    Administrative Assistant Murray Armstrong Administrative Assistant Tangerine Twiss Research Partnership

  11. Development of a computer wellbore simulator for coiled-tube operations

    SciTech Connect (OSTI)

    Gu, H.; Walton, I.C.; Dowell, S.

    1994-12-31

    This paper describes a computer wellbore simulator developed for coiled tubing operations of fill cleanout and unloading of oil and gas wells. The simulator models the transient, multiphase fluid flow and mass transport process that occur in these operations. Unique features of the simulator include a sand bed that may form during fill cleanout in deviated and horizontal wells, particle transport with multiphase compressible fluids, and the transient unloading process of oil and gas wells. The requirements for a computer wellbore simulator for coiled tubing operations are discussed and it is demonstrated that the developed simulator is suitable for modeling these operations. The simulator structure and the incorporation of submodules for gas/liquid two-phase flow, reservoir and choke models, and coiled tubing movement are addressed. Simulation examples are presented to show the sand bed formed in cleanout in a deviated well and the transient unloading results of oil and gas wells. The wellbore simulator developed in this work can assist a field engineer with the design of coiled tubing operations. By using the simulator to predict the pressure, flow rates, sand concentration and bed depth, the engineer will be able to select the coiled tubing, fluid and schedule of an optimum design for particular well and reservoir conditions.

  12. Network Electricity Use Associated with Wireless Personal Digital Assistants

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Network Electricity Use Associated with Wireless Personal Digital Assistants Jonathan Koomey1 the widely cited claim that the network electricity use associated with a wireless personal digital assistant PDA is equal to the electricity consumed by a refrigerator. It compiles estimates of the data flows

  13. Timothy T. Creyts Lamont Assistant Research Professor

    E-Print Network [OSTI]

    Creyts, Timothy T.

    tests for estimating water flow and heat transfer beneath ice sheets. 1999­2001 Research assistant, Univ (i.e., laboratory) models to discern relevant mechanisms and feedbacks. Topics of interest include: A numerical model of glaciohydraulic supercooling: Thermodynamics and sediment en- trainment. Advisor: Dr

  14. Graduate Research Assistant Workload Agreement Research Assistant: _____________________________________________

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Graduate Research Assistant Workload Agreement Research Assistant by the supervisor(s). Purpose of Research Assistantship The primary purpose of Research Assistantships is to (a) act graduate students. The secondary goals of awarding RAs are to expose students to current research

  15. Technology Assistance Program | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assistance Program SHARE Technology Assistance Program Electronics Research Assistance is available for small business licensees of ORNL technologies to leverage ORNL's expertise...

  16. Simulation effectively sites surge-relief facilities on Saudi pipeline

    SciTech Connect (OSTI)

    Dempsey, J.J.; Al-Gouhi, A.H. (Saudi Arabian Oil Co., Dhahrain (Saudi Arabia))

    1993-09-20

    Pipeline hydraulic and surge analysis studies of the Saudi Aramco East-West crude-oil pipeline assisted in expanding the system's capacity by 50%. Surge studies predicted that operational upsets, such as the trip of a pump station, cause excessive surge pressures in the pipeline system at new flow rates. Additional surge studies showed that surge-relief stations must be located downstream from each of six pump stations. The new surge-relief stations and an increase in capacity of existing surge-relief stations protect the pipelines at the higher flow rates. The paper describes modeling the system, the analysis of the hydraulics, surge analysis, acoustic transit times, relief valve simulation, surge-relief protection, surge-relief stations, station locations, simulation results, tank sizing, and valve testing.

  17. Weatherization Assistance Program

    Broader source: Energy.gov [DOE]

    This fact sheet provides an overview of the U.S. Department of Energys Weatherization Assistance Program.

  18. Employee and Family Assistance

    E-Print Network [OSTI]

    Morris, Joy

    Employee and Family Assistance Program (EFAP) To receive Employee and Family Assistance Program for employees and their families, provided by Homewood Human Solutions call 24 hours a day · 7 days a week the services? Homewood Human Solutions--a Canadian company that specializes in providing employee assistance

  19. Blood damage measures for ventricular assist device modeling

    E-Print Network [OSTI]

    Natelson, Douglas

    of implantable ventricular assist devices­in particular, continuous- flow axial and centrifugal pumps­offers hope challenge that needs to be addressed in the design phase of blood pumps is the elevated level of shear of exposure. The distribution of the shear stress levels in a complex flow field of a rotary blood pump

  20. Miniaturization of a left ventricular assist device 

    E-Print Network [OSTI]

    Milios, Gregory Scott

    1996-01-01

    The ventricular assist device under investigation in this study is the multiple disk centrifugal pump developed by Miller [32, 33, 34]. The pump design is based on that invented by Nikola Tesla and is termed the TAMU-MDP pump, standing for the Texas A... of the National Institute of Health (NIH) as being an accurate provider of the typical flow regime and pressure profile experienced by the human heart. As the Tesla pump is intended for use as a left ventricular assist device, only the systemic vasculature has...

  1. Numerical Simulation of Flow Field Inside a Squeeze Film Damper and the Study of the Effect of Cavitation on the Pressure Distribution 

    E-Print Network [OSTI]

    Khandare, Milind Nandkumar

    2012-02-14

    design are either overly simplified or incapable of taking into account all the features such as cavitation, air entrainment etc., affecting the performance of a SFD. On the other hand, experimental investigation of flow field and dynamic performance...

  2. A Simulator with Numerical Upscaling for the Analysis of Coupled Multiphase Flow and Geomechanics in Heterogeneous and Deformable Porous and Fractured Media 

    E-Print Network [OSTI]

    Yang, Daegil

    2013-07-15

    A growing demand for more detailed modeling of subsurface physics as ever more challenging reservoirs - often unconventional, with significant geomechanical particularities - become production targets has moti-vated research in coupled flow...

  3. The RealGas and RealGasH2O Options of the TOUGH+ Code for the Simulation of Coupled Fluid and Heat Flow in Tight/Shale Gas Systems

    SciTech Connect (OSTI)

    Moridis, George; Freeman, Craig

    2013-09-30

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas . The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and shale gas) reservoirs. The gas mixture is treated as either a single-pseudo-component having a fixed composition, or as a multicomponent system composed of up to 9 individual real gases. The RealGas option has the same general capabilities, but does not include water, thus describing a single-phase, dry-gas system. In addition to the standard capabilities of all members of the TOUGH+ family of codes (fully-implicit, compositional simulators using both structured and unstructured grids), the capabilities of the two codes include: coupled flow and thermal effects in porous and/or fractured media, real gas behavior, inertial (Klinkenberg) effects, full micro-flow treatment, Darcy and non-Darcy flow through the matrix and fractures of fractured media, single- and multi-component gas sorption onto the grains of the porous media following several isotherm options, discrete and fracture representation, complex matrix-fracture relationships, and porosity-permeability dependence on pressure changes. The two options allow the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in problems of geologic storage of greenhouse gas mixtures, and of geothermal reservoirs with multi-component condensable (H2O and CH4) and non-condensable gas mixtures. The codes are verified against available analytical and semi-analytical solutions. Their capabilities are demonstrated in a series of problems of increasing complexity, ranging from isothermal flow in simpler 1D and 2D conventional gas reservoirs, to non-isothermal gas flow in 3D fractured shale gas reservoirs involving 4 types of fractures, micro-flow, non-Darcy flow and gas composition changes during production.

  4. Assistance Focus: Africa (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    The Clean Energy Solutions Center Ask an Expert service connects governments seeking policy information and advice with one of more than 30 global policy experts who can provide reliable and unbiased quick-response advice and information. The service is available at no cost to government agency representatives from any country and the technical institutes assisting them. This publication presents summaries of assistance provided to African governments, including the benefits of that assistance.

  5. Anisotropic flow

    E-Print Network [OSTI]

    S. A. Voloshin

    2002-11-20

    Recent experimental results on directed and elliptic flow, theoretical developments, and new techniques for anisotropic flow analysis are reviewed.

  6. Administrative Business Assistant

    E-Print Network [OSTI]

    Rock, Chris

    Center Marketing Raider Welcome Tech Activities Board Town & Gown BUSINESS OFFICE Associate Director Station Chief Financial O cer & Vice President for Administration and Finance (Clark) Interim Assistant

  7. Radiological Assistance Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-04-10

    To establish Department of Energy (DOE) policy, procedures, authorities, and responsibilities for its Radiological Assistance Program. Canceled by DOE O 153.1.

  8. An Efficient, Semi-implicit Pressure-based Scheme Employing a High-resolution Finitie Element Method for Simulating Transient and Steady, Inviscid and Viscous, Compressible Flows on Unstructured Grids

    SciTech Connect (OSTI)

    Richard C. Martineau; Ray A. Berry

    2003-04-01

    A new semi-implicit pressure-based Computational Fluid Dynamics (CFD) scheme for simulating a wide range of transient and steady, inviscid and viscous compressible flow on unstructured finite elements is presented here. This new CFD scheme, termed the PCICEFEM (Pressure-Corrected ICE-Finite Element Method) scheme, is composed of three computational phases, an explicit predictor, an elliptic pressure Poisson solution, and a semiimplicit pressure-correction of the flow variables. The PCICE-FEM scheme is capable of second-order temporal accuracy by incorporating a combination of a time-weighted form of the two-step Taylor-Galerkin Finite Element Method scheme as an explicit predictor for the balance of momentum equations and the finite element form of a time-weighted trapezoid rule method for the semi-implicit form of the governing hydrodynamic equations. Second-order spatial accuracy is accomplished by linear unstructured finite element discretization. The PCICE-FEM scheme employs Flux-Corrected Transport as a high-resolution filter for shock capturing. The scheme is capable of simulating flows from the nearly incompressible to the high supersonic flow regimes. The PCICE-FEM scheme represents an advancement in mass-momentum coupled, pressurebased schemes. The governing hydrodynamic equations for this scheme are the conservative form of the balance of momentum equations (Navier-Stokes), mass conservation equation, and total energy equation. An operator splitting process is performed along explicit and implicit operators of the semi-implicit governing equations to render the PCICE-FEM scheme in the class of predictor-corrector schemes. The complete set of semi-implicit governing equations in the PCICE-FEM scheme are cast in this form, an explicit predictor phase and a semi-implicit pressure-correction phase with the elliptic pressure Poisson solution coupling the predictor-corrector phases. The result of this predictor-corrector formulation is that the pressure Poisson equation in the PCICE-FEM scheme is provided with sufficient internal energy information to avoid iteration. The ability of the PCICE-FEM scheme to accurately and efficiently simulate a wide variety of inviscid and viscous compressible flows is demonstrated here.

  9. Occupational Medicine - Assistant PIA, Idaho National Laboratory...

    Energy Savers [EERE]

    Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho...

  10. Title: Marketing Assistant Description

    E-Print Network [OSTI]

    Schweik, Charles M.

