Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Microturbine Power Conversion Technology Review  

SciTech Connect (OSTI)

In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to accept a varying dc voltage source. The study will also look at technical issues pertaining to the interconnection and coordinated/compatible operation of multiple microturbines. It is important to know today if modifications to provide improved operation and additional services will entail complete redesign, selected component changes, software modifications, or the addition of power storage devices. This project is designed to provide a strong technical foundation for determining present technical needs and identifying recommendations for future work.

Staunton, R.H.

2003-07-21T23:59:59.000Z

2

Power conversion apparatus and method  

DOE Patents [OSTI]

A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

Su, Gui-Jia (Knoxville, TN)

2012-02-07T23:59:59.000Z

3

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

or otherwise restricted information Project ID ace47lagrandeur Automotive Waste Heat Conversion to Power Program- 2009 Hydrogen Program and Vehicle Technologies Program...

4

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

Start Date: Oct '04 Program End date: Oct '10 Percent Complete: 80% 2 Automotive Waste Heat Conversion to Power Program- Vehicle Technologies Program Annual Merit Review- June...

5

Interdigitated photovoltaic power conversion device  

DOE Patents [OSTI]

A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

1999-01-01T23:59:59.000Z

6

Interdigitated photovoltaic power conversion device  

DOE Patents [OSTI]

A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

1999-04-27T23:59:59.000Z

7

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

8

Power Conversion APEX Interim Report November, 1999  

E-Print Network [OSTI]

, the combined efficiency of the topping cycle and bottoming cycle will be less than the single cycle along. POWER CONVERSION 17.1 Steam Cycle Different steam cycles have been well developed. A study by EPRI summarized the various advanced steam cycles which maybe available for an advanced coal power plant

California at Los Angeles, University of

9

Novel Nuclear Powered Photocatalytic Energy Conversion  

SciTech Connect (OSTI)

The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.

White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

2005-08-29T23:59:59.000Z

10

Structural power flow measurement  

SciTech Connect (OSTI)

Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

Falter, K.J.; Keltie, R.F.

1988-12-01T23:59:59.000Z

11

Automotive Waste Heat Conversion to Electric Power using Skutterudites...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3 Automotive Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3...

12

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power  

E-Print Network [OSTI]

Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power generation, the flow of liquids and gases, and the transfer of thermal energy (heat) by means in virtually all energy conversion devices and systems. One may think of the jet engine as a mechanical device

New Hampshire, University of

13

Analysis and design of high frequency link power conversion systems for fuel cell power conditioning  

E-Print Network [OSTI]

In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. The first study proposes a...

Song, Yu Jin

2005-11-01T23:59:59.000Z

14

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

SciTech Connect (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

15

Effect of electron flow on the ordinary-extraordinary mode conversion  

SciTech Connect (OSTI)

Ordinary-extraordinary mode conversion in the electron cyclotron frequency range is revisited in the presence of a flowing electron component. The analytical expressions of optimal parallel refraction index and conversion efficiency are obtained from a one-dimensional cold plasma model. The presence of flowing electrons leads to an outward shift of the conversion layer and therefore increases the optimal value of parallel refraction index. If this effect is not considered, the efficiency of mode conversion degenerates. In typical tokamak plasmas, this degeneration is about a few percentages, which may induce the reflection of several tens of kilowatts of power from the cutoff layer when injecting megawatts of ECRF power into fusion plasma.

Jia Guozhang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gao Zhe [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China) and Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China)

2011-10-15T23:59:59.000Z

16

The Benefits of Planar Magnetics in OF Power Conversion  

E-Print Network [OSTI]

is increased, are related to the magnetic components: transformers and inductors. Unless the copper and coreThe Benefits of Planar Magnetics in OF Power Conversion Planar Magnetics (PM): The Technology that Meets the Challenges of HF Switch and Resonant Mode Power Conversion Professor Sam Ben-Yaakov Department

17

Fabrication and testing of an infrared spectral control component for thermophotovoltaic power conversion applications  

E-Print Network [OSTI]

Thermophotovoltaic (TPV) power conversion is the direct conversion of thermal radiation to electricity. Conceptually, TPV power conversion is a very elegant means of energy conversion. A thermal source emits a radiative ...

O'Sullivan, Francis M. (Francis Martin), 1980-

2004-01-01T23:59:59.000Z

18

Power conversion architecture for grid interface at high switching frequency  

E-Print Network [OSTI]

This paper presents a new power conversion architecture for single-phase grid interface. The proposed architecture is suitable for realizing miniaturized ac-dc converters operating at high frequencies (HF, above 3 MHz) and ...

Lim, Seungbum

19

Control strategies for supercritical carbon dioxide power conversion systems  

E-Print Network [OSTI]

The supercritical carbon dioxide (S-C02) recompression cycle is a promising advanced power conversion cycle which couples well to numerous advanced nuclear reactor designs. This thesis investigates the dynamic simulation ...

Carstens, Nathan, 1978-

2007-01-01T23:59:59.000Z

20

E-Print Network 3.0 - active power flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization 8 IEEE INFOCOM 2000 1 Effortlimited Fair (ELF) Scheduling for Wireless Summary: on each flow using a per-flow power factor setting. The...

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

E-Print Network 3.0 - acoustic-to-structure power flow Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization 4 IEEE INFOCOM 2000 1 Effortlimited Fair (ELF) Scheduling for Wireless Summary: on each flow using a per-flow power factor setting. The...

22

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

Emissions Reduction (DEER) Conference (presentation) - "Status of a Cylindrical Waste Heat Power Generator for Vehicles Development Program", J. LaGrandeur, L. Bell, D. Crane *...

23

Sandia National Laboratories: WEC power conversion chain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEIMarineVideosVideos Videosinpower conversion

24

Apparatus and method for pyroelectric power conversion  

DOE Patents [OSTI]

Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected.

Olsen, Randall B. (Olivenhain, CA)

1984-01-01T23:59:59.000Z

25

Apparatus and method for pyroelectric power conversion  

DOE Patents [OSTI]

Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance are disclosed. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected. 12 figs.

Olsen, R.B.

1984-01-10T23:59:59.000Z

26

Direct conversion nuclear reactor space power systems  

SciTech Connect (OSTI)

This paper presents the results of a study of space nuclear reactor power systems using either thermoelectric or thermionic energy converters. An in-core reactor design and two heat pipe cooled out-of-core reactor designs were considered. One of the out-of-core cases utilized, long heat pipes (LHP) directly coupled to the energy converter. The second utilized a larger number of smaller heat pipes (mini-pipe) radiatively coupled to the energy converter. In all cases the entire system, including power conditioning, was constrained to be launched in a single shuttle flight. Assuming presently available performance, both the LHP thermoelectric system and minipipe thermionic system, designed to produce 100 kWe for seven years, would have a specific mass near 22kg/kWe. The specific mass of the thermionic minipipe system designed for a one year mission is 165 kg/kWe due to less fuel swelling. Shuttle imposed growth limits are near 300 kWe and 1.2 MWe for the thermoelectric and thermionic systems, respectively. Converter performance improvements could double this potential, and over 10 MWe may be possible for very short missions.

Britt, E.J.; Fitzpatrick, G.O.

1982-08-01T23:59:59.000Z

27

gtp_flow_power_estimator.xlsx  

Broader source: Energy.gov [DOE]

This simple spreadsheet model estimates either the flow rate required to produce a specified level of power output, or the power output that can be produced from a specified flow rate.

28

Potassium Rankine cycle power conversion systems for lunar-Mars surface power  

SciTech Connect (OSTI)

The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion was carried out in the 1960`s which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper. 8 refs.

Holcomb, R.S.

1992-07-01T23:59:59.000Z

29

Optimal Power Flow Incorporating Voltage Collapse Constraints  

E-Print Network [OSTI]

Optimal Power Flow Incorporating Voltage Collapse Constraints William Rosehart Claudio Ca on the current operating con- ditions is presented. Second, an Optimal Power Flow formulation that incorporates: Voltage Collapse, Optimal Power Flow, Bifur- cations. I. Introduction As open-access market principles

Cañizares, Claudio A.

30

Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors  

E-Print Network [OSTI]

The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

Gibbs, Jonathan Paul

2008-01-01T23:59:59.000Z

31

Flow shop scheduling with peak power consumption constraints  

E-Print Network [OSTI]

Mar 29, 2012 ... Flow shop scheduling with peak power consumption constraints ... Keywords: scheduling, flow shop, energy, peak power consumption, integer ...

K. Fang

2012-03-29T23:59:59.000Z

32

Detailed balance limit of power conversion efficiency for organic photovoltaics  

SciTech Connect (OSTI)

A fundamental difference between inorganic photovoltaic (IPV) and organic photovoltaic (OPV) cells is that charges are generated at the interface in OPV cells, while free charges can be generated in the bulk in IPV cells. In OPV cells, charge generation involves intrinsic energy losses to dissociate excitons at the interface between the donor and acceptor. By taking into account the energy losses, we show the theoretical limits of the power conversion efficiency set by radiative recombination of the carriers on the basis of the detailed balance relation between radiation from the cell and black-body radiation.

Seki, Kazuhiko, E-mail: k-seki@aist.go.jp [NRI, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan)] [NRI, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan); Furube, Akihiro [RIIF, AIST Tsukuba Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan)] [RIIF, AIST Tsukuba Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Yoshida, Yuji [RCPVT, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan)] [RCPVT, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan)

2013-12-16T23:59:59.000Z

33

HYLIFE-II power conversion system design and cost study  

SciTech Connect (OSTI)

The power conversion system for the HYLIFE-2 fusion power plant has been defined to include the IHX's (intermediate heat exchangers) and everything that support the exchange of energy from the reactor. It is referred to simply as the BOP (balance of plant) in the rest of this report. The above is a convenient division between the reactor equipment and the rest of the fusion power plant since the BOP design and cost then depend only on the specification of the thermal power to the IHX's and the temperature of the primary Flibe coolant into and out of the IHX's, and is almost independent of the details of the reactor design. The main efforts during the first year have been on the definition and thermal-hydraulics of the IHX's, the steam generators and the steam power plant, leading to the definition of a reference BOP with the molten salt, Flibe, as the primary coolant. A summary of the key results in each of these areas is given in this report.

Hoffman, M.A. (California Univ., Davis, CA (USA). Dept. of Mechanical, Aeronautical and Materials Engineering)

1990-09-01T23:59:59.000Z

34

A Low-Power Correlation Detector For Binary FSK Direct-Conversion Receivers  

E-Print Network [OSTI]

A Low-Power Correlation Detector For Binary FSK Direct-Conversion Receivers J. Min, H-C. Liu, A detector, Tone detection, Correlation, Direct-conversion wireless receivers Abstract A multiplierless-suited for low-power direct-conversion receivers used in wireless communications systems employ- ing FSK

Arslan, HĂĽseyin

35

System for thermal energy storage, space heating and cooling and power conversion  

DOE Patents [OSTI]

An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

1981-04-21T23:59:59.000Z

36

Advanced power conversion based on the Aerocapacitor{trademark}  

SciTech Connect (OSTI)

The authors report here, for the first time, high frequency testing of a new type of electrochemical double layer capacitor (EDLC), based on carbon aerogels: the Aerocapacitor. Carbon aerogels, are a novel type of carbon foam developed by Lawrence Livermore National Laboratory for military applications. The unique properties of carbon aerogels, high surface area (700 m{sup 2}/g), high density (1g/cc), well controlled pore diameter and high material conductivity (25 S/cm) made it an ideal EDLC electrode material. Using carbon aerogel as the electrode material, the authors have developed Aerocapacitors. These new EDLC`s have a frequency response comparable to that of aluminum electrolytic capacitors and are thus ideally suited to power conversion applications.

Josephs, L.C.; Gregory, D.; Roark, D. [and others

1997-10-01T23:59:59.000Z

37

Solar power conversion efficiency in modulated silicon nanowire photonic Alexei Deinega and Sajeev John  

E-Print Network [OSTI]

Solar power conversion efficiency in modulated silicon nanowire photonic crystals Alexei Deinega://jap.aip.org/about/rights_and_permissions #12;Solar power conversion efficiency in modulated silicon nanowire photonic crystals Alexei Deinegaa that using only 1 lm of silicon, sculpted in the form of a modulated nanowire photonic crystal, solar power

John, Sajeev

38

Self-oscillating modulators for direct energy conversion audio power amplifiers  

E-Print Network [OSTI]

Self-oscillating modulators for direct energy conversion audio power amplifiers Petar Ljusev1, Denmark Correspondence should be addressed to Petar Ljusev (pl@oersted.dtu.dk) ABSTRACT Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D

39

Closed Brayton cycle power conversion systems for nuclear reactors :  

SciTech Connect (OSTI)

This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.

Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

2006-04-01T23:59:59.000Z

40

Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean  

E-Print Network [OSTI]

A global estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean is presented. The estimate is based on a linear theory applied to bottom topography at O(1–10) km scales obtained ...

Nikurashin, Maxim

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics  

E-Print Network [OSTI]

Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable: Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based

Wang, Zhong L.

42

Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems  

E-Print Network [OSTI]

Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems B. Beltran, T. Ahmed power generation in variable speed wind energy conversion systems (VS-WECS). These systems have two (National Renewable Energy Laboratory) wind turbine simulator FAST (Fatigue, Aerodynamics, Structures

Boyer, Edmond

43

Flow reversal power limit for the HFBR  

SciTech Connect (OSTI)

The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW.

Cheng, Lap Y.; Tichler, P.R.

1995-10-01T23:59:59.000Z

44

Magnetic Amplifier for Power Flow Control  

SciTech Connect (OSTI)

GENI Project: ORNL is developing an electromagnet-based, amplifier-like device that will allow for complete control over the flow of power within the electric grid. To date, complete control of power flow within the grid has been prohibitively expensive. ORNL’s controller could provide a reliable, cost-effective solution to this problem. The team is combining two types of pre-existing technologies to assist in flow control, culminating in a prototype iron-based magnetic amplifier. Ordinarily, such a device would require expensive superconductive wire, but the magnetic iron core of ORNL’s device could serve as a low-cost alternative that is equally adept at regulating power flow.

None

2012-02-24T23:59:59.000Z

45

Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications  

SciTech Connect (OSTI)

The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

Atcitty, S.; Gray-Fenner, A.; Ranade, S.

1998-09-01T23:59:59.000Z

46

Advanced power conversion based on the Aerocapacitor{trademark}. Final report  

SciTech Connect (OSTI)

This report summarizes work performed under contract No. DE-FC07-94ID13283, {open_quotes}Advanced Power Conversion Based on the Aerocapacitors{trademark}.{close_quotes} Under this contract high power density, high energy density, organic electrolyte Aerocapacitors{trademark} were developed and characterized for power conversion applications. Pilot facilities for manufacturing prototype AA-size Aerocapacitors{trademark} were put in place. The low ESR and good frequency response of these devices show that they are ideal components for high discharge rate and low to moderate frequency (< 10 kHz) applications such as power conversion.

Roark, D.

1997-03-05T23:59:59.000Z

47

Efficient Power Converters for PV Arrays : Scalable Submodule Power Conversion for Utility-Scale Photovoltaics  

SciTech Connect (OSTI)

Solar ADEPT Project: SolarBridge is developing a new power conversion technique to improve the energy output of PV power plants. This new technique is specifically aimed at large plants where many solar panels are connected together. SolarBridge is correcting for the inefficiencies that occur when two solar panels that encounter different amounts of sun are connected together. In most conventional PV system, the weakest panel limits the energy production of the entire system. That’s because all of the energy collected by the PV system feeds into a single collection point where a central inverter then converts it into useable energy for the grid. SolarBridge has found a more efficient and cost-effective way to convert solar energy, correcting these power differences before they reach the grid.

None

2012-02-23T23:59:59.000Z

48

More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures, voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.

None

2010-02-01T23:59:59.000Z

49

Electronic power conditioning for dynamic power conversion in high-power space systems  

E-Print Network [OSTI]

require power levels above 10 kW, . For high energy levels of short duration, Chemical energy sources are effective choices. Utilizing magnetohydrodynamics (MHD), for example, these systems provide pulse power to their respective loads. And lastly, A...

Hansen, James Michael

1991-01-01T23:59:59.000Z

50

Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)  

SciTech Connect (OSTI)

The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)

Pablo Rubiolo, Principal Investigator

2003-03-21T23:59:59.000Z

51

On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg  

E-Print Network [OSTI]

On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg for the Second Law heat engine cycles the maximum power that can be extracted is independent of layout Fax: 4420 7594 5604 Word count: 3750 Diags. equivalent: 1600 5350 #12;On thermoelectric power

52

New Architectures for Radio-Frequency DC-DC Power Conversion  

E-Print Network [OSTI]

This document proposes two new architectures for switched-mode dc–dc power conversion. The proposed architectures enable dramatic increases in switching frequency to be realized while preserving features critical in practice, ...

Rivas, Juan M.

53

DC to DC power conversion module for the all-electric ship  

E-Print Network [OSTI]

The MIT end to end electric ship model is being developed to study competing electric ship designs. This project produced a model of a Power Conversion Module (PCM)- 4, DC-to-DC converter which interfaces with the MIT ...

Gray, Weston L

2011-01-01T23:59:59.000Z

54

Design, analysis and optimization of the power conversion system for the Modular Pebble Bed Reactor System  

E-Print Network [OSTI]

The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a GenIV nuclear system. The availability of controllable ...

Wang, Chunyun, 1968-

2003-01-01T23:59:59.000Z

55

Evaluation of ethane as a power conversion system working fluid for fast reactors  

E-Print Network [OSTI]

A supercritical ethane working fluid Brayton power conversion system is evaluated as an alternative to carbon dioxide. The HSC® chemical kinetics code was used to study thermal dissociation and chemical interactions for ...

Perez, Jeffrey A

2008-01-01T23:59:59.000Z

56

Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion  

SciTech Connect (OSTI)

This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

Per F. Peterson

2010-03-01T23:59:59.000Z

57

Circuits and passive components for radio-frequency power conversion  

E-Print Network [OSTI]

This thesis focuses on developing technology for high efficiency power converters operating at very high frequencies. The work in the thesis involves two aspects of such converters: rf (radio-frequency) power circuit design ...

Han, Yehui, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

58

GT-MHR power conversion system: Design status and technical issues  

SciTech Connect (OSTI)

The Modular Helium Reactor (MHR) builds on 30 years of international gas-cooled reactor experience utilizing the unique properties of helium gas coolant, graphite moderator and coated particle fuel. To efficiently utilize the high temperature potential of the MHR, an innovative power conversion system has been developed featuring an intercooled and recuperated gas turbine. The gas turbine replaces a conventional steam turbine and its many auxiliary components. The Power Conversion System converts the thermal energy of the helium directly into electrical energy utilizing a closed Brayton cycle. The Power Conversion System draws on even more years of experience than the MHR: the world`s first closed-cycle plant, fossil fired and utilizing air as working fluid, started operation in Switzerland in 1939. Shortly thereafter, in 1945, the coupling of a closed-cycle plant to a nuclear heat generation system was conceived. Directly coupling the closed-cycle gas turbine concept to a modern, passively safe nuclear reactor opens a new chapter in power generation technology and brings with it various design challenges. Some of these challenges are associated with the direct coupling of the Power Conversion System to a nuclear reactor. Since the primary coolant is also the working fluid, the Power Conversion System has to be designed for reactor radionuclide plateout. As a result, issues like component maintainability and replaceability, and fission product effects on materials must be addressed. Other issues concern the integration of the Power Conversion System components into a single vessel. These issues include the selection of key technologies for the power conversion components such as submerged generator, magnetic bearings, seals, compact heat exchangers, and the overall system layout.

Etzel, K.; Baccaglini, G.; Schwartz, A. [General Atomics, San Diego, CA (United States); Hillman, S.; Mathis, D. [AlliedSignal Aerospace, Tempe, AZ (United States)

1994-12-01T23:59:59.000Z

59

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect (OSTI)

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

60

Catalytic conversion of glycerol to oxygenated fuel additive in a continuous flow reactor: Process optimization  

E-Print Network [OSTI]

Catalytic conversion of glycerol to oxygenated fuel additive in a continuous flow reactor: Process optimization Malaya R. Nanda a , Zhongshun Yuan a , Wensheng Qin b , Hassan S. Ghaziaskar c , Marc for synthesis of solketal from glycerol was optimized. A maximum yield of 94 ± 2% was obtained at optimum

Qin, Wensheng

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Flow-through biological conversion of lignocellulosic biomass  

DOE Patents [OSTI]

The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.

Herring, Christopher D.; Liu, Chaogang; Bardsley, John

2014-07-01T23:59:59.000Z

62

REDUCING MISMATCH LOSSES IN GRID-CONNECTED RESIDENTIAL BIPV ARRAYS USING ACTIVE POWER CONVERSION COMPONENTS  

E-Print Network [OSTI]

in plant energy production. The introduction of additional power converters in the plant layout intends/Simulink© environment for each topology using a 3 kWp rooftop-type plant. Simulation results show that a considerableREDUCING MISMATCH LOSSES IN GRID-CONNECTED RESIDENTIAL BIPV ARRAYS USING ACTIVE POWER CONVERSION

Paris-Sud XI, Université de

63

Structural Detuning of Pump Absorption Rate in Doped Fiber for the Enhancement of Power Conversion Efficiency  

E-Print Network [OSTI]

Structural Detuning of Pump Absorption Rate in Doped Fiber for the Enhancement of Power Conversion Doped Fiber Amplifier. With proper adjustments on doping profiles for the reduction of pump absorption rate, it becomes possible to optimize pump evolution map inside the doped fiber to get better power

Park, Namkyoo

64

Design, Analysis and Optimization of the Power Conversion System for the Modular Pebble Bed Reactor System  

E-Print Network [OSTI]

Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion for the gas turbine cycle. The development of an initial reference design for an indirect helium cycle has for the system. Load transients simulations show that the indirect, three-shaft arrangement gas turbine power

65

Human Factors Aspects of Power System Flow Animation  

E-Print Network [OSTI]

into utility control centers. For example, [1] and [2] describe the on-line usage of animated flows, voltageHuman Factors Aspects of Power System Flow Animation Douglas A. Wiegmann, Gavin R. Essenberg flow information, including transmission line MW flow and power transfer distribution factor (PTDF

66

Stirling engine power control and motion conversion mechanism  

DOE Patents [OSTI]

A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.

Marks, David T. (Birmingham, MI)

1983-01-01T23:59:59.000Z

67

Geometry of Power Flows in Tree Networks  

E-Print Network [OSTI]

We investigate the problem of power flow and its relationship to optimization in tree networks by looking at the injection regions of the networks. The injection region is the set of all vectors of bus power injections that satisfy the network and operation constraints. The geometrical object of interest is the set of Pareto-optimal points of the injection region, since they are the solutions to the minimization of increasing functions. If the voltage magnitudes are fixed, the injection region of a tree network can be written as a linear transformation of the product of two-bus injection regions, one for each line in the network. Using this decomposition, we show that under the practical condition that the angle difference across each line is not too large, the set of Pareto-optimal points of the injection region remains unchanged by taking the convex hull. Therefore, the optimal power flow problem can be convexified and efficiently solved. This result improves upon earlier works by removing the assumptions o...

Lavaei, Javad; Zhang, Baosen

2012-01-01T23:59:59.000Z

68

Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing  

SciTech Connect (OSTI)

GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grid’s devices clamp onto existing transmission lines and control the flow of power within—much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid’s inability to effectively store intermittent energy from renewables for later use.

None

2012-04-24T23:59:59.000Z

69

Multi-objective Optimal Power Flows to Evaluate Voltage Security Costs in Power Networks  

E-Print Network [OSTI]

1 Multi-objective Optimal Power Flows to Evaluate Voltage Security Costs in Power Networks William Abstract-- In this paper, new optimal power flow (OPF) tech- niques are proposed based on multi- dard power flow models. The results obtained using the proposed mixed OPFs are compared and analyzed

Cañizares, Claudio A.

70

Power Flow Controller for Renewables: Transformer-less Unified Power Flow Controller for Wind and Solar Power Transmission  

SciTech Connect (OSTI)

GENI Project: MSU is developing a power flow controller to improve the routing of electricity from renewable sources through existing power lines. The fast, innovative, and lightweight circuitry that MSU is incorporating into its controller will eliminate the need for a separate heavy and expensive transformer, as well as the construction of new transmission lines. MSU’s controller is better suited to control power flows from distributed and intermittent wind and solar power systems than traditional transformer-based controllers are, so it will help to integrate more renewable energy into the grid. MSU‘s power flow controller can be installed anywhere in the existing grid to optimize energy transmission and help reduce transmission congestion.

