Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

REVIEW OF AIR FLOW MEASUREMENT TECHNIQUES  

Office of Scientific and Technical Information (OSTI)

9747 9747 Review of Airflow Measurement Techniques Jennifer McWilliams Energy Performance of Buildings Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 December 1, 2002 Abstract Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: "Is there enough fresh air to provide a healthy environment for the occupants of the building?" This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and

2

Review of air flow measurement techniques  

E-Print Network [OSTI]

static pressure distributions were measured in the duct and HVACstatic pressure distributions were measured in the duct and HVACstatic pressure distributions were measured in the duct and HVAC

McWilliams, Jennifer

2002-01-01T23:59:59.000Z

3

Evaluation of flow capture techniques for measuring HVAC grilleairflows  

SciTech Connect (OSTI)

This paper discusses the accuracy of commercially available flow hoods for residential applications. Results of laboratory and field tests indicate these hoods can be inadequate to measure airflows in residential systems, and there can be large measurement discrepancies between different flow hoods. The errors are due to poor calibrations, sensitivity of the hoods to grille airflow non-uniformities, and flow changes from added flow resistance. It is possible to obtain reasonable results using some flow hoods if the field tests are carefully done, the grilles are appropriate, and grille location does not restrict flow hood placement. We also evaluated several simple flow capture techniques for measuring grille airflows that could be adopted by the HVAC industry and homeowners as simple diagnostics. These simple techniques can be as accurate as commercially available devices. Our test results also show that current calibration procedures for flow hoods do not account for field application problems. As a result, agencies such as ASHRAE or ASTM need to develop a new standard for flow hood calibration, along with a new measurement standard to address field use of flow capture techniques.

Walker, Iain S.; Wray, Craig P.

2002-11-01T23:59:59.000Z

4

Two-phase air-water stratified flow measurement using ultrasonic techniques  

SciTech Connect (OSTI)

In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200?s. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

Fan, Shiwei; Yan, Tinghu; Yeung, Hoi [School of Engineering, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom)

2014-04-11T23:59:59.000Z

5

Structural power flow measurement  

SciTech Connect (OSTI)

Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

Falter, K.J.; Keltie, R.F.

1988-12-01T23:59:59.000Z

6

A new technique to analyze simultaneous sandface flow rate and pressure measurements of gas wells with turbulence and damage  

SciTech Connect (OSTI)

Most of the problems associated with conventional gas well test are related to the nonlinearity of the equations describing real gas flow, the presence of the rate dependent (non-Darcy) skin, and the long shut-in time periods required to collect the data for the analysis in tight reservoirs in which the wellbore storage period can be excessively long. This paper presents a new pressure buildup technique that reduces the wellbore storage effects, eliminates the long shut-in periods experienced with conventional tests by using afterflow rate and pressure data, and most importantly provides a direct method to estimate non-Darcy skin. The proposed technique uses normalized pseudofunctions to avoid the nonlinearities of the governing equations and involves using two different plots. The formation permeability is obtained from the slope of the first plot. The mechanical and non-Darcy skin factors are obtained respectively from the slope and intercept of the second plot. A field example and two simulated cases are presented to illustrate the application of the new technique.

Nashawi, I.S. [Kuwait Univ. (Kuwait); Al-Mehaideb, R.A.

1995-10-01T23:59:59.000Z

7

Planetary heat flow measurements  

Science Journals Connector (OSTI)

...ESA's Rosetta mission towards comet Churyumov-Gerasimenko. It...Heat flow measurements on comets have a different motivation...penetrator is by no means limited to comets; it has also been tested in...measurement. Currently, a landing on Mercury within the framework...

2005-01-01T23:59:59.000Z

8

Full-Volume, Three-Dimensional, Transient Measurements of Bubbly Flows Using Particle Tracking Velocimetry and Shadow Image Velocimetry Coupled with Pattern Recognition Techniques  

SciTech Connect (OSTI)

Develop a state-of-the-art non-intrusive diagnostic tool to perform simultaneous measurements of both the temporal and three-dimensional spatial velocity of the two phases of a bubbly flow. These measurements are required to provide a foundation for studying the constitutive closure relations needed in computational fluid dynamics and best-estimate thermal hydraulic codes employed in nuclear reactor safety analysis and severe accident simulation. Such kinds of full-field measurements are not achievable through the commonly used point-measurement techniques, such as hot wire, conductance probe, laser Doppler anemometry, etc. The results can also be used in several other applications, such as the dynamic transport of pollutants in water or studies of the dispersion of hazardous waste.

Yassin Hassan

2001-11-30T23:59:59.000Z

9

Orifice flow measurement uncertainty  

SciTech Connect (OSTI)

A computer program is now available from Union Carbide that evaluates the total flow uncertainty of orifice flowmeter systems. Tolerance values for every component in the system and the sensitivity of the measured flowrate to each component can be established using historical data and published hardware specifications. Knowing the tolerance and sensitivity values, a total measurement uncertainty can be estimated with a 95% confidence level. This computer program provides a powerful design tool to ensure correct component matching and total metering system optimization.

Samples, C.R.

1984-04-01T23:59:59.000Z

10

Geologic flow characterization using tracer techniques  

SciTech Connect (OSTI)

A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included.

Klett, R. D.; Tyner, C. E.; Hertel, Jr., E. S.

1981-04-01T23:59:59.000Z

11

Differential probes aid flow measurement  

SciTech Connect (OSTI)

Nonconstricting differential pressure flow probes which help solve the problems of clogging, wear, and pressure loss at the Seawater Filtration Facility in Saudi Arabia are described. Treated seawater is pumped into oil-bearing formations for secondary recovery. Figures showing principle of operation for probes, installation schematic and long-term accuracy results (flow probes vs. orifice meters) are presented. The new diamond-shaped design flow sensor offers accurate flow measurement with low permanent pressure loss, which translates into cost savings for the operator.

Mesnard, D.R.

1982-07-01T23:59:59.000Z

12

Evaluation of flow hood measurements for residential register flows  

SciTech Connect (OSTI)

Flow measurement at residential registers using flow hoods is becoming more common. These measurements are used to determine if the HVAC system is providing adequate comfort, appropriate flow over heat exchangers and in estimates of system energy losses. These HVAC system performance metrics are determined by using register measurements to find out if individual rooms are getting the correct airflow, and in estimates of total air handler flow and duct air leakage. The work discussed in this paper shows that commercially available flow hoods are poor at measuring flows in residential systems. There is also evidence in this and other studies that flow hoods can have significant errors even when used on the non-residential systems they were originally developed for. The measurement uncertainties arise from poor calibrations and the sensitivity of exiting flow hoods to non-uniformity of flows entering the device. The errors are usually large--on the order of 20% of measured flow, which is unacceptably high for most applications. Active flow hoods that have flow measurement devices that are insensitive to the entering airflow pattern were found to be clearly superior to commercially available flow hoods. In addition, it is clear that current calibration procedures for flow hoods may not take into account any field application problems and a new flow hood measurement standard should be developed to address this issue.

Walker, I.S.; Wray, C.P.; Dickerhoff, D.J.; Sherman, M.H.

2001-09-01T23:59:59.000Z

13

Nuclear Safeguards Verification Measurement Techniques  

Science Journals Connector (OSTI)

This chapter deals with the “nuclear safeguards” verification system and describes procedures and measurement methods that allow the safeguards inspectorates/authorities...

M. Zendel; D. L. Donohue; E. Kuhn; S. Deron; T. Bíró

2011-01-01T23:59:59.000Z

14

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

to Geothermal Prospecting Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Use of Geophysical Techniques...

15

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

and test combined geophysical techniques to characterize fluid flow, in relation to fracture orientations and fault distributions in a geothermal system. Average Overall Score:...

16

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

or otherwise restricted information. Self-potential 2 | US DOE Geothermal Program eere.energy.gov * Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal...

17

A non-perturbative anemometric and flow visualization technique (~)  

E-Print Network [OSTI]

are based on the periodic injection Fig. 1. - In the Poiseuille flow cell (C) a thermal grating G is formed present a new visualization technique of an hydrodynamic flow using a thermal grid, « written not washed away the lines. The letter discusses a related technique - in which a thermal grid is « written

Boyer, Edmond

18

Theoretical uncertainty of orifice flow measurement  

SciTech Connect (OSTI)

Orifice meters are the most common meters used for fluid flow measurement, especially for measuring hydrocarbons. Meters are rugged, mechanically simple, and well suited for field use under extreme weather conditions. Because of their long history of use and dominance in the fluid flow measurement, their designs, installation requirements, and equations for flow rate calculation have been standardized by different organizations in the United States and internationally. These standards provide the guideline for the users to achieve accurate flow measurement. and minimize measurement uncertainty. This paper discusses different factors that contribute to the measurement inaccuracy and provide an awareness to minimize or eliminate these errors. Many factors which influence the overall measurement uncertainty are associated with the orifice meter application. Major contributors to measurement uncertainty include the predictability of flow profile, fluid properties at flowing condition, precision of empirical equation for discharge coefficient, manufacturing tolerances in meter components, and the uncertainty associated with secondary devices monitoring the static line pressure, differential pressure across the orifice plate, flowing temperature, etc. Major factors contributing to the measurement uncertainty for a thin, concentric, square-edged orifice flowmeter are as follows: (a) Tolerances in prediction of coefficient of discharge, (b) Predictability in defining the physical properties of the flowing fluid, (c) Fluid flow condition, (d) Construction tolerances in meter components, (e) Uncertainty of secondary devices/instrumentation, and (f) Data reduction and computation. Different factors under each of the above areas are discussed with precautionary measures and installation procedures to minimize or eliminate measurement uncertainty.

Husain, Z.D. [Daniel Flow Products, Inc., Houston, TX (United States)

1995-12-01T23:59:59.000Z

19

Catalyst immobilization techniques for continuous flow synthesis  

E-Print Network [OSTI]

Catalytic processes are ubiquitous in both research and industrial settings. As continuous flow processes continue to gain traction in research labs and fine and pharmaceutical chemical processes, new opportunities exist ...

Nagy, Kevin David

2012-01-01T23:59:59.000Z

20

Measurement of VOC reactivities using a photochemical flow reactor  

SciTech Connect (OSTI)

A commercial ambient air monitoring instrument, the Airtrak 2000, has been modified for use as a photochemical flow reactor and used to measure the absolute and incremental reactivity of 18 single test VOCs and the incremental reactivity of six multicomponent VOC mixtures. A flow technique is a useful supplement to traditional static chamber experiments. The static chamber technique involves periodic sampling of an irradiated mixture in a photochemical chamber. Under these conditions, the irradiated mixture is always in transition. Using a flow system, a steady-state condition is established within the flow reactor that is representative, in this case, of the early stages of the smog forming process in the atmosphere. The measurement technique also allows changes in the background chamber reactivity to be monitored and taken into account. The incremental reactivity of 13 of the 18 test compounds measured is compared with previously reported results from a static chamber experiment, and the two data sets are generally in good agreement. The additivity of reactivity was tested by measuring the incremental reactivity of six multicomponent mixtures, the components being compounds measured individually in this study. The measured reactivity of a mixture was compared to that calculated from the sum of the measured reactivity of the mixture`s individual components. The results show that reactivity is additive for the concentration range studied.

Hurley, M.D.; Chang, T.Y.; Japar, S.M.; Wallington, T.J. [Ford Motor Co., Dearborn, MI (United States). Ford Research Lab.] [Ford Motor Co., Dearborn, MI (United States). Ford Research Lab.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Entrainment measurements in annular flow  

SciTech Connect (OSTI)

Air/water and vapor/freon were utilized to scale and simulate annular two-phase flow for high pressure steam/water conditions. A unique vapor/liquid Freon loop was built to obtain the high pressure data. The results were compared with two correlations available in the open literature. The Ishii and Mishima dimensionless group was able to scale the data remarkably well even for vapor/liquid Freon. However, the correlation needs to be adjusted for high Weber numbers of the gas phase.

Assad, A.; Jan, C.; Bertodano, M. de [Purdue Univ., West Lafayette, IN (United States); Beus, S.G. [Bettis Atomic Power Lab., West Mifflin, PA (United States)

1997-07-01T23:59:59.000Z

22

The in situ permeable flow sensor: A device for measuring groundwater flow velocity  

SciTech Connect (OSTI)

A new technology called the In Situ Permeable Flow Sensor has been developed at Sandia National Laboratories. These sensors use a thermal perturbation technique to directly measure the direction and magnitude of the full three dimensional groundwater flow velocity vector in unconsolidated, saturated, porous media. The velocity measured is an average value characteristic of an approximately 1 cubic meter volume of the subsurface. During a test at the Savannah River Site in South Carolina, two flow sensors were deployed in a confined aquifer in close proximity to a well which was screened over the entire vertical extent of the aquifer and the well was pumped at four different pumping rates. In this situation horizontal flow which is radially directed toward the pumping well is expected. The flow sensors measured horizontal flow which was directed toward the pumping well, within the uncertainty in the measurements. The observed magnitude of the horizontal component of the flow velocity increased linearly with pumping rate, as predicted by theoretical considerations. The measured horizontal component of the flow velocity differed from the predicted flow velocity, which was calculated with the assumptions that the hydraulic properties of the aquifer were radially homogeneous and isotropic, by less than a factor of two. Drawdown data obtained from other wells near the pumping well during the pump test indicate that the hydraulic properties of the aquifer are probably not radially homogeneous but the effect of the inhomogeneity on the flow velocity field around the pumping well was not modeled because the degree and distribution of the inhomogeneity are unknown. Grain size analysis of core samples from wells in the area were used to estimate the vertical distribution of hydraulic conductivity.