    Title: Marketing Assistant Description: The UMass Amherst Career Services Office is searching for a student interested in marketing. The Marketing Assistant will work closely with our in-office marketing Brainstorm new and exciting marketing strategies, including social media Participate and contribute

  11. Salary Payroll Graduate Assistants

    E-Print Network [OSTI]

    Harms, Kyle E.

    Salary Payroll Processing for Graduate Assistants Academic Employees Unclassified Employees Office of Accounting Services Payroll Division March 2012 Contents Overview of Salary payroll process Fiscal Academic OF SALARY PAYROLL PROCESS 1. Fiscal Payroll: Payment of Graduate Assistants (GAs) and fiscal employees

  12. ASSISTED ELECTRONIC COMMUNICATION IN

    E-Print Network [OSTI]

    ;Department of Health Project 121-7184 Final Report 3 Executive Summary In the Assisted Electronic Project 121-7184 Final Report - 05.04.04 Kettering General NHS Hospital Trust University of Hertfordshire of Health Project 121-7184 Final Report 2 KEY to Common Abbreviations used: AEC(P) ­ Assisted Electronic

  13. THE APPLICATION OF A STATISTICAL DOWNSCALING PROCESS TO DERIVE 21{sup ST} CENTURY RIVER FLOW PREDICTIONS USING A GLOBAL CLIMATE SIMULATION

    SciTech Connect (OSTI)

    Werth, D.; Chen, K. F.

    2013-08-22

    The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to ‘downscale’ the GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.

  14. Dealing with big circulation flow, small temperature difference based on verified dynamic model simulations of a hot water district heating system 

    E-Print Network [OSTI]

    Zhong, L.

    2014-01-01

    d design en enclosure ex exchanger f fuel h heater int internal n number of HES o outside r return s supply sp set point sols solar radiation from south side v verify w, w2i water, water in secondary system for each HES z zone ESL... temperatures, solar radiation and wind speed; the heat balance has been regulated based on the average water temperature in the secondary system by adjusting the water mass flow rate (u1) of each HES in the primary system; and the water mass flow rate...

  15. Two-phase flow studies

    SciTech Connect (OSTI)

    Hanold, R.J.

    1983-12-01

    The two-phase flow program is directed at understanding the hydrodynamics of two-phase flows. The two-phase flow regime is characterized by a series of flow patterns that are designated as bubble, slug, churn, and annular flow. Churn flow has received very little scientific attention. This lack of attention cannot be justified because calculations predict that the churn flow pattern will exist over a substantial portion of the two-phase flow zone in producing geothermal wells. The University of Houston is experimentally investigating the dynamics of churn flow and is measuring the holdup over the full range of flow space for which churn flow exists. These experiments are being conducted in an air/water vertical two-phase flow loop. Brown University has constructed and is operating a unique two-phase flow research facility specifically designed to address flow problems of relevance to the geothermal industry. An important feature of the facility is that it is dedicated to two-phase flow of a single substance (including evaporation and condensation) as opposed to the case of a two-component two-phase flow. This facility can be operated with horizontal or vertical test sections of constant diameter or with step changes in diameter to simulate a geothermal well profile.

  16. Assistant Vice President Advancement Marketing &

    E-Print Network [OSTI]

    Bob Thomas Assistant Vice President Advancement Marketing & Communications N:\\groups\\handbook\\ Org Design Open Information Tech Web Design Lisa Wilton Assistant Director Paula Davenport Editor MSU Alumni

  17. Mexico Small Business Assistance fest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    celebrate success at New Mexico Small Business Assistance fest April 4, 2011 LOS ALAMOS, New Mexico, April 4, 2011-The New Mexico Small Business Assistance (NMSBA) program is...

  18. Electromagnetically Induced Flows Michiel de Reus

    E-Print Network [OSTI]

    Vuik, Kees

    Electromagnetically Induced Flows in Water Michiel de Reus 8 maart 2013 () Electromagnetically Conclusion and future research () Electromagnetically Induced Flows 2 / 56 #12;1 Introduction 2 Maxwell Navier Stokes equations 5 Simulations 6 Conclusion and future research () Electromagnetically Induced

  19. Weatherization Assistance Program Technical Assistance Center

    SciTech Connect (OSTI)

    Robert Adams

    2009-01-07

    The following is a synopsis of the major achievements attributed to the operation of the Weatherization Assistance Program Technical Assistance Center (WAPTAC) by the National Association for State Community Services Programs (NASCSP). During the past five years, the WAPTAC has developed into the premier source for information related to operating the Weatherization Assistance Program (WAP) at the state and local levels. The services provide through WAPTAC include both virtual technical support as well as hands-on training and instruction in classroom and in the field. The WAPTAC achieved several important milestones during its operation including the establishment of a national Weatherization Day now celebrated in most states, the implementation of a comprehensive Public Information Campaign (PIC) to raise the awareness of the Program among policy makers and the public, the training of more than 150 new state managers and staff as they assume their duties in state offices around the country, and the creation and support of a major virtual information source on the Internet being accessed by thousands of staff each month. The Weatherization Assistance Program Technical Assistance Center serves the Department of Energy's (DOE) Office of Weatherization and Intergovernmental Program as a valuable training and technical assistance resource for the network of 54 direct state grantees (50 states, District of Columbia and three Native American tribes) and the network of 900 local subgrantees (comprised of community action agencies, units of local government, and other non-profit organizations). The services provided through WAPTAC focus on standardizing and improving the daily management of the WAP. Staff continually identify policies changes and best practices to help the network improve its effectiveness and enhance the benefits of the Program for the customers who receive service and the federal and private investors. The operations of WAPTAC are separated into six distinct areas: (1) Orientation for New WAP State Directors and Staff; (2) Pollution Occurrence Insurance Project; (3) Public Information Campaign; (4) State Management Training Project; (5) System for Integrating and Reviewing Technologies and Techniques; and (6) WAPTAC Services.

  20. A Sub-grid Model for an Array of Immersed Cylinders in Coarse-grid Multiphase Flow Simulations of a Carbon Capture Device

    SciTech Connect (OSTI)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2012-12-01

    A post-combustion carbon-capture system utilizing a bubbling fluidized bed of sorbent particles is currently being developed as a part of the Carbon Capture and Simulation Initiative (CCSI) efforts. Adsorption of carbon dioxide (CO2) by these amine based sorbent particles is exothermic and arrays of immersed cylindrical heat transfer tubes are often utilized to maintain the lower temperatures favorable for CO2 capture. In multiphase computational fluid dynamics (CFD) simulations of the full-scale devices, which can be up to 10 m in size, approximately 103 cells are required in each dimension to accurately resolve the cylindrical tubes, which are only a few centimeters in diameter. Since the tubes cannot be resolved explicitly in CFD simulations, alternate methods to account for the influence of these immersed objects need to be developed.

  1. Numerical Investigation of turbulent coupling boundary layer of air-water interaction flow

    E-Print Network [OSTI]

    Liu, Song, S.M. Massachusetts Institute of Technology

    2005-01-01

    Air-water interaction flow between two parallel flat plates, known as Couette flow, is simulated by direct numerical simulation. The two flowing fluids are coupled through continuity of velocity and shear stress condition ...

  2. Overcoming the screening-induced performance limits of nanowire biosensors: a simulation study on the effect of electro-diffusion flow

    E-Print Network [OSTI]

    Liu, Yang

    Overcoming the screening-induced performance limits of nanowire biosensors: a simulation study capabilities have been developed to self-consistently model the Si-nanowire (NW) biosensor systems. Our-induced performance limits on Si-NW biosensors can be overcome. Introduction Recently, ISFET-type devices [1,2] using

  3. Knowledge Assisted Visualization Knowledge-assisted visualization of seismic data

    E-Print Network [OSTI]

    for knowledge-assisted annotation and computer-assisted interpretation of seismic data for oil and gas, using seismic interpretation, is performed that makes it fit very naturally into the paradigmKnowledge Assisted Visualization Knowledge-assisted visualization of seismic data Daniel Patel a

  4. Assisting Difficult Calving 

    E-Print Network [OSTI]

    Faries Jr., Floron C.

    2006-12-20

    Calving difficulty is frequently caused by disproportionate size--the calf is too big for the birth canal. This publication discusses the stages of labor, how to assist in delivery and what to do after the delivery of a calf....

  5. 9003: Biorefinery Assistance Program

    Broader source: Energy.gov [DOE]

    Breakout Session 1D—Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) 9003: Biorefinery Assistance Program Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture

  6. Fluid Flow Modeling in Fractures

    E-Print Network [OSTI]

    Sarkar, Sudipta

    2004-01-01

    In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

  7. Modeling shrouded stator cavity flows in axial-flow compressors

    SciTech Connect (OSTI)

    Wellborn, S.R.; Tolchinsky, I.; Okiishi, T.H.

    2000-01-01

    Experiments and computational analyses were completed to understand the nature of shrouded stator cavity flows. From this understanding, a one-dimensional model of the flow through shrouded stator cavities was developed. This model estimates the leakage mass flow, temperature rise, and angular momentum increase through the cavity, given geometry parameters and the flow conditions at the interface between the cavity and primary flow path. This cavity model consists of two components, one that estimates the flow characteristics through the labyrinth seals and the other that predicts the transfer of momentum due to windage. A description of the one-dimensional model is given. The incorporation and use of the one-dimensional model in a multistage compressor primary flow analysis tool is described. The combination of this model and the primary flow solver was used to reliably simulate the significant impact on performance of the increase of hub seal leakage in a twelve-stage axial-flow compressor. Observed higher temperatures of the hub region fluid, different stage matching, and lower overall efficiencies and core flow than expected could be correctly linked to increased hub seal clearance with this new technique. The importance of including these leakage flows in compressor simulations is shown.

  8. Particle simulation of vibrated gas-fluidized beds of cohesive fine powders

    E-Print Network [OSTI]

    Sung Joon Moon; I. G. Kevrekidis; S. Sundaresan

    2006-08-09

    We use three-dimensional particle dynamics simulations, coupled with volume-averaged gas phase hydrodynamics, to study vertically vibrated gas-fluidized beds of fine, cohesive powders. The volume-averaged interstitial gas flow is restricted to be one-dimensional (1D). This simplified model captures the spontaneous development of 1D traveling waves, which corresponds to bubble formation in real fluidized beds. We use this model to probe the manner in which vibration and gas flow combine to influence the dynamics of cohesive particles. We find that as the gas flow rate increases, cyclic pressure pulsation produced by vibration becomes more and more significant than direct impact, and in a fully fluidized bed this pulsation is virtually the only relevant mechanism. We demonstrate that vibration assists fluidization by creating large tensile stresses during transient periods, which helps break up the cohesive assembly into agglomerates.

  9. Plug flow and the breakdown of Bagnold scaling in cohesive granular flows Robert Brewster,1

    E-Print Network [OSTI]

    Levine, Alex J.

