National Library of Energy BETA

Sample records for flow simulation assisted

  1. Plug Flow Reactor Simulator

    Energy Science and Technology Software Center (OSTI)

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position,more » and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.« less

  2. Simulation of water flow in terrestrial systems

    Energy Science and Technology Software Center (OSTI)

    2008-12-18

    ParFlow is a parallel, variabley saturated groundwater flow code that is especially suitable for large scale problem. ParFlow simulates the three-dimensional saturated and variably saturated subsurface flow in heterogeneous porous media in three spatial dimensions. ParFlow's developemt and appkication has been on-ging for more than 10 uear. ParFlow has recently been extended to coupled surface-subsurface flow to enabel the simulation of hillslope runoff and channel routing in a truly integrated fashion. ParFlow simulates the three-dimensionalmore » varably saturated subsurface flow in strongly heterogeneous porous media in three spatial dimension.« less

  3. ASCR Workshop on Turbulent Flow Simulations at the Exascale:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASCR Workshop on Turbulent Flow Simulations at the Exascale: Opportunities and Challenges ASCR Workshop on Turbulent Flow Simulations at the Exascale: Opportunities and Challenges...

  4. Mesoscale Simulations of Particulate Flows with Parallel Distributed...

    Office of Scientific and Technical Information (OSTI)

    Title: Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Fluid particulate flows are common phenomena in nature and industry. ...

  5. Flume simulation of sedimentation in recirculating flow

    SciTech Connect (OSTI)

    Schmidt, J.C. (Middlebury College, VT (USA)); Rubin, D.M. (Geological Survey, Menlo Park, CA (USA)); Ikeda, H. (Univ. of Tsukuba (Japan))

    1990-05-01

    A 4-m-wide flume at the University of Tsukuba Environmental Research Center was used to simulate flow conditions near debris fans in bedrock gorges. Flow was constricted to 2 m by a semicircular obstruction. During the authors experiments (discharge = 600 L/sec; Froude number of constricted flow = 1) a zone of recirculating current extended 25-30 m downstream from the separation point at the constriction. The pattern and velocity of surface flow was determined using time-lapse photography; subsurface velocity was measured with a two-dimensional electromagnetic current meter. During 32-hr of run time, a fine, very coarse sand mixture was fed into the flow at a rate between 0.5-1 kg/sec. Oscillation ripples developed beneath the separation surface that bounds the recirculation zone, and upstream-migrating dunes and ripples developed within the recirculation zone upstream from the reattachment point. A mid-channel expansion bar was deposited downstream from the reattachment point. Sedimentation within the recirculation zone continued by vertical aggradation and by upstream migration of dunes and ripples. Sediments within the recirculation zone were areally sorted with the finest sediment deposited near the separation point. These patterns are consistent with field observations of bars along the Colorado River in the Grand Canyon.

  6. Adaptive LES Methodology for Turbulent Flow Simulations

    SciTech Connect (OSTI)

    Oleg V. Vasilyev

    2008-06-12

    Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic turbulence have recently been completed at the Japanese Earth Simulator (Yokokawa et al. 2002, Kaneda et al. 2003) using a resolution of 40963 (approximately 10{sup 11}) grid points with a Taylor-scale Reynolds number of 1217 (Re {approx} 10{sup 6}). Impressive as these calculations are, performed on one of the world's fastest super computers, more brute computational power would be needed to simulate the flow over the fuselage of a commercial aircraft at cruising speed. Such a calculation would require on the order of 10{sup 16} grid points and would have a Reynolds number in the range of 108. Such a calculation would take several thousand years to simulate one minute of flight time on today's fastest super computers (Moin & Kim 1997). Even using state-of-the-art zonal approaches, which allow DNS calculations that resolve the necessary range of scales within predefined 'zones' in the flow domain, this calculation would take far too long for the result to be of engineering interest when it is finally obtained. Since computing power, memory, and time are all scarce resources, the problem of simulating turbulent flows has become one of how to abstract or simplify the complexity of the physics represented in the full Navier-Stokes (NS) equations in such a way that the 'important' physics of the problem is captured at a lower cost. To do this, a portion of the modes of the turbulent flow field needs to be approximated by a low order model that is cheaper than the full NS calculation. This model can then be used along with a numerical simulation of the 'important' modes of the problem that cannot be well represented by the model. The decision of what part of the physics to model and what kind of model to use has to be based on what physical properties are considered 'important' for the problem. It should be noted that 'nothing is free', so any use of a low order model will by definition lose some information about the original flow.

  7. Simulation of katabatic flow and mountain waves

    SciTech Connect (OSTI)

    Poulos, G.S.

    1995-05-01

    It is well-known that both mountain waves and katabatic flows frequently form in the severe relief of the Front Range of the Rocky Mountains. Occasionally these phenomena have been found to occur simultaneously. Generally, however, the large body of literature regarding them has treated each individually, seldom venturing into the regime of their potential interaction. The exceptions to this rule are Arritt and Pielke (1986), Barr and Orgill (1989). Gudiksen et al. (1992), Moriarty (1984), Orgill et al. (1992), Orgill and Schreck (1985). Neff and King (1988), Stone and Hoard (1989), Whiteman and Doran (1993) and Ying and Baopu (1993). The simulations overviewed here attempt to reproduce both atmospheric features simultaneously for two case days during the 1993 ASCOT observational program near Rocky Flats, Colorado.

  8. Direct numerical simulation of turbulent reacting flows

    SciTech Connect (OSTI)

    Chen, J.H.

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  9. Mesoscale Simulations of Particulate Flows with Parallel Distributed

    Office of Scientific and Technical Information (OSTI)

    Lagrange Multiplier Technique (Conference) | SciTech Connect Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Citation Details In-Document Search Title: Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Fluid particulate flows are common phenomena in nature and industry. Modeling of such flows at micro and macro levels as well establishing relationships between these approaches are needed to

  10. Design, construction and evaluation of a simulated geothermal flow system

    SciTech Connect (OSTI)

    Mackanic, J.C.

    1980-07-28

    A system was designed and built to simulate the flow from a geothermal well. The simulated flow will be used to power a Lysholm engine, the performance of which will then be evaluated for different simulated geothermal flows. Two main subjects are covered: 1) the design, construction and evaluation of the behavior of the system that simulates the geothermal flow; included in that topic is a discussion of the probable behavior of the Lysholm engine when it is put into operation, and 2) the investigation of the use of dynamic modeling techniques to determine whether they can provide a suitable means for predicting the behavior of the system.

  11. Large Eddy Simulations of Combustor Liner Flows | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    zone and turbine, current simulations will use wall-modeled large-eddy simulations (LES) to analyze flow in single and multi-cup combustors. An in-depth study of the detailed...

  12. Numerical simulation model for vertical flow in geothermal wells

    SciTech Connect (OSTI)

    Tachimori, M.

    1982-01-01

    A numerical simulation model for vertical flow in geothermal wells is presented. The model consists of equations for the conservation of mass, momentum, and energy, for thermodynamic state of water, for friction losses, for slip velocity relations, and of the criteria for various flow regimes. A new set of correlations and criteria is presented for two-phase flow to improve the accuracy of predictions; bubbly flow - Griffith and Wallis correlation, slug flow - Nicklin et al. one, annular-mist flow - Inoue and Aoki and modified by the author. The simulation method was verified by data from actual wells.

  13. Mesoscale simulations of particulate flows with parallel distributed

    Office of Scientific and Technical Information (OSTI)

    Lagrange multiplier technique (Journal Article) | SciTech Connect Journal Article: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique Citation Details In-Document Search Title: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique Authors: Kanarska, Y ; Lomov, I ; Antoun, T Publication Date: 2010-09-10 OSTI Identifier: 1120915 Report Number(s): LLNL-JRNL-455392 DOE Contract Number: W-7405-ENG-48

  14. Flow induced migration in polymer melts – Theory and simulation

    SciTech Connect (OSTI)

    Dorgan, John Robert Rorrer, Nicholas Andrew

    2015-04-28

    Flow induced migration, whereby polymer melts are fractionated by molecular weight across a flow field, represents a significant complication in the processing of polymer melts. Despite its long history, such phenomena remain relatively poorly understood. Here a simple analytical theory is presented which predicts the phenomena based on well-established principles of non-equilibrium thermodynamics. It is unambiguously shown that for purely viscous materials, a gradient in shear rate is needed to drive migration; for purely viscometric flows no migration is expected. Molecular scale simulations of flow migration effects in dense polymer melts are also presented. In shear flow the melts exhibit similar behavior as the quiescent case; a constant shear rate across the gap does not induce chain length based migration. In comparison, parabolic flow causes profound migration for both unentangled and entangled melts. These findings are consistent with the analytical theory. The picture that emerges is consistent with flow induced migration mechanisms predominating over competing chain degradation mechanisms.

  15. SU-E-J-66: Evaluation of a Real-Time Positioning Assistance Simulator...

    Office of Scientific and Technical Information (OSTI)

    SU-E-J-66: Evaluation of a Real-Time Positioning Assistance Simulator System for Skull Radiography Using the Microsoft Kinect Citation Details In-Document Search Title: SU-E-J-66:...

  16. High Fidelity Simulation of Complex Suspension Flow for Practical Rheometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility A visualization of the flow of concrete, a complex suspension A visualization of the flow of concrete, a complex suspension. In this snapshot of the simulation, the stress on each suspended particle is shown color-coded with its specific value drawn on its surface. Suspended particles that have a stress value below a specific threshold value are shown in outline form in order to better view those particles that are carrying the majority of the stress

  17. MPSalsa 3D Simulations of Chemically Reacting Flows

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

    This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

  18. FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reservoir Flow and Heat Transport Simulator(aka FALCON) FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat Transport Simulator(aka FALCON) FRAC-STIM: ...

  19. Large-eddy simulation of turbulent circular jet flows

    SciTech Connect (OSTI)

    Jones, S. C.; Sotiropoulos, F.; Sale, M. J.

    2002-07-01

    This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energys Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.

  20. Simulations of Turbulent Flows with Strong Shocks and Density Variations

    SciTech Connect (OSTI)

    Zhong, Xiaolin

    2012-12-13

    In this report, we present the research efforts made by our group at UCLA in the SciDAC project ???¢????????Simulations of turbulent flows with strong shocks and density variations???¢???????. We use shock-fitting methodologies as an alternative to shock-capturing schemes for the problems where a well defined shock is present. In past five years, we have focused on development of high-order shock-fitting Navier-Stokes solvers for perfect gas flow and thermochemical non-equilibrium flow and simulation of shock-turbulence interaction physics for very strong shocks. Such simulation has not been possible before because the limitation of conventional shock capturing methods. The limitation of shock Mach number is removed by using our high-order shock-fitting scheme. With the help of DOE and TeraGrid/XSEDE super computing resources, we have obtained new results which show new trends of turbulence statistics behind the shock which were not known before. Moreover, we are also developing tools to consider multi-species non-equilibrium flows. The main results are in three areas: (1) development of high-order shock-fitting scheme for perfect gas flow, (2) Direct Numerical Simulation (DNS) of interaction of realistic turbulence with moderate to very strong shocks using super computing resources, and (3) development and implementation of models for computation of mutli-species non-quilibrium flows with shock-fitting codes.

  1. Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes

    SciTech Connect (OSTI)

    Carrillo, Jose-Antonio Goudon, Thierry Lafitte, Pauline

    2008-08-10

    In this work, we propose asymptotic preserving numerical schemes for the bubbling and flowing regimes of particles immersed in a fluid treated by two-phase flow models. The description comprises compressible Euler equations for the dense phase (fluid) and a kinetic Fokker-Planck equation for the disperse phase (particles) coupled through friction terms. We show numerical simulations in the relevant case of gravity in the one-dimensional case demonstrating the overall behavior of the schemes.

  2. GMINC: a mesh generator for flow simulations in fractured reservoirs

    SciTech Connect (OSTI)

    Pruess, K.

    1983-03-01

    GMINC is a pre-processor computer program for generating geometrical meshes to be used in modeling fluid and heat flow in fractured porous media. It is based on the method of multiple interacting continua (MINC) as developed by Pruess and Narasimhan. The meshes generated by GMINC are in integral finite difference form, and are compatible with the simulators SHAFT79 and MULKOM. Applications with other integral finite difference simulators are possible, and require slight modifications in input/output formats. This report describes methodology and application of GMINC, including preparation of input decks and sample problems. A rather comprehensive overview of the MINC-method is also provided to make the presentation self-contained as a guide for modeling of flow in naturally fractured media.

  3. Simulations of ductile flow in brittle material processing

    SciTech Connect (OSTI)

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  4. Development of the T+M coupled flow-geomechanical simulator to...

    Office of Scientific and Technical Information (OSTI)

    Development of the T+M coupled flow-geomechanical simulator to describe fracture ... Title: Development of the T+M coupled flow-geomechanical simulator to describe fracture ...

  5. Other: Multiscale Simulation of Blood Flow in Brain Arteries with an

    Office of Scientific and Technical Information (OSTI)

    Aneurysm | ScienceCinema Other: Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm Citation Details Title: Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm

  6. Assistance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... precedents in Alaska where communities have installed building-level heating fuel meters? ... tank flow meters are a relatively common practice by some building energy auditors in ...

  7. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

    SciTech Connect (OSTI)

    Tchelepi, Hamdi

    2014-11-14

    A multiscale linear-solver framework for the pressure equation associated with flow in highly heterogeneous porous formations was developed. The multiscale based approach is cast in a general algebraic form, which facilitates integration of the new scalable linear solver in existing flow simulators. The Algebraic Multiscale Solver (AMS) is employed as a preconditioner within a multi-stage strategy. The formulations investigated include the standard MultiScale Finite-Element (MSFE) andMultiScale Finite-Volume (MSFV) methods. The local-stage solvers include incomplete factorization and the so-called Correction Functions (CF) associated with the MSFV approach. Extensive testing of AMS, as an iterative linear solver, indicate excellent convergence rates and computational scalability. AMS compares favorably with advanced Algebraic MultiGrid (AMG) solvers for highly detailed three-dimensional heterogeneous models. Moreover, AMS is expected to be especially beneficial in solving time-dependent problems of coupled multiphase flow and transport in large-scale subsurface formations.

  8. A separate phase drag model and a surrogate approximation for simulation of the steam assisted gravity drainage (SAGD) process

    SciTech Connect (OSTI)

    Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian; Zhang, Duan Zhong

    2016-01-01

    General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed. We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.

  9. A separate phase drag model and a surrogate approximation for simulation of the steam assisted gravity drainage (SAGD) process

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian; Zhang, Duan Zhong

    2016-01-01

    General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less

  10. Simulation of Flow and Transport at the Micro (Pore) Scale

    SciTech Connect (OSTI)

    Trebotich, D; Miller, G H

    2007-04-05

    An important problem in porous media involves the ability of micron and submicron-sized biological particles such as viruses or bacteria to move in groundwater systems through geologic media characterized by rock or mixed gravel, clay and sand materials. Current simulation capabilities require properly upscaled (continuum) models of colloidal filtration and adsorption to augment existing theories of fluid flow and chemical transport. Practical models typically address flow and transport behavior in aquifers over distances of 1 to 10 km where, for example, fluid momentum balance is governed by the simple Darcy's Law as a function of a pressure gradient, elevation gradient and a medium-dependent permeability parameter. In addition to fluid advection, there are multiple transport processes occurring in these systems including diffusion, dispersion and chemical interactions with solids or other aqueous chemical species. Particle transport is typically modeled in the same way as dissolved species, except that additional loss terms are incorporated to model particle filtration (physical interception), adsorption (chemical interception) and inactivation. Proper resolution of these processes at the porous medium continuum scale constitutes an important closure problem in subsurface science. We present a new simulation capability based on enabling technologies developed for microfluidics applications to model transport of colloidal-sized particles at the microscale, with relevance to the pore scale in geophysical subsurface systems. Particulate is represented by a bead-rod polymer model and is fully-coupled to a Newtonian solvent described by Navier-Stokes. Finite differences are used to discretize the interior of the domain; a Cartesian grid embedded boundary/volume-of-fluid method is used near boundaries and interfaces. This approach to complex geometry is amenable to direct simulation on grids obtained from surface extractions of tomographic image data. Short-range interactions are included in the particle model. This capability has been previously demonstrated on polymer flow in spatially-resolved packed bed (3D) and post array (2D) systems. We also discuss the advantages of this approach for the development of high-resolution adaptive algorithms for multiscale continuum-particle and mesoscale coarse-grained molecular dynamics models.

  11. GPU accelerated flow solver for direct numerical simulation of turbulent flows

    SciTech Connect (OSTI)

    Salvadore, Francesco [CASPUR via dei Tizii 6/b, 00185 Rome (Italy)] [CASPUR via dei Tizii 6/b, 00185 Rome (Italy); Bernardini, Matteo, E-mail: matteo.bernardini@uniroma1.it [Department of Mechanical and Aerospace Engineering, University of Rome La Sapienza via Eudossiana 18, 00184 Rome (Italy)] [Department of Mechanical and Aerospace Engineering, University of Rome La Sapienza via Eudossiana 18, 00184 Rome (Italy); Botti, Michela [CASPUR via dei Tizii 6/b, 00185 Rome (Italy)] [CASPUR via dei Tizii 6/b, 00185 Rome (Italy)

    2013-02-15

    Graphical processing units (GPUs), characterized by significant computing performance, are nowadays very appealing for the solution of computationally demanding tasks in a wide variety of scientific applications. However, to run on GPUs, existing codes need to be ported and optimized, a procedure which is not yet standardized and may require non trivial efforts, even to high-performance computing specialists. In the present paper we accurately describe the porting to CUDA (Compute Unified Device Architecture) of a finite-difference compressible NavierStokes solver, suitable for direct numerical simulation (DNS) of turbulent flows. Porting and validation processes are illustrated in detail, with emphasis on computational strategies and techniques that can be applied to overcome typical bottlenecks arising from the porting of common computational fluid dynamics solvers. We demonstrate that a careful optimization work is crucial to get the highest performance from GPU accelerators. The results show that the overall speedup of one NVIDIA Tesla S2070 GPU is approximately 22 compared with one AMD Opteron 2352 Barcelona chip and 11 compared with one Intel Xeon X5650 Westmere core. The potential of GPU devices in the simulation of unsteady three-dimensional turbulent flows is proved by performing a DNS of a spatially evolving compressible mixing layer.

  12. Development of the T+M coupled flow-geomechanical simulator to...

    Office of Scientific and Technical Information (OSTI)

    Development of the T+M coupled flow-geomechanical simulator to describe fracture ... Citation Details In-Document Search Title: Development of the T+M coupled ...

  13. Some aspects of steam-water flow simulation in geothermal wells

    SciTech Connect (OSTI)

    Shulyupin, Alexander N.

    1996-01-24

    Actual aspects of steam-water simulation in geothermal wells are considered: necessary quality of a simulator, flow regimes, mass conservation equation, momentum conservation equation, energy conservation equation and condition equations. Shortcomings of traditional hydraulic approach are noted. Main questions of simulator development by the hydraulic approach are considered. New possibilities of a simulation with the structure approach employment are noted.

  14. Mesoscale Simulations of Particulate Flows with Parallel Distributed

    Office of Scientific and Technical Information (OSTI)

    Distributed Lagrange Multiplier Technique Kanarska, Y 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS; ACCURACY; CONVERGENCE; FLUID FLOW; IMPLEMENTATION; MODIFICATIONS;...

  15. Bluff Body Flow Simulation Using a Vortex Element Method

    SciTech Connect (OSTI)

    Anthony Leonard; Phillippe Chatelain; Michael Rebel

    2004-09-30

    Heavy ground vehicles, especially those involved in long-haul freight transportation, consume a significant part of our nation's energy supply. it is therefore of utmost importance to improve their efficiency, both to reduce emissions and to decrease reliance on imported oil. At highway speeds, more than half of the power consumed by a typical semi truck goes into overcoming aerodynamic drag, a fraction which increases with speed and crosswind. Thanks to better tools and increased awareness, recent years have seen substantial aerodynamic improvements by the truck industry, such as tractor/trailer height matching, radiator area reduction, and swept fairings. However, there remains substantial room for improvement as understanding of turbulent fluid dynamics grows. The group's research effort focused on vortex particle methods, a novel approach for computational fluid dynamics (CFD). Where common CFD methods solve or model the Navier-Stokes equations on a grid which stretches from the truck surface outward, vortex particle methods solve the vorticity equation on a Lagrangian basis of smooth particles and do not require a grid. They worked to advance the state of the art in vortex particle methods, improving their ability to handle the complicated, high Reynolds number flow around heavy vehicles. Specific challenges that they have addressed include finding strategies to accurate capture vorticity generation and resultant forces at the truck wall, handling the aerodynamics of spinning bodies such as tires, application of the method to the GTS model, computation time reduction through improved integration methods, a closest point transform for particle method in complex geometrics, and work on large eddy simulation (LES) turbulence modeling.

  16. Adaptive Detached Eddy Simulation of a High Lift Wing with Active Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control | Argonne Leadership Computing Facility Vorticity contours colored by speed from a detached eddy simulation of flow around a high lift multi-element wing at maximum lift Vorticity contours colored by speed from a detached eddy simulation of flow around a high lift multi-element wing at maximum lift. Slat, flap and complex supporting structures (right sub figures) that create complex vorticity wakes are resolved in the adaptive, unstructured grid simulation (third subfigure is zoom on

  17. Mesoscale Simulations of Particulate Flows with Parallel Distributed...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... We propose a computational technique based on the direct numerical simulation of the ...

  18. On a framework for generating PoD curves assisted by numerical simulations

    SciTech Connect (OSTI)

    Subair, S. Mohamed Agrawal, Shweta Balasubramaniam, Krishnan Rajagopal, Prabhu; Kumar, Anish; Rao, Purnachandra B.; Tamanna, Jayakumar

    2015-03-31

    The Probability of Detection (PoD) curve method has emerged as an important tool for the assessment of the performance of NDE techniques, a topic of particular interest to the nuclear industry where inspection qualification is very important. The conventional experimental means of generating PoD curves though, can be expensive, requiring large data sets (covering defects and test conditions), and equipment and operator time. Several methods of achieving faster estimates for PoD curves using physics-based modelling have been developed to address this problem. Numerical modelling techniques are also attractive, especially given the ever-increasing computational power available to scientists today. Here we develop procedures for obtaining PoD curves, assisted by numerical simulation and based on Bayesian statistics. Numerical simulations are performed using Finite Element analysis for factors that are assumed to be independent, random and normally distributed. PoD curves so generated are compared with experiments on austenitic stainless steel (SS) plates with artificially created notches. We examine issues affecting the PoD curve generation process including codes, standards, distribution of defect parameters and the choice of the noise threshold. We also study the assumption of normal distribution for signal response parameters and consider strategies for dealing with data that may be more complex or sparse to justify this. These topics are addressed and illustrated through the example case of generation of PoD curves for pulse-echo ultrasonic inspection of vertical surface-breaking cracks in SS plates.

  19. ASCR Workshop on Turbulent Flow Simulations at the Exascale: Opportunities and Challenges

    Broader source: Energy.gov [DOE]

    The need for accurate simulation of turbulent flows is evident across the US Department of Energy applied-science and engineering portfolio, including combustion, plasma physics, nuclear-reactor...

  20. Direct Numerical Simulation of Compressible, Turbulent Flow | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Sample slice of the instantaneous density field Sample slice of the instantaneous density field in a Mach 2.3 turbulent boundary layer computed with the HOPS code. The computational mesh for this direct numerical simulation was over 33 billion cells, and was run on up to 102,400 cores under a DoD HPCMP Frontier Project. Nicholas Bisek and Ryan Gosse, Air Force Research Laboratory; Jonathan Poggie, Purdue University Direct Numerical Simulation of Compressible,

  1. Evaluation of flow redistribution due to flow blockage in rod bundles using COBRA code simulation. Final report. [PWR

    SciTech Connect (OSTI)

    Prelewicz, D.A.; Caruso, M.A.

    1981-01-01

    During a Loss-of-Coolant Accident, fuel rod cladding may reach temperatures approaching 2200/sup 0/F. At these temperatures, swelling and rupture of the cladding may occur. The resulting flow blockage will affect steam flow and heat transfer in the bundle during the period of reflooding. The COBRA-IV-I subchannel computer code was used to simulate flow redistribution due to sleeve blockages in the FLECHT-SEASET 21-rod bundle and plate blockages in the JAERI Slab Core Test Facility. Sensitivity studies were conducted to determine the effects of spacer grid and blockage interaction, sleeve shape effects, sleeve length effects, blockage magnitude and distribution, thermally induced mixing and bundle average velocity on flow redistribution. Pressure drop due to sleeve blockages was also calculated for several blockage configurations.

  2. A Multidimensional Eulerian Model for Simulating Gas-Solids Flow

    Energy Science and Technology Software Center (OSTI)

    1993-12-13

    FORCE2 is a fundamentally based three-dimensional numerical model for simulating fluid-bed hydrodynamics for a wide range of fluid beds, from laboratory to plant scale. It is based upon the ''two-fluid'' modeling approach and includes surface permeabilities, volume porosities, and distributed resistances.

  3. Nek5000 Ready to Use after Simulations of Important Pipe Flow Benchmark |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nek5000 Ready to Use after Simulations of Important Pipe Flow Benchmark Nek5000 Ready to Use after Simulations of Important Pipe Flow Benchmark January 29, 2013 - 1:42pm Addthis Velocity magnitude in MATiS-H spacer grid with swirl-type vanes. Velocity magnitude in MATiS-H spacer grid with swirl-type vanes. As part of the on-going Nek5000 validation efforts, a series of large eddy simulations (LES) have been performed for thermal stratification in a pipe. Results were in

  4. A Hybrid Multiscale Framework for Subsurface Flow and Transport Simulations

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; Yang, Xiaofan; Chen, Xingyuan; Hammond, Glenn E.

    2015-06-01

    Extensive research efforts have been invested in reducing model errors to improve the predictive ability of biogeochemical earth and environmental system simulators, with applications ranging from contaminant transport and remediation to impacts of biogeochemical elemental cycling (e.g., carbon and nitrogen) on local ecosystems and regional to global climate. While the bulk of this research has focused on improving model parameterizations in the face of observational limitations, the more challenging type of model error/uncertainty to identify and quantify is model structural error which arises from incorrect mathematical representations of (or failure to consider) important physical, chemical, or biological processes, properties, or system states in model formulations. While improved process understanding can be achieved through scientific study, such understanding is usually developed at small scales. Process-based numerical models are typically designed for a particular characteristic length and time scale. For application-relevant scales, it is generally necessary to introduce approximations and empirical parameterizations to describe complex systems or processes. This single-scale approach has been the best available to date because of limited understanding of process coupling combined with practical limitations on system characterization and computation. While computational power is increasing significantly and our understanding of biological and environmental processes at fundamental scales is accelerating, using this information to advance our knowledge of the larger system behavior requires the development of multiscale simulators. Accordingly there has been much recent interest in novel multiscale methods in which microscale and macroscale models are explicitly coupled in a single hybrid multiscale simulation. A limited number of hybrid multiscale simulations have been developed for biogeochemical earth systems, but they mostly utilize application-specific and sometimes ad-hoc approaches for model coupling. We are developing a generalized approach to hierarchical model coupling designed for high-performance computational systems, based on the Swift computing workflow framework. In this presentation we will describe the generalized approach and provide two use cases: 1) simulation of a mixing-controlled biogeochemical reaction coupling pore- and continuum-scale models, and 2) simulation of biogeochemical impacts of groundwater – river water interactions coupling fine- and coarse-grid model representations. This generalized framework can be customized for use with any pair of linked models (microscale and macroscale) with minimal intrusiveness to the at-scale simulators. It combines a set of python scripts with the Swift workflow environment to execute a complex multiscale simulation utilizing an approach similar to the well-known Heterogeneous Multiscale Method. User customization is facilitated through user-provided input and output file templates and processing function scripts, and execution within a high-performance computing environment is handled by Swift, such that minimal to no user modification of at-scale codes is required.

  5. A Hybrid Multiscale Framework for Subsurface Flow and Transport Simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scheibe, Timothy D.; Yang, Xiaofan; Chen, Xingyuan; Hammond, Glenn E.

    2015-06-01

    Extensive research efforts have been invested in reducing model errors to improve the predictive ability of biogeochemical earth and environmental system simulators, with applications ranging from contaminant transport and remediation to impacts of biogeochemical elemental cycling (e.g., carbon and nitrogen) on local ecosystems and regional to global climate. While the bulk of this research has focused on improving model parameterizations in the face of observational limitations, the more challenging type of model error/uncertainty to identify and quantify is model structural error which arises from incorrect mathematical representations of (or failure to consider) important physical, chemical, or biological processes, properties, ormore » system states in model formulations. While improved process understanding can be achieved through scientific study, such understanding is usually developed at small scales. Process-based numerical models are typically designed for a particular characteristic length and time scale. For application-relevant scales, it is generally necessary to introduce approximations and empirical parameterizations to describe complex systems or processes. This single-scale approach has been the best available to date because of limited understanding of process coupling combined with practical limitations on system characterization and computation. While computational power is increasing significantly and our understanding of biological and environmental processes at fundamental scales is accelerating, using this information to advance our knowledge of the larger system behavior requires the development of multiscale simulators. Accordingly there has been much recent interest in novel multiscale methods in which microscale and macroscale models are explicitly coupled in a single hybrid multiscale simulation. A limited number of hybrid multiscale simulations have been developed for biogeochemical earth systems, but they mostly utilize application-specific and sometimes ad-hoc approaches for model coupling. We are developing a generalized approach to hierarchical model coupling designed for high-performance computational systems, based on the Swift computing workflow framework. In this presentation we will describe the generalized approach and provide two use cases: 1) simulation of a mixing-controlled biogeochemical reaction coupling pore- and continuum-scale models, and 2) simulation of biogeochemical impacts of groundwater – river water interactions coupling fine- and coarse-grid model representations. This generalized framework can be customized for use with any pair of linked models (microscale and macroscale) with minimal intrusiveness to the at-scale simulators. It combines a set of python scripts with the Swift workflow environment to execute a complex multiscale simulation utilizing an approach similar to the well-known Heterogeneous Multiscale Method. User customization is facilitated through user-provided input and output file templates and processing function scripts, and execution within a high-performance computing environment is handled by Swift, such that minimal to no user modification of at-scale codes is required.« less

  6. A Hybrid Multiscale Framework for Subsurface Flow and Transport Simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scheibe, Timothy D.; Yang, Xiaofan; Chen, Xingyuan; Hammond, Glenn E.