Ballard, S.; Barker, G.T. [Sandia National Labs., Albuquerque, NM (United States); Nichols, R.L. [Savannah River Technology Center, Aiken, SC (United States)

1994-03-01T23:59:59.000Z

23

Measurement and characterization techniques for thermoelectric materials  

SciTech Connect (OSTI)

Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

Tritt, T.M.

1997-07-01T23:59:59.000Z

24

Uncertainty Analysis Technique for OMEGA Dante Measurements  

SciTech Connect (OSTI)

The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.

May, M J; Widmann, K; Sorce, C; Park, H; Schneider, M

2010-05-07T23:59:59.000Z

25

Investigation of grid embedment techniques as applied to subcritical flow  

E-Print Network [OSTI]

INVESTIGATION OF GRID EMBEDMENT TECHNIOUES AS APPI IED TO SUBCRITICAL FLOW A Thesis by MICHAEL E. WATTS Submitted to the Graduate College of Texas A@1 University in partial fulfi11ment of the requirements for the degree of MASTER OF SCIENCE... December, 1980 Major Subject: Aerospace Engineering INVESTIGATION OF GRID EMBEDMENT TECHNIQUES AS APPLIED TO SUBCRITICAL FLOW A Thesis by MICHAEL E, WATTS Approved as to style and content by: a)rm n o Committee 3 J4W Member p' c. ember Member...

Watts, Michael E.

1980-01-01T23:59:59.000Z

26

Solids flow rate measurement in dense slurries  

SciTech Connect (OSTI)

Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

Porges, K.G.; Doss, E.D.

1993-09-01T23:59:59.000Z

27

Resonant ultrasound spectroscopic techniques for measurement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sonic ot the elastic moduli. hilt pulc-echo ultrasound and nio4t of the tiotixo- tic technique can mcaut-c all of them. l'hi i not ;I p;trticLtlarl inipc)rtatit...

28

Generic measures for geodesic flows on nonpositively curved manifolds  

E-Print Network [OSTI]

Generic measures for geodesic flows on nonpositively curved manifolds Yves Coud`ene, Barbara the generic invariant probability measures for the geodesic flow on connected complete nonpositively curved subset of the set of all probability measures invariant by the geodesic flow. The proof of K. Sigmund

Paris-Sud XI, Université de

29

Energy Measurement Techniques for Smart Metering  

Science Journals Connector (OSTI)

This chapter discusses topology, architecture and circuit design of energy measurement unit for Smart Metering. The chapter establishes step-by-step design methodology of energy measurement unit of a smart meter ...

Sumit Adhikari

2013-01-01T23:59:59.000Z

30

Technique for Measuring Hybrid Electronic Component Reliability  

SciTech Connect (OSTI)

Materials compatibility studies of aged, engineered materials and hardware are critical to understanding and predicting component reliability, particularly for systems with extended stockpile life requirements. Nondestructive testing capabilities for component reliability would significantly enhance lifetime predictions. For example, if the detection of crack propagation through a solder joint can be demonstrated, this technique could be used to develop baseline information to statistically determine solder joint lifelengths. This report will investigate high frequency signal response techniques for nondestructively evaluating the electrical behavior of thick film hybrid transmission lines.

Green, C.C.; Hernandez, C.L.; Hosking, F.M.; Robinson, D.; Rutherford, B.; Uribe, F.

1999-01-01T23:59:59.000Z

31

PFT Air Infiltration Measurement Technique | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PFT Air Infiltration Measurement Technique PFT Air Infiltration Measurement Technique PFT Air Infiltration Measurement Technique April 2, 2012 - 3:11pm Addthis The Brookhaven National Laboratory developed the PFT (PerFluorocarbon tracer gas) technique to measure changes over time when determining a building's air-infiltration rate. The Brookhaven National Laboratory developed the PFT (PerFluorocarbon tracer gas) technique to measure changes over time when determining a building's air-infiltration rate. What does this mean for me? You can save 5%-30% on your energy bill by making upgrades following a home energy assessment. A professional energy auditor may use the PFT air infiltration measurement technique to find out where your home has air leaks, though a blower door test is more commonly used.

32

A Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements  

Open Energy Info (EERE)

Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements And Heat-Flow Estimates From The Uk Geothermal Catalogue Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements And Heat-Flow Estimates From The Uk Geothermal Catalogue Details Activities (0) Areas (0) Regions (0) Abstract: A comprehensive database of temperature, heat flow, thermal conductivity and geochemistry is the basis of geothermal modelling. The latest revision (1987) of the UK Geothermal Catalogue (UKGC) contains over 2600 temperatures at over 1150 sites and over 200 observations of heat flow. About 93% of the temperature data are from depths less than 2000 m and about 50% are Bottom Hole Temperatures (BHT). Heat-flow density

33

Ultrasonic fluid flow measurement method and apparatus  

DOE Patents [OSTI]

An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1993-01-01T23:59:59.000Z

34

Ultrasonic fluid flow measurement method and apparatus  

DOE Patents [OSTI]

An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.

Kronberg, J.W.

1993-10-12T23:59:59.000Z

35

Experimental Analysis of Two Measurement Techniques to Characterize Photodiode Linearity  

E-Print Network [OSTI]

Experimental Analysis of Two Measurement Techniques to Characterize Photodiode Linearity Anand anand@ece.ucsb.edu Abstract--As photodiodes become more linear, accurately characterizing, the limitations of the measurement system in determining the distortion of highly linear photodiodes. I

Coldren, Larry A.

36

Evaluation of commercially available techniques and development of simplified methods for measuring grille airflows in HVAC systems  

SciTech Connect (OSTI)

In this report, we discuss the accuracy of flow hoods for residential applications, based on laboratory tests and field studies. The results indicate that commercially available hoods are often inadequate to measure flows in residential systems, and that there can be a wide range of performance between different flow hoods. The errors are due to poor calibrations, sensitivity of existing hoods to grille flow non-uniformities, and flow changes from added flow resistance. We also evaluated several simple techniques for measuring register airflows that could be adopted by the HVAC industry and homeowners as simple diagnostics that are often as accurate as commercially available devices. Our test results also show that current calibration procedures for flow hoods do not account for field application problems. As a result, organizations such as ASHRAE or ASTM need to develop a new standard for flow hood calibration, along with a new measurement standard to address field use of flow hoods.

Walker, Iain S.; Wray, Craig P.; Guillot, Cyril; Masson, S.

2003-08-01T23:59:59.000Z

37

Techniques for radiation measurements: microdosimetry and dosimetry  

Science Journals Connector (OSTI)

......neutron capture therapy(25) using a pair of matched miniature TEPCs where the wall of one of the counters is loaded with Boron-10. Subtraction of the two measured microdosimetric spectra reveals the enhanced dose achieved by boron capture. In this......

A. J. Waker

2006-12-01T23:59:59.000Z

38

Accessible calibration technique for mechanical impedance measurements  

Science Journals Connector (OSTI)

A velocity pickup for stereo disk playback can be calibrated for magnitude of velocity response by using commercially available test records modulated by pure sinusoidal signals. The records may be calibrated independently by using a collimated light beam (sealed beam headlamp) and measuring (with divider and ruler) the extent of the “Christmas Tree” pattern reflected from the grooves. During playback at measured speeds the record becomes a source of calibrated velocity amplitude for each of the pickup channels. Summing and differencing the pickup outputs convert right and left to vertical and horizontal outputs. The phase difference between the stylus velocity and the electrical output of the pickup is calibrated by placing the cartridge tip in a dimple cut into the ground electrode of a piezoelectric force transducer driven electrically well below its resonant frequency. The driving voltage and the pickup output then exhibit the same phase relation as the groove displacement and the pickup output. The force/velocity ratio measuring system is calibrated as a function of frequency by using known masses as loads. For measuring an unknown mechanical impedance the force pickup is interposed between a driver and the load with the pickup stylus mounted either in the dimple in the electrode or on the surface of the load. [This work has been performed using the facilities of the National Bureau of Standards.

Edith L. R. Corliss

1981-01-01T23:59:59.000Z

39

System for measuring multiphase flow using multiple pressure differentials  

DOE Patents [OSTI]

An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

Fincke, James R. (Idaho Falls, ID)

2003-01-01T23:59:59.000Z

40

Semiconductor laser diode facet reflectivity measurement techniques  

E-Print Network [OSTI]

123 124 125 126 Bias Current P1= P1/P2 Av . a Bias Current P1= P2 P1/P2= Av Bias Current P1 P2~ Pt/P2a Av Bias Current P1= P1/P2 Av . = Bias Current P1= P2 P1/P2= Av . = Bias Current P1 P2= P1/P2= Av . Bias Current P1...W 1. 3333 0. 70 E-03 13. 5 mA 0. 975 mW 0. 703 mW 1. 3869 Av . m 1. 3774 Measurement Totals Total Stnd. Dev. m 2. 15 E-03 Av . = Stnd. Dev. ~ 1. 3509 0. 0461 Max. Ratio Min. Ratio 1. 414 1. 2655 18 2. 0 mm I l 11 1. 2 mml (7 I AU...

Thompson, Michael John

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Measurement of thermodynamics using gradient flow  

E-Print Network [OSTI]

We analyze bulk thermodynamics and correlation functions of the energy-momentum tensor in pure Yang-Mills gauge theory using the energy-momentum tensor defined by the gradient flow and small flow time expansion. Our results on thermodynamic observables are consistent with those obtained by the conventional integral method. The analysis of the correlation function of total energy supports the energy conservation. It is also addressed that these analyses with gradient flow require less statistics compared with the previous methods. All these results suggest that the energy-momentum tensor can be successfully defined and observed on the lattice with moderate numerical costs with the gradient flow.

Masakiyo Kitazawa; Masayuki Asakawa; Tetsuo Hatsuda; Takumi Iritani; Etsuko Itou; Hiroshi Suzuki

2014-12-15T23:59:59.000Z

42

Study of microfluidic measurement techniques using novel optical imaging diagnostics  

E-Print Network [OSTI]

is applied for a 3-D vector field mapping in a microscopic flow and a Brownian motion tracking of nanoparticles. This technique modifies OSSM system for a micro-fluidic experiment, and the imaging system captures a diffracted particle image having numerous...

Park, Jaesung

2007-04-25T23:59:59.000Z

43

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Ventilated Building Speaker(s): Sezin Eren Ozcan Date: May 16, 2006 - 12:00pm Location: Bldg. 90 Due to limited energy sources, countries are looking for alternative solutions to decrease energy needs. In that context, natural ventilation can be seen as a very attractive sustainable technique in building design. However, understanding of ventilation dynamics is needed to provide an efficient control. Ventilation rate has to be determined not only in terms of energy, but also for controlling indoor air quality and emissions. For these reasons, agricultural buildings (livestock houses, greenhouses, etc.), naturally ventilated industrial buildings, and residences require a reliable ventilation rate measuring technique. Measuring techniques suffer

44

NIST Measurement Services: Natural Gas Flow Calibration Service (NGFCS)  

E-Print Network [OSTI]

NIST Measurement Services: Natural Gas Flow Calibration Service (NGFCS) NIST Special Publication of Standards and Technology #12;i Table of Contents for the Natural Gas Flowmeter Calibration Service (NGFCS;1 Abstract This document describes NIST's high pressure natural gas flow calibration service (NGFCS). Flow

45

An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique  

SciTech Connect (OSTI)

In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.

Battista, L.; Sciuto, S. A.; Scorza, A. [Department of Engineering, ROMA TRE University, via della Vasca Navale 79/81, Rome (Italy)

2013-03-15T23:59:59.000Z

46

Multivortex micromixing: novel techniques using Dean flows for passive microfluidic mixing  

E-Print Network [OSTI]

MULTIVORTEX MICROMIXING: NOVEL TECHNIQUES USING DEAN FLOWS FOR PASSIVE MICROFLUIDIC MIXING A Dissertation by ARJUN PENUBOLU SUDARSAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2006 Major Subject: Chemical Engineering MULTIVORTEX MICROMIXING: NOVEL TECHNIQUES USING DEAN FLOWS FOR PASSIVE MICROFLUIDIC MIXING A...

Sudarsan, Arjun Penubolu

2007-04-25T23:59:59.000Z

47

Time-resolved fluorescence decay measurements for flowing particles  

DOE Patents [OSTI]

Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.