    Plug flow and the breakdown of Bagnold scaling in cohesive granular flows Robert Brewster,1 Gary S Cohesive granular media flowing down an inclined plane are studied by discrete element simulations. Previous work on cohesionless granular media demonstrated that within the steady flow regime where gravi

  10. Technical Assistance to Developers

    SciTech Connect (OSTI)

    Rockward, Tommy; Borup, Rodney L.; Garzon, Fernando H.; Mukundan, Rangachary; Spernjak, Dusan

    2012-07-17

    This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols, and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.

  11. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    SciTech Connect (OSTI)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  12. SIMULATING KNOWLEDGE AND INFORMATION IN PEDESTRIAN EGRESS

    E-Print Network [OSTI]

    Allan, Vicki H.

    SIMULATING KNOWLEDGE AND INFORMATION IN PEDESTRIAN EGRESS Kyle Feuz1,2 and Vicki Allan3 1Masters.allan@usu.edu Keywords: Reinforcement-Learning:Pedestrian Simulation:Egress Assistance:Congestion:Multi-Agent Systems Abstract: Accurate pedestrian simulation is a difficult yet important task. One of the main challenges

  13. Development and validation of a radial inflow turbine model for simulation of the SNL S-CO2 split-flow loop.

    SciTech Connect (OSTI)

    Vilim, R. B.

    2012-07-31

    A one-dimensional model for a radial inflow turbine has been developed for super-critical carbon dioxide (S-CO{sub 2}) Brayton cycle applications. The model accounts for the main phenomena present in the volute, nozzle, and impeller of a single-stage turbine. These phenomena include internal losses due to friction, blade loading, and angle of incidence and parasitic losses due to windage and blade-housing leakage. The model has been added as a component to the G-PASS plant systems code. The model was developed to support the analysis of S-CO{sub 2} cycles in conjunction with small-scale loop experiments. Such loops operate at less than a MWt thermal input. Their size permits components to be reconfigured in new arrangements relatively easily and economically. However, the small thermal input combined with the properties of carbon dioxide lead to turbomachines with impeller diameters of only one to two inches. At these sizes the dominant phenomena differ from those in larger more typical machines. There is almost no treatment in the literature of turbomachines at these sizes. The present work therefore is aimed at developing turbomachine models that support the task of S-CO{sub 2} cycle analysis using small-scale tests. Model predictions were compared against data from an experiment performed for Sandia National Laboratories in the split-flow Brayton cycle loop currently located at Barber-Nichols Inc. The split-flow loop incorporates two turbo-alternator-compressor (TAC) units each incorporating a radial inflow turbine and a radial flow compressor on a common shaft. The predicted thermodynamic conditions at the outlet of the turbine on the main compressor shaft were compared with measured values at different shaft speeds. Two modifications to the original model were needed to better match the experiment data. First, a representation of the heat loss from the volute downstream of the sensed inlet temperature was added. Second, an empirical multiplicative factor was applied to the Euler head and another to the head loss to bring the predicted outlet pressure into better agreement with the experiment. These changes also brought the overall efficiency of the turbine into agreement with values cited by Barber Nichols for small turbines. More generally, the quality of measurement set data can in the future be improved by additional steps taken in the design and operation of the experimental apparatus. First, a thermocouple mounted at the nozzle inlet would provide a better indication of temperature at this key point. Second, heat losses from the turbine should be measured directly. Allowing the impeller to free wheel at inlet conditions and measuring the temperature drop between inlet and outlet would provide a more accurate measure of heat loss. Finally, the enthalpy change during operation is more accurately obtained by measuring the torque on the stator using strain gauges rather than by measuring pressure and temperature at inlet and outlet to infer thermodynamic states.

  14. Microblower assisted barometric valve

    DOE Patents [OSTI]

    Rossabi, Joseph; Hyde, Warren K.; Riha, Brian D.; Jackson, Dennis G.; Sappington, Frank

    2005-12-06

    A gas exchange apparatus is provided which provides for both passive fluid flow and blower associated fluid flow through a barometric valve. A battery powered blower is provided which allows for operation of the barometric valve during times when the barometric valve would otherwise be closed, and provides for enhanced volume of gas exchange.

  15. Plant analyzer development for high-speed interactive simulation of BWR plant transients

    SciTech Connect (OSTI)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1986-01-01

    Advanced modeling techniques have been combined with modern, special-purpose peripheral minicomputer technology to develop a plant analyzer which provides realistic and accurate predictions of plant transients and severe off-normal events in nuclear power plants through on-line simulations at speeds of approximately 10 times faster than actual process speeds. The new simulation technology serves not only for carrying out routinely and efficiently safety analyses, optimizations of emergency procedures and design changes, parametric studies for obtaining safety margins and for generic training but also for assisting plant operations. Five modeling principles are presented which serve to achieve high-speed simulation of neutron kinetics, thermal conduction, nonhomogeneous and nonequilibrium two-phase flow coolant dynamics, steam line acoustical effects, and the dynamics of the balance of plant and containment systems, control systems and plant protection systems. 21 refs.

  16. Medical Robots Surgical Assistants

    E-Print Network [OSTI]

    Pulfrey, David L.

    1 Medical Robots Surgical Assistants · Efficacy of Procedure ­ Accuracy ­ Longevity ­ Invasiveness · Augment human capabilities ­ Enabling new procedures ­ Time under anaesthetic #12;2 Surgical Robots) ­ Sensei (Hansen Medical) Autonomous Surgical Robots Robodoc.com #12;3 Guided Surgical Robots Makosurgical

  17. Administrative Business Assistant

    E-Print Network [OSTI]

    Rock, Chris

    Marketing Raider Welcome Tech Activities Board Town & Gown BUSINESS OFFICE Associate Director for Business Legal Services University ID Center University Police SUB Station Interim Chief Financial O cer & Vice IT Student Assistant (2) Interim Chief Financial O cer & Vice President for Administration and Finance (Sloan

  18. Mechanical Engineering Assistant Professor

    E-Print Network [OSTI]

    Chandy, John A.

    Mechanical Engineering Xu Chen Assistant Professor xchen@uconn.edu http://xchen.lab.uconn.edu From Engineering Ingredients of Kung Pao Chicken Marinade · 1 tablespoon soy sauce · 2 teaspoons Chinese rice wine of Diana Kuan #12;Mechanical Engineering The Cooking Procedure #12;Mechanical Engineering The Difference

  19. Assisted freeze-out

    SciTech Connect (OSTI)

    Bélanger, Geneviève; Park, Jong-Chul, E-mail: belanger@lapp.in2p3.fr, E-mail: jcpark@kias.re.kr [Laboratoire d'Annecy-le-Vieux de Physique Théorique, Université de Savoie, CNRS, BP 110, 74941 Annecy-Le-Vieux (France)

    2012-03-01

    We explore a class of dark matter models with two dark matter candidates, only one interacts with the standard model sector. One of the dark matter is thermalized with the assistance of the other stable particle. While both stable particles contribute to the total relic density only one can elastically scatter with nuclei, thus effectively reducing the direct detection rate.

  20. Research Assistant Tracking Code

    E-Print Network [OSTI]

    Simmons, Craig A.

    with neuroimaging technologies (MRI, EEG, MEG, PET, etc.). Working with technicians and scientists in collaborating & image processing, #12;statistics/data analysis, MRI and/or PET data acquisition Shell scripting in Unix control and processing, software development and data visualization. Assisting in maintaining

  1. Comparison of planar shear flow and planar elongational flow for systems of small molecules

    E-Print Network [OSTI]

    such as blow-forming, injection molding, and sheet casting. The flows occurring during these processes difficult. Early PEF simulations involved contracting the simulation cell in one of the directions parallel

  2. Archives Research Assistant Classification: Student Assistant 3 (LSA 3)

    E-Print Network [OSTI]

    Archives Research Assistant Classification: Student Assistant 3 (LSA 3) Salary: $9.50 - $9.69 Hours: 15-20 per week The University of Oregon Libraries invites application for a part-time, temporary Archives Research Assistant in Knight Library's Special Collections and University Archives. The student

  3. CFD analysis of laminar oscillating flows

    SciTech Connect (OSTI)

    Booten, C. W. Charles W.); Konecni, S.; Smith, B. L.; Martin, R. A.

    2001-01-01

    This paper describes a numerical simulations of oscillating flow in a constricted duct and compares the results with experimental and theoretical data. The numerical simulations were performed using the computational fluid dynamics (CFD) code CFX4.2. The numerical model simulates an experimental oscillating flow facility that was designed to test the properties and characteristics of oscillating flow in tapered ducts, also known as jet pumps. Jet pumps are useful devices in thermoacoustic machinery because they produce a secondary pressure that can counteract an unwanted effect called streaming, and significantly enhance engine efficiency. The simulations revealed that CFX could accurately model velocity, shear stress and pressure variations in laminar oscillating flow. The numerical results were compared to experimental data and theoretical predictions with varying success. The least accurate numerical results were obtained when laminar flow approached transition to turbulent flow.

  4. Lagrangian methods for ballistic impact simulations/

    E-Print Network [OSTI]

    Tupek, Michael Ronne

    2010-01-01

    This thesis explores various Lagrangian methods for simulating ballistic impact with the ultimate goal of finding a universal, robust and scalable computational framework to assist in the design of armor systems. An overview ...

  5. Protocol, Security Assistance- January 2007

    Broader source: Energy.gov [DOE]

    Provide timely technical assistance and system support to Field and HQ Elements to enhance site safeguards and security.

  6. Development of A Microwave Assisted Particulate Filter Regeneration System

    SciTech Connect (OSTI)

    Popuri, Sriram

    2001-08-05

    The need for active regeneration of diesel particulate filters and the advantages of microwave assisted regeneration are discussed. The current study has multiple objectives, which include developing a microwave assisted particulate filter regeneration system for future generation light-duty diesel applications, including PNGV type applications. A variable power 2.0 kW microwave system and a tuned waveguide were employed. Cavity geometry is being optimized with the aid of computational modeling and temperature measurements during microwave heating. A wall-flow ceramic-fiber filter with superior thermal shock resistance, high filtration efficiency, and high soot capacity was used. The microwave assisted particulate filter regeneration system has operated for more than 100 hours in an engine test-cell with a 5.9-liter diesel engine with automated split exhaust flow and by-pass flow capabilities. Filter regeneration was demonstrated using soot loads up to 10 g/liter and engine exhaust at idling flow rates as the oxygen source. A parametric study to determine the optimal combination of soot loading, oxidant flow rate, microwave power and heating time is underway. Preliminary experimental results are reported.

  7. Industrial Technical Assistance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCE Supports the deployment of energy efficient

  8. The verification of a semi-analytical reservoir simulator using a finite difference reservoir simulator 

    E-Print Network [OSTI]

    Dube, Hans Gerhardt

    1990-01-01

    of Cases Fundamental Difference Between the Reservoir Simulators. Data Sets. . General Process of Verification. . . . . . . . . . . . . . . 22 24 25 25 26 29 32 36 SINGLE LAYER, RADIAL FLOW DRAWDOWN CASES. . 38 viii Page Infinite Cylindrical... Drawdown Problems. . . . . . . . . . . . . 38 41 43 45 49 50 52 MULTIPLE LAYER RESERVOIR, RADIAL FLOW DRAWDOWN CASES. 63 Simulation of Multiple Layer Reservoirs. . . . . . Simulation Parameters. Constant Rate Drawdown Tests in an Infinite...