None

2012-02-08T23:59:59.000Z

71

Startup Design Features for Supercritical Power Conversion Systems - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4 ByWatching IonsStar Power Star

72

Distribution Power Flow in IRW Group Meeting  

E-Print Network [OSTI]

in and power out (sum of 3 phases) Power losses Power in & out A, Current in & out A, Power loss A Power in & out B, Current in & out B, Power loss B Power in & out C, Current in & out C, Power loss C Status

Tesfatsion, Leigh

73

Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /  

E-Print Network [OSTI]

both AC drives and wind energy Turbine, shaft, and Gear BoxWind Energy Conversion Systems using Extremum Seeking Wind turbines (wind energy generation can be realized by capturing wind power at altitudes over the ground that cannot be reached by wind turbines.

Ghaffari, Azad

2013-01-01T23:59:59.000Z

74

High-power parametric conversion from near-infrared to short-wave infrared  

E-Print Network [OSTI]

High-power parametric conversion from near-infrared to short-wave infrared Adrien Billat,1,* Steevy.billat@epfl.ch Abstract: We report the design of an all-fiber continuous wave Short-Wave Infrared source capable to output.4370) Nonlinear optics, fibers; (140.3070) Infrared and far-infrared lasers. References and links 1. M. N

Dalang, Robert C.

75

Abstract: Wind Energy Conversion Systems (WECS) produce fluctuating output power, which may cause voltage fluctuations and  

E-Print Network [OSTI]

: An approach to model the solar cell system with coupled multi-physics equations (photovoltaic, electrothermalAbstract: Wind Energy Conversion Systems (WECS) produce fluctuating output power, which may cause in a network of any size can be performed. An algorithm for flicker measurement in the frequency do- main

Gross, George

76

Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications  

SciTech Connect (OSTI)

There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.

Edwin A. Harvego; Michael G. McKellar

2011-05-01T23:59:59.000Z

77

228 POWER FLOW ANALYSIS parties, it is crucial to recognize the inherently subjective nature of OPF. Power flow  

E-Print Network [OSTI]

228 POWER FLOW ANALYSIS parties, it is crucial to recognize the inherently subjective nature of OPF. Power flow analysis by itself basically answers a question of physics. By contrast, OPF answers criteria. In short, "optim- ality" does not arise from a power system's intrinsic technical properties

Kammen, Daniel M.

78

Transaction Based Power Flow Analysis For Transmission Utilization Allocation  

E-Print Network [OSTI]

transactions as well as the effect of reactive power on transmission losses and active power flows. Two the electric power industry moves into an era of supply competition and consumer choice, the power system electricity market at the ex ante phase; (ii) MW generations are decided by bilateral contracts and other

79

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 25, NO. 3, SEPTEMBER 2010 901 Benefits of Power Electronic Interfaces  

E-Print Network [OSTI]

to understand the integration of these systems with the electric power systems. New markets and benefits for DE current, interconnection, interface, inverter, microgrid, power electronics (PE), power quality. IIEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 25, NO. 3, SEPTEMBER 2010 901 Benefits of Power

Simões, Marcelo Godoy

80

Highly-Efficient Thermoelectronic Conversion of Solar Energy and Heat into Electric Power  

E-Print Network [OSTI]

Electric power may, in principle, be generated in a highly efficient manner from heat created by focused solar irradiation, chemical combustion, or nuclear decay by means of thermionic energy conversion. As the conversion efficiency of the thermionic process tends to be degraded by electron space charges, the efficiencies of thermionic generators have amounted to only a fraction of those fundamentally possible. We show that this space-charge problem can be resolved by shaping the electric potential distribution of the converter such that the static electron space-charge clouds are transformed into an output current. Although the technical development of practical generators will require further substantial efforts, we conclude that a highly efficient transformation of heat to electric power may well be achieved.

Meir, S; Geballe, T H; Mannhart, J

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /  

E-Print Network [OSTI]

77 5.2 Wind Energy Conversion System . . . . .Optimization and Control in Wind Energy Conversion SystemsAC matrix con- verter for wind energy conversion system,” in

Ghaffari, Azad

2013-01-01T23:59:59.000Z

82

Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp Petar Ljusev, Michael A.E. Andersen  

E-Print Network [OSTI]

Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp Petar discusses the advantages and problems when implementing direct energy conversion switching-mode audio power on a direct-conversion switching-mode audio power ampli- fier with active capacitive voltage clamp

83

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network [OSTI]

- BACKGROUND: In December 2009, the Combined Heat and Power Plant at Cornell Cornell's conversion of a coal fired heating plant to natural Gas the power plant #12;

Keinan, Alon

84

Plant Design and Cost Estimation of a Natural Circulation Lead-Bismuth Reactor with Helium Power Conversion Cycle  

E-Print Network [OSTI]

The analysis of an indirect helium power conversion system with lead-bismuth natural circulation primary system has been performed. The work of this report is focused on 1) identifying the allowable design region for the ...

Kim, D.

85

Plant Design and Cost Estimation of a Natural Circulation Lead-Bismuth Reactor with Steam Power Conversion Cycle  

E-Print Network [OSTI]

The analysis of an indirect steam power conversion system with lead-bismuth natural circulation primary system has been performed. The work of this report is focused on 1) identifying the allowable design region for the ...

Kim, D.

86

Stability-Constrained Optimal Power Flow and Its Application to Pricing Power System Stabilizers  

E-Print Network [OSTI]

locational marginal prices. A power system stabilizer (PSS) is then introduced in the test system, locational marginal prices, power system stabilizer, voltage stability. I. INTRODUCTION THE deregulation1 Stability-Constrained Optimal Power Flow and Its Application to Pricing Power System Stabilizers

Cañizares, Claudio A.

87

Super-radiant backward-wave oscillators with enhanced power conversion  

SciTech Connect (OSTI)

We propose a method for a very significant increase of the peak power of a backward-wave electron oscillator operating in the non-stationary regime of the super-radiation of short rf pulses. This method is based on sectioning: a regular self-oscillator section is supported with a section providing amplification of the super-radiant pulse. Profiling of a resonant parameter in the amplifying section is used to avoid the parasitic self-excitation and to increase the efficiency of the electron-wave interaction. In such systems, the conversion factor (the ratio between the rf pulse power and the electron beam power) can achieve a few hundred percent.

Rostov, V. V. [Institute of High Current Electronics, Siberian Branch of Russian Academy of Science, Tomsk (Russian Federation); Savilov, A. V. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia, and Lobachevsky State University of Nizhny Novgorod (Russian Federation)

2013-02-15T23:59:59.000Z

88

Fuzzy modelling of power system optimal load flow  

SciTech Connect (OSTI)

In this paper, a fuzzy model for power system operation is presented. Uncertainties in loads and generations are modeled as fuzzy numbers. System behavior under known (while uncertain) injections is dealt with by a DC fuzzy power flow model. System optimal (while uncertain) operation is calculated with linear programming procedures where the problem nature and structure allows some efficient techniques such as Dantzig Wolfe decomposition and dual simplex to be used. Among the results, one obtains a fuzzy cost value for system operation and possibility distributions for branch power flows and power generations. Some risk analysis is possible, as system robustness and exposure indices can be derived and hedging policies can be investigated.

Miranda, V.; Saraiva, J.T. (FEUP, DEEC, Faculdade de Engenharia da Univ. do Porto, INESC, Inst. de Engenharia de Sistemas e Computadores, Lg de Mompilher 4000 Porto (PT))

1992-05-01T23:59:59.000Z

89

Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants  

SciTech Connect (OSTI)

The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

Bowyer, J.M.

1984-04-15T23:59:59.000Z

90

DC Optimal Power Flow: Uniqueness and Chee Wei Tan  

E-Print Network [OSTI]

and are computationally fast for practical smart power grids. I. BACKGROUND The Optimal Power Flow (OPF) problem network. The DC-OPF can be practically important in a smart grid, where there are renewables, e.g., solar implications on how algorithms can be designed to solve the OPF in a smart grid. Different from prior work

Tan, Chee Wei

91

Sequential Methods in Solving Economic Power Flow Problems  

E-Print Network [OSTI]

Sequential Methods in Solving Economic Power Flow Problems William D. Rosehart Claudio A. Ca and an interior point quadratic programmingalgorithm that are used to solve the opti- mal power ow problem be e ectively solved by approaching the optimal solution through the feasible region. Interior point

Cańizares, Claudio A.

92

Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)  

SciTech Connect (OSTI)

This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

1990-07-01T23:59:59.000Z

93

Generating expansion model incorporating compact DC power flow equations  

SciTech Connect (OSTI)

This paper presents a compact method of incorporating the spatial dimension into the generation expansion problem. Compact DC power flow equations are used to provide real-power flow coordination equations. Using these equations the marginal contribution of a generator to th total system loss is formulated as a function of that generator`s output. Incorporating these flow equations directly into the MIP formulation of the generator expansion problem results in a model that captures a generator`s true net marginal cost, one that includes both the cost of generation and the cost of transport. This method contrasts with other methods that iterate between a generator expansion model and an optimal power flow model. The proposed model is very compact and has very good convergence performance. A case study with data from Kenya is used to provide a practical application to the model.

Nderitu, D.G.; Sparrow, F.T.; Yu, Z. [Purdue Inst. for Interdisciplinary Engineering Studies, West Lafayette, IN (United States)

1998-12-31T23:59:59.000Z

94

5th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xian, China, 36 July 2005  

E-Print Network [OSTI]

5th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xian, such as hemangiomas and port wine stain (PWS) birthmarks, are congenital and pro- gressive vascular malformations of the dermis. To remove them, laser energy is irradiated at appropriate wavelengths inducing permanent thermal

Aguilar, Guillermo

95

Sandia National Laboratories: power flow control system  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobileparallelplantplasmapolymerpower flow control

96

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 24, NO. 1, MARCH 2009 125 Short-Term Prediction of Wind Farm Power  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 24, NO. 1, MARCH 2009 125 Short-Term Prediction of Wind Farm Power: A Data Mining Approach Andrew Kusiak, Member, IEEE, Haiyang Zheng, and Zhe Song, Student Member, IEEE Abstract--This paper examines time series models for predicting the power of a wind

Kusiak, Andrew

97

Proc. IEEE PowerTech, Bucharest, June 2009. 1 Abstract-Power flow studies are typically used to determine  

E-Print Network [OSTI]

Proc. IEEE PowerTech, Bucharest, June 2009. 1 Abstract-Power flow studies are typically used, and hence reliable solution algorithms that incorporate the effect of data uncertainty into the power flow to the power flow problem with uncertainties is explained in detail, and several numerical results

Cañizares, Claudio A.

98

Dynamic Power Flow Controller: Compact Dynamic Phase Angle Regulators for Transmission Power Routing  

SciTech Connect (OSTI)

GENI Project: Varentec is developing compact, low-cost transmission power controllers with fractional power rating for controlling power flow on transmission networks. The technology will enhance grid operations through improved use of current assets and by dramatically reducing the number of transmission lines that have to be built to meet increasing contributions of renewable energy sources like wind and solar. The proposed transmission controllers would allow for the dynamic control of voltage and power flow, improving the grid’s ability to dispatch power in real time to the places where it is most needed. The controllers would work as fail-safe devices whereby the grid would be restored to its present operating state in the event of a controller malfunction instead of failing outright. The ability to affordably and dynamically control power flow with adequate fail-safe switchgear could open up new competitive energy markets which are not possible under the current regulatory structure and technology base.

None

2012-01-03T23:59:59.000Z

99

Free Flow Power Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFluxInputDam PoolCounty, Maryland:Power

100

Outage Detection in Power Distribution Networks with Optimally-Deployed Power Flow Sensors  

E-Print Network [OSTI]

. When two-way communications from the operator and the smart meters are available, AMI polling has been deployed real-time power flow sensors and that of load estimates via Advanced Metering Infrastructure (AMI

Zhao, Yue

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept  

SciTech Connect (OSTI)

The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))

1988-10-01T23:59:59.000Z

102

A novel design for monolithic interconnected modules (MIMs) for thermophotovoltaic (TPV) power conversion  

SciTech Connect (OSTI)

The design for the fabrication of Monolithic Interconnected Modules (MIMs) for thermophotovoltaic (TPV) power conversion described in this paper utilizes a novel, interdigitated contacting scheme that increases the flexibility in the size of the component cells and hence the output current and voltage of the module. This flexibility is gained at the expense of only minimally increased grid obscuration. Because the design uses the grid fingers of the component cells as the interconnect structure, the area of the device used for this purpose becomes negligible. In this paper the authors report on the specifics of the design as well as issues related to the fabrication of the modules. Preliminary performance data for representative modules also are offered.

Ward, J.S.; Duda, A.; Wanlass, M.W. [National Renewable Energy Lab., Golden, CO (United States)] [and others

1997-06-01T23:59:59.000Z

103

Nonlinear optimal power flow 1.0 Some introductory comments  

E-Print Network [OSTI]

1 Nonlinear optimal power flow 1.0 Some introductory comments Although the LPOPF does bring computation. We will also see that the NLOPF admits additional control capabilities that can be very useful Define: ng: number of generators N: number of buses x: state vector u: control vector Ei

McCalley, James D.

104

Probabilistic Optimal Power Flow Applications to Electricity Markets  

E-Print Network [OSTI]

of electricity markets, special attention is paid to the uncertainty in Locational Marginal Prices (LMPs], [2]. In markets based on optimal power flows (OPF) to calculate electricity prices, one may use prices. Since OPF is a deterministic tool, it is necessary to complete many simulations to en- compass

Cañizares, Claudio A.

105

POWER FLOW ANALYSIS OF ELECTROSTRICTIVE ACTUATORS DRIVEN BYSWITCHMODE AMPLIFIERS  

E-Print Network [OSTI]

the actuator. INTRODUCTION Smart materials or smart structures are materials that contain actuators, sensors@vt.edu Journal on Intelligent Material Systems and Structures Vol. 9, No 3, March, 1998 pp. 210 - 222. Keywords: smart structures, smart skin, switchmode amplifiers, power flow analysis, electrostrictive actuators

Lindner, Douglas K.

106

Probabilistic Vulnerability Assessment Based on Power Flow and Voltage Distribution  

SciTech Connect (OSTI)

Risk assessment of large scale power systems has been an important problem in power system reliability study. Probabilistic technique provides a powerful tool to solve the task. In this paper, we present the results of a study on probabilistic vulnerability assessment on WECC system. Cumulant based expansion method is applied to obtain the probabilistic distribution function (PDF) and cumulative distribution function (CDF) of power flows on transmission lines and voltage. Overall risk index based on the system vulnerability analysis is calculated using the WECC system. The simulation results based on WECC system is used to demonstrate the effectiveness of the method. The methodology can be applied to the risk analysis on large scale power systems.

Ma, Jian; Huang, Zhenyu; Wong, Pak C.; Ferryman, Thomas A.

2010-04-30T23:59:59.000Z

107

Security Constrained Optimal Power Flow 1.0 Introduction and notation  

E-Print Network [OSTI]

1 Security Constrained Optimal Power Flow 1.0 Introduction and notation Figure 1 below compares the optimal power flow (OPF) with the security-constrained optimal power flow (SCOPF). Fig. 1 Some comments normal flow moves from just 100% of continuous rating. SCOPF differs from an OPF solution

McCalley, James D.

108

Improving the Power Conversion Efficiency of Ultrathin Organic Solar Cells by Incorporating Plasmonic Effects of Spheroidal Metallic Nanoparticles  

E-Print Network [OSTI]

Improving the Power Conversion Efficiency of Ultrathin Organic Solar Cells by Incorporating be exploited to achieve efficient harvesting of solar energy. Notably, the incorporation of plasmonic effects can allow the light harvesting capability of a solar cell to be maintained even as the thickness

Park, Namkyoo

109

84Unit Conversions Energy, Power, Flux Energy is measured in a number of ways depending on what property is being  

E-Print Network [OSTI]

kilowatt- hour (1 kWh)? Problem 4 ­ How many ergs of energy are collected from a solar panel on a roof, if the sunlight provides a flux of 300 Joules/sec/meter 2 , the solar panels have an area of 27 square feet84Unit Conversions ­ Energy, Power, Flux Energy is measured in a number of ways depending on what

110

Zero Duality Gap in Optimal Power Flow Problem Javad Lavaei and Steven H. Low  

E-Print Network [OSTI]

power flow (OPF) problem deals with finding an optimal operating point of a power system that mini1 Zero Duality Gap in Optimal Power Flow Problem Javad Lavaei and Steven H. Low Abstract--The optimal power flow (OPF) problem is nonconvex and generally hard to solve. In this paper, we propose

Low, Steven H.

111

A Comparison of the AC and DC Power Flow Models for LMP Calculations  

E-Print Network [OSTI]

A Comparison of the AC and DC Power Flow Models for LMP Calculations Thomas J. Overbye, Xu Cheng power flow model for LMP-based market calculations. The paper first provides a general discussion of balanced, three phase, electric power transmission networks is through the solution of the power flow. From

112

Friction pressure drop measurements and flow distribution analysis for LEU conversion study of MIT Research Reactor  

E-Print Network [OSTI]

The MIT Nuclear Research Reactor (MITR) is the only research reactor in the United States that utilizes plate-type fuel elements with longitudinal fins to augment heat transfer. Recent studies on the conversion to low-enriched ...

Wong, Susanna Yuen-Ting

2008-01-01T23:59:59.000Z

113

Geometry of Power Flows and Optimization in Distribution Networks Javad Lavaei, David Tse and Baosen Zhang  

E-Print Network [OSTI]

of the solution of the power flow problem, and (ii) the non-negativity of the locational marginal prices. Partial

Lavaei, Javad

114

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 2, MAY 2000 535 Stability-Constrained Optimal Power Flow  

E-Print Network [OSTI]

Power Flow Deqiang Gan, Member, IEEE, Robert J. Thomas, Fellow, IEEE, and Ray D. Zimmerman, Member, IEEE in the context of a 162-bus system. Index Terms--Power System, Transient Stability, Optimal Power Flow, Numerical, they do provide for a simple mapping between controllable generation dispatch and indices

115

1066 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 18, NO. 3, JULY 2003 P Characteristics for the Unified Power Flow  

E-Print Network [OSTI]

for the Unified Power Flow Controller--Analysis Inclusive of Equipment Ratings and Line Limits J. Z. Bebic, Member curves, power system dynamic stability, UPFC. I. INTRODUCTION THE UNIFIED power flow controller (UPFC) enables in- dependent and simultaneous control of a transmission line voltage, impedance, and phase angle

Lehn, Peter W.

116

Modified Centrality Measure Based on Bidirectional Power Flow for Smart and Bulk Power  

E-Print Network [OSTI]

the directionality of power flow of future smart grid. Appli- cability of the proposed method has been evaluated smart and new technologies by utilities [1]. The scope of smart grid includes various generation options systems is the most lucrative part of smart grid from the point of view of regulating energy usage. Excess

Pota, Himanshu Roy

117

Cold flow tudy of a fluidized bed reactor for catalytic conversion of methanol to low molecular weight hydrocarbons  

E-Print Network [OSTI]

for fixed H /0 ratio and average s particle diameter is shown in Figures 3 and 4 respectively. The smooth curve for the 5 micron plate reflects uniform density throughout the bed due to good distribution of the gas phase. The curves for the 40 and 100...COLD FLOW STUDY OF A FLUIDIZED BED REACTOR FOR CATALYTIC CONVERSION OF METHANOL TO LOW MOLECULAR WEIGHT HYDROCAREONS A Thesis by SHIRISH RAMNIKLAL MEHTA Submitted to the Graduate College of Texas A&M University in partial fulfilment...

Mehta, Shirish Ramniklal

1982-01-01T23:59:59.000Z

118

Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs  

SciTech Connect (OSTI)

This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

Yoder, G.L.

2005-10-03T23:59:59.000Z

119

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi'an, China, 11-15 July 2009  

E-Print Network [OSTI]

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi in pipeline transportation, where it is important to identify and control bottlenecks influence on production be viewed as the hydrodynamic equivalent of the Mach number for gas flows. Simplified hydraulic theories

Al Hanbali, Ahmad

120

MARTHA: Architecture for Control and Emulation of Power Electronics and Smart Grid Systems  

E-Print Network [OSTI]

conversion; (3) it allows for power flow control between an electric vehicle motor and battery; and (4 conversion technology [1] that enables efficient and fully controllable conversion of electrical power) it enables power grid dynamic stabilization. Power electronics could potentially reduce overall electricity

Devadas, Srinivas

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /  

E-Print Network [OSTI]

be realized by capturing wind power at altitudes over the2011. [2] ——, “High altitude wind power systems: A survey onOckels, “Optimal cross-wind towing and power generation with

Ghaffari, Azad

2013-01-01T23:59:59.000Z

122

Method and apparatus for low power analog-to-digital conversion  

DOE Patents [OSTI]

A method and apparatus for analog-to-digital conversion. An Analog-to-Digital Converter (ADC) includes M ADC.sub.j, j=1, 2, . . . , M. Each ADC.sub.j comprises a number of cells each of which comprises a first switch, a second switch, a current sink and an inverter. An inverter of a cell in an ADC.sub.j changes state in response to a current associate with an input signal of the ADC.sub.j exceeding a threshold, thus switching on the next cell. Each ADC.sub.j is enabled to perform analog-to-digital conversion on a residual current of a previous ADC.sub.j-1 after the previous ADC.sub.j-1 has completed its analog-to-digital conversion and has been disabled.

De Geronimo, Gianluigi; Nambiar, Neena

2013-10-01T23:59:59.000Z

123

The Hybrid Power Flow Controller A New Concept for Flexible AC Transmission  

E-Print Network [OSTI]

The Hybrid Power Flow Controller A New Concept for Flexible AC Transmission Jovan Z. Bebic Electric flow controller topologies are proposed for flexible AC transmission systems (FACTS). The first one or series capacitors can be enhanced to generalized power flow control ­ a functionality commonly associated

Lehn, Peter W.

124

Lunar Nuclear Power Plant With Solid Core Reactor, Heatpipes and Thermoelectric Conversion  

SciTech Connect (OSTI)

This is a lunar nuclear power plant with the advantages of minimum mass, with no moving parts, no pumped liquid coolant, a solid metal rugged core, with no single point of failure. The electrical output is 100 kilowatts with a 500 kilowatt thermal reactor. The thermoelectric converters surround the potassium heatpipes from the core and water heatpipes surround the converter and connect to the radiator. The solid core reactor is made from HT9 alloy. The fuel is uranium oxide with 90% enrichment. The thermoelectric converter is bonded to the outside of the 1.10 inch ID heat pipe and is 30 inches long. The thermoelectric couple is Si/SiGe-Si/SiC Quantum Well with over 20% efficiency with an 890 K hot side and a 490 K cold side and produces 625 Watts. 176 converters produce 110 kWe. With less than 10% loss in controls this yields 100 kWe for use. The cylindrical thermoelectric converter is designed and fabricated by HIPing to keep brittle materials in compression and to ensure conductivity. The solid core is fabricated by machining the heatpipe tubes with 6 grooves that are diffusion bonded together by HIPing to form the fuel tubes. The maximum temperature of the heat pipes is 940 K and the return flow temperature is 890 K. The reactor core is hexagonal shaped, 61 cm. wide and 76.2 cm high with 12 rotating control drums surrounding it. There is shielding to protect components and human habitation. The radiator is daisy shaped at 45 degrees with each petal 5.5 meters long. The design life is ten years.

Sayre, Edwin D. [Engineering Consultant, 218 Brooke Acres Drive, Los Gatos, CA 95032 (United States); Ring, Peter J. [Advanced Methods and Materials, 1190 Mountain View-Alviso Rd. Suite P, Sunnyvale, CA 94089 (United States); Brown, Neil [Engineering Consultant, 5134 Cordoy Lane, San Jose, CA 95124 (United States); Elsner, Norbert B.; Bass, John C. [Hi-Z Technology, Inc., 7606 Miramar Rd. Suite 7400, San Diego, CA 92126 (United States)

2008-01-21T23:59:59.000Z

125

Comparison of x ray computed tomography number to proton relative linear stopping power conversion functions using a standard phantom  

SciTech Connect (OSTI)

Purpose: Adequate evaluation of the results from multi-institutional trials involving light ion beam treatments requires consideration of the planning margins applied to both targets and organs at risk. A major uncertainty that affects the size of these margins is the conversion of x ray computed tomography numbers (XCTNs) to relative linear stopping powers (RLSPs). Various facilities engaged in multi-institutional clinical trials involving proton beams have been applying significantly different margins in their patient planning. This study was performed to determine the variance in the conversion functions used at proton facilities in the U.S.A. wishing to participate in National Cancer Institute sponsored clinical trials. Methods: A simplified method of determining the conversion function was developed using a standard phantom containing only water and aluminum. The new method was based on the premise that all scanners have their XCTNs for air and water calibrated daily to constant values but that the XCTNs for high density/high atomic number materials are variable with different scanning conditions. The standard phantom was taken to 10 different proton facilities and scanned with the local protocols resulting in 14 derived conversion functions which were compared to the conversion functions used at the local facilities. Results: For tissues within ±300 XCTN of water, all facility functions produced converted RLSP values within ±6% of the values produced by the standard function and within 8% of the values from any other facility's function. For XCTNs corresponding to lung tissue, converted RLSP values differed by as great as ±8% from the standard and up to 16% from the values of other facilities. For XCTNs corresponding to low-density immobilization foam, the maximum to minimum values differed by as much as 40%. Conclusions: The new method greatly simplifies determination of the conversion function, reduces ambiguity, and in the future could promote standardization between facilities. Although it was not possible from these experiments to determine which conversion function is most appropriate, the variation between facilities suggests that the margins used in some facilities to account for the uncertainty in converting XCTNs to RLSPs may be too small.