Deka, Chiranjit (Miami, FL); Steinkamp, John A. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

48

Time-resolved fluorescence decay measurements for flowing particles  

DOE Patents [OSTI]

Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

Deka, C.; Steinkamp, J.A.

1999-06-01T23:59:59.000Z

49

A pattern matching technique for measuring sediment displacement levels  

E-Print Network [OSTI]

of a vortex ring with a glass ballotini particle layer as the resuspension mechanism are described to test-intrusive measurements of changes in the depth of a layer of sedi- ment due to a resuspension event. The key focus here is on the measurement technique itself, rather than the dynamics of the resuspension event that motivated

Dalziel, Stuart

50

Plant Growth Measurement Techniques Using Near-Infrared  

E-Print Network [OSTI]

Plant Growth Measurement Techniques Using Near-Infrared Imagery Amr Aboelela John Barron Dept, for measuring plant growth for corn seedlings and Caster Oil Bean leaves. A near-infrared camera, which allows to hypothesize where growth might be taking place. Keywords: Near-Infrared Imagery, Corn Seedling stem

Barron, John

51

Retroreflective shadowgraph technique for large-scale flow visualization  

E-Print Network [OSTI]

for large-scale flow visualization, the simple shadow- graph can often provide the most robust solution photographed the shadowgram of a blasting-cap ex- plosion outdoors in daylight (see Fig. 6.14a of [1]). One

Settles, Gary S.

52

First fusion proton measurements in TEXTOR plasmas using activation technique  

SciTech Connect (OSTI)

MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R and D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -{approx}6 times more - compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

Bonheure, G.; Wassenhove, G. Van [ERM-KMS, Trilateral Euregio Cluster, B-1000 Brussels (Belgium); Mlynar, J. [Association Euratom-IPP.CR, Institute of Plasma Physics AS CR, v.v.i., Za Slovankou 3, CZ-182 00 Praha 8 (Czech Republic); Hult, M.; Gonzalez de Orduna, R.; Lutter, G. [Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Vermaercke, P. [SCK-CEN, Boeretang, B-2400 Mol (Belgium); Huber, A.; Schweer, B.; Esser, G.; Biel, W. [Forschungszentrum Juelich GmbH, Institut fuer Plasmaphysik, EURATOM-Assoziation, Trilateral Euregio Cluster, D-52425 Juelich (Germany)

2012-10-15T23:59:59.000Z

53

Rationale for Measuring Duct Leakage Flows in Large Commercial Buildings  

SciTech Connect (OSTI)

Industry-wide methods of assessing duct leakage are based on duct pressurization tests, and focus on ''high pressure'' ducts. Even though ''low pressure'' ducts can be a large fraction of the system and tend to be leaky, few guidelines or construction specifications require testing these ducts. We report here on the measured leakage flows from ten large commercial duct systems at operating conditions: three had low leakage (less than 5% of duct inlet flow), and seven had substantial leakage (9 to 26%). By comparing these flows with leakage flows estimated using the industry method, we show that the latter method by itself is not a reliable indicator of whole-system leakage flow, and that leakage flows need to be measured.

Wray, Craig P.; Diamond, Richard C.; Sherman, Max H.

2005-07-01T23:59:59.000Z

54

Quadrupole Magnetic Center Definition Using the Hall Probe Measurement Technique  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quadrupole Magnetic Center Definition Quadrupole Magnetic Center Definition Using the Hall Probe Measurement Technique Isaac Vasserman Experimental Facility Division, Advanced Photon Source, Argonne National Laboratory 1. Introduction The linac coherent light source [LCLS] project [1] requires 5 µm straightness of the particle beam trajectory to achieve the desired goal of x-ray multiplication. The main source of beam trajectory distortion is misalignment of quadrupoles. The LCLS project will use a beam-based alignment technique to align the quadrupoles to the needed accuracy. An initial accuracy of the quadrupole alignment not worse than 50 µm is required [2]. A different technique could be used for this purpose. It would be though quite desirable to avoid using an additional magnetic measurement technique and to use

55

Application of harmonic analysis in the measuring technique of corrosion  

SciTech Connect (OSTI)

A technique for the determination of the rate of corrosion is described based on the harmonic analysis of the current of the electrode perturbed with relatively small amplitude undistorted sinusoidal alternating voltage. The measurement carried out in the vicinity of the corrosion potential permits the determination of both the corrosion current density and the Tafel slopes. The technique is illustrated using a study of the corrosion of various types of iron electrodes in acidic and neutral media.

Meszaros, L.; Meszaros, G.; Lengyel, B. (Hungarian Academy of Sciences, Budaoersi (Hungary). Research Lab. for Inorganic Chemistry)

1994-08-01T23:59:59.000Z

56

MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS  

SciTech Connect (OSTI)

The objective of this project is to study the dynamics of fuel droplets in turbulent water flows. The results are essential for development of models capable of predicting the dispersion of slightly light/heavy droplets in isotropic turbulence. Since we presently do not have any experimental data on turbulent diffusion of droplets, existing mixing models have no physical foundations. Such fundamental knowledge is essential for understanding/modeling the environmental problems associated with water-fuel mixing, and/or industrial processes involving mixing of immiscible fluids. The project has had experimental and numerical components: 1. The experimental part of the project has had two components. The first involves measurements of the lift and drag forces acting on a droplet being entrained by a vortex. The experiments and data analysis associated with this phase are still in progress, and the facility, constructed specifically for this project is described in Section 3. In the second and main part, measurements of fuel droplet dispersion rates have been performed in a special facility with controlled isotropic turbulence. As discussed in detail in Section 2, quantifying and modeling the of droplet dispersion rate requires measurements of their three dimensional trajectories in turbulent flows. To obtain the required data, we have introduced a new technique - high-speed, digital Holographic Particle Image Velocimetry (HPIV). The technique, experimental setup and results are presented in Section 2. Further information is available in Gopalan et al. (2005, 2006). 2. The objectives of the numerical part are: (1) to develop a computational code that combines DNS of isotropic turbulence with Lagrangian tracking of particles based on integration of a dynamical equation of motion that accounts for pressure, added mass, lift and drag forces, (2) to perform extensive computations of both buoyant (bubbles) and slightly buoyant (droplets) particles in turbulence conditions relevant to the experiments, and (3) to explore whether the corresponding predictions can explain the experimentally-observed behavior of the rise and dispersion of oil droplets in isotropic turbulence. A brief summary of results is presented in Section 4.

Joseph Katz and Omar Knio

2007-01-10T23:59:59.000Z

57

Electromagnetic measurements of duodenal digesta flow in cannulated sheep  

E-Print Network [OSTI]

Electromagnetic measurements of duodenal digesta flow in cannulated sheep C. PONCET, M. IVAN M of duodenal digesta flow were made in sheep implanted with an electromagnetic flowmeter probe on the ascending to frequent oscillation of the digesta. It was concluded that accurate quantitative electromagnetic

Paris-Sud XI, Université de

58

Phase distribution measurements in narrow rectangular channels using image-processing techniques  

SciTech Connect (OSTI)

Phase distribution of air-water flow in a narrow rectangular channel is examined using image-processing techniques. Ink is added to the water, and clear channel walls were used to allow high-speed, still photographs and video tape to be taken of the air-water flow field. Flow field images are digitized and stored in a Macintosh IIci computer using a frame grabber board. Local grey levels are related to liquid thickness in the flow channel using a calibration fixture. Image-processing shareware is used to calculate the spatially averaged liquid thickness from the image of the flow field. Time-averaged spatial liquid distributions are calculated using image calculation algorithms. The spatially averaged liquid distribution is calculated from the time-averaged spatial liquid distribution to formulate the combined temporally and spatially averaged liquid fraction values. The temporally and spatially averaged liquid fractions measured using this technique compare well to those predicted from pressure gradient measurements at zero superficial liquid velocity. 11 refs.

Bentley, C.L.; Ruggles, A.E.

1992-06-01T23:59:59.000Z

59

Collective flow measured with the Plastic Ball  

SciTech Connect (OSTI)

The experimental results from the Plastic Ball detector have contributed vastly to the understanding of the reaction mechanism of nuclear collisions at several hundred MeV per nucleon. The discovery of the collective flow phenomena (bounce-off of spectator fragments, side-splash in the reaction plane, and squeeze-out out of the reaction plane), as they were predicted by hydrodynamical models, has led to the experimental observation of compressed nuclear matter, which is a necessary condition before one can study the equation of state in detail and search for phase transitions at higher energies. 39 refs., 9 figs., 1 tab.

Ritter, H.G.; Gutbrod, H.H.; Kampert, K.H.; Kolb, B.; Poskanzer, A.M.; Schicker, R.; Schmidt, H.R.; Siemiarczuk, T.

1989-08-01T23:59:59.000Z

60

A slotted orifice plate used as a flow measurement device  

E-Print Network [OSTI]

The standard orifice plate is used extensively by the natural gas industry for the metering of fuel. Because of the costs associated with errors in flow measurement inherent with the use of a standard orifice plate, any improvements upon...

Macek, Michael Lee

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

In-Situ Calibration for Feedwater Flow Measurement  

SciTech Connect (OSTI)

With the approval by the Nuclear Regulatory Commission (NRC), of the Appendix K power up-rates, it has become important to provide an accurate measurement of the feedwater flow. Failure to meet documented requirements can now more easily lead to plant operations above their analyzed safety limits. Thus, the objective of flow instrumentation used in Appendix K up-rates, becomes one of providing precise measurements of the feedwater mass flow that will not allow the plant to be overpowered, but will still assure that maximum licensed thermal output is achieved. The NRC has licensed two technologies that meet these standards. Both are based on ultrasonic measurements of the flow. The first of these technologies, which is referred to as transit-time, relies on the measurement of differences in time for multiple ultrasonic beams to pass up and downstream in the fluid stream. These measurements are then coupled with a numerical integration scheme to compensate for distortions in the velocity profile due to upstream flow disturbances. This technology is implemented using a spool piece that is inserted into the feedwater pipe. The second technology relies on the measurement of the velocity of eddies within the fluid using a numerical process called cross-correlation. This technology is implemented by attaching the ultrasonic flow meter to the external surface of the pipe. Because of the ease in installation, for atypical situations, distortions in the velocity profile can be accounted for by attaching a second ultrasonic flow meter to the same pipe or multiple meters to a similar piping configuration, where the flow is fully developed. The additional meter readings are then used for the calibration of the initial set-up. Thus, it becomes possible to provide an in-situ calibration under actual operating conditions that requires no extrapolation of laboratory calibrations to compensate for distortions in the velocity profile. This paper will focus on the cross-correlation method of flow measurement, starting with the theoretical bases for the velocity profile correction factor and its reliance on only the Reynolds number to produce an accurate measurement of the flow, when the flow is fully developed. The method of laboratory calibration and the verification of these calibrations under actual plant operating conditions will be discussed. This will be followed by a discussion of how this technology is being used today to support the Appendix K up-rates. Various examples will be presented of piping configurations, where in-situ calibrations have or will be used to provide an accurate measurement of the feedwater flow at a specific location. (authors)

Peyvan, David [Entergy Nuclear Generating Company (United States); Gurevich, Yuri [Advanced Measurement and Analysis Group, Mississauga, ON (Canada); French, Charles T. [Westinghouse Electric Company (United States)

2002-07-01T23:59:59.000Z

62

Investigation of the flow field inside flat-plate collector tube using PIV technique  

SciTech Connect (OSTI)

The thermofluid process inside the tube of flat-plate collectors is complex because the non-uniform heating of the tube results in the formation of stably and unstably stratified layers of fluid that interact with each other. The measurement and investigation of the flow behaviour inside the collector tube is very challenging. We report on a novel application of the particle image velocimetry (PIV) technique to remotely measure the velocity field inside the collector tube. The two-dimensional velocity fields were measured in the midplane of a collector tube for the Reynolds number range of 150-900 at unheated and four different heating conditions. We have presented and discussed in detail the technique implementation and the associated challenges. The results have shown that the collector heating significantly alters the structure and magnitude of the mean velocity field and influences the heat transfer to the fluid. It is observed that the collector heating causes a significant asymmetry in the mean velocity profiles over the given range of Reynolds numbers and heating conditions. (author)

Sookdeo, Steven [Department of Mechanical and Industrial Engineering, Concordia University, Montreal (Canada); Siddiqui, Kamran [Department of Mechanical and Industrial Engineering, Concordia University, Montreal (Canada); Department of Mechanical and Materials Engineering, University of Western Ontario, London (Canada)

2010-06-15T23:59:59.000Z

63

Measuring water velocity using DIDSON and image cross-correlation techniques  

SciTech Connect (OSTI)

To design or operate hydroelectric facilities for maximum power generation and minimum ecological impact, it is critical to understand the biological responses of fish to different flow structures. However, information is still lacking on the relationship between fish behavior and flow structures despite many years of research. Existing field characterization approaches conduct fish behavior studies and flow measurements separately and coupled later using statistical analysis. These types of studies, however, lack a way to determine the specific hydraulic conditions or the specific causes of the biological response. The Dual-Frequency Identification Sonar (DIDSON) has been in wide use for fish behavior studies since 1999. The DIDSON can detect acoustic targets at long ranges in dark or turbid dark water. PIV is a state-of-the-art, non-intrusive, whole-flow-field technique, providing instantaneous velocity vector measurements in a whole plane using image cross-correlating techniques. There has been considerable research in the development of image processing techniques associated with PIV. This existing body of knowledge is applicable and can be used to process the images taken by the DIDSON. This study was conducted in a water flume which is 9 m long, 1.2 m wide, and 1.2 m deep when filled with water. A lab jet flow was setup as the benchmark flow to calibrate DIDSON images. The jet nozzle was 6.35 cm in diameter and core jet velocity was 1.52 m/s. Different particles were used to seed the flow. The flow was characterized based on the results using Laser Doppler Velocimetry (LDV). A DIDSON was mounted about 5 meters away from the jet nozzle. Consecutive DIDSON images with known time delay were divided into small interrogation spots after background was subtracted. Across-correlation was then performed to estimate the velocity vector for each interrogation spot. The estimated average velocity in the core zone was comparable to that obtained using a LDV. This proof-of-principle project demonstrated the feasibility of extracting water flow velocity information from underwater DIDSON images using image cross-correlation techniques.

Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.

2009-08-01T23:59:59.000Z

64

A TECHNIQUE FOR DIRECTLY MEASURING THE GRAVITATIONAL ACCELERATION OF ANTIHYDROGEN  

E-Print Network [OSTI]

, and the construction of the Low Energy An­ tiproton Ring (LEAR) at CERN has made it possible to trap substantial of antimatter (g) by measuring the deflection of a beam of neutral antihydrogen atoms in the Earth trapping techniques has made it possible to hold and cool particles (charged or neutral) 3

Phillips, Thomas J.

65

innovative techniques Near-infrared spiroximetry: noninvasive measurements  

E-Print Network [OSTI]

innovative techniques Near-infrared spiroximetry: noninvasive measurements of venous saturationO2 ) in tissues using near-infrared spectroscopy (NIRS). This method is based on the respiration-induced oscillations of the near-infrared ab- sorption in tissues, and we call it spiroximetry (the prefix spiro means

66

Validation of an in-flight flow visualization scheme to quantitatively measure vortical flow phenomena  

E-Print Network [OSTI]

A flow visualization measurement scheme was validated in flight. Strake vortex trajectories and axial core velocities were determined using pulsed smoke and high speed video. A gothic strake, operated at an angle of attack of 220 and a Reynolds...

Dorsett, Kenneth Merle

2012-06-07T23:59:59.000Z

67

Fuel Cell Manufacturing Diagnostic Techniques: IR Thermography with Reactive Flow through Excitation  

SciTech Connect (OSTI)

While design and material considerations for PEMFCs have a large impact on cost, it is also necessary to consider a transition to high volume production of fuel cell systems, including MEA components, to enable economies of scale and reduce per unit cost. One of the critical manufacturing tasks is developing and deploying techniques to provide in?process measurement of fuel cell components for quality control. This effort requires a subsidiary task: The study of the effect of manufacturing defects on performance and durability with the objective to establish validated manufacturing tolerances for fuel cell components. This work focuses on the development of a potential quality control method for gas diffusion electrodes (GDEs). The method consists of infrared (IR) thermography combined with reactive flow through (RFT) excitation. Detection of catalyst loading reduction defects in GDE catalyst layers will be presented.

Manak, A. J.; Ulsh, M.; Bender, G.

2012-01-01T23:59:59.000Z

68

Measurement of underwater vibration by ultrasonic speckle stroboscopic technique  

Science Journals Connector (OSTI)

Abstract Ultrasonic speckles are widely used in medical imaging, but are not commonly accepted in industry. An ultrasonic speckle stroboscopic technique for industrial applications is introduced in this manuscript. In this technique, a whole field ultrasonic speckle image converter is no longer needed as in B-mode scanning, and neither is the process of searching for the maximum correlation coefficient among sub-sets in the ultrasonic speckle field. In pulse-echo working mode, by the modulation of sweeping frequency and trigger delay and performing a digital speckle correlation calculation, it can be obtained point-to-point the vibration frequency, amplitude and phase difference of underwater solid surfaces. Compared with traditional vibration measurement techniques, ultrasonic speckle stroboscopic technique can perform on-line, underwater, noncontact experiments, and is insensitive to the environment and the sample surface roughness. In this manuscript this technique was applied to a vibrating cantilever underwater. The experimental results were in good agreement with other testing methods. Therefore, the noncontact testing technique for vibration coefficient, especially the vibration phase difference, provides an alternative method for the mode analysis of industrial constructions, which is a piece of very important work for industrial underwater structure design.

Zhihua Luo; Jun Chu; Lei Shen; Peng Hu; Hongmao Zhu; Lili Hu

2014-01-01T23:59:59.000Z

69

Vector Network Analyzer Techniques to measure WR340 Waveguide Windows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Vector Network Analyzer Techniques to Measure WR340 Waveguide Windows T. L. Smith ASD / RF Group Advanced Photon Source Argonne National Laboratory June 26, 2002 Table of Contents 1) Introduction 2) Objective 3) Full Two-Port Calibration 4) TRL (Thru-Reflect-Line) 5) TRL / WR340 Waveguide Window Measurement 6) Conclusions 7) References 1. Introduction In its fundamental form, network analysis involves the measurement of incident, reflected, and transmitted waves that travel along transmission lines. Measuring both magnitude and phase of components is important for several reasons. First, both measurements are required to fully characterize a linear network and ensure distortion- free transmission. To design effective matching networks, complex impedances must be

70

Advanced Techniques for Power System Identification from Measured Data  

SciTech Connect (OSTI)

Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing techniques. Bootstrap techniques have been developed to estimate confidence intervals for the electromechanical modes from field measured data. Results were obtained using injected signal data provided by BPA. A new probing signal was designed that puts more strength into the signal for a given maximum peak to peak swing. Further simulations were conducted on a model based on measured data and with the modifications of the 19-machine simulation model. Montana Tech researchers participated in two primary activities: (1) continued development of the 19-machine simulation test system to include a DC line; and (2) extensive simulation analysis of the various system identification algorithms and bootstrap techniques using the 19 machine model. Researchers at the University of Alaska-Fairbanks focused on the development and testing of adaptive filter algorithms for mode estimation using data generated from simulation models and on data provided in collaboration with BPA and PNNL. There efforts consist of pre-processing field data, testing and refining adaptive filter techniques (specifically the Least Mean Squares (LMS), the Adaptive Step-size LMS (ASLMS), and Error Tracking (ET) algorithms). They also improved convergence of the adaptive algorithms by using an initial estimate from block processing AR method to initialize the weight vector for LMS. Extensive testing was performed on simulated data from the 19 machine model. This project was also extensively involved in the WECC (Western Electricity Coordinating Council) system wide tests carried out in 2005 and 2006. These tests involved injecting known probing signals into the western power grid. One of the primary goals of these tests was the reliable estimation of electromechanical mode properties from measured PMU data. Applied to the system were three types of probing inputs: (1) activation of the Chief Joseph Dynamic Brake, (2) mid-level probing at the Pacific DC Intertie (PDCI), and (3) low-level probing on the PDCI. The Chief Joseph Dynamic Brake is a 1400 MW disturbance to the system and is injected for a ha

Pierre, John W.; Wies, Richard; Trudnowski, Daniel

2008-11-25T23:59:59.000Z

71

Wavelet-based Adaptive Techniques Applied to Turbulent Hypersonic Scramjet Intake Flows  

E-Print Network [OSTI]

The simulation of hypersonic flows is computationally demanding due to large gradients of the flow variables caused by strong shock waves and thick boundary or shear layers. The resolution of those gradients imposes the use of extremely small cells in the respective regions. Taking turbulence into account intensives the variation in scales even more. Furthermore, hypersonic flows have been shown to be extremely grid sensitive. For the simulation of three-dimensional configurations of engineering applications, this results in a huge amount of cells and prohibitive computational time. Therefore, modern adaptive techniques can provide a gain with respect to computational costs and accuracy, allowing the generation of locally highly resolved flow regions where they are needed and retaining an otherwise smooth distribution. An h-adaptive technique based on wavelets is employed for the solution of hypersonic flows. The compressible Reynolds averaged Navier-Stokes equations are solved using a differential Reynolds s...

Frauholz, Sarah; Reinartz, Birgit U; Müller, Siegfried; Behr, Marek

2013-01-01T23:59:59.000Z

72

E-Print Network 3.0 - advanced measurement techniques Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

measurement techniques Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced measurement techniques Page: << < 1 2 3 4 5 > >> 1 Advanced...

73

SOLAR WAVE-FIELD SIMULATION FOR TESTING PROSPECTS OF HELIOSEISMIC MEASUREMENTS OF DEEP MERIDIONAL FLOWS  

SciTech Connect (OSTI)

The meridional flow in the Sun is an axisymmetric flow that is generally directed poleward at the surface, and is presumed to be of fundamental importance in the generation and transport of magnetic fields. Its true shape and strength, however, are debated. We present a numerical simulation of helioseismic wave propagation in the whole solar interior in the presence of a prescribed, stationary, single-cell, deep meridional circulation serving as synthetic data for helioseismic measurement techniques. A deep-focusing time-distance helioseismology technique is applied to the synthetic data, showing that it can in fact be used to measure the effects of the meridional flow very deep in the solar convection zone. It is shown that the ray approximation that is commonly used for interpretation of helioseismology measurements remains a reasonable approximation even for very long distances between 12 Degree-Sign and 42 Degree-Sign corresponding to depths between 52 and 195 Mm. From the measurement noise, we extrapolate that time-resolved observations on the order of a full solar cycle may be needed to probe the flow all the way to the base of the convection zone.

Hartlep, T.; Zhao, J.; Kosovichev, A. G. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA (United States)] [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA (United States); Mansour, N. N. [NASA Ames Research Center, Moffett Field, CA (United States)] [NASA Ames Research Center, Moffett Field, CA (United States)

2013-01-10T23:59:59.000Z

74

Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch  

SciTech Connect (OSTI)

Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

Prevosto, L.; Mancinelli, B. [Departamento Ing. Electromecanica, Grupo de Descargas Electricas, Universidad Tecnologica Nacional, Regional Venado Tuerto, Las Heras 644, Venado Tuerto, Santa Fe 2600 (Argentina); Artana, G. [Departamento Ing. Mecanica, Laboratorio de Fluidodinamica, Facultad de Ingenieria (UBA), Paseo Colon 850 (C1063ACV), Buenos Aires (Argentina); Kelly, H. [Departamento de Fisica, Instituto de Fisica del Plasma (CONICET), Facultad de Ciencias Exactas y Naturales (UBA), Ciudad Universitaria Pab. I, Buenos Aires 1428 (Argentina)

2010-01-15T23:59:59.000Z

75

Top-quark mass measurements: Alternative techniques (LHC + Tevatron)  

E-Print Network [OSTI]

Measurements of the top-quark mass employing alternative techniques are presented, performed by the D0 and CDF collaborations at the Tevatron as well as the ATLAS and CMS experiments at the LHC. The alternative methods presented include measurements using the lifetime of $B$-hadrons, the transverse momentum of charged leptons and the endpoints of kinematic distributions in top quark anti-quark pair ($t\\bar{t}$) final states. The extraction of the top-quark pole mass from the $t\\bar{t}$ production cross-section and the normalized differential $t\\bar{t}$ + 1-jet cross-section are discussed as well as the top-quark mass extraction using fixed-order QCD predictions at detector level. Finally, a measurement of the top-quark mass using events enhanced in single top t-channel production is presented.

Adomeit, Stefanie

2014-01-01T23:59:59.000Z

76

Determination of an equivalent pore size from acoustic flow measurements  

Science Journals Connector (OSTI)

The hydraulic radius r h is defined as the ratio of a channel’s cross?sectional area to its perimeter. This parameter is important for specification of the performance of a porous medium that can be used as a regenerator in a Stirling engine or refrigerator. It is easy to calculate r h for pores of regular geometry but difficult in more complex media. Two techniques which use oscillating flow to determine this parameter will be presented and compared. One technique extracts r h by finding the low velocity limit of the standard expression for viscous pressure drop in the Poiseuille flow regime. The other involves a plot of the nondimensional viscousflow resistance ?p vis/?x??u versus the reciprocal of the viscous penetration depth 1/?? in the laminar flow regime. When r h ?? the flow resistance is frequency dependent and the dynamics is characterized by both r h and ??. It is possible to identify an effective hydraulic radius by equating it to the value of ?? where that transition occurs. [Work supported by ONR.

2005-01-01T23:59:59.000Z

77

Damage detection technique by measuring laser-based mechanical impedance  

SciTech Connect (OSTI)

This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.