    2015-06-01

    Extensive research efforts have been invested in reducing model errors to improve the predictive ability of biogeochemical earth and environmental system simulators, with applications ranging from contaminant transport and remediation to impacts of biogeochemical elemental cycling (e.g., carbon and nitrogen) on local ecosystems and regional to global climate. While the bulk of this research has focused on improving model parameterizations in the face of observational limitations, the more challenging type of model error/uncertainty to identify and quantify is model structural error which arises from incorrect mathematical representations of (or failure to consider) important physical, chemical, or biological processes, properties, ormoresystem states in model formulations. While improved process understanding can be achieved through scientific study, such understanding is usually developed at small scales. Process-based numerical models are typically designed for a particular characteristic length and time scale. For application-relevant scales, it is generally necessary to introduce approximations and empirical parameterizations to describe complex systems or processes. This single-scale approach has been the best available to date because of limited understanding of process coupling combined with practical limitations on system characterization and computation. While computational power is increasing significantly and our understanding of biological and environmental processes at fundamental scales is accelerating, using this information to advance our knowledge of the larger system behavior requires the development of multiscale simulators. Accordingly there has been much recent interest in novel multiscale methods in which microscale and macroscale models are explicitly coupled in a single hybrid multiscale simulation. A limited number of hybrid multiscale simulations have been developed for biogeochemical earth systems, but they mostly utilize application-specific and sometimes ad-hoc approaches for model coupling. We are developing a generalized approach to hierarchical model coupling designed for high-performance computational systems, based on the Swift computing workflow framework. In this presentation we will describe the generalized approach and provide two use cases: 1) simulation of a mixing-controlled biogeochemical reaction coupling pore- and continuum-scale models, and 2) simulation of biogeochemical impacts of groundwater river water interactions coupling fine- and coarse-grid model representations. This generalized framework can be customized for use with any pair of linked models (microscale and macroscale) with minimal intrusiveness to the at-scale simulators. It combines a set of python scripts with the Swift workflow environment to execute a complex multiscale simulation utilizing an approach similar to the well-known Heterogeneous Multiscale Method. User customization is facilitated through user-provided input and output file templates and processing function scripts, and execution within a high-performance computing environment is handled by Swift, such that minimal to no user modification of at-scale codes is required.less

  7. Hydro-FAST Axial Flow Simulation Code Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing a S uite o f N umerical M odeling Tools f or S imula8ng A xial---Flow M HK T urbines Contributors Michael L awson Levi Kilcher Marco M asciola DOE M HK W orkshop Broomfield, C O July 9 th - 1 0 th NATIONAL RENEWABLE ENERGY LABORATORY 2 Presenta8on o verview Introduction and objective Development strategy Summary of work to date * HydroTurbSim (turbulence) * MAP (mooring) * HydroFAST (hydro-servo-elastic) Path forward Aquantis Verdant NATIONAL RENEWABLE ENERGY LABORATORY What p hysical

  8. Gen Purpose 1-D Finite Element Network Fluid Flow Heat Transfer System Simulator

    Energy Science and Technology Software Center (OSTI)

    1993-08-02

    SAFSIM (System Analysis Flow Simulator) is a FORTRAN computer program to simulate the integrated performance of systems involving fluid mechanics, heat transfer, and reactor dynamics. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a one-dimensional finite element fluid mechanicsmore » module with multiple flow network capability; (2) a one-dimensional finite element structure heat transfer module with multiple convection and radiation exchange capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems.« less

  9. Direct numerical simulation of turbulent flow in a rotating square duct

    SciTech Connect (OSTI)

    Dai, Yi-Jun; Huang, Wei-Xi Xu, Chun-Xiao; Cui, Gui-Xiang

    2015-06-15

    A fully developed turbulent flow in a rotating straight square duct is simulated by direct numerical simulations at Re{sub ?} = 300 and 0 ? Ro{sub ?} ? 40. The rotating axis is parallel to two opposite walls of the duct and normal to the main flow. Variations of the turbulence statistics with the rotation rate are presented, and a comparison with the rotating turbulent channel flow is discussed. Rich secondary flow patterns in the cross section are observed by varying the rotation rate. The appearance of a pair of additional vortices above the pressure wall is carefully examined, and the underlying mechanism is explained according to the budget analysis of the mean momentum equations.

  10. Simulation analysis of within-day flow fluctuation effects on trout below flaming Gorge Dam.

    SciTech Connect (OSTI)

    Railsback, S. F.; Hayse, J. W.; LaGory, K. E.; Environmental Science Division; EPRI

    2006-01-01

    In addition to being renewable, hydropower has the advantage of allowing rapid load-following, in that the generation rate can easily be varied within a day to match the demand for power. However, the flow fluctuations that result from load-following can be controversial, in part because they may affect downstream fish populations. At Flaming Gorge Dam, located on the Green River in northeastern Utah, concern has been raised about whether flow fluctuations caused by the dam disrupt feeding at a tailwater trout fishery, as fish move in response to flow changes and as the flow changes alter the amount or timing of the invertebrate drift that trout feed on. Western Area Power Administration (Western), which controls power production on submonthly time scales, has made several operational changes to address concerns about flow fluctuation effects on fisheries. These changes include reducing the number of daily flow peaks from two to one and operating within a restricted range of flows. These changes significantly reduce the value of the power produced at Flaming Gorge Dam and put higher load-following pressure on other power plants. Consequently, Western has great interest in understanding what benefits these restrictions provide to the fishery and whether adjusting the restrictions could provide a better tradeoff between power and non-power concerns. Directly evaluating the effects of flow fluctuations on fish populations is unfortunately difficult. Effects are expected to be relatively small, so tightly controlled experiments with large sample sizes and long study durations would be needed to evaluate them. Such experiments would be extremely expensive and would be subject to the confounding effects of uncontrollable variations in factors such as runoff and weather. Computer simulation using individual-based models (IBMs) is an alternative study approach for ecological problems that are not amenable to analysis using field studies alone. An IBM simulates how a population responds to environmental changes by representing how the population's individuals interact with their environment and each other. IBMs represent key characteristics of both individual organisms (trout, in this case) and the environment, thus allowing controlled simulation experiments to analyze the effects of changes in the key variables. For the flow fluctuation problem at Flaming Gorge Dam, the key environmental variables are flow rates and invertebrate drift concentrations, and the most important processes involve how trout adapt to changes (over space and time) in growth potential and mortality risk. This report documents simulation analyses of flow fluctuation effects on trout populations. The analyses were conducted in a highly controlled fashion: an IBM was used to predict production (survival and growth) of trout populations under a variety of scenarios that differ only in the level or type of flow fluctuation.

  11. Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows

    SciTech Connect (OSTI)

    Sankaran Sundaresan

    2010-02-14

    Gas-particle flows in fluidized beds and riser reactors are inherently unstable, and they manifest fluctuations over a wide range of length and time scales. Two-fluid models for such flows reveal unstable modes whose length scale is as small as ten particle diameters. Yet, because of limited computational resources, gas-particle flows in large fluidized beds are invariably simulated by solving discretized versions of the two-fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not resolve the small-scale spatial structures which are known to affect the macroscale flow structures both qualitatively and quantitatively. Thus there is a need to develop filtered two-fluid models which are suitable for coarse-grid simulations and capturing the effect of the small-scale structures through closures in terms of the filtered variables. The overall objective of the project is to develop validated closures for filtered two-fluid models for gas-particle flows, with the transport gasifier as a primary, motivating example. In this project, highly resolved three-dimensional simulations of a kinetic theory based two-fluid model for gas-particle flows have been performed and the statistical information on structures in the 100-1000 particle diameters length scale has been extracted. Based on these results, closures for filtered two-fluid models have been constructed. The filtered model equations and closures have been validated against experimental data and the results obtained in highly resolved simulations of gas-particle flows. The proposed project enables more accurate simulations of not only the transport gasifier, but also many other non-reacting and reacting gas-particle flows in a variety of chemical reactors. The results of this study are in the form of closures which can readily be incorporated into existing multi-phase flow codes such as MFIX (www.mfix.org). Therefore, the benefits of this study can be realized quickly. The training provided by this project has prepared a PhD student to enter research and development careers in DOE laboratories or chemicals/energy-related industries.

  12. Flow simulation of the Component Development Integration Facility magnetohydrodynamic power train system

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.

    1997-11-01

    This report covers application of Argonne National Laboratory`s (ANL`s) computer codes to simulation and analysis of components of the magnetohydrodynamic (MHD) power train system at the Component Development and Integration Facility (CDIF). Major components of the system include a 50-MWt coal-fired, two-stage combustor and an MHD channel. The combustor, designed and built by TRW, includes a deswirl section between the first and the second-stage combustor and a converging nozzle following the second-stage combustor, which connects to the MHD channel. ANL used computer codes to simulate and analyze flow characteristics in various components of the MHD system. The first-stage swirl combustor was deemed a mature technology and, therefore, was not included in the computer simulation. Several versions of the ICOMFLO computer code were used for the deswirl section and second-stage combustor. The MGMHD code, upgraded with a slag current leakage submodel, was used for the MHD channel. Whenever possible data from the test facilities were used to aid in calibrating parameters in the computer code, to validate the computer code, or to set base-case operating conditions for computations with the computer code. Extensive sensitivity and parametric studies were done on cold-flow mixing in the second-stage combustor, reacting flow in the second-stage combustor and converging nozzle, and particle-laden flow in the deswirl zone of the first-stage combustor, the second-stage combustor, and the converging nozzle. These simulations with subsequent analysis were able to show clearly in flow patterns and various computable measures of performance a number of sensitive and problematical areas in the design of the power train. The simulations of upstream components also provided inlet parameter profiles for simulation of the MHD power generating channel. 86 figs., 18 tabs.

  13. Practical application of large eddy simulation to film cooling flow analysis on gas turbine airfoils

    SciTech Connect (OSTI)

    Takata, T.; Takeishi, K.; Kawata, Y.; Tsuge, A.

    1999-07-01

    Large eddy simulation (LES) using body-fitted coordinates is applied to solve film cooling flow on turbine blades. The turbulent model was tuned using the experimental flow field and adiabatic film cooling effectiveness measurements for a single row of holes on a flat plate surface. The results show the interaction between the main stream boundary layer and injected film cooling air generates kidney and horseshoe shaped vortices. Comparison of the temperature distribution between experimental results and present analysis has been conducted. The non-dimensional temperature distribution at x/d = 1 is dome style and quantitatively agrees with experimental results. LES was also applied to solve film cooling on a turbine airfoil. If LES was applied to solve whole flow field domain large CPU time would make the solution impractical. LES, using body-fitted coordinates, is applied to solve the non-isotropic film cooling flow near the turbine blade. The cascade flow domain, with a pitch equal to one film cooling hole spacing, is solved using {kappa}-{epsilon} model. By using such a hybrid numerical method, CPU time is reduced and numerical accuracy is insured. The analytical results show the interaction between the flow blowing through film cooling holes and mainstream on the suction and pressure surfaces of the turbine airfoil. They also show the fundamental structure of the film cooling air flow is governed by arch internal secondary flow and horseshoe vortices which have a similar structure to film cooling air flow blowing through a cooling hole on a flat plate. In the flow field, the effect of turbulent structure on curvature (relaminarization) and flow pattern, involving the interaction between main flow and the cooling jet, are clearly shown. Film cooling effectiveness on the blade surface is predicted from the results of the thermal field calculation and is compared with the test result.

  14. Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Cooper, C.A.

    1990-01-01

    Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s{sub {minus}1}. An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm{sup 3}. This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s{sup {minus}1}), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model.

  15. Towards an optimal flow: Density-of-states-informed replica-exchange simulations

    SciTech Connect (OSTI)

    Vogel, Thomas; Perez, Danny

    2015-11-05

    Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely, the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.

  16. Apparatus and method for interaction phenomena with world modules in data-flow-based simulation

    DOE Patents [OSTI]

    Xavier, Patrick G.; Gottlieb, Eric J.; McDonald, Michael J.; Oppel, III, Fred J.

    2006-08-01

    A method and apparatus accommodate interaction phenomenon in a data-flow-based simulation of a system of elements, by establishing meta-modules to simulate system elements and by establishing world modules associated with interaction phenomena. World modules are associated with proxy modules from a group of meta-modules associated with one of the interaction phenomenon. The world modules include a communication world, a sensor world, a mobility world, and a contact world. World modules can be further associated with other world modules if necessary. Interaction phenomenon are simulated in corresponding world modules by accessing member functions in the associated group of proxy modules. Proxy modules can be dynamically allocated at a desired point in the simulation to accommodate the addition of elements in the system of elements such as a system of robots, a system of communication terminals, or a system of vehicles, being simulated.

  17. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bakosi, J.; Christon, M. A.; Lowrie, R. B.; Pritchett-Sheats, L. A.; Nourgaliev, R. R.

    2013-07-12

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less

  18. CFD SIMULATION OF PROPOSED VALIDATION DATA FOR A FLOW PROBLEM RECONFIGURED TO ELIMINATE AN UNDESIRABLE FLOW INSTABILITY

    SciTech Connect (OSTI)

    Richard W. Johnson; Hugh M. McIlroy

    2010-08-01

    The U. S. Department of Energy (DOE) is supporting the development of a next generation nuclear plant (NGNP), which will be based on a very high temperature reactor (VHTR) design. The VHTR is a single-phase helium-cooled reactor wherein the helium will be heated initially to 750 °C and later to temperatures approaching 1000 °C. The high temperatures are desired to increase reactor efficiency and to provide a heat source for the manufacture of hydrogen and other applications. While computational fluid dynamics (CFD) has not been used in the past to design or license nuclear reactors in the U. S., it is expected that CFD will be used in the design and safety analysis of forthcoming designs. This is partly because of the maturity of CFD and partly because detailed information is desired of the flow and heat transfer inside the reactor to avoid hot spots and other conditions that might compromise reactor safety. Numerical computations of turbulent flow should be validated against experimental data for flow conditions that contain some or all of the physics expected in the thermal fluid machinery of interest. To this end, a scaled model of a narrow slice of the lower plenum of the prismatic VHTR was constructed and installed in the Idaho National Laboratory’s (INL) matched index of refraction (MIR) test facility and data were taken. The data were then studied and compared to CFD calculations to help determine their suitability for validation data. One of the main findings was that the inlet data, which were measured and controlled by calibrated mass flow rotameters and were also measured using detailed stereo particle image velocimetry (PIV) showed considerable discrepancies in mass flow rate between the two methods. The other finding was that a randomly unstable recirculation zone occurs in the flow. This instability has a very significant effect on the flow field in the vicinity of the inlet jets. Because its time scale is long and because it is apparently a random instability, it was deemed undesirable for a validation data set. It was predicted using CFD that by eliminating the first of the four jets, the recirculation zone could be stabilized. The present paper reports detailed results for the three-jet case with comparisons to the four-jet data inasmuch as three-jet data are still unavailable. Hence, the present simulations are true or blind predictions.

  19. Mathematical Simulation of the Gas-Particles Reaction Flows in Incineration of Metal-Containing Waste

    SciTech Connect (OSTI)

    Ojovan, M. I.; Klimov, V. L.; Karlina, O. K.

    2002-02-26

    A ''quasi-equilibrium'' approach for thermodynamic calculation of chemical composition and properties of metal-containing fuel combustion products has been developed and used as a part of the mathematical model of heterogeneous reacting flow which carry burning and/or evaporating particles. By using of this approach, the applicable mathematical model has been devised, which allows defining the change in chemical composition and thermal characteristics of combustion products along the incineration chamber. As an example, the simulation results of the reacting flow of magnesium-sodium nitrate-organic mixture are presented. The simulation results on the gas phase temperature in the flow of combustion products are in good agreement with those obtained experimentally. The proposed method of ''quasi-equilibrium'' thermodynamic calculation and mathematical model provide a real possibility for performing of numerical experiments on the basis of mathematical simulation of nonequilibrium flows of combustion products. Numerical experiments help correctly to estimate the work characteristics in the process of treatment devices design saving time and costs.

  20. One- and two-dimensional Stirling machine simulation using experimentally generated reversing flow turbuulence models

    SciTech Connect (OSTI)

    Goldberg, L.F.

    1990-08-01

    The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year`s funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge.

  1. Simulates the Forced-Flow Chemical Vapor Infiltration in Steady State

    Energy Science and Technology Software Center (OSTI)

    1997-12-12

    GTCVI is a finite volume model for steady-state simulation of forced-flow chemical vapor infiltration in either Cartesian or cylindrical coordinates. The model solves energy and momentum balances simultaneously over a given domain discretized into an array of finite volume elements. The species balances and deposition rates are determined after the energy and momentum balances converge. Density-dependent preform properties are included in the model. Transient average density, backpressure, temperature gradient, and average radial deposition rates canmore » be summarized. Optimal infiltration conditions can be found by varying temperature, flow, and reactant concentration.« less

  2. Aviation security cargo inspection queuing simulation model for material flow and accountability

    SciTech Connect (OSTI)

    Olama, Mohammed M; Allgood, Glenn O; Rose, Terri A; Brumback, Daryl L

    2009-01-01

    Beginning in 2010, the U.S. will require that all cargo loaded in passenger aircraft be inspected. This will require more efficient processing of cargo and will have a significant impact on the inspection protocols and business practices of government agencies and the airlines. In this paper, we develop an aviation security cargo inspection queuing simulation model for material flow and accountability that will allow cargo managers to conduct impact studies of current and proposed business practices as they relate to inspection procedures, material flow, and accountability.

  3. TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems

    SciTech Connect (OSTI)

    Moridis, G.J.; Pruess , K.

    1992-11-01

    The TOUGH code [Pruess, 1987] for two-phase flow of water, air, and heat in penneable media has been exercised on a suite of test problems originally selected and simulated by C. D. Updegraff [1989]. These include five 'verification' problems for which analytical or numerical solutions are available, and three 'validation' problems that model laboratory fluid and heat flow experiments. All problems could be run without any code modifications (*). Good and efficient numerical performance, as well as accurate results were obtained throughout. Additional code verification and validation problems from the literature are briefly summarized, and suggestions are given for proper applications of TOUGH and related codes.

  4. SIMULATION AND MOCKUP OF SNS JET-FLOW TARGET WITH WALL JET FOR CAVITATION DAMAGE MITIGATION

    SciTech Connect (OSTI)

    Wendel, Mark W; Geoghegan, Patrick J; Felde, David K

    2014-01-01

    Pressure waves created in liquid mercury pulsed spallation targets at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory induce cavitation damage on the stainless steel target container. The cavitation damage is thought to limit the lifetime of the target for power levels at and above 1 MW. Severe through-wall cavitation damage on an internal wall near the beam entrance window has been observed in spent-targets. Surprisingly though, there is very little damage on the walls that bound an annular mercury channel that wraps around the front and outside of the target. The mercury flow through this channel is characterized by smooth, attached streamlines. One theory to explain this lack of damage is that the uni-directional flow biases the direction of the collapsing cavitation bubble, reducing the impact pressure and subsequent damage. The theory has been reinforced by in-beam separate effects data. For this reason, a second-generation SNS mercury target has been designed with an internal wall jet configuration intended to protect the concave wall where damage has been observed. The wall jet mimics the annular flow channel streamlines, but since the jet is bounded on only one side, the momentum is gradually diffused by the bulk flow interactions as it progresses around the cicular path of the target nose. Numerical simulations of the flow through this jet-flow target have been completed, and a water loop has been assembled with a transparent test target in order to visualize and measure the flow field. This paper presents the wall jet simulation results, as well as early experimental data from the test loop.

  5. Direct numerical simulations of fluid flow, heat transfer and phase changes

    SciTech Connect (OSTI)

    Juric, D.; Tryggvason, G.; Han, J.

    1997-04-01

    Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.

  6. Numerical simulation of a thermoacoustic refrigerator. I. Unsteady adiabatic flow around the stack

    SciTech Connect (OSTI)

    Worlikar, A.S.; Knio, O.M.

    1996-09-01

    A low Mach-number compressible flow model for the simulation of acoustically driven flow in a thermoacoustic stack is constructed. The model is based on the assumption that the acoustic wavelength is much larger than the characteristic hydrodynamic lengthscale. Thus, a simplified description of the flow is obtained which still retains the essential features of acoustically induced velocity oscillations near solid boundaries. A vorticity-based formulation of the governing equation is derived which relies on the Helmholtz decomposition of the velocity vector into irrotational and divergence-free components. Irrotational motion is used to represent the action of acoustic waves. Meanwhile the divergence-free velocity component is used to capture the nonlinear vortical perturbations due to no-slip boundaries. A simplified version of the model is applied to analyze unsteady flow in the neighborhood of an idealized thermo-acoustic stack which consists of a periodic array of thin plates placed in an acoustic standing wave. Computed results are used to analyze, for different stack configurations, the nonlinear response of the flow to different acoustic driving amplitudes and frequencies. In particular, it is shown that the flow is dominated by the motion of vortices which result from the shedding of boundary layers from the edges of the stack. The dependence of energy losses on stack configuration and operating conditions is also examined. 28 refs., 23 figs., 2 tabs.

  7. Subsurface water flow simulated for hill slopes with spatially dependent soil hydraulic characteristics

    SciTech Connect (OSTI)

    Sharma, M.L.; Luxmoore, R.J.; DeAngelis, R.; Ward, R.C.; Yeh, G.T.

    1987-08-01

    Water flow through hill slopes consisting of five soil layers, with varying spatial dependence in hydraulic characteristics in the lateral plane was simulated by solving Richards' equation in three dimensions under varying rainfall intensities and for two complexities of terrain. By concepts of similar media the variability in soil hydraulic characteristics was expressed by a single dimensionless parameter, the scaling factor ..cap alpha... The moments of log normally distributed ..cap alpha.. were set as: Mean = 1.0 and standard deviation = 1.0. Four cases of spatial dependence of ..cap alpha.. in the lateral plane were selected for simulation, using exponential variogram functions ranging in spatial structure from random (no spatial dependence) to large dependence (large correlation lengths). The simulations showed that the rates of subsurface flow from the 30/sup 0/ hillslope, during and following rainfall, were significantly enhanced with an increase in spatial dependence. Subsurface drainage was also increased with increases in rainfall intensity and slop complexity. For hill slopes the relative effects of spatial dependence in soil hydraulic characteristics was smaller with 30/sup 0/ horizontal pitching than without pitching. Hill slopes with a random distribution of hydraulic characteristics provided greater opportunity for soil units with differing water capacities to interact than in cases with spatially correlated distributions. This greater interaction is associated with a greater lag in subsurface flow generation. These studies illustrate some of the expected effects of spatial dependence of soil hydraulic characteristics of the integrated hydrologic response of land areas.

  8. Numerical simulation of laminar plasma dynamos in a cylindrical von Karman flow

    SciTech Connect (OSTI)

    Khalzov, I. V.; Brown, B. P.; Schnack, D. D.; Forest, C. B. [University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706 (United States); Ebrahimi, F. [University of New Hampshire, 8 College Road, Durham, New Hampshire 03824 (United States)

    2011-03-15

    The results of a numerical study of the magnetic dynamo effect in cylindrical von Karman plasma flow are presented with parameters relevant to the Madison Plasma Couette Experiment. This experiment is designed to investigate a broad class of phenomena in flowing plasmas. In a plasma, the magnetic Prandtl number Pm can be of order unity (i.e., the fluid Reynolds number Re is comparable to the magnetic Reynolds number Rm). This is in contrast to liquid metal experiments, where Pm is small (so, Re>>Rm) and the flows are always turbulent. We explore dynamo action through simulations using the extended magnetohydrodynamic NIMROD code for an isothermal and compressible plasma model. We also study two-fluid effects in simulations by including the Hall term in Ohm's law. We find that the counter-rotating von Karman flow results in sustained dynamo action and the self-generation of magnetic field when the magnetic Reynolds number exceeds a critical value. For the plasma parameters of the experiment, this field saturates at an amplitude corresponding to a new stable equilibrium (a laminar dynamo). We show that compressibility in the plasma results in an increase of the critical magnetic Reynolds number, while inclusion of the Hall term in Ohm's law changes the amplitude of the saturated dynamo field but not the critical value for the onset of dynamo action.

  9. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    SciTech Connect (OSTI)

    Seshadri, Vikram; Kaisare, Niket S.

    2010-11-15

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  10. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    SciTech Connect (OSTI)

    Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; Perkins, William A.; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; Krafczyk, Manfred; Luo, Li -Shi; Tartakovsky, Alexandre M.; Yang, Xiaofan; Scheibe, Timothy D.; Trask, Nathaniel

    2015-09-28

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.

  11. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; Perkins, William A.; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; et al

    2015-09-28

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less

  12. Inflow/outflow boundary conditions for particle-based blood flow simulations: Application to arterial bifurcations and trees

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lykov, Kirill; Li, Xuejin; Lei, Huan; Pivkin, Igor V.; Karniadakis, George Em; Feng, James

    2015-08-28

    When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and R- BCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain themore » flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon valida- tion of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the \\all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Lastly, we demonstrated the new methodology for simulating blood flow in ves- sels with multiple inlets and outlets, constructed using an angiogenesis model.« less

  13. Towards an optimal flow: Density-of-states-informed replica-exchange simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogel, Thomas; Perez, Danny

    2015-11-05

    Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely,more » the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.« less

  14. A Unified Multi-Scale Model for Pore-Scale Flow Simulations in Soils

    SciTech Connect (OSTI)

    Yang, Xiaofan; Liu, Chongxuan; Shang, Jianying; Fang, Yilin; Bailey, Vanessa L.

    2014-01-30

    Pore-scale simulations have received increasing interest in subsurface sciences to provide mechanistic insights into the macroscopic phenomena of water flow and reactive transport processes. The application of the pore scale simulations to soils and sediments is, however, challenged because of the characterization limitation that often only allows partial resolution of pore structure and geometry. A significant proportion of the pore space in soils and sediments is below the spatial resolution, forming a mixed media of pore and porous domains. Here we reported a unified multi-scale model (UMSM) that can be used to simulate water flow and transport in mixed media of pore and porous domains under both saturated and unsaturated conditions. The approach modifies the classic Navier-Stokes equation by adding a Darcy term to describe fluid momentum and uses a generalized mass balance equation for saturated and unsaturated conditions. By properly defining physical parameters, the UMSM can be applied in both pore and porous domains. This paper describes the set of equations for the UMSM, a series of validation cases under saturated or unsaturated conditions, and a real soil case for the application of the approach.

  15. DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY

    SciTech Connect (OSTI)

    Moses Bogere

    2011-08-31

    The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.

  16. Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit

    SciTech Connect (OSTI)

    Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung; Huckaby, E. D.; Sun, Xin

    2014-10-01

    To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO2 from CO2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.

  17. Simulations for Complex Fluid Flow Problems from Berkeley Lab's Center for Computational Sciences and Engineering (CCSE)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Center for Computational Sciences and Engineering (CCSE) develops and applies advanced computational methodologies to solve large-scale scientific and engineering problems arising in the Department of Energy (DOE) mission areas involving energy, environmental, and industrial technology. The primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for compressible, incompressible, and low Mach number flows. The diverse range of scientific applications that drive the research typically involve a large range of spatial and temporal scales (e.g. turbulent reacting flows) and require the use of extremely large computing hardware, such as the 153,000-core computer, Hopper, at NERSC. The CCSE approach to these problems centers on the development and application of advanced algorithms that exploit known separations in scale; for many of the application areas this results in algorithms are several orders of magnitude more efficient than traditional simulation approaches.

  18. Lagrangian simulations of unstable gravity-driven flow of fluids with variable density in randomly heterogeneous porous media

    SciTech Connect (OSTI)

    Tartakovsky, Alexandre M.

    2010-06-24

    A new Lagrangian particle model based on smoothed particle hydrodynamics (SPH) was developed and used to simulate Darcy scale flow and transport in porous media. The proposed numerical method has excellent conservation properties and treats advection exactly. The method was used in stochastic analysis of miscible density driven fluid flows. It was found that heterogeneity significantly increases dispersion and slows development of Rayleigh-Taylor instability. The presented numerical examples illustrate the advantages of Lagrangian methods for stochastic transport simulations.

  19. TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows

    SciTech Connect (OSTI)

    Pruess, K.

    1991-06-01

    Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.

  20. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems

    Energy Science and Technology Software Center (OSTI)

    1994-06-20

    FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less

  1. Inflow/outflow boundary conditions for particle-based blood flow simulations: Application to arterial bifurcations and trees

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lykov, Kirill; Li, Xuejin; Lei, Huan; Pivkin, Igor V.; Karniadakis, George Em; Feng, James

    2015-08-28

    When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and RBCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain the flowmorerate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon validation of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the all-or-nothing phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Finally, we demonstrated the effectiveness of the new methodology in simulations of blood flow in vessels with multiple inlets and outlets, constructed using an angiogenesis modeless

  2. Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers

    SciTech Connect (OSTI)

    Wu, Yu-Shu; Chen, Zizhong; Kazemi, Hossein; Yin, Xiaolong; Pruess, Karsten; Oldenburg, Curt; Winterfeld, Philip; Zhang, Ronglei

    2014-09-30

    This report is the final scientific one for the award DE- FE0000988 entitled “Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers.” The work has been divided into six tasks. In task, “Development of a Three-Phase Non-Isothermal CO2 Flow Module,” we developed a fluid property module for brine-CO2 mixtures designed to handle all possible phase combinations of aqueous phase, sub-critical liquid and gaseous CO2, supercritical CO2, and solid salt. The thermodynamic and thermophysical properties of brine-CO2 mixtures (density, viscosity, and specific enthalpy of fluid phases; partitioning of mass components among the different phases) use the same correlations as an earlier fluid property module that does not distinguish between gaseous and liquid CO2-rich phases. We verified the fluid property module using two leakage scenarios, one that involves CO2 migration up a blind fault and subsequent accumulation in a secondary “parasitic” reservoir at shallower depth, and another investigating leakage of CO2 from a deep storage reservoir along a vertical fault zone. In task, “Development of a Rock Mechanical Module,” we developed a massively parallel reservoir simulator for modeling THM processes in porous media brine aquifers. We derived, from the fundamental equations describing deformation of porous elastic media, a momentum conservation equation relating mean stress, pressure, and temperature, and incorporated it alongside the mass and energy conservation equations from the TOUGH2 formulation, the starting point for the simulator. In addition, rock properties, namely permeability and porosity, are functions of effective stress and other variables that are obtained from the literature. We verified the simulator formulation and numerical implementation using analytical solutions and example problems from the literature. For the former, we matched a one-dimensional consolidation problem and a two-dimensional simulation of the Mandel-Cryer effect. For the latter, we obtained a good match of temperature and gas saturation profiles, and surface uplift, after injection of hot fluid into a model of a caldera structure. In task, “Incorporation of Geochemical Reactions of Selected Important Species,” we developed a novel mathematical model of THMC processes in porous and fractured saline aquifers, simulating geo-chemical reactions associated with CO2 sequestration in saline aquifers. Two computational frameworks, sequentially coupled and fully coupled, were used to simulate the reactions and transport. We verified capabilities of the THMC model to treat complex THMC processes during CO2 sequestration by analytical solutions and we constructed reactive transport models to analyze the THMC process quantitatively. Three of these are 1D reactive transport under chemical equilibrium, a batch reaction model with equilibrium chemical reactions, and a THMC model with CO2 dissolution. In task “Study of Instability in CO2 Dissolution-Diffusion-Convection Processes,” We reviewed literature related to the study of density driven convective flows and on the instability of CO2 dissolution-diffusion-convection processes. We ran simulations that model the density-driven flow instability that would occur during CO2 sequestration. CO2 diffused through the top of the system and dissolved in the aqueous phase there, increasing its density. Density fingers formed along the top boundary, and coalesced into a few prominent ones, causing convective flow that forced the fluid to the system bottom. These simulations were in two and three dimensions. We ran additional simulations of convective mixing with density contrast caused by variable dissolved CO2 concentration in saline water, modeled after laboratory experiments in which supercritical CO2 was circulated in the headspace above a brine saturated packed sand in a pressure vessel. As CO2 dissolved into the upper part of the saturated sand, liquid phase density increases causing instability and setting off convective mixing. We obtained good agreement with the laboratory experiments, which were characterized by finger development and associated mixing of dissolved CO2 into the system. We then varied a wide range of parameters and conceptual models in order to analyze the possibility of convective mixing under different conditions, such as various boundary conditions, and chemical reaction conditions. The CO2 fingers from different simulations showed great differences as time progressed, caused by permeability heterogeneity. The early time diffusive phenomenon was captured by fine grid resolution, and the permeability heterogeneity affected the pattern of the CO2 fingers. In addition, the fingers from three-dimensional simulations tended to be larger and flatter than the two-dimensional ones. In task “Implementation of Efficient Parallel Computing Technologies,” we made enhancements and modifications to our code in order to substantially increase the grid size that could be run. We installed and ran it on various platforms, including a multi-core PC and a cluster, and verified the numerical implementation and parallel code using an example problem from the literature. This problem, with a grid size of sixty million, utilized the cluster’s entire memory and all of its processors. In task “Implementation of General Fracture Conceptual Models,” we used the MINC approach, a generalization of the double-porosity concept, to model flow through porous and fractured media. In this approach, flow within the matrix is described by subdividing the matrix into nested volumes, with flow occurring between adjacent nested matrix volumes as well as between the fractures and the outer matrix volume. We generalized Hooke’s law to a thermo-multi- poroelastic medium, and derived from the fundamental equations describing deformation of porous and fractured elastic media a momentum conservation equation for thermo-multi- poroelastic media. This equation is a generalization to multi-poroelastic media of the one derived in Task 3.0 for single porosity media. We describe two simulations to provide model verification and application examples. The first, one-dimensional consolidation of a double-porosity medium, is compared to an analytical solution. The second is a match of published results from the literature, a simulation of CO2 injection into hypothetical aquifer-caprock systems.