Moyers, M. F., E-mail: MFMoyers@roadrunner.com [Shanghai Proton and Heavy Ion Center, Shanghai, China 201321 (China)

2014-06-15T23:59:59.000Z

126

Biogeography-Based Optimization and the Solution of the Power Flow Problem  

E-Print Network [OSTI]

for power utilities is the optimal power flow (OPF) problem which was introduced in 1962 by the French engineer Jules Carpentier [7]. A power utility may own power generating plants fueled by coal, natural gas absorbed by the loads plus the power losses that occur in the transmission system. Second, both the active

Simon, Dan

127

Optimal power flow in microgrids using event-triggered optimization Pu Wan and Michael D. Lemmon  

E-Print Network [OSTI]

Optimal power flow in microgrids using event-triggered optimization Pu Wan and Michael D. Lemmon Abstract-- Microgrids are power generation and distribution systems in which users and generators-triggered distributed optimization algorithm to solve the optimal power flow (OPF) problem in microgrids. Under event

Lemmon, Michael

128

Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions  

E-Print Network [OSTI]

Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions by Carl, Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions KTH Nuclear Reactor power is limited by a phenomenon called critical heat flux (CHF). It appears as a sudden detoriation

Haviland, David

129

Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications  

E-Print Network [OSTI]

Voltage DC (HVDC) technologies aim to improve the effi- ciency of power networks and benefit from high

McHenry, Michael E.

130

Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility  

E-Print Network [OSTI]

-cooled Fast Reactor (GFR), Lead-cooled Fast Reactor (LFR), Molten Salt Reactor (MSR), Sodium-cooled Fast Reactor (SFR), Supercritical-water-cooled Reactor (SCWR) and the Very-high-temperature Reactor (VHTR). An international effort to develop these new... and the hydrogen production plant4,5. Davis et al. investigated the possibility of helium and molten salts in the IHTL2. The thermal efficiency of the power conversion unit is paramount to the success of this next generation technology. Current light water...

Barner, Robert Buckner

2007-04-25T23:59:59.000Z

131

Magnetoelectric-field helicities and reactive power flows  

E-Print Network [OSTI]

The dual symmetry between the electric and magnetic fields underlies Maxwell's electrodynamics. Due to this symmetry one can describe topological properties of an electromagnetic field in free space and obtain the conservation law of optical (electromagnetic) helicity. What kind of the field helicity one can expect to see when the electromagnetic-field symmetry is broken? The near fields originated from small ferrite particles with magnetic dipolar mode (MDM) oscillations are the fields with the electric and magnetic components, but with broken dual (electric-magnetic) symmetry. These fields, called magnetoelectric (ME) fields, have topological properties different from such properties of electromagnetic fields. The helicity states of ME fields are topologically protected quantum like states. In this paper, we study the helicity properties of ME fields. We analyze conservation laws of the ME-field helicity and show that the helicity density is related to an imaginary part of the complex power flow density. We...

Kamenetskii, E O; Shavit, R

2015-01-01T23:59:59.000Z

132

Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow  

DOE Patents [OSTI]

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

Pollock, George G. (San Ramon, CA)

1997-01-01T23:59:59.000Z

133

Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow  

DOE Patents [OSTI]

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

Pollock, G.G.

1997-01-28T23:59:59.000Z

134

Chip-Scale Power Conversion for LED Lighting: Integrated Power Chip Converter for Solid-State Lighting  

SciTech Connect (OSTI)

ADEPT Project: Teledyne is developing cost-effective power drivers for energy-efficient LED lights that fit on a compact chip. These power drivers are important because they transmit power throughout the LED device. Traditional LED driver components waste energy and don't last as long as the LED itself. They are also large and bulky, so they must be assembled onto a circuit board separately which increases the overall manufacturing cost of the LED light. Teledyne is shrinking the size and improving the efficiency of its LED driver components by using thin layers of an iron magnetic alloy and new gallium nitride on silicon devices. Smaller, more efficient components will enable the drivers to be integrated on a single chip, reducing costs. The new semiconductors in Teledyne's drivers can also handle higher levels of power and last longer without sacrificing efficiency. Initial applications for Teledyne's LED power drivers include refrigerated grocery display cases and retail lighting.

None

2010-10-01T23:59:59.000Z

135

E-Print Network 3.0 - alternate power conversion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clarkson University Collection: Engineering 2 EECS 498 Special Topic Grid Integration of Alternative Energy Summary: and design of alternative energy systems. Syllabus: 1. Power...

136

Conversion of raw carbonaceous fuels  

DOE Patents [OSTI]

Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

Cooper, John F. (Oakland, CA)

2007-08-07T23:59:59.000Z

137

Three-phase power conversion system for utility-interconnected PV applications. Phase 1 technical progress report, 1 October 1995--17 April 1997  

SciTech Connect (OSTI)

This report describes work performed by Omnion Power Corporation under Phase 1 of a two-phase subcontract. During this phase, Omnion researchers: designed an advanced product specification to guide prototype design and development; analyzed field failure data with Omnion`s hard-switched insulated-Gate Bipolar Transistor technology hardware to better understand where design improvements were needed; presented and reviewed product specifications with key customers/users; drafted a working product specification to serve as a baseline in developing the new power conversion system; developed the core-resonant converter technology in conjunction with Soft Switching Technologies Corp.; designed a 100-kW prototype power conversion system; designed a prototype system package; initiated interaction with vendors to optimize component selection and specifications; initiated the preparation of design documentation; built the prototype core-resonant converter and initiated preliminary testing; and initiated the assembly of a 1-kW prototype power conversion system. This work has demonstrated the potential of the soft-switching resonant DC link (RDCL) inverter and its application to a three-phase utility-interconnected PV power conversion system. The RDCL inverter has demonstrated its advantage over hard-switching pulse-width modulated inverters in terms of efficiency and audible noise. With proper package design and manufacturing process design and implementation, the RDCL power conversion system has the potential to be low-cost and reliable with superior performance.

Porter, D.G.; Meyer, H.; Leang, W. [Omnion Power Engineering Corp., East Troy, WI (United States)

1998-02-01T23:59:59.000Z

138

On the model discriminating power of mu to e conversion in nuclei  

SciTech Connect (OSTI)

Lepton Flavor Violating (LFV) charged lepton decays provide a highly sensitive probe of physics beyond the Standard Model (SM), due to the un-observably small branching fractions ({approx}10{sup -50}) predicted for these modes in the SM (minimally extended to include massive neutrinos). Searches for SM forbidden muon processes, such as {mu} {yields} e{gamma}, {mu} {yields} e{bar e}e, and {mu} {yields} e conversion in nuclei, have provided so far the strongest constraints on LFV new physics. This statement can be characterized in a model-independent way as a lower bound on the scale associated to a set of dimension six effective operators parameterizing new physics beyond the SM. It is a well known fact that while the decay {mu} {yields} e{gamma} is only sensitive to a transition magnetic dipole operator, both {mu} {yields} e{bar e}e and {mu} {yields} e conversion in nuclei are sensitive to transition charge radii operators as well as purely contact four-fermion interactions induced by physics beyond the SM. In other words, different LFV decays have different sensitivities to underlying LFV mechanisms (effective operators). This leads naturally to ask the question whether one could infer the relative strength of these different operators in a completely phenomenological and model-independent way. This would allow one to discriminate among different underlying models of LFV and thus would provide valuable input for model building. In Ref. [1] it was pointed out that in principle, by combining the rates of {mu} {yields} e{gamma} and {mu} {yields} e conversion on different target nuclei, one could discriminate underlying models. In this work we go back to this issue with the aim to: quantify the theoretical uncertainty induced by the hadronization process; and quantify the experimental precision required to realistically infer useful information on the underlying LFV mechanisms. We organize our discussion as follows: in Section 2 we review the derivation of the {mu} {yields} e conversion rate starting from a general effective theory description of the LFV physics. In Section 3 we explore the phenomenological consequence of the simplest possible models, in which only one effective LFV operator dominates. We extend this analysis in Section 4 to the class of models in which two operators dominate. In Section 5 we specialize our discussion to the SUSY see-saw model and summarize the conclusions of our analysis in Section 6.

Cirigliano, Vincenzo [Los Alamos National Laboratory; Kitano, Ryuichiro [JAPAN; Okada, Yashuiro [JAPAN; Tuzon, Paulo [ITALY

2009-01-01T23:59:59.000Z

139

A Set-Theoretic Framework to Assess the Impact of Variable Generation on the Power Flow  

E-Print Network [OSTI]

penetration of renewable resources of electricity, such as wind and solar, into existing power systems. Since renewable resources vary in rated power output and point of grid interconnection, they affect power systems1 A Set-Theoretic Framework to Assess the Impact of Variable Generation on the Power Flow Xichen

Liberzon, Daniel

140

Control and design of multi-use induction machines : traction, generation, and power conversion  

E-Print Network [OSTI]

An electrical machine can be made to convert electrical power while performing in its primary role of transforming electrical energy into mechanical energy. One way of doing this is to design the machine with multiple ...

Avestruz, Al-Thaddeus

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Oil to Coal Conversion of Power and Industrial Facilities in the Dominican Republic  

E-Print Network [OSTI]

Realizing that the use of coal has the potential to offset the effects of world oil prices on the Dominican Republic's economy, the Commission Nacional de Politica Energetica (CNPE) requested Bechtel Power Corporation to study the technical...

Causilla, H.; Acosta, J. R.

1982-01-01T23:59:59.000Z

142

Where solar thermal meets photovoltaic for high-efficiency power conversion  

E-Print Network [OSTI]

To develop disruptive techniques which generate power from the Sun, one must understand the aspects of existing technologies that limit performance. Solar thermal and solar photovoltaic schemes dominate today's solar market ...

Bierman, David M. (David Matthew)

2014-01-01T23:59:59.000Z

143

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect (OSTI)

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

144

Efficient Switches for Solar Power Conversion: Four Quadrant GaN Switch Enabled Three Phase Grid-Tied Microinverters  

SciTech Connect (OSTI)

Solar ADEPT Project: Transphorm is developing power switches for new types of inverters that improve the efficiency and reliability of converting energy from solar panels into useable electricity for the grid. Transistors act as fast switches and control the electrical energy that flows in an electrical circuit. Turning a transistor off opens the circuit and stops the flow of electrical current; turning it on closes the circuit and allows electrical current to flow. In this way a transistor can be used to convert DC from a solar panel into AC for use in a home. Transphorm’s transistors will enable a single semiconductor device to switch electrical currents at high-voltage in both directions—making the inverter more compact and reliable. Transphorm is using Gallium Nitride (GaN) as a semiconductor material in its transistors instead of silicon, which is used in most conventional transistors, because GaN transistors have lower losses at higher voltages and switching frequencies.

None

2012-02-13T23:59:59.000Z

145

Electronic Power Conversion System for an Advanced Mobile Generator Set Leon M. Tolbert1,3  

E-Print Network [OSTI]

. The military generator set uses an internal combustion diesel engine to drive a radial-gap permanent magnet. The variable frequency, variable voltage produced by the permanent magnet alternator is diode-rectified to dc synchronous machines are presently used to convert the mechanical power of the rotating shaft into three

Tolbert, Leon M.

146

North American Power Symposium NAPS, Cleveland, Ohio, October 1998, pp. 294 299. Fundamental Frequency Model of Uni ed Power Flow Controller  

E-Print Network [OSTI]

Frequency Model of Uni ed Power Flow Controller Edvina Uzunovic Claudio A. Ca~nizares John Reeve University and modeling technique used to rep- resent a Uni ed Power Flow Controller UPFC are presented in this paper, Static Synchronous Series Compensator SSSC, and Uni- ed Power Flow Controller UPFC 2 . The STATCOM

Cañizares, Claudio A.

147

Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant  

E-Print Network [OSTI]

Energy Conversion unit mass mass flow rate life of system Ocean Thermal Energy Conversion power pressure heat flow Rl R4 TGUC TP T2 total primary energy subsidy expressed as BTU input per 1000 BTU output thermal energy subsidy expressed... has grown in energy technologies that use renewable resources such as solar (thermal conversion, ocean thermal energy conversion, photovoltaics, wind and biomass conversion), geothermal and magnetohydrodynamics (MHD) . A new concept that can...

Raiji, Ashok

1980-01-01T23:59:59.000Z

148

Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen  

DOE Patents [OSTI]

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

1986-01-28T23:59:59.000Z

149

A Novel Power Flow Method for Long Term Frequency Stability Analysis  

E-Print Network [OSTI]

This thesis presents a novel approach for a power system to find a practical power flow solution when all the generators in the system have hit their real power output limits, such as some generator units shutting down or load outages. The approach...

Yan, Wenjin

2013-05-06T23:59:59.000Z

150

A Power-Law Formulation of Laminar Flow in Short Pipes Max Sherman  

E-Print Network [OSTI]

A Power-Law Formulation of Laminar Flow in Short Pipes Max Sherman Indoor Environment Program ABSTRACT This report develops a theoretical description of the hydrodynamic relationship based on a power pipes can be described with a simple power law dependence on pressure, but that the exponent

151

Flow Shop Scheduling with Peak Power Consumption Constraints  

E-Print Network [OSTI]

To conduct our experiments, we considered a hypothetical flow shop scheduling ... There are two types of machines with different operations: face milling. 16 ...

2012-09-23T23:59:59.000Z

152

A three phase load flow algorithm for Shipboard Power Systems  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . 3, 5 Network Representation 3. 6 Component Modeling. 3. 7 Integration of Methodology and Component Modeling . . . 3. 8 Chapter Summary. IV Load Flow Algorithm. . 4. 1 Introduction. 4. 2 Load Flow Algorithm. 4. 3 Application of Load Flow... Algorithm. . 4. 4 Summary of Load Flow Algorithm. 4. 5 Chapter Summary. . nl V1 vn 1X 1 3 5 5 8 15 16 16 18 23 26 27 50 53 54 54 54 69 79 79 CHAPTER V RESULTS AND CONCLUSIONS . . 5. 1 Introduction . . 5. 2 IEEE 37 Bus Radial...

Medina-Calder?on, M?onica M

2003-01-01T23:59:59.000Z

153

Design issues concerning Iran`s Bushehr nuclear power plant VVER-1000 conversion  

SciTech Connect (OSTI)

On January 8, 1995, the Atomic Energy Organization of Iran (AEOI) signed a contract for $800 million with the Russian Federation Ministry for Atomic Energy (Minatom) to complete Bushehr nuclear power plant (BNPP) unit 1. The agreement called for a Russian VVER-1000/320 pressurized water reactor (PWR) to be successfully installed into the existing German-built BNPP facilities in 5 yr. System design differences, bomb damage, and environmental exposure are key issues with which Minatom must contend in order to fulfill the contract. The AEOI under the Shah of Iran envisioned Bushehr as the first of many nuclear power plants, with Iran achieving 24 GW(electric) by 1993 and 34 GW(electric) by 2000. Kraftwerk Union AG (KWU) began construction of the two-unit plant near the Persian Gulf town of Halileh in 1975. Unit 1 was {approx}80% complete and unit 2 was {approx}50% complete when construction was interrupted by the 1979 Iranian Islamic revolution. Despite repeated AEOI attempts to lure KWU and other companies back to Iran to complete the plant, Western concerns about nuclear proliferation in Iran and repeated bombings of the plant during the 1980-1988 Iran-Iraq war dissuaded Germany from resuming construction.

Carson, C.F. [Lawrence Livermore National Laboratory, CA (United States)

1996-12-31T23:59:59.000Z

154

Photon self-induced spin-to-orbital conversion in a terbium-gallium-garnet crystal at high laser power  

SciTech Connect (OSTI)

In this paper, we present experimental evidence of a third-order nonlinear optical process, self-induced spin-to-orbital conversion (SISTOC) of the photon angular momentum. This effect is the physical mechanism at the origin of the depolarization of very intense laser beams propagating in isotropic materials. The SISTOC process, like self-focusing, is triggered by laser heating leading to a radial temperature gradient in the medium. In this work we tested the occurrence of SISTOC in a terbium-gallium-garnet rod for an impinging laser power of about 100 W. To study the SISTOC process we used different techniques: polarization analysis, interferometry, and tomography of the photon orbital angular momentum. Our results confirm, in particular, that the apparent depolarization of the beam is due to the occurrence of maximal entanglement between the spin and orbital angular momentum of the photons undergoing the SISTOC process. This explanation of the true nature of the depolarization mechanism could be of some help in finding novel methods to reduce or to compensate for this usually unwanted depolarization effect in all cases where very high laser power and good beam quality are required.

Mosca, S.; De Rosa, R.; Milano, L. [Dipartimento di Scienze Fisiche, Universita di Napoli 'Federico II', Complesso Universitario di Monte S. Angelo, 80126 Napoli (Italy); INFN Sezione di Napoli, Complesso Universitario di Monte S. Angelo, 80126 Napoli (Italy); Canuel, B.; Genin, E. [EGO, European Gravitational Observatory, Via E. Amaldi, 56021 S. Stefano a Macerata, Cascina (Italy); Karimi, E. [Dipartimento di Scienze Fisiche, Universita di Napoli 'Federico II', Complesso Universitario di Monte S. Angelo, 80126 Napoli (Italy); Piccirillo, B.; Santamato, E. [Dipartimento di Scienze Fisiche, Universita di Napoli 'Federico II', Complesso Universitario di Monte S. Angelo, 80126 Napoli (Italy); CNISM-Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Napoli (Italy); Marrucci, L. [Dipartimento di Scienze Fisiche, Universita di Napoli 'Federico II', Complesso Universitario di Monte S. Angelo, 80126 Napoli (Italy); CNR-INFM Coherentia, Complesso Universitario di Monte S. Angelo, 80126 Napoli (Italy)

2010-10-15T23:59:59.000Z

155

COMPLETELY DC-FREE DIRECT SEQUENCE SPECTRUM SPREADING SCHEME FOR LOW POWER, LOW COST, DIRECT CONVERSION TRANSCEIVER  

E-Print Network [OSTI]

call the offset code spreading scheme. By employing the scheme, we can implement a direct- conversion- level design. The direct conversion receiver architecture combined with D-BPSK (differential, there are some design problems. In a direct conversion receiver, DC offset due to carrier leakage and 1/f mixer

Lee, Thomas H.

156

Numerical Analysis of Fifth-Harmonic Conversion of Low-Power Pulsed Nd:YAG Laser with Resonance of Second Harmonic  

E-Print Network [OSTI]

Numerical Analysis of Fifth-Harmonic Conversion of Low-Power Pulsed Nd:YAG Laser with Resonance of Second Harmonic Lien-Bee CHANG1Ă? , S. C. WANG1 and A. H. KUNG1;2 1 Institute of Electro March 13, 2003) A model for the fifth-harmonic generation of pulsed IR lasers involving an external ring

Kung, Andy

157

Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle  

SciTech Connect (OSTI)

The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

None

2012-01-31T23:59:59.000Z

158

Distributed series reactance: a new approach to realize grid power flow control.  

E-Print Network [OSTI]

??The objective of the proposed research is to develop a cost-effective power flow controller to improve the utilization and reliability of the existing transmission, sub-transmission,… (more)

Johal, Harjeet

2008-01-01T23:59:59.000Z

159

Analysis of operating data related to power and flow distribution in a PWR  

E-Print Network [OSTI]

The analysis of the effects of the uncertainties associated with temperature and power measurements in the Connecticut Yankee Reactor leads to the evaluation of the uncertainty associated with the effective flow factor. ...

Herbin, Henry Christophe

1974-01-01T23:59:59.000Z

160

Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson...  

Open Energy Info (EERE)

do not have control signal or no loop in the system It only used deterministic optimization The power flow was static state. Question: Did they simulate the case or they have...

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Free Flow Power Partners to Improve Hydrokinetic Turbine Performance...  

Office of Environmental Management (EM)

as the device performed as expected, with no discernible harm to river-dwelling fish. Free Flow has also completed preliminary designs of utility-scale installations at a...

162

An Equivalent Network for Load-Flow Analysis of Power Systems  

E-Print Network [OSTI]

AN EQUIVALENT NETWORK FOR LOAD-FLOW ANALYSIS OF POWER SYSTEMS A Thesis by Meri on L. Johnson Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partihl fulfillment of the requirements for the degree... of MASTER OF SCIENCE May, 1960 Major Subject: Electrical Engineering AN EQUIVALENT NETWORK FOR LOAD-FLOW ANALYSIS OF POWER SYSTEMS A Thesis By Merion L. Johnson Approv as to style a d content by (Chairman of Co ittee ) (Head of Department...

Johnson, Merion Luke

1960-01-01T23:59:59.000Z

163

Optimal mixing and optimal stirring for fixed energy, fixed power or fixed palenstrophy flows  

E-Print Network [OSTI]

Optimal mixing and optimal stirring for fixed energy, fixed power or fixed palenstrophy flows-time perfect mixing with a finite energy constraint on the stirring flow. On the other hand, using techniques, University of Michigan, Ann Arbor, MI 48109 (Dated: 31 March 2012) We consider passive scalar mixing

Novikov, Alexei

164

Application of Flow Battery in Marine Current Turbine System for Daily Power Management  

E-Print Network [OSTI]

focuses on a grid-connected MCT system and proposes using vanadium redox flow battery (VRB) energy storage/energy sizing. In this paper, one grid-connected MCT generation system with battery energy storage system (BESSApplication of Flow Battery in Marine Current Turbine System for Daily Power Management Zhibin Zhou

Brest, Université de

165

Interline Photovoltaic (I-PV) power system - A novel concept of power flow control and management  

E-Print Network [OSTI]

This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system ...

Khadkikar, Vinod

166

Islanding model for preventing wide-area blackouts and the issue of local solutions of the optimal power flow problem.   

E-Print Network [OSTI]

Optimization plays a central role in the control and operation of electricity power networks. In this thesis we focus on two very important optimization problems in power systems. The first is the optimal power flow ...

Bukhsh, Waqquas Ahmed

2014-07-01T23:59:59.000Z

167

Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems  

SciTech Connect (OSTI)

Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

Yoder, JR.G.L.

2006-03-08T23:59:59.000Z

168

Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units with  

E-Print Network [OSTI]

of virtual impedance parameters and (ii) higher accuracy in reactive power flow calculation. The improved With larger portion of growing electricity demand which is being fed through distributed generation (DG, in order to decouple real and reactive power, to increase the stability margin and also to improve

Chaudhary, Sanjay

169

Similarity flow solutions of a non-Newtonian power-law fluid Mohamed Guedda, Zakia Hammouch  

E-Print Network [OSTI]

for a steady-state laminar bound- ary layer flow, governed by the Ostwald-de Wael power-law model-Newtonian fluid mechanics is the Ostwald-de Wael model (with a power-law rheology [2, 3, 4, 5, 6]), which

Paris-Sud XI, Université de

170

An Optimal Power Flow (OPF) Method with Improved Power System Stability  

E-Print Network [OSTI]

) operating values, on-load tap changer (OLTC) positions and number of reactive power compensation equipments

Chen, Zhe

171

High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host  

DOE Patents [OSTI]

A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

Comaskey, Brian J. (Walnut Creek, CA); Ault, Earl R. (Livermore, CA); Kuklo, Thomas C. (Oakdale, CA)

2005-07-05T23:59:59.000Z

172

DC Optimal Power Flow Formulation in AMES Leigh Tesfatsion  

E-Print Network [OSTI]

@iastate.edu, http://www.econ.iastate.edu/tesfatsi/ Fig. 1. AMES day-ahead energy market activities during each day D wholesale power market testbed. I. AMES TESTBED The latest version of AMES (Agent-based Modeling.econ.iastate.edu/tesfatsi/AMESLMPDetermination.LT.pdf this objective, the ISO operates a day-ahead energy market settled by means of LMP. The welfare of each LSE j

Tesfatsion, Leigh

173

Optimal Power Flow Formulation in Market of Retail Wheeling Taiyou Yong, Student Member, IEEE Robert Lasseter, Fellow, IEEE  

E-Print Network [OSTI]

power plants, nuclear power plants etc and selling power to consumers. The suppliers have contractsOptimal Power Flow Formulation in Market of Retail Wheeling Taiyou Yong, Student Member, IEEE at Madison, Madison, Wisconsin, USA Abstract: Power system deregulation along with retail wheeling

174

IEEE TRANS. ON CONTROL OF NETWORK SYSTEMS, JUNE 2014 (WITH PROOFS) 1 Convex Relaxation of Optimal Power Flow  

E-Print Network [OSTI]

to optimize a certain objective function, such as power loss, generation cost and/or user utilities, subject Power Flow Part II: Exactness Steven H. Low Electrical Engineering, Computing+Mathematical Sciences recent advances in the convex relaxation of the optimal power flow (OPF) problem, focusing on structural

Low, Steven H.