Lee, Hyeonseok; Sohn, Hoon [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (Daehak-ro 291, Yuseong-gu, Daejeon 305-701) (Korea, Republic of)

2014-02-18T23:59:59.000Z

78

Full-field velocity measurements of single and two phase flows using digital pulsed laser velocimetry  

E-Print Network [OSTI]

considered to be based upon qualitative rather that quantitative foundations (Adrian & Landreth 1988). As a direct result of the limitations associated with many of the previously discussed methodologies, the technique of PLV has emerged and advanced... numbers than those currently attainable with numerical solutions and less sophisticated experimental methods (Adrian 1989). Although the PLV method generally measures two dimensional velocity vectors in two dimensional flow domains, extensions to three...

Canaan, Robert Ernst

2012-06-07T23:59:59.000Z

79

Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique  

SciTech Connect (OSTI)

This paper reports on the development of a method for measuring xenon plasma properties using the laser Thomson scattering technique, for application to ion engine system design. The thresholds of photo-ionization of xenon plasma were investigated and the number density of metastable atoms, which are photo-ionized by a probe laser, was measured using laser absorption spectroscopy, for several conditions. The measured threshold energy of the probe laser using a plano-convex lens with a focal length of 200 mm was 150 mJ for a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W; the probe laser energy was therefore set as 80 mJ. Electron number density was found to be (6.2 {+-} 0.4) Multiplication-Sign 10{sup 17} m{sup -3} and electron temperature was found to be 2.2 {+-} 0.4 eV at a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W. The threshold of the probe laser intensity against photo-ionization in a miniature xenon ion thruster is almost constant for various mass flow rates, since the ratio of population of the metastable atoms to the electron number density is little changed.

Yamamoto, N.; Tomita, K.; Sugita, K.; Kurita, T.; Nakashima, H.; Uchino, K. [Kyushu University, 6-1 Kasuga-kouen, Kasuga, Fukuoka 816-8580 (Japan)

2012-07-15T23:59:59.000Z

80

A data flow-based structural testing technique for FBD programs Eunkyoung Jee a  

E-Print Network [OSTI]

(Nuclear Regulatory Commission) [3] mandates that software unit testing for safety-critical systemsA data flow-based structural testing technique for FBD programs Eunkyoung Jee a , Junbeom Yoo b Available online 10 March 2009 Keywords: Software testing Structural testing Test coverage criteria

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Innovative Techniques of Multiphase Flow in Pipeline System for Oil?Gas Gathering and Transportation with Energy?Saving and Emission?Reduction  

Science Journals Connector (OSTI)

Multiphase flow measurement desanding dehumidification and heat furnace are critical techniques for the oil and gas gathering and transportation which influnce intensively the energy?saving and emission?reduction in the petroleum industry. Some innovative techniques were developed for the first time by the present research team including an online recognation instrument of multiphase flow regime a water fraction instrument for multuphase flow a coiled tube desanding separator with low pressure loss and high efficiency a supersonic swirling natural gas dehumifier and a vacuum phase?change boiler. With an integration of the above techniques a new oil gas gathering and transpotation system was proposed which reduced the establishment of one metering station and several transfer stations compared with the tranditional system. The oil and gas mixture transpotation in single pipes was realized. The improved techniques were applied in the oilfields in China and promoted the productivity of the oilfields by low energy consumption low emissions high efficiency and great security.

Bofeng Bai; Liejin Guo; Shaojun Zhang; Ximin Zhang; Hanyang Gu

2010-01-01T23:59:59.000Z

82

Modeling the reactive inorganic solute distributions in the groundwater flow systems of the Hanford Site using inverse analytical modeling techniques.  

E-Print Network [OSTI]

??Inverse analytical techniques were used to model solute distributions and determine transport parameters for two flow systems in the Yakima Basalt subgroup at the Hanford… (more)

Adamski, Mark Robert

2012-01-01T23:59:59.000Z

83

Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows  

SciTech Connect (OSTI)

Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)

Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I. [Universidade Federal de Itajuba (UNIFEI), Itajuba (Brazil); Neves, F. Jr. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba (Brazil); Franca, F.A. [Universidade Estadual de Campinas (UNICAMP), Campinas (Brazil)

2009-10-15T23:59:59.000Z

84

Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows  

SciTech Connect (OSTI)

Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)

2014-04-11T23:59:59.000Z

85

Verifying a Simplified Fuel Oil Flow Field Measurement Protocol  

SciTech Connect (OSTI)

The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

Henderson, H.; Dentz, J.; Doty, C.

2013-07-01T23:59:59.000Z

86

An efficient permeability scaling-up technique applied to the discretized flow equations  

SciTech Connect (OSTI)

Grid-block permeability scaling-up for numerical reservoir simulations has been discussed for a long time in the literature. It is now recognized that a full permeability tensor is needed to get an accurate reservoir description at large scale. However, two major difficulties are encountered: (1) grid-block permeability cannot be properly defined because it depends on boundary conditions; (2) discretization of flow equations with a full permeability tensor is not straightforward and little work has been done on this subject. In this paper, we propose a new method, which allows us to get around both difficulties. As the two major problems are closely related, a global approach will preserve the accuracy. So, in the proposed method, the permeability up-scaling technique is integrated in the discretized numerical scheme for flow simulation. The permeability is scaled-up via the transmissibility term, in accordance with the fluid flow calculation in the numerical scheme. A finite-volume scheme is particularly studied, and the transmissibility scaling-up technique for this scheme is presented. Some numerical examples are tested for flow simulation. This new method is compared with some published numerical schemes for full permeability tensor discretization where the full permeability tensor is scaled-up through various techniques. Comparing the results with fine grid simulations shows that the new method is more accurate and more efficient.

Urgelli, D.; Ding, Yu [Institut Francais du Petrole, Rueil Malmaison (France)

1997-08-01T23:59:59.000Z

87

Surface pressure measurements for CFD code validation in hypersonic flow  

SciTech Connect (OSTI)

Extensive surface pressure measurements were obtained on a hypersonic vehicle configuration at Mach 8. All of the experimental results were obtained in the Sandia National Laboratories Mach 8 hypersonic wind tunnel for laminar boundary layer conditions. The basic vehicle configuration is a spherically blunted 10{degrees} half-angle cone with a slice parallel with the axis of the vehicle. The bluntness ratio of the geometry is 10% and the slice begins at 70% of the length of the vehicle. Surface pressure measurements were obtained for angles of attack from {minus}10 to + 18{degrees}, for various roll angles, at 96 locations on the body surface. A new and innovative uncertainty analysis was devised to estimate the contributors to surface pressure measurement uncertainty. Quantitative estimates were computed for the uncertainty contributions due to the complete instrumentation system, nonuniformity of flow in the test section of the wind tunnel, and variations in the wind tunnel model. This extensive set of high-quality surface pressure measurements is recommended for use in the calibration and validation of computational fluid dynamics codes for hypersonic flow conditions.

Oberkampf, W.L.; Aeschliman, D.P.; Henfling, J.F.; Larson, D.E.

1995-07-01T23:59:59.000Z

88

Role of the gas flow parameters on the uniformity of films produced by PECVD technique  

SciTech Connect (OSTI)

The aim of this work is to present an analytical model able to interpret the experimental data of the dependence of film's uniformity on the discharge pressure, gas flow and temperature used during the production of thin films by the plasma enhancement chemical vapor deposition technique, under optimized electrode's geometry and electric field distribution. To do so, the gas flow is considered to be quasi-incompressible and inviscous leading to the establishment of the electro-fluid-mechanics equations able to interpret the film's uniformity over the substrate area, when the discharge process takes place in the low power regime.

Martins, R.; Macarico, A.; Ferreira, I.; Fortunato, E.

1997-07-01T23:59:59.000Z

89

A study of radial-flow turbomachinery blade vibration measurements using Eulerian laser Doppler vibrometry  

Science Journals Connector (OSTI)

The structural integrity of blades is critical to the health of turbomachinery. Since operational failure of these blades can possibly lead to catastrophic failure of the machine it is important to have knowledge of blade conditions in an online fashion. Due to several practical implications it is desired to measure blade vibration with a non-contact technique. The application of laser Doppler vibrometry towards the vibration based condition monitoring of axial-flow turbomachinery blades has been successfully demonstrated in previous work. In this paper the feasibility of using laser Doppler vibrometry to measure radial-flow turbomachinery blade vibrations is investigated with the aid of digital image correlation and strain gauge telemetry.

2014-01-01T23:59:59.000Z

90

Inferring temperature uniformity from gas composition measurements in a hydrogen combustion-heated hypersonic flow stream  

SciTech Connect (OSTI)

The application of a method for determining the temperature of an oxygen-replenished air stream heated to 2600 K by a hydrogen burner is reviewed and discussed. The purpose of the measurements is to determine the spatial uniformity of the temperature in the core flow of a ramjet test facility. The technique involves sampling the product gases at the exit of the test section nozzle to infer the makeup of the reactant gases entering the burner. Knowing also the temperature of the inlet gases and assuming the flow is at chemical equilibrium, the adiabatic flame temperature is determined using an industry accepted chemical equilibrium computer code. Local temperature depressions are estimated from heat loss calculations. A description of the method, hardware and procedures is presented, along with local heat loss estimates and uncertainty assessments. The uncertainty of the method is estimated at {+-}31 K, and the spatial uniformity was measured within {+-}35 K.

Olstad, S.J. [Phoenix Solutions Co., Minneapolis, MN (United States)

1995-08-01T23:59:59.000Z

91

Flow Test | Open Energy Information  

Open Energy Info (EERE)

Flow Test Flow Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Flow Test Details Activities (38) Areas (33) Regions (1) NEPA(3) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Flow tests provide information on permeability, recharge rates, reservoir pressures, fluid chemistry, and scaling. Thermal: Flow tests can measure temperature variations with time to estimate characteristics about the heat source. Dictionary.png Flow Test: Flow tests are typically conducted shortly after a well has been drilled to test its productivity. The well is opened and fluids are released, the

92

Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter  

DOE Patents [OSTI]

A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

Ortiz, Marcos G. (Idaho Falls, ID); Boucher, Timothy J. (Helena, MT)

1997-01-01T23:59:59.000Z

93

Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter  

DOE Patents [OSTI]

A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

Ortiz, M.G.; Boucher, T.J.

1997-06-24T23:59:59.000Z

94

Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique  

SciTech Connect (OSTI)

Fluid particulate flows are common phenomena in nature and industry. Modeling of such flows at micro and macro levels as well establishing relationships between these approaches are needed to understand properties of the particulate matter. We propose a computational technique based on the direct numerical simulation of the particulate flows. The numerical method is based on the distributed Lagrange multiplier technique following the ideas of Glowinski et al. (1999). Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. Mutual forces for the fluid-particle interactions are internal to the system. Particles interact with the fluid via fluid dynamic equations, resulting in implicit fluid-rigid-body coupling relations that produce realistic fluid flow around the particles (i.e., no-slip boundary conditions). The particle-particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEM method of Cundall et al. (1979) with some modifications using a volume of an overlapping region as an input to the contact forces. The method is flexible enough to handle arbitrary particle shapes and size distributions. A parallel implementation of the method is based on the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library, which allows handling of large amounts of rigid particles and enables local grid refinement. Accuracy and convergence of the presented method has been tested against known solutions for a falling sphere as well as by examining fluid flows through stationary particle beds (periodic and cubic packing). To evaluate code performance and validate particle contact physics algorithm, we performed simulations of a representative experiment conducted at the University of California at Berkley for pebble flow through a narrow opening.

Kanarska, Y

2010-03-24T23:59:59.000Z

95

Evaluation and Application of the Constant Flow Technique in Testing Low-Permeability Geo-Materials  

SciTech Connect (OSTI)

Safety assessment of facilities involved in geological disposal of hazardous waste, including radioactive nuclear waste, is generally performed through mass transport simulations combined with uncertainty and sensitivity analyses. Transport of contaminants, such as radionuclides, through an engineered and/or natural barrier system is mainly controlled by advection, dispersion, sorption, and chain decay. Ideally, waste disposal facilities should be constructed in the geological environments where groundwater is not existent, or groundwater is static, or its flow is extremely slow. Potential fluid flow, however, may be induced by thermal convection and/or gas generation, and thus accurate evaluation of hydraulic properties, specifically the permeability and specific storage, along with diffusive transport properties of engineered and natural barrier materials, is of fundamental importance for safety assessment. The engineered and natural barrier materials for isolating hazardous wastes are hydraulically tight, and special techniques are generally required to obtain both rapid and accurate determination of their hydraulic properties. In this paper, the constant flow technique is introduced and evaluated. The capability of this technique in testing low-permeability geo-materials are illustrated through practical applications to a bentonite-sand mixture and rock samples having low permeabilities. (authors)

Nakajima, H.; Takeda, M.; Zhang, M. [National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Deep Geological Environments, Tsukuba, Ibaraki (Japan)

2007-07-01T23:59:59.000Z

96

Thermal Imaging Technique for Measuring Mixing of Fluids - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Thermal Solar Thermal Energy Analysis Energy Analysis Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Thermal Imaging Technique for...