  3. CFD Simulation of 3D Flow field in a Gas Centrifuge

    SciTech Connect (OSTI)

    Dongjun Jiang; Shi Zeng

    2006-07-01

    A CFD method was used to study the whole flow field in a gas centrifuge. In this paper, the VSM (Vector Splitting Method) of the FVM (Finite Volume Method) was used to solve the 3D Navier-Stokes equations. An implicit second-order upwind scheme was adopted. The numerical simulation was successfully performed on a parallel cluster computer and a convergence result was obtained. The simulation shows that: in the withdrawal chamber, a strong detached shock wave is formed in front of the scoop; as the radial position increases, the shock becomes stronger and the distance to scoop front surface is smaller. An oblique shock forms in the clearance between the scoop and the centrifuge wall; behind the shock-wave, the radially-inward motion of gas is induced because of the imbalance of the pressure gradient and the centrifugal force. In the separation chamber, a countercurrent is introduced. This indicates that CFD method can be used to study the complex three-dimensional flow field of gas centrifuges. (authors)

  4. NUMERICAL SIMULATIONS OF Z-PINCH EXPERIMENTS TO CREATE SUPERSONIC DIFFERENTIALLY ROTATING PLASMA FLOWS

    SciTech Connect (OSTI)

    Bocchi, M.; Ummels, B.; Chittenden, J. P.; Lebedev, S. V.; Frank, A.; Blackman, E. G.

    2013-04-10

    The physics of accretion disks is of fundamental importance for understanding of a wide variety of astrophysical sources that includes protostars, X-ray binaries, and active galactic nuclei. The interplay between hydrodynamic flows and magnetic fields and the potential for turbulence-producing instabilities is a topic of active research that would benefit from the support of dedicated experimental studies. Such efforts are in their infancy, but in an effort to push the enterprise forward we propose an experimental configuration which employs a modified cylindrical wire array Z-pinch to produce a rotating plasma flow relevant to accretion disks. We present three-dimensional resistive magnetohydrodynamic simulations which show how this approach can be implemented. In the simulations, a rotating plasma cylinder or ring is formed, with typical rotation velocity {approx}30 km s{sup -1}, Mach number {approx}4, and Reynolds number in excess of 10{sup 7}. The plasma is also differentially rotating. Implementation of different external magnetic field configurations is discussed. It is found that a modest uniform vertical field of 1 T can affect the dynamics of the system and could be used to study magnetic field entrainment and amplification through differential rotation. A dipolar field potentially relevant to the study of accretion columns is also considered.

  5. Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles

    SciTech Connect (OSTI)

    Rosa, B.; Parishani, H.; Ayala, O.; Wang, L.-P.

    2015-01-15

    In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [An examination of forcing in direct numerical simulations of turbulence, Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate.

  6. Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors

    SciTech Connect (OSTI)

    R. A. Berry

    2010-11-01

    Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single velocity and pressure, etc.) A unified, multi-scale approach is advocated to extend the necessary foundations and build the capability to simultaneously solve the fluid dynamic interface problems (interface resolution) as well as multiphase mixtures (homogenization).

  7. A Many-Task Parallel Approach for Multiscale Simulations of Subsurface Flow and Reactive Transport

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; Yang, Xiaofan; Schuchardt, Karen L.; Agarwal, Khushbu; Chase, Jared M.; Palmer, Bruce J.; Tartakovsky, Alexandre M.

    2014-12-16

    Continuum-scale models have long been used to study subsurface flow, transport, and reactions but lack the ability to resolve processes that are governed by pore-scale mixing. Recently, pore-scale models, which explicitly resolve individual pores and soil grains, have been developed to more accurately model pore-scale phenomena, particularly reaction processes that are controlled by local mixing. However, pore-scale models are prohibitively expensive for modeling application-scale domains. This motivates the use of a hybrid multiscale approach in which continuum- and pore-scale codes are coupled either hierarchically or concurrently within an overall simulation domain (time and space). This approach is naturally suited to an adaptive, loosely-coupled many-task methodology with three potential levels of concurrency. Each individual code (pore- and continuum-scale) can be implemented in parallel; multiple semi-independent instances of the pore-scale code are required at each time step providing a second level of concurrency; and Monte Carlo simulations of the overall system to represent uncertainty in material property distributions provide a third level of concurrency. We have developed a hybrid multiscale model of a mixing-controlled reaction in a porous medium wherein the reaction occurs only over a limited portion of the domain. Loose, minimally-invasive coupling of pre-existing parallel continuum- and pore-scale codes has been accomplished by an adaptive script-based workflow implemented in the Swift workflow system. We describe here the methods used to create the model system, adaptively control multiple coupled instances of pore- and continuum-scale simulations, and maximize the scalability of the overall system. We present results of numerical experiments conducted on NERSC supercomputing systems; our results demonstrate that loose many-task coupling provides a scalable solution for multiscale subsurface simulations with minimal overhead.

  8. Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report

    SciTech Connect (OSTI)

    Sanjiva Lele

    2012-10-01

    The target of this SciDAC Science Application was to develop a new capability based on high-order and high-resolution schemes to simulate shock-turbulence interactions and multi-material mixing in planar and spherical geometries, and to study Rayleigh-Taylor and Richtmyer-Meshkov turbulent mixing. These fundamental problems have direct application in high-speed engineering flows, such as inertial confinement fusion (ICF) capsule implosions and scramjet combustion, and also in the natural occurrence of supernovae explosions. Another component of this project was the development of subgrid-scale (SGS) models for large-eddy simulations of flows involving shock-turbulence interaction and multi-material mixing, that were to be validated with the DNS databases generated during the program. The numerical codes developed are designed for massively-parallel computer architectures, ensuring good scaling performance. Their algorithms were validated by means of a sequence of benchmark problems. The original multi-stage plan for this five-year project included the following milestones: 1) refinement of numerical algorithms for application to the shock-turbulence interaction problem and multi-material mixing (years 1-2); 2) direct numerical simulations (DNS) of canonical shock-turbulence interaction (years 2-3), targeted at improving our understanding of the physics behind the combined two phenomena and also at guiding the development of SGS models; 3) large-eddy simulations (LES) of shock-turbulence interaction (years 3-5), improving SGS models based on the DNS obtained in the previous phase; 4) DNS of planar/spherical RM multi-material mixing (years 3-5), also with the two-fold objective of gaining insight into the relevant physics of this instability and aiding in devising new modeling strategies for multi-material mixing; 5) LES of planar/spherical RM mixing (years 4-5), integrating the improved SGS and multi-material models developed in stages 3 and 5. This final report is outlined as follows. Section 2 shows an assessment of numerical algorithms that are best suited for the numerical simulation of compressible flows involving turbulence and shock phenomena. Sections 3 and 4 deal with the canonical shock-turbulence interaction problem, from the DNS and LES perspectives, respectively. Section 5 considers the shock-turbulence inter-action in spherical geometry, in particular, the interaction of a converging shock with isotropic turbulence as well as the problem of the blast wave. Section 6 describes the study of shock-accelerated mixing through planar and spherical Richtmyer-Meshkov mixing as well as the shock-curtain interaction problem In section 7 we acknowledge the different interactions between Stanford and other institutions participating in this SciDAC project, as well as several external collaborations made possible through it. Section 8 presents a list of publications and presentations that have been generated during the course of this SciDAC project. Finally, section 9 concludes this report with the list of personnel at Stanford University funded by this SciDAC project.

  9. Numerical simulations of optically thick accretion onto a black hole. II. Rotating flow

    SciTech Connect (OSTI)

    Fragile, P. Chris; Olejar, Ally; Anninos, Peter

    2014-11-20

    In this paper, we report on recent upgrades to our general relativistic radiation magnetohydrodynamics code, Cosmos++, including the development of a new primitive inversion scheme and a hybrid implicit-explicit solver with a more general M {sub 1} closure relation for the radiation equations. The new hybrid solver helps stabilize the treatment of the radiation source terms, while the new closure allows for a much broader range of optical depths to be considered. These changes allow us to expand by orders of magnitude the range of temperatures, opacities, and mass accretion rates, and move a step closer toward our goal of performing global simulations of radiation-pressure-dominated black hole accretion disks. In this work, we test and validate the new method against an array of problems. We also demonstrate its ability to handle super-Eddington, quasi-spherical accretion. Even with just a single proof-of-principle simulation, we already see tantalizing hints of the interesting phenomenology associated with the coupling of radiation and gas in super-Eddington accretion flows.

  10. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    SciTech Connect (OSTI)

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is limited by initial conditions), so they should prove useful for testing accretion-jet theories and measuring a/M in systems such as SgrA* and M87.

  11. Simulating atmosphere flow for wind energy applications with WRF-LES

    SciTech Connect (OSTI)

    Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A

    2008-01-14

    Forecasts of available wind energy resources at high spatial resolution enable users to site wind turbines in optimal locations, to forecast available resources for integration into power grids, to schedule maintenance on wind energy facilities, and to define design criteria for next-generation turbines. This array of research needs implies that an appropriate forecasting tool must be able to account for mesoscale processes like frontal passages, surface-atmosphere interactions inducing local-scale circulations, and the microscale effects of atmospheric stability such as breaking Kelvin-Helmholtz billows. This range of scales and processes demands a mesoscale model with large-eddy simulation (LES) capabilities which can also account for varying atmospheric stability. Numerical weather prediction models, such as the Weather and Research Forecasting model (WRF), excel at predicting synoptic and mesoscale phenomena. With grid spacings of less than 1 km (as is often required for wind energy applications), however, the limits of WRF's subfilter scale (SFS) turbulence parameterizations are exposed, and fundamental problems arise, associated with modeling the scales of motion between those which LES can represent and those for which large-scale PBL parameterizations apply. To address these issues, we have implemented significant modifications to the ARW core of the Weather Research and Forecasting model, including the Nonlinear Backscatter model with Anisotropy (NBA) SFS model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005).We are also modifying WRF's terrain-following coordinate system by implementing an immersed boundary method (IBM) approach to account for the effects of complex terrain. Companion papers presenting idealized simulations with NBA-RSFS-WRF (Mirocha et al.) and IBM-WRF (K. A. Lundquist et al.) are also presented. Observations of flow through the Altamont Pass (Northern California) wind farm are available for validation of the WRF modeling tool for wind energy applications. In this presentation, we use these data to evaluate simulations using the NBA-RSFS-WRF tool in multiple configurations. We vary nesting capabilities, multiple levels of RSFS reconstruction, SFS turbulence models (the new NBA turbulence model versus existing WRF SFS turbulence models) to illustrate the capabilities of the modeling tool and to prioritize recommendations for operational uses. Nested simulations which capture both significant mesoscale processes as well as local-scale stable boundary layer effects are required to effectively predict available wind resources at turbine height.

  12. Pore-Scale and Multiscale Numerical Simulation of Flow and Transport in a Laboratory-Scale Column

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; Perkins, William A.; Richmond, Marshall C.; McKinley, Matthey I.; Romero Gomez, Pedro DJ; Oostrom, Martinus; Wietsma, Thomas W.; Serkowski, John A.; Zachara, John M.

    2015-02-01

    Pore-scale models are useful for studying relationships between fundamental processes and phenomena at larger (i.e., Darcy) scales. However, the size of domains that can be simulated with explicit pore-scale resolution is limited by computational and observational constraints. Direct numerical simulation of pore-scale flow and transport is typically performed on millimeter-scale volumes at which X-ray computed tomography (XCT), often used to characterize pore geometry, can achieve micrometer resolution. In contrast, the scale at which a continuum approximation of a porous medium is valid is usually larger, on the order of centimeters to decimeters. Furthermore, laboratory experiments that measure continuum properties are typically performed on decimeter-scale columns. At this scale, XCT resolution is coarse (tens to hundreds of micrometers) and prohibits characterization of small pores and grains. We performed simulations of pore-scale processes over a decimeter-scale volume of natural porous media with a wide range of grain sizes, and compared to results of column experiments using the same sample. Simulations were conducted using high-performance codes executed on a supercomputer. Two approaches to XCT image segmentation were evaluated, a binary (pores and solids) segmentation and a ternary segmentation that resolved a third category (porous solids with pores smaller than the imaged resolution). We used a mixed Stokes-Darcy simulation method to simulate the combination of Stokes flow in large open pores and Darcy-like flow in porous solid regions. Simulations based on the ternary segmentation provided results that were consistent with experimental observations, demonstrating our ability to successfully model pore-scale flow over a column-scale domain.

  13. Direct Numerical Simulation of Interfacial Flows: Implicit Sharp-Interface Method (I-SIM)

    SciTech Connect (OSTI)

    Robert Nourgaliev; Theo Theofanous; HyeongKae Park; Vincent Mousseau; Dana Knoll

    2008-01-01

    In recent work (Nourgaliev, Liou, Theofanous, JCP in press) we demonstrated that numerical simulations of interfacial flows in the presence of strong shear must be cast in dynamically sharp terms (sharp interface treatment or SIM), and that moreover they must meet stringent resolution requirements (i.e., resolving the critical layer). The present work is an outgrowth of that work aiming to overcome consequent limitations on the temporal treatment, which become still more severe in the presence of phase change. The key is to avoid operator splitting between interface motion, fluid convection, viscous/heat diffusion and reactions; instead treating all these non-linear operators fully-coupled within a Newton iteration scheme. To this end, the SIMs cut-cell meshing is combined with the high-orderaccurate implicit Runge-Kutta and the recovery Discontinuous Galerkin methods along with a Jacobian-free, Krylov subspace iteration algorithm and its physics-based preconditioning. In particular, the interfacial geometry (i.e., markers positions and volumes of cut cells) is a part of the Newton-Krylov solution vector, so that the interface dynamics and fluid motions are fully-(non-linearly)-coupled. We show that our method is: (a) robust (L-stable) and efficient, allowing to step over stability time steps at will while maintaining high-(up to the 5th)-order temporal accuracy; (b) fully conservative, even near multimaterial contacts, without any adverse consequences (pressure/velocity oscillations); and (c) highorder-accurate in spatial discretization (demonstrated here up to the 12th-order for smoothin-the-bulk-fluid flows), capturing interfacial jumps sharply, within one cell. Performance is illustrated with a variety of test problems, including low-Mach-number manufactured solutions, shock dynamics/tracking with slow dynamic time scales, and multi-fluid, highspeed shock-tube problems. We briefly discuss preconditioning, and we introduce two physics-based preconditioners Block-Diagonal and Internal energy-Pressure-Velocity Partially Decoupled, demonstrating the ability to efficiently solve all-speed flows with strong effects from viscous dissipation and heat conduction.

  14. Direct Numerical Simulation of Pore-Scale Flow in a Bead Pack: Comparison with Magnetic Resonance Imaging Observations

    SciTech Connect (OSTI)

    Yang, Xiaofan; Scheibe, Timothy D.; Richmond, Marshall C.; Perkins, William A.; Vogt, Sarah J.; Codd, Sarah L.; Seymour, Joseph D.; Mckinley, Matthew I.

    2013-04-01

    A significant body of current research is aimed at developing methods for numerical simulation of flow and transport in porous media that explicitly resolve complex pore and solid geometries, and at utilizing such models to study the relationships between fundamental pore-scale processes and macroscopic manifestations at larger (i.e., Darcy) scales. A number of different numerical methods for pore-scale simulation have been developed, and have been extensively tested and validated for simplified geometries. However, validation of pore-scale simulations of fluid velocity for complex, three-dimensional (3D) pore geometries that are representative of natural porous media is challenging due to our limited ability to measure pore-scale velocity in such systems. Recent advances in magnetic resonance imaging (MRI) offer the opportunity to measure not only the pore geometry, but also local fluid velocities under steady-state flow conditions in 3D and with high spatial resolution. In this paper, we present a 3D velocity field measured at sub-pore resolution (tens of micrometers) over a centimeter-scale 3D domain using MRI methods. We have utilized the measured pore geometry to perform 3D simulations of Navier-Stokes flow over the same domain using direct numerical simulation techniques. We present a comparison of the numerical simulation results with the measured velocity field. It is shown that the numerical results match the observed velocity patterns well overall except for a variance and small systematic scaling which can be attributed to the known experimental error in the MRI measurements. The comparisons presented here provide strong validation of the pore-scale simulation methods and new insights for interpretation of uncertainty in MRI measurements of pore-scale velocity. This study also provides a potential benchmark for future comparison of other pore-scale simulation methods.

  15. Direct Vlasov simulations of electron-attracting cylindrical Langmuir probes in flowing plasmas

    SciTech Connect (OSTI)

    Snchez-Arriaga, G.; Pastor-Moreno, D.

    2014-07-15

    Current collection by positively polarized cylindrical Langmuir probes immersed in flowing plasmas is analyzed using a non-stationary direct Vlasov-Poisson code. A detailed description of plasma density spatial structure as a function of the probe-to-plasma relative velocity U is presented. Within the considered parametric domain, the well-known electron density maximum close to the probe is weakly affected by U. However, in the probe wake side, the electron density minimum becomes deeper as U increases and a rarified plasma region appears. Sheath radius is larger at the wake than at the front side. Electron and ion distribution functions show specific features that are the signature of probe motion. In particular, the ion distribution function at the probe front side exhibits a filament with positive radial velocity. It corresponds to a population of rammed ions that were reflected by the electric field close to the positively biased probe. Numerical simulations reveal that two populations of trapped electrons exist: one orbiting around the probe and the other with trajectories confined at the probe front side. The latter helps to neutralize the reflected ions, thus explaining a paradox in past probe theory.

  16. COARSE-GRID SIMULATION OF REACTING AND NON-REACTING GAS-PARTICLE FLOWS

    SciTech Connect (OSTI)

    Sankaran Sundaresan

    2004-03-01

    The principal goal of this project, funded under the ''DOE Vision 21 Virtual Demonstration Initiative'' is virtual demonstration of circulating fluidized bed performance. We had proposed a ''virtual demonstration tool'', which is based on the open-domain CFD code MFIX. The principal challenge funded through this grant is to devise and implement in this CFD code sound physical models for the rheological characteristics of the gas-particle mixtures. Within the past year, which was the third year of the project, we have made the following specific advances. (a) We have completed a study of the impact of sub-grid models of different levels of detail on the results obtained in coarse-grid simulations of gas-particle flow. (b) We have also completed a study of a model problem to understand the effect of wall friction, which was proved in our earlier work to be very important for stable operation of standpipes in a circulating fluidized bed circuit. These are described in a greater detail in this report.

  17. CASL-8-2015-0103-000 Multi-Phase Flow: Direct Numerical Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Notre Dame July 8-10, 2013 CASL-U-2015-0103-000 Multi-Phase Flow: Direct ... Laboratories, July 9-10, 2013 CASL-U-2015-0103-000 Multi-Phase Flow: Direct ...

  18. Multi-material incompressible flow simulation using the moment-of-fluid method

    SciTech Connect (OSTI)

    Garimella, R V; Schofield, S P; Lowrie, R B; Swartz, B K; Christon, M A; Dyadechko, V

    2009-01-01

    The Moment-of-Fluid interface reconstruction technique is implemented in a second order accurate, unstructured finite element variable density incompressible Navier-Stokes solver. For flows with multiple materials, MOF significantly outperforms existing first and second order interface reconstruction techniques. For two material flows, the performance of MOF is similar to other interface reconstruction techniques. For strongly driven bouyant flows, the errors in the flow solution dominate and all the interface reconstruction techniques perform similarly.

  19. Global Hall-MHD simulations of magnetorotational instability in a plasma Couette flow experiment

    SciTech Connect (OSTI)

    Ebrahimi, F.; Lefebvre, B.; Bhattacharjee, A.; Forest, C. B.

    2011-06-15

    Global MHD and Hall-MHD numerical simulations relevant to the Madison plasma Couette flow experiment (MPCX) have been performed using the extended MHD code NIMROD. The MPCX has been constructed to study the magnetorotational instability (MRI) in a plasma. The two-fluid Hall effect, which is relevant to some astrophysical situations such as protostellar disks, is also expected to be important in the MPCX. Here, we first derive the local Hall dispersion relation including viscosity, extending earlier work by Balbus and Terquem [Astrophys. J. 552, 235 (2001)]. The predictions of the local analysis are then compared with nonlocal calculations of linear stability of the MRI for a parameter range relevant to the MPCX. It is found that the MHD stability limit and mode structure are altered by the Hall term, and nonlocal analysis is necessary to obtain quantitatively reliable predictions for MPCX. Two-fluid physics also significantly changes the nonlinear evolution and saturation of the axisymmetric MRI. Both the Reynolds and Maxwell stresses contribute significantly to momentum transport. In the Hall regime, when the magnetic field is parallel to the rotation axis, the Maxwell stress is larger than the Reynolds stress (similar to the MHD regime). However, when the magnetic field is antiparallel to the rotation axis in the Hall regime, the Reynolds stress is much larger than the Maxwell stress. To further study the role of non-axisymmetric modes, we have also carried out fully nonlinear MHD computations. Non-axisymmetric modes play an increasingly important role as the magnetic Reynolds number increases and grow to large amplitudes in a saturated turbulent state.

  20. Large Eddy Simulation of a Wind Turbine Airfoil at High Freestream-Flow Angle

    SciTech Connect (OSTI)

    2015-04-13

    A simulation of the airflow over a section of a wind turbine blade, run on the supercomputer Mira at the Argonne Leadership Computing Facility. Simulations like these help identify ways to make turbine blades more efficient.

  1. Development of the T+M coupled flow-geomechanical simulator to...

    Office of Scientific and Technical Information (OSTI)

    which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. ...

  2. Computational fluid dynamics simulation of the air/suppressant flow in an uncluttered F18 engine nacelle

    SciTech Connect (OSTI)

    Lopez, A.R.; Gritzo, L.A.; Hassan, B.

    1997-06-01

    For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.

  3. SU-E-J-66: Evaluation of a Real-Time Positioning Assistance Simulator System for Skull Radiography Using the Microsoft Kinect

    SciTech Connect (OSTI)

    Kurata, T; Ono, M; Kozono, K; Fukuyoshi, R; Sato, S [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Toyofuku, F [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan)

    2014-06-01

    Purpose: The purpose of this study is to investigate the feasibility of a low cost, small size positioning assistance simulator system for skull radiography using the Microsoft Kinect sensor. A conventional radiographic simulator system can only measure the three-dimensional coordinates of an x-ray tube using angle sensors, but not measure the movement of the subject. Therefore, in this study, we developed a real-time simulator system using the Microsoft Kinect to measure both the x-ray tube and the subject, and evaluated its accuracy and feasibility by comparing the simulated and the measured x-ray images. Methods: This system can track a head phantom by using Face Tracking, which is one of the functions of the Kinect. The relative relationship between the Kinect and the head phantom was measured and the projection image was calculated by using the ray casting method, and by using three-dimensional CT head data with 220 slices at 512 512 pixels. X-ray images were thus obtained by using a computed radiography (CR) system. We could then compare the simulated projection images with the measured x-ray images from 0 degrees to 45 degrees at increments of 15 degrees by calculating the cross correlation coefficient C. Results: The calculation time of the simulated projection images was almost real-time (within 1 second) by using the Graphics Processing Unit(GPU). The cross-correlation coefficients C are: 0.916; 0.909; 0.891; and, 0.886 at 0, 15, 30, and 45 degrees, respectively. As a result, there were strong correlations between the simulated and measured images. Conclusion: This system can be used to perform head positioning more easily and accurately. It is expected that this system will be useful for learning radiographic techniques by students. Moreover, it could also be used for predicting the actual x-ray image prior to x-ray exposure in clinical environments.

  4. Modeling, Analysis and Simulation of Multiscale Preferential Flow - 8/05-8/10 - Final Report

    SciTech Connect (OSTI)

    Ralph Showalter; Malgorzata Peszynska

    2012-07-03

    The research agenda of this project are: (1) Modeling of preferential transport from mesoscale to macroscale; (2) Modeling of fast flow in narrow fractures in porous media; (3) Pseudo-parabolic Models of Dynamic Capillary Pressure; (4) Adaptive computational upscaling of flow with inertia from porescale to mesoscale; (5) Adaptive modeling of nonlinear coupled systems; and (6) Adaptive modeling and a-posteriori estimators for coupled systems with heterogeneous data.

  5. PROBABILISTIC SIMULATION OF SUBSURFACE FLUID FLOW: A STUDY USING A NUMERICAL SCHEME

    SciTech Connect (OSTI)

    Buscheck, Timothy Eric

    1980-03-01

    There has been an increasing interest in probabilistic modeling of hydrogeologic systems. The classical approach to groundwater modeling has been deterministic in nature, where individual layers and formations are assumed to be uniformly homogeneous. Even in the case of complex heterogeneous systems, the heterogeneities describe the differences in parameter values between various layers, but not within any individual layer. In a deterministic model a single-number is assigned to each hydrogeologic parameter, given a particular scale of interest. However, physically there is no such entity as a truly uniform and homogeneous unit. Single-number representations or deterministic predictions are subject to uncertainties. The approach used in this work models such uncertainties with probabilistic parameters. The resulting statistical distributions of output variables are analyzed. A numerical algorithm, based on axiomatic principles of probability theory, performs arithmetic operations between probability distributions. Two subroutines are developed from the algorithm and incorporated into the computer program TERZAGI, which solves groundwater flow problems in saturated, multi-dimensional systems. The probabilistic computer program is given the name, PROGRES. The algorithm has been applied to study the following problems: one-dimensional flow through homogeneous media, steady-state and transient flow conditions, one-dimensional flow through heterogeneous media, steady-state and transient flow conditions, and two-dimensional steady-stte flow through heterogeneous media. The results are compared with those available in the literature.

  6. An experimental study on sub-cooled flow boiling CHF of R134a at low pressure condition with atmospheric pressure (AP) plasma assisted surface modification

    SciTech Connect (OSTI)

    Kim, Seung Jun; Zou, Ling; Jones, Barclay G.

    2015-02-01

    In this study, sub-cooled flow boiling critical heat flux tests at low pressure were conducted in a rectangular flow channel with one uniformly heated surface, using simulant fluid R-134a as coolant. The experiments were conducted under the following conditions: (1) inlet pressure (P) of 400-800 kPa, (2) mass flux (G) of 124-248 kg/m2s, (3) inlet sub-cooling enthalpy (ΔHi) of 12~ 26 kJ/kg. Parametric trends of macroscopic system parameters (G, P, Hi) were examined by changing inlet conditions. Those trends were found to be generally consistent with previous understandings of CHF behavior at low pressure condition (i.e. reduced pressure less than 0.2). A fluid-to-fluid scaling model was utilized to convert the test data obtained with the simulant fluid (R-134a) into the prototypical fluid (water). The comparison between the converted CHF of equivalent water and CHF look-up table with same operation conditions were conducted, which showed good agreement. Furthermore, the effect of surface wettability on CHF was also investigated by applying atmospheric pressure plasma (AP-Plasma) treatment to modify the surface characteristic. With AP-Plasma treatment, the change of microscopic surface characteristic was measured in terms of static contact angle. The static contact angle was reduced from 80° on original non-treated surface to 15° on treated surface. An enhancement of 18% on CHF values under flow boiling conditions were observed on AP-Plasma treated surfaces compared to those on non-treated heating surfaces.

  7. Two-Phase Flow Simulations In a Natural Rock Fracture using the VOF Method

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the numerical model. These parameters include production/destruction of interfacial area as a function of saturation and capillary pressure. Our preliminary results for primary drainage in porous media show that the specific interfacial area increased linearly with increasing gas saturation until breakthrough of the displacing gas into the exit manifold occurred.

  8. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    SciTech Connect (OSTI)

    Smith, F.; Flach, G.

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  9. Analysis of turbulent transport and mixing in transitional Rayleigh/Taylor unstable flow using direct numerical simulation data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schilling, Oleg; Mueschke, Nicholas J.