175

GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Global energy conversion rate from geostrophic flows into  

E-Print Network [OSTI]

, and to bottom velocity obtained from a global ocean model. The total energy flux into internal lee wavesGEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Global energy conversion rate from distribution of the energy flux is largest in the Southern Ocean which accounts for half of the total energy

Ferrari, Raffaele

176

Power Generation and Power Use Decisions in an Industrial Process  

E-Print Network [OSTI]

of power generation and power use economics, most people want to under stand power generation. The primary questions usually relate to increasing the amount of power available, starting with a high pressure steam turbine or a gas turbine. They are "How... pressure Tsink OF temperature corresponding to outlet pressure Qsource = steam flow in Btu per hour Wideal Ideal power produced in Btu per hour 460 Conversion to absolute tempera ture "R From here, knowing the efficiency of the turbine...

Gilbert, J. S.; Niess, R. C.

177

Near and far field models of external fluid mechanics of Ocean Thermal Energy Conversion (OTEC) power plants  

E-Print Network [OSTI]

The world is facing the challenge of finding new renewable sources of energy - first, in response to fossil fuel reserve depletion, and second, to reduce greenhouse gas emissions. Ocean Thermal Energy Conversion (OTEC) can ...

Rodríguez Buńo, Mariana

2013-01-01T23:59:59.000Z

178

Centralized wind power plant voltage control with optimal power flow algorithm.  

E-Print Network [OSTI]

??This thesis presents a method of controlling the reactive power injected into a medium-voltage collection system by multiple wind turbine generators such that the voltage… (more)

Kline, Jared Andrew

2011-01-01T23:59:59.000Z

179

Parallel computation of Gauss-Seidel type algorithms for power flow analysis  

E-Print Network [OSTI]

, ' , are available. Stimulated by such availability, application oriented research has been initiated and has become fruitful in many areas. We will attempt to investigate some of the application issues in the area of power flow analysis. A power flow program... Line No. Bus No. Trans. No. Cap. No. Avg. Connection IEEE 14 IEEE 30 IEEE 57 IEEE 118 SCA SCB SCC SCD SCE SCF Texas 17 65 177 176 151 166 137 218 2834 14 30 57 118 133 150 128 131 105 168 2429 50 22 70 405 14 323 3...

Ongsakul, Weerakorn

1991-01-01T23:59:59.000Z

180

Nonlinear power flow control applications to conventional generator swing equations subject to variable generation.  

SciTech Connect (OSTI)

In this paper, the swing equations for renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generator system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. In particular, this approach extends the work done by developing a formulation which applies to a larger set of Hamiltonian Systems that has Nearly Hamiltonian Systems as a subset. The results of this research include the determination of the required performance of a proposed Flexible AC Transmission System (FACTS)/storage device to enable the maximum power output of a wind turbine while meeting the power system constraints on frequency and phase. The FACTS/storage device is required to operate as both a generator and load (energy storage) on the power system in this design. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generator system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate, and entropy rate.

Robinett, Rush D., III; Wilson, David Gerald

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Presentation from the...

182

Jacobian Singularities in Optimal Power Flow Problems Caused by Intertemporal Constraints  

E-Print Network [OSTI]

that are time-dependent such as generator ramp limits and specifically energy storage constraints may cause on the Newton-Raphson al- gorithm are widely used to solve Optimal Power Flow (OPF) and Economic Dispatch a storage device is integrated into a multi-timestep OPF problem and the optimal solution

Li, Xin

183

On the distributions of seasonal river flows: Lognormal or power law?  

E-Print Network [OSTI]

of extreme events, risk assessment for water supply, and environmental flow management, among many others of hydrological engineering, including optimal design of water storage and drainage networks, management. Having diverging moments, heavy-tailed power law distributions have attracted widespread attention

Gao, Jianbo

184

A New Model of Centrality Measure based on Bidirectional Power Flow for  

E-Print Network [OSTI]

power flow based model to evaluate the criticality in smart grid environment. Change in direction of smart grid includes various generation options, primarily in the distribution side ­ near consumers. Engagement of customers with the energy management systems is the most lucrative part of smart grid from

Pota, Himanshu Roy

185

A TWO-STAGE APPROACH TO SOLVING LARGE-SCALE OPTIMAL POWER FLOWS  

E-Print Network [OSTI]

A TWO-STAGE APPROACH TO SOLVING LARGE-SCALE OPTIMAL POWER FLOWS *F e l i x F. Wu George Gross James problem is formulated as an unconstrained minimization problem using penalty functions and i s solved ] and Sasson and Merrill [ 3 ] . The s i z e and t h e extensive amount of computation involved i n solving t h

Gross, George

186

Two-phase power-law modeling of pipe flows displaying shear-thinning phenomena  

SciTech Connect (OSTI)

This paper describes work in modeling concentrated liquid-solids flows in pipes. COMMIX-M, a three-dimensional transient and steady-state computer program developed at Argonne National Laboratory, was used to compute velocities and concentrations. Based on the authors` previous analyses, some concentrated liquid-solids suspension flows display shear-thinning rather than Newtonian phenomena. Therefore, they developed a two-phase non-Newtonian power-law model that includes the effect of solids concentration on solids viscosity. With this new two-phase power-law solids-viscosity model, and with constitutive relationships for interfacial drag, virtual mass effect, shear lift force, and solids partial-slip boundary condition at the pipe walls, COMMIX-M is capable of analyzing concentrated three-dimensional liquid-solids flows.

Ding, Jianmin; Lyczkowski, R.W.; Sha, W.T.

1993-12-31T23:59:59.000Z

187

HIGH-VOLTAGE LOW POWER ANALOGUE-TO-DIGITAL CONVERSION FOR ADAPTIVE ARCHITECTURES OF CAPACITIVE VIBRATION ENERGY  

E-Print Network [OSTI]

VIBRATION ENERGY HARVESTERS R. Khalil1* , A. Dudka1 , D. Galayko1 , P. Basset2 1 University Paris 6, LIP6 harvester for vibration energy. A smart energy management in the harvester is needed to achieve an optimal conversion of the vibration energy. This block is achieved with a successive approximation analogue

Boyer, Edmond

188

Hybridizing Energy Conversion and Storage in a Mechanical-to-Electrochemical Process for Self-Charging Power Cell  

E-Print Network [OSTI]

Hybridizing Energy Conversion and Storage in a Mechanical-to- Electrochemical Process for Self Information ABSTRACT: Energy generation and energy storage are two distinct processes that are usually and storage1-3 are the two most important technologies in today's green and renewable energy science, which

Wang, Zhong L.

189

Patient-specific hemodynamic performance of Fontan conversion templates: Lateral tunnel vs. intra-atrial with fenestration  

E-Print Network [OSTI]

. Results: Power loss inside the lateral tunnel Fontan appeared significantly higher than the intra-averaged power loss for both Fontan connections. Flow-structures within the intra-atrial conduit were notability connections: LT-to-IAC Fontan conversion resulted better hemodynamics with less power loss, pressure gradient

Pekkan, Kerem

190

Chance Constrained Optimal Power Flow: Risk-Aware Network Control under Uncertainty  

E-Print Network [OSTI]

When uncontrollable resources fluctuate, Optimum Power Flow (OPF), routinely used by the electric power industry to re-dispatch hourly controllable generation (coal, gas and hydro plants) over control areas of transmission networks, can result in grid instability, and, potentially, cascading outages. This risk arises because OPF dispatch is computed without awareness of major uncertainty, in particular fluctuations in renewable output. As a result, grid operation under OPF with renewable variability can lead to frequent conditions where power line flow ratings are significantly exceeded. Such a condition, which is borne by simulations of real grids, would likely resulting in automatic line tripping to protect lines from thermal stress, a risky and undesirable outcome which compromises stability. Smart grid goals include a commitment to large penetration of highly fluctuating renewables, thus calling to reconsider current practices, in particular the use of standard OPF. Our Chance Constrained (CC) OPF correct...

Bienstock, Daniel; Harnett, Sean

2012-01-01T23:59:59.000Z

191

A Transient Stability Constrained Optimal Power Flow Deqiang Gan (M) Robert J. Thomas (F) Ray D. Zimmerman (M)  

E-Print Network [OSTI]

1 A Transient Stability Constrained Optimal Power Flow Deqiang Gan (M) Robert J. Thomas (F) Ray D. The methodology involves a stability constrained Optimal Power Flow (OPF). The theoretical development between controllable generation dispatch and indices such as an energy margin, rotor angles, etc

192

Primus Power's Flow Battery Powered by $11 Million in Private Investment  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartment of EnergyPowering Curiosity: Lab Tech|

193

Solar Thermal Conversion  

SciTech Connect (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

194

Conversion, Fragmentation,  

E-Print Network [OSTI]

YFFReview Forestland Conversion, Fragmentation, and Parcelization A summary of a forum exploring our forests today. Development and economic pressures on private lands are driving conversion the complexity of factors influencing fragmentation--for example, historic land use planning policies

195

Stocks and Flows of U and Pu in a World with 3.6 TWe of Nuclear Power  

SciTech Connect (OSTI)

Integrated energy, environment, and economics models project that worldwide electrical energy use will increase to ?12 TWe in 2100 and nuclear power may be required to provide 3.6 TWe at this time. If pulverized coal without carbon sequestration were employed instead, the resulting incremental long-term global temperature rise would be about 2/3 deg C. Calculations are presented of the stocks and flows of uranium and plutonium associated with the scenario where this energy is provided by nuclear power. If only light-water reactors (LWRs) are used, the scenario consumes about 33.4 Mt of mined uranium. Continuing to operate the reactors in place in 2100 through the end of their assumed 60 year lifetime raises this to 59 Mt, 4.7x the NEA/ IAEA Redbook estimate for total discovered + undiscovered uranium. The waste corresponds to about 86x the legally defined capacity of Yucca Mtn. A case is also considered where a transition is begun to fast-spectrum reactors in 2040, both for a “balanced” system of LWRs and transuranic (TRU) burners with conversion ration (CR) = 0.5, and for a system of breeders. In the latter case we find that CR = 1.21 is adequate to replace all LWRs with breeders by 2100, using solely TRU from LWRs to start up the reactors – assuming reprocessed fuel is available for use two years after its removal from the reactor. The stock of plutonium circulating in the fast reactor system in 2100 is comparable to that which would have been buried in the LWR-only case. One year of fueling corresponds to 2,000 – 6,000t of Pu. Fusion energy, if first brought on line in mid-century, could in principle replace fast reactors in this scenario.

Robert J. Goldston

2012-08-10T23:59:59.000Z

196

Engineering Predictions in Industrial and Power Flows Using the Retrograde Condensation Curve. Part I-Methodology  

E-Print Network [OSTI]

Industrial and power systems rely on engineering predictions of the flow properties of working fluids. The paper proposes a way of the utilization of the vapor quality values along the new retrograde condensation curve in the generation of the void fraction design guidelines and reliable prediction of the saturated liquid specific volumes/densities. The new procedure eliminates the involvement of semi-empirical relationships like rectilinear diameter and other similar models.

Labinov, Mark S

2014-01-01T23:59:59.000Z

197

1112 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 25, NO. 4, DECEMBER 2010 Short-Horizon Prediction of Wind Power  

E-Print Network [OSTI]

(wind energy in particular) has grown sig- nificantly in the last years. As a relatively new industry, wind energy must address numerous questions, including providing accurate short-term prediction of wind of the generated power [1]. Long-term wind speed and power prediction is of interest to management of energy

Kusiak, Andrew

198

Using conversions of chemically reacting tracers for numerical determination of temperature profiles in flowing systems and temperature histories in batch systems  

SciTech Connect (OSTI)

This report presents the mathematical bases for measuring internal temperatures within batch and flowing systems using chemically reacting tracers. This approach can obtain temperature profiles of plug-flow systems and temperature histories within batch systems. The differential equations for reactant conversion can be converted into Fredholm integral equations of the first kind. The experimental variable is the tracer-reaction activation energy. When more than one tracer is used, the reactions must have different activation energies to gain information. In systems with temperature extrema, multiple solutions for the temperature profiles or histories can exist, When a single parameter in the temperature distribution is needed, a single-tracer test may furnish this information. For multi-reaction tracer tests, three Fredholm equations are developed. Effects of tracer-reaction activation energy, number of tracers used, and error in the data are evaluated. The methods can determine temperature histories and profiles for many existing systems, and can be a basis for analysis of the more complicated dispersed-flow systems. An alternative to using the Fredholm-equation approach is the use of an assumed temperature- distribution function and incorporation of this function into the basic integral equation describing tracer behavior. The function contains adjustable parameters which are optimized to give the temperature distribution. The iterative Fredholm equation method is tested to see what is required to discriminate between two models of the temperature behavior of Hot Dry Rock (HDR) geothermal reservoirs. Experimentally, ester and amide hydrolyses are valid HDR tracer reactions for measuring temperatures in the range 75-100{degrees}C. Hydrolyses of bromobenzene derivatives are valid HDR tracer reactions for measuring temperatures in the range 150-275{degrees}C.

Brown, L.F.; Chemburkar, R.M.; Robinson, B.A.; Travis, B.J.

1996-04-01T23:59:59.000Z

199

Similarity Flow Solutions of a Non-Newtonian Power-law Fluid  

E-Print Network [OSTI]

In this paper we present a mathematical analysis for a steady-state laminar boundary layer flow, governed by the Ostwald-de Wael power-law model of an incompressible non- Newtonian fluid past a semi-infinite power-law stretched flat plate with uniform free stream velocity. A generalization of the usual Blasius similarity transformation is used to find similarity solutions [1]. Under appropriate assumptions, partial differential equations are transformed into an autonomous third-order nonlinear degenerate ordinary differential equation with boundary conditions. Using a shooting method, we establish the existence of an infinite number of global unbounded solutions. The asymptotic behavior is also discussed. Some properties of those solutions depend on the viscosity power-law index.

Guedda, Mohamed

2009-01-01T23:59:59.000Z

200

Manufacture and properties of continuous grain flow crankshafts for locomotive and power generation diesel engines  

SciTech Connect (OSTI)

The bulk of the large crankshaft production volume is associated with the medium speed diesel engine market. These engines have seen intense development to obtain higher power outputs without change in the physical size of the crankshaft and at the same time there has been continuing pressure to reduce costs. Fatigue and bearing normal wear are the major technical hurdles that threaten the crankshaft life, and measures for dealing with these issues are described. Continuous grain flow (CGF) crankshafts are responsible for the continued integrity of these enhanced power output engines and the production of these crankshafts is described. Comparisons are made with the older slab forging crankshaft production method. The demand for the medium speed diesel engine and its natural gas derivative is strong and supports an aggressive engine building industry serving locomotive, marine and power generation markets. This demand in turn relies on practical national standards that serve the needs of the engine builder, material supplier and the end user.

Antos, D.J.; Nisbett, E.G. [National Forge Co., Irvine, PA (United States)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Utility-Scale Silicon Carbide Semiconductor: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion  

SciTech Connect (OSTI)

ADEPT Project: GeneSiC is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and electronic devices it's used in.GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can't process the high voltages that utility-scale power distribution requires, and they must be stacked in complicated circuits that require bulky insulation and cooling hardware. GeneSiC's semiconductors are well suited for high-power applications like large-scale renewable wind and solar energy installations.

None

2010-09-01T23:59:59.000Z

202

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network [OSTI]

proposed Ocean Thermal Energy Conversion (OTEC) sites toassessment: ocean thermal energy conversion (OTEC) program;operation of Ocean Thermal Energy Conversion (OTEC) power

Ryan, Constance J.

2013-01-01T23:59:59.000Z

203

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network [OSTI]

assessment: ocean thermal energy conversion (OTEC) program;proposed Ocean Thermal Energy Conversion (OTEC) sites tooperation of Ocean Thermal Energy Conversion (OTEC) power

Ryan, Constance J.

2013-01-01T23:59:59.000Z

204

Wind energy conversion system  

DOE Patents [OSTI]

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

205

Estimation of steady-state and transcient power distributions for the RELAP analyses of the 1963 loss-of-flow and loss-of-pressure tests at BR2.  

SciTech Connect (OSTI)

To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model and methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.

Dionne, B.; Tzanos, C. P. (Nuclear Engineering Division)

2011-05-23T23:59:59.000Z

206

Numerical Polynomial Homotopy Continuation Method to Locate All The Power Flow Solutions  

E-Print Network [OSTI]

The manuscript addresses the problem of finding all solutions of power flow equations or other similar nonlinear system of algebraic equations. This problem arises naturally in a number of power systems contexts, most importantly in the context of direct methods for transient stability analysis and voltage stability assessment. We introduce a novel form of homotopy continuation method called the numerical polynomial homotopy continuation (NPHC) method that is mathematically guaranteed to find all the solutions without ever encountering a bifurcation. The method is based on embedding the real form of power flow equation in complex space, and tracking the generally unphysical solutions with complex values of real and imaginary parts of the voltage. The solutions converge to physical real form in the end of the homotopy. The so-called $\\gamma$-trick mathematically rigorously ensures that all the paths are well-behaved along the paths, so unlike other continuation approaches, no special handling of bifurcations is necessary. The method is \\textit{embarrassingly parallelizable} and can be applied to reasonably large sized systems. We demonstrate the technique by analysis of several standard test cases up to the 14-bus system size. Finally, we discuss possible strategies for scaling the method to large size systems, and propose several applications for transient stability analysis and voltage stability assessment.

Dhagash Mehta; Hung Nguyen; Konstantin Turitsyn

2014-08-12T23:59:59.000Z

207

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

208

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on a OTR truck schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

209

AVTA: Vehicle to Grid Power Flow Regulations and Building Codes Review  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is a review of Vehicle-to-Grid power flow regulations and building codes, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

210

Preliminary studies on the heat exchanger option for S-CO{sub 2} power conversion cycle coupled to water cooled SMR  

SciTech Connect (OSTI)

For more than a half century, the steam Rankine cycle had been the major power conversion cycle for a nuclear power plant. However, as the interest on the next generation reactors grows, a variety of alternative power conversion systems have been studied. Among them, the S-CO{sub 2} cycle (Supercritical carbon dioxide Brayton cycle) is considered as a promising candidate due to several benefits such as 1) Relatively high thermal efficiency at relatively low turbine inlet temperature, 2) High efficiency with simple lay-out 3) Compactness of turbo-machineries. 4) Compactness of total cycle combined with PCHE (Printed Circuit Heat Exchanger). According to the conventional classification of heat exchangers (HE), there are three kind of HE, 1) Tubular HEs, 2) Plate-type HEs, 3) Extended surface HEs. So far, the researcher has mostly assumed PCHE type HE for the S-CO{sub 2} cycle due to its compactness with reasonably low pressure drop. However, PCHE is currently one of the most expensive components in the cycle, which can have a negative effect on the economics of the cycle. Therefore, an alternative for the HE should be seriously investigated. By comparing the operating condition (pressure and temperature) there are three kind of HE in the S-CO{sub 2} cycle, 1) IHX (Intermediate Heat exchanger) 2) Recuperator and 3) Pre-cooler. In each heat exchanger, hot side and cold side coolants are different, i.e. reactor coolant to S-CO{sub 2} (IHX), S-CO{sub 2} to S-CO{sub 2}(Recuperator), S-CO{sub 2} to water (Pre-cooler). By considering all the attributes mentioned above, all existing types of heat exchangers are compared to find a possible alternative to PCHE. The comparing factors are 1) Size(volume), 2) Cost. Plate fin type HEs are considered to be the most competitive heat exchanger regarding the size and the cost after some improvements on the design limit are made. (authors)

Ahn, Y.; Lee, J. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Lee, J. I. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Dept. of Nuclear Engineering, Khalifa Univ. of Science, Technology and Research (KUSTAR), P.O.Box 127788, Abu Dhabi (United Arab Emirates)

2012-07-01T23:59:59.000Z

211

The Coordinated Control of a Central Air Conditioning System Based on Variable Chilled Water Temperature and Variable Chilled Water Flow  

E-Print Network [OSTI]

At present, regulation of water flow by means of pump frequency conversion is one of the major methods for power-saving in central air conditioning systems. In this article, optimization regulation for central air conditioning system on the basis...

Liu, J.; Mai, Y.; Liu, X.

2006-01-01T23:59:59.000Z

212

On Reactive Power Flow and Voltage Stability in Microgrids Basilio Gentile, John W. Simpson-Porco, Florian Dorfler, Sandro Zampieri, and Francesco Bullo  

E-Print Network [OSTI]

], where an approximate solution to the reactive power flow equations was developed for electrical networksOn Reactive Power Flow and Voltage Stability in Microgrids Basilio Gentile, John W. Simpson-Porco, Florian D¨orfler, Sandro Zampieri, and Francesco Bullo Abstract-- This paper focuses on reactive power

Bullo, Francesco

213

Ice Shelves as Floating Channel Flows of Viscous Power-Law Fluids  

E-Print Network [OSTI]

We attempt to better understand the flow of marine ice sheets. Treating ice as a viscous shear-thinning power law fluid, we develop an asymptotic (late-time) theory in two cases - the presence or absence of contact with sidewalls. Most real-world situations fall somewhere between the two extreme cases considered. When sidewalls are absent, we obtain the equilibrium grounding line thickness using a simple computer model and have an analytic approximation. For shelves in contact with sidewalls, we obtain an asymptotic theory, valid for long shelves. Our theory is based on the velocity profile across the channel being a generalised version of Poiseuille flow, which works when lateral shear dominates the force balance. We determine when this is. We conducted experiments using a laboratory model for ice. This was a suspension of xanthan in water, at a concentration of 0.5% by mass. The lab model has $n \\approx 3.8$ (similar to that of ice). The experiments agreed extremely well with our theories for all relevant p...

Banik, Indranil

2013-01-01T23:59:59.000Z

214

Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor  

SciTech Connect (OSTI)

A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m{sup 3}/hr.

Polzin, Kurt A.; Godfroy, Thomas J. [NASA Marshall Space Flight Center Propulsion Research and Technology Applications Branch/ER24, MSFC, AL 35812 (United States)

2008-01-21T23:59:59.000Z

215

Thermoelectrici Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle 2005...

216

Wind energy conversion system  

SciTech Connect (OSTI)

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

217

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 23, NO. 2, JUNE 2008 551 Sliding Mode Power Control of Variable-Speed Wind  

E-Print Network [OSTI]

in variable-speed wind energy conversion sys- tems (VS-WECS). These systems have two operation regions de of Variable-Speed Wind Energy Conversion Systems Brice Beltran, Tarek Ahmed-Ali, and Mohamed El Hachemi (newton meter). Tg Generator torque in the rotor side (newton meter). Ths High-speed torque (newton meter

Paris-Sud XI, Université de

218

Ocean energy conversion systems annual research report  

SciTech Connect (OSTI)

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

219

Novel Insights into Lossless AC and DC Power Flow Florian Dorfler, Student Member, IEEE, and Francesco Bullo, Fellow, IEEE  

E-Print Network [OSTI]

1 Novel Insights into Lossless AC and DC Power Flow Florian D¨orfler, Student Member, IEEE work supported by NSF grant CPS- 1135819. Florian D¨orfler and Francesco Bullo are with the Center 93106. Email: {dorfler,bullo}@engineering.ucsb.edu approximation only near an operating point with small

Bullo, Francesco

220

An Energy-Flow Model for Self-Powered Routers and its Application for Energy-Aware Routing  

E-Print Network [OSTI]

, Design, Measurement, Performance, Reliability Keywords Energy efficiency, Rural wireless networks, EnergyAn Energy-Flow Model for Self-Powered Routers and its Application for Energy-Aware Routing Veljko Internet access in many rural areas of the developed and, especially, the developing world. The quality

Belding-Royer, Elizabeth M.