  9. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration...

  10. Flow chamber

    DOE Patents [OSTI]

    Morozov, Victor (Manassas, VA)

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  11. Geological flows

    E-Print Network [OSTI]

    Yu. N. Bratkov

    2008-11-19

    In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

  12. Flow regimes

    SciTech Connect (OSTI)

    Liles, D.R.

    1982-01-01

    Internal boundaries in multiphase flow greatly complicate fluid-dynamic and heat-transfer descriptions. Different flow regimes or topological configurations can have radically dissimilar interfacial and wall mass, momentum, and energy exchanges. To model the flow dynamics properly requires estimates of these rates. In this paper the common flow regimes for gas-liquid systems are defined and the techniques used to estimate the extent of a particular regime are described. Also, the current computer-code procedures are delineated and introduce a potentially better method is introduced.

  13. Improved Steam Assisted Gravity Drainage (SAGD) Performance with Solvent as Steam Additive 

    E-Print Network [OSTI]

    Li, Weiqiang

    2011-02-22

    Steam Assisted Gravity Drainage (SAGD) is used widely as a thermal recovery technique in Canada to produce a very viscous bitumen formation. The main research objectives of this simulation and experimental study are to investigate oil recovery...

  14. SPE-169507-MS Artificial Intelligence (AI) Assisted History Matching

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE-169507-MS Artificial Intelligence (AI) Assisted History Matching Alireza Shahkarami, Shahab D a successful history matching project. The pattern recognition capabilities of Artificial Intelligence and Data the history matching process. SRM is an intelligent prototype of the full-field reservoir simulation model

  15. A mixed-dimensional finite volume method for two-phase flow in fractured porous media

    E-Print Network [OSTI]

    Bastian, Peter

    . Key words: Multiphase flow; Numerical reservoir simulation; Fractured reservoir; Mixed on saturation. Finally, uncertainties associated with field problems introduce difficulties into the simulation

  16. Steady-state domain wall motion driven by adiabatic spin-transfer torque with assistance of microwave field

    SciTech Connect (OSTI)

    Wang, Xi-guang; Guo, Guang-hua Nie, Yao-zhuang; Xia, Qing-lin; Tang, Wei; Wang, D.; Zeng, Zhong-ming

    2013-12-23

    We have studied the current-induced displacement of a 180° Bloch wall by means of micromagnetic simulation and analytical approach. It is found that the adiabatic spin-transfer torque can sustain a steady-state domain wall (DW) motion in the direction opposite to that of the electron flow without Walker Breakdown when a transverse microwave field is applied. This kind of motion is very sensitive to the microwave frequency and can be resonantly enhanced by exciting the domain wall thickness oscillation mode. A one-dimensional analytical model was established to account for the microwave-assisted wall motion. These findings may be helpful for reducing the critical spin-polarized current density and designing DW-based spintronic devices.

  17. The Time-Dependent NavierStokes Equations Laminar Flows

    E-Print Network [OSTI]

    John, Volker

    Chapter 6 The Time-Dependent Navier­Stokes Equations ­ Laminar Flows Remark 6.1. Motivation to distinguish between laminar and turbulent flows. It does not exist an exact definition of these terms. From the point of view of simulations, a flow is considered to be laminar, if on reasonable grids all flow

  18. Flow Split Venturi, Axially-Rotated Valve

    DOE Patents [OSTI]

    Walrath, David E. (Laramie, WY); Lindberg, William R. (Laramie, WY); Burgess, Robert K. (Sheridan, WY); LaBelle, James (Murrieta, CA)

    2000-02-22

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.

  19. Characterizing Flow in Oil Reservoir Rock Using Smooth Particle Hydrodynamics

    E-Print Network [OSTI]

    Holmes, David W.

    In this paper, a 3D Smooth Particle Hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow ...

  20. Feedback control of flow separation using synthetic jets 

    E-Print Network [OSTI]

    Kim, Kihwan

    2006-04-12

    The primary goal of this research is to assess the effect of synthetic jets on flow separation and provide a feedback control strategy for flow separation using synthetic jets. The feedback control synthesis is conducted based upon CFD simulation...

  1. New Mexico Small Business Assistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 31, 2012 Program of Los Alamos, Sandia national laboratories LOS ALAMOS, NEW MEXICO, May 31, 2012-The New Mexico Small Business Assistance (NMSBA) program, a...

  2. Strategy for quantum algorithm design assisted by machine learning

    E-Print Network [OSTI]

    Jeongho Bang; Junghee Ryu; Seokwon Yoo; Marcin Pawlowski; Jinhyoung Lee

    2014-07-17

    We propose a method for quantum algorithm design assisted by machine learning. The method uses a quantum-classical hybrid simulator, where a "quantum student" is being taught by a "classical teacher." In other words, in our method, the learning system is supposed to evolve into a quantum algorithm for a given problem assisted by classical main-feedback system. Our method is applicable to design quantum oracle-based algorithm. As a case study, we chose an oracle decision problem, called a Deutsch-Jozsa problem. We showed by using Monte-Carlo simulations that our simulator can faithfully learn quantum algorithm to solve the problem for given oracle. Remarkably, learning time is proportional to the square root of the total number of parameters instead of the exponential dependance found in the classical machine learning based method.

  3. Cash Flow and Discount Rate news estimation: which method to choose?

    E-Print Network [OSTI]

    Khimich, Natalya V.

    2012-01-01

    Cash Flow and Discount Rate News estimates obtained form theCash Flow and Discount Rate News estimates obtained form theTrue’ simulated Cash Flow News and Discount Rate News and

  4. The bubbly-slug transition in a high velocity two phase flow

    E-Print Network [OSTI]

    Griffith, P.

    1964-01-01

    A possible mechanism for the transition between bubbly and slug flow is proposed and tested in a simulated slug flow system. No sudden collapse of slug flow with increasing velocity is found and it is concluded that: a. ...

  5. Georgia Shore Assistance Act

    SciTech Connect (OSTI)

    Pendergrast, C.

    1984-01-01

    The Georgia General Assembly passed the Shore Assistance Act in 1979 in order to fill a regulatory gap in the state's management of its coastal resources. A review of its legislative history, purposes, applications, and effects in terms of the sand sharing system of sand dunes, beaches, sandbars, and shoals concludes that the Act is poorly drafted. In its application on the oceanfront, it betrays its intent and protects the oceanfront owner. It has failed to satisfy the requirements of the public trust in the tidal foreshore. Amendments to clarify its understanding of the functions and values of the sand-sharing system should also conform with the state's duties under the public trust. 139 references.

  6. 2014 Assisting Federal Facilities with Energy Conservation Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance 2014 Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Recipients 2014 Assisting Federal Facilities with Energy...

  7. A Bicycle Electric Assist Unit

    E-Print Network [OSTI]

    Petron, Arthur J

    2010-01-01

    The BEAU is an electric-assist bicycle system that is completely self-contained within the rear wheel. The purpose of approaching a electric-assist bicycle in this manner is two-fold: simplifying the device and opening the ...

  8. Hydrogen-assisted catalytic ignition characteristics of different fuels

    SciTech Connect (OSTI)

    Zhong, Bei-Jing; Yang, Fan; Yang, Qing-Tao

    2010-10-15

    Hydrogen-assisted catalytic ignition characteristics of methane (CH{sub 4}), n-butane (n-C{sub 4}H{sub 10}) and dimethyl ether (DME) were studied experimentally in a Pt-coated monolith catalytic reactor. It is concluded that DME has the lowest catalytic ignition temperature and the least required H{sub 2} flow, while CH{sub 4} has the highest catalytic ignition temperature and the highest required H{sub 2} flow among the three fuels. (author)

  9. Assisted distillation of quantum coherence

    E-Print Network [OSTI]

    Chitambar, E; Rana, S; Bera, M N; Adesso, G; Lewenstein, M

    2015-01-01

    We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system while general local quantum operations are permitted on the other, an operational paradigm that we call local quantum-incoherent operations and classical communication (LQICC). We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, a direct analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.

  10. Non-flow, and what flow to subtract in jet-correlation

    E-Print Network [OSTI]

    Fuqiang Wang; Quan Wang

    2009-10-20

    We derive analytical forms for non-flow contributions from cluster correlation to two-particle elliptic flow (v2{2}) measure. We also derive an analytical form for jet-correlation flow-background with the same cluster approach. We argue that the elliptic flow v2 parameter to be used in jet-correlation background is that from two-particle method excluding non-flow correlations unrelated to the reaction plane, but including cross-terms between cluster correlation and cluster flow. We verify our result with Monte Carlo simulations. We discuss how one may obtain the v2 parameter for jet-correlation background experimentally.

  11. Office of the Assistant General Counsel for Procurement and Financial...

    Energy Savers [EERE]

    Procurement and Financial Assistance Office of the Assistant General Counsel for Procurement and Financial Assistance The Office of the Assistant General Counsel for Procurement...

  12. Dynamics of Polymers in Flowing Colloidal Suspensions

    E-Print Network [OSTI]

    Chen, Hsieh

    Using hydrodynamic simulations we examine the behavior of single polymers in a confined colloidal suspension under flow. We study the conformations of both, collapsed and noncollapsed polymers. Our results show that the ...

  13. Turbulence Modeling for Compressible Shear Flows 

    E-Print Network [OSTI]

    Gomez Elizondo, Carlos Arturo 1981-

    2012-11-15

    by requiring consistency between model and direct numerical simulation asymptotic behavior in compressible homogeneous shear flow. The closure models are employed to compute high-speed mixing-layers and boundary layers in a differential Reynolds stress modeling...

  14. TCP Flow Controls Matthew Roughan

    E-Print Network [OSTI]

    Roughan, Matthew

    connections Much is known about the qualitative performance of the Internet the Internet works! Little is known about the quantitative performance of the TCP flow controls mostly by simulation, few analytic Paxson, "Measurements and Analysis of End-to-End Internet Dynamics" PhD Thesis Van Jacobson, "Congestion

  15. Graduate Assistant Commitment Form Eagle ID:________________________

    E-Print Network [OSTI]

    Hutcheon, James M.

    Graduate Assistant Commitment Form 1 Eagle ID:________________________ Name:_____________________________________________ Supervisor:______________________________________Dept./Unit unites within the University. Research Assistant (RA) ­ primary responsibility

  16. Environmental Policy and Assistance | Department of Energy

    Office of Environmental Management (EM)

    Environmental Policy and Assistance Environmental Policy and Assistance The Department of Energys (DOE) goal is to carry out all cleanup operations in a manner that protects...

  17. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation pm041lance2011p.pdf More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel...