    2010-10-18

    Data from a 1152X760X1280 direct numerical simulation (DNS) of a transitional Rayleigh-Taylor mixing layer modeled after a small Atwood number water channel experiment is used to comprehensively investigate the structure of mean and turbulent transport and mixing. The simulation had physical parameters and initial conditions approximating those in the experiment. The budgets of the mean vertical momentum, heavy-fluid mass fraction, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate equations are constructed using Reynolds averaging applied to the DNS data. The relative importance of mean and turbulent production, turbulent dissipationmoreand destruction, and turbulent transport are investigated as a function of Reynolds number and across the mixing layer to provide insight into the flow dynamics not presently available from experiments. The analysis of the budgets supports the assumption for small Atwood number, Rayleigh/Taylor driven flows that the principal transport mechanisms are buoyancy production, turbulent production, turbulent dissipation, and turbulent diffusion (shear and mean field production are negligible). As the Reynolds number increases, the turbulent production in the turbulent kinetic energy dissipation rate equation becomes the dominant production term, while the buoyancy production plateaus. Distinctions between momentum and scalar transport are also noted, where the turbulent kinetic energy and its dissipation rate both grow in time and are peaked near the center plane of the mixing layer, while the heavy-fluid mass fraction variance and its dissipation rate initially grow and then begin to decrease as mixing progresses and reduces density fluctuations. All terms in the transport equations generally grow or decay, with no qualitative change in their profile, except for the pressure flux contribution to the total turbulent kinetic energy flux, which changes sign early in time (a countergradient effect). The production-to-dissipation ratios corresponding to the turbulent kinetic energy and heavy-fluid mass fraction variance are large and vary strongly at small evolution times, decrease with time, and nearly asymptote as the flow enters a self-similar regime. The late-time turbulent kinetic energy production-to-dissipation ratio is larger than observed in shear-driven turbulent flows. The order of magnitude estimates of the terms in the transport equations are shown to be consistent with the DNS at late-time, and also confirms both the dominant terms and their evolutionary behavior. These results are useful for identifying the dynamically important terms requiring closure, and assessing the accuracy of the predictions of Reynolds-averaged Navier-Stokes and large-eddy simulation models of turbulent transport and mixing in transitional Rayleigh-Taylor instability-generated flow.less

  10. Microwave assisted hydrothermal synthesis of Ag/AgCl/WO{sub 3} photocatalyst and its photocatalytic activity under simulated solar light

    SciTech Connect (OSTI)

    Adhikari, Rajesh; Gyawali, Gobinda; Sekino, Tohru; Wohn Lee, Soo

    2013-01-15

    Simulated solar light responsive Ag/AgCl/WO{sub 3} composite photocatalyst was synthesized by microwave assisted hydrothermal process. The synthesized powders were characterized by X-Ray Diffraction (XRD) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Diffuse Reflectance Spectroscopy (UV-Vis DRS), and BET surface area analyzer to investigate the crystal structure, morphology, chemical composition, optical properties and surface area of the composite photocatalyst. This photocatalyst exhibited higher photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation. Dye degradation efficiency of composite photocatalyst was found to be increased significantly as compared to that of the commercial WO{sub 3} nanopowder. Increase in photocatalytic activity of the photocatalyst was explained on the basis of surface plasmon resonance (SPR) effect caused by the silver nanoparticles present in the composite photocatalyst. Highlights: Black-Right-Pointing-Pointer Successful synthesis of Ag/AgCl/WO{sub 3} nanocomposite. Black-Right-Pointing-Pointer Photocatalytic experiment was performed under simulated solar light. Black-Right-Pointing-Pointer Nanocomposite photocatalyst was very active as compared to WO{sub 3} commercial powder. Black-Right-Pointing-Pointer SPR effect due to Ag nanoparticles enhanced the photocatalytic activity.

  11. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations

    SciTech Connect (OSTI)

    Rutqvist, J.

    2010-06-01

    This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC{sup 3D} geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO{sub 2} Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO{sub 2} storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC{sup 3D} for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.

  12. On the simulation of shock-driven material mixing in high-Re flows (u)

    SciTech Connect (OSTI)

    Grinstein, Fernando F [Los Alamos National Laboratory

    2009-01-01

    Implicit large eddy simulation proposes to effectively rely on the use of subgrid modeling and filtering provided implicitly by physics capturing numerics. Extensive work has demonstrated that predictive simulations of turbulent velocity fields are possible using a class of high resolution, non-oscillatory finite-volume (NFV) numerical algorithms. Truncation terms associated with NFV methods implicitly provide subgrid models capable of emulating the physical dynamics of the unresolved turbulent velocity fluctuations by themselves. The extension of the approach to the substantially more difficult problem of under-resolved material mixing by an under-resolved velocity field has not yet been investigated numerically, nor are there any theories as to when the methodology may be expected to be successful. Progress in addressing these issues in studies of shock-driven scalar mixing driven by Ritchmyer-Meshkov instabilities will be reported in the context of ongoing simulations of shock-tube laboratory experiments.

  13. Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine

    SciTech Connect (OSTI)

    Rob O. Hovsapian; Various

    2014-06-01

    The onshore land where wind farms with conventional wind turbines can be places is limited by various factors including a requirement for relatively high wind speed for turbines' efficient operations. Where such a requirement cannot be met, mid-and small-sized turbines can be a solution. In the current paper simulations for near and for wakes behind a mid-sized Rim Driven Wind Turbine developed by Keuka Energy LLC is analyzed. The purposes of this study is to better understand the wake structure for more efficient wind farm planning. Simulations are conducted with the commercial CFD software STARCCM+

  14. Smoothed Particle Hydrodynamics pore-scale simulations of unstable immiscible flow in porous media

    SciTech Connect (OSTI)

    Bandara, Dunusinghe Mudiyanselage Uditha C.; Tartakovsky, Alexandre M.; Oostrom, Martinus; Palmer, Bruce J.; Grate, Jay W.; Zhang, Changyong

    2013-12-01

    We have conducted a series of high-resolution numerical experiments using the Pair-Wise Force Smoothed Particle Hydrodynamics (PF-SPH) multiphase flow model. First, we derived analytical expressions relating parameters in the PF-SPH model to the surface tension and static contact angle. Next, we used the model to study viscous fingering, capillary fingering, and stable displacement of immiscible fluids in porous media for a wide range of capillary numbers and viscosity ratios. We demonstrated that the steady state saturation profiles and the boundaries of viscous fingering, capillary fingering, and stable displacement regions compare favorably with micromodel laboratory experimental results. For displacing fluid with low viscosity, we observed that the displacement pattern changes from viscous fingering to stable displacement with increasing injection rate. When a high viscosity fluid is injected, transition behavior from capillary fingering to stable displacement occurred as the flow rate was increased. These observation also agree with the results of the micromodel laboratory experiments.

  15. Numerical simulation of a thermoacoustic refrigerator. 2: Stratified flow around the stack

    SciTech Connect (OSTI)

    Worlikar, A.S.; Knio, O.M.; Klein, R.

    1998-08-10

    The unsteady, two-dimensional, thermally stratified flow in the neighborhood of an idealized thermoacoustic stack is analyzed using a low-Mach-number model that extends the adiabatic flow scheme developed in part 1 (Journal of Computational Physics 127, 424 (1996)). The extension consists of incorporation of numerical solvers for the energy equations in the fluid and the stack plates, and construction and implementation of fast Poisson solver for the velocity potential based on a domain decomposition/boundary Green`s function technique. The unsteady computations are used to predict the steady-state, acoustically generated temperature gradient across a two-dimensional couple and to analyze its dependence on the amplitude of the prevailing resonant wave. Computed results are compared to theoretical predictions and experimental data.

  16. Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation

    SciTech Connect (OSTI)

    Shang, Yu; Lin, Yu; Yu, Guoqiang; Li, Ting; Chen, Lei; Toborek, Michal

    2014-05-12

    Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αD{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αD{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo stroke model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αD{sub B} (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: −5.3% to −18.0%) for different tissue models. Although adding random noises to DCS data resulted in αD{sub B} variations, the mean values of errors in extracting αD{sub B} were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αD{sub B} using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.

  17. User's Guide of TOUGH2-EGS. A Coupled Geomechanical and Reactive Geochemical Simulator for Fluid and Heat Flow in Enhanced Geothermal Systems Version 1.0

    SciTech Connect (OSTI)

    Fakcharoenphol, Perapon; Xiong, Yi; Hu, Litang; Winterfeld, Philip H.; Xu, Tianfu; Wu, Yu-Shu

    2013-05-01

    TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transport calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.

  18. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    SciTech Connect (OSTI)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative to volcanic-rock units is exemplified by the large difference in their estimated maximum hydraulic conductivity; 4,000 and 400 feet per day, respectively. Simulated minimum estimates of hydraulic conductivity are inexact and represent the lower detection limit of the method. Minimum thicknesses of lithologic intervals also were defined for comparing AnalyzeHOLE results to hydraulic properties in regional ground-water flow models.

  19. Identification of whistling ability of a single hole orifice from an incompressible flow simulation

    SciTech Connect (OSTI)

    Lacombe, Romain; Moussou, Pierre

    2012-07-01

    Pure tone noise from orifices in pipe result from vortex shedding with lock-in. Acoustic amplification at the orifice is coupled to resonant condition to create self-sustained oscillations. One key feature of this phenomenon is hence the ability of an orifice to amplify acoustic waves in a given range of frequencies. Here a numerical investigation of the linear response of an orifice is undertaken, with the support of experimental data for validation. The study deals with a sharp edge orifice. Its diameter equals to 0.015 m and its thickness to 0.005 m. The pipe diameter is 0.030 m. An air flow with a Mach number 0.026 and a Reynolds number 18000 in the main pipe is present. At such a low Mach number; the fluid behavior can reasonably be described as locally incompressible. The incompressible Unsteady Reynolds Averaged Navier-Stokes (URANS) equations are solved with the help of a finite volume fluid mechanics software. The orifice is submitted to an average flow velocity, with superimposed small harmonic perturbations. The harmonic response of the orifice is the difference between the upstream and downstream pressures, and a straightforward calculation brings out the acoustic impedance of the orifice. Comparison with experiments shows that the main physical features of the whistling phenomenon are reasonably reproduced. (authors)

  20. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    SciTech Connect (OSTI)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; Cossement, Daniel; Tamburello, David; Anton, Donald

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes with the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.

  1. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; Cossement, Daniel; Tamburello, David; Anton, Donald

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes withmore » the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.« less

  2. A coke/soot formation model for multiphase reacting flow simulation

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q. |

    1997-03-01

    Coke is a by-product in petroleum fluid catalytic cracking (FCC) processes. The concentration of coke in an FCC riser reactor is a critical parameter used to evaluate the riser performance. A coke formation and transport model was developed. It was incorporated into a computational fluid dynamic (CFD) computer code, ICRKFLO, to simulate the coke formation processes in an FCC riser reactor. Based on a similar process, a soot formation model can be derived from the coke formation model and used for diesel combustion processes, where soot is emitted as one of the primary pollutants.

  3. Calibration and Forward Uncertainty Propagation for Large-eddy Simulations of Engineering Flows

    SciTech Connect (OSTI)

    Templeton, Jeremy Alan; Blaylock, Myra L.; Domino, Stefan P.; Hewson, John C.; Kumar, Pritvi Raj; Ling, Julia; Najm, Habib N.; Ruiz, Anthony; Safta, Cosmin; Sargsyan, Khachik; Stewart, Alessia; Wagner, Gregory

    2015-09-01

    The objective of this work is to investigate the efficacy of using calibration strategies from Uncertainty Quantification (UQ) to determine model coefficients for LES. As the target methods are for engineering LES, uncertainty from numerical aspects of the model must also be quantified. 15 The ultimate goal of this research thread is to generate a cost versus accuracy curve for LES such that the cost could be minimized given an accuracy prescribed by an engineering need. Realization of this goal would enable LES to serve as a predictive simulation tool within the engineering design process.

  4. Study of Particle Rotation Effect in Gas-Solid Flows using Direct Numerical Simulation with a Lattice Boltzmann Method

    SciTech Connect (OSTI)

    Kwon, Kyung; Fan, Liang-Shih; Zhou, Qiang; Yang, Hui

    2014-09-30

    A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a fluid is accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. The simulation results agree well with the theories for the short- and long-time behavior of the drag force. Flows through non-rotational and rotational spheres in simple cubic arrays and random arrays are simulated over the entire range of packing fractions, and both low and moderate particle Reynolds numbers to compare the simulated results with the literature results and develop a new drag force formula, a new lift force formula, and a new torque formula. Random arrays of solid particles in fluids are generated with Monte Carlo procedure and Zinchenko's method to avoid crystallization of solid particles over high solid volume fractions. A new drag force formula was developed with extensive simulated results to be closely applicable to real processes over the entire range of packing fractions and both low and moderate particle Reynolds numbers. The simulation results indicate that the drag force is barely affected by rotational Reynolds numbers. Drag force is basically unchanged as the angle of the rotating axis varies.

  5. Analysis of turbulent transport and mixing in transitional Rayleigh–Taylor unstable flow using direct numerical simulation data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schilling, Oleg; Mueschke, Nicholas J.

    2010-10-18

    Data from a 1152X760X1280 direct numerical simulation (DNS) of a transitional Rayleigh-Taylor mixing layer modeled after a small Atwood number water channel experiment is used to comprehensively investigate the structure of mean and turbulent transport and mixing. The simulation had physical parameters and initial conditions approximating those in the experiment. The budgets of the mean vertical momentum, heavy-fluid mass fraction, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate equations are constructed using Reynolds averaging applied to the DNS data. The relative importance of mean and turbulent production, turbulent dissipationmore » and destruction, and turbulent transport are investigated as a function of Reynolds number and across the mixing layer to provide insight into the flow dynamics not presently available from experiments. The analysis of the budgets supports the assumption for small Atwood number, Rayleigh/Taylor driven flows that the principal transport mechanisms are buoyancy production, turbulent production, turbulent dissipation, and turbulent diffusion (shear and mean field production are negligible). As the Reynolds number increases, the turbulent production in the turbulent kinetic energy dissipation rate equation becomes the dominant production term, while the buoyancy production plateaus. Distinctions between momentum and scalar transport are also noted, where the turbulent kinetic energy and its dissipation rate both grow in time and are peaked near the center plane of the mixing layer, while the heavy-fluid mass fraction variance and its dissipation rate initially grow and then begin to decrease as mixing progresses and reduces density fluctuations. All terms in the transport equations generally grow or decay, with no qualitative change in their profile, except for the pressure flux contribution to the total turbulent kinetic energy flux, which changes sign early in time (a countergradient effect). The production-to-dissipation ratios corresponding to the turbulent kinetic energy and heavy-fluid mass fraction variance are large and vary strongly at small evolution times, decrease with time, and nearly asymptote as the flow enters a self-similar regime. The late-time turbulent kinetic energy production-to-dissipation ratio is larger than observed in shear-driven turbulent flows. The order of magnitude estimates of the terms in the transport equations are shown to be consistent with the DNS at late-time, and also confirms both the dominant terms and their evolutionary behavior. Thus, these results are useful for identifying the dynamically important terms requiring closure, and assessing the accuracy of the predictions of Reynolds-averaged Navier-Stokes and large-eddy simulation models of turbulent transport and mixing in transitional Rayleigh-Taylor instability-generated flow.« less

  6. Time cycle analysis and simulation of material flow in MOX process layout

    SciTech Connect (OSTI)

    Chakraborty, S.; Saraswat, A.; Danny, K.M.; Somayajulu, P.S.; Kumar, A.

    2013-07-01

    The (U,Pu)O{sub 2} MOX fuel is the driver fuel for the upcoming PFBR (Prototype Fast Breeder Reactor). The fuel has around 30% PuO{sub 2}. The presence of high percentages of reprocessed PuO{sub 2} necessitates the design of optimized fuel fabrication process line which will address both production need as well as meet regulatory norms regarding radiological safety criteria. The powder pellet route has highly unbalanced time cycle. This difficulty can be overcome by optimizing process layout in terms of equipment redundancy and scheduling of input powder batches. Different schemes are tested before implementing in the process line with the help of a software. This software simulates the material movement through the optimized process layout. The different material processing schemes have been devised and validity of the schemes are tested with the software. Schemes in which production batches are meeting at any glove box location are considered invalid. A valid scheme ensures adequate spacing between the production batches and at the same time it meets the production target. This software can be further improved by accurately calculating material movement time through glove box train. One important factor is considering material handling time with automation systems in place.

  7. User's guide of TOUGH2-EGS-MP: A Massively Parallel Simulator with Coupled Geomechanics for Fluid and Heat Flow in Enhanced Geothermal Systems VERSION 1.0

    SciTech Connect (OSTI)

    Xiong, Yi; Fakcharoenphol, Perapon; Wang, Shihao; Winterfeld, Philip H.; Zhang, Keni; Wu, Yu-Shu

    2013-12-01

    TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporated into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.

  8. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    SciTech Connect (OSTI)

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of these changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.

  9. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of thesemore » changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.« less

  10. Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model

    SciTech Connect (OSTI)

    Pohlmann Karl,Ye Ming

    2012-03-01

    Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.

  11. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-12-31

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

  12. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect (OSTI)

    Freedman, Vicky L.

    2008-01-30

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represents initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial conditions for steady-state flow runs, simulations were executed to investigate the relative effects on contaminant transport from the increased upland fluxes. Contaminant plumes were analyzed for 1) peak concentrations and arrival times at downstream points of compliance, 2) the area of the aquifer contaminated at or above the drinking water standard (DWS), and 3) the total activity remaining in the domain at the end of the simulation. In addition to this analysis, unit source release simulations from a hypothetical tracer were executed to determine relative travel times from the Central Plateau. The results of this study showed that increases in the lateral recharge had limited impact on regional flow directions but accelerated contaminant transport. Although contaminant concentrations may have initially increased for the more mobile contaminants (tritium, technetium-99, and iodine-129), the accelerated transport caused dilution and a more rapid decline in concentrations relative to the Base Case (no additional flux). For the low-mobility uranium-238, higher lateral recharge caused increases in concentration, but these concentrations never approached the DWS. In this preliminary investigation, contaminant concentrations did not exceed the DWS study metric. With the increases in upland fluxes, more mass was transported out of the aquifer, and concentrations were diluted with respect to the base case where no additional flux was considered.

  13. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect (OSTI)

    Freedman, Vicky L.

    2007-03-09

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represent initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are current contaminants of concern (COCs) in the Central Plateau and include tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial conditions for steady-state flow runs, simulations were executed to investigate the relative effects on contaminant transport from the increased upland fluxes. Contaminant plumes were analyzed for 1) peak concentrations and arrival times at downstream points of compliance, 2) the area of the aquifer contaminated at or above the drinking water standard (DWS), and 3) the total activity remaining in the domain at the end of the simulation. In addition to this analysis, unit source release simulations from a hypothetical tracer were executed to determine relative travel times from the Central Plateau. The results of this study showed that increases in the upland boundary fluxes 1) had little impact on regional flow directions and 2) accelerated contaminant transport. Although contaminant concentrations have initially increased for the more mobile contaminants (tritium, technetium-99, and iodine-129), the accelerated transport caused dilution and a more rapid decline in concentrations relative to the Base Case (no additional flux). For the low-mobility uranium-238, higher upland fluxes caused increases in concentration, but these concentrations never exceeded the DWS. No significant effects on contaminant concentrations were identified at the Core Zone, Columbia River, or buffer zone area separating these two compliance boundaries. When lateral recharge at the upland boundaries was increased, more mass was transported out of the aquifer and discharged into the Columbia River. These concentrations, however, were diluted with respect to the Base Case, where no potential leakage from the proposed reservoir was considered.

  14. Simulation of three-dimensional multi-phase flow characteristics in the deswirl section of the CDIF MHD power train

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Petrick, M.

    1994-06-01

    A three-dimensional, two-phase, turbulent flow computer code was used to predict flow characteristics of seed particles and coal gas in the deswirl section of the CDIF MHD power train system. Seed material which has a great effect on the overall performance of the MHD system is injected in the deswirl against the swirling coal gas flow coming from the first stage combustor. While testing the MHD system, excessive seed material (70% more than theoretical value) was required to achieve design operating conditions. Calculations show that the swirling coal gas flow turns a 90 degree angle to minimize the swirl motion before entering a second stage combustor and many seed particles are too slow to react to the flow turning and deposit on the walls of the deswirl section. Some seed material deposited on the walls is covered by slag layer and removed from the gas flow. The reduction of seed material in the gas flow decreases MHD power generation significantly. A computational experiment was conducted and its results show that seed injection on the wall can be minimized by simply changing the seed injection and an optimum location was identified. If seed is injected from the location of choice, the seed deposition is reduced by a factor of 10 compared to the original case.

  15. Computational fluid dynamics assessment: Volume 1, Computer simulations of the METC (Morgantown Energy Technology Center) entrained-flow gasifier: Final report

    SciTech Connect (OSTI)

    Celik, I.; Chattree, M.

    1988-07-01

    An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situations in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.

  16. Methods and Tools to allow molecular flow simulations to be coupled to higher level continuum descriptions of flows in porous/fractured media and aerosol/dust dynamics

    SciTech Connect (OSTI)

    Loyalka, Sudarshan

    2015-04-09

    The purpose of this project was to develop methods and tools that will aid in safety evaluation of nuclear fuels and licensing of nuclear reactors relating to accidents.The objectives were to develop more detailed and faster computations of fission product transport and aerosol evolution as they generally relate to nuclear fuel and/or nuclear reactor accidents. The two tasks in the project related to molecular transport in nuclear fuel and aerosol transport in reactor vessel and containment. For both the tasks, explorations of coupling of Direct Simulation Monte Carlo with Navier-Stokes solvers or the Sectional method were not successful. However, Mesh free methods for the Direct Simulation Monte Carlo method were successfully explored.These explorations permit applications to porous and fractured media, and arbitrary geometries.The computations were carried out in Mathematica and are fully parallelized. The project has resulted in new computational tools (algorithms and programs) that will improve the fidelity of computations to actual physics, chemistry and transport of fission products in the nuclear fuel and aerosol in reactor primary and secondary containments.

  17. House Simulation Protocols Report

    Broader source: Energy.gov [DOE]

    Building America's House Simulation Protocols report is designed to assist researchers in tracking the progress of multiyear, whole-building energy reduction against research goals for new and...

  18. Validation Studies for Numerical Simulations of Flow Phenomena Expected in the Lower Plenum of a Prismatic VHTR Reference Design

    SciTech Connect (OSTI)

    Richard W. Johnson

    2005-09-01

    The final design of the very high temperature reactor (VHTR) of the fourth generation of nuclear power plants (Gen IV) has not yet been established. The VHTR may be either a prismatic (block) or pebble bed type. It may be either gas-cooled or cooled with an as yet unspecified molten salt. However, a conceptual design of a gas-cooled VHTR, based on the General Atomics GT-MHR, does exist and is called the prismatic VHTR reference design, MacDonald et al [2003], General Atomics [1996]. The present validation studies are based on the prismatic VHTR reference design. In the prismatic VHTR reference design, the flow in the lower plenum will be introduced by dozens of turbulent jets issuing into a large crossflow that must negotiate dozens of cylindrical support columns as it flows toward the exit duct of the reactor vessel. The jets will not all be at the same temperature due to the radial variation of power density expected in the core. However, it is important that the coolant be well mixed when it enters the power conversion unit to ensure proper operation and long life of the power conversion machinery. Hence, it is deemed important to be able to accurately model the flow and mixing of the variable temperature coolant in the lower plenum and exit duct. Accurate flow modeling involves determining modeling strategies including the fineness of the grid needed, iterative convergence tolerance, numerical discretization method used, whether the flow is steady or unsteady, and the turbulence model and wall treatment employed. It also involves validation of the computer code and turbulence model against a series of separate and combined flow phenomena and selection of the data used for the validation. The present report describes progress made to date for the task entitled ‘CFD software validation of jets in crossflow’ which was designed to investigate the issues pertaining to the validation process.

  19. FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanical Deformation/Fracture Generation Simulator

    Broader source: Energy.gov [DOE]

    This research will develop a fully coupled, fully implicit approach for EGS stimulation and reservoir simulation. Solve all governing equations simultaneously in fully implicit way. Enable massively parallel performance and scalability. Apply state of the art nonlinear PDE solvers: Jacobian Free Newton Krylov (JFNK) method.

  20. simulations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    simulations

  1. Energy Planning Technical Assistance

    Broader source: Energy.gov [DOE]

    Energy project planning technical assistance is intended to assist Indian tribes and Alaska Native villages with early assessment, program design, and options analysis. Below is a list of the various options for this type of technical assistance.

  2. Hybrid Power System Simulation Model | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenthybrid-power-system-simulation-model, Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  3. Apply for Technical Assistance

    Broader source: Energy.gov [DOE]

    Application form for U.S. Department of Energy (DOE) Office of Indian Energy technical assistance for tribes.

  4. Weatherization Assistance Program

    Broader source: Energy.gov [DOE]

    This fact sheet provides an overview of the U.S. Department of Energys Weatherization Assistance Program.

  5. Get Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Get Assistance Get Assistance Technical assistance is provided through national laboratories, regional and national associations of state decision-makers, and federal government ...

  6. Development of a computer wellbore simulator for coiled-tube operations

    SciTech Connect (OSTI)

    Gu, H.; Walton, I.C.; Dowell, S.

    1994-12-31

    This paper describes a computer wellbore simulator developed for coiled tubing operations of fill cleanout and unloading of oil and gas wells. The simulator models the transient, multiphase fluid flow and mass transport process that occur in these operations. Unique features of the simulator include a sand bed that may form during fill cleanout in deviated and horizontal wells, particle transport with multiphase compressible fluids, and the transient unloading process of oil and gas wells. The requirements for a computer wellbore simulator for coiled tubing operations are discussed and it is demonstrated that the developed simulator is suitable for modeling these operations. The simulator structure and the incorporation of submodules for gas/liquid two-phase flow, reservoir and choke models, and coiled tubing movement are addressed. Simulation examples are presented to show the sand bed formed in cleanout in a deviated well and the transient unloading results of oil and gas wells. The wellbore simulator developed in this work can assist a field engineer with the design of coiled tubing operations. By using the simulator to predict the pressure, flow rates, sand concentration and bed depth, the engineer will be able to select the coiled tubing, fluid and schedule of an optimum design for particular well and reservoir conditions.

  7. Assistive Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistive Technology Assistive Technology Assistive technology word cloud. Assistive technology word cloud. The DOE Headquarters Accommodation Program was established to provide reasonable computer and related telecommunications accommodations for employees with disabilities. Since implementation of the Assistive Technologies program in 1993, accommodations have increased from an initial 26 to an approximately 700 individual accommodations. The Assistive Technologies program complies with

  8. Assistance Focus: Africa (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    The Clean Energy Solutions Center Ask an Expert service connects governments seeking policy information and advice with one of more than 30 global policy experts who can provide reliable and unbiased quick-response advice and information. The service is available at no cost to government agency representatives from any country and the technical institutes assisting them. This publication presents summaries of assistance provided to African governments, including the benefits of that assistance.

  9. Radiological Assistance Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-04-10

    To establish Department of Energy (DOE) policy, procedures, authorities, and responsibilities for its Radiological Assistance Program. Canceled by DOE O 153.1.

  10. Commercialization Assistance Program | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The program specifically helps renewable energy and energy efficiency companies by providing free assistance or information to help small businesses with specific technology ...

  11. THE APPLICATION OF A STATISTICAL DOWNSCALING PROCESS TO DERIVE 21{sup ST} CENTURY RIVER FLOW PREDICTIONS USING A GLOBAL CLIMATE SIMULATION

    SciTech Connect (OSTI)

    Werth, D.; Chen, K. F.

    2013-08-22

    The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to ‘downscale’ the GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.

  12. An Efficient, Semi-implicit Pressure-based Scheme Employing a High-resolution Finitie Element Method for Simulating Transient and Steady, Inviscid and Viscous, Compressible Flows on Unstructured Grids

    SciTech Connect (OSTI)

    Richard C. Martineau; Ray A. Berry

    2003-04-01

    A new semi-implicit pressure-based Computational Fluid Dynamics (CFD) scheme for simulating a wide range of transient and steady, inviscid and viscous compressible flow on unstructured finite elements is presented here. This new CFD scheme, termed the PCICEFEM (Pressure-Corrected ICE-Finite Element Method) scheme, is composed of three computational phases, an explicit predictor, an elliptic pressure Poisson solution, and a semiimplicit pressure-correction of the flow variables. The PCICE-FEM scheme is capable of second-order temporal accuracy by incorporating a combination of a time-weighted form of the two-step Taylor-Galerkin Finite Element Method scheme as an explicit predictor for the balance of momentum equations and the finite element form of a time-weighted trapezoid rule method for the semi-implicit form of the governing hydrodynamic equations. Second-order spatial accuracy is accomplished by linear unstructured finite element discretization. The PCICE-FEM scheme employs Flux-Corrected Transport as a high-resolution filter for shock capturing. The scheme is capable of simulating flows from the nearly incompressible to the high supersonic flow regimes. The PCICE-FEM scheme represents an advancement in mass-momentum coupled, pressurebased schemes. The governing hydrodynamic equations for this scheme are the conservative form of the balance of momentum equations (Navier-Stokes), mass conservation equation, and total energy equation. An operator splitting process is performed along explicit and implicit operators of the semi-implicit governing equations to render the PCICE-FEM scheme in the class of predictor-corrector schemes. The complete set of semi-implicit governing equations in the PCICE-FEM scheme are cast in this form, an explicit predictor phase and a semi-implicit pressure-correction phase with the elliptic pressure Poisson solution coupling the predictor-corrector phases. The result of this predictor-corrector formulation is that the pressure Poisson equation in the PCICE-FEM scheme is provided with sufficient internal energy information to avoid iteration. The ability of the PCICE-FEM scheme to accurately and efficiently simulate a wide variety of inviscid and viscous compressible flows is demonstrated here.

  13. Egress door opening assister

    DOE Patents [OSTI]

    Allison, Thomas L.

    2015-10-06

    A door opening spring assistance apparatus is set forth that will automatically apply a door opening assistance force using a combination of rods and coil springs. The release of the rods by the coil springs reduces the force required to set the door in motion.

  14. A Sub-grid Model for an Array of Immersed Cylinders in Coarse-grid Multiphase Flow Simulations of a Carbon Capture Device

    SciTech Connect (OSTI)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2012-12-01

    A post-combustion carbon-capture system utilizing a bubbling fluidized bed of sorbent particles is currently being developed as a part of the Carbon Capture and Simulation Initiative (CCSI) efforts. Adsorption of carbon dioxide (CO2) by these amine based sorbent particles is exothermic and arrays of immersed cylindrical heat transfer tubes are often utilized to maintain the lower temperatures favorable for CO2 capture. In multiphase computational fluid dynamics (CFD) simulations of the full-scale devices, which can be up to 10 m in size, approximately 103 cells are required in each dimension to accurately resolve the cylindrical tubes, which are only a few centimeters in diameter. Since the tubes cannot be resolved explicitly in CFD simulations, alternate methods to account for the influence of these immersed objects need to be developed.

  15. Weatherization Assistance Program Technical Assistance Center

    SciTech Connect (OSTI)

    Robert Adams

    2009-01-07

    The following is a synopsis of the major achievements attributed to the operation of the Weatherization Assistance Program Technical Assistance Center (WAPTAC) by the National Association for State Community Services Programs (NASCSP). During the past five years, the WAPTAC has developed into the premier source for information related to operating the Weatherization Assistance Program (WAP) at the state and local levels. The services provide through WAPTAC include both virtual technical support as well as hands-on training and instruction in classroom and in the field. The WAPTAC achieved several important milestones during its operation including the establishment of a national Weatherization Day now celebrated in most states, the implementation of a comprehensive Public Information Campaign (PIC) to raise the awareness of the Program among policy makers and the public, the training of more than 150 new state managers and staff as they assume their duties in state offices around the country, and the creation and support of a major virtual information source on the Internet being accessed by thousands of staff each month. The Weatherization Assistance Program Technical Assistance Center serves the Department of Energy's (DOE) Office of Weatherization and Intergovernmental Program as a valuable training and technical assistance resource for the network of 54 direct state grantees (50 states, District of Columbia and three Native American tribes) and the network of 900 local subgrantees (comprised of community action agencies, units of local government, and other non-profit organizations). The services provided through WAPTAC focus on standardizing and improving the daily management of the WAP. Staff continually identify policies changes and best practices to help the network improve its effectiveness and enhance the benefits of the Program for the customers who receive service and the federal and private investors. The operations of WAPTAC are separated into six distinct areas: (1) Orientation for New WAP State Directors and Staff; (2) Pollution Occurrence Insurance Project; (3) Public Information Campaign; (4) State Management Training Project; (5) System for Integrating and Reviewing Technologies and Techniques; and (6) WAPTAC Services.

  16. Experimental Evidence for Self-Limiting Reactive Flow through...

    Office of Scientific and Technical Information (OSTI)

    We present a set of reactive transport experiments in cement fractures. The experiments simulate coupling between flow and reaction when acidic, COsub 2-rich fluids flow along a ...