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Overview of Capabilities Conversion System Technology  

E-Print Network [OSTI]

cycles Heat exchanger design and optimization TES Material Integration & Optimization: Solar power plantOverview of Capabilities Conversion System Technology - Power System Demonstrations - Systems Conceptual Design/Trade Space Exploration - Simulation Modeling for Manufacturing - Hybrid Energy Systems

Lee, Dongwon

222

Risk-Mitigated Optimal Power Flow for Wind Powered Grids Emma Sjodin, Dennice F. Gayme and Ufuk Topcu  

E-Print Network [OSTI]

." High grid penetrations of solar or wind power pose a number of operational challenges and it is widely transmission capacity [10]. Until now, the power industry has dealt with potential failures using deterministic, Baltimore, MD, USA, 21218. dennice@jhu.edu U. Topcu is with Control and Dynamical Systems at the California

Low, Steven H.

223

Summary of Papers 1. P. Sauer and M. Pai, "Power System SteadyState Stability and the Load Flow Jacobian," IEEE  

E-Print Network [OSTI]

Summary of Papers 1. P. Sauer and M. Pai, "Power System SteadyState Stability and the Load Flow, "The Continuation Power Flow: A Tool for SteadyState Voltage Stability Analysis," IEEE Transactions of the system to maintain adequate and controllable voltage levels at all system load buses. The main concern

McCalley, James D.

224

Suction-recirculation device for stabilizing particle flows within a solar powered solid particle receiver  

DOE Patents [OSTI]

A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.

Kolb, Gregory J. (Albuquerque, NM)

2012-02-07T23:59:59.000Z

225

Application of Planck's law to thermionic conversion  

SciTech Connect (OSTI)

A simple, highly accurate, mathematical model of heat-to-electricity conversion is developed from Planck's law for the distribution of the radiant exitance of heat at a selected temperature. An electrical power curve is calculated by integration of the heat law over a selected range of electromagnetic wavelength corresponding to electrical voltage. A novel wavelength-voltage conversion factor, developed from the known wavelength-electron volt conversion factor, establishes the wavelength ({lambda}) for the integration. The Planck law is integrated within the limits {lambda} to 2{lambda}. The integration provides the ideal electrical power that is available from heat at the emitter temperature. When multiplied by a simple ratio, the calculated ideal power closely matches published thermionic converter experimental data. The thermal power model of thermionic conversion is validated by experiments with thermionic emission of ordinary electron tubes. A theoretical basis for the heat law based model of thermionic conversion is found in linear oscillator theory.

Caldwell, F.

1998-07-01T23:59:59.000Z

226

Numerical Simulation of the Flow of a Power Law Fluid in an Elbow Bend  

E-Print Network [OSTI]

of shear ? is the power law index Hence the effective viscosity for a power law model is given by, ???? = ? ? ??? (??1) This is also known as the Ostwald-de Waele power law model and it has gained importance because of its simplicity. But, the main...

Kanakamedala, Karthik

2010-07-14T23:59:59.000Z

227

E-Print Network 3.0 - alkane conversion chemistry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conversion chemistry Search Powered by Explorit Topic List Advanced Search Sample search results for: alkane conversion chemistry Page: << < 1 2 3 4 5 > >> 1 BERKELEY CATALYSIS...

228

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

be 500 oC deer09schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

229

Fast-wave Power Flow Along SOL Field Lines In NSTX nd The Associated Power Deposition Profile Across The SOL In Front Of The Antenna  

SciTech Connect (OSTI)

Fast-wave heating and current drive efficiencies can be reduced by a number of processes in the vicinity of the antenna and in the scrape off layer (SOL). On NSTX from around 25% to more than 60% of the high-harmonic fast-wave power can be lost to the SOL regions, and a large part of this lost power flows along SOL magnetic field lines and is deposited in bright spirals on the divertor floor and ceiling. We show that field-line mapping matches the location of heat deposition on the lower divertor, albeit with a portion of the heat outside of the predictions. The field-line mapping can then be used to partially reconstruct the profile of lost fast-wave power at the midplane in front of the antenna, and the losses peak close to the last closed flux surface (LCFS) as well as the antenna. This profile suggests a radial standing-wave pattern formed by fast-wave propagation in the SOL, and this hypothesis will be tested on NSTX-U. Advanced RF codes must reproduce these results so that such codes can be used to understand this edge loss and to minimize RF heat deposition and erosion in the divertor region on ITER.

Perkins, Roy

2013-06-21T23:59:59.000Z

230

Conversion of Questionnaire Data  

SciTech Connect (OSTI)

During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

Powell, Danny H [ORNL] [ORNL; Elwood Jr, Robert H [ORNL] [ORNL

2011-01-01T23:59:59.000Z

231

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by the Application of Advanced Thermoelectric Systems Implemented in a Hybrid Configuration Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

232

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2006deerschock.pdf More Documents & Publications Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Development of Thermoelectric...

233

Energy conversion system  

DOE Patents [OSTI]

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

234

Energy conversion system  

DOE Patents [OSTI]

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

235

Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration  

SciTech Connect (OSTI)

We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Sule, Petr [NEW MEXICO CONSORTIUM

2009-01-01T23:59:59.000Z

236

DC Optimal Power Flow Formulation and Solution Using QuadProgJ  

E-Print Network [OSTI]

, still retaining an SCQP form, so that solution values for voltage angles and locational marginal prices power injections. However, solution values for locational marginal prices (LMPs), voltage angles, Chen-Ching Liu, Jim McCalley, Michael J. D. Powell, Jim Price, Harold Salazar, Johnny Wong, and Tong Wu

Tesfatsion, Leigh

237

Probabilistic Optimal Power Flow in Electricity Markets Based on a Two-Point Estimate Method  

E-Print Network [OSTI]

in an "unpredictable" manner; hence, probability distributions of locational marginal prices are calculated as a result unpredictable, which can be considered as one of the main factors for electricity price volatility in some markets. Another "by- product" of deregulation is the reduction in power system stability margins

Cañizares, Claudio A.

238

A Flow Level Perspective on Base Station Power Allocation in Green Networks  

E-Print Network [OSTI]

the energy-efficiency of base stations operating in the downlink. The energy-efficiency refers to the amount nature of users (referred to as the global energy-efficiency). We emphasize our numerical results that study the influence of the radio conditions, transmit power and the user traffic on the energy-efficiency

Boyer, Edmond

239

Large amplitude oscillatory shear flow of gluten dough: A model power-law gel  

E-Print Network [OSTI]

In a previous paper [T. S. K. Ng and G. H. McKinley, J. Rheol.52(2), 417–449 (2008)], we demonstrated that gluten gels can best be understood as a polymericnetwork with a power-law frequency response that reflects the ...

Ng, Trevor S. K.

240

Output-power fluctuations of flowing-gas CO/sub 2/ lasers with unstable resonators  

SciTech Connect (OSTI)

An experimental study was made of the influence of different factors on the stability of the output intensity of a flowing-gas CO/sub 2/ laser with an unstable resonator. The measured amplitude--frequency characteristics of the intensity fluctuation spectrum had resonance peaks at multiples of the frequency corresponding to the transit time of the gas to the optic axis of the resonator. A rise in the efficiency of the laser system was found to be accompanied by an increase in the amplitude of the fluctuations of the radiation intensity.

Artamonov, A.V.; Konev, V.A.; Likhanskii, V.V.; Napartovich, A.P.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Isolated and soft-switched power converter  

DOE Patents [OSTI]

An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.

Peng, Fang Zheng (Knoxville, TN); Adams, Donald Joe (Knoxville, TN)

2002-01-01T23:59:59.000Z

242

EIS-0036: Coal Conversion Program, New England Power Company, Brayton Point Generating Station Plants 1, 2 and 3, Sommerset, Bristol County, Massachusetts  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration developed this EIS to evaluate the site-specific environmental impacts of issuing a Notice of Effectiveness to New England Power Company's Brayton Point Generating Station, Units 1, 2 and 3 to prohibit burning of gas or oil as the primary source of fuel.

243

Hydropower is one of the oldest power sources on the planet. Flowing water, dire  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof EnergyHydrogen-Powered Buses Brochure -Energy

244

System and method for measuring particles in a sample stream of a flow cytometer using a low power laser source  

DOE Patents [OSTI]

A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

Graves, Steven W; Habbersett, Robert C

2013-10-22T23:59:59.000Z

245

System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source  

DOE Patents [OSTI]

A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

Graves, Steven W.; Habbersett, Robert C.

2014-07-01T23:59:59.000Z

246

Photovoltaic Energy Conversion  

E-Print Network [OSTI]

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Make solar cells more efficient Theoretical energy conversion efficiency limit of single junction warming and fossil fuel depletion problems! #12;Photovoltaics: Explosive Growth Sustained growth of 30

Glashausser, Charles

247

Solar Thermoelectric Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

248

La Spezia power plant: Conversion of units 1 and 2 to combined cycle with modification of steam turbines from cross compound to tandem compound  

SciTech Connect (OSTI)

Units 1 and 2 of ENEL's La Spezia power plant, rated 310 and 325 MW respectively, are going to be converted to combined cycle. This project will be accomplished by integrating components such as gas turbines and HRSGs with some of the existing components, particularly the steam turbines, which are of the cross compound type. Since the total power of each converted unit has to be kept at 335 MW because of permitting limitations, the power delivered by the steam turbine will be limited to about 115 MW. For this reason a study was carried out to verify the possibility of having only one shaft and modifying the turbine to tandem compound. As additional investments are required for this modification, a balance was performed that also took into account the incremental heat rate and, on the other hand, the benefits from decreased maintenance and increased availability and reliability calculated for the expected useful life. The result of this balance was in favor of the modification, and a decision was taken accordingly. The turbine modification will involve replacing the whole HP section with a new combined HP-IP section while retaining the corresponding LP rotor and cylinder and making the needed changes in the valve arrangements and piping. Work on the site began in the spring of 1997 by dismantling the existing boiler so as to have the space needed to install the GTs and HRSGs. The first synchronization of the converted unit 1 is scheduled for November 1999

Magneschi, P.; Gabiccini, S.; Bracaloni, N.; Fiaschi, C.

1998-07-01T23:59:59.000Z

249

Nonlinear power flow feedback control for improved stability and performance of airfoil sections  

DOE Patents [OSTI]

A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.

Wilson, David G.; Robinett, III, Rush D.

2013-09-03T23:59:59.000Z

250

Transient thermal analysis of a space reactor power system  

E-Print Network [OSTI]

Thermoelectric Power Conversion Module Heat Pipe Radiator Module . Auxiliary Modules . Flow of Calculation . Transient Test Cases Studied Summary . 10 10 CHAPTER II. ENERGY EQUATION FINITE DIFFERENCING . . 12 Energy Equation for a Solid Finite..., but this stud~ uses a generic liquid metal cooled fast reactor concept as the model to test the code. The space power svstem to be modeled consists of a liquid lithium cooled fast reactor, primarv and secondary loops svith a sell-induced thermoelectric...

Gaeta, Michael J.

1988-01-01T23:59:59.000Z

251

Thermoelectric Conversion of Wate Heat to Electricity in an IC...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Presentation given at the 16th...

252

Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls  

DOE Patents [OSTI]

An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

Skeist, S. Merrill; Baker, Richard H.

2006-01-10T23:59:59.000Z

253

Energy Conversion and Storage Program  

SciTech Connect (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

254

Reactive Power Compensation Technologies, State-of-the-Art Review  

E-Print Network [OSTI]

at all levels of power transmission, it improves HVDC (High Voltage Direct Current) conversion terminal

Catholic University of Chile (Universidad CatĂłlica de Chile)

255

1982 annual report: Biomass Thermochemical Conversion Program  

SciTech Connect (OSTI)

This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1983-01-01T23:59:59.000Z

256

IEEE PES WM Panel on Modeling, Simulation and Applications of FACTS Controllers in Angle and Voltage Stability Studies, Singapore, Jan. 2000 Power Flow and Transient Stability Models of FACTS Controllers  

E-Print Network [OSTI]

, the Static Syn- chronous Source Series Compensator SSSC, and the Uni edPower FlowController UPFC appropriateIEEE PES WM Panel on Modeling, Simulation and Applications of FACTS Controllers in Angle and Voltage Stability Studies, Singapore, Jan. 2000 Power Flow and Transient Stability Models of FACTS

Cañizares, Claudio A.

257

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network [OSTI]

QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin Januaryas it occurs in modern photosynthesis can only take place inof the problem or photosynthesis, or any specific aspect of

Calvin, Melvin

2008-01-01T23:59:59.000Z

258

The characterization of flow regimes with power spectral density distributions of pressure fluctuations during condensation in smooth and micro-fin tubes  

SciTech Connect (OSTI)

This paper presents an objective predictor of the prevailing flow regime during refrigerant condensation inside smooth-, micro-fin and herringbone tubes. The power spectral density (PSD) distribution of the fluctuating condensing pressure signal was used to predict the prevailing flow regime, as opposed to the traditional (and subjective) use of visual-only methods, and/or smooth-tube flow regime maps. The prevailing flow regime was observed by using digital cameras and was validated with the use of the conventional smooth-tube flow regime transition criteria, Froude rate criteria, as well as a new flow regime map that was developed for micro-fin tube condensation. Experimental work was conducted for condensing R-22, R-407C, and R-134a at an average saturation temperature of 40{sup o}C with mass fluxes ranging from 300 to 800kg/m{sup 2}s, and with vapour qualities ranging from 0.85-0.95 at condenser inlet to 0.05-0.15 at condenser outlet. Tests were conducted with one smooth-tube condenser and three micro-fin tube condensers (with helix angles of 10{sup o}, 18{sup o}, and 37{sup o}, respectively). It is shown that the micro-fin tubes cause a delay in the transition from annular to intermittent flow by at least 19% (compared to the smooth tube), thus significantly contributing to the enhancement of heat transfer. (author)

Liebenberg, Leon; Meyer, Josua P. [Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria 0002 (South Africa)

2006-11-15T23:59:59.000Z

259

Analysis of Power System Dynamics Subject to Stochastic Power Injections  

E-Print Network [OSTI]

to the computation of long-term power system state statistics; and to short-term probabilistic dynamic performance/reliability of renewable re- sources such as wind energy conversion systems (WECS) and photovoltaic energy conversion

DeVille, Lee

260

The Energy Transformation Limit Theorem for Gas Flow Systems  

E-Print Network [OSTI]

The limit energy theorem which determines the possibility of transformation the energy flow in power systems in the absence of technical work is investigated and proved for such systems as gas lasers and plasmatrons, chemical gas reactors, vortex tubes, gas-acoustic and other systems, as well as a system of close stars. In the case of the same name ideal gas in the system the maximum ratio of energy conversion effectiveness is linked to the Carnot theorem, which in its turn is connected with the Nernst theorem. However, numerical analyses show that the class of flow energy systems is non-carnot one. The ratio of energy conversion effectiveness depends on the properties of the working medium; a conventional cycle in open-circuit is essentially irreversible. The proved theorem gives a more strongly worded II law of thermodynamics for the selected class of flow energy systems. Implications for astrophysical thermodynamic systems and the theory of a strong shock wave are discussed.

Volov, V T

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Conversion: Solid-State Lighting  

E-Print Network [OSTI]

8 Energy Conversion: Solid-State Lighting E. Kioupakis1,2 , P. Rinke1,3 , A. Janotti1 , Q. Yan1 fraction of the world's energy resources [1]. Lighting has been one of the earliest applications. The inefficiency of existing light sources that waste most of the power they consume is the reason for this large

262

ITP Industrial Distributed Energy: Microturbine Power Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Synchronous generators contain a magnetic rotor that is designed to use either rare earth permanent magnets or coils with additional hardware for delivering current (e.g., slip...

263

Battery Chargers | Electrical Power Conversion and Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid-Basic Energy20585EVBatteryBattery

264

Object Closure Conversion * Neal Glew  

E-Print Network [OSTI]

of closure conversion. This paper argues that a direct formulation of object closure conversio* *n Object Closure Conversion * Neal into closed code and auxiliary data* * structures. Closure conversion has been extensively studied

Glew, Neal

265

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISĂ? and DTU Anne Belinda Thomsen (RISĂ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

266

Conversion Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation of new and converted filesdatabases; coordinates the...

267

Structured luminescence conversion layer  

DOE Patents [OSTI]

An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

2012-12-11T23:59:59.000Z

268

Control of power characteristics of ion flow in plasma-etching reactor based on beam-plasma discharge  

SciTech Connect (OSTI)

It is shown that on the basis of the earlier revealed effect of generating the ion flow in the beam-plasma discharge from the discharge axis, a plasma processing reactor can be created for low-energy etching of semiconductor structures. The possibility of easily controlling the density and energy of ion flow by means of varying the potential of the discharge collector is demonstrated. The charge compensation of the ion flow incident on the nonconducting surface is implemented using the modulation of the potential of the substrate holder as well as the plasma-potential modulation.

Isaev, N. V.; Klykov, I. L.; Shustin, E. G., E-mail: shustin@ms.ire.rssi.ru [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Fryazino Branch) (Russian Federation)

2011-12-15T23:59:59.000Z

269

Catalyst and process development for synthesis gas conversion to isobutylene  

SciTech Connect (OSTI)

The objectives of this project are to develop a new catalyst, the kinetics for this catalyst, reactor models for trickle bed, slurry and fixed bed, and simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene.

Anthony, R.G.; Akgerman, A.

1992-05-26T23:59:59.000Z

270

A Simple Optimal Power Flow Model with Energy Storage K. Mani Chandy, Steven H. Low, Ufuk Topcu and Huan Xu  

E-Print Network [OSTI]

or solar power. In the state of California, peak demand for power in 2003 reached 52 GW, with projections decades, and a required 15% reserve margin, an additional 60 GW of new generation capacity will be needed by 2030 [8]. In 2006, Southern California Edison, the primary electricity utility company for the southern

Heaton, Thomas H.

271

A Simple Optimal Power Flow Model with Energy Storage K. Mani Chandy, Steven H. Low, Ufuk Topcu and Huan Xu  

E-Print Network [OSTI]

is motivated by the intensifying trend to deploy renewable energy such as wind or solar power. In the state of California, peak demand for power in 2003 reached 52 GW, with projections for the year 2030 exceeding 80 GW% reserve margin, an additional 60 GW of new generation capacity will be needed by 2030 [9]. In 2006

Xu , Huan

272

IEEE TRANSACTIONS ON POWER SYSTEMS VOL. 19, NO. 1, FEBRUARY 2004 693 Power Flow (SCORPF) procedure should be recommended for the  

E-Print Network [OSTI]

] to maintain adequate reactive reserves for additional transactions but also the traditional min- imization, on the possible pricing of the reactive support at operation level and on an efficient allocation of new reactive of reactive power support costs (paying attention also to the nondomi- nant terms). REFERENCES [1] G. Gross, S

Gross, George

273

1462 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 26, NO. 3, AUGUST 2011 A Self-Organizing Strategy for Power Flow Control  

E-Print Network [OSTI]

con- trol algorithm that will regulate the power output of multiple pho- tovoltaic generators (PVs) in a distribution network. To this end, the cooperative control methodology from network control theory is used-00267-2010. H. Xin is with the Department of Electrical Engineering, Zhejiang University, Hangzhou

Qu, Zhihua

274

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

275

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

276

Multi Megawatt Power System Analysis Report  

SciTech Connect (OSTI)

Missions to the outer planets or to near-by planets requiring short times and/or increased payload carrying capability will benefit from nuclear power. A concept study was undertaken to evaluate options for a multi-megawatt power source for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Of the numerous options considered, two that appeared to have the greatest promise were a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and a molten lithium-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study examined the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of approaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass efficiency, and power conversion and distribution electronics and systems capable of operating at high temperatures. Though the gas-Brayton systems showed an apparent advantage in specific mass, differences in the degree of conservatism inherent in the models used suggests expectations for the two approaches may be similar. Brayton systems eliminate the need to deal with two-phase flows in the microgravity environment of space.

Longhurst, Glen Reed; Harvego, Edwin Allan; Schnitzler, Bruce Gordon; Seifert, Gary Dean; Sharpe, John Phillip; Verrill, Donald Alan; Watts, Kenneth Donald; Parks, Benjamin Travis

2001-11-01T23:59:59.000Z

277

E-Print Network 3.0 - advanced energy conversion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ENERGY Biomass Fuel Cell Battery Photovoltaic Stationary... Power A123 SYSTEMS BioGas Biomass Conversion Drying Zone ... Source: Choate, Paul M. - Department of Entomology...

278

Process Flow Chart for Immobilizing of Radioactive High Concentration Sodium Hydroxide Product from the Sodium Processing Facility at the BN-350 Nuclear power plant in Aktau, Kazakhstan  

SciTech Connect (OSTI)

This paper describes the results of a joint research investigations carried out by the group of Kazakhstan, British and American specialists in development of a new material for immobilization of radioactive 35% sodium hydroxide solutions from the sodium coolant processing facility of the BN-350 nuclear power plant. The resulting solid matrix product, termed geo-cement stone, is capable of isolating long lived radionuclides from the environment. The physico-mechanical properties of geo-cement stone have been investigated and the flow chart for its production verified in a full scale experiments. (author)

Burkitbayev, M.; Omarova, K.; Tolebayev, T. [Ai-Farabi Kazakh National University, Chemical Faculty, Republic of Kazakhstan (Kazakhstan); Galkin, A. [KATEP Ltd., Republic of Kazakhstan (Kazakhstan); Bachilova, N. [NIISTROMPROEKT Ltd., Republic of Kazakhstan (Kazakhstan); Blynskiy, A. [Nuclear Technology Safety Centre, Republic of Kazakhstan (Kazakhstan); Maev, V. [MAEK-Kazatomprom Ltd., Republic of Kazakhstan (Kazakhstan); Wells, D. [NUKEM Limited- a member of the Freyssinet Group, Winfrith Technology Centre, Dorchester, Dorset (United Kingdom); Herrick, A. [NUKEM Limited- a member of the Freyssinet Group, Caithness (United Kingdom); Michelbacher, J. [Idaho National Laboratory, Idaho Falls (United States)

2008-07-01T23:59:59.000Z

279

Study of Power Converter Topologies with Energy Recovery and grid power flow control. Part A: 2-quadrant converter with energy storage.  

E-Print Network [OSTI]

In the framework of a Transfer line (TT2) Consolidation Programme, a number of studies on Energy cycling have been commissioned. Part of this work involves the study of different power electronic system topologies for magnet energy recovery [1{5]. In this report, the use of a two-quadrant (2Q) regulator connected to the DC link of a 4-quadrant magnet supply is analysed. The key objective of the study is to find control strategies that result in the control of the peak power required from the power network as well as to recover the magnet energy into capacitor banks with controlled voltage fluctuation. The study comprises the modelling of the system by means of the method of state averaging and the development of regulation strategies to energy management. The proposed control strategies can be divided in two groups: in the first group, the magnet current is used to dene the reference for the control system, while in the second group this current is considered as a perturbation and some strategies are devised ...

Maestri, S; Uicich, G; Benedetti, M; Le Godec, G; Papastergiou, K

2015-01-01T23:59:59.000Z

280

Proceedings of the 25th intersociety energy conversion engineering conference  

SciTech Connect (OSTI)

This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

Nelson, P.A.; Schertz, W.W.; Till, R.H.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIS-0083: Final Northeast Regional Environmental Impact Statement; The Potential Conversion of Forty-Two Powerplants From Oil to Coal or Alternate Fuels  

Broader source: Energy.gov [DOE]

This Economic Regulatory Administration statement assesses the potential for cumulative and interactive environmental impacts resulting from conversion of up to 42 northeastern power plants from oil to coal and from an alternative “Voluntary Conversion” scenario for 27 power plants.

282

Campus Conversations: CLIMATE CHANGE  

E-Print Network [OSTI]

review and input from scholars with expertise in climate change and communication. #12; Welcome Thank youCampus Conversations: CLIMATE CHANGE AND THE CAMPUS Southwestern Pennsylvania Program booklet is an adaptation and updating of Global Warming and Climate Change, a brochure developed in 1994

Attari, Shahzeen Z.