  18. START Renewable Energy Project Development Technical Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    START Renewable Energy Project Development Technical Assistance START Renewable Energy Project Development Technical Assistance The U.S. Department of Energy (DOE) Office of Indian...

  19. Working With Weatherization Assistance Programs | Department...

    Energy Savers [EERE]

    Assistance Programs Working With Weatherization Assistance Programs Better Buildings Low Income Peer Exchange Call Featuring: Case study on integration of income-qualified...

  20. Federal Energy Management Program (FEMP) Technical Assistance...

    Broader source: Energy.gov (indexed) [DOE]

    explains how to navigate the FEMP Technical Assistance request portal. It includes instruction on how to register for an account, submit a request for assistance, and review saved...

  1. Assisting Federal Facilities with Energy Conservation Technologies...

    Office of Environmental Management (EM)

    Explore FEMP's Technical Assistance Pages FEMP Technical Assistance Request Portal 2014 AFFECT Funding Recipients FEMP Contacts David Boomsma U.S. Department of Energy...

  2. Energy Department Technical Assistance Bolsters Tribal Clean...

    Energy Savers [EERE]

    Technical Assistance Bolsters Tribal Clean Energy Deployment Energy Department Technical Assistance Bolsters Tribal Clean Energy Deployment December 2, 2011 - 3:39pm Addthis The...

  3. Energy Department Announces Technical Assistance Opportunity...

    Energy Savers [EERE]

    Technical Assistance Opportunity for Tribal Clean Energy Deployment Energy Department Announces Technical Assistance Opportunity for Tribal Clean Energy Deployment December 2, 2011...

  4. Profiles in Leadership: Christopher Smith, Assistant Secretary...

    Energy Savers [EERE]

    Profiles in Leadership: Christopher Smith, Assistant Secretary for Fossil Energy Profiles in Leadership: Christopher Smith, Assistant Secretary for Fossil Energy July 15, 2015 -...

  5. The MIT Design Advisor : simple and rapid energy simulation of early-stage building designs

    E-Print Network [OSTI]

    Urban, Bryan J. (Bryan James)

    2007-01-01

    Simulation tools, when applied early in the design process, can considerably reduce the energy demand of newly constructed buildings. For a simulation tool to assist with design, it must be easy to use, provide feedback ...

  6. Flow cytometer

    DOE Patents [OSTI]

    Van den Engh, G.

    1995-11-07

    A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

  7. Engineering Organization Chart Assistant Dean

    E-Print Network [OSTI]

    Delene, David J.

    Engineering Organization Chart Fall `12 Assistant Dean Outreach & Recruiting Matthew Cavalli and Geological Engineering Joseph Hartman Chair, Petroleum Engineering Steve Benson Chair, Electrical Engineering Forrest Ames (interim) Chair, Mechanical Engineering Matthew Cavalli Chair, Chemical Engineering Mike Mann

  8. Senthil S. Vel Assistant Professor

    E-Print Network [OSTI]

    Vel, Senthil

    Senthil S. Vel Assistant Professor Department of Mechanical Engineering Brian P. Baillargeon Graduate Student Department of Mechanical Engineering, University of Maine, Orono, Maine 04469 Analysis of Static Deformation, Vibration and Active Damping of Cylindrical Composite Shells with Piezoelectric Shear

  9. Stress-Assisted Corrosion in Boiler Tubes

    SciTech Connect (OSTI)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  10. Environmentally assisted cracking in light water reactors

    SciTech Connect (OSTI)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E. [and others

    1996-07-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from April 1995 to December 1995. Topics that have been investigated include fatigue of carbon and low-alloy steel used in reactor piping and pressure vessels, EAC of Alloy 600 and 690, and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests were conducted on ferritic steels in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in simulated LWR environments. Effects of fluoride-ion contamination on susceptibility to intergranular cracking of high- and commercial- purity Type 304 SS specimens from control-tensile tests at 288 degrees Centigrade. Microchemical changes in the specimens were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials.

  11. The Effect of High Rotational Speed on the Performance of Straight-through Labyrinth Seals for Compressible and Incompressible Flow 

    E-Print Network [OSTI]

    Obidigbo, Ekene R.

    2012-07-16

    The leakage flow through straight through labyrinth seals with tooth on stator was investigated by performing CFD simulations .ANSYS Fluent is used to simulate the fluid flow through straight through Labyrinth seals. The ...

  12. Simulation of localized barrier defects in resonant tunneling diodes 

    E-Print Network [OSTI]

    Stoneberg, Jason Neal

    1995-01-01

    defect assisted tunneling as a possible current mechanism. This study attempts to ascertain the effects of defect potentials in the barriers on current in a simulation of a double barrier resonant tunneling diode. Results indicate that these defects could...

  13. Simulation- Assisted Audit of an Air Conditioned Office Building 

    E-Print Network [OSTI]

    Bertagnolio, S.; Lebrun, J.; Hannay, J.; Silva, C. A.

    2008-01-01

    and nominal performances and capacities can be automatically computed through a pre-sizing calculation or defined basing on default values given in European standards (prEN 13053 and 13773). The implementation of this global building-HVAC model... and nominal performances and capacities can be automatically computed through a pre-sizing calculation or defined basing on default values given in European standards (prEN 13053 and 13773). The implementation of this global building-HVAC model...

  14. Geothermal direct-heat utilization assistance

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Progress on technical assistance, R D activities, technology transfer, and geothermal progress monitoring is summarized.

  15. Understanding order flow

    E-Print Network [OSTI]

    Evans, MDD; Lyons, Richard K.

    2006-01-01

    Understanding Order Flow October 2005 Martin D. D. Evans 1Rate Fundamentals and Order Flow, typescript, Georgetown2005), Customer Order Flow and Exchange Rate Movements: Is

  16. Regionally compartmented groundwater flow on Mars Keith P. Harrison1

    E-Print Network [OSTI]

    Harrison, Keith

    Regionally compartmented groundwater flow on Mars Keith P. Harrison1 and Robert E. Grimm1 Received] Groundwater flow on Mars likely contributed to the formation of several types of morphologic and mineralogic of groundwater flow required for their formation. For groundwater simulation purposes, a global Martian aquifer

  17. A consistent second order projection scheme for simulating transient...

    Office of Scientific and Technical Information (OSTI)

    A consistent second order projection scheme for simulating transient viscous flow with Smoothed Particle Hydrodynamics. Citation Details In-Document Search Title: A consistent...

  18. Zonal flow dynamics in the double tearing mode with antisymmetric shear flows

    SciTech Connect (OSTI)

    Mao, Aohua [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan)] [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Liu, Jinyuan, E-mail: jyliu@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Kishimoto, Yasuaki [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan) [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Institude of Advanced Energy, Kyoto University, Uji, Kyoto 6110011 (Japan)

    2014-05-15

    The generation dynamics and the structural characteristics of zonal flows are investigated in the double tearing mode (DTM) with antisymmetric shear flows. Two kinds of zonal flow oscillations are revealed based on reduced resistive magnetohydrodynamics simulations, which depend on the shear flow amplitudes corresponding to different DTM eigen mode states, elaborated by Mao et al. [Phys. Plasmas 20, 022114 (2013)]. For the weak shear flows below an amplitude threshold, v{sub c}, at which two DTM eigen states with antisymmetric or symmetric magnetic island structure are degenerated, the zonal flows grow oscillatorily in the Rutherford regime during the nonlinear evolution of the DTMs. It is identified that the oscillation mechanism results from the nonlinear interaction between the distorted islands and the zonal flows through the modification of shear flows. However, for the medium shear flows above v{sub c} but below the critical threshold of the Kelvin-Helmholtz instability, an oscillatory growing zonal flow occurs in the linear phase of the DTM evolution. It is demonstrated that the zonal flow oscillation originates from the three-wave mode coupling or a modulation instability pumped by two DTM eigen modes with the same frequency but opposite propagating direction. With the shear flows increasing, the amplitude of zonal flow oscillation increases first and then decreases, whilst the oscillation frequency as twice of the Doppler frequency shift increases. Furthermore, impacts of the oscillatory zonal flows on the nonlinear evolution of DTM islands and the global reconnection are also discussed briefly.

  19. Loop simulation capability for sodium-cooled systems

    E-Print Network [OSTI]

    Adekugbe, Oluwole A.

    1984-01-01

    A one-dimensional loop simulation capability has been implemented in the thermal-hydraulic analysis code, THERMIT-4E. This code had been used to simulate and investigate flow in test sections of experimental sodium loops ...

  20. Magnetic Amplifier for Power Flow Control

    SciTech Connect (OSTI)

    2012-02-24

    GENI Project: ORNL is developing an electromagnet-based, amplifier-like device that will allow for complete control over the flow of power within the electric grid. To date, complete control of power flow within the grid has been prohibitively expensive. ORNL’s controller could provide a reliable, cost-effective solution to this problem. The team is combining two types of pre-existing technologies to assist in flow control, culminating in a prototype iron-based magnetic amplifier. Ordinarily, such a device would require expensive superconductive wire, but the magnetic iron core of ORNL’s device could serve as a low-cost alternative that is equally adept at regulating power flow.

  1. The lattice Boltzmann method for isothermal micro-gaseous flow and its application in shale gas flow: a review

    E-Print Network [OSTI]

    Wang, Junjian; Kang, Qinjun; Rahman, Sheik S

    2015-01-01

    The lattice Boltzmann method (LBM) has experienced tremendous advances and been well accepted as a popular method of simulation of various fluid flow mechanisms on pore scale in tight formations. With the introduction of an effective relaxation time and slip boundary conditions, the LBM has been successfully extended to solve micro-gaseous related transport and phenomena. As gas flow in shale matrix is mostly in the slip flow and transition flow regimes, given the difficulties of experimental techniques to determine extremely low permeability, it appears that the computational methods especially the LBM can be an attractive choice for simulation of these micro-gaseous flows. In this paper an extensive overview on a number of relaxation time and boundary conditions used in LBM-like models for micro-gaseous flow are carried out and their advantages and disadvantages are discussed. Furthermore, potential application of the LBM in flow simulation in shale gas reservoirs on pore scale and representative elementary...

  2. PATHOLOGISTS'ASSISTANT? A Pathologists'Assistant is an intensively

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    professional who provides anatomic pathology services under the direction and supervision of a pathologist'ASSISTANT? · A high energy individual who enjoys a fast-paced environment, where every day is different. · A detail in the medical field as anAllied Healthcare Provider, earning a comfortable income, with indirect patient contact

  3. Groundwater Recharge Simulator M. Tech. Thesis

    E-Print Network [OSTI]

    Sohoni, Milind

    Groundwater Recharge Simulator M. Tech. Thesis by Dharmvir Kumar Roll No: 07305902 Guide: Prof;Contents 1 Introduction 1 1.1 Groundwater Theory.1.5 Groundwater Flow Equation . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Numerical Solvers and Boundary

  4. Streamline simulation of Surfactant Enhanced Aquifer Remediation 

    E-Print Network [OSTI]

    Tunison, Douglas Irvin

    1996-01-01

    of SEAR. This study develops a SEAR computer simulator that is fast, robust, and accurate. The new code applies fractional flow theory in conjunction with streamline theory to predict residual saturation, saturation distribution, production rate...