  17. Signatures in flowing fluid electric conductivity logs (Journal...

    Office of Scientific and Technical Information (OSTI)

    including analysis of natural regional flowin the permeable layer. A numerical model simulates flow and transport inthe wellbore during flowing FEC logging, and fracture ...

  18. Acquisition & Financial Assistance Rules Status | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition & Financial Assistance Rules Status Acquisition & Financial Assistance Rules Status Subscribe to Acquisition & Financial Assistance Rules Status Updates PDF icon ...

  19. Occupational Medicine - Assistant PIA, Idaho National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National ...

  20. Occupational Medicine - Assistant PIA, Idaho National Laboratory...

    Energy Savers [EERE]

    Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho...

  1. Flow Coefficient

    Office of Scientific and Technical Information (OSTI)

    this type of flow in porous and fractured rocks, including flow in geothermal reservoirs. ... and Renewable Energy, Office of Geothermal and Wind Technologies of the U.S. ...

  2. Financial Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance Financial Assistance Financial Assistance Regulations Governmentwide Uniform Regulations for Financial Assistance (Omnicircular; Issued 12/26/2013) DOE Financial Assistance Regulations (which Implement and Amend the Omnicircular; Issued 12/19/2014) New Restrictions on Lobbying, 10 CFR Part 601 Epidemiology & Other Health Studies, 10 CFR Part 602 Technology Investment Agreements, 10 CFR 603 Office of Science Financial Assistance Program, 10 CFR Part 605 Previous Financial

  3. Get Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Get Assistance Get Assistance Technical assistance is provided through national laboratories, regional and national associations of state decision-makers, and federal government staff. OE provides technical assistance in response to requests from eligible entities. Requests for assistance can be submitted directly to the OE program contacts. Requests may also be made through a national or regional organization (see examples below). Assistance from OE to states, regions, and Tribes can range from

  4. Weatherization Assistance Program (WAP)

    Broader source: Energy.gov [DOE]

    Through the Weatherization Assistance Program (WAP), the U.S. Department of Energy (DOE) issues grants to states, territories, and some Indian tribes to improve the energy efficiency of low-income...

  5. Foreign National Assistant

    Broader source: Energy.gov [DOE]

    This position may be filled at either Morgantown, WV or Pittsburgh, PA. A successful candidate in this position will assist employees and program managers within the Security and Emergency Response...

  6. Gina Pearson Assistant Administrator

    Gasoline and Diesel Fuel Update (EIA)

    Gina Pearson Assistant Administrator for Communications Duties Gina Pearson is the Assistant Administrator (AA) for Communications, and in this capacity provides leadership and direction to conduct the U.S. Energy Information Administration's comprehensive communications program for diverse external customer groups and agency employees. The AA for Communications is responsible for Agency communications policies and standards, the www.eia.gov website, press and media rela- tions, marketing and

  7. Electrocapturing flow cell

    DOE Patents [OSTI]

    Morozov, Victor

    2011-04-05

    A flow cell for electrophoretically-assisted capturing analytes from a flow. The flow cell includes a specimen chamber, a first membrane, a second membrane, a first electrode chamber, and a second electrode chamber. The specimen chamber may have a sample inlet and a sample outlet. A first portion of the first membrane may be coupled to a first portion of the specimen chamber. A first portion of the second membrane may be coupled to a second portion of the specimen chamber. The first electrode chamber may be configured to accept a charge. A portion of the first electrode chamber may be coupled to a second portion of the first membrane. A second electrode chamber may be configured to accept an opposite charge. A portion of the second electrode chamber may be coupled to a second portion of the second membrane.

  8. Modeling & Simulation | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACModeling & Simulation content top Overview Posted by Admin on Feb 13, 2012 in | Comments 0 comments NISAC experts analyze-using modeling and simulation capabilities-critical infrastructure, along with their interdependencies, vulnerabilities, and complexities. Their analyses are used to aid decisionmakers with policy assessment, mitigation planning, education, and training and provide near-real-time assistance to crisis-response organizations. Infrastructure systems are large, complex,

  9. Energy Department Assists with Conserving Water in California | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Assists with Conserving Water in California Energy Department Assists with Conserving Water in California April 7, 2016 - 1:29pm Addthis These before and after photos of Lake Oroville in Northern California show the dramatic results of extended years of drought. Funding support from the Energy Department to California’s Appliance Efficiency Program is lowering flow rates for faucets and showerheads as well as helping the state maintain a nearly constant level of electricity

  10. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    SciTech Connect (OSTI)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  11. Technical Assistance to Developers

    SciTech Connect (OSTI)

    Rockward, Tommy; Borup, Rodney L.; Garzon, Fernando H.; Mukundan, Rangachary; Spernjak, Dusan

    2012-07-17

    This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols, and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.

  12. Development and validation of a radial inflow turbine model for simulation of the SNL S-CO2 split-flow loop.

    SciTech Connect (OSTI)

    Vilim, R. B.

    2012-07-31

    A one-dimensional model for a radial inflow turbine has been developed for super-critical carbon dioxide (S-CO{sub 2}) Brayton cycle applications. The model accounts for the main phenomena present in the volute, nozzle, and impeller of a single-stage turbine. These phenomena include internal losses due to friction, blade loading, and angle of incidence and parasitic losses due to windage and blade-housing leakage. The model has been added as a component to the G-PASS plant systems code. The model was developed to support the analysis of S-CO{sub 2} cycles in conjunction with small-scale loop experiments. Such loops operate at less than a MWt thermal input. Their size permits components to be reconfigured in new arrangements relatively easily and economically. However, the small thermal input combined with the properties of carbon dioxide lead to turbomachines with impeller diameters of only one to two inches. At these sizes the dominant phenomena differ from those in larger more typical machines. There is almost no treatment in the literature of turbomachines at these sizes. The present work therefore is aimed at developing turbomachine models that support the task of S-CO{sub 2} cycle analysis using small-scale tests. Model predictions were compared against data from an experiment performed for Sandia National Laboratories in the split-flow Brayton cycle loop currently located at Barber-Nichols Inc. The split-flow loop incorporates two turbo-alternator-compressor (TAC) units each incorporating a radial inflow turbine and a radial flow compressor on a common shaft. The predicted thermodynamic conditions at the outlet of the turbine on the main compressor shaft were compared with measured values at different shaft speeds. Two modifications to the original model were needed to better match the experiment data. First, a representation of the heat loss from the volute downstream of the sensed inlet temperature was added. Second, an empirical multiplicative factor was applied to the Euler head and another to the head loss to bring the predicted outlet pressure into better agreement with the experiment. These changes also brought the overall efficiency of the turbine into agreement with values cited by Barber Nichols for small turbines. More generally, the quality of measurement set data can in the future be improved by additional steps taken in the design and operation of the experimental apparatus. First, a thermocouple mounted at the nozzle inlet would provide a better indication of temperature at this key point. Second, heat losses from the turbine should be measured directly. Allowing the impeller to free wheel at inlet conditions and measuring the temperature drop between inlet and outlet would provide a more accurate measure of heat loss. Finally, the enthalpy change during operation is more accurately obtained by measuring the torque on the stator using strain gauges rather than by measuring pressure and temperature at inlet and outlet to infer thermodynamic states.

  13. Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Technical Assistance Photo courtesy of Dennis Schroeder, NREL 18022 Photo courtesy of Dennis Schroeder, NREL 18022 The U.S. Department of Energy offers technical assistance supporting energy efficiency and renewable energy. This technical assistance can include direct advice on issues or goals, tools and maps, and training. Some select technical assistance offerings are listed below. For States and Communities The State and Local Solution Center provides states and

  14. Numerical simulation of ground-water flow in the Culebra dolomite at the Waste Isolation Pilot Plant (WIPP) site: Second interim report

    SciTech Connect (OSTI)

    LaVenue, A.M.; Haug, A.; Kelley, V.A.

    1988-03-01

    This hydrogeologic modeling study has been performed as part of the regional hydrologic characterization of the Waste Isolation Pilot Plant (WIPP) Site in southeastern New Mexico. The study resulted in an estimation of the transmissivity distrubution, hydraulic potentials, flow field, and fluid densities in the Culebra Dolomite Member of the Permian Rustler Formation at the WIPP site. The three-dimensional finite-difference code SWIFT-II was employed for the numerical modeling, using variable-fluid-density and a single-porosity formulation. The modeled area includes and extends beyond the WIPP controlled zone (Zone 3). The work performed consisted of modeling the hydrogeology of the Culebra using two approaches: (1) steady-state modeling to develop the best estimate of the undisturbed head distribution, i.e., of the situation before sinking if the WIPP shafts, which began in 1981; and (2) superimposed transient modeling of local hydrologic responses to excavation of the three WIPP shafts at the center of the WIPP site, as well as to various well tests. Boundary conditions (prescribed constant fluid pressures and densities) were estimated using hydraulic-head and fluid-density data obtained from about 40 wells at and near the WIPP site. The transient modeling used the calculated steady-state freshwater heads as initial conditions. 107 refs., 112 figs., 22 tabs.

  15. Modeling shrouded stator cavity flows in axial-flow compressors

    SciTech Connect (OSTI)

    Wellborn, S.R.; Tolchinsky, I.; Okiishi, T.H.

    2000-01-01

    Experiments and computational analyses were completed to understand the nature of shrouded stator cavity flows. From this understanding, a one-dimensional model of the flow through shrouded stator cavities was developed. This model estimates the leakage mass flow, temperature rise, and angular momentum increase through the cavity, given geometry parameters and the flow conditions at the interface between the cavity and primary flow path. This cavity model consists of two components, one that estimates the flow characteristics through the labyrinth seals and the other that predicts the transfer of momentum due to windage. A description of the one-dimensional model is given. The incorporation and use of the one-dimensional model in a multistage compressor primary flow analysis tool is described. The combination of this model and the primary flow solver was used to reliably simulate the significant impact on performance of the increase of hub seal leakage in a twelve-stage axial-flow compressor. Observed higher temperatures of the hub region fluid, different stage matching, and lower overall efficiencies and core flow than expected could be correctly linked to increased hub seal clearance with this new technique. The importance of including these leakage flows in compressor simulations is shown.

  16. Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs

    Broader source: Energy.gov [DOE]

    Project objectives: Improve image resolution for microseismicimaging and time-lapse active seismic imaging; Enhance the prediction of fluid flow and temperature distributions and stress changes by coupling fracture flow simulations with reservoir flow simulations; and integrating imaging into modeling.

  17. Microblower assisted barometric valve

    DOE Patents [OSTI]

    Rossabi, Joseph; Hyde, Warren K.; Riha, Brian D.; Jackson, Dennis G.; Sappington, Frank

    2005-12-06

    A gas exchange apparatus is provided which provides for both passive fluid flow and blower associated fluid flow through a barometric valve. A battery powered blower is provided which allows for operation of the barometric valve during times when the barometric valve would otherwise be closed, and provides for enhanced volume of gas exchange.

  18. Office of Security Assistance

    Broader source: Energy.gov [DOE]

    The Office of Security Assistance manages the Technology Deployment Program to improve the security posture of the Department of Energy and the protection of its assets and facilities through the deployment of new safeguards and security technologies and development of advanced technologies that reduce operating costs, save protective force lives, and improve security effectiveness.

  19. About Technical Assistance

    Broader source: Energy.gov [DOE]

    As technologies proceed along the development pipeline, most face major hurdles as they attempt to enter commercial markets. Our Technical Assistance program helps lower a range of institutional barriers to prepare innovative, energy-efficient technologies and energy management systems for full commercial deployment. These projects and activities address barriers that are not technical, Technology Readiness Level 9.

  20. De Novo Ultrascale Atomistic Simulations On High-End Parallel...

    Office of Scientific and Technical Information (OSTI)

    complexity and tight error control. The EDC framework also enables adaptive hierarchical simulation with automated model transitioning assisted by graph-based event tracking. ...

  1. ORISE: How the Radiation Emergency Assistance Center/Training Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (REAC/TS) is Making a Difference How ORISE is Making a Difference Radiation Emergency Assistance/Training Site providing expert medical training and support for radiation emergencies How ORISE is Making a Difference As an invaluable international resource in the medical management of radiation emergencies, the Radiation Emergency Assistance Center/Training Site (REAC/TS) provides incident response and consultation, continuing medical education and simulation exercises to countries around the

  2. GrndWaterFlow.book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Flow Model of CAUs 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada Appendix A A-59 Table A.11-3 CPU Times in Minutes for FEHM Test Problem Simulations Model Faults Radionuclides Source Location Matrix Diffusion Simulation Time (Yrs) CPU Time (min) Flow No - - - - 19 Flow Yes - - - - 15 F-E Transport No Tritium SCOTCH/SERENA* No 200 71 F-E Transport No Tritium SCOTCH CHVTA** No 200 82 F-E Transport Yes Tritium SCOTCH/SERENA No 200 77 F-E Transport Yes Tritium SCOTCH

  3. Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Technical Assistance The U.S. Department of Energy (DOE) Office of Indian Energy provides federally recognized Indian tribes, including Alaska Native villages, tribal energy resource development organizations, and other organized tribal groups and communities, with technical assistance to advance tribal energy projects. For general information or inquiries, please contact our help desk. On-Request TECHNICAL ASSISTANCE Technical experts from DOE and its national laboratories,

  4. Protocol, Security Assistance- January 2007

    Broader source: Energy.gov [DOE]

    Provide timely technical assistance and system support to Field and HQ Elements to enhance site safeguards and security.

  5. A New Computational Paradigm in Multiscale Simulations: Application...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Computational Paradigm in Multiscale Simulations: Application to Brain Blood Flow ... We present the computational advances that have enabled the first multiscale simulation on ...

  6. Environmental Compliance Assistance Tool

    Energy Science and Technology Software Center (OSTI)

    1999-04-16

    ENVIROCAT is a database/knowledge base software system designed to assist in environment, safety and health (ES&H) regulatory compliance assessments of manufacturing processes. Materials and processes are mapped to ES&H regulations. The regulations database identifies materials'' quantities and limits of compliance. Materials are identified per descriptive name or CAS number. ENVIROCAT has an interactive user/tool capability such that a question and answer session on materials and processes is custom tailored to a particular manufacturing site.

  7. Low Income Home Energy Assistance Program (LIHEAP)

    Broader source: Energy.gov [DOE]

    The Low Income Home Energy Assistance Program (LIHEAP) provides resources to assist families with energy costs. This federally funded assistance helps in managing costs associated with:

  8. Technical Assistance: Frequently Asked Questions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Frequently Asked Questions Technical Assistance: Frequently Asked Questions What types of technical assistance does DOE offer? Technical assistance is provided through national ...

  9. Flow chamber

    DOE Patents [OSTI]

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  10. CFD analysis of laminar oscillating flows

    SciTech Connect (OSTI)

    Booten, C. W. Charles W.); Konecni, S.; Smith, B. L.; Martin, R. A.

    2001-01-01

    This paper describes a numerical simulations of oscillating flow in a constricted duct and compares the results with experimental and theoretical data. The numerical simulations were performed using the computational fluid dynamics (CFD) code CFX4.2. The numerical model simulates an experimental oscillating flow facility that was designed to test the properties and characteristics of oscillating flow in tapered ducts, also known as jet pumps. Jet pumps are useful devices in thermoacoustic machinery because they produce a secondary pressure that can counteract an unwanted effect called streaming, and significantly enhance engine efficiency. The simulations revealed that CFX could accurately model velocity, shear stress and pressure variations in laminar oscillating flow. The numerical results were compared to experimental data and theoretical predictions with varying success. The least accurate numerical results were obtained when laminar flow approached transition to turbulent flow.

  11. Impact assisted segmented cutterhead

    DOE Patents [OSTI]

    Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.

    1992-01-01

    An impact assisted segmented cutterhead device is provided for cutting various surfaces from coal to granite. The device comprises a plurality of cutting bit segments deployed in side by side relationship to form a continuous cutting face and a plurality of impactors individually associated with respective cutting bit segments. An impactor rod of each impactor connects that impactor to the corresponding cutting bit segment. A plurality of shock mounts dampening the vibration from the associated impactor. Mounting brackets are used in mounting the cutterhead to a base machine.

  12. Village Power Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On-Request Technical Assistance » Village Power Technical Assistance Village Power Technical Assistance Village power technical assistance is designed to address the unique needs of remote Alaska Native villages. Below is a list of the various options for this type of technical assistance. To apply for village power technical assistance, complete the online technical assistance request form. Village Power Technical Assistance Options Power Cost Equalization (PCE) support Training on PCE

  13. Simulation-Based Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation-Based Engineering Simulation-Based Engineering is focused on predicting the behavior of complex multiphase flow reactors used in fossil-energy technologies. This effort combines theory, computational modeling, experiments, and industrial input. Physics- and science-based computational models and tools are needed to support the development and deployment of advanced fossil-fuel energy devices such as gasifiers and carbon capture reactors. It is critical to develop a practical framework

  14. HELM(tm) Flow - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Find More Like This Return to Search HELM(tm) Flow Holomorphic Embedded Load flow Method Battelle Memorial Institute Contact BMI About This Technology Publications: PDF Document Publication HELM(tm) Flow Brochure (1,017 KB) PDF Document Publication US Patent 7519506B2 (159 KB) PDF Document Publication US Patent 7979239B (172 KB) Technology Marketing Summary HELM(tm) Flow is a simulation and analysis tool for transmission and distribution power systems. It provides

  15. Flow battery

    DOE Patents [OSTI]

    Lipka, Stephen M.; Swartz, Christopher R.

    2016-02-23

    An electrolyte system for a flow battery has an anolyte including [Fe(CN).sub.6].sup.3- and [Fe(CN).sub.6].sup.4- and a catholyte including Fe.sup.2+ and Fe.sup.3+.

  16. UZ Flow Models and Submodels

    SciTech Connect (OSTI)

    Y. Wu

    2004-11-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

  17. New Mexico Small Business Assistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 31, 2012 Program of Los Alamos, Sandia national laboratories LOS ALAMOS, NEW MEXICO, May 31, 2012-The New Mexico Small Business Assistance (NMSBA) program, a...

  18. Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Technical Assistance program is managed through the Center for Sustainable Soil and ... Solutions that reduce technical risk and uncertainty Focus on science and engineering ...

  19. Georgia Shore Assistance Act

    SciTech Connect (OSTI)

    Pendergrast, C.

    1984-01-01

    The Georgia General Assembly passed the Shore Assistance Act in 1979 in order to fill a regulatory gap in the state's management of its coastal resources. A review of its legislative history, purposes, applications, and effects in terms of the sand sharing system of sand dunes, beaches, sandbars, and shoals concludes that the Act is poorly drafted. In its application on the oceanfront, it betrays its intent and protects the oceanfront owner. It has failed to satisfy the requirements of the public trust in the tidal foreshore. Amendments to clarify its understanding of the functions and values of the sand-sharing system should also conform with the state's duties under the public trust. 139 references.

  20. GrndWaterFlow.book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.0 THERMAL SENSITIVITY AND VERIFICATION 8.1 Introduction The flow model calibration described in earlier sections utilizes a thermal field based upon calibration of the heat flux at the base of the model domain (Appendix C). In calibrating the heat fluxes with a conduction-only model to minimize residuals between observed and simulated temperatures in boreholes, certain anomalies were identified indicating convective flow. These anomalies indicate that cooler water from near the water table is

  1. Keeping the Power Flowing | Department of Energy

    Energy Savers [EERE]

    Keeping the Power Flowing Keeping the Power Flowing February 12, 2014 - 3:56pm Addthis A supercomputer at the Energy Department's Pacific Northwest National Lab (PNNL) | Photo courtesy of PNNL A supercomputer at the Energy Department's Pacific Northwest National Lab (PNNL) | Photo courtesy of PNNL Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability What are the key facts? The Department of Energy is working closely with our

  2. Climate Resilience Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » On-Request Technical Assistance » Climate Resilience Technical Assistance Climate Resilience Technical Assistance Climate change preparedness and resiliency technical assistance includes expert guidance to help Indian tribes and Alaska Native villages understand how to mitigate and plan for the impacts of climate change. Below is a list of the various options for this type of technical assistance. To apply for climate resilience technical assistance, complete the online

  3. Alternative Fuels Data Center: Project Assistance

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Project Assistance to someone by E-mail Share Alternative Fuels Data Center: Project Assistance on Facebook Tweet about Alternative Fuels Data Center: Project Assistance on Twitter Bookmark Alternative Fuels Data Center: Project Assistance on Google Bookmark Alternative Fuels Data Center: Project Assistance on Delicious Rank Alternative Fuels Data Center: Project Assistance on Digg Find More places to share Alternative Fuels Data Center: Project Assistance on AddThis.com... More in this

  4. On-Request Technical Assistance

    Broader source: Energy.gov [DOE]

    Indian tribes and Alaska Native villages can apply annually to receive on-request technical assistance with energy planning; project development; policy, regulations, and codes; climate resilience; and village power issues. Assistance is provided by the U.S. Department of Energy (DOE) Office of Indian Energy and its national laboratories, along with other partnering organizations.

  5. Flow Split Venturi, Axially-Rotated Valve

    DOE Patents [OSTI]

    Walrath, David E.; Lindberg, William R.; Burgess, Robert K.; LaBelle, James

    2000-02-22

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.

  6. Financial Assistance Guide (2013) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financial Assistance Guide (2013) Financial Assistance Guide (2013) PDF icon Financial Assistance Guide (2013).pdf More Documents & Publications Revised Guide for Financial Assistance U.S. Department of Energy - Guide to Financial Assistance - Audit Requirements for For-Profit Organizations U.S. Department of Energy Audit Guidance: For-Profit

  7. Steady-state domain wall motion driven by adiabatic spin-transfer torque with assistance of microwave field

    SciTech Connect (OSTI)

    Wang, Xi-guang; Guo, Guang-hua Nie, Yao-zhuang; Xia, Qing-lin; Tang, Wei; Wang, D.; Zeng, Zhong-ming

    2013-12-23

    We have studied the current-induced displacement of a 180° Bloch wall by means of micromagnetic simulation and analytical approach. It is found that the adiabatic spin-transfer torque can sustain a steady-state domain wall (DW) motion in the direction opposite to that of the electron flow without Walker Breakdown when a transverse microwave field is applied. This kind of motion is very sensitive to the microwave frequency and can be resonantly enhanced by exciting the domain wall thickness oscillation mode. A one-dimensional analytical model was established to account for the microwave-assisted wall motion. These findings may be helpful for reducing the critical spin-polarized current density and designing DW-based spintronic devices.

  8. Flow cytometer

    DOE Patents [OSTI]

    van den Engh, Ger

    1995-01-01

    A Faraday cage enclosing the flow chamber of a cytometer and ground planes associated with each field deflection plate in concert therewith inhibit electric fields from varying the charge on designated events/droplets and further concentrates and increases forces applied to a charged event passing therethrough for accurate focus thereof while concomitantly inhibiting a potential shock hazard.

  9. Flow cytometer

    DOE Patents [OSTI]

    Van den Engh, G.

    1995-11-07

    A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

  10. Oahu Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.

  11. Federal Energy Management Program Renewable Energy Project Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and utility-scale project planning assistance Acquisition ... Contract assistance Design review assistance ... Power at Federal Facilities Renewable Energy ...

  12. Hydrogen-assisted catalytic ignition characteristics of different fuels

    SciTech Connect (OSTI)

    Zhong, Bei-Jing; Yang, Fan; Yang, Qing-Tao

    2010-10-15

    Hydrogen-assisted catalytic ignition characteristics of methane (CH{sub 4}), n-butane (n-C{sub 4}H{sub 10}) and dimethyl ether (DME) were studied experimentally in a Pt-coated monolith catalytic reactor. It is concluded that DME has the lowest catalytic ignition temperature and the least required H{sub 2} flow, while CH{sub 4} has the highest catalytic ignition temperature and the highest required H{sub 2} flow among the three fuels. (author)

  13. Active Financial Assistance Letters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Active Financial Assistance Letters Active Financial Assistance Letters Below is a list of all active Financial Assistance Letters with the most recent FALs on top. May 11, 2016 Financial Assistance Letter No. FAL 2016-03 Pre-Award Risk Assessments and the utilization of the Federal Awardee Performance and Integrity Information System (FAPIIS). February 17, 2016 Financial Assistance Letter No. FAL 2016-02 Congressional Notifications and Quarterly March 7, 2016 Financial Assistance Letter No. FAL

  14. Project Development Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Development Technical Assistance Project Development Technical Assistance Project development technical assistance is provided through expert guidance and analysis that helps address specific barriers Indian tribes and Alaska Native villages face while developing a clean energy project. Below is a list of the various options for this type of technical assistance. To apply for project development technical assistance, complete the online technical assistance request form. Project

  15. Environmental/Radiological Assistance Directory (ERAD) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Environmental Radiological Assistance Directory or ERAD, developed by AU-22, serves as an assistance tool to the DOE complex for protection of the public and environment from ...

  16. Energy Department Announces Technical Assistance Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Opportunity for Tribal Clean Energy Deployment Energy Department Announces Technical Assistance Opportunity for Tribal Clean Energy Deployment December 2, 2011 ...

  17. FEMP Launches New Technical Assistance Request Portal

    Broader source: Energy.gov [DOE]

    FEMP recently launched a new technical assistance request portal, which allows Federal agencies to submit and track requests for assistance for renewable energy projects.

  18. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration Durability of ...

  19. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Biofuels Impact ...

  20. Help Desk Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Desk Assistance Welcome to HelpDesk Assistance Online at Online Learning Center (OLC) Whether you're looking to discover new learning opportunities, better manage your ...

  1. Department of Energy Idaho - Contracts, Financial Assistance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracts, Financial Assistance & Solicitations Contracts, Financial Assistance & Solicitations Procurement and Acquisition, Doing Business With the U.S. Department of Energy ...

  2. Profiles in Leadership: Christopher Smith, Assistant Secretary...

    Energy Savers [EERE]

    Christopher Smith, Assistant Secretary for Fossil Energy Profiles in Leadership: Christopher Smith, Assistant Secretary for Fossil Energy July 15, 2015 - 8:19am Addthis Profiles in ...

  3. Networking and Solar Technical Assistance

    Broader source: Energy.gov [DOE]

    The SunShot Initiative provides state and local decision-makers with timely and actionable resources, peer networks, and technical assistance to lower local market barriers and establish best...

  4. Community Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Assistance Community Assistance For more than 50 years, DOE and its predecessor agencies produced materials to manufacture nuclear weapons and conduct activities for the Manhattan Engineer District. To accommodate these activities, more than 20,000 facilities throughout the country were built, a large contractor work force was established, and communities were transformed. President George H.W. Bush's announcement of the first unilateral nuclear weapons reduction agreement on September

  5. New Mexico Small Business Assistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Business Assistance Program to recognize outstanding companies at Innovation Celebration April 6, 2010 LOS ALAMOS, New Mexico, April 6, 2010-The New Mexico Small Business Assistance Program (NMSBA) helped 320 companies in 25 counties last year to solve technical challenges. Nine companies that participated in the program in 2009 will be honored for their outstanding achievements April 8 at the NMSBA's Innovation Celebration. Journalists are invited to meet small business owners,

  6. Casework Assistance | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Casework Assistance When asked to analyze potential evidence that is outside the procedures and capabilities of their laboratory, criminalists currently turn to neighboring crime laboratories, specialized federal resources, or outside experts with whom they have worked in the past. The MFRC is working to improve crime laboratory access to established local, regional, and national casework resources and to assist regional crime laboratories to establish new casework resources by: Providing a

  7. Instream Flows Incremental Methodology :Kootenai River, Montana : Final Report 1990-2000.

    SciTech Connect (OSTI)

    Hoffman, Greg; Skaar, Don; Dalbey, Steve

    2002-11-01

    Regulated rivers such as the Kootenai River below Libby Dam often exhibit hydrographs and water fluctuation levels that are atypical when compared to non-regulated rivers. These flow regimes are often different conditions than those which native fish species evolved with, and can be important limiting factors in some systems. Fluctuating discharge levels can change the quantity and quality of aquatic habitat for fish. The instream flow incremental methodology (IFIM) is a tool that can help water managers evaluate different discharges in terms of their effects on available habitat for a particular fish species. The U.S. Fish and Wildlife Service developed the IFIM (Bovee 1982) to quantify changes in aquatic habitat with changes in instream flow (Waite and Barnhart 1992; Baldridge and Amos 1981; Gore and Judy 1981; Irvine et al. 1987). IFIM modeling uses hydraulic computer models to relate changes in discharge to changes in the physical parameters such as water depth, current velocity and substrate particle size, within the aquatic environment. Habitat utilization curves are developed to describe the physical habitat most needed, preferred or tolerated for a selected species at various life stages (Bovee and Cochnauer 1977; Raleigh et al. 1984). Through the use of physical habitat simulation computer models, hydraulic and physical variables are simulated for differing flows, and the amount of usable habitat is predicted for the selected species and life stages. The Kootenai River IFIM project was first initiated in 1990, with the collection of habitat utilization and physical hydraulic data through 1996. The physical habitat simulation computer modeling was completed from 1996 through 2000 with the assistance from Thomas Payne and Associates. This report summarizes the results of these efforts.

  8. THE DETONATION MECHANISM OF THE PULSATIONALLY ASSISTED GRAVITATIONALLY CONFINED DETONATION MODEL OF Type Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Jordan, G. C. IV; Graziani, C.; Weide, K.; Norris, J.; Hudson, R.; Lamb, D. Q.; Fisher, R. T.; Townsley, D. M.; Meakin, C.; Reid, L. B.

    2012-11-01

    We describe the detonation mechanism composing the 'pulsationally assisted' gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and {sup 56}Ni yields conform better to observational values than is the case for the 'classical' GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

  9. Stress-Assisted Corrosion in Boiler Tubes

    SciTech Connect (OSTI)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  10. Geothermal direct-heat utilization assistance

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Progress on technical assistance, R D activities, technology transfer, and geothermal progress monitoring is summarized.