283

ENERGY CONVERSION Spring 2011  

E-Print Network [OSTI]

on energy storage devices Course Webpage: http://www.sfu.ca/~mbahrami/ENSC 461.htm Tutorials for this course. Lab information is posted on the website. Laboratory report requirements, background and a lab1 ENSC 461 ENERGY CONVERSION Spring 2011 Instructor: Dr. Majid Bahrami 4372 Email

Bahrami, Majid

284

A 90nm CMOS Direct Conversion Transmitter for WCDMA Xuemin Yang1  

E-Print Network [OSTI]

A 90nm CMOS Direct Conversion Transmitter for WCDMA Xuemin Yang1 , Anosh Davierwalla2 , David Mann3 IBM, Burlington, VT Abstract -- A linear high output power CMOS direct conversion transmitter for wideĂ?5 QFN. Index Terms -- direct conversion, CMOS, WCDMA, transmitter, third order distortion cancellation

285

The State of the Art of Generators for Wind Energy Conversion Systems  

E-Print Network [OSTI]

243 1 The State of the Art of Generators for Wind Energy Conversion Systems Y. Amirat, M. E. H. Benbouzid, B. Bensaker, R. Wamkeue and H. Mangel Abstract--Wind Energy Conversion Systems (WECS) have become of the studied generators is provided in Fig. 2. II. WIND ENERGY BACKGROUND A. Wind Power Conversion

Paris-Sud XI, Université de

286

A Framework for Reliability and Performance Assessment of Wind Energy Conversion Systems  

E-Print Network [OSTI]

1 A Framework for Reliability and Performance Assessment of Wind Energy Conversion Systems proposes a framework for reliability and dynamic performance assessment of wind energy conversion systems--Reliability, Dynamic Performance, Wind Power, Wind Energy Conversion System (WECS), Doubly-Fed Induction Generator

Liberzon, Daniel

287

Solar energy conversion.  

SciTech Connect (OSTI)

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

288

Flow Accelerated Erosion-Corrosion (FAC) considerations for secondary side piping in the AP1000{sup R} nuclear power plant design  

SciTech Connect (OSTI)

The issue of Flow Accelerated Erosion-Corrosion (FAC) in power plant piping is a known phenomenon that has resulted in material replacements and plant accidents in operating power plants. Therefore, it is important for FAC resistance to be considered in the design of new nuclear power plants. This paper describes the design considerations related to FAC that were used to develop a safe and robust AP1000{sup R} plant secondary side piping design. The primary FAC influencing factors include: - Fluid Temperature - Pipe Geometry/layout - Fluid Chemistry - Fluid Velocity - Pipe Material Composition - Moisture Content (in steam lines) Due to the unknowns related to the relative impact of the influencing factors and the complexities of the interactions between these factors, it is difficult to accurately predict the expected wear rate in a given piping segment in a new plant. This paper provides: - a description of FAC and the factors that influence the FAC degradation rate, - an assessment of the level of FAC resistance of AP1000{sup R} secondary side system piping, - an explanation of options to increase FAC resistance and associated benefits/cost, - discussion of development of a tool for predicting FAC degradation rate in new nuclear power plants. (authors)

Vanderhoff, J. F.; Rao, G. V. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States); Stein, A. [Shaw Power Nuclear, 1000 Technology Center Drive, Stoughton, MA 02072 (United States)

2012-07-01T23:59:59.000Z

289

Materials for coal conversion and utilization  

SciTech Connect (OSTI)

The Sixth annual conference on materials for coal conversion and utilization was held October 13-15, 1981 at the National Bureau of Standards Gaithersburg, Maryland. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the Gas Research Institute and the National Bureau of Standards. Fifty-eight papers from the proceedings have been entered individually into EDB and ERA; four papers had been entered previously from other sources. (LTN)

None,

1981-01-01T23:59:59.000Z

290

Power converters for parabolic dishes  

SciTech Connect (OSTI)

The development status of receivers and power conversion units to be used with parabolic dish concentrators is presented. Applications are identified, and the key role played by the power converter element of the collector module is emphasized. The electrical output of the 11-meter-diameter dish modules which are being developed varies up to a maximum of about 25 kilowatts, depending on the thermodynamic cycle of the power converter. Three power conversion units are being developed: an organic Rankine, an air Brayton, and a Stirling. The development program for the receivers and the power conversion units is described in detail.

Truscello, V.C.; Williams, A.N.

1981-01-01T23:59:59.000Z

291

Flexible Conversion Ratio Fast Reactor Systems Evaluation  

SciTech Connect (OSTI)

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

Neil Todreas; Pavel Hejzlar

2008-06-30T23:59:59.000Z

292

Wind Energy Conversion Systems (Minnesota)  

Broader source: Energy.gov [DOE]

This section distinguishes between large (capacity 5,000 kW or more) and small (capacity of less than 5,000 kW) wind energy conversion systems (WECS), and regulates the siting of large conversion...

293

January 2011: ME 533-Energy Conversion Dr. William M. Carey, Professor of Mechanical Engineering  

E-Print Network [OSTI]

, Vapor Power Systems, Gas Power Systems, Refrigeration and Heat Pump Systems 2. Thermodynamic Relations.) Gas Power Systemsl-Brayton-regenerative gas turbines with reheat and inter cooling 3.) Refrigeration, and Solar Energy Conversion Systems employing vapor power and gas power cylces.2.) The analysis of renewable

294

2012: ME 533-Energy Conversion Dr. William M. Carey, Professor of Mechanical Engineering  

E-Print Network [OSTI]

, Vapor Power Systems, Gas Power Systems, Refrigeration and Heat Pump Systems 2. Thermodynamic Relations.) Gas Power Systemsl-Brayton-regenerative gas turbines with reheat and inter cooling 3.) Refrigeration, and Solar Energy Conversion Systems #12;employing vapor power and gas power cylces.2.) The analysis

295

Object Closure Conversion Cornell University  

E-Print Network [OSTI]

that a direct formulation of object closure conversion is interesting and gives further insight into generalObject Closure Conversion Neal Glew Cornell University 24 August 1999 Abstract An integral part of implementing functional languages is closure conversion--the process of converting code with free variables

Glew, Neal

296

E-Print Network 3.0 - air flow fields Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Technologies Division, Lawrence Berkeley National Laboratory Collection: Energy Storage, Conversion and Utilization 4 Accuracy of Flow Hoods in Residential...

297

E-Print Network 3.0 - air flow maldistribution Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Nuclear Engineering, Electrochemical Engine Center Collection: Engineering ; Energy Storage, Conversion and Utilization 3 Measurement of flow maldistribution in...

298

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network [OSTI]

Nanowires and Nanotubes for Energy Conversion By MelissaNanowires and Nanotubes for Energy Conversion by MelissaNanowires and Nanotubes for Energy Conversion by Melissa

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

299

Sandia National Laboratories: Wavelength Conversion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TechnologiesWavelength Conversion Materials Wavelength Conversion Materials Overview of SSL Wavelength Conversion Materials Rare-Earth Phosphors Inorganic phosphors doped with...

300

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftin Ocean Thermal Energy Conversion (OTEC) technology haveThe Ocean Thermal Energy Conversion (OTEC) 2rogrammatic

Sands, M.Dale

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sandia National Laboratories: Wavelength Conversion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EFRCOverviewWavelength Conversion Materials Wavelength Conversion Materials Overview of SSL Wavelength Conversion Materials Rare-Earth Phosphors Inorganic phosphors doped with...

302

Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications  

SciTech Connect (OSTI)

Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

Tolbert, L.M.

2005-12-21T23:59:59.000Z

303

Flow Duration Curve Load Duration Curve  

E-Print Network [OSTI]

Flow Duration Curve Load Duration Curve 1. Develop Flow Duration Curve 2. Estimate load given flow and concentration data--select appropriate conversion factors 3. Develop Load Duration Curve 4. Plot observed data with Load Duration Curve What are they? How do you make one? Describes the percent of time a flow rate

304

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

305

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

Sugama, T.

1997-02-18T23:59:59.000Z

306

average power high: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simultaneous Power Fluctuation and Average Power Minimization during Nano-CMOS Behavioral Synthesis Computer Technologies and Information Sciences Websites Summary: conversion 6....

307

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

SciTech Connect (OSTI)

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

308

Solar Thermoelectric Energy Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermoelectric Energy Conversion Solar Thermoelectric Energy Conversion Efficiencies of different types of solar thermoelectric generators were predicted using theoretical...

309

Identifying and bounding uncertainties in nuclear reactor thermal power calculations  

SciTech Connect (OSTI)

Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)

Phillips, J.; Hauser, E.; Estrada, H. [Cameron, 1000 McClaren Woods Drive, Coraopolis, PA 15108 (United States)

2012-07-01T23:59:59.000Z

310

Proceedings of the XI International Symposium on Gas Flow and Chemical Lasers and High Power Laser Conference, Edinburgh, UK 25-30 August 1996, SPIE Vol. 3092, ed. H.J. Baker, pp. 758-763 (1997).  

E-Print Network [OSTI]

Proceedings of the XI International Symposium on Gas Flow and Chemical Lasers and High Power Laser of 20 mm were obtained in aluminum and 41 mm in carbon steel using an N2 gas assist and 5-6 kW of power study of cutting thick aluminum and steel with a chemical oxygen-iodine laser using an N2 or O2 gas

Carroll, David L.

311

Online Supplement Appendix Flow Anatomy of the TCPC Pathways  

E-Print Network [OSTI]

narrowings that dissipate little power at baseline flows may be sources of significant power loss at increased flows, 2) flow collision between SVC and IVC flows can be a significant source of power loss and usually increases significantly with increasing power loss, 3) increased skewing of the IVC flow toward

Pekkan, Kerem

312

A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel  

SciTech Connect (OSTI)

The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. A central objective of a LANL/Industry collaborative effort supported by the Hydrogen Program is to integrate PEM fuel cell and novel stack designs at LANL with stack technology of H-Power Corporation (H-Power) in order to develop a manufacturable, low-cost/high-performance hydrogen/air fuel cell stack for stationary generation of electric power. A LANL/H-Power CRADA includes Tasks ranging from exchange, testing and optimization of membrane-electrode assemblies of large areas, development and demonstration of manufacturable flow field, backing and bipolar plate components, and testing of stacks at the 3-5 cell level and, finally, at the 4-5 kW level. The stack should demonstrate the basic features of manufacturability, overall low cost and high energy conversion efficiency. Plans for future work are to continue the CRADA work along the time line defined in a two-year program, to continue the LANL activities of developing and testing stainless steel hardware for longer term stability including testing in a stack, and to further enhance air cathode performance to achieve higher energy conversion efficiencies as required for stationary power application.

Zawodzinski, C.; Wilson, M.; Gottesfeld, S. [Los Alamos National Lab., NM (United States)

1996-10-01T23:59:59.000Z

313

Quantum optical waveform conversion  

E-Print Network [OSTI]

Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

D Kielpinski; JF Corney; HM Wiseman

2010-10-11T23:59:59.000Z

314

Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion  

SciTech Connect (OSTI)

Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a model of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.

Baek J.; Diamond D.; Cuadra, A.; Hanson, A.L.; Cheng, L-Y.; Brown, N.R.

2012-09-30T23:59:59.000Z

315

Compact anhydrous HCl to aqueous HCl conversion system  

DOE Patents [OSTI]

The present invention is directed to an inexpensive and compact apparatus adapted for use with a .sup.196 Hg isotope separation process and the conversion of anhydrous HCl to aqueous HCl without the use of air flow to carry the HCl vapor into the converter system.

Grossman, Mark W. (Belmont, MA); Speer, Richard (S. Hamilton, MA)

1993-01-01T23:59:59.000Z

316

Introduction to Solar Photon Conversion  

SciTech Connect (OSTI)

The efficient and cost-effective direct conversion of solar photons into solar electricity and solar fuels is one of the most important scientific and technological challenges of this century. It is estimated that at least 20 terawatts of carbon-free energy (1 and 1/2 times the total amount of all forms of energy consumed today globally), in the form of electricity and liquid and gaseous fuels, will be required by 2050 in order to avoid the most serious consequences of global climate change and to ensure adequate global energy supply that will avoid economic chaos. But in order for solar energy to contribute a major fraction of future carbon-free energy supplies, it must be priced competitively with, or perhaps even be less costly than, energy from fossil fuels and nuclear power as well as other renewable energy resources. The challenge of delivering very low-cost solar fuels and electricity will require groundbreaking advances in both fundamental and applied science. This Thematic Issue on Solar Photon Conversion will provide a review by leading researchers on the present status and prognosis of the science and technology of direct solar photoconversion to electricity and fuels. The topics covered include advanced and novel concepts for low-cost photovoltaic (PV) energy based on chemistry (dye-sensitized photoelectrodes, organic and molecular PV, multiple exciton generation in quantum dots, singlet fission), solar water splitting, redox catalysis for water oxidation and reduction, the role of nanoscience and nanocrystals in solar photoconversion, photoelectrochemical energy conversion, and photoinduced electron transfer. The direct conversion of solar photons to electricity via photovoltaic (PV) cells is a vital present-day commercial industry, with PV module production growing at about 75%/year over the past 3 years. However, the total installed yearly averaged energy capacity at the end of 2009 was about 7 GW-year (0.2% of global electricity usage). Thus, there is potential for the PV industry to grow enormously in the future (by factors of 100-300) in order for it to provide a significant fraction of total global electricity needs (currently about 3.5 TW). Such growth will be greatly facilitated by, and probably even require, major advances in the conversion efficiency and cost reduction for PV cells and modules; such advances will depend upon advances in PV science and technology, and these approaches are discussed in this Thematic Issue. Industrial and domestic electricity utilization accounts for only about 30% of the total energy consumed globally. Most ({approx}70%) of our energy consumption is in the form of liquid and gaseous fuels. Presently, solar-derived fuels are produced from biomass (labeled as biofuels) and are generated through biological photosynthesis. The global production of liquid biofuels in 2009 was about 1.6 million barrels/day, equivalent to a yearly output of about 2.5 EJ (about 1.3% of global liquid fuel utilization). The direct conversion of solar photons to fuels produces high-energy chemical products that are labeled as solar fuels; these can be produced through nonbiological approaches, generally called artificial photosynthesis. The feedstocks for artificial photosynthesis are H{sub 2}O and CO{sub 2}, either reacting as coupled oxidation-reduction reactions, as in biological photosynthesis, or by first splitting H{sub 2}O into H{sub 2} and O{sub 2} and then reacting the solar H{sub 2} with CO{sub 2} (or CO produced from CO2) in a second step to produce fuels through various well-known chemical routes involving syngas, water gas shift, and alcohol synthesis; in some applications, the generated solar H{sub 2} itself can be used as an excellent gaseous fuel, for example, in fuel cells. But at the present time, there is no solar fuels industry. Much research and development are required to create a solar fuels industry, and this Thematic Issue presents several reviews on the relevant solar fuels science and technology. The first three manuscripts relate to the daunting problem of producing

Nozik, A.; Miller, J.

2010-11-10T23:59:59.000Z

317

Microsoft PowerPoint - Carlsen.ppt  

Broader source: Energy.gov (indexed) [DOE]

* Pursuing balanced portfolio of renewable and low carbon options - Substantial existing hydro and pumped storage - Biomass * Mitchell conversion 2012 * Studying re-powering and...

318

Cooling Flows or Heating Flows?  

E-Print Network [OSTI]

It is now clear that AGN heat cooling flows, largely by driving winds. The winds may contain a relativistic component that generates powerful synchrotron radiation, but it is not clear that all winds do so. The spatial and temporal stability of the AGN/cooling flow interaction are discussed. Collimation of the winds probably provides spatial stability. Temporal stability may be possible only for black holes with masses above a critical value. Both the failure of cooling flows to have adiabatic cores and the existence of X-ray cavities confirm the importance of collimated outflows. I quantify the scale of the convective flow that the AGN Hydra would need to drive if it balanced radiative inward flow by outward flow parallel to the jets. At least in Virgo any such flow must be confined to r<~20 kpc. Hydrodynamical simulations suggest that AGN outbursts cannot last longer than ~25 Myr. Data for four clusters with well studied X-ray cavities suggests that heating associated with cavity formation approximately balances radiative cooling. The role of cosmic infall and the mechanism of filament formation are briefly touched on.

James Binney

2003-10-08T23:59:59.000Z

319

Photovoltaic energy conversion The objective of this laboratory is for you to explore the science and engineering of the conversion of  

E-Print Network [OSTI]

Photovoltaic energy conversion Objective The objective of this laboratory is for you to explore the science and engineering of the conversion of light to electricity by photovoltaic devices. Preparation photovoltaic modules; reversebiased Si pin photodiode. · White light LED lamp; dc power supply; bread board

Braun, Paul

320

Carbon aerogel electrodes for direct energy conversion  

DOE Patents [OSTI]

A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.

Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

1997-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Carbon aerogel electrodes for direct energy conversion  

DOE Patents [OSTI]

A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA)

1997-01-01T23:59:59.000Z

322

5, 35333559, 2005 Catalytic conversion  

E-Print Network [OSTI]

measurement technique, employing selective gas- phase catalytic conversion of methanol to formaldehyde it the second most abundant organic trace gas after methane. Methanol can play an important role in upper tropoACPD 5, 3533­3559, 2005 Catalytic conversion of methanol to formaldehyde S. J. Solomon et al. Title

Paris-Sud XI, Université de

323

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

SciTech Connect (OSTI)

Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

Dasgupta, Neil; Yang, Peidong

2013-01-23T23:59:59.000Z

324

Energy 101: Hydroelectric Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

325

Reactive Power Compensation Based on FACTs Devices Xunchi Wu (xw2256) Power Systems Analysis Final Project  

E-Print Network [OSTI]

..........................................................................................5 2.1 The Thyristor Controlled Reactor (TCR)......................................................................8 III. Power Flow Calculation

Lavaei, Javad

326

Surface Tension Mediated Conversion of Light to Work David Okawa,,  

E-Print Network [OSTI]

to a high energy intermediate (e.g., electrical potential, thermal loading, or chemical fuel), which- taics for conversion to electricity, solar thermal for water heating, fast growing plants to produce rely on weak momentum transfer from photons. Harnessing the energy of photons is a far more powerful

Zettl, Alex

327

Review of Mode-Conversion Calculations in Toroidal Plasmasy  

E-Print Network [OSTI]

Institute of Technology SE-100 44 Stockholm, Sweden y work performed during a visit at CRPP, september 1999 ABSTRACT. Recent developments in the gyrokinetic modeling of drift-, Alfv´en and Bernstein waves allow-hybrid resonances where mode-conversion is possible; the power absorption can however not cor- rectly be determined

Jaun, André

328

Review of ModeConversion Calculations in Toroidal Plasmas y  

E-Print Network [OSTI]

Institute of Technology SE­100 44 Stockholm, Sweden y work performed during a visit at CRPP, september 1999 ABSTRACT. Recent developments in the gyrokinetic modeling of drift­, Alfvâ??en and Bernstein waves allow­hybrid resonances where mode­conversion is possible; the power absorption can however not cor­ rectly be determined

Jaun, André

329

Flow Duration Curve Load Duration Curve  

E-Print Network [OSTI]

#12;Flow Duration Curve Load Duration Curve #12;1. Develop Flow Duration Curve 2. Estimate load given flow and concentration data--select appropriate conversion factors 3. Develop Load Duration Curve 4. Plot observed data with Load Duration Curve #12;What are they? How do you make one? #12;Describes

330

Direct Energy Conversion Fission Reactor, Gaseous Core Reactor with Magnetohydrodynamic (MHD) Generator; Final Report - Part I and Part II  

SciTech Connect (OSTI)

This report focuses on the power conversion cycle and efficiency. The technical issues involving the ionization mechanisms, the power management and distribution and radiation shielding and safety will be discussed in future reports.

Samim Anghaie; Blair Smith; Travis Knight

2002-11-12T23:59:59.000Z

331

HOOTS99 Preliminary Version Object Closure Conversion  

E-Print Network [OSTI]

classes is an exam* *ple of closure conversion. This paper argues that a direct formulation of object HOOTS99 Preliminary Version Object Closure Conversion __________________________________________________________________________ Abstract An integral part of implementing functional languages is closure conversion_the process

Glew, Neal

332

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftof ocean thermal energy conversion technology. U.S. Depart~June 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

Sands, M.Dale

2013-01-01T23:59:59.000Z

333

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftr:he comnercialization of ocean thermal energy conversionJune 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

Sands, M.Dale

2013-01-01T23:59:59.000Z

334

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversionJune 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

Sands, M.Dale

2013-01-01T23:59:59.000Z

335

Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters  

SciTech Connect (OSTI)

Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMU’s nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

None

2012-02-27T23:59:59.000Z

336

Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity  

SciTech Connect (OSTI)

Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

Dan Wendt; Greg Mines

2014-09-01T23:59:59.000Z

337

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

Clavero, Cesar

2014-01-01T23:59:59.000Z

338

Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle  

SciTech Connect (OSTI)

Hot engine exhaust represents a resource that is often rejected to the environment without further utilization. This resource is most prevalent in the transportation sector, but stationary engine-generator systems also typically do not utilize this resource. Engine exhaust is a source of high grade thermal energy that can potentially be utilized by various approaches to produce electricity or to drive heating and cooling systems. This paper describes a model system that employs thermoelectric conversion as a topping cycle integrated with an organic Rankine bottoming cycle for waste heat utilization. This approach is being developed to fully utilize the thermal energy contained in hot exhaust streams. The model is composed of a high temperature heat exchanger which extracts thermal energy for driving the thermoelectric conversion elements. However, substantial sensible heat remains in the exhaust stream after emerging from the heat exchanger. The model incorporates a closely integrated bottoming cycle to utilize this remaining thermal energy in the exhaust stream. The model has many interacting parameters that define combined system quantities such as overall output power, efficiency, and total energy utilization factors. In addition, the model identifies a maximum power operating point for the system. That is, the model can identify the optimal amount of heat to remove from the exhaust flow to run through the thermoelectric elements. Removing too much or too little heat from the exhaust stream in this stage will reduce overall cycle performance. The model has been developed such that heat exchanger UAh values, thermal resistances, ZT values, and multiple thermoelectric elements can be investigated in the context of system operation. The model also has the ability to simultaneously determine the effect of each cycle design parameter on the performance of the overall system, thus giving the ability to utilize as much waste heat as possible. Key analysis results are presented showing the impact of critical design parameters on power output, system performance and inter-relationships between design parameters in governing performance.

Miller, Erik W.; Hendricks, Terry J.; Peterson, Richard B.

2009-07-01T23:59:59.000Z

339

THE CONVERSION OF BIOMASS TO ETHANOL USING GEOTHERMAL ENERGY DERIVED FROM HOT DRY ROCK  

E-Print Network [OSTI]

97505 THE CONVERSION OF BIOMASS TO ETHANOL USING GEOTHERMAL ENERGY DERIVED FROM HOT DRY ROCK of biomass to fuel ethanol is considerable. In addition, combining these two renewable energy resources of wedding an HDR geothermal power source to a biomass conversion process is flexibility, both in plant

340

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermochemical Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1Telework Telework The|Conversion Thermochemical Conversion

342

The Application of Frequency-Conversion Technology in Groundwater Source Heat Pump System Reconstruction  

E-Print Network [OSTI]

Deep well pump power is relatively ubiquitous in the groundwater heat pump air-conditioning system in some hotels in Hunan, and the heat pump usually meets the change of the load by throttling. Therefore, frequency conversion technology is proposed...

Dai, X.; Song, S.

2006-01-01T23:59:59.000Z

343

Modeling and analysis of hybrid geothermal-solar thermal energy conversion systems  

E-Print Network [OSTI]

Innovative solar-geothermal hybrid energy conversion systems were developed for low enthalpy geothermal resources augmented with solar energy. The goal is to find cost-effective hybrid power cycles that take advantage of ...

Greenhut, Andrew David

2010-01-01T23:59:59.000Z

344

Design of passive decay heat removal system for the lead cooled flexible conversion ratio fast reactor  

E-Print Network [OSTI]

The lead-cooled flexible conversion ratio fast reactor shows many benefits over other fast-reactor designs; however, the higher power rating and denser primary coolant present difficulties for the design of a passive decay ...

Whitman, Joshua (Joshua J.)

2007-01-01T23:59:59.000Z

345

Ocean thermal energy conversion plants : experimental and analytical study of mixing and recirculation  

E-Print Network [OSTI]

Ocean thermal energy conversion (OTEC) is a method of generating power using the vertical temperature gradient of the tropical ocean as an energy source. Experimental and analytical studies have been carried out to determine ...

Jirka, Gerhard H.

346

High frequency AC power converter for low voltage circuits  

E-Print Network [OSTI]

This thesis presents a novel AC power delivery architecture that is suitable for VHF frequency (50-100MHz) polyphase AC/DC power conversion in low voltage integrated circuits. A complete AC power delivery architecture was ...