  5. Transport Processes in a Salt-Dome Environment We consider coupled subsurface flow

    E-Print Network [OSTI]

    Kornhuber, Ralf

    Transport Processes in a Salt-Dome Environment ­ A ­ We consider coupled subsurface flow and transport within a vertical cross section of a sedimentary basin. To illustrate the effects of (1) heat flow and heat transport simulations will be compared with coupled flow and mass transport simulations

  6. NFFLOW: A reservoir simulator incorporating explicit fractures (SPE 153890)

    SciTech Connect (OSTI)

    Boyle, E.J.; Sams, W.N.

    2012-01-01

    NFFLOW is a research code that quickly and inexpensively simulates flow in moderately fractured reservoirs. It explicitly recognizes fractures separately from rock matrix. In NFFLOW fracture flow is proportional to the pressure gradient along the fracture, and flow in the rock matrix is determined by Darcy’s Law. The two flow mechanisms are coupled through the pressure gradient between a fracture and its adjacent rock matrix. Presented is a promising change to NFFLOW that allows for flow across a rock matrix block.

  7. Gradual Variation Analysis for Groundwater Flow

    E-Print Network [OSTI]

    Chen, Li

    2010-01-01

    Groundwater flow in Washington DC greatly influences the surface water quality in urban areas. The current methods of flow estimation, based on Darcy's Law and the groundwater flow equation, can be described by the diffusion equation (the transient flow) and the Laplace equation (the steady-state flow). The Laplace equation is a simplification of the diffusion equation under the condition that the aquifer has a recharging boundary. The practical way of calculation is to use numerical methods to solve these equations. The most popular system is called MODFLOW, which was developed by USGS. MODFLOW is based on the finite-difference method in rectangular Cartesian coordinates. MODFLOW can be viewed as a "quasi 3D" simulation since it only deals with the vertical average (no z-direction derivative). Flow calculations between the 2D horizontal layers use the concept of leakage. In this project, we have established a mathematical model based on gradually varied functions for groundwater data volume reconstruction. T...

  8. Vacuum-assisted cell loading enables shear-free mammalian microfluidic Martin Kolnik,a

    E-Print Network [OSTI]

    Hasty, Jeff

    Vacuum-assisted cell loading enables shear-free mammalian microfluidic culture{ Martin Kolnik,a Lev that are extremely isolated from potentially damaging flow effects. We utilize a transient on-chip vacuum to remove by generating a localized temporary on-chip vacuum in channels directly adjacent to the trapping regions

  9. Career Information Assistant Description & Duties

    E-Print Network [OSTI]

    Toronto, University of

    -task is an asset * Interest in libraries, archives, records management, museums, information management, and other for specific fields (libraries, archives, records management, museums, etc.) * Assist with development browsing and searching for relevant information * Experience with social media an asset * Ability to multi

  10. Discrimination 101 Teaching Assistant Training

    E-Print Network [OSTI]

    Thomas, Andrew

    Discrimination 101 Teaching Assistant Training Office of Equal Opportunity University of Maine 101 North Stevens/Campus umaine.edu/eo 207-581-1226 #12;Last revised May 2, 2012 UNIVERSITY OF MAINE Non-Discrimination Notice The University of Maine does not discriminate on the grounds of race, color, religion, sex, sexual

  11. M. Lynn Crismon Assistant Dean

    E-Print Network [OSTI]

    Lightsey, Glenn

    Chris Whitman Division Head Pharmacology/ Toxicology John Richburg Division Head Pharmaceutics Bill: Org Chart Simplified 3.graffle Revised 08-29-14 Associate Dean Clinical Programs Bill Mcintyre HOPP Ken Lawson Sr. Associate Dean Academic Affairs Pat Davis Assistant Dean Student Affairs Diane

  12. Teaching Assistants Department of Chemistry

    E-Print Network [OSTI]

    Guide for Teaching Assistants Department of Chemistry The University of Chicago #12;© 2012 Department of Chemistry, The University of Chicago (2nd edition) #12;i Preface Welcome to the Chemistry to familiarize you with your teaching responsibilities for General Chemistry and Organic Chemistry and to provide

  13. LANL, Sandia celebrate success at New Mexico Small Business Assistance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    success at NM Small Business Assistance fest LANL, Sandia celebrate success at New Mexico Small Business Assistance fest The New Mexico Small Business Assistance (NMSBA)...

  14. Federal Renewable Energy Project Assistance and Resources | Department...

    Energy Savers [EERE]

    Assistance and Resources Federal Renewable Energy Project Assistance and Resources Federal agencies can get renewable energy project assistance from the U.S. Department of Energy's...

  15. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  16. Graduate Research Assistant, Student Mem. ASME

    E-Print Network [OSTI]

    Qu, Weilin

    , with bubbly flow occurring only occasion- ally; stratified and churn flow were never observed. A flow pattern boiling offers many advantages such as low thermal resistance, small flow rate and coolant inventory

  17. Energy Technical Assistance: Industrial Processes Program 

    E-Print Network [OSTI]

    McClure, J. D.

    1980-01-01

    The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

  18. ASSISTANT DEANS Connecticut Children's Medical Center

    E-Print Network [OSTI]

    Page 12 ASSISTANT DEANS Connecticut Children's Medical Center Dr. Andrea Benin, Assistant Dean@stranciscare.org 860-714-5967 The Hospital of Central Connecticut Dr. Steven Hanks, Vice President Med. Affairs

  19. Assistant Secretary Hoffman Discusses Grid Modernization with...

    Energy Savers [EERE]

    Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E TV Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E...

  20. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect (OSTI)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  1. Site-Scale Saturated Zone Flow Model

    SciTech Connect (OSTI)

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being carried out in the model report, ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The velocity fields are calculated by the flow model, described herein, independent of the transport processes, and are then used as inputs to the transport model. Justification for this abstraction is presented in the model report, ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021 (BSC 2003 [164870]).

  2. START Renewable Energy Project Development Assistance

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Indian Energy is now accepting applications for the third round of the Strategic Technical Assistance Response Team (START) Renewable Energy Project Development Assistance Program to provide Tribes with technical assistance with furthering the development of community- and commercial-scale renewable energy projects.

  3. Electrically-Assisted Turbocharger Development for Performance and Emissions

    SciTech Connect (OSTI)

    Bailey, Milton

    2000-08-20

    Turbocharger transient lag inherently imposes a tradeoff between a robust engine response to transient load shifts and exhaust emissions. By itself, a well matched turbocharger for an engine has limited flexibility in improving this transient response. Electrically-assisted turbocharging has been seen as an attractive option to improve response and lower transient emissions. This paper presents the results of a multi-year joint CRADA between DDC and ORNL. Virtual lab diesel simulation models characterized the performance improvement potential of an electrically assisted turbocharger technology. Operating requirements to reduce transient duration between load shift time by up to 50% were determined. A turbomachine has been conceptualized with an integrated motor-generator, providing transient burst boost plus energy recovery capability. Numerous electric motor designs were considered, and a prototype motor was developed, fabricated, and is undergoing tests. Power controls have been designed and fabricated.

  4. Induction motor modeling in stability simulation: Final report

    SciTech Connect (OSTI)

    Carlson, D.L.; Fedora, C.M.

    1988-12-01

    The objective of this project is to help utilities choose models of large motor loads when simulating electric system transient stability behavior during severe contingencies. Various motor models were evaluated through comparisons between simulations and field recordings obtained in this project. Guidelines are developed to assist engineers in applying typically available data describing large motors. 10 refs., 35 figs.

  5. Lattice-Boltzmann Method for Geophysical Plastic Flows

    E-Print Network [OSTI]

    Leonardi, Alessandro; Mendoza, Miller; Herrmann, Hans J

    2015-01-01

    We explore possible applications of the Lattice-Boltzmann Method for the simulation of geophysical flows. This fluid solver, while successful in other fields, is still rarely used for geotechnical applications. We show how the standard method can be modified to represent free-surface realization of mudflows, debris flows, and in general any plastic flow, through the implementation of a Bingham constitutive model. The chapter is completed by an example of a full-scale simulation of a plastic fluid flowing down an inclined channel and depositing on a flat surface. An application is given, where the fluid interacts with a vertical obstacle in the channel.

  6. Computer Assisted Parallel Program Generation

    E-Print Network [OSTI]

    Kawata, Shigeo

    2015-01-01

    Parallel computation is widely employed in scientific researches, engineering activities and product development. Parallel program writing itself is not always a simple task depending on problems solved. Large-scale scientific computing, huge data analyses and precise visualizations, for example, would require parallel computations, and the parallel computing needs the parallelization techniques. In this Chapter a parallel program generation support is discussed, and a computer-assisted parallel program generation system P-NCAS is introduced. Computer assisted problem solving is one of key methods to promote innovations in science and engineering, and contributes to enrich our society and our life toward a programming-free environment in computing science. Problem solving environments (PSE) research activities had started to enhance the programming power in 1970's. The P-NCAS is one of the PSEs; The PSE concept provides an integrated human-friendly computational software and hardware system to solve a target ...

  7. A penalization method for calculating the flow beneath travelling water waves of large amplitude

    E-Print Network [OSTI]

    Adrian Constantin; Konstantinos Kalimeris; Otmar Scherzer

    2014-08-08

    A penalization method for a suitable reformulation of the governing equations as a constrained optimization problem provides accurate numerical simulations for large-amplitude travelling water waves in irrotational flows and in flows with constant vorticity.

  8. Submitted to Building and Environment UNCERTAINTY IN AIR FLOW CALCULATIONS

    E-Print Network [OSTI]

    LBL-25415 Submitted to Building and Environment UNCERTAINTY IN AIR FLOW CALCULATIONS USING TRACER are becoming widely used to measure the ventilation rates in buildings. As more detailed information by the Assistant Secretary for Conservation and Renewable Energy, Office of Building and Community Systems

  9. Computer Assisted Virtual Environment - CAVE

    ScienceCinema (OSTI)

    Erickson, Phillip; Podgorney, Robert; Weingartner, Shawn; Whiting, Eric

    2014-06-09

    Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

  10. Propeller Flow Meter 

    E-Print Network [OSTI]

    Enciso, Juan; Santistevan, Dean; Hla, Aung K.

    2007-10-01

    Propeller flow meters are commonly used to measure water flow rate. They can also be used to estimate irrigation water use. This publication explains how to select, install, read and maintain propeller flow meters....

  11. Bacteria in shear flow

    E-Print Network [OSTI]

    Marcos, Ph.D. Massachusetts Institute of Technology

    2011-01-01

    Bacteria are ubiquitous and play a critical role in many contexts. Their environment is nearly always dynamic due to the prevalence of fluid flow: creeping flow in soil, highly sheared flow in bodily conduits, and turbulent ...