  11. EERE Success Story-Energy Department Assists with Conserving Water in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California | Department of Energy Assists with Conserving Water in California EERE Success Story-Energy Department Assists with Conserving Water in California April 12, 2016 - 1:55pm Addthis These before and after photos of Lake Oroville in Northern California show the dramatic results of extended years of drought. Funding support from the Energy Department to California’s Appliance Efficiency Program is lowering flow rates for faucets and showerheads as well as helping the state

  12. Advanced Wellbore Thermal Simulator

    Energy Science and Technology Software Center (OSTI)

    1992-03-04

    GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with severalmore » different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.« less

  13. Walking the Talk: Employer Assisted Programs (301) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Walking the Talk: Employer Assisted Programs (301) Walking the Talk: Employer Assisted Programs (301) May 1

  14. Relocation Assistance | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relocation Assistance Relocation Assistance The CNS Relocation Assistance Program can help make your relocation to the area as smooth as possible. When you have accepted employment at the Y-12 National Security Complex, we want to help make your relocation to the area as smooth as possible. The Consolidated Nuclear Security, LLC, Relocation Assistance Program can lessen the financial burden of relocating. Assistance is available to eligible transfers and new hires who meet the criteria

  15. Zonal flow dynamics in the double tearing mode with antisymmetric shear flows

    SciTech Connect (OSTI)

    Mao, Aohua [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan)] [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Liu, Jinyuan, E-mail: jyliu@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Kishimoto, Yasuaki [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan) [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Institude of Advanced Energy, Kyoto University, Uji, Kyoto 6110011 (Japan)

    2014-05-15

    The generation dynamics and the structural characteristics of zonal flows are investigated in the double tearing mode (DTM) with antisymmetric shear flows. Two kinds of zonal flow oscillations are revealed based on reduced resistive magnetohydrodynamics simulations, which depend on the shear flow amplitudes corresponding to different DTM eigen mode states, elaborated by Mao et al. [Phys. Plasmas 20, 022114 (2013)]. For the weak shear flows below an amplitude threshold, v{sub c}, at which two DTM eigen states with antisymmetric or symmetric magnetic island structure are degenerated, the zonal flows grow oscillatorily in the Rutherford regime during the nonlinear evolution of the DTMs. It is identified that the oscillation mechanism results from the nonlinear interaction between the distorted islands and the zonal flows through the modification of shear flows. However, for the medium shear flows above v{sub c} but below the critical threshold of the Kelvin-Helmholtz instability, an oscillatory growing zonal flow occurs in the linear phase of the DTM evolution. It is demonstrated that the zonal flow oscillation originates from the three-wave mode coupling or a modulation instability pumped by two DTM eigen modes with the same frequency but opposite propagating direction. With the shear flows increasing, the amplitude of zonal flow oscillation increases first and then decreases, whilst the oscillation frequency as twice of the Doppler frequency shift increases. Furthermore, impacts of the oscillatory zonal flows on the nonlinear evolution of DTM islands and the global reconnection are also discussed briefly.

  16. Magnetic Amplifier for Power Flow Control

    SciTech Connect (OSTI)

    2012-02-24

    GENI Project: ORNL is developing an electromagnet-based, amplifier-like device that will allow for complete control over the flow of power within the electric grid. To date, complete control of power flow within the grid has been prohibitively expensive. ORNL’s controller could provide a reliable, cost-effective solution to this problem. The team is combining two types of pre-existing technologies to assist in flow control, culminating in a prototype iron-based magnetic amplifier. Ordinarily, such a device would require expensive superconductive wire, but the magnetic iron core of ORNL’s device could serve as a low-cost alternative that is equally adept at regulating power flow.

  17. A consistent second order projection scheme for simulating transient...

    Office of Scientific and Technical Information (OSTI)

    A consistent second order projection scheme for simulating transient viscous flow with Smoothed Particle Hydrodynamics. Citation Details In-Document Search Title: A consistent...

  18. Subsurface Flow and Contaminant Transport

    Energy Science and Technology Software Center (OSTI)

    2000-09-19

    FACT is a transient three-dimensional, finite element code for simulating isothermal groundwater flow, moisture movement, and solute transport in variably and/or fully saturated subsurface porous media. Both single and dual-domain transport formulations are available. Transport mechanisms considered include advection, hydrodynamic dispersion, linear adsorption, mobile/immobile mass transfer and first-order degradation. A wide range of acquifier conditions and remediation systems commonly encountered in the field can be simulated. Notable boundary condition (BC) options include, a combined rechargemore » and drain BC for simulating recirculation wells, and a head dependent well BC that computes flow based on specified drawdown. The code is designed to handle highly heterogenous, multi-layer, acquifer systems in a numerically efficient manner. Subsurface structure is represented with vertically distorted rectangular brick elements in a Cartesian system. The groundwater flow equation is approximated using the Bubnov-Galerkin finite element method in conjunction with an efficient symmetric Preconditioned Conjugate Gradient (PCG) ICCG matrix solver. The solute transport equation is approximated using an upstream weighted residual finite element method designed to alleviate numerical oscillation. An efficient asymmetric PCG (ORTHOMIN) matrix solver is employed for transport. For both the flow and transport equations, element matrices are computed from either influence coefficient formulas for speed, or two point Gauss-Legendre quadrature for accuracy. Non-linear flow problems can be solved using either Newton-Ralphson linearization or Picard iteration, with under-relaxation formulas to further enhance convergence. Dynamic memory allocation is implemented using Fortran 90 constructs. FACT coding is clean and modular.« less

  19. Office of the Assistant General Counsel for Procurement and Financial Assistance

    Broader source: Energy.gov [DOE]

    The Office of the Assistant General Counsel for Procurement and Financial Assistance provides legal support and advice regarding the Department's massive contractual expenditures and financial...

  20. Uranyl Nitrate Flow Loop

    SciTech Connect (OSTI)

    Ladd-Lively, Jennifer L

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by the U.S. Department of Energy (DOE) NA-241, Office of Dismantlement and Transparency.

  1. TASK 2: QUENCH ZONE SIMULATION

    SciTech Connect (OSTI)

    Fusselman, Steve

    2015-09-30

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from the outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual results on the pilot plant gasifier and demonstration plant design recommendations, based on cold flow simulation results.

  2. Template:ContentAssist | Open Energy Information

    Open Energy Info (EERE)

    ContentAssist Jump to: navigation, search This is the ContentAssist template. It is intended for inclusion on any page and will highlight extracted energy-related terms from the...

  3. Processing Financial Assistance Actions in STRIPES

    Broader source: Energy.gov [DOE]

    The attached booklet is a companion to the STRIPES Financial Assistance Desk Guide. It provides tips on processing financial assistance actions in STRIPES. The booklet will be available in the...

  4. Policy, Regulation, and Codes Technical Assistance

    Broader source: Energy.gov [DOE]

    Policy, regulation, and codes technical assistance includes information and guidance for Indian tribes and Alaska Native villages on energy governance issues. Below is a list of the various options for this type of technical assistance.

  5. Low volume flow meter

    DOE Patents [OSTI]

    Meixler, Lewis D.

    1993-01-01

    The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

  6. Active Financial Assistance Letters | Department of Energy

    Energy Savers [EERE]

    Active Financial Assistance Letters Active Financial Assistance Letters Below is a list of all active Financial Assistance Letters with the most recent FALs on top. FAL Number FAL Title 2015-04 STRIPES Mandatory Use Policy 2014-02 Congressional Notifications and Quarterly Reporting to the Appropriations Committees Subject to Energy and Water Development and Related Agencies Appropriations Act, 2014, Division D, Title III, Section 301 for Contract, Financial Assistance, or Other Transaction

  7. Previous Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Previous Technical Assistance Previous Technical Assistance The following are some Technical Assistance Work Products from 1998-2003. Sponsored Sample Products DOE co-funded report examines the current status of the U.S. Electric Transmission System. Report finds transmission capacity continues to be added at a slower rate than consumer demand is growing. Additional Program-Sponsored Sample Products The Electric Markets Technical Assistance Program is supporting efforts by the Western Governors'

  8. Project Management Expectations for Financial Assistance Activities

    Broader source: Energy.gov [DOE]

    Memo on Project Management Expectations for Financial Assistance Activities from David K. Garman, dated June 23, 2006.

  9. Notice of Financial Assistance Award

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    F 4600.1# U.S. DEPARTMENT OF ENERGY (708) NOTICE OF FINANCIAL ASSISTANCE AWARD Under the authority of Public Law: Energy Independence and Security Act of 2007 1. PROJECT TITLE Viability Demonstration of Alternative Energy Systems in High Population Density Environments. 2. INSTRUMENT TYPE GRANT COOPERATIVE AGREEMENT 3. RECIPIENT (Name, address, zip code) 212 Degrees Consulting, LLC, 3960 Howard Hughes Parkway, Suite 500, Las Vegas, NV, 89169 4. INSTRUMENT NO. DE-FG36-10GO10589 5. AMENDMENT NO.

  10. Richard Robinson > Assistant Professor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering > Faculty Directory > The Energy Materials Center at Cornell Robinson Assistant Professor Materials Science and Engineering Research Group Webpage rdr82@cornell.edu Research Professor Robinson's research focuses on nanostructured materials for alternative energy applications. Our goal is to utilize the advanced properties of nanomaterials to build efficient thermoelectrics and fuel cells. By altering the size, shape, and composition of our particles we

  11. Computer Assisted Virtual Environment - CAVE

    ScienceCinema (OSTI)

    Erickson, Phillip; Podgorney, Robert; Weingartner, Shawn; Whiting, Eric

    2014-06-09

    Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

  12. Technical Assistance: Increasing Code Compliance - 2014 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance: Increasing Code Compliance - 2014 BTO Peer Review Technical Assistance: ... View the Presentation PDF icon Technical Assistance: Increasing Code Compliance - 2014 BTO ...

  13. Precursors for the polymer-assisted deposition of films (Patent...

    Office of Scientific and Technical Information (OSTI)

    Precursors for the polymer-assisted deposition of films Citation Details In-Document Search Title: Precursors for the polymer-assisted deposition of films A polymer assisted ...

  14. State, Local and Tribal Technical Assistance Gateway | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State, Local and Tribal Technical Assistance Gateway State, Local and Tribal Technical Assistance Gateway The State, Local and Tribal Technical Assistance Gateway provides an ...

  15. Sandia National Laboratories: Advanced Simulation and Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Advanced Simulation and Computing Advanced Simulation and Computing Taking on the World's Complex Challenges Advancing Science Frontiers Our research is producing new scientific insights about the world in which we live and assists in certifying the safety and reliability of the nation's nuclear weapons stockpile. Technology Provides the Tools Growth in data and the software and hardware demands needed for physics-based answers and predictive capabilities are

  16. Technical Assistance Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities Technical Assistance Activities AMO's Industrial Technical Assistance supports the deployment of manufacturing technologies and practices, including strategic energy management and combined heat and power, across American industry to increase productivity and reduce water and energy use. Technical Assistance Programs Better Plants Program Better Plants Challenge Superior Energy Performance Industrial Assessment Centers CHP Deployment Energy Resource Center Software Tools Training

  17. Weatherization Assistance Program National Evaluation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Weatherization Assistance Program National Evaluation Weatherization Assistance Program National Evaluation The Weatherization and Intergovernmental Programs Office authorized the Oak Ridge National Laboratory to implement the national evaluation of the Weatherization Assistance Program. This evaluation addressed energy and cost savings, non-energy benefits, program cost-effectiveness, and program operations for program year 2008, called the Retrospective Evaluation, and for program

  18. Technical Assistance Topics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Policy Coordination and Implementation » Electricity Policy Technical Assistance Program » Technical Assistance Topics Technical Assistance Topics Topics addressed are those of greatest interest to states, regions, and Tribes, including: Reliability, resiliency, and cyber security of electric power systems Electric resource planning, integrated resource planning, regional transmission planning, and resource acquisition strategies Ratepayer-funded energy efficiency, demand response,

  19. START Renewable Energy Project Development Assistance

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Indian Energy is now accepting applications for the third round of the Strategic Technical Assistance Response Team (START) Renewable Energy Project Development Assistance Program to provide Tribes with technical assistance with furthering the development of community- and commercial-scale renewable energy projects.

  20. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  1. Assistance

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) assurance systems are designed to meet the needs and unique risks of each DOE site or activity, include methods to perform rigorous self-assessments, conduct feedback...

  2. NFFLOW: A reservoir simulator incorporating explicit fractures (SPE 153890)

    SciTech Connect (OSTI)

    Boyle, E.J.; Sams, W.N.

    2012-01-01

    NFFLOW is a research code that quickly and inexpensively simulates flow in moderately fractured reservoirs. It explicitly recognizes fractures separately from rock matrix. In NFFLOW fracture flow is proportional to the pressure gradient along the fracture, and flow in the rock matrix is determined by Darcys Law. The two flow mechanisms are coupled through the pressure gradient between a fracture and its adjacent rock matrix. Presented is a promising change to NFFLOW that allows for flow across a rock matrix block.

  3. Site-Scale Saturated Zone Flow Model

    SciTech Connect (OSTI)

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being carried out in the model report, ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The velocity fields are calculated by the flow model, described herein, independent of the transport processes, and are then used as inputs to the transport model. Justification for this abstraction is presented in the model report, ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021 (BSC 2003 [164870]).

  4. Flow distribution channels to control flow in process channels...

    Office of Scientific and Technical Information (OSTI)

    Flow distribution channels to control flow in process channels Citation Details In-Document Search Title: Flow distribution channels to control flow in process channels You are ...

  5. Electrically-Assisted Turbocharger Development for Performance and Emissions

    SciTech Connect (OSTI)

    Bailey, Milton

    2000-08-20

    Turbocharger transient lag inherently imposes a tradeoff between a robust engine response to transient load shifts and exhaust emissions. By itself, a well matched turbocharger for an engine has limited flexibility in improving this transient response. Electrically-assisted turbocharging has been seen as an attractive option to improve response and lower transient emissions. This paper presents the results of a multi-year joint CRADA between DDC and ORNL. Virtual lab diesel simulation models characterized the performance improvement potential of an electrically assisted turbocharger technology. Operating requirements to reduce transient duration between load shift time by up to 50% were determined. A turbomachine has been conceptualized with an integrated motor-generator, providing transient burst boost plus energy recovery capability. Numerous electric motor designs were considered, and a prototype motor was developed, fabricated, and is undergoing tests. Power controls have been designed and fabricated.

  6. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  7. Characterization of the Weatherization Assistance Program network. Weatherization Assistance Program

    SciTech Connect (OSTI)

    Mihlmester, P.E.; Koehler, W.C. Jr.; Beyer, M.A.; Brown, M.A.; Beschen, D.A. Jr.

    1992-02-01

    The Characterization of the Weatherization Assistance Program (WAP) Network was designed to describe the national network of State and local agencies that provide WAP services to qualifying low-income households. The objective of this study was to profile the current WAP network. To achieve the objective, two national surveys were conducted: one survey collected data from 49 State WAP agencies (including the coterminous 48 States and the District of Columbia), and the second survey collected data from 920 (or 81 percent) of the local WAP agencies.

  8. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect (OSTI)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  9. Wind Simulation

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  10. Office of the Assistant General Counsel for Procurement and Financial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance | Department of Energy Services » Transactions, Technology and Contractor Human Resources » Office of the Assistant General Counsel for Procurement and Financial Assistance Office of the Assistant General Counsel for Procurement and Financial Assistance The Office of the Assistant General Counsel for Procurement and Financial Assistance provides legal support and advice regarding the Department's massive contractual expenditures and financial assistance policy and activities.

  11. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  12. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  13. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    SciTech Connect (OSTI)

    Jiao, Yipeng; Liu, Zengyuan; Victora, R. H.

    2015-05-07

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation.

  14. Flow Partitioning in Fully Saturated Soil Aggregates

    SciTech Connect (OSTI)

    Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.; Perkins, William A.; Resat, Haluk

    2014-03-30

    Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flow among the inter-aggregate and intra-aggregate pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the aggregates was larger than 18 micron. Inter-aggregate pores continued to be the dominant flow pathways even at much smaller spacing; intra-aggregate flow was less than 10% of the total flow when the inter- and intra-aggregate pore sizes were comparable. Such studies are making it possible to identify which model upscaling assumptions are realistic and what computational methods are required for detailed numerical investigation of microbial carbon cycling dynamics in soil systems.

  15. A consistent second order projection scheme for simulating transient

    Office of Scientific and Technical Information (OSTI)

    viscous flow with Smoothed Particle Hydrodynamics. (Journal Article) | SciTech Connect A consistent second order projection scheme for simulating transient viscous flow with Smoothed Particle Hydrodynamics. Citation Details In-Document Search Title: A consistent second order projection scheme for simulating transient viscous flow with Smoothed Particle Hydrodynamics. Abstract not provided. Authors: Trask, Nathaniel ; Maxey, Martin ; Kim, Kyungjoo ; Perego, Mauro ; Parks, Michael L. ; Yang,

  16. Scaled Experimental Modeling of VHTR Plenum Flows

    SciTech Connect (OSTI)

    ICONE 15

    2007-04-01

    Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (thermal striping) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.

  17. 9003: Biorefinery Assistance Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9003: Biorefinery Assistance Program 9003: Biorefinery Assistance Program Breakout Session 1D-Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) 9003: Biorefinery Assistance Program Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture PDF icon cassidy_biomass_2014.pdf More Documents & Publications Project Finance and Investments Demonstration and Deployment Workshop - Day 1 American Process-Alpena

  18. Assistance Focus: Latin America/Caribbean (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    The Clean Energy Solutions Center Ask an Expert service connects governments seeking policy information and advice with one of more than 30 global policy experts who can provide reliable and unbiased quick-response advice and information. The service is available at no cost to government agency representatives from any country and the technical institutes assisting them. This publication presents summaries of assistance provided to African governments, including the benefits of that assistance.

  19. Assistance Focus: Asia/Pacific Region (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    The Clean Energy Solutions Center Ask an Expert service connects governments seeking policy information and advice with one of more than 30 global policy experts who can provide reliable and unbiased quick-response advice and information. The service is available at no cost to government agency representatives from any country and the technical institutes assisting them. This publication presents summaries of assistance provided to governments in the Asia/Pacific region, including the benefits of that assistance.

  20. Recent Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recent Technical Assistance Recent Technical Assistance Recent activities of the OE State and Regional Policy Assistance Program include: Supporting the collaborative efforts of the Western Governors Association (WGA) and its subsidiary Western Interstate Energy Board on electricity policy issues by conducting various studies at their request. Particular support is to WIEB's Committee on Regional Electric Power Cooperation as it works to encourage better electricity policy coordination among

  1. Help Desk Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Desk Assistance Help Desk Assistance Welcome to HelpDesk Assistance Online at Online Learning Center (OLC)! Whether you're looking to discover new learning opportunities, better manage your career, request external training or connect your employees with the learning they need, OLC provides new features and services to help. Fulfill your training needs with ease and save money on travel and training costs Explore the enhanced catalog and complete a course at your own pace to stay abreast in

  2. Employee Assistance Self-ID Form

    Energy Savers [EERE]

    Request for Assistance During an Emergency Employee Self Identification This form is to be used by persons who expect that they will need assistance during an emergency. The purpose of this form is to help Program Office supervisors and the Incident Management Team ensure that plans are in place to assist persons with temporary or permanent disabilities during an emergency. The Incident Management Team would rather work with someone on a specific plan of action before an emergency than have an

  3. Radiological Assistance Program | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Emergencies / First Responders Radiological Assistance Program RAP Logo NNSA's Radiological Assistance Program (RAP) is the nation's premier first-response resource in assessing an emergency situation and advising decision-makers on further steps to take to evaluate and minimize the hazards of a radiological incident. RAP provides resources (trained personnel and equipment) to evaluate, assess, advise, isotopically identify, search for, and assist in the mitigation of actual or perceived nuclear

  4. Financial Assistance Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 30, 2011 Examination Report: OAS-RA-11-20 People's Equal Action and Community Effort, Inc. -Weatherization Assistance Program Funds Provided by the American Recovery and...

  5. Assessment of Acquisition and Financial Assistance Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Efficiency and Renewable Energy's Assessment of Acquisition and Financial Assistance Operations, in coordination with the National Academy of Public Administration. ...

  6. About Industrial Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Goals and Accomplishments Industrial Technical Assistance Goals: iv Reduce manufacturing energy intensity by 25% over 10 years. Support the deployment of 40 GW of new, ...

  7. Netherlands Climate Assistance Program | Open Energy Information

    Open Energy Info (EERE)

    search Name: Netherlands Climate Assistance Program Address: ETC International P.O.Box 64, 3830 AB Place: Leusden, Netherlands Phone Number: 31 (0) 33 432 6000 Website:...

  8. Building Energy Codes Collaborative Technical Assistance for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborative Technical Assistance for States Building Energy Codes Collaborative Technical ... 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes ...

  9. Energy Development Assistance Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Tribes about federal grant, loan, and technical assistance programs ... The tool was developed by the White House Council on Native American Affairs Energy ...

  10. Revised Merit Review Guide for Financial Assistance

    Broader source: Energy.gov [DOE]

    Attached is the revised Merit Review Guide for Financial Assistance. Revisions include reformatting and updating of the information presented in the Guide and Attachments.

  11. Energy Savings Performance Contracts: FEMP Assistance

    Broader source: Energy.gov [DOE]

    Fact sheet details assistance and services available from the Federal Energy Management Program (FEMP) for energy savings performance contract (ESPC) projects.

  12. Guide to Financial Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory requirements are contained in the DOE Financial Assistance Rules, 10 CFR Part 600 and applicable program rules. Each year DOE obligates nearly 2 billion on financial ...

  13. Technical Assistance Activities | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assistance supports the deployment of manufacturing technologies and practices, including strategic energy management and combined heat and power, across American industry to...

  14. NREL Solar Technical Assistance Team (STAT)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STAT Support of Michigan's Progress INFORMATION CONNECTION SOLAR TECHNICAL ASSISTANCE TEAM STAT Providing unbiased information on solar policies and issues for state and local ...

  15. Monitoring Plan for Weatherization Assistance Program, State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Conservation Block Grants Monitoring Plan for Weatherization Assistance Program, State Energy Program and Energy Efficiency and Conservation Block Grants Appendix of ...

  16. THE DOE GUIDE TO FINANCIAL ASSISTANCE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... assisted construction projects to provide equal opportunity, without regard to race, color, religion, sex or national origin, to persons employed or seeking employment with them. ...

  17. Weatherization Assistance Program (WAP) Closeout Frequently Asked...

    Energy Savers [EERE]

    asked questions in regards to the Weatherization Assistance Program (WAP) Closeout procedures. PDF icon wapcloseoutfaqs.pdf More Documents & Publications WPN 12-3: Closeout...

  18. Assistant Manager for Safety and Technical Services

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will provide overall executive leadership to the Office of the Assistant Manager for Safety and Technical Services, which provides technical services and...

  19. Administrative Assistant II | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administrative Assistant II Department: ESH&S Supervisor(s): Rob Sheneman Requisition Number: 1600013 Position Summary: The successful candidate will manage critical data and...

  20. Vermont Small Hydropower Assistance Program Screening Criteria...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Vermont Small Hydropower Assistance Program Screening Criteria Summary and Application InstructionsPermitting...

  1. Vermont Small Hydropower Assistance Program Application | Open...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Vermont Small Hydropower Assistance Program ApplicationLegal Abstract Application form for the Small...

  2. Recreational Technical Assistance in Hydropower Licensing | Open...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Recreational Technical Assistance in Hydropower LicensingPermittingRegulatory...

  3. NREL: Technology Transfer - Commercialization Assistance Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The program specifically helps renewable energy and energy efficiency companies by providing free assistance or information to help small businesses with specific technology ...

  4. Assisting Federal Facilities with Energy Conservation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Federal Energy Management Program (FEMP) provides project assistance through the AFFECT funding opportunity. AFFECT provides grants for the development of capital projects to ...

  5. Solar Technical Assistance Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot funds the work of the National Renewable Energy Laboratory's (NREL) Solar Technical Assistance Team (STAT). STAT leverages the expertise of NREL solar energy technology and ...

  6. Direct Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Solar Outreach Partnership helps communities overcome individual needs and barriers with assistance that may take the form of program or policy analysis, research support, a ...

  7. Weatherization Assistance Program | Open Energy Information

    Open Energy Info (EERE)

    Program Place: Washington, DC Website: http: References: Weatherization Assistance Program1 Information About Partnership with NREL Partnership with NREL Yes Partnership...

  8. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  9. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  10. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  11. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  12. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center (OSTI)

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  13. Contacts for the Assistant General Counsel for Procurement and Financial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance | Department of Energy Procurement and Financial Assistance Contacts for the Assistant General Counsel for Procurement and Financial Assistance Joseph A. Lenhard, Assistant General Counsel for Procurement & Financial Assistance 202-586-0321 joseph.lenhard@hq.doe.gov Source Selection/Bid Protests 202-586-6902 202-586-4546 (fax) Laura L. Hoffman, Deputy Assistant General Counsel 202-586-8836 laura.hoffman@hq.doe.gov Kevin R. Hilferty, Attorney-Adviser 202-586-8260

  14. General single phase wellbore flow model

    SciTech Connect (OSTI)

    Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.

    1997-02-05

    A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.

  15. Renewable Energy Project Development Assistance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    This fact sheet provides information on the Tribes selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  16. Ultrasonic flow metering system

    DOE Patents [OSTI]

    Gomm, Tyler J.; Kraft, Nancy C.; Mauseth, Jason A.; Phelps, Larry D.; Taylor, Steven C.

    2002-01-01

    A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

  17. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  18. Advanced Simulation and Computing Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Simulation and Computing (ASC) Program Unstable intermixing of heavy (sulfur hexafluoride) and light fluid (air). Show Caption Turbulence generated by unstable fluid flow. Show Caption Examining the effects of a one-megaton nuclear energy source detonated on the surface of an asteroid. Show Caption Los Alamos National Laboratory is home to two of the world's most powerful supercomputers, each capable of performing more than 1,000 trillion operations per second. The newer one, Cielo, was

  19. n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator

    Energy Science and Technology Software Center (OSTI)

    2012-09-12

    nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) is a comprehensive well test analysis software package. It provides a user-interface, a well test analysis model and many tools to analyze both field and simulated data. The well test analysis model simulates a single-phase, one-dimensional, radial/non-radial flow regime, with a borehole at the center of the modeled flow system. nSIGHTS solves the radially symmetric n-dimensional forward flow problem using a solver based on a graph-theoretic approach.more » The results of the forward simulation are pressure, and flow rate, given all the input parameters. The parameter estimation portion of nSIGHTS uses a perturbation-based approach to interpret the best-fit well and reservoir parameters, given an observed dataset of pressure and flow rate.« less

  20. Employee Assistance Self-ID Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employee Assistance Self-ID Form Employee Assistance Self-ID Form Request Emergency Assistance Self-ID Form-HQ PDF icon Employee Assistance Self-ID Form More Documents & Publications DOE HQ Special Needs Assistance in an Emergency DOE Emergency Special Needs Self-Identification Form DOE Emergency Exercise Feedback Form

  1. Interface-assisted molecular spintronics

    SciTech Connect (OSTI)

    Raman, Karthik V.

    2014-09-15

    Molecular spintronics, a field that utilizes the spin state of organic molecules to develop magneto-electronic devices, has shown an enormous scientific activity for more than a decade. But, in the last couple of years, new insights in understanding the fundamental phenomena of molecular interaction on magnetic surfaces, forming a hybrid interface, are presenting a new pathway for developing the subfield of interface-assisted molecular spintronics. The recent exploration of such hybrid interfaces involving carbon based aromatic molecules shows a significant excitement and promise over the previously studied single molecular magnets. In the above new scenario, hybridization of the molecular orbitals with the spin-polarized bands of the surface creates new interface states with unique electronic and magnetic character. This study opens up a molecular-genome initiative in designing new handles to functionalize the spin dependent electronic properties of the hybrid interface to construct spin-functional tailor-made devices. Through this article, we review this subject by presenting a fundamental understanding of the interface spin-chemistry and spin-physics by taking support of advanced computational and spectroscopy tools to investigate molecular spin responses with demonstration of new interface phenomena. Spin-polarized scanning tunneling spectroscopy is favorably considered to be an important tool to investigate these hybrid interfaces with intra-molecular spatial resolution. Finally, by addressing some of the recent findings, we propose novel device schemes towards building interface tailored molecular spintronic devices for applications in sensor, memory, and quantum computing.

  2. Lignin-assisted coal depolymerization

    SciTech Connect (OSTI)

    Lalvani, S.B.

    1991-01-01

    Previous research has shown that addition of lignin-derived liquids to coal stirred in tetralin under mild reaction conditions (375{degree}C and 300--500 psig) results in a marked enhancement in the rate of coal depolymerization. A mathematical model was developed to study the kinetics of coal depolymerization in the presence of liquid-derived liquids. In the present study, a reaction pathway was formulated to explain the enhancement in coal depolymerization due to lignin (solid) addition. The model postulated assumes that the products of lignin obtained during thermolysis interact with the reactive moieties present in coal while simultaneous depolymerization of coal occurs. A good fit between the experimental data and the kinetic model was found. The results show that in addition to the enhancement in the rate of coal depolymerization, lignin also reacts (and enhances the extent of depolymerization of coal) with those reaction sites in coal that are not susceptible to depolymerization when coal alone is reacted in tetralin under identical reaction conditions. Additional work is being carried out to determine a thorough materials balance on the lignin-assisted coal depolymerization process. A number of liquid samples have been obtained which are being studied for their stability in various environments. 5 refs., 4 figs., 1 tab.

  3. Lateral flow strip assay

    DOE Patents [OSTI]

    Miles, Robin R.; Benett, William J.; Coleman, Matthew A.; Pearson, Francesca S.; Nasarabadi, Shanavaz L.

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  4. Low flow fume hood

    DOE Patents [OSTI]

    Bell, Geoffrey C. (Pleasant Hill, CA); Feustel, Helmut E. (Albany, CA); Dickerhoff, Darryl J. (Berkeley, CA)

    2002-01-01

    A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.

  5. Molecular dynamics simulations of microscale fluid transport

    SciTech Connect (OSTI)

    Wong, C.C.; Lopez, A.R.; Stevens, M.J.; Plimpton, S.J.

    1998-02-01

    Recent advances in micro-science and technology, like Micro-Electro-Mechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a Micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these non-equilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and addresses both scaling and modeling issues. For Poiseuille flow, the numerical predictions are compared with existing data to investigate the variation of the friction factor with channel width. For Couette flow, the numerical predictions are used to determine the degree of slip at the liquid/solid boundary. Finally, the results also indicate that shear direction with respect to the wall lattice orientation can be very important. Simulation results of microscale Couette flow and microscale Poiseuille flow for two different surface structures and two different shear directions will be presented.

  6. Results of no-flow rotary drill bit comparison testing

    SciTech Connect (OSTI)

    WITWER, K.S.

    1998-11-30

    This document describes the results of testing of a newer rotary sampling bit and sampler insert called the No-Flow System. This No-Flow System was tested side by side against the currently used rotary bit and sampler insert, called the Standard System. The two systems were tested using several ''hard to sample'' granular non-hazardous simulants to determine which could provide greater sample recovery. The No-Flow System measurably outperformed the Standard System in each of the tested simulants.

  7. Flow-Assisted Alkaline Battery: Low-Cost Grid-Scale Electrical Storage using a Flow-Assisted Rechargeable Zinc-Manganese Dioxide Battery

    SciTech Connect (OSTI)

    2010-09-15

    GRIDS Project: Traditional consumer-grade disposable batteries are made of Zinc and Manganese, 2 inexpensive, abundant, and non-toxic metals. But these disposable batteries can only be used once. If they are recharged, the Zinc in the battery develops filaments called dendrites that grow haphazardly and disrupt battery performance, while the Manganese quickly loses its ability to store energy. CUNY Energy Institute is working to tame dendrite formation and to enhance the lifetime of Manganese in order to create a long-lasting, fully rechargeable battery for grid-scale energy storage. CUNY Energy Institute is also working to reduce dendrite formation by pumping fluid through the battery, enabling researchers to fix the dendrites as theyre forming. The team has already tested its Zinc battery through 3,000 recharge cycles (and counting). CUNY Energy Institute aims to demonstrate a better cycle life than lithium-ion batteries, which can be up to 20 times more expensive than Zinc-based batteries.