97

Guarded capacitance probes for measuring particle concentration and flow  

DOE Patents [OSTI]

Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

Louge, M.Y.

1995-10-17T23:59:59.000Z

98

Guarded capacitance probes for measuring particle concentration and flow  

DOE Patents [OSTI]

Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

Louge, Michel Y. (Ithaca, NY)

1996-01-01T23:59:59.000Z

99

Guarded capacitance probes for measuring particle concentration and flow  

DOE Patents [OSTI]

Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

Louge, Michel Y. (Ithaca, NY)

1995-01-01T23:59:59.000Z

100

Experimental analysis of two measurement techniques to characterize photodiode linearity  

E-Print Network [OSTI]

As photodiodes become more linear, accurately characterizing their linearity becomes very challenging. We compare the IMD3 results from a standard two tone measurement to those from a more complex three tone measurement ...

Klamkin, Jonathan

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Measurement of laser frequency response through heterodyne technique using optical modulation  

E-Print Network [OSTI]

An optical modulation technique for measuring the parasitic-free frequency response of high frequency semiconductor lasers is demonstrated. In this technique, we heterodyne light from two continuously tunable external cavity travelling wave ring...

Ahmed, Syed Faisal

2012-06-07T23:59:59.000Z

102

Measurement of in-service vibration of interior mirrors using virtual laser technique  

Science Journals Connector (OSTI)

The Spanish company IDIADA AT, Santa Oliva (Tarragona), has developed a novel measurement technique that uses a virtual laser technique to quantify in-service vibration levels of interior and exterior mirrors and...

Carlos Grasas; Juan Jesus García

2001-10-01T23:59:59.000Z

103

A Technique for Deducing Wind Direction from Satellite Microwave Measurements of Wind Speed  

Science Journals Connector (OSTI)

A technique is presented to deduce wind direction from satellite microwave measurements of wind speed information. The technique, based on simple Ekman boundary layer dynamics, makes use of surface pressure fields routinely analyzed at the ...

Tsann-wang Yu

1987-09-01T23:59:59.000Z

104

Flow visualization and leakage measurements of labyrinth seals  

E-Print Network [OSTI]

A large scale test rig is used to conduct an experimental investigation into the leakage resistance properties and flow characteristics of labyrinth seals. A novel test facility with multiple cavities that provides 2D, planar flow at a scale...

Johnson, James Wayne

1996-01-01T23:59:59.000Z

105

Flow visualization and leakage measurements of worn labyrinth seals  

E-Print Network [OSTI]

A large-scale flow visualization test facility is used to conduct an experimental investigation into the leakage resistance and flow characteristics of worn labyrinth seals. Wear in labyrinth seals is a consequence of contact between the rotating...

Allen, Brian Frank

1997-01-01T23:59:59.000Z

106

Torsional ultrasonic technique for reactor vessel liquid level measurement  

SciTech Connect (OSTI)

We have undertaken a detailed study of an ultrasonic waveguide employed as a level, density, and temperature sensor. The purpose of this study was to show how such a device might be used in the nuclear power industry to provide reliable level information with a multifunction sensor, thus overcomming several of the errors that led to the accident at Three Mile Island. Some additional work is needed to answer the questions raised by the current study, most noticably the damping effects of flowing water.

Dress, W.B.

1983-01-01T23:59:59.000Z

107

Measurement of surface tension and viscosity by open capillary techniques  

DOE Patents [OSTI]

An open-channel capillary is provided, having preferably a v-shaped groove in a flat wettable surface. The groove has timing marks and a source marker in which the specimen to be tested is deposited. The time of passage between the timing marks is recorded, and the ratio of surface tension .gamma. to viscosity .mu. is determined from the equation given below: ##EQU1## where h.sub.0 is the groove depth, .alpha. is the groove angle, .theta. is the liquid/solid contact angle, and t is the flow time. It has been shown by the

Rye,Robert R. (Albuquerque, NM), Yost,Frederick G. (Cedar Crest, NM)

1998-01-01T23:59:59.000Z

108

New sensor for measurement of low air flow velocity. Phase I final report  

SciTech Connect (OSTI)

The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

1995-08-01T23:59:59.000Z

109

Figure 1. Photolithography techniques are used to create microfluidic flow cells where biofouling can be studied for  

E-Print Network [OSTI]

Figure 1. Photolithography techniques are used to create microfluidic flow cells where biofouling and construct microfluidic flow cells for real-time observation of bacterial attachment and biofouling. He microfluidic devices, and computer multiphysics simulation with COMSOL. The student will also learn to work

Shor, Leslie McCabe

110

Identification of cross-formation flow in multireservoir systems using isotopic techniques  

SciTech Connect (OSTI)

This study was designed to add quantitative solutions to the problem of undesirable hydraulic communication which results in active fluid flow between productive horizons. Transfer of novel geochemical methods, based on effective, economic, and environmentally acceptable isotopic techniques for identification of leaking hydrocarbon reservoirs, is a major objective of this study. The effectiveness of a continuous trap's seal depends on an equilibrium between the capillary forces holding formation water in pore spaces of the seal and the buoyancy forces of the oil and gas column in a system. Therefore, some seals may leak selectively at changing pressure and temperature conditions with respect to different fluid phases (oil, gas, and water). A break in continuity of confining layers will promote relatively fast interreservoir migration of fluids. It may intensify in reservoirs subjected to high pressures during implementation of secondary and tertiary processes of recovery. Such fluid flow should result in identifiable chemical, isotopic, and often thermal anomalies in the area of an open flow path. Quantitative hydrodynamic reservoir modeling based on geochemical/isotopic and other evidence of fluid migration in a system require, however, more systematic methodological study. Such a study is being recommended in addition to a field demonstration of the method in a selected oil/gas reservoir where geochemical and production anomalies have been documented. 62 refs., 7 figs., 2 tabs.

Szpakiewicz, M.

1991-10-01T23:59:59.000Z

111

Instrument set-ups and techniques for vibration measurement  

Science Journals Connector (OSTI)

Selection of the adequate components of an instrumentation system depends on several factors which must be weighted at the planning stage of any measurement program. The following are among the most significan...

Gheorghe Buzdugan; Elena Mih?ilescu; Mircea Rade?

1986-01-01T23:59:59.000Z

112

Experimental Validation of Simulations Using Full-field Measurement Techniques  

SciTech Connect (OSTI)

The calibration by reference materials of dynamic full-field measurement systems is discussed together with their use to validate numerical simulations of structural mechanics. The discussion addresses three challenges that are faced in these processes, i.e. how to calibrate a measuring instrument that (i) provides full-field data, and (ii) is dynamic; (iii) how to compare data from simulation and experimentation.

Hack, Erwin [Laboratory Electronics/Metrology/Reliability, EMPA, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Patterson, Eann A. [Composite Vehicle Research Center, Michigan State University, East Lansing, MI 48824 (United States)

2010-05-28T23:59:59.000Z

113

Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow  

DOE Patents [OSTI]

A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

Armstrong, William D. (Laramie, WY); Naughton, Jonathan (Laramie, WY); Lindberg, William R. (Laramie, WY)

2008-09-02T23:59:59.000Z

114

Shaped hole effects on film cooling effectiveness and a comparison of multiple effectiveness measurement techniques  

E-Print Network [OSTI]

methods show a good comparison, especially for the higher blowing ratios. The PSP technique shows the most accurate measurements and has more advantages for measuring film cooling effectiveness. Also, the effect of blowing ratio on the film cooling...

Varvel, Trent Alan

2005-02-17T23:59:59.000Z

115

Beam Energy Dependence of Directed and Elliptic Flow Measurement from the STAR Experiment  

E-Print Network [OSTI]

Measurements of anisotropic flow in heavy-ion collisions provide insight into the early stage of the system's evolution. This proceedings presents directed and elliptic flow for Au+Au collisions at 39, 11.5 and 7.7 GeV, and for Cu+Cu at 22.4 GeV, measured in the STAR Experiment at RHIC. Differential measurements of directed and elliptic flow of charged particles as a function of centrality, transverse momentum and pseudorapidity are discussed.

Yadav Pandit

2011-09-13T23:59:59.000Z

116

The Development of Measurement Techniques to Identify and Characterize Dusts and Ice Nuclei in the Atmosphere  

E-Print Network [OSTI]

nucleation mechanisms. The work presented here discusses new instrumentation and methods to measure and identify both the optical scattering properties and ice nucleation properties of atmospherically relevant dusts. The Texas A&M University Continuous Flow...

Glen, Andrew

2014-01-15T23:59:59.000Z

117

Summary of energy flow measurements and calculations made on the INCE standard test structures  

Science Journals Connector (OSTI)

In 1996 a series of standard test structures was conceived and manufactured by members of the Institute of Noise Control Engineering (INCE) [Cuschieri Burroughs and Carroll Evaluation of Structure?Borne Noise Prediction Techniques Review Proceedings of Noise?Con 98 April 1998 pp. 315–320]. The structures include a Lexan T?shaped beam and two ribbed panels of identical geometries but different materials: aluminum and lexan. In subsequent years a wide variety of investigators from the U.S. and around the world have conducted experimental and numerical studies on the test structures particularly on energy flow parameters such as power input power dissipation and power flow. Most of the studies have been performed at low frequencies and have shown phenomena such as the conversion of flexural wave power to longitudinal wave power at the T?beam joint and the nature of the structural intensity fields in the ribbed panels. Measurements and computations compare well. At high frequencies Statistical Energy Analysis (SEA) techniques have shown that energy tends to become trapped in the drive leg of the T?beam. SEA studies on the ribbed panels show that the Lexan panel transmits less energy across the ribs than the aluminum panel does due primarily to differences in material loss factor.

2002-01-01T23:59:59.000Z

118

Measurement of steam quality in two-phase critical flow  

E-Print Network [OSTI]

through a venturi for subczitical flow of steam-water 45 13 Steam quality as a function of vapor-phase Reynolds number for subczitical flow of steam-water 46 14 Steam quality as a function of Collins and Gacesa parameter for subcritical flow of steam... high degree of accuracy. He suggested that the following correlation may be used to calculate two-phase flow rates through orifices to within an error of 1. 5 percent 339 K 3 9 9' J 9 v v a v w f + [ 1. 26 (1-f ) K Y /K ] ~p p where V and L...

Sinclair, John William

2012-06-07T23:59:59.000Z

119

Development of Tools for Measuring Temperature, Flow, Pressure...  

Broader source: Energy.gov (indexed) [DOE]

Temperature, Flow, Pressure, and Seismicity of EGS Reservoirs 300 C Capable Electronics Platform and Temperature Sensor System for Enhanced Geothermal Systems; 2010...

120

Humidity, Pressure, and Temperature Measurements in an Interdigitated-Flow PEM Hydrogen Fuel Cell  

Science Journals Connector (OSTI)

In situ measurements of humidity, temperature, and pressure are demonstrated for a polymer electrolyte membrane (PEM) fuel cell of interdigitated gas flow channel layout. Sensors are embedded at ...

S. Bell; G. Hinds; M. de Podesta; M. Stevens…

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques  

SciTech Connect (OSTI)

A material subjected to radiation damage will usually experience changes in its physical properties. Measuring these changes in the physical properties provides a basis to study radiation damage in a material which is important for a variety of real world applications from reactor materials to semiconducting devices. When investigating radiation damage, the relative sensitivity of any given property can vary considerably based on the concentration and type of damage present as well as external parameters such as the temperature and starting material composition. By measuring multiple physical properties, these differing sensitivities can be leveraged to provide greater insight into the different aspects of radiation damage accumulation, thereby providing a broader understanding of the mechanisms involved. In this report, self-damage from {alpha}-particle decay in Pu is investigated by measuring two different properties: magnetic susceptibility and resistivity. The results suggest that while the first annealing stage obeys second order chemical kinetics, the primary mechanism is not the recombination of vacancy-interstitial close pairs.

McCall, S K; Fluss, M J; Chung, B W

2010-04-21T23:59:59.000Z

122

Method and system for measuring multiphase flow using multiple pressure differentials  

DOE Patents [OSTI]

An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

Fincke, James R. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

123

Advanced measurements and techniques in high magnetic fields  

SciTech Connect (OSTI)

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). High magnetic fields present a unique environment for studying the electronic structure of materials. Two classes of materials were chosen for experiments at the national high Magnetic Field Laboratory at Los Alamos: highly correlated electron systems and semiconductors. Magnetotransport and thermodynamic experiments were performed on the renormalized ground states of highly correlated electron systems (such as heavy fermion materials and Kondo insulators) in the presence of magnetic fields that are large enough to disrupt the many-body correlations. A variety of optical measurements in high magnetic fields were performed on semiconductor heterostructures including GaAs/AlGaAs single heterojunctions (HEMT structure), coupled double quantum wells (CDQW), asymmetric coupled double quantum wells (ACDQW), multiple quantum wells and a CdTe single crystal thin film.