  12. Dispersed flow film boiling

    E-Print Network [OSTI]

    Yoder, Graydon L.

    1980-01-01

    Dispersed flow consists of small liquid droplets entrained in a flowing vapor. This flow regime can occur in cryogenic equipment, in steam generators, and during nuclear reactor loss of coolant accidents. A theoretical ...

  13. RELAP5 subcooled critical flow model verification

    SciTech Connect (OSTI)

    Petelin, S.; Gortnar, O.; Mavko, B. (Institut Jozef Stefan, Ljubljana (Solomon Islands))

    1993-01-01

    We discuss some results of the RELAP5 break modeling during the analysis of International Standard Problem 27 (ISP-27) performed on the BETHSY facility. This study deals with the discontinuity of the RELAP5 critical flow prediction in a strongly subcooled region. Such unrealistic behavior was observed during the pretest simulations of ISP-27. Based on the investigation, a RELAP5 code correction is suggested that ensures a more appropriate simulation of the critical discharge of strongly subcooled liquid.

  14. FLOW-THROUGH POROUS ELECTRODES

    E-Print Network [OSTI]

    Trainham, III, James Arthur

    2011-01-01

    configurations for flow redox battery applications: (i) theporous electrodes A flow-redox battery using flow-by poroustrue in battery applications, Flow..through porous

  15. Impact of Impulse Stops on Pedestrian Flow

    E-Print Network [OSTI]

    Kwak, Jaeyoung; Luttinen, Tapio; Kosonen, Iisakki

    2015-01-01

    We numerically study the impact of impulse stops on pedestrian flow for a straight corridor with multiple attractions. The impulse stop is simulated by the switching behavior model, a function of the social influence strength and the number of attendees near the attraction. When the pedestrian influx is low, one can observe a stable flow where attendees make a complete stop at an attraction and then leave the attraction after a certain amount of time. When the pedestrian influx is high, an unstable flow is observed for strong social influence. In the unstable flow, attendees near the attraction are crowded out from the clusters by others due to the interpersonal repulsion. The expelled pedestrians impede the pedestrian traffic between the left and right boundaries of the corridor. These collective patterns of pedestrian flow are summarized in a schematic phase diagram.

  16. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID)

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  17. Characterization of the Weatherization Assistance Program network. Weatherization Assistance Program

    SciTech Connect (OSTI)

    Mihlmester, P.E.; Koehler, W.C. Jr.; Beyer, M.A.; Brown, M.A.; Beschen, D.A. Jr.

    1992-02-01

    The Characterization of the Weatherization Assistance Program (WAP) Network was designed to describe the national network of State and local agencies that provide WAP services to qualifying low-income households. The objective of this study was to profile the current WAP network. To achieve the objective, two national surveys were conducted: one survey collected data from 49 State WAP agencies (including the coterminous 48 States and the District of Columbia), and the second survey collected data from 920 (or 81 percent) of the local WAP agencies.

  18. Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits

    E-Print Network [OSTI]

    Kim, J.

    2014-01-01

    A. 2008. Modeling of Geomechanics in Naturally Fracturedcoupling porous flow and geomechanics. Soc. Pet. Eng. J. 11(a reservoir simulator and a geomechanics module. Soc. Pet.

  19. A correction function method to solve incompressible fluid flows to high accuracy with immersed geometries

    E-Print Network [OSTI]

    Marques, Alexandre Noll

    2012-01-01

    Numerical simulations of incompressible viscous flows in realistic configurations are increasingly important in many scientific and engineering fields. In Aeronautics, for instance, relatively cheap numerical computations ...

  20. Continuum Limit of a Step Flow Model of Epitaxial Growth R.V. ...

    E-Print Network [OSTI]

    2002-02-08

    We inv estigate this boundary condition by numerical simulation of the step flow ... Monte-Carlo or molecular dynamics models, because of their time eÆciency.

  1. Flow Distances on Open Flow Networks

    E-Print Network [OSTI]

    Guo, Liangzhu; Shi, Peiteng; Wang, Jun; Huang, Xiaohan; Zhang, Jiang

    2015-01-01

    Open flow network is a weighted directed graph with a source and a sink, depicting flux distributions on networks in the steady state of an open flow system. Energetic food webs, economic input-output networks, and international trade networks, are open flow network models of energy flows between species, money or value flows between industrial sectors, and goods flows between countries, respectively. Flow distances (first-passage or total) between any given two nodes $i$ and $j$ are defined as the average number of transition steps of a random walker along the network from $i$ to $j$ under some conditions. They apparently deviate from the conventional random walk distance on a closed directed graph because they consider the openness of the flow network. Flow distances are explicitly expressed by underlying Markov matrix of a flow system in this paper. With this novel theoretical conception, we can visualize open flow networks, calculating centrality of each node, and clustering nodes into groups. We apply fl...

  2. Flow Partitioning in Fully Saturated Soil Aggregates

    SciTech Connect (OSTI)

    Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.; Perkins, William A.; Resat, Haluk

    2014-03-30

    Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flow among the “inter-aggregate” and “intra-aggregate” pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the aggregates was larger than 18 micron. Inter-aggregate pores continued to be the dominant flow pathways even at much smaller spacing; intra-aggregate flow was less than 10% of the total flow when the inter- and intra-aggregate pore sizes were comparable. Such studies are making it possible to identify which model upscaling assumptions are realistic and what computational methods are required for detailed numerical investigation of microbial carbon cycling dynamics in soil systems.

  3. Relationship Between Soil Moisture Storage and Deep Percolation and Subsurface Return Flow 

    E-Print Network [OSTI]

    Nieber, J. L.

    1984-01-01

    A simulation study was performed to analyze the relationship between the volume of moisture stored in a soil profile and the rate of percolation and subsurface return flow. The simulation study was derived on the basis of the Richards equation...

  4. Numerical modeling of species transport in turbulent flow and experimental study on aerosol sampling 

    E-Print Network [OSTI]

    Vijayaraghavan, Vishnu Karthik

    2007-04-25

    Numerical simulations were performed to study the turbulent mixing of a scalar species in straight tube, single and double elbow flow configurations. Different Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulation ...

  5. Fast Marching Method with Multiphase Flow and Compositional Effects 

    E-Print Network [OSTI]

    Fujita, Yusuke

    2014-08-06

    In current petroleum industry, there is a lack of effective reservoir simulators for modeling shale and tight sand reservoirs. An unconventional resource modeling requires an accurate flow characterization of complex transport mechanisms caused...

  6. Real-time state estimation of laboratory flows

    E-Print Network [OSTI]

    Stransky, Scott (Scott M.)

    2007-01-01

    In this project, we use a real time computer model to simulate a differentially heated laboratory annulus. The laboratory annulus allows us to study chaotic flows typical of the atmosphere. Our objective is to bring the ...

  7. Scaled Experimental Modeling of VHTR Plenum Flows

    SciTech Connect (OSTI)

    ICONE 15

    2007-04-01

    Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.

  8. ARM Assists Lilac Phenology Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM Assists

  9. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  10. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  11. K. A. Thole^ Assistant Professor.

    E-Print Network [OSTI]

    Thole, Karen A.

    . Institut fur Thermische Stromungsmaschinen, Universitat Karlsruhe, Karlsruhe, Germany Effect of a Crossflow at the Entrance to a Film-Cooling Hole Understanding the complex flow ofjets issuing into a crossflow from where the jet interacted with the crossflow at the hole exit. The results show that for entrance

  12. Assistance Focus: Asia/Pacific Region (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    The Clean Energy Solutions Center Ask an Expert service connects governments seeking policy information and advice with one of more than 30 global policy experts who can provide reliable and unbiased quick-response advice and information. The service is available at no cost to government agency representatives from any country and the technical institutes assisting them. This publication presents summaries of assistance provided to governments in the Asia/Pacific region, including the benefits of that assistance.

  13. Assistance Focus: Latin America/Caribbean (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    The Clean Energy Solutions Center Ask an Expert service connects governments seeking policy information and advice with one of more than 30 global policy experts who can provide reliable and unbiased quick-response advice and information. The service is available at no cost to government agency representatives from any country and the technical institutes assisting them. This publication presents summaries of assistance provided to African governments, including the benefits of that assistance.

  14. Radiation Emergency Assistance Center / Training Site | National...

    National Nuclear Security Administration (NNSA)

    assistance involving the exposure to ionizing radiation or radiological contamination. REACTS, located in Methodist Medical Center of Oak Ridge in Oak Ridge,...

  15. Device-to-Device Assisted Video Transmission

    E-Print Network [OSTI]

    Shen, Y; Zhou, W; Wu, P; Toni, L; Cosman, P C; Milstein, L B

    2013-01-01

    Equipment (UE) radio transmission and reception (3GPP TSand Mobile Ad Hoc Networks: Transmission-Capacity Tradeoff”,Device Assisted Video Transmission Yichao Shen, Wenwen Zhou,

  16. Vermont Small Hydropower Assistance Program Screening Criteria...

    Open Energy Info (EERE)

    Vermont Small Hydropower Assistance Program Screening Criteria Summary and Application Instructions Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  17. Air Emissions Reduction Assistance Program (Iowa) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Provider Iowa Department of Natural Resources The State of Iowa may provide financial assistance in the form of loans andor grants to projects aimed at reducing air emissions...

  18. Christopher Smith Principal Deputy Assistant Secretary Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Principal Deputy Assistant Secretary Office of Fossil Energy U.S. Department of Energy Before the Committee on Oversight and Government Reform Subcommittee on Energy Policy, Health...

  19. Electricity Policy Technical Assistance Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Electricity Policy Technical Assistance Program Overview Since 2003, the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability (OE) has been...

  20. Employee Assistance Self-ID Form

    Office of Environmental Management (EM)

    Clinic, and the Incident Management Team). The information may be aggregated into lists, charts, andor graphs. Information provided need only describe the kind of assistance...

  1. Physically-Based Interactive Schlieren Flow Visualization C. Brownlee

    E-Print Network [OSTI]

    Utah, University of

    dynamics (CFD) data. Our method com- putes physically accurate schlieren and shadowgraph images at in INTRODUCTION Recent advances in CFD have produced a wealth of simulated flow data [9]. Understanding these flows is of great importance for ap- plications ranging from aircraft design to combustion analysis [13

  2. Momentum Transport in Granular Flows

    E-Print Network [OSTI]

    Gregg Lois; Anael Lemaitre; Jean M. Carlson

    2006-02-10

    We investigate the error induced by only considering binary collisions in the momentum transport of hard-sphere granular materials, as is done in kinetic theories. In this process, we first present a general microscopic derivation of the momentum transport equation and compare it to the kinetic theory derivation, which relies on the binary collision assumption. These two derivations yield different microscopic expressions for the stress tensor, which we compare using simulations. This provides a quantitative bound on the regime where binary collisions dominate momentum transport and reveals that most realistic granular flows occur in the region of phase space where the binary collision assumption does not apply.

  3. General single phase wellbore flow model

    SciTech Connect (OSTI)

    Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.