  8. Hybrid Simulator

    Energy Science and Technology Software Center (OSTI)

    2005-10-15

    HybSim (short for Hybrid Simulator) is a flexible, easy to use screening tool that allows the user to quanti the technical and economic benefits of installing a village hybrid generating system and simulates systems with any combination of —Diesel generator sets —Photovoltaic arrays -Wind Turbines and -Battery energy storage systems Most village systems (or small population sites such as villages, remote military bases, small communities, independent or isolated buildings or centers) depend on diesel generationmore » systems for their source of energy. HybSim allows the user to determine other "sources" of energy that can greatly reduce the dollar to kilo-watt hour ratio. Supported by the DOE, Energy Storage Program, HybSim was initially developed to help analyze the benefits of energy storage systems in Alaskan villages. Soon after its development, other sources of energy were added providing the user with a greater range of analysis opportunities and providing the village with potentially added savings. In addition to village systems, HybSim has generated interest for use from military institutions in energy provisions and USAID for international village analysis.« less

  9. Archived Financial Assistance Letters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Archived Financial Assistance Letters Archived Financial Assistance Letters Below is a list of Financial Assistance Letters (FALs) that are no longer active. PDF icon FAL 2012-02 PDF icon FAL 2006-02.pdf PDF icon FAL 2006-01.pdf PDF icon FAL 2005-03.pdf PDF icon FAL 2005-02.pdf PDF icon FAL 2005-01.pdf PDF icon FAL 2004-06.pdf PDF icon FAL 2004-06 Attachment 1.pdf PDF icon FAL 2004-06 Attachment 2.pdf PDF icon FAL 2004-06 Attachment 3.pdf PDF icon FAL 2004-06 Attachment 4.pdf PDF icon FAL

  10. Revised Guide for Financial Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide for Financial Assistance Revised Guide for Financial Assistance Attached is a revised Guide for Financial Assistance. The Guide has been updated to reflect changes to web sites, organization names, systems, and DOE policies and practices since the guide was last issued. PDF icon PF2013-58 Revised Guide for Financial Assistance PDF icon PF2013-58a.pdf More Documents & Publications Financial Assistance Guide (2013) U.S. Department of Energy - Guide to Financial Assistance - Audit

  11. Simulating Collisions for Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  12. New Mexico Small Business Assistance Program recognized by U...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM Small Business assistance program recognized New Mexico Small Business Assistance Program recognized by U.S. Department of Commerce Receives the 2012 Manufacturing Advocate of...

  13. Combustion, Efficiency, and Fuel Effects in a Spark-Assisted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine 2004 Diesel ...

  14. Profiles in Leadership: David Mohler, Deputy Assistant Secretary...

    Energy Savers [EERE]

    Deputy Assistant Secretary for Clean Coal and Carbon Management Profiles in Leadership: David Mohler, Deputy Assistant Secretary for Clean Coal and Carbon Management August 6, 2015 ...

  15. Initial Application for FAC-C, Purchasing, Financial Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initial Application for FAC-C, Purchasing, Financial Assistance and Property Management Certification Initial Application for FAC-C, Purchasing, Financial Assistance and Property ...

  16. LEDSGP/DIA-Toolkit/Request Assistance | Open Energy Information

    Open Energy Info (EERE)

    Impacts Assessment Toolkit Home Tools Request Assistance Remote Expert Assistance on LEDS The Low Emission Development Strategies (LEDS) Global Partnership provides timely,...

  17. Load Expansion of Stoichiometric HCCI Using Spark Assist and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HCCI Using Spark Assist and Hydraulic Valve Actuation Load Expansion of Stoichiometric HCCI Using Spark Assist and Hydraulic Valve Actuation Presentation given at the 16th ...

  18. Sandia Assists NASA in Understanding Launch-Area Accidents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assists NASA in Understanding Launch-Area Accidents - Sandia Energy Energy Search Icon ... Twitter Google + Vimeo GovDelivery SlideShare Sandia Assists NASA in Understanding ...

  19. NA 15 - Assistant Deputy Administrator for Secure Transportation...

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics NA 15 - Assistant Deputy Administrator for ... NA 15 - Assistant Deputy...

  20. Energy Design Assistance Project Tracker - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Assistance Project Tracker - 2014 BTO Peer Review Energy Design Assistance Project Tracker - 2014 BTO Peer Review Presenter: Larry Brackney, National Renewable Energy ...

  1. WPN 12-5: Updated Weatherization Assistance Program Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Updated Weatherization Assistance Program Monitoring Guidance WPN 12-5: Updated Weatherization Assistance Program Monitoring Guidance Effective: Dec. 1, 2011 To issue the ...

  2. Office of the Assistant General Counsel for Procurement and Financial...

    Broader source: Energy.gov (indexed) [DOE]

    contractual expenditures and financial assistance policy and activities. The office reviews and provides advice and assistance in the development of DOE procurement,...

  3. Assistance Program, State Energy Program, Energy Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance Program, State Energy Program, Energy Efficiency and Conservation Block Grants Assistance Program, State Energy Program, Energy Efficiency and Conservation Block Grants ...

  4. DOE Assistance in Target Setting and Strategic Planning for Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Assistance in Target Setting and Strategic Planning for Renewable Energy Deployment RFI DOE Assistance in Target Setting and Strategic Planning for Renewable Energy Deployment ...

  5. Request for Information: Assistance in Target Setting and Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance in Target Setting and Strategic Planning for Renewable Energy Deployment at the State and Regional Level Request for Information: Assistance in Target Setting and ...

  6. Remarks by David Sandalow, Assistant Secretary of Energy for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remarks by David Sandalow, Assistant Secretary of Energy for Policy and International Affairs, to the Detroit Economic Club National Summit Remarks by David Sandalow, Assistant...

  7. Metal Ion-Assisted Transformations of 2-Pyridinealdoxime and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Ion-Assisted Transformations of 2-Pyridinealdoxime and Hexafluorophosphate Metal Ion-Assisted Transformations of 2-Pyridinealdoxime and Hexafluorophosphate Print Monday, 05...

  8. Assistant Secretary for Environment, Safety and Health Endorses...

    Office of Environmental Management (EM)

    Assistant Secretary for Environment, Safety and Health Endorses VPP and VPPPA Annual Conference Assistant Secretary for Environment, Safety and Health Endorses VPP and VPPPA Annual...

  9. Vermont Small Hydropower Assistance Program Website | Open Energy...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Web Site: Vermont Small Hydropower Assistance Program Website Abstract The Vermont Small Hydropower Assistance Program...

  10. Office of the Assistant General Counsel for International and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International and National Security Programs Office of the Assistant General Counsel for International and National Security Programs The Office of the Assistant General Counsel ...

  11. Supporting Statement: OE Recovery Act Financial Assistance Grants...

    Office of Environmental Management (EM)

    Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number 1910-5149 Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number ...

  12. MemoAdvisoryAssistanceContractWaiver.pdf | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    MemoAdvisoryAssistanceContractWaiver.pdf More Documents & Publications ClosingLanguagePatentWaiverGrantCases.pdf UnSecMemoProjectManagementExpectationsFinancialAssistance23...

  13. Statement of David Sandalow Assistant Secretary of Energy for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistant Secretary of Energy for Policy and International Affairs Before the U.S.-China Economic and Security Review Commission Statement of David Sandalow Assistant...

  14. Hydrogen Assisted Fracture of Stainless Steels (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Hydrogen Assisted Fracture of Stainless Steels Citation Details In-Document Search Title: Hydrogen Assisted Fracture of Stainless Steels You are accessing a ...

  15. Office of the General Counsel Perspective - Joseph Lenhard, Assistant...

    Office of Environmental Management (EM)

    Office of the General Counsel Perspective - Joseph Lenhard, Assistant General Counsel for Procurement and Financial Assistance PDF icon Workshop 2015 - LenhardOffice of GC Trends....

  16. Energy Department to Sign MOU with Interior Department to Assist...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Sign MOU with Interior Department to Assist Indian Tribes to Develop Energy Resources Energy Department to Sign MOU with Interior Department to Assist Indian Tribes to Develop ...

  17. Hydrogen-Assisted Fracture: Materials Testing and Variables Governing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture SNL has 40+ years ...

  18. Assistant Secretary Regalbuto Lays out Vision, Priorities to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistant Secretary Regalbuto Lays out Vision, Priorities to Advance Cleanup for EM Program Assistant Secretary Regalbuto Lays out Vision, Priorities to Advance Cleanup for EM ...

  19. U.S. Department of Energy Weatherization Assistance Program Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization Assistance Program Homes Weatherized By State through 06302010 (Calendar Year) U.S. Department of Energy Weatherization Assistance Program Homes Weatherized By ...

  20. Written Statement of Mark Whitney Acting Assistant Secretary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acting Assistant Secretary for Environmental Management United States Department of Energy ... Written Statement of Mark Whitney Acting Assistant Secretary for Environmental ...

  1. Statement of Patricia Hoffman Acting Assistant Secretary for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hoffman Acting Assistant Secretary for Electricity Delivery and Energy Reliability before ... Statement of Patricia Hoffman Acting Assistant Secretary for Electricity Delivery and ...

  2. Statement of Patricia Hoffman, Acting Assistant Secretary for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statement of Patricia Hoffman, Acting Assistant Secretary for Electricity Delivery and ... Statement of Patricia Hoffman, Acting Assistant Secretary for Electricity Delivery and ...

  3. Testimony of Mark Whitney Acting Assistant Secretary for Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acting Assistant Secretary for Environmental Management U.S. Department of Energy Before ... Testimony of Mark Whitney Acting Assistant Secretary for Environmental Management U.S. ...

  4. Statement of Patricia Hoffman, Acting Assistant Director for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22, 2009. Statement of Patricia Hoffman, Acting Assistant Director for Electricity ... 22, 2009. Statement of Patricia Hoffman, Acting Assistant Director for Electricity ...

  5. How the Weatherization Assistance Program Changed Jasmine's Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How the Weatherization Assistance Program Changed Jasmine's Life How the Weatherization Assistance Program Changed Jasmine's Life February 19, 2015 - 4:45pm Addthis The Rocky...

  6. Office of Fossil Energy's Technical Assistance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The goal of our technical assistance program is to provide help with strategic energy planning and project development. Need Technical Assistance: The Office of Fossil Energy is ...

  7. Hydrogen Assisted Fracture of Stainless Steels (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Assisted Fracture of Stainless Steels Citation Details In-Document Search Title: Hydrogen Assisted Fracture of Stainless Steels Abstract not provided. Authors: Somerday,...

  8. Hydrogen Assisted Fracture of Stainless Steels (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Assisted Fracture of Stainless Steels Citation Details In-Document Search Title: Hydrogen Assisted Fracture of Stainless Steels You are accessing a document from the...

  9. Financial Assistance Letter 2016-02 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016-02 Financial Assistance Letter 2016-02 DATE: February 17, 2016 TO: Procurement DirectorsContracting Officers FROM: Acting Chief Contract and Financial Assistance Policy ...

  10. EPA Source Reduction Assistance Grant Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Source Reduction Assistance Grant Program to support pollution prevention/source reduction and/or resource conservation projects that reduce or eliminate pollution at the source.

  11. Training/Technical Assistance | Open Energy Information

    Open Energy Info (EERE)

    TrainingTechnical Assistance Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleTraini...

  12. Widget:ContentAssist | Open Energy Information

    Open Energy Info (EERE)

    ContentAssist Jump to: navigation, search This widget generates a bar of recommended reading related to the page on which it is embedded. Additionally, this widget mines the...

  13. Federal Energy Management Program Technical Assistance

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) offers technical assistance to help agencies identify energy-efficiency and renewable energy technologies and successfully implement them in their buildings and fleets.

  14. Polyoxometalate flow battery

    DOE Patents [OSTI]

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  15. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  16. NREL: Technology Deployment - Federal Agency Technical Assistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Agency Technical Assistance NREL supports various federal agencies, including the U.S. Department of Energy (DOE), U.S. Department of Defense, and others by providing technical and project assistance, training, and resources to help meet and exceed energy and environmental targets. National Park Service From Prison Cells to Solar Cells: Alcatraz Island Goes Green U.S. Department of Energy As a DOE laboratory, NREL works hand-in-hand with the DOE to help shape, execute, and evaluate

  17. NREL: Technology Deployment - Solar Technical Assistance Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leading Clean Energy Innovation About About NREL Mission & Programs Impact Leadership Community Visiting NREL Newsroom Contact Us Research Research Highlights Working With Us Working With Us Partnerships Facilities Licensing Commercialization Procurement Energy Education FAQs Contact Us Careers Careers Find a Job Your Career at NREL Interns & Postdocs State and Local Governments Technology Deployment Technical Assistance Project Map Through the Solar Technical Assistance Team (STAT),

  18. NREL: Technology Deployment - Technical Assistance for Islands

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Islands NREL provides technical assistance to help islands reduce dependence on fossil fuels and increase energy security by implementing energy efficiency measures and leveraging indigenous renewable resources. Hawaii NREL Helps Design LEED Platinum Affordable Housing U.S. Virgin Islands Landmark Solar Deal Completed with NREL Support This tailored technical assistance includes: Establishing baseline energy use Measuring available renewable resources Assessing the viability of various energy

  19. The SEP/EECBG Technical Assistance Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The SEP/EECBG Technical Assistance Program STEAB - Washington, D.C. June 7, 2011 Pam Bloch Mendelson, DOE Lead , Technical Assistance Program eere.energy.gov Agenda * Goals and Priorities * TAP by the Numbers * Solution Center and Resources - Local * Peer to Peer Exchange * Policy Toolkits * Community Energy Strategic Planning - State * Peer to Peer Exchange * Energy Service Performance Contracting * Private Finance eere.energy.gov TAP Goals & Objectives Goal: To provide SEP & EECBG

  20. Weatherization Assistance Program Quality Work Plan Requirements |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Quality Work Plan Requirements Weatherization Assistance Program Quality Work Plan Requirements Four square graphic of a document, a conversation bubble, a checkbox and a certification seal. The U.S. Department of Energy's Weatherization Assistance Program (WAP) has introduced a comprehensive Quality Work Plan (QWP) that will establish a benchmark for quality home energy upgrades. This plan defines what is required when federal dollars are used to purchase weatherization

  1. Financial Assistance Funding Opportunity Announcement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Financial Assistance Funding Opportunity Announcement Financial Assistance Funding Opportunity Announcement AMERICAN RECOVERY AND REINVESTMENT ACT OF 2009 Projects under this FOA will be funded, in whole or in part, with funds appropriated by the American Recovery and Reinvestment Act of 2009, Pub. L. 111-5, (Recovery Act or Act). The Recovery Act's purposes are to stimulate the economy and to create and retain jobs. The Act gives preference to activities that can be started and

  2. Nuclear Energy Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy Technical Assistance Nuclear Energy Technical Assistance "The United States will continue to promote the safe and secure use of nuclear power worldwide through a variety of bilateral and multilateral engagements. For example, the U.S. Nuclear Regulatory Commission advises international partners on safety and regulatory best practices, and the Department of Energy works with international partners on research and development, nuclear waste and storage, training, regulations,

  3. TO: Honorable Patricia Hoffman, Assistant Secretary for

    Energy Savers [EERE]

    TO: Honorable Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of Energy FROM: Electricity Advisory Committee (EAC) Richard Cowart, Chair DATE: September 24, 2014 RE: Recommendations Regarding Emerging and Alternative Regulatory Models and Modeling Tools to Assist in Analysis Introduction For closely linked reasons (e.g. proliferation of distributed generation, advances in technology, desire to integrate renewable generation, customer

  4. Weatherization Assistance Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Weatherization Assistance Program The U.S. Department of Energy (DOE) Weatherization Assistance Program provides grants to states, territories, and some Indian tribes to improve the energy efficiency of the homes of low-income families. These governments, in turn, contract with local governments and nonprofit agencies to provide weatherization services to those in need using the latest technologies for home energy upgrades. Since the program began in 1976, DOE has helped improve the

  5. Environmental Policy and Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy and Assistance Environmental Policy and Assistance The Department of Energy’s (DOE) goal is to carry out all cleanup operations in a manner that protects the public and the environment. The Department of Energy's (DOE) goal is to carry out all cleanup operations in a manner that protects the public and the environment. DOE Headquarters works with field offices to foster continuous improvement in environmental protection before incidents occur. Headquarters provides corporate

  6. Stephen Nalley Assistant Administrator for Resource

    Gasoline and Diesel Fuel Update (EIA)

    Nalley Assistant Administrator for Resource and Technology Management Duties Stephen Nalley is the Assistant Administrator (AA) for Resource and Technology Management and is responsible for leading and directing all of EIA's mission support functions, including workforce recruitment and development, IT infrastructure and security, financial and contract admin- istration, and a range of logistical support activities. The AA for Resource and Technology Management also integrates EIA's long-term

  7. ISO 50001 Professional Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Professional Assistance ISO 50001 Professional Assistance Qualified professionals provide organizations implementing ISO 50001 with the assurance that they are maximizing the benefits from use of the standard. Qualified professionals obtain certification to identify opportunities for meeting ISO 50001 requirements or to verify conformance to the standard. Identifying Opportunities to Implement an Energy Management System Certified Practitioners in Energy Management Systems (EnMS) help implement

  8. Assistance to States on Electric Industry Issues

    SciTech Connect (OSTI)

    Glen Andersen

    2010-10-25

    This project seeks to educate state policymakers through a coordinated approach involving state legislatures, regulators, energy officials, and governors’ staffs. NCSL’s activities in this project focus on educating state legislators. Major components of this proposal include technical assistance to state legislatures, briefing papers, coordination with the National Council on Electricity Policy, information assistance, coordination and outreach, meetings, and a set of transmission-related activities.

  9. Excess flow shutoff valve

    DOE Patents [OSTI]

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  10. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA); Esposito, Richard J. (Seattle, WA)

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  11. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  12. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations

    SciTech Connect (OSTI)

    Rutland, Christopher J.

    2009-04-26

    The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.

  13. Nuclear-Coupled Flow Instabilities and Their Effects on Dryout

    SciTech Connect (OSTI)

    M. Ishii; X. Sunn; S. Kuran

    2004-09-27

    Nuclear-coupled flow/power oscillations in boiling water reactors (BWRs) are investigated experimentally and analytically. A detailed literature survey is performed to identify and classify instabilities in two-phase flow systems. The classification and the identification of the leading physical mechanisms of the two-phase flow instabilities are important to propose appropriate analytical models and scaling criteria for simulation. For the purpose of scaling and the analysis of the nonlinear aspects of the coupled flow/power oscillations, an extensive analytical modeling strategy is developed and used to derive both frequency and time domain analysis tools.

  14. Plasma Simulation Program

    SciTech Connect (OSTI)

    Greenwald, Martin

    2011-10-04

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP.

  15. Tiger Teams Assist Coalitions with AFV Challenges: Clean Cities Technical Assistance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    Fact sheet describes alternative fuel technical activities performed by Clean Cities Technical Assistance Teams (Tiger Teams), to be distributed at the 2004 Clean Cities Conference.

  16. A compendium of fracture flow models, 1994

    SciTech Connect (OSTI)

    Diodato, D.M.

    1994-11-01

    The report is designed to be used as a decision-making aid for individuals who need to simulate fluid flow in fractured porous media. Fracture flow codes of varying capability in the public and private domain were identified in a survey of government, academia, and industry. The selection and use of an appropriate code requires conceptualization of the geology, physics, and chemistry (for transport) of the fracture flow problem to be solved. Conceptual models that have been invoked to describe fluid flow in fractured porous media include explicit discrete fracture, dual continuum (porosity and/or permeability), discrete fracture network, multiple interacting continua, multipermeability/multiporosity, and single equivalent continuum. The explicit discrete-fracture model is a ``near-field`` representation, the single equivalent continuum model is a ``far-field`` representation, and the dual-continuum model is intermediate to those end members. Of these, the dual-continuum model is the most widely employed. The concept of multiple interacting continua has been applied in a limited number of examples. Multipermeability/multiporosity provides a unified conceptual model. The ability to accurately describe fracture flow phenomena will continue to improve as a result of advances in fracture flow research and computing technology. This improvement will result in enhanced capability to protect the public environment, safety, and health.

  17. High Fidelity Simulation of Complex Suspension Flow for Practical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the suspensions themselves do not allow analytical solutions to relate torque and angular velocity to fundamental rheological parameters (yield stress, strain rate, plastic...

  18. High-Fidelity Simulation of Complex Suspension Flow for Practical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameters such as stress and strain rate from measured quantities such as torque and angular velocity in non-analytical rheometer and mixing geometries. Analysis and...

  19. Mesoscale simulations of particulate flows with parallel distributed...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Journal Name: Computers and Fluids, vol. 48, no. 1, March 22, 2011, pp. ... States Language: English Subject: 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS

  20. Mesoscale simulations of particulate flows with parallel distributed...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Journal Name: Computers and Fluids, vol. 48, no. 1, March 22, 2011, pp. ... Language: English Subject: 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS Word Cloud ...

  1. High Fidelity Simulation of Complex Suspension Flow for Practical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Year: 2013 Research Domain: Materials Science Concrete is the most widely used building ... Results from this research will advance the science of dense suspensions while addressing ...

  2. Numerical Simulation of Reactive Flow in Hot Aquifers (Journal...

    Office of Scientific and Technical Information (OSTI)

    98 Report Number(s): LBNL--55513 Journal ID: ISSN 0375-6505; GTMCAT; R&D Project: G31902; TRN: US200430%%2076

  3. Numerical Simulation of Reactive Flow in Hot Aquifers (Journal...

    Office of Scientific and Technical Information (OSTI)

    69 Report Number(s): LBNL--55513 Journal ID: ISSN 0375-6505; GTMCAT; R&D Project: G31902; TRN: US200430%%2053

  4. Simulation of Coupled Processes of Flow, Transport, and Storage...

    Office of Scientific and Technical Information (OSTI)

    ... We installed and ran it on various platforms, including a multi-core PC and a cluster, and verified the numerical implementation and parallel code using an example problem from the ...

  5. Instream Flow Project

    Broader source: Energy.gov [DOE]

    As a part of the Department of Energy’s Water Power Program, the Instream Flow Project was carried out by Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Argonne National Laboratory to develop tools aimed at defining environmental flow needs for hydropower operations.

  6. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  7. Microelectromechanical flow control apparatus

    DOE Patents [OSTI]

    Okandan, Murat

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  8. Enthalpy Diffusion in Multicomponent Flows

    SciTech Connect (OSTI)

    Cook, A W

    2008-11-12

    The enthalpy diffusion flux in the multicomponent energy equation is a well known yet frequently neglected term. It accounts for energy changes, associated with compositional changes, resulting from species diffusion. Enthalpy diffusion is important in flows where significant mixing occurs between species of dissimilar molecular weight. The term plays a critical role in preventing local violations of the entropy condition. In simulations of nonpremixed combustion, omission of the enthalpy flux can lead to anomalous temperature gradients, which may cause mixing regions to exceed ignition conditions. The term can also play a role in generating acoustic noise in turbulent mixing layers. Euler solvers that rely on numerical diffusion to mix fluids cannot accurately predict the temperature in mixed regions. On the other hand, Navier-Stokes solvers that incorporate enthalpy diffusion can provide much more accurate results.

  9. Vehicle & Systems Simulation & Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Developed technologies to reduce parasitic loads (ANL, LLNL) - Continued to Build Fleet DNA Database to assist partners with vehicle technology adoption (NREL, ORNL) 15 ...

  10. Alkaline assisted thermal oil recovery: Kinetic and displacement studies

    SciTech Connect (OSTI)

    Saneie, S.; Yortsos, Y.C.

    1993-06-01

    This report deals with two major issues of chemical assisted flooding - the interaction of caustic, one of the proposed additives to steam flood, with the reservoir rock, and the displacement of oil by a chemical flood at elevated temperatures. A mathematical model simulating the kinetics of silica dissolution and hydroxyl ion consumption in a typical alkaline flooding environment is first developed. The model is based on the premise that dissolution occurs via hydrolysis of active sites through the formation of an intermediate complex, which is in equilibrium with the silicic acid in solution. Both static (batch) and dynamic (core flood) processes are simulated to examine the sensitivity of caustic consumption and silica dissolution to process parameters, and to determine rates of propagation of pH values. The model presented provides a quantitative description of the quartz-alkali interaction in terms of pH, salinity, ion exchange properties, temperature and contact time, which are of significant importance in the design of soluble silicate flooding processes. The modeling of an adiabatic hot waterflood assisted by the simultaneous injection of a chemical additive is next presented. The model is also applicable to the hot alkaline flooding under conditions of negligible adsorption of the generated anionic surfactant and of hydroxide adsorption being Langmuirian. The theory of generalized simple waves (coherence ) is used to develop solutions for the temperature, concentration, and oil saturation profiles, as well as the oil recovery curves. It is shown that, for Langmuir adsorption kinetics, the chemical resides in the heated region of the reservoir if its injection concentration is below a critical value, and in the unheated region if its concentration exceeds this critical value. Results for a chemical slug injection in a tertiary recovery process indicate recovery performance is maximized when chemical resides in the heated region of the reservior.

  11. Particle simulation of auroral double layers. Doctoral thesis

    SciTech Connect (OSTI)

    Smith, B.L.

    1992-06-01

    Externally driven magnetic reconnection has been proposed as a possible mechanism for production of auroral electrons during magnetic substorms. Fluid simulations of magnetic reconnection lead to strong plasma flows towards the increasing magnetic field of the earth. These plasma flows must generate large scale potential drops to preserve global charge neutrality. We have examined currentless injection of plasma along a dipole magnetic field into a bounded region using both analytic techniques and particle simulation.

  12. Assisting Federal Facilities with Energy Conservation Technologies (AFFECT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity | Department of Energy Technical Assistance » Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Opportunity Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Opportunity The Federal Energy Management Program (FEMP) provides project assistance through the AFFECT funding opportunity. AFFECT provides grants for the development of capital projects to increase the energy efficiency and renewable energy

  13. NA 15 - Assistant Deputy Administrator for Secure Transportation | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration NA 15 - Assistant Deputy Administrator for Secure Transportation

  14. AnalyzeHOLE: An Integrated Wellbore Flow Analysis Tool

    SciTech Connect (OSTI)

    Keith J. Halford

    2009-10-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically displaying pertinent results.

  15. 2-Phase Fluid Flow & Heat Transport

    Energy Science and Technology Software Center (OSTI)

    1993-03-13

    GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmorecan simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.less

  16. 2-Phase Fluid Flow & Heat Transport

    Energy Science and Technology Software Center (OSTI)

    1993-03-13

    GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmore » can simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.« less

  17. Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.; Lambert, Adam; Wood, Brian D.

    2013-12-01

    Dispersion in porous media flows has been the subject of much experimental, theoretical and numerical study. Here we consider a wavy-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media, where constrictions represent pore throats and expansions pore bodies. A theoretical model for effective (macroscopic) longitudinal dispersion in this system has been developed by volume averaging the microscale velocity field. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a range of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re = 449 for which unsteady flow was observed. Dispersion values were computed using both the volume averaging solution and a random walk particle tracking method, and results of the two methods were shown to be consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for the low-Re, Stokes flow regime. In the steady inertial regime we observe an power-law increase in effective longitudinal dispersion (DL) with Re, consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). For the unsteady case (Re = 449), the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion.

  18. Large Eddy Simulation (LES) of Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reacting Flow/Modeling/Large Eddy Simulation (LES) of Engines Large Eddy Simulation (LES) of Enginesadmin2015-10-30T01:57:44+00:00 The combination of high-performance computing (HPC) and the large eddy simulation (LES) technique has significant potential to provide new insights into the dynamics of many types of turbulent combustion processes. The objective of LES development at the CRF is to fully integrate the combined merits of HPC and LES in a manner that provides some of the

  19. Geothermal direct-heat utilization assistance. Federal Assistance Program: Quarterly project progress report, October--December 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Progress on technical assistance, R&D activities, technology transfer, and geothermal progress monitoring is summarized.

  20. Federal Energy Management Program Technical Assistance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Federal Energy Management Program Technical Assistance Federal Energy Management Program Technical Assistance Apply for Technical Assistance Apply for Technical Assistance Visit the FEMP Technical Assistance Request Portal to apply for help with sustainable federal fleet and renewable energy projects. Read more Ask Questions Ask Questions Contact FEMP's project leaders with questions related to implementing energy efficiency and renewable energy projects. Read more 2015 AFFECT

  1. DOE Assistant Secretaries in China to Discuss Energy Cooperation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Assistant Secretaries in China to Discuss Energy Cooperation DOE Assistant Secretaries in China to Discuss Energy Cooperation September 14, 2006 - 1:10pm Addthis BEIJING, CHINA - U.S. Department of Energy (DOE) Assistant Secretary for Policy and International Affairs Karen A. Harbert and Assistant Secretary for Fossil Energy Jeffrey Jarrett are in China this week to discuss energy cooperation between the United States and China. In Hangzhou, Assistant Secretary Harbert

  2. HUD Multifamily Property Listings Eligible for Weatherization Assistance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy HUD Multifamily Property Listings Eligible for Weatherization Assistance HUD Multifamily Property Listings Eligible for Weatherization Assistance February 23, 2016 - 4:29pm Addthis Housing and Urban Development (HUD) multifamily properties eligible for weatherization assistance. On January 25, 2010, the Department of Energy (DOE) implemented rule 71-CFR-3847 for its Weatherization Assistance Program (WAP). Under the rule, if a public housing, assisted multi-family or Low

  3. Radiation Emergency Assistance Center / Training Site | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Radiation Emergency Assistance Center / Training Site NNSA's Radiation Emergency Assistance Center / Training Site (REAC/TS) is on-call 24 hours a day, to provide medical REACTS logo care or consultative assistance involving the exposure to ionizing radiation or radiological contamination. REAC/TS, located in Methodist Medical Center of Oak Ridge in Oak Ridge, Tennessee, was established in 1976 and has assisted in more than 2,400 calls for assistance involving, or

  4. Shroud leakage flow discouragers

    DOE Patents [OSTI]

    Bailey, Jeremy Clyde; Bunker, Ronald Scott

    2002-01-01

    A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

  5. Tank depletion flow controller

    DOE Patents [OSTI]

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  6. Current induced perpendicular-magnetic-anisotropy racetrack memory with magnetic field assistance

    SciTech Connect (OSTI)

    Zhang, Y.; Klein, J.-O.; Chappert, C.; Ravelosona, D.; Zhao, W. S.

    2014-01-20

    High current density is indispensable to shift domain walls (DWs) in magnetic nanowires, which limits the using of racetrack memory (RM) for low power and high density purposes. In this paper, we present perpendicular-magnetic-anisotropy (PMA) Co/Ni RM with global magnetic field assistance, which lowers the current density for DW motion. By using a compact model of PMA RM and 40 nm design kit, we perform mixed simulation to validate the functionality of this structure and analyze its density potential. Stochastic DW motion behavior has been taken into account and statistical Monte-Carlo simulations are carried out to evaluate its reliability performance.

  7. Lower-Energy Requirements for Power-Assist HEV Energy Storage Systems--Analysis and Rationale (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Pesaran, A.

    2010-03-18

    Presented at the 27th International Battery Seminar and Exhibit, 15-18 March 2010, Fort Lauderdale, Florida. NREL conducted simulations and analysis of vehicle test data with research partners in response to a USABC request; results suggest that power-assist hybrid electric vehicles (HEVs), like conventional HEVs, can achieve high fuel savings with lower energy requirements at potentially lower cost.