Salazar, Nathaniel Jay Tobias

2012-01-01T23:59:59.000Z

347

Design study of a coal-fired thermionic (THX) topped power plant. Volume IV. Thermionic heat exchanger design and costing  

SciTech Connect (OSTI)

This volume deals with the details of how thermionic conversion works, and how it is used in a coal-fired furnace to achieve power plant efficiencies of 45%, and overall costs of 36.3 mills/kWh. A review of the fundamental technical aspects of thermionic conversion is given. The overall Thermionic Heat Exchanger (THX) design, the heat pipe design, and the interaction of the heat pipes with the furnace are presented. Also, the operational characteristics of thermionic converters are described. Details on the computer program used to perform the parametric study are given. The overall program flow is reviewed along with the specifics of how the THX subroutine designed the converter to match the conditions imposed. Also, input costs and variables effecting the THX's performance are detailed. The efficiencies of the various power plants studied are given as a function of the air preheat temperature, size of the power plant, and thermionic level of performance.

Dick, R.S.; Britt, E.J.

1980-10-15T23:59:59.000Z

348

A Review of Previous Research in Direct Energy Conversion Fission Reactors  

SciTech Connect (OSTI)

From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this day, but there have been no recent significant programs to develop the technology.

DUONG,HENRY; POLANSKY,GARY F.; SANDERS,THOMAS L.; SIEGEL,MALCOLM D.

1999-09-22T23:59:59.000Z

349

Free-piston Stirling technology for space power  

SciTech Connect (OSTI)

An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA`s new Civil Space Technology Initiative (CSTI). The overall goal of CSTI`s High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE.

Slaby, J.G.

1994-09-01T23:59:59.000Z

350

Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility...  

Broader source: Energy.gov (indexed) [DOE]

technologiesinchart.ppt More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150...

351

E-Print Network 3.0 - alternative automotive power Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Power Engineering-An Energy Conversion Approach Dr. Pragasen Pillay Summary: a wind farm. Changing the focus of the applications from traditional power systems to...

352

E-Print Network 3.0 - alternative power systems Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the focus of the applications from traditional power systems to alternate, electric... systems approach, a power electronics approach and an energy conversion approach are...

353

Optimizing membrane electrode assembly of direct methanol fuel cells for portable power.  

E-Print Network [OSTI]

??Direct methanol fuel cells (DMFCs) for portable power applications require high power density, high-energy conversion efficiency and compactness. These requirements translate to fundamental properties of… (more)

Liu, Fuqiang

2006-01-01T23:59:59.000Z

354

E-Print Network 3.0 - american electric power Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and no claims about this ... Source: US DOE, Office of Energy Efficiency and Renewable Energy, Green Power Network Collection: Energy Storage, Conversion and Utilization ; Power...

355

Biochemical Conversion Pilot Plant (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

Not Available

2012-06-01T23:59:59.000Z

356

HOOTS99 Preliminary Version Object Closure Conversion  

E-Print Network [OSTI]

is an example of closure conversion. This paper argues that a direct formulation of object closure conversionHOOTS99 Preliminary Version Object Closure Conversion Neal Glew 1 Department of Computer Science conversion--the process of converting code with free variables into closed code and auxiliary data structures

Glew, Neal

357

August 17, 2000 ARIES: Fusion Power Core and Power Cycle Engineering/ARR 1  

E-Print Network [OSTI]

translates in lower COE and lower heat load · Brayton cycle is best near-term possibility of power conversion heat generation profiles used for thermal-hydraulic analyses #12;August 17, 2000 ARIES: Fusion PowerAugust 17, 2000 ARIES: Fusion Power Core and Power Cycle Engineering/ARR 1 ARIES: Fusion Power Core

Raffray, A. René

358

Proceedings of the sixth international conference on thermoelectric energy conversion  

SciTech Connect (OSTI)

This book presents the papers given at a conference on thermoelectric energy conversion. Topics considered at the conference included thermoelectric materials, the computer calculation of thermoelectric properties, the performance of crss-flow thermoelectric liquid coolers, thermoelectric cooler performance corrections for soft heat sinks, heat exchange in a thermoelectric cooling system, the optimal efficiency of a solar pond and thermoelectric generator system, and thermoelectric generation utilizing industrial waste heat as an energy source.

Rao, K.R.

1986-01-01T23:59:59.000Z

359

Energy Conversion and Storage Program: 1992 Annual report  

SciTech Connect (OSTI)

This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

Cairns, E.J.

1993-06-01T23:59:59.000Z

360

HELIOPHYSICS II. ENERGY CONVERSION PROCESSES  

E-Print Network [OSTI]

of a solar flare 11 2.3.1 Flare luminosity and mechanical energy 11 2.3.2 The impulsive phase (hard X with the term "solar flare" dominate our thinking about energy conversion from magnetic storage to other forms approaches to the problems involved in phys- ically characterizing the solar atmosphere; see also the lecture

Hudson, Hugh

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Storage, Conversion and Utilization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Al-Ghadhban, Samir - Electrical Engineering Department, King Fahd University of...

362

MUTUAL CONVERSION SOLAR AND SIDEREAL  

E-Print Network [OSTI]

TABLES FOR THE MUTUAL CONVERSION OF SOLAR AND SIDEREAL TIME BY EDWARD SANG, F.R.S.E. EDINBURGH in the third example. Sang converts 3.27 seconds of solar time into 3.26 seconds of sidereal time. But sidereal time elapses faster than solar time, and the correct value is 3.28 sec- onds. In the fourth example

Roegel, Denis

363

Mississippi Power- EarthCents Commercial Incentives Program  

Broader source: Energy.gov [DOE]

Mississippi Power offers rebates to commercial customers to help offset the cost of conversions from gas equipment to energy efficient electric equipment. Rebates are eligible for heat pumps,...

364

Efficiency Improvement in an Over the Road Diesel Powered Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and potential efficiency enhancement deer08schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

365

Open cycle ocean thermal energy conversion system  

DOE Patents [OSTI]

An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

Wittig, J. Michael (West Goshen, PA)

1980-01-01T23:59:59.000Z

366

Power Quality Improvement in Microgrid Using Advanced Active Power Conditioner  

E-Print Network [OSTI]

Abstract:- Wind energy conversion systems are now occupying important space in the research of renewable energy sources with microgrid. The main challenge in wind power generation is power quality problem and their connection with the distribution network in microgrid. The main factor behind poor

unknown authors

367

E-Print Network 3.0 - applying dynamic flow-density Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Energy Storage, Conversion and Utilization 17 Dynamic Origin-Destination Demand Flow Estimation under Congested Traffic Conditions Xuesong Zhou Summary: for the...

368

Reliability Evaluation of Electric Power Generation Systems with Solar Power  

E-Print Network [OSTI]

Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

Samadi, Saeed

2013-11-08T23:59:59.000Z

369

A converse to Dye's theorem Greg Hjorthy  

E-Print Network [OSTI]

* A converse to Dye We show a converse to a consequence of the final strengthening of Dye's th* *eorem proved, measure preserving, and ergodic. Theorem 1.1(Dye; see [5], [6].) Any two ergodic, standard, measure

Hjorth, Greg

370

Grounded Situation Models for Situated Conversational Assistants  

E-Print Network [OSTI]

A Situated Conversational Assistant (SCA) is a system with sensing, acting and speech synthesis/recognition abilities, which engages in physically situated natural language conversation with human partners and assists them ...

Mavridis, Nikolaos

2007-01-01T23:59:59.000Z

371

Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management  

SciTech Connect (OSTI)

The 148 papers contained in Volume 2 are arranged topically as follows -- (A) Conversion Technologies: Superconductivity applications; Advanced cycles; Heat engines; Heat pumps; Combustion and cogeneration; Advanced nuclear reactors; Fusion Power reactors; Magnetohydrodynamics; Alkali metal thermal to electric conversion; Thermoelectrics; Thermionic conversion; Thermophotovoltaics; Advances in electric machinery; and Sorption technologies; (B) Electrochemical Technologies: Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling Engines: Stirling machine analysis; Stirling machine development and testing; and Stirling component analysis and testing; (D) Thermal Management: Cryogenic heat transfer; Electronic components and power systems; Environmental control systems; Heat pipes; Numeric analysis and code verification; and Two phase heat and mass transfer. Papers within the scope of the data base have been processed separately.

Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B. [eds.

1996-12-31T23:59:59.000Z

372

Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles  

SciTech Connect (OSTI)

This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

Green, H.J. (Solar Energy Research Inst., Golden, CO (USA)); Guenther, P.R. (Scripps Institution of Oceanography, La Jolla, CA (USA))

1990-09-01T23:59:59.000Z

373

Power inverters  

DOE Patents [OSTI]

Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

Miller, David H. (Redondo Beach, CA); Korich, Mark D. (Chino Hills, CA); Smith, Gregory S. (Woodland Hills, CA)

2011-11-15T23:59:59.000Z

374

Design and Test of DC Voltage Link Conversion System and Brushless Doubly-Fed Induction Generator for Variable-Speed Wind Energy Applications: August 1999--May 2003  

SciTech Connect (OSTI)

This report describes four low-cost alternative power converters for processing the power developed by a doubly fed wound-rotor induction generator for wind energy conversion systems.

Lipo, T.A.; Panda, D.; Zarko, D.

2005-11-01T23:59:59.000Z

375

Petar Ljusev SIngle Conversion stage AMplifier  

E-Print Network [OSTI]

. The proposed SICAM solution strives for direct energy conversion from the mains to the audio outputPetar Ljusev SIngle Conversion stage AMplifier - SICAM PhD thesis, December 2005 #12;#12;To Elena of the project "SICAM - SIngle Conversion stage AMplifier", funded by the Danish Energy Authority under the EFP

376

Data Conversion in Residue Number System  

E-Print Network [OSTI]

for direct conversion when interaction with the real analog world is required. We first develop two efficient schemes for direct analog-to-residue conversion. Another efficient scheme for direct residue analogique réel est nécessaire. Nous dévelopons deux systèmes efficaces pour la conversion directe du domaine

Zilic, Zeljko

377

HOOTS99 Preliminary Version Object Closure Conversion  

E-Print Network [OSTI]

classes is an example of closure conversion. This paper argues that a direct formulation of object closureHOOTS99 Preliminary Version Object Closure Conversion Neal Glew 1 Department of Computer Science conversion---the process of converting code with free variables into closed code and auxiliary data

Glew, Neal

378

GUIDED ANGLER FISH ANNUAL CONVERSION FACTORS  

E-Print Network [OSTI]

GUIDED ANGLER FISH ANNUAL CONVERSION FACTORS FOR THE 2014 FISHING YEAR NOAA FISHERIES, ALASKA via the GAF electronic reporting system. If no GAF were harvested in a year, the conversion factor is the first calendar year that GAF regulations will be in effect. Therefore, the conversion factors are based

379

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 4, NOVEMBER 2001 935 Discussion of "A Physical-Flow-Based Approach to  

E-Print Network [OSTI]

to Allocating Transmission Losses in a Transaction Framework" George Gross and Shu Tao The authors are grateful, England. Publisher Item Identifier S 0885-8950(01)09812-1. 1G. Gross and S. Fao, IEEE Trans. Power Systems

Gross, George

380

An Energy-Flow Model for Self-Powered Routers in Rural Mesh Networks and its Application for Energy-Aware Routing   

E-Print Network [OSTI]

Self-powered wireless mesh networks have gained popularity as a cheap alternative for providing Internet access in many rural areas of the developed and, especially, the developing world. The quality of service that ...

Pejovic, Veljko; Belding, Elizabeth; Marina, Mahesh

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants byand M.D. Sands. Ocean thermal energy conversion (OTEC) pilotfield of ocean thermal energy conversion discharges. I~. L.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

382

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryof the Fifth Ocean Thermal Energy Conversion Conference,

Sands, M. D.

2011-01-01T23:59:59.000Z

383

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Sands. 1980. Ocean thermal energy conversion (OTEC) pilotCommercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,

Sullivan, S.M.

2014-01-01T23:59:59.000Z

384

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Direct energy conversion ..developed. Typically, direct energy conversion is achievedTechnologies 1.2.1. Direct energy conversion In a direct

Lim, Hyuck

2011-01-01T23:59:59.000Z

385

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Fifth Ocean Thermal Energy Conversion Conference, FebruarySixth Ocean Thermal Energy Conversion Conference, June 19-Fifth Ocean Thermal Energy Conversion Conference, February

Sullivan, S.M.

2014-01-01T23:59:59.000Z

386

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Fifth Ocean Thermal Energy Conversion Conference, Februarythe Sixth Ocean Thermal Energy Conversion Conference. OceanSixth Ocean Thermal Energy conversion Conference. June 19-

Sullivan, S.M.

2014-01-01T23:59:59.000Z

387

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

Fifth Ocean Thermal Energy Conversion Conference, FebruaryFifth Ocean Thermal Energy Conversion Conference, FebruarySixth Ocean Thermal Energy Conversion Conference. June 19-

Sands, M. D.

2011-01-01T23:59:59.000Z

388

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALM.D. (editor). 1980. Ocean Thermal Energy Conversion DraftDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

389

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

Sullivan, S.M.

2014-01-01T23:59:59.000Z

390

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryCompany. Ocean thermal energy conversion mission analysis

Sands, M. D.

2011-01-01T23:59:59.000Z

391

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants byfield of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

392

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion (OTEC) plants bySands. 1980. Ocean thermal energy conversion (OTEC) pilotof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

Sullivan, S.M.

2014-01-01T23:59:59.000Z

393

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of the Ocean Thermal Energy Conversion (OTEC) Biofouling,development of ocean thermal energy conversion (OTEC) plant-impact assessment ocean thermal energy conversion (OTEC)

Sands, M. D.

2011-01-01T23:59:59.000Z

394

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants bySands. Ocean thermal energy conversion (OTEC) pilot plantof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

Sullivan, S.M.

2014-01-01T23:59:59.000Z

395

Next-Generation Thermionic Solar Energy Conversion | Department...  

Broader source: Energy.gov (indexed) [DOE]

Next-Generation Thermionic Solar Energy Conversion Next-Generation Thermionic Solar Energy Conversion This fact sheet describes a next-generation thermionic solar energy conversion...

396

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

397

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

Sullivan, S.M.

2014-01-01T23:59:59.000Z

398

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

399

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

for the commercialization of ocean thermal energy conversionE. Hathaway. Open cycle ocean thermal energy conversion. AElectric Company. Ocean thermal energy conversion mission

Sands, M. D.

2011-01-01T23:59:59.000Z

400

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion ( OTEC)the intermediate field of ocean thermal energy conversionII of the Sixth Ocean Thermal Energy conversion Conference.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,and M.D. Sands. 1980. Ocean thermal energy conversion (OTEC)

Sullivan, S.M.

2014-01-01T23:59:59.000Z

402

High resolution A/D conversion based on piecewise conversion at lower resolution  

DOE Patents [OSTI]

Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

Terwilliger, Steve (Albuquerque, NM)

2012-06-05T23:59:59.000Z

403

One-dimensional full wave simulation on XB mode conversion in electron cyclotron heating  

SciTech Connect (OSTI)

The XB mode conversion in electron cyclotron resonance frequency heating has been studied in detail through 1D full wave simulation. The field pattern depends on the density scale length, and the wave absorption near upper hybrid resonance is maximized beyond the R(X) mode cutoff density for optimized density scale length. The simulated mode conversion efficiency has been compared with that of an analytic formula, showing good agreements except for the phase dependent term of the X wave. The mode conversion efficiency is calculated for oblique injections as well, and it is found that the efficiency decreases as the injection angles increases. Short magnetic field scale length is confirmed to relax the short density scale length condition maximizing the XB mode conversion efficiency. Finally, the simulation code is used to analyze the mode conversion and power absorption of a pre-ionization plasma in versatile experiment spherical torus.

Kim, S. H., E-mail: shkim95@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Lee, H. Y.; Jo, J. G.; Hwang, Y. S. [Seoul National University, Seoul 151-742 (Korea, Republic of)

2014-06-15T23:59:59.000Z

404

Mesofluidic magnetohydrodynamic power generation  

E-Print Network [OSTI]

Much of the previous research into magnetohydrodynamics has involved large-scale systems. This thesis explores the miniaturization and use of devices to convert the power dissipated within an expanding gas flow into ...

Fucetola, Jay J

2012-01-01T23:59:59.000Z

405

Updated perspective on the potential for thermionic conversion to meet 21. century energy needs  

SciTech Connect (OSTI)

Thermionic conversion is unique among power conversion approaches in its ability to generate power efficiently with high temperature heat rejection. This feature has made thermionics an attractive choice for space power systems; and it has substantial potential for terrestrial advanced energy conversion, if certain recently identified technological developments are realized in a low cost manner. Thermionic energy converters are well suited to a modular approach. Thermionics is a passive system without moving parts. Thermionic energy conversion is able to use heat at the highest temperatures available, and to reject waste heat at temperatures high enough to be efficiently used by other energy conversion systems. For example, a thermionic converter can utilize heat at a high temperature from a flame or other heat source, convert some of it to electricity, and deliver its waste heat at a temperature high enough to run a steam generator. The combination of the thermionic converter and steam generator could produce as much as 40% more electricity from the fuel than the steam generator alone. Other terrestrial applications include cogeneration and a possible power source for a hybrid, low-emission electric vehicle. These terrestrial applications require advances in efficiency and power density in order to operate with lower emitter temperatures than space power thermionic systems. Recently it has been shown that close spaced thermionic converters can achieve the performance goals necessary to meet these attractive new applications. The paper addresses the progress in this regard and describes approaches for engineering practical closed spaced converters for large scale applications. Clearly the potential for thermionic energy conversion is great. Every effort must now be made to use this technology to help solve the world`s energy problems. Investments in the manufacturing infrastructure necessary to make thermionic energy conversion cost effective are needed to reach this goal.

Fitzpatrick, G.O.; Britt, E.J.; Moyzhes, B. [Space Power, Inc., San Jose, CA (United States)

1997-12-31T23:59:59.000Z

406

Abstract--In doubly fed induction generator (DFIG) based wind energy conversion systems (WECS), the DFIG is interfaced to the  

E-Print Network [OSTI]

a popular candidate in the wind energy conversion systems (WECS) due to its advantages [2-5]. When compared with fixed-speed induction generators, the DFIG has the advantages of maximum power capture, less mechanicalAbstract--In doubly fed induction generator (DFIG) based wind energy conversion systems (WECS

Pota, Himanshu Roy

407

Biomass thermochemical conversion program: 1987 annual report  

SciTech Connect (OSTI)

The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1988-01-01T23:59:59.000Z

408

Biomass thermochemical conversion program. 1985 annual report  

SciTech Connect (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1986-01-01T23:59:59.000Z

409

Coal conversion siting on coal mined lands: water quality issues  

SciTech Connect (OSTI)

The siting of new technology coal conversion facilities on land disturbed by coal mining results in both environmental benefits and unique water quality issues. Proximity to mining reduces transportation requirements and restores disrupted land to productive use. Uncertainties may exist, however, in both understanding the existing site environment and assessing the impact of the new technology. Oak Ridge National Laboratory is currently assessing the water-related impacts of proposed coal conversion facilities located in areas disturbed by surface and underground coal mining. Past mining practices, leaving highly permeable and unstable fill, may affect the design and quality of data from monitoring programs. Current mining and dewatering, or past underground mining may alter groundwater or surface water flow patterns or affect solid waste disposal stability. Potential acid-forming material influences the siting of waste disposal areas and the design of grading operations. These and other problems are considered in relation to the uncertainties and potentially unique problems inherent in developing new technologies.

Triegel, E.K.

1980-01-01T23:59:59.000Z

410

Microsoft Word - 20.4 Special Study Power Conversion System ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

above analysis process of calculating and optimizing using CYCLE-C was done within the ISO 9001:2000 quality assurance system of M-Tech along with the quality management systems...

411

Multi-resonant passive components for power conversion  

E-Print Network [OSTI]

Semiconductor-device limitations to system miniaturization have receded, but exposed by their improvement numerous "ancillary" barriers which continue to preoccupy nearly every electronics industry. Prominent among these ...

Phinney, Joshua W. (Joshua William), 1973-

2005-01-01T23:59:59.000Z

412

Static power conversion techniques for unique energy devices  

E-Print Network [OSTI]

is an important new energy storage device that has some properties of a battery and a capacitor allowing it to be used in applications where attributes of both are needed. To realize the full potential of these energy sources, novel engineering strategies have...

Welch, Richard Andrew

1998-01-01T23:59:59.000Z

413

Combining Nuclear Power With Coal-to-Gasoline Conversion  

SciTech Connect (OSTI)

With coal representing 95% and oil only 2.5% of the US fossil fuel reserves and with the abundant nuclear fuel reserves in the US, such combined plants should be built in the near future. (authors)

Hamel, H.J.; Jaeger, Walter; Termuehlen, Heinz

2006-07-01T23:59:59.000Z

414

Resistance Compression Networks for Radio-Frequency Power Conversion  

E-Print Network [OSTI]

A limitation of many high-frequency resonant inverter topologies is their high sensitivity to loading conditions. This paper introduces a new class of matching networks that greatly reduces the load sensitivity of resonant ...

Han, Yehui

415

Power Conversion Apparatus and Method for Hybrid Electric and Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,Reactor Decommissioning Click hereVehicle

416

Project Profile: Brayton Solar Power Conversion System | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartmentProjectat HighDepartment

417

Automotive Waste Heat Conversion to Electric Power using Skutterudites,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,ReDevelopments |

418

Automotive Waste Heat Conversion to Power Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,ReDevelopments |1 DOE

419

Automotive Waste Heat Conversion to Power Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,ReDevelopments |1 DOE0 DOE

420

Automotive Waste Heat Conversion to Power Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,ReDevelopments |1 DOE0 DOE09

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Microturbine Power Conversion Technology Review, April 2003 | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy name isProcurementEnergy Microturbine

422

Energy Conversion and Storage Program. 1990 annual report  

SciTech Connect (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

423

Conversion | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov ContactsContractOffice ofConversion |

424

Biochemical Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdfBetter BuildingsBetter Plants»NewsConversion

425

7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during a one-day period and the rate of air flowing through the furnace are to be determined.  

E-Print Network [OSTI]

7-11 7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during The heating value of the coal is given to be 28,000 kJ/kg. Analysis (a) The rate and the amount of heat inputs'tQQ The amount and rate of coal consumed during this period are kg/s48.33 s360024 kg10893.2 MJ/kg28 MJ101.8 6

Bahrami, Majid

426

Potassium Rankine cycle nuclear power systems for spacecraft and lunar-mass surface power  

SciTech Connect (OSTI)

The potassium Rankine cycle has high potential for application to nuclear power systems for spacecraft and surface power on the moon and Mars. A substantial effort on the development of Rankine cycle space power systems was carried out in the 1960`s. That effort is summarized and the status of the technology today is presented. Space power systems coupling Rankine cycle power conversion to both the SP-100 reactor and thermionic reactors as a combined power cycle are described in the paper.

Holcomb, R.S.

1992-07-01T23:59:59.000Z

427

Application of a high-power KrF laser for the study of supersonic gas flows and the development of hydrodynamic instabilities in layered media  

SciTech Connect (OSTI)

The design of a miniature laser shock tube for the study of a wide range of hydrodynamic phenomena in liquids at pressures greater than 10 kbar and in supersonic flows with large Mach numbers (greater than 10) is discussed. A substance filling a chamber of quadratic cross section, with a characteristic size of several centimetres, is compressed and accelerated due to local absorption of 100 ns, 100 J KrF laser pulses near the entrance window. It is proposed to focus a laser beam by a prism raster, which provides a uniform intensity distribution over the tube cross section. The system can be used to study the hypersonic flow past objects of complex shape and the development of hydrodynamic instabilities in the case of a passage of a shock wave or a compression wave through the interfaces between different media. (laser applications and other topics in quantum electronics)

Zvorykin, V D; Lebo, I G [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2000-06-30T23:59:59.000Z

428

Cotton flow  

E-Print Network [OSTI]

Using the conformally invariant Cotton tensor, we define a geometric flow, the "Cotton flow", which is exclusive to three dimensions. This flow tends to evolve the initial metrics into conformally flat ones, and is somewhat orthogonal to the Yamabe flow, the latter being a flow within a conformal class. We define an entropy functional, and study the flow of nine homogeneous spaces both numerically and analytically. In particular, we show that the arbitrarily deformed homogeneous 3-sphere flows into the round 3-sphere. Two of the nine homogeneous geometries, which are degenerated by the Ricci flow, are left intact by the Cotton flow.

Ali Ulas Ozgur Kisisel; Ozgur Sarioglu; Bayram Tekin

2008-06-17T23:59:59.000Z

429

6.334 Power Electronics, Spring 2003  

E-Print Network [OSTI]

The application of electronics to energy conversion and control; phase-controlled rectifier/inverter circuits, dc/dc converters, high-frequency inverters, and motion control systems. Characteristics of power semiconductor ...