    1997-02-05

    A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.

  4. Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2010-01-01

    regulates the fuel cell power to avoid large fluctuation ofSimulations with a lower power fuel cell were performed for2 ) Appendix II Fuel cell vehicles with power assist control

  5. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  6. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  7. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R. (6006 Allentown Dr., Spring, TX 77379)

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  8. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R. (6006 Allentown Dr., Spring, TX 77389)

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  9. Large Eddy Simulations of extinction

    E-Print Network [OSTI]

    Ayache, S.; Garmory, A.; Tyliszczak, A.; Mastorakos, E.

    2012-08-29

    -Martinez, A. Kronenburg. Flame stabilization mechanism in lifted flames. Flow, Tur- bulence and Combustion, 87:377–406, 2011. 8. M. Mortensen, R.W. Bilger. Derivation of the conditional moment closure equations for spray combustion. Combustion and Flame, 156... .B. Devaud, R.W. Bilger. Modeling evaporation effects in conditional moment closure for spray autoignition. Combustion Theory and Modelling, 15:725–752, 2011. 13. N. Branley and W. P. Jones. Large Eddy Simulation of a Turbulent Non-premixed Flame. Combus...

  10. Supercritical Shallow Granular and Slurry Flows through a Contraction

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    results Interim summary Part II. Theory and Simulations 4. 1D Hydraulic shallow layer theory 5. 3D Discrete Particle Model simulations 6. Conclusions H2O: Hydraulic flow through a contraction #12 and outcrops: mixture of tephra and Rhine water, dam formation at nozzle near Andernach in Rhine Valley, lake

  11. BYU Salt Lake Center Financial Assistance

    E-Print Network [OSTI]

    Hart, Gus

    BYU Salt Lake Center Financial Assistance Program 2015 A financial assistance program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake

  12. DESIGNMODELOFAVACUUM-ASSISTED7 HYDRAULICBRAKINGSYSTEM8

    E-Print Network [OSTI]

    Papalambros, Panos

    ;DESIGN MODEL OF A VACUUM-ASSISTED HYDRAULIC BRAKING SYSTEM Ramprasad S. Krishnamachari Graduate Student hydraulic brake system is one of the common brake systems used in cars. Shown in Fig. 1 is a typical vacuum cylinders To hand brake brake lines Fig. 1 Vacuum assisted hydraulic brake system The difference

  13. Spanish & Portuguese -Teaching Assistants Spring 2014

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Spanish & Portuguese - Teaching Assistants Spring 2014 Abreu-González, Kallie ........................................................................................ 2-3128 Spanish 102 Head TA pananth@wisc.edu 770 Van Hise Hall Office Hours: 9:55 ­ 10:55 MR Teach 383 VH #12;Spanish & Portuguese - Teaching Assistants Spring 2014 Beltrán, Edith

  14. Assistant or Associate Professor in Sedimentology

    E-Print Network [OSTI]

    Assistant or Associate Professor in Sedimentology The Department of Earth Sciences (DES), Mineral for a tenure-track Assistant or Associate Professor position in Sedimentology to begin in July 2015. We seek an innovative individual with excellent teaching and research skills in sedimentology. Expertise in Precambrian

  15. Renewable Energy Project Development Assistance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    This fact sheet provides information on the Tribes selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  16. AGREEMENT FOR DOE-FUNDED TECHNOLOGY ASSISTANCE

    E-Print Network [OSTI]

    National Laboratory, agrees to provide the Technology services described below at no cost to the REQUESTERAGREEMENT FOR DOE-FUNDED TECHNOLOGY ASSISTANCE Date: Agreement: TO: FROM: Battelle Memorial Title: Field of Use: The activities to be performed under this Technology assistance will be: BATTELLE

  17. Abstract--We describe an inexpensive in-home monitoring system designed to assist patients with traumatic

    E-Print Network [OSTI]

    Minnesota, University of

    Abstract-- We describe an inexpensive in-home monitoring system designed to assist patients wireless sensors, including motion, pressure, door, flow, accelerometer, magnetometer, temperature, light daily activities in a home setting. In particular, the system is intended to help such patients plan

  18. Results of no-flow rotary drill bit comparison testing

    SciTech Connect (OSTI)

    WITWER, K.S.

    1998-11-30

    This document describes the results of testing of a newer rotary sampling bit and sampler insert called the No-Flow System. This No-Flow System was tested side by side against the currently used rotary bit and sampler insert, called the Standard System. The two systems were tested using several ''hard to sample'' granular non-hazardous simulants to determine which could provide greater sample recovery. The No-Flow System measurably outperformed the Standard System in each of the tested simulants.

  19. Flow Field Flow Fractionation Method Development for Applied Bioanalysis

    E-Print Network [OSTI]

    Schachermeyer, Samantha Lynn

    2013-01-01

    E. ; Caldwell, K. , Field-Flow Fractionation Handbook. JohnJ. P. , Sedimentation field-flow-fractionation: emergence ofby sedimentation field-flow fractionation. Am. Lab. (

  20. A study of numerical methods to solve quasi one-dimensional, unsteady, compressible viscous flow with shock 

    E-Print Network [OSTI]

    Goy, Matthieu Pierre Bernard

    1994-01-01

    The numerical simulation of a quasi one-dimensional internal flow in a subsonicsupersonic nozzle is obtained. Shocks due to high pressure ratio are computed for both inviscid and viscous flows, using an original two point subsonic-supersonic...

  1. Numerical Study of Convective Heat Transfer in Flat Tube Heat Exchangers Operating in Self-Sustained Oscillatory Flow Regimes 

    E-Print Network [OSTI]

    Fullerton, Tracy

    2012-02-14

    Laminar, two-dimensional, constant-property numerical simulations of flat tube heat exchanger devices operating in flow regimes in which self-sustained oscillations occur were performed. The unsteady flow regimes were ...

  2. Ultrasonic flow metering system

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Mauseth, Jason A. (Pocatello, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2002-01-01

    A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

  3. Transformation induced plasticity assisted steels: stress or strain affected martensitic

    E-Print Network [OSTI]

    Cambridge, University of

    Transformation induced plasticity assisted steels: stress or strain affected martensitic induced martensitic transformation of the retained austenite in TRIP assisted steels. The authors begin transformation? S. Chatterjee and H. K. D. H. Bhadeshia* Transformation induced plasticity (TRIP) assisted steels

  4. Marketing Assistant, Student Union & Event Services JOB SUMMARY

    E-Print Network [OSTI]

    Walker, Lawrence R.

    Marketing Assistant, Student Union & Event Services JOB SUMMARY: Student Union & Event Services the direction of the Assistant Director for Sales & Business Operations, the Marketing Assistant is responsible for creating and maintaining all marketing collateral for SUES. DUTIES AND RESPONSIBILITIES: Maintaining

  5. FastStokes : a fast 3-D fluid simulation program for micro-electro-mechanical systems

    E-Print Network [OSTI]

    Wang, Xin, 1972 Jan. 8-

    2002-01-01

    We have developed boundary integral equation formulas and a corresponding fast 3-D Stokes flow simulation program named FastStokes to accurately simulate viscous drag forces on geometrically complicated MEMS (micro- electro- ...

  6. UNIVERSITY OF CALIFORNIA, SAN DIEGO Numerical Simulations of the Stratified Oceanic Bottom Boundary Layer

    E-Print Network [OSTI]

    Taylor, John R.

    UNIVERSITY OF CALIFORNIA, SAN DIEGO Numerical Simulations of the Stratified Oceanic Bottom Boundary of Philosophy in Mechanical Engineering by John R. Taylor Committee in charge: Sutanu Sarkar, Chair Thomas Simulation of Stably Stratified Open Channel Flow . . . . . 6 1. Introduction

  7. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  8. FLOW-THROUGH POROUS ELECTRODES

    E-Print Network [OSTI]

    Trainham, III, James Arthur

    2011-01-01

    Wilhelm. HBoundary conditions of a flow reactor. 1i Chemicala Packed-Bed Electrochemical Flow Reactor." Journal ofRichard, and Brian Gracon. "Flow-Through Porous Electrodes."

  9. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    Ltd." . Http://Plurionsystems.Com/Tech_Flow_Advantages.Html.plurionsystems.com/tech_flow_advantages.html [71] P. Leung,High Energy Density Redox Flow Device," ed: WO Patent

  10. Alaska Native Communities Receive Technical Assistance for Local...

    Office of Environmental Management (EM)

    Village of Minto will receive assistance to identify energy efficiency, biomass, and solar energy opportunities. Native Village of Shishmaref will receive assistance with...

  11. Blowers for Air Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blowers for Air Assisted Diesel Particulate Filter Regeneration Blowers for Air Assisted Diesel Particulate Filter Regeneration Prototypes of a new series of high-pressure,...

  12. Plasma Assisted Catalysis System for NOx Reduction | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasma Assisted Catalysis System for NOx Reduction Plasma Assisted Catalysis System for NOx Reduction 2002 DEER Conference Presentation: Noxtech, Inc. 2002deerslone.pdf More...

  13. International Assistance for Low-Emission Development Planning...

    Open Energy Info (EERE)

    Assistance for Low-Emission Development Planning: CLEAN Inventory of Activities and Tools-Preliminary Trends Jump to: navigation, search International Assistance for...

  14. New Mexico Small Business Assistance Program recognized by U...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM Small Business assistance program recognized New Mexico Small Business Assistance Program recognized by U.S. Department of Commerce Receives the 2012 Manufacturing Advocate of...

  15. How the Weatherization Assistance Program Changed Jasmine's Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How the Weatherization Assistance Program Changed Jasmine's Life How the Weatherization Assistance Program Changed Jasmine's Life February 19, 2015 - 4:45pm Addthis The Rocky...

  16. Assistant Secretary Patricia Hoffman to Deliver Keynote Address...

    Energy Savers [EERE]

    Assistant Secretary Patricia Hoffman to Deliver Keynote Address at IEEE PES Conference on Innovative Smart Grid Technologies Assistant Secretary Patricia Hoffman to Deliver Keynote...

  17. NA 15 - Assistant Deputy Administrator for Secure Transportation...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 15 - Assistant Deputy Administrator for ... NA 15 - Assistant Deputy...

  18. Load Expansion of Stoichiometric HCCI Using Spark Assist and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Stoichiometric HCCI Using Spark Assist and Hydraulic Valve Actuation Load Expansion of Stoichiometric HCCI Using Spark Assist and Hydraulic Valve Actuation Presentation given at...

  19. Office of the Assistant General Counsel for Technology Transfer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer & Intellectual Property Office of the Assistant General Counsel for Technology Transfer & Intellectual Property The Office of the Assistant General Counsel for...

  20. MemoAdvisoryAssistanceContractWaiver.pdf | Department of Energy

    Office of Environmental Management (EM)

    ecMemoProjectManagementExpectationsFinancialAssistance23June06.pdf ClosingLanguagePatentWaiverGrantCases.pdf Project Management Expectations for Financial Assistance...