  8. Multiphase Flow with Interphase eXchanges

    Energy Science and Technology Software Center (OSTI)

    1995-03-01

    MFIX is a general-purpose hydrodynamic model that describes chemical reactions and heat transfer in dense or dilute fluid-solids flows, flows typically occurring in energy conversion and chemical processing reactors. With such information, the engineer can visualize the conditions in the reactor, conduct parametric studies and what-if experiments, and, thereby, assist in the design process. MFIX has the following modeling capabilities: mass and momentum balance equations for gas and multiple solids phases; a gas phase andmore » two solids phase energy equation; an arbitrary number of species balance equations for each of the phases; granular stress equations based on kinetic theory and frictional flow theory; a user-defined chemistry subroutine; three-dimensional Cartesin or cylindrical coordinate systems; nonuniform mesh size; impermeable and semi-permeable internal surfaces; user-friendly input data file; multiple, single-precision, binary direct-access output files that minimize disk storage and accelerate data retrieval; extensive error reporting; post-processors for creating animations and for extracting and manipulating output data.« less

  9. Financial Assistance Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financial Assistance Reports Financial Assistance Reports June 26, 2014 Audit Report: OAS-M-14-07 The Department of Energy's Water Power Program June 17, 2014 Audit Report: OAS-RA-14-04 Selected Activities of the Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office February 19, 2014 Special Report: OAS-RA-14-03 Allegations of Potential Fraud and Mismanagement of a Smart Grid Investment Grant Program Award November 25, 2013 Audit Report: OAS-RA-14-02 The Department of

  10. Complex Flow Workshop Report

    SciTech Connect (OSTI)

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  11. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  12. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  13. Electrochemical flow capacitors

    DOE Patents [OSTI]

    Gogotsi, Yury; Presser, Volker; Kumbar, Emin Caglan

    2015-11-05

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  14. Electrochemical flow capacitors

    DOE Patents [OSTI]

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    2015-10-27

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  15. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  16. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  17. Dynamic Multiscale Averaging (DMA) of Turbulent Flow

    SciTech Connect (OSTI)

    Richard W. Johnson

    2012-09-01

    A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical engineering applications.

  18. Notes on Newton-Krylov based Incompressible Flow Projection Solver

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Notes on Newton-Krylov based Incompressible Flow Projection Solver Citation Details In-Document Search Title: Notes on Newton-Krylov based Incompressible Flow Projection Solver The purpose of the present document is to formulate Jacobian-free Newton-Krylov algorithm for approximate projection method used in Hydra-TH code. Hydra-TH is developed by Los Alamos National Laboratory (LANL) under the auspices of the Consortium for Advanced Simulation of

  19. Office Of Worker Safety And Health Assistance

    Broader source: Energy.gov [DOE]

    The Office of Worker Safety and Health Assistance supports program and line organizations in the identification and resolution of worker safety and health issues and management concerns utilizing a corporate issues management process for crosscutting issues providing technical support for organizational specific issues and concerns.

  20. Solar Technical Assistance Team (STAT) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    The Solar Technical Assistance Team (STAT) is a team of solar technology and deployment experts who ensure that the best information on policies, regulations, financing, and other issues is getting into the hands of state government decision makers when they need it.

  1. EPA Clean Diesel Funding Assistance Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Clean Diesel Funding Assistance Program for projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure, particularly from fleets operating at or servicing goods movement facilities located in areas designated as having poor air quality.

  2. EPA Tribal Clean Diesel Funding Assistance Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Tribal Clean Diesel Funding Assistance Program for tribal projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure. Eligible entities include tribal governments.

  3. Duffy Served as EM's First Assistant Secretary

    Broader source: Energy.gov [DOE]

    Editor’s note: In an occasional EM Update series, we feature interviews with former EM Assistant Secretaries to reflect on their achievements and challenges in the world’s largest nuclear cleanup and to discuss endeavors in life after EM.

  4. Solar Technical Assistance Team (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    The Solar Technical Assistance Team (STAT) is a team of solar technology and deployment experts who ensure that the best information on policies, regulations, financing, and other issues is getting into the hands of state government decision makers whey they need it. This fact sheet provides information about STAT and the STAT webinar series for the summer of 2012.

  5. Radiological Assistance Program | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Radiological Assistance Program NNSA Administrator visits Brookhaven National Laboratory On Friday, May 6, DOE Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. Frank G. Klotz (Ret.) visited Brookhaven National Laboratory in Upton, New York. Brookhaven Lab brings world-class facilities and expertise to the most exciting and important questions in basic and applied...

  6. Electron flow stability in magnetically insulated vacuum transmission lines

    SciTech Connect (OSTI)

    Rose, D. V.; Genoni, T. C.; Clark, R. E.; Welch, D. R. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Stygar, W. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2011-03-15

    We evaluate the stability of electron current flow in high-power magnetically insulated transmission lines (MITLs). A detailed model of electron flow in cross-field gaps yields a dispersion relation for electromagnetic (EM) transverse magnetic waves [R. C. Davidson et al., Phys. Fluids 27, 2332 (1984)] which is solved numerically to obtain growth rates for unstable modes in various sheath profiles. These results are compared with two-dimensional (2D) EM particle-in-cell (PIC) simulations of electron flow in high-power MITLs. We find that the macroscopic properties (charge and current densities and self-fields) of the equilibrium profiles observed in the simulations are well represented by the laminar-flow model of Davidson et al. Idealized simulations of sheared flow in electron sheaths yield growth rates for both long (diocotron) and short (magnetron) wavelength instabilities that are in good agreement with the dispersion analysis. We conclude that electron sheaths that evolve self-consistently from space-charged-limited emission of electrons from the cathode in well-resolved 2D EM PIC simulations form stable profiles.

  7. Electron flow stability in magnetically insulated vacuum transmission lines.

    SciTech Connect (OSTI)

    Genoni, Thomas C. (Voss Scientific, LLC, Albuquerque, NM); Stygar, William A.; Welch, Dale Robert (Voss Scientific, LLC, Albuquerque, NM); Clark, R. E. (Voss Scientific, LLC, Albuquerque, NM); Rose, David V. (Voss Scientific, LLC, Albuquerque, NM)

    2010-11-01

    We evaluate the stability of electron current flow in high-power magnetically insulated transmission lines (MITLs). A detailed model of electron flow in cross-field gaps yields a dispersion relation for electromagnetic (EM) transverse magnetic waves [R. C. Davidson et al., Phys. Fluids 27, 2332 (1984)] which is solved numerically to obtain growth rates for unstable modes in various sheath profiles. These results are compared with two-dimensional (2D) EM particle-in-cell (PIC) simulations of electron flow in high-power MITLs. We find that the macroscopic properties (charge and current densities and self-fields) of the equilibrium profiles observed in the simulations are well represented by the laminar-flow model of Davidson et al. Idealized simulations of sheared flow in electron sheaths yield growth rates for both long (diocotron) and short (magnetron) wavelength instabilities that are in good agreement with the dispersion analysis. We conclude that electron sheaths that evolve self-consistently from space-charged-limited emission of electrons from the cathode in well-resolved 2D EM PIC simulations form stable profiles.

  8. Coal Preparation Plant Simulation

    Energy Science and Technology Software Center (OSTI)

    1992-02-25

    COALPREP assesses the degree of cleaning obtained with different coal feeds for a given plant configuration and mode of operation. It allows the user to simulate coal preparation plants to determine an optimum plant configuration for a given degree of cleaning. The user can compare the performance of alternative plant configurations as well as determine the impact of various modes of operation for a proposed configuration. The devices that can be modelled include froth flotationmore » devices, washers, dewatering equipment, thermal dryers, rotary breakers, roll crushers, classifiers, screens, blenders and splitters, and gravity thickeners. The user must specify the plant configuration and operating conditions and a description of the coal feed. COALPREP then determines the flowrates within the plant and a description of each flow stream (i.e. the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, BTU content, recoveries, and specific gravity of separation). COALPREP also includes a capability for calculating the cleaning cost per ton of coal.« less

  9. Coal Preparation Plant Simulation

    Energy Science and Technology Software Center (OSTI)

    1992-02-25

    COALPREP assesses the degree of cleaning obtained with different coal feeds for a given plant configuration and mode of operation. It allows the user to simulate coal preparation plants to determine an optimum plant configuration for a given degree of cleaning. The user can compare the performance of alternative plant configurations as well as determine the impact of various modes of operation for a proposed configuration. The devices that can be modelled include froth flotationmore » devices, washers, dewatering equipment, thermal dryers, rotary breakers, roll crushers, classifiers, screens, blenders and splitters, and gravity thickeners. The user must specify the plant configuration and operating conditions and a description of the coal feed. COALPREP then determines the flowrates within the plant and a description of each flow stream (i.e. the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, BTU content, recoveries, and specific gravity of separation). COALPREP also includes a capability for calculating the cleaning cost per ton of coal. The IBM PC version contains two auxiliary programs, DATAPREP and FORLIST. DATAPREP is an interactive preprocessor for creating and editing COALPREP input data. FORLIST converts carriage-control characters in FORTRAN output data to ASCII line-feed (X''0A'') characters.« less

  10. Reframing Accelerator Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulations Mori-1.png Key Challenges: Use advanced simulation tools to study the feasibility of plasma-based linear colliders and to optimize conceptual designs. Much of the...

  11. Building a Particle Simulator

    SciTech Connect (OSTI)

    Weaver, Brian Phillip; Williams, Brian J.

    2015-10-06

    The purpose of this manuscript is to illustrate how to use the simulator we have developed to generate counts from simulated spectra.

  12. Piezoelectric axial flow microvalve

    DOE Patents [OSTI]

    Gemmen, Randall; Thornton, Jimmy; Vipperman, Jeffrey S.; Clark, William W.

    2007-01-09

    This invention is directed to a fuel cell operable with a quantity of fuel and a quantity of an oxidizer to produce electrical power, the fuel cell including a fuel cell body including a labyrinth system structured to permit the fuel and the oxidizer to flow therethrough; at least a first catalyst in fluid communication with the labyrinth; and at least a first microvalve operably disposed within at least a portion of the labyrinth. The microvalve utilizes a deflectable member operable upon the application of a voltage from a voltage source. The microvalve includes an elongated flow channel formed therein and extending substantially longitudinally between the first and second ends to permit substantially longitudinal flow of the fluid therethrough and between the first and second ends; and the deflectable member disposed on the valve body, the deflectable member including at least a first piezoelectric portion that is piezoelectrically operable to deflect the deflectable member between an open position and a closed position upon the application of a voltage, the deflectable member in the closed position being operable to resist the flow of the fluid through the flow channel.

  13. Office of Procurement and Assistance Policy, MA-61 Office of Procurement and Assistance Management

    Broader source: Energy.gov [DOE]

    Guidance on Manufactured Goods and Substantial Transformation for Financial Assistance Awards under the Buy American Provisions of the American Recovery and Reinvestment Act of 2009 (Section 1605 of Pub. L. 1 1 1-5).

  14. WINS. Market Simulation Tool for Facilitating Wind Energy Integration

    SciTech Connect (OSTI)

    Shahidehpour, Mohammad

    2012-10-30

    Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision results are often text-based demonstrations. WINS includes a powerful visualization tool and user interface capability for transmission analyses, planning, and assessment, which will be of great interest to power market participants, power system planners and operators, and state and federal regulatory entities; and (3) WINS can handle extended transmission models for wind integration studies. WINS models include limitations on transmission flow as well as bus voltage for analyzing power system states. The existing decision tools often consider transmission flow constraints (dc power flow) alone which could result in the over-utilization of existing resources when analyzing wind integration. WINS can be used to assist power market participants including transmission companies, independent system operators, power system operators in vertically integrated utilities, wind energy developers, and regulatory agencies to analyze economics, security, and reliability of various options for wind integration including transmission upgrades and the planning of new transmission facilities. WINS can also be used by industry for the offline training of reliability and operation personnel when analyzing wind integration uncertainties, identifying critical spots in power system operation, analyzing power system vulnerabilities, and providing credible decisions for examining operation and planning options for wind integration. Researches in this project on wind integration included (1) Development of WINS; (2) Transmission Congestion Analysis in the Eastern Interconnection; (3) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (4) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection. The research resulted in 33 papers, 9 presentations, 9 PhD degrees, 4 MS degrees, and 7 awards. The education activities in this project on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development.

  15. Flow distribution channels to control flow in process channels (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Flow distribution channels to control flow in process channels Citation Details In-Document Search Title: Flow distribution channels to control flow in process channels The invention describes features that can be used to control flow to an array of microchannels. The invention also describes methods in which a process stream is distributed to plural microchannels. Authors: Tonkovich, Anna Lee ; Arora, Ravi ; Kilanowski, David Publication Date: 2014-10-28 OSTI Identifier:

  16. Microwave fluid flow meter

    DOE Patents [OSTI]

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  17. Internal thermal coupling in direct-flow coaxial vacuum tube collectors

    SciTech Connect (OSTI)

    Glembin, J.; Rockendorf, G.; Scheuren, J.

    2010-07-15

    This investigation covers the impact of low flow rates on the efficiency of coaxial vacuum tube collectors. Measurements show an efficiency reduction of 10% if reducing the flow rate from 78 kg/m{sup 2} h to 31 kg/m{sup 2} h for a collector group with 60 parallel vacuum tubes with a coaxial flow conduit at one-sided connection. For a more profound understanding a model of the coaxial tube was developed which defines the main energy fluxes including the internal thermal coupling. The tube simulations show a non-linear temperature profile along the tube with the maximum temperature in the outer pipe. Due to heat transfer to the entering flow this maximum is not located at the fluid outlet. The non-linearity increases with decreasing flow rates. The experimentally determined flow distribution allows simulating the measured collector array. The simulation results confirm the efficiency decrease at low flow rates. The flow distribution has a further impact on efficiency reduction, but even at an ideal uniform flow, a considerable efficiency reduction at low flow rates is to be expected. As a consequence, low flow rates should be prevented for coaxial tube collectors, thus restricting the possible operation conditions. The effect of constructional modifications like diameter or material variations is presented. Finally the additional impact of a coaxial manifold design is discussed. (author)

  18. Effect of the mitral valve on diastolic flow patterns

    SciTech Connect (OSTI)

    Seo, Jung Hee; Vedula, Vijay; Mittal, Rajat; Abraham, Theodore; Dawoud, Fady; Luo, Hongchang; Lardo, Albert C.

    2014-12-15

    The leaflets of the mitral valve interact with the mitral jet and significantly impact diastolic flow patterns, but the effect of mitral valve morphology and kinematics on diastolic flow and its implications for left ventricular function have not been clearly delineated. In the present study, we employ computational hemodynamic simulations to understand the effect of mitral valve leaflets on diastolic flow. A computational model of the left ventricle is constructed based on a high-resolution contrast computed-tomography scan, and a physiological inspired model of the mitral valve leaflets is synthesized from morphological and echocardiographic data. Simulations are performed with a diode type valve model as well as the physiological mitral valve model in order to delineate the effect of mitral-valve leaflets on the intraventricular flow. The study suggests that a normal physiological mitral valve promotes the formation of a circulatory (or “looped”) flow pattern in the ventricle. The mitral valve leaflets also increase the strength of the apical flow, thereby enhancing apical washout and mixing of ventricular blood. The implications of these findings on ventricular function as well as ventricular flow models are discussed.

  19. Flow line sampler

    DOE Patents [OSTI]

    Nicholls, Colin I.

    1992-07-14

    An on-line product sampling apparatus and method for measuring product samples from a product stream (12) in a flow line (14) having a sampling aperture (11), includes a sampling tube (18) for containing product samples removed from flow line (14). A piston (22) removes product samples from the product stream (12) through the sampling aperture (11) and returns samples to product stream (12). A sensor (20) communicates with sample tube (18), and senses physical properties of samples while the samples are within sample tube (18). In one embodiment, sensor (20) comprises a hydrogen transient nuclear magnetic resonance sensor for measuring physical properties of hydrogen molecules.

  20. Flux-driven simulations of turbulence collapse

    SciTech Connect (OSTI)

    Park, G. Y.; Kim, S. S.; Jhang, Hogun; Rhee, T.; Diamond, P. H.; Xu, X. Q.

    2015-03-15

    Using three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally once input power exceeds a threshold value. Profiles, turbulence-driven flows, and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E×B flow shear. A novel observation of the evolution is that the turbulence collapses and the ETB transition begins when R{sub T} > 1 at t = t{sub R} (R{sub T}: normalized Reynolds power), while the conventional transition criterion (ω{sub E×B}>γ{sub lin} where ω{sub E×B} denotes mean flow shear) is satisfied only after t = t{sub C} ( >t{sub R}), when the mean flow shear grows due to positive feedback.

  1. Widget:CaseStudyAssist | Open Energy Information

    Open Energy Info (EERE)

    History Widget:CaseStudyAssist Jump to: navigation, search Description Widget to assist case study pages and forms: CSC & CSA Usage This widget must be used with the...

  2. Precursors for the polymer-assisted deposition of films (Patent...

    Office of Scientific and Technical Information (OSTI)

    Precursors for the polymer-assisted deposition of films Citation Details In-Document Search Title: Precursors for the polymer-assisted deposition of films You are accessing a ...

  3. Polymer-assisted aqueous deposition of metal oxide films (Patent...

    Office of Scientific and Technical Information (OSTI)

    Polymer-assisted aqueous deposition of metal oxide films Title: Polymer-assisted aqueous deposition of metal oxide films An organic solvent-free process for deposition of metal ...

  4. POLICY FLASH 2013-58 Revised Guide for Financial Assistance ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POLICY FLASH 2013-58 Revised Guide for Financial Assistance POLICY FLASH 2013-58 Revised Guide for Financial Assistance Questions concerning this policy flash should be directed to...

  5. DOE Inter-Tribal Technical Assistance Energy Provider Network...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Inter-Tribal Technical Assistance Energy Provider Network RFI DOE Inter-Tribal Technical Assistance Energy Provider Network RFI October 29, 2015 5:00PM EDT U.S. Department of...

  6. Federal Wind Energy Assistance through NREL (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    NREL assists with wind resource assessment and development activities initiated by federal agencies to facilitate distributed renewable energy projects at federal agency sites. This brief outlines the process for requesting NREL assistance with federal wind energy projects.

  7. POLICY FLASH 2013-58 Revised Guide for Financial Assistance ...

    Broader source: Energy.gov (indexed) [DOE]

    Ellen Colligan at (202) 287-1776 or Ellen.colligan@hq.doe.gov. Policy Flash 2013-58 Revised Guide for Finanacial Assistance.pdf THE DOE GUIDE TO FINANCIAL ASSISTANCE More Documents...

  8. Energy Department and GSA Assist in Capital Solar Challenge Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and GSA Assist in Capital Solar Challenge Industry Day Energy Department and GSA Assist in Capital Solar Challenge Industry Day October 21, 2014 - 4:43pm Addthis The White House ...

  9. New Mexico Small Business Assistance Program recognized by U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Mexico Small Business Assistance Program recognized by U.S. Department of Commerce New Mexico Small Business Assistance Program recognized by U.S. Department of Commerce May...

  10. Christopher A. Smith Confirmed as Assistant Secretary for Fossil Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Christopher A. Smith Confirmed as Assistant Secretary for Fossil Energy Christopher A. Smith Confirmed as Assistant Secretary for Fossil Energy December 16, 2014 - 10:15pm Addthis News Media Contact 202 586 4940 Christopher A. Smith Confirmed as Assistant Secretary for Fossil Energy WASHINGTON - Christopher A. Smith was confirmed by the Senate on Tuesday, December 16th, 2014, as the Department of Energy's Assistant Secretary for Fossil Energy. "Chris Smith's depth

  11. CHP Technical Assistance Partnerships (CHP TAPs) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Deployment » CHP Technical Assistance Partnerships (CHP TAPs) CHP Technical Assistance Partnerships (CHP TAPs) DOE's CHP Technical Assistance Partnerships (CHP TAPs) promote and assist in transforming the market for CHP, waste heat to power, and district energy technologies/concepts throughout the United States. Key services of the CHP TAPs include: Market Opportunity Analyses - Supporting analyses of CHP market opportunities in diverse markets including industrial,

  12. FEDERAL ASSISTANCE BUDGET INFORMATION (CONSTRUCTION) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEDERAL ASSISTANCE BUDGET INFORMATION (CONSTRUCTION) FEDERAL ASSISTANCE BUDGET INFORMATION (CONSTRUCTION) Form provides information on the federal assistance budget for construction projects, including calculation of the federal award needed to meet requirements, exclusions, and the proposed method for calculating the non-federal share. PDF icon FEDERAL ASSISTANCE BUDGET INFORMATION (CONSTRUCTION) More Documents & Publications DOE F 4600.4 DOE F 4600.5 DOE F 4600.3

  13. Weatherization Assistance Program (WAP) Closeout Frequently Asked Questions

    Energy Savers [EERE]

    | Department of Energy Assistance Program (WAP) Closeout Frequently Asked Questions Weatherization Assistance Program (WAP) Closeout Frequently Asked Questions This document provides a list of frequently asked questions in regards to the Weatherization Assistance Program (WAP) Closeout procedures. PDF icon wap_closeout_faqs.pdf More Documents & Publications WPN 12-3: Closeout Procedures for Recovery Act Grants Under the Weatherization Assistance Program CLOSEOUT PROCEDURES FOR RECOVERY

  14. Environmental/Radiological Assistance Directory (ERAD) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Environmental/Radiological Assistance Directory (ERAD) Environmental/Radiological Assistance Directory (ERAD) The Environmental Radiological Assistance Directory or ERAD, developed by AU-22, serves as an assistance tool to the DOE complex for protection of the public and environment from radiation. The ERAD is a combination webinar/conference call, designed to provide DOE and its contractors a forum to share information, lessons-learned, best practices, emerging trends, compliance

  15. Federal Energy Management Program (FEMP) Technical Assistance Request

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portal User Guide | Department of Energy (FEMP) Technical Assistance Request Portal User Guide Federal Energy Management Program (FEMP) Technical Assistance Request Portal User Guide Document explains how to navigate the FEMP Technical Assistance request portal. It includes instruction on how to register for an account, submit a request for assistance, and review saved requests. PDF icon ta_portal_user_guide.pdf More Documents & Publications Industry Interactive Procurement System (IIPS)

  16. WPN 16-4: Weatherization Assistance Program Monitoring Guidance |

    Energy Savers [EERE]

    Department of Energy 6-4: Weatherization Assistance Program Monitoring Guidance WPN 16-4: Weatherization Assistance Program Monitoring Guidance Effective: Dec. 17, 2015 To issue updated monitoring policy and procedures for the Weatherization Assistance Program (WAP). PDF icon WPN 16-4: Weatherization Assistance Program Monitoring Guidance PDF icon Grantee PM Checklist PDF icon Subgrantee Checklist PDF icon Grantee Programmatic Management Changes PDF icon Subgrantee Checklist Changes More

  17. Acquisition & Financial Assistance Rules Status | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition & Financial Assistance Rules Status Acquisition & Financial Assistance Rules Status Subscribe to Acquisition & Financial Assistance Rules Status Updates PDF icon Acquisition & Financial Assistance Rules Status_May_2016.pdf More Documents & Publications Rulemaking List for Public List Serve May 2016 Department of Energy Acquisition Regulation (DEAR) Final Rule for changes to Parts 908, 945, 952, and 970 regarding Government Property Microsoft Word - Matrixpart2.doc

  18. American Recovery and Reinvestment Act, Financial Assistance Award: 212

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degrees Consulting, LLC | Department of Energy American Recovery and Reinvestment Act, Financial Assistance Award: 212 Degrees Consulting, LLC American Recovery and Reinvestment Act, Financial Assistance Award: 212 Degrees Consulting, LLC American Recovery and Reinvestment Act, Financial Assistance Award: 212 Degrees Consulting, LLC, Las Vegas, Nevada. PDF icon Award No. DE-FC36-10GO10589, Notice of Financial Assistance Award PDF icon Award No. DE-FC36-10GO10589, Special Terms and Conditions

  19. Weatherization Assistance Program Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Success Stories Weatherization Assistance Program Success Stories These success stories include EERE Blog entries for the U.S. Department of Energy (DOE) Weatherization Assistance Program. How to Save Energy, Money with Home Energy Upgrades Make your home more energy efficient. Weatherization Assistance Program: Spurring Innovation, Increasing Home Energy Efficiency The Weatherization Assistance Program has developed technical certifications, training programs, and new methods to advance the

  20. 2014 Assisting Federal Facilities with Energy Conservation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (AFFECT) Funding Recipients | Department of Energy Technical Assistance » 2014 Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Recipients 2014 Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Recipients On November 5, 2013, FEMP issued a funding opportunity announcement (FOA) on the EERE Exchange titled Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) DE-FOA-0000901. The release of the FOA

  1. Electricity Policy Technical Assistance Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Electricity Policy Technical Assistance Program Overview Since 2003, the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability (OE) has been providing independent and unbiased technical support to states, regions, and Tribes on their electricity-related policies through its Electricity Policy Technical Assistance Program. The scope of OE's assistance is determined by the requests received. Types of assistance offered and activities supported include: Analysis

  2. Federal Renewable Energy Project Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance Federal Renewable Energy Project Assistance Federal agencies can get renewable energy project assistance from the U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP), DOE national laboratories, and other federal agencies. FEMP also offers training to help agencies understand federal renewable energy requirements and goals, and provides renewable energy maps, tools, and a list of federal renewable energy projects. Assistance from FEMP FEMP offers renewable energy

  3. Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Year Awards | Department of Energy Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards Fossil Energy Acting Assistant Secretary Recognized at Black Engineer of the Year Awards February 19, 2013 - 8:54am Addthis Director Dot Harris presents Chris Smith, Principal Deputy Assistant Secretary and Acting Assistant Secretary of Fossil Energy, with a professional achievement award at the Black Engineer of the Year Awards conference this February. Photo

  4. Technical Assistance Guide: Working with DOE National Laboratories

    SciTech Connect (OSTI)

    2012-07-01

    A fact sheet that provides an overview of FEMP's technical assistance through the Department of Energy's National Laboratories.

  5. ORO Names New Assistant Manager for Environmental Management

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Oak Ridge Office names John Eschenberg as its Assistant Manager for Environmental Management.

  6. Profiles in Leadership: Bob Corbin, Deputy Assistant Secretary for

    Energy Savers [EERE]

    Petroleum Reserves | Department of Energy Bob Corbin, Deputy Assistant Secretary for Petroleum Reserves Profiles in Leadership: Bob Corbin, Deputy Assistant Secretary for Petroleum Reserves August 17, 2015 - 1:34pm Addthis Profiles in Leadership: Bob Corbin, Deputy Assistant Secretary for Petroleum Reserves Profiles in Leadership is a series of interviews with senior executives in the Office of Fossil Energy (FE). In this edition we caught up with Bob Corbin, Deputy Assistant Secretary for

  7. Headquarters Employee Assistance Program (EAP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wellness Programs » Headquarters Employee Assistance Program (EAP) Headquarters Employee Assistance Program (EAP) The HQ Employee Assistance Program is a consultation and counseling resource that helps HQ employees and managers create a healthy workplace by preventing and addressing work and family issues. The EAP serves the agency in multiple ways ranging from organizational consultation on major workplace changes such as critical incidents or downsizing to individual assistance of employees

  8. Federal Technical Assistance Aims to Accelerate Tribal Energy...

    Broader source: Energy.gov (indexed) [DOE]

    ... assistance focused on the following priority areas: strategic energy planning, grantee support, transmissioninterconnection, project development, finance, and lease agreements. ...

  9. Assistant Secretary Rispoli's FY 2009 EM Budget Rollout Presentation |

    Energy Savers [EERE]

    Department of Energy Rispoli's FY 2009 EM Budget Rollout Presentation Assistant Secretary Rispoli's FY 2009 EM Budget Rollout Presentation Assistant Secretary Rispoli's FY 2009 EM Budget Rollout Presentation PDF icon Assistant Secretary Rispoli's FY 2009 EM Budget Rollout Presentation More Documents & Publications Assistant Secretary Triay's FY 2011 EM Budget Rollout Presentation FY 2010 Environmental Management Budget Request to Congress 2013 Congressional Nuclear Cleanup Caucus

  10. EM Assistant Secretary Highlights Cleanup Workers at Annual Conference |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Highlights Cleanup Workers at Annual Conference EM Assistant Secretary Highlights Cleanup Workers at Annual Conference March 31, 2016 - 1:20pm Addthis EM Assistant Secretary Dr. Monica Regalbuto speaks during the Waste Management Conference plenary session earlier this month. EM Assistant Secretary Dr. Monica Regalbuto speaks during the Waste Management Conference plenary session earlier this month. PHOENIX - EM Assistant Secretary Dr. Monica Regalbuto praised the

  11. Energy Savings Performance Contract ENABLE Project Assistance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Project Assistance Energy Savings Performance Contract ENABLE Project Assistance FEMP works closely with agencies to ensure successful ESPC ENABLE projects. FEMP works closely with agencies to ensure successful ESPC ENABLE projects. The Federal Energy Management Program (FEMP) offers project assistance to help federal agencies implement Energy Savings Performance Contract (ESPC) ENABLE projects. FEMP project assistance includes help from federal project executives to identify and

  12. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    SciTech Connect (OSTI)

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-12-09

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.

  13. US energy flow, 1991

    SciTech Connect (OSTI)

    Borg, I.Y.; Briggs, C.K.

    1992-06-01

    Trends in energy consumption and assessment of energy sources are discussed. Specific topics discussed include: energy flow charts; comparison of energy use with 1990 and earlier years; supply and demand of fossil fuels (oils, natural gas, coal); electrical supply and demand; and nuclear power.

  14. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, D.

    1987-11-30

    An obstruction across the flow chamber creates a one-dimensional convergence of a sheath fluid. A passageway in the obstruction directs flat cells near to the area of one-dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates. 6 figs.

  15. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, Daniel (Walnut Creek, CA)

    1991-01-01

    An obstruction across the flow chamber creates a one dimensional convergence of a sheath fluid. A passageway in the construction directs flat cells near to the area of one dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates.

  16. NREL: Technology Deployment - Technical Assistance for Tribes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tribes NREL's State, Local, and Tribal program partners with Native American Tribes and Alaska Native Villages, the U.S. Department of Energy (DOE), and other federal agencies, non-profits, and intertribal organizations to provide resources and direct assistance that support clean energy technology delivery and connect motivated tribal governments with NREL's world-class science and analytics. American Indian land comprises approximately 2% of the total U.S. land base, representing an estimated

  17. CHP Deployment Program: AMO Technical Assistance Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Deployment Program: AMO Technical Assistance Overview Claudia Tighe This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Combined Heat a Power (CHP): History * First developed by Thomas Edison in 1880s and is one of the world's most common form of energy recycling * Since the '70s CHP used mostly by large industrials (PURPA set the stage) * Today there are hundreds of CHP facilities in the U.S. in both industrial, institutional and

  18. Sandia Publishes New Guide to Assist Homebuilders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Guide to Assist Homebuilders - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  19. PRIVACY IMPACT ASSESSMENT: Occupational Medicine Assistant PIA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medicine - Assistant PIA Template Version 3 - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Deparlment of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/o2061.pdf Please complete electronically: no hand-written submissions will be accepted. This template may not be modified. MODULE 1-

  20. Polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey, Thomas M.; Burrell; Anthony K.; Jia; Quanxi; Lin; Yuan

    2009-10-20

    A polymer assisted deposition process for deposition of metal oxide films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films and the like. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.