Campbell, L.J.; Rickel, D.G. [Los Alamos National Lab., NM (United States); Lacerda, A.H. [Florida State Univ., Tallahassee, FL (United States); Kim, Y. [Northeastern Univ., Boston, MA (United States)

1997-07-01T23:59:59.000Z

124

Measurement Of Flow Induced Vibration Of Reactor Component  

Science Journals Connector (OSTI)

The effect of flow-induced vibration on class I components in the reactor is a very important design factor for its qualifications worthy of loading inside the core. In this regard, a clear definition of the f...

N. Dharmaraju; K. K. Meher; A. Rama Rao

2008-01-01T23:59:59.000Z

125

Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions  

E-Print Network [OSTI]

Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions by Carl, Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions KTH Nuclear Reactor power is limited by a phenomenon called critical heat flux (CHF). It appears as a sudden detoriation

Haviland, David

126

Summary of and observations about WIPP (Waste Isolation Pilot Plant) Facility horizon flow measurements through 1986  

SciTech Connect (OSTI)

Numerous gas flow measurements have been made at the Waste Isolation Pilot Plant (WIPP) Facility horizon from 1984 through 1986. Almost all tests have been constant-pressure or pressure-decay tests from single boreholes drilled in the underground excavations. Results indicate that beyond about 2 m from an excavation, both halite and interbeds (anhydrite and clay layers) allowed very low gas flows, and calculated permeabilities are below 1 microdarcy. In regions within 2 m of an excavation very high flow rates were measured in the interbeds immediately above and below an excavation when the test hole was drilled from near the center of the excavation. Further, measured flow rates increase with the width of the excavation. The halite also permits substantially greater gas flow within about 1 m of the excavations. Limited tracer measurements reveal that flow paths in both the halite and interbeds in the near field region are significantly larger than those in the presumed undisturbed condition. The gas flow measurements are consistent with the development of a (perhaps partially-saturated) dilatant zone (increased porosity) around the excavations. Considerable uncertainty is associated with permeabilities calculated from these flow measurements, due to unknowns of rock saturation, entry pressure effects, flow homogeneity, etc.

Stormont, J.C.; Peterson, E.W.; Lagus, P.L.

1987-05-01T23:59:59.000Z

127

Experimental techniques for measuring temperature and velocity fields to improve the use and validation of building heat transfer models  

SciTech Connect (OSTI)

When modeling thermal performance of building components and envelopes, researchers have traditionally relied on average surface heat-transfer coefficients that often do not accurately represent surface heat-transfer phenomena at any specific point on the component being evaluated. The authors have developed new experimental techniques that measure localized surface heat-flow phenomena resulting from convection. The data gathered using these new experimental procedures can be used to calculate local film coefficients and validate complex models of room and building envelope heat flows. These new techniques use a computer-controlled traversing system to measure both temperatures and air velocities in the boundary layer near the surface of a building component, in conjunction with current methods that rely on infrared (IR) thermography to measure surface temperatures. Measured data gathered using these new experimental procedures are presented here for two specimens: (1) a Calibrated Transfer Standard (CTS) that approximates a constant-heat-flux, flat plate; and (2) a dual-glazed, low-emittance (low-e), wood-frame window. The specimens were tested under steady-state heat flow conditions in laboratory thermal chambers. Air temperature and mean velocity data are presented with high spatial resolution (0.25- to 25-mm density). Local surface heat-transfer film coefficients are derived from the experimental data by means of a method that calculates heat flux using a linear equation for air temperature in the inner region of the boundary layer. Local values for convection surface heat-transfer rate vary from 1 to 4.5 W/m{sup 2} {center_dot} K. Data for air velocity show that convection in the warm-side thermal chamber is mixed forced/natural, but local velocity maximums occur from 4 to 8 mm from the window glazing.

Griffith, Brent; Turler, Daniel; Goudey, Howdy; Arasteh, Dariush

1998-04-01T23:59:59.000Z

128

Deformation and Vibration Measurement and Data Evaluation on Large Structures Employing Optical Measurement Techniques  

Science Journals Connector (OSTI)

Deformation and vibration measurements and frequency analysis are part of complex ... development and testing time optimization for deformation and vibration measurement procedures. This paper focuses on one rece...

Hagen Berger; Markus Klein; Theodor Möller

2011-01-01T23:59:59.000Z

129

A microfluidics-based technique for automated and rapid labeling of cells for flow cytometry  

Science Journals Connector (OSTI)

Flow cytometry is a powerful technique capable of simultaneous multi-parametric analysis of heterogeneous cell populations for research and clinical applications. In recent years, the flow cytometer has been miniaturized and made portable for application in clinical- and resource-limited settings. The sample preparation procedure, i.e. labeling of cells with antibodies conjugated to fluorescent labels, is a time consuming (~45 min) and labor-intensive procedure. Microfluidics provides enabling technologies to accomplish rapid and automated sample preparation. Using an integrated microfluidic device consisting of a labeling and washing module, we demonstrate a new protocol that can eliminate sample handling and accomplish sample and reagent metering, high-efficiency mixing, labeling and washing in rapid automated fashion. The labeling module consists of a long microfluidic channel with an integrated chaotic mixer. Samples and reagents are precisely metered into this device to accomplish rapid and high-efficiency mixing. The mixed sample and reagents are collected in a holding syringe and held for up to 8 min following which the mixture is introduced into an inertial washing module to obtain 'analysis-ready' samples. The washing module consists of a high aspect ratio channel capable of focusing cells to equilibrium positions close to the channel walls. By introducing the cells and labeling reagents in a narrow stream at the center of the channel flanked on both sides by a wash buffer, the elution of cells into the wash buffer away from the free unbound antibodies is accomplished. After initial calibration experiments to determine appropriate 'holding time' to allow antibody binding, both modules were used in conjunction to label MOLT-3 cells (T lymphoblast cell line) with three different antibodies simultaneously. Results confirm no significant difference in mean fluorescence intensity values for all three antibodies labels (p

Phani K Patibandla; Rosendo Estrada; Manasaa Kannan; Palaniappan Sethu

2014-01-01T23:59:59.000Z

130

Apparatus for passive removal of subsurface contaminants and volume flow measurement  

DOE Patents [OSTI]

A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining volume flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the volume flow rate to be determined through the retrofitted Baroball valve.

Jackson, Dennis G. (Augusta, GA); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA)

2002-01-01T23:59:59.000Z

131

Technique for measuring the reflectance of irregular, submillimeter-sized samples  

Science Journals Connector (OSTI)

Details are given of a technique for measuring the reflectance at near-normal incidence of small, irregular, submillimeter-sized samples from the far IR (40 cm?1) to the...

Homes, Christopher C; Reedyk, M; Cradles, D A; Timusk, T

1993-01-01T23:59:59.000Z

132

Electrical test structures and measurement techniques for the characterisation of advanced photomasks   

E-Print Network [OSTI]

Existing photomask metrology is struggling to keep pace with the rapid reduction of IC dimensions as traditional measurement techniques are being stretched to their limits. This thesis examines the use of on-mask probable ...

Tsiamis, Andreas

2010-01-01T23:59:59.000Z

133

Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts  

SciTech Connect (OSTI)

Particle deposition in ventilation ducts influences particle exposures of building occupants and may lead to a variety of indoor air quality concerns. Experiments have been performed in a laboratory to study the effects of particle size and air speed on deposition rates of particles from turbulent air flows in galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. The duct systems were constructed of materials typically found in commercial heating, ventilating and air conditioning (HVAC) systems. In the steel duct system, experiments with nominal particle sizes of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition rates of particles with nominal sizes of 1, 3, 5, 8 and 13 {micro}m were measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces (floor, wall and ceiling) at two straight duct sections where the turbulent flow profile was fully developed. In steel ducts, deposition rates were higher to the duct floor than to the wall, which were, in turn, greater than to the ceiling. In insulated ducts, deposition was nearly the same to the duct floor, wall and ceiling for a given particle size and air speed. Deposition to duct walls and ceilings was greatly enhanced in insulated ducts compared to steel ducts. Deposition velocities to each of the three duct surface orientations in both systems were found to increase with increasing particle size or air velocity over the ranges studied. Deposition rates measured in the current experiments were in general agreement with the limited observations of similar systems by previous researchers.

Sippola, Mark R.; Nazaroff, William W.

2003-08-01T23:59:59.000Z

134

CASCADE CONTROL EXPERIMENTS OF RISER SLUG FLOW USING TOPSIDE MEASUREMENTS  

E-Print Network [OSTI]

1. INTRODUCTION Riser slugging is a flow regime that can develop in multiphase production systems production facilities (Havre et al., 2000) and (Godhavn et al., 2005a). #12;The above applications use subsea of the system. Both the pipeline and the riser was made of a 20mm diameter transpar- ent rubber hose, which

Skogestad, Sigurd

135

RATIONALE FOR MEASURING DUCT LEAKAGE FLOWS IN LARGE COMMERCIAL BUILDINGS  

E-Print Network [OSTI]

. Some duct sections operate at high static pressures (e.g., 100 to 2,500 Pa), but other sections leakage flows is to assume that an average duct static pressure applies to every leak. A third important2 ), central HVAC systems continuously supply heated or cooled air to conditioned spaces through

Diamond, Richard

136

Development of a lidar polarimeter technique of measuring suspended solids in water  

E-Print Network [OSTI]

DEVELOPMENT OF A LIDAR POLARIMETER TECHNIQUE OF MEASURING SUSPENDED SOLIDS IN WATER A Thesis by DAVID W. PRESLEY Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1980 Major Subject; Electrical Engineering DEVELOPMENT OF A LIDAR POLARIMETER TECHNIQUE OF MEASURING SUSPENDED SOLIDS IN WATER A Thesis by DAVID W, PRESLEY Approved as to sty1e and content by: Chairman of Committee H d of Department...

Presley, David W

1980-01-01T23:59:59.000Z

137

Novel Syngas Production Techniques for GTL-FT Synthesis of Gasoline Using Reverse Flow Catalytic Membrane Reactors  

Science Journals Connector (OSTI)

Novel Syngas Production Techniques for GTL-FT Synthesis of Gasoline Using Reverse Flow Catalytic Membrane Reactors ... Catalytic partial oxidation (CPO, or also CPOX) is different from noncatalytic partial oxidation (POX) in that chemical conversion takes place over a catalyst bed, but it does not use a burner. ...

C. Dillerop; H. van den Berg; A. G. J. van der Ham

2010-11-10T23:59:59.000Z

138

Instantaneous corrosion rate measurement with small-amplitude potential intermodulation techniques  

SciTech Connect (OSTI)

With the intermodulation technique, a potential distortion using two sine waves is applied to a corrosion system. The alternating current (AC) response consists of amplitudes measured at different frequencies. Simple relations are derived form the current-vs-potential relation for a corroding process under activation control, from which the corrosion rate and Tafel parameters can be calculated. These are valid when the amplitude of the applied potential distortion is sufficiently small. With the intermodulation technique, the corrosion rate and Tafel parameters can be obtained within one measurement, which makes this technique an ideal candidate for application as a corrosion monitoring tool. Results obtained with this technique were shown to be in agreement with other electrochemical methods for corrosion rate measurement, such as Tafel extrapolation, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS).

Bosch, R.W.; Bogaerts, W.F. [Katholieke Univ. Leuven, Heverlee (Belgium). Dept. of Metallurgy and Materials Engineering

1996-03-01T23:59:59.000Z

139

Measurement of flow field and local heat transfer distribution on a scraped heat exchanger crystalliser surface  

E-Print Network [OSTI]

Measurement of flow field and local heat transfer distribution on a scraped heat exchanger geometry the flow field influence on the local heat transfer distribution on an evenly cooled scraped heat loss heat loss to the surroundings stst stainless steel plate lc thermo-chromic liquid crystal

Boyer, Edmond

140

Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from  

E-Print Network [OSTI]

Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume, Massachusetts 02129 E-mail: themelis@nmr.mgh.harvard.edu Abstract. We describe a near-infrared spectroscopy NIRS-Optical Instrumentation Engineers. DOI: 10.1117/1.2710250 Keywords: cerebral blood flow; cerebral blood volume; near-infrared

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Chapter 7 - Horizontally Integrated Remote Measurements of Ocean Currents Using Acoustic Tomography Techniques  

Science Journals Connector (OSTI)

Abstract This chapter begins with a discussion of the comparative difficulty of measuring horizontally integrated subsurface oceanic current and vorticity measurements. This is followed by a discussion of computer-assisted tomography techniques used in the medical, geophysical, and seismic branches of science and their adaptation and extension to acoustic tomography for subsurface oceanographic investigations. In particular, the following aspects pertaining to the application of acoustic methods for probing the oceans’ interior water temperature and current structure, as well as their adaptations for measuring horizontally averaged water currents from straits, coastal water bodies, estuaries, and rivers, are addressed: (1) one-way tomography, (2) two-way tomography (reciprocal tomography), (3) acoustic tomographic measurements from straits, (4) coastal acoustic tomography (CAT), (5) river acoustic tomography (RAT), (6) acoustic tomographic measurements of vorticity, and (7) horizontally integrated current measurements using space-time acoustic scintillation analysis technique.

Antony Joseph

2014-01-01T23:59:59.000Z

142

Acoustic measurement of the Deepwater Horizon Macondo well flow rate  

E-Print Network [OSTI]

On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and ...

Camilli, Richard

143

Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir  

Broader source: Energy.gov [DOE]

Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.

144

A novel implementation of the histogram-based technique for measurement of INL of LUT-based correction of ADC  

E-Print Network [OSTI]

1 A novel implementation of the histogram-based technique for measurement of INL of LUT of the parameters measured thanks to this technique is the Integral Non Linearity (INL). INL is also used-based correction technique. In this context of embedded INL measurement and embedded computation of the table

Paris-Sud XI, Université de

145

1992 Columbia River Salmon Flow Measures Options Analysis/EIS.  

SciTech Connect (OSTI)

This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

Not Available

1992-01-01T23:59:59.000Z

146

Radial temperature variations in cylindrical waveguides and implications for flow measurement  

Science Journals Connector (OSTI)

A quantitative treatment of radial temperature variations in a cylindrical duct on ultrasonic flow meter performance is discussed in the laminar flow regime. First based on the continuity equation the Navier–Stokes equations and an energy equation including loss mechanisms due to heat conduction and viscous effects the steady?state temperature and flow spatial distributions are determined in two cases of practical interest: (a) cylinder wall temperature is maintained at a constant value and (b) cylinder wall temperature decreases linearly with cylinder axial distance. It is shown that while radial temperature variations are insignificant in case (a) radial temperature gradients as large as 100–200 K/m are possible in case (b) for a fixed axial temperature gradient decrease of 0.1 K/m. Such strong temperature gradients have strong and unfortunate consequences for flow measurement. Large flow meter errors—up to several percentages—are possible using typical parameter values for water as medium. Finally it is shown that effective ways exist such as to diminish the influence of temperature gradients on flow meter performance. Besides the obvious choice of insulating the flow meter tube flow measurement errors due to radial temperature variations can be effectively suppressed by reducing the cylinder radius and/or ultrasound frequency.

2001-01-01T23:59:59.000Z

147

Flow control techniques for real-time media applications in best-effort networks using fluid models  

E-Print Network [OSTI]

at the application layer. An end-to-end ?uid model is used, including the source bu?er, the network and the destination bu?er. Traditional con- trol techniques, along with more advanced adaptive predictive control methods, are considered in order to provide... OF THE END-TO-END FLOW TRANSPORT SYSTEM : : : : : : : : : : : : : : : : : : : : : : 25 A. Source Bu?er Model . . . . . . . . . . . . . . . . . . . . . 25 B. Network Dynamic Model . . . . . . . . . . . . . . . . . . . 27 1. Time-Varying Time Delay Model...

Konstantinou, Apostolos

2004-11-15T23:59:59.000Z

148

COMPUTATIONAL TECHNIQUES IN MULTIPHASE FLOW AND TRANSPORT IN POROUS MEDIA Institute for Scientific Computation  

E-Print Network [OSTI]

environmental application involves a pollutant leaking from a source either in the atmosphere or underground flow in combination with sorption, des­ orption and radioactive decay [1,2]. This knowledge can be used

Lazarov, Raytcho

149

Singularity of projections of 2-dimensional measures invariant under the geodesic flow  

E-Print Network [OSTI]

We show that on any compact Riemann surface with variable negative curvature there exists a measure which is invariant and ergodic under the geodesic flow and whose projection to the base manifold is 2-dimensional and singular with respect to the 2-dimensional Lebesgue measure.

Risto Hovila; Esa Järvenpää; Maarit Järvenpää; François Ledrappier

2011-04-14T23:59:59.000Z

150

84 CEREAL CHEMISTRY Technique to Measure Surface-Fouling Tendencies of Steepwater  

E-Print Network [OSTI]

- filtered light steepwater (FSW) from corn wet-milling were studied using an annular fouling probe% decrease in fouling rate using microfiltration to remove 19% of solids. In the corn wet-milling process84 CEREAL CHEMISTRY Technique to Measure Surface-Fouling Tendencies of Steepwater from Corn Wet

151

A calibration-independent laser-induced incandescence technique for soot measurement  

E-Print Network [OSTI]

A calibration-independent laser-induced incandescence technique for soot measurement by detecting D. Bachalo Laser-induced incandescence (LII) has proved to be a useful diagnostic tool for spatially incandescence inten- sity, avoiding the need for ex situ calibration that typically uses a source of particles

Gülder, �mer L.

152

An acoustic technique for measurement of bubble solids mass loading (a) Fundamental study of single bubble  

E-Print Network [OSTI]

An acoustic technique for measurement of bubble solids mass loading ­ (a) Fundamental study of single bubble Wen Zhang , Steven J. Spencer, Peter Coghill Lucas Heights Research Laboratory, CSIRO i n f o Article history: Available online 6 March 2012 Keywords: Flotation bubbles On-line analysis

Zhang, Wen

153

Density measurements Viscosity measurements  

E-Print Network [OSTI]

Density measurements Viscosity measurements Temperature measurements Pressure measurements Flow rate measurements Velocity measurements Sensors How to measure fluid flow properties ? Am´elie Danlos Ravelet Experimental methods for fluid flows: an introduction #12;Density measurements Viscosity

Ravelet, Florent

154

Experimental study of coupling impedance: Part I longitudinal impedance measurement techniques  

SciTech Connect (OSTI)

Beam coupling impedances for the 7-GeV APS storage ring have been numerically estimated. In order to confirm these calculations, measurements of the coupling impedance of various vacuum components around the main storage ring were done with a coaxial wire method. In this paper, the procedure of the longitudinal impedance measurement techniques will be described. As an example, sections of the Cu beam chamber, the Cu beam + antechambers, and the Al beam + antechambers were used as a device under test (DUT) to obtain the results. The transverse impedance measurements will be described in a separate paper.

Song, J.J.

1991-10-22T23:59:59.000Z

155

Measurements of thermal properties of insulation materials by using transient plane source technique  

Science Journals Connector (OSTI)

The paper reports on the measuring technique and values of the measured thermal properties of some commonly used insulation materials produced by local manufacturers in Saudi Arabia. Among the thermal properties of insulation materials, the thermal conductivity (k) is regarded to be the most important since it affects directly the resistance to transmission of heat (R-value) that the insulation material must offer. Other thermal properties, like the specific heat capacity (c) and density (?), are also important only under transient conditions. A well-suited and accurate method for measuring the thermal conductivity and diffusivity of materials is the transient plane source (TPS) technique, which is also called the hot disk (HD). This new technique is used in the present study to measure the thermal conductivity of some insulation materials at room temperature as well as at different elevated temperature levels expected to be reached in practice when these insulations are used in air-conditioned buildings in hot climates. Besides, thermal conductivity values of the same type of insulation material are measured for samples with different densities; generally, higher density insulations are used in building roofs than in walls. The results show that the thermal conductivity increases with increasing temperature and decreases with increasing density over the temperature and density ranges considered in the present investigation.

Saleh A. Al-Ajlan

2006-01-01T23:59:59.000Z

156

Standardization of Laser Methods and Techniques for Vibration Measurements and Calibrations  

SciTech Connect (OSTI)

The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and refined laser methods and techniques developed by national metrology institutes and by leading manufacturers in the past two decades have been swiftly specified as standard methods for inclusion into in the series ISO 16063 of international documentary standards. A survey of ISO Standards for the calibration of vibration and shock transducers demonstrates the extended ranges and improved accuracy (measurement uncertainty) of laser methods and techniques for vibration and shock measurements and calibrations. The first standard for the calibration of laser vibrometers by laser interferometry or by a reference accelerometer calibrated by laser interferometry (ISO 16063-41) is on the stage of a Draft International Standard (DIS) and may be issued by the end of 2010. The standard methods with refined techniques proved to achieve wider measurement ranges and smaller measurement uncertainties than that specified in the ISO Standards. The applicability of different standardized interferometer methods to vibrations at high frequencies was recently demonstrated up to 347 kHz (acceleration amplitudes up to 350 km/s{sup 2}). The relative deviations between the amplitude measurement results of the different interferometer methods that were applied simultaneously, differed by less than 1% in all cases.

Martens, Hans-Juergen von [Physikalisch-Technische Bundesanstalt (retired), Abbestrasse 2-12, 12587 Berlin (Germany)

2010-05-28T23:59:59.000Z

157

Study of junction flows in louvered fin round tube heat exchangers using the dye injection technique  

SciTech Connect (OSTI)

Detailed studies of junction flows in heat exchangers with an interrupted fin design are rare. However, understanding these flow structures is important for design and optimization purposes, because the thermal hydraulic performance of heat exchangers is strongly related to the flow behaviour. In this study flow visualization experiments were performed in six scaled-up models of a louvered fin round tube heat exchanger. The models have three tube rows in a staggered layout and differ only in their fin spacing and louver angle. A water tunnel was designed and built and the flow visualizations were carried out using dye injection. At low Reynolds numbers the streakline follows the tube contours, while at higher Reynolds numbers a horseshoe vortex is developed ahead of the tubes. The two resulting streamwise vortex legs are destroyed by the downstream louvers (i.e. downstream the turnaround louver), especially at higher Reynolds numbers, smaller fin pitches and larger louver angles. Increasing the fin spacing results in a larger and stronger horseshoe vortex. This illustrates that a reduction of the fin spacing results in a dissipation of vortical motion by mechanical blockage and skin friction. Furthermore it was observed that the vortex strength and number of vortices in the second tube row is larger than in the first tube row. This is due to the thicker boundary layer in the second tube row, and the flow deflection, which is typical for louvered fin heat exchangers. Visualizations at the tube-louver junction showed that in the transition part between the angled louver and the flat landing a vortex is present underneath the louver surface which propagates towards the angled louver. (author)

Huisseune, H.; Willockx, A.; De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); T'Joen, C. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); Department Radiation, Radionuclides and Reactors, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); De Jaeger, P. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); NV Bekaert SA, Bekaertstraat 2, 8550 Zwevegem (Belgium)

2010-11-15T23:59:59.000Z

158

Measurements of continuous mix evolution in a high energy density shear flow  

SciTech Connect (OSTI)

We report on the novel integration of streaked radiography into a counter-flowing High Energy Density (HED) shear environment that continually measures a growing mix layer of Al separating two low-density CH foams. Measurements of the mix width allow us to validate compressible turbulence models and with streaked imaging, make this possible with a minimal number of experiments on large laser facilities. In this paper, we describe how the HED counter-flowing shear layer is created and diagnosed with streaked radiography. We then compare the streaked data to previous two-dimensional, single frame radiography and radiation hydrodynamic simulations of the experiment with inline compressible turbulent mix models.

Loomis, E., E-mail: loomis@lanl.gov; Doss, F.; Flippo, K.; Fincke, J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-04-15T23:59:59.000Z

159

Measurement of thermally induced vibrations of microelectronic devices by use of a heterodyne electronic speckle pattern interferometry imaging technique  

Science Journals Connector (OSTI)

An imaging technique to measure modulated surface displacements on microelectronic devices is presented. A device is supplied by a sinusoidal current that creates a modulated variation...

Grauby, Stéphane; Dilhaire, Stefan; Jorez, Sébastien; Lopez, Luis David Patino; Rampnoux, Jean-Michel; Claeys, Wilfrid

2003-01-01T23:59:59.000Z

160

New techniques for double-layer capacitance measurements at solid metal electrodes  

Science Journals Connector (OSTI)

Two new techniques are described for the measurement of electric double-layer capacitance particularly suited for application to solid electrodes. The capacitance can be recorded as a function of time and/or potential with an accuracy of better than 1%, and a response time in the range of 0·01–0·1 s, depending on the applied frequency. Measurements on an analogue made of electric capacitors and resistors show the effect of a parallel or series resistance on the measured capacitance at various frequency. Agreement with available data for measurements of the capacitance of mercury in 0·1 M NaCl and 0·1 M NaOH has been found.

N. Tshernikovski; E. Gileadi

1971-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Two-phase flow structure in dual discharges - Stereo PIV measurements  

SciTech Connect (OSTI)

The discharge of two-phase flow from a stratified region through single or multiple branches is an important process in many industrial applications including the pumping of fluid from storage tanks, shell-and-tube heat exchangers, and the fluid flow through header to the cooling channels, feeder's tube, of nuclear reactors during loss-of-coolant accidents (LOCA). Knowledge of the flow phenomena involved along with the quality and mass flow rate of the discharging stream(s) is necessary to adequately predict the different phenomena associated with the process. Stereoscopic Particle Image Velocimetry (SPIV) was used to provide detailed measurements of the flow patterns involving