Perreault, David John

430

2011 Biomass Program Platform Peer Review: Thermochemical Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an...

431

Catalyst and process development for synthesis gas conversion to isobutylene. Quarterly report, January 1, 1992--March 31, 1992  

SciTech Connect (OSTI)

The objectives of this project are to develop a new catalyst, the kinetics for this catalyst, reactor models for trickle bed, slurry and fixed bed, and simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene.

Anthony, R.G.; Akgerman, A.

1992-05-26T23:59:59.000Z

432

1992 Conversion Resources Supply Document  

SciTech Connect (OSTI)

In recent years conservation of electric power has become an integral part of utility planning. The 1980 Pacific Northwest Electric Power Planning and Conservation Act (Northwest Power Act) requires that the region consider conservation potential in planning acquisitions of resources to meet load growth. The Bonneville Power Administration (BPA) developed its first estimates of conservation potential in 1982. Since that time BPA has updated its conservation supply analyses as a part of its Resource Program and other planning efforts. Major updates were published in 1985 and in January 1990. This 1992 document presents updated supply curves, which are estimates of the savings potential over time (cumulative savings) at different cost levels of energy conservation measures (ECMs). ECMs are devices, pieces of equipment, or actions that increase the efficiency of electricity use and reduce the amount of electricity used by end-use equipment.

Not Available

1992-03-01T23:59:59.000Z

433

Synoptic and local influences on boundary layer processes, with an application to California wind power  

E-Print Network [OSTI]

maps showing locations of wind power conversion facilities,of US winds and wind power at 80 m derived fromEvaluation of global wind power. Journal of Geo- physical

Mansbach, David K.

2010-01-01T23:59:59.000Z

434

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

435

Planning Document for an NBSR Conversion Safety Analysis Report  

SciTech Connect (OSTI)

The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the National Bureau of Standards Reactor (NBSR). The NBSR is a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a planning document for the conversion Safety Analysis Report (SAR) that would be submitted to, and approved by, the Nuclear Regulatory Commission (NRC) before the reactor could be converted.This report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis herein is on the SAR chapters that require significant changes as a result of conversion, primarily Chapter 4, Reactor Description, and Chapter 13, Safety Analysis. The document provides information on the proposed design for the LEU fuel elements and identifies what information is still missing. This document is intended to assist ongoing fuel development efforts, and to provide a platform for the development of the final conversion SAR. This report contributes directly to the reactor conversion pillar of the GTRI program, but also acts as a boundary condition for the fuel development and fuel fabrication pillars.

Diamond D. J.; Baek J.; Hanson, A.L.; Cheng, L-Y.; Brown, N.; Cuadra, A.

2013-09-25T23:59:59.000Z

436

Covariance statistics of turbulence velocity components for wind-energy-conversion system design-homogeneous, isotropic case  

SciTech Connect (OSTI)

When designing a wind energy converison system (WECS), it may be necessary to take into account the distribution of wind across the disc of rotation. The specific engineering applications include structural strength, fatigue, and control. This wind distribution consists of two parts, namely that associated with the mean wind profile and that associated with the turbulence velocity fluctuation field. The work reported herein is aimed at the latter, namely the distribution of turbulence velocity fluctuations across the WECS disk of rotation. A theory is developed for the two-time covariance matrix for turbulence velocity vector components for wind energy conversion system (WECS) design. The theory is developed for homogeneous and iotropic turbulance with the assumption that Taylor's hypothesis is valid. The Eulerian turbulence velocity vector field is expanded about the hub of the WECS. Formulae are developed for the turbulence velocity vector component covariance matrix following the WECS blade elements. It is shown that upon specification of the turbulence energy spectrum function and the WECS rotation rate, the two-point, two-time covariance matrix of the turbulent flow relative to the WECS bladed elements is determined. This covariance matrix is represented as the sum of nonstationary and stationary contributions. Generalized power spectral methods are used to obtain two-point, double frequency power spectral density functions for the turbulent flow following the blade elements. The Dryden turbulence model is used to demonstrate the theory. A discussion of linear system response analysis is provided to show how the double frequency turbulence spectra might be used to calculate response spectra of a WECS to turbulent flow. Finally the spectrum of the component of turbulence normal to the WECS disc of rotation, following the blade elements, is compared with experimental results.

Fichtl, G.H.

1983-09-01T23:59:59.000Z

437

CERN-PS Main Power Converter Renovation How to Provide and Control the Large Flow of Energy for a Rapid Cyclic Machine?  

E-Print Network [OSTI]

The PS accelerator (Proton-Synchrotron) at CERN, which is part of the LHC injector chain, is composed of one hundred magnets connected in series. During a typical acceleration cycle (taking 2.4 seconds), the active power at the magnet terminals varies from plus to minus 40 MW. As this large active power variation was not acceptable to the electrical network, a motor-generator set (M-G) was inserted between the grid and the load. The M-G set (of 1968) acts as a fly-wheel with a stored kinetic energy of 233 MJ and the magnets are fed via two 12-pulse thyristor rectifiers. A renovation or replacement of the installation is planned in the near future as part of the consolidation of the LHC injectors to avoid any major breakdown, to improve overall availability and to reduce operation and maintenance costs. This paper presents a first comparison of technical solutions available to build such a power system and the strategy that will be applied for the up-grade of the system.

Bordry, Frederick; Völker, F V

2005-01-01T23:59:59.000Z

438

Power Factor Reactive Power  

E-Print Network [OSTI]

power: 130 watts Induction motor PSERC Incandescent lights 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 power: 150 watts #12;Page 4 PSERC Incandescent Lights PSERC Induction motor with no load #12;Page 5 Incandescent Lights #12;Page 7 PSERC Incandescent lights power: Power = 118 V x 1.3 A = 153 W = 0.15 kW = power

439

NREL: Biomass Research - Biochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock...

440

Landholders, Residential Land Conversion, and Market Signals  

E-Print Network [OSTI]

465– Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

Margulis, Harry L.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

Microscale-enhanced thermionic emitters will enable high-efficiency, solar-to-electrical conversion by taking advantage of both heat and light. Image from Stanford University...

442

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

443

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

444

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

445

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Energy Savers [EERE]

Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

446

LED Street Lighting Conversion Workshop Presentations  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

447

Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion  

E-Print Network [OSTI]

Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion Ralf Starzmann Fluid the water wave motion into a bi-directional air flow, which in turn drives an air turbine. The Wells turbine the environmental impact of an in situ Wells turbine in more detail requires an in depth understanding

Frandsen, Jannette B.

448

Site insolation and wind power characteristics: technical report Midwest region  

SciTech Connect (OSTI)

This phase of the Site Insolation and Wind Power Characteristics Study was performed to provide statistical information on the expected future availability of solar and wind power at various sites in the Midwest Region of the US Historic data (SOLMET), at 22 National Weather Service stations with hourly solar insolation and collateral meteorological information, were interrogated to provide an estimate of future trends. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Selected insolation and wind power conditions were investigated for their occurrence and persistence, for defined periods of time, on a monthly basis. Global horizontal insolation is related to inclined surfaces at each site. Ratios are provided, monthly, for multiplying global insolation to obtain insolation estimates on south-facing surfaces inclined at different angles with respect to the horizontal. Also, joint probability distribution tables are constructed showing the number of occurrences, out of a finite sample size, of daily average solar and wind power within selected intervals, by month. Information of this nature is intended as an aid to preliminary planning activities for the design and operation of solar and wind energy utilization and conversion systems.

None

1980-08-01T23:59:59.000Z

449

Subcooled flow boiling of fluorocarbons  

E-Print Network [OSTI]

A study was conducted of heat transfer and hydrodynamic behavior for subcooled flow boiling of Freon-113, one of a group of fluorocarbons suitable for use in cooling of high-power-density electronic components. Problems ...

Murphy, Richard Walter

1971-01-01T23:59:59.000Z

450

Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses  

E-Print Network [OSTI]

Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Karim Said Warby Parker's Facebook page and explore the ways customers formulate questions and conversations,000 Facebook posts, consisting of photos, comments, and "likes". Using statistical analyses and qualitative

Kane, Shaun K.

451

ENERGY FLOWS CLIMATE CHANGE  

E-Print Network [OSTI]

ENERGY FLOWS FORCINGS CLIMATE CHANGE A REALLY TOUGH PROBLEM Stephen E. Schwartz, BNL, 7-20-11 www average temperature 15°C or 59°F #12;ATMOSPHERIC RADIATION Power per area Energy per time per area Unit" temperature to radiative flux. #12;GLOBAL ENERGY BALANCE Global and annual average energy fluxes in watts per

Schwartz, Stephen E.

452

Power Quality/Harmonic Detection: Harmonic Control in Electric Power Systems for the Telecommunications Industry  

E-Print Network [OSTI]

The control of harmonics in power systems continues to be a major concern in the telecommunications industry. AC/DC telecommunication conversion equipment has rarely been thought of as playing a major role in the harmonic interaction problem. Yet...

Felkner, L. J.; Waggoner, R. M.

453

Impact of Power Generation Uncertainty on Power System Static Performance  

E-Print Network [OSTI]

in load and generation are modeled as random variables and the output of the power flow computationImpact of Power Generation Uncertainty on Power System Static Performance Yu Christine Chen, Xichen--The rapid growth in renewable energy resources such as wind and solar generation introduces significant

Liberzon, Daniel

454

Accelerator-based conversion (ABC) of reactor and weapons plutonium  

SciTech Connect (OSTI)

An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper.

Jensen, R.J.; Trapp, T.J.; Arthur, E.D.; Bowman, C.D.; Davidson, J.W.; Linford, R.K.

1993-06-01T23:59:59.000Z

455

Parameterizing energy conversion on rough topography  

E-Print Network [OSTI]

Parameterizing energy conversion on rough topography using bottom pressure sensors to measure form and mixing U0 Form drag pressure Tidal energy conversion Form drag causes: - internal wave generation - eddy Sound, WA Point Three Tree Previous work McCabe et al., 2006 > Measured the internal form drag

Warner, Sally

456

Unit Conversion Factors Quantity Equivalent Values  

E-Print Network [OSTI]

Unit Conversion Factors Quantity Equivalent Values Mass 1 kg = 1000 g = 0.001 metric ton = 2·R 10.73 psia·ft3 lbmol·R 62.36 liter·torr mol·K 0.7302 ft3·atm lbmol·R Temperature Conversions: T

Ashurst, W. Robert

457

Gene conversion in the rice genome  

E-Print Network [OSTI]

. Over 60% of the conversions we detected were between chromosomes. We found that the inter-chromosomal conversions distributed between chromosome 1 and 5, 2 and 6, and 3 and 5 are more frequent than genome average (Z-test, P < 0.05). The frequencies...

Xu, Shuqing; Clark, Terry; Zheng, Hongkun; Vang, SÃ ¸ ren; Li, Ruiqiang; Wong, Gane Ka-Shu; Wang, Jun; Zheng, Xiaoguang

2008-02-25T23:59:59.000Z

458

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean depths of 20 m (surface water) and 1,000 m. OTEC Ocean Thermal Energy Conversion, the process of converting the ocean thermal energy into electricity. OTEC transfer function The relationship between

459

Power options for lunar exploration  

SciTech Connect (OSTI)

This paper presents an overview of the types of power systems available for providing power on the moon. Lunar missions of exploration, in situ resource utilization, and colonization will be constrained by availability of adequate power. The length of the lunar night places severe limitations on solar power system designs, because a large portion of the system mass is devoted to energy storage. The selection of the ideal power source hardware will require compatibility with not only the lunar base power requirements and environment, but also with the conversion, storage, and transmission equipment. In addition, further analysis to determine the optimum operating parameters for a given power system should be conducted so that critical technologies can be identified in the early stages of base development. This paper describes the various concepts proposed for providing power on the lunar surface and compare their ranges of applicability. The importance of a systems approach to the integration of these components will also be discussed.

Bamberger, J.A.; Gaustad, K.L.

1992-01-01T23:59:59.000Z

460

Polyvinyl Chloride/Silica Nanoporous Composite Separator for All-Vanadium Redox Flow Battery Applications  

SciTech Connect (OSTI)

Redox flow batteries (RFBs) are capable of reversible conversion between electricity and chemical energy. Potential RFB applications resolve around mitigating the discrepancy between electricity production and consumption to improve the stability and utilization of the power infrastructure and tackling the intermittency of renewables such as photovoltaics or wind turbines to enable their reliable integration [1, 2]. Because the energy is stored in externally contained liquid electrolytes and the energy conversion reactions take place at the electrodes, RFBs hold a unique capability to separate energy and power and thus possess considerable design flexibility to meet either energy management driven or power rating oriented grid applications, which is considered to be a unparalleled advantage over conventional solid-state secondary batteries [3]. Other advantages of RFBs include fast response to load changes, high round-trip efficiency, long calender and cycle lives, safe operations, tolerance to deep discharge, etc. [4]. Among various flow battery chemistries, all-vanadium redox flow battery (VRB) was invented by Maria Skyllas-Kazacos at the University of New South Wales in the 1980s [5, 6] and have attracted substantial attention in both research and industrial communities today [7, 8]. A well-recognized advantage that makes VRB stands out among other redox chemistries is the reduced crossover contamination ascribed to employing four different oxidation states of the same vanadium element as the two redox couples. Recently, great progress has led to remarkably improved energy density of VRB by using sulfuric-chloric mixed acid supporting electrolytes that were stable at 2.5M vanadium and had wider operational temperature window of -5~50oC [9], compared with the traditional sulfuric acid VRB system [10].

Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Sprenkle, Vincent L.; Wang, Wei

2013-04-22T23:59:59.000Z

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Asymmetric frequency conversion in nonlinear systems driven by a biharmonic pump  

E-Print Network [OSTI]

A novel mechanism of asymmetric frequency conversion is investigated in nonlinear dispersive devices driven parametrically with a biharmonic pump. When the relative phase between the first and second harmonics combined in a two-tone pump is appropriately tuned, nonreciprocal frequency conversion, either upward or downward, can occur. Full directionality and efficiency of the conversion process is possible, provided that the distribution of pump power over the harmonics is set correctly. While this asymmetric conversion effect is generic, we describe its practical realization in a model system consisting of a current-biased, resistively-shunted Josephson junction. Here, the multiharmonic Josephson oscillations, generated internally from the static current bias, provide the pump drive.

Kamal, Archana; Clarke, John; Devoret, Michel H

2014-01-01T23:59:59.000Z

462

Asymmetric frequency conversion in nonlinear systems driven by a biharmonic pump  

E-Print Network [OSTI]

A novel mechanism of asymmetric frequency conversion is investigated in nonlinear dispersive devices driven parametrically with a biharmonic pump. When the relative phase between the first and second harmonics combined in a two-tone pump is appropriately tuned, nonreciprocal frequency conversion, either upward or downward, can occur. Full directionality and efficiency of the conversion process is possible, provided that the distribution of pump power over the harmonics is set correctly. While this asymmetric conversion effect is generic, we describe its practical realization in a model system consisting of a current-biased, resistively-shunted Josephson junction (RSJ). Here, the multiharmonic Josephson oscillations, generated internally from the static current bias, provide the pump drive.

Archana Kamal; Ananda Roy; John Clarke; Michel H. Devoret

2014-12-01T23:59:59.000Z

463

Self-powered microthermionic converter  

DOE Patents [OSTI]

A self-powered microthermionic converter having an internal thermal power source integrated into the microthermionic converter. These converters can have high energy-conversion efficiencies over a range of operating temperatures. Microengineering techniques are used to manufacture the converter. The utilization of an internal thermal power source increases potential for mobility and incorporation into small devices. High energy efficiency is obtained by utilization of micron-scale interelectrode gap spacing. Alpha-particle emitting radioisotopes can be used for the internal thermal power source, such as curium and polonium isotopes.

Marshall, Albert C.; King, Donald B.; Zavadil, Kevin R.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

2004-08-10T23:59:59.000Z

464

Conversion of Units of Measurement Gordon S. Novak Jr. \\Lambda  

E-Print Network [OSTI]

by the programmer; this can be both burdensome and error­prone, since the conversion factors used by the programmer guidelines for use of SI units and tables of conversion factors. Several books provide conversion factors, the accuracy of the conversion factors, and the algorithms that some books present for unit conversion

Novak Jr., Gordon S.

465

Photoferroelectric solar to electrical conversion  

E-Print Network [OSTI]

We propose a charge pump which converts solar energy into DC electricity. It is based on cyclic changes in the spontaneous electric polarization of a photoferroelectric material, which allows a transfer of charge from a low to a high voltage. To estimate the power efficiency we use a photoferroelectric liquid crystal as the working substance. For a specific choice of material, an efficiency of $2\\%$ is obtained.

Milos Knezevic; Mark Warner

2013-01-30T23:59:59.000Z

466

Developement of a digitally controlled low power single phase inverter for grid connected solar panel.  

E-Print Network [OSTI]

?? The work consists in developing a power conversion unit for solar panel connected to the grid. This unit will be a single phase inverter… (more)

Marguet, Raphael

2010-01-01T23:59:59.000Z

467

E-Print Network 3.0 - aircraft power demands Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage, Conversion and Utilization 4 Flying on Hydrogen GeorgiaTech researchers use fuel cells to power unmanned aerial vehicle. Summary: compressed hydrogen. The fuel-cell...

468

Nebraska city station emdash hot to cold esp conversion  

SciTech Connect (OSTI)

Omaha Public Power District's Nebraska City Unit 1, is a 585 MW net coal fueled power plant which burns low-sulfur Powder River Basin coal. The unit was originally designed and constructed with a fully enclosed hot-side rigid frame electrostatic precipitator. However, the original precipitator was unable to reliably and continuously maintain stack opacity and particulate emissions levels while operating at high loads. Therefore the hot-side precipitator was modified internally and converted to cold-side operation. The unit's four regenerative air heaters were relocated to an area underneath the boiler backpass and the ductwork was modified extensively. In addition, significant internal precipitator modifications were made. This paper describes the conversion design, construction, and resulting performance improvements.

Duncan, B.L.; Ferguson, A.W.; Wicina, R.C. (Black and Veatch Consulting Engineers, Kansas City, MO (United States)); Campbell, D.B.; Kotan, R.M.; Roth, K.A. (Omaha Public Power District, NE (United States))

1990-01-01T23:59:59.000Z

469

A new cascade-type heat conversion system  

SciTech Connect (OSTI)

Various heat conversion systems have different operating temperatures. This paper shows how, in a solar energy system some of the waste heat from a thermophotovoltaic arrangement can be made to operate a thermionic power generator. The waste heat of the thermionic power generator can then be made to operate an alkali-metal thermal electric converter, and the waste heat from the alkali-metal thermal electric converter as well as the rest of the waste heat of the thermophotovoltaic system can be made to operate a methane reformation system. Stored heat from the methane reformation system can be made to operate the system at night. The overall system efficiency of the example shown is 42.6%. As a prime source of heat a nuclear pile or burning hydrogen may be used.

Newman, E. [Twenty-First Century Power Co., Northridge, CA (United States)

1996-12-31T23:59:59.000Z

470

Abstract--The use of doubly fed induction generators (DFIGs) in large wind energy conversion systems (WECS) has  

E-Print Network [OSTI]

) to enable the variable speed operation of the wind turbine. Moreover, it provides reactive power support candidate in the wind energy conversion systems (WECS) due to its advantages [2- 5]. When compared to fixed-speed induction generators, the DFIG has the advantages of maximum power capture, less mechanical stresses

Pota, Himanshu Roy

471

A novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon  

E-Print Network [OSTI]

A novel thermomechanical energy conversion cycle Ian M. McKinley, Felix Y. Lee, Laurent Pilon of a novel cycle converting thermal and mechanical energy directly into electrical energy. The new cycle is adaptable to changing thermal and mechanical conditions. The new cycle can generate electrical power

Pilon, Laurent

472

Enhanced Energy Conversion Efficiency of the Sr2+-Modified Nanoporous TiO2 Electrode Sensitized  

E-Print Network [OSTI]

efficiency achieved with dye-sensitized solar cells may be attributed to the nanoporous TiO2 electrode.3 photon to current efficiency of a solar cell based on the dye Ru[LL(NCS)2] (L ) 2,2-bipyridine-4 cell based on dye-sensitized nanoporous TiO2 thin film electrode, and power conversion efficiency

Huang, Yanyi

473

USE OF MIXTURES AS WORKING FLUIDS IN OCEAN THERMAL ENERGY CONVERSION CYCLES  

E-Print Network [OSTI]

Mixtures offer potential advantages over pure compounds as working fluids in ocean thermal energy conversion cycles. Power plant capital costs per unit of energy output can be reduced using mixtures because of increased thermal efficiency and/or decreased heat exchanger size requirements. Mixtures

Khan Zafar Iqbal; Kenneth E. Starling

474

Energy conversion & storage program. 1994 annual report  

SciTech Connect (OSTI)

The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1995-04-01T23:59:59.000Z

475

Energy Conversion & Storage Program, 1993 annual report  

SciTech Connect (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1994-06-01T23:59:59.000Z

476

Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop  

SciTech Connect (OSTI)

Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

Hartley, J. [Pacific Northwest National Lab., Richland, WA (United States)] [Pacific Northwest National Lab., Richland, WA (United States); Tokarevsky, V. [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)] [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)

1998-06-01T23:59:59.000Z

477

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network [OSTI]

High-e?ciency direct conversion of heat to electrical energyJ. Yu and M. Ikura, “Direct conversion of low-grade heat tois concerned with direct conversion of thermal energy into

Lee, Felix

2012-01-01T23:59:59.000Z

478

Power Technologies Energy Data Book - Fourth Edition  

SciTech Connect (OSTI)

This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

Aabakken, J.

2006-08-01T23:59:59.000Z

479

Submarine landslide flows simulation through centrifuge modelling  

E-Print Network [OSTI]

) ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 2.7: Failure at Helsinki Harbour , Finland in 1936 (after Andresen and Bjerrum, 1967... ) ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 2.18: Energy conversion for debris flows (modified after Iverson, 1997) .......................................................................................... 50 Figure 2.19: Schematic cross-section defini ng H...

Gue, Chang Shin

2012-05-08T23:59:59.000Z

480

Energy Storage for the Power Grid  

ScienceCinema (OSTI)

The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

Wang, Wei; Imhoff, Carl; Vaishnav, Dave

2014-06-12T23:59:59.000Z

Note: This page contains sample records for the topic "flow power conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Storage for the Power Grid  

SciTech Connect (OSTI)

The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

Wang, Wei; Imhoff, Carl; Vaishnav, Dave

2014-04-23T23:59:59.000Z

482

Energy Conversion and Transmission Facilities (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation applies to energy conversion facilities designed for or capable of generating 100 MW or more of electricity, wind energy facilities with a combined capacity of 100 MW, certain...

483

Summer Series 2012 - Conversation with Omar Yaghi  

ScienceCinema (OSTI)

Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

Omar Yaghi

2013-06-24T23:59:59.000Z

484

Ris Energy Report 2 Bioenergy conversion  

E-Print Network [OSTI]

6.3 Risø Energy Report 2 Bioenergy conversion There is a wide range of technologies to derive operate automatically and are in many regions an economic alternative, e.g. Austria and Finland

485

Assessment of ocean thermal energy conversion  

E-Print Network [OSTI]

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

486

Summer Series 2012 - Conversation with Kathy Yelick  

ScienceCinema (OSTI)

Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

Kathy Yelick

2013-06-24T23:59:59.000Z

487

Chemical preconcentrator with integral thermal flow sensor  

DOE Patents [OSTI]

A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2003-01-01T23:59:59.000Z

488

Potential Impacts of Hydrokinetic and Wave Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

489

Process Design and Economics for the Conversion of Lignocellulosic...  

Broader source: Energy.gov (indexed) [DOE]

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion...

490

2011 Biomass Program Platform Peer Review: Biochemical Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent...

491

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

492

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

493

Conversation/Culture Partner Program Would you like to help  

E-Print Network [OSTI]

Conversation/Culture Partner Program Would you like to help another student improve their English different cultures; *Help another student improve their conversation English; and *Assist another student

Thomas, Andrew

494

Energy Conversion and Thermal Efficiency Sales Tax Exemption  

Broader source: Energy.gov [DOE]

Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed...

495

aspergillus fumigatus conversion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

135 Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Computer Technologies and Information Sciences Websites Summary: Framing the...

496

antidiabetic bis-maltolato-oxovanadiumiv conversion: Topics by...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

88 Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Computer Technologies and Information Sciences Websites Summary: Framing the...

497

Evaluation of Thermal to Electrical Energy Conversion of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

498

Trends in Contractor Conversion Rates | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Contractor Conversion Rates Trends in Contractor Conversion Rates Better Buildings Residential Network Workforce Business Partners Peer Exchange Call Series: Trends in Contractor...

499

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

500

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large

Hawai'i at Manoa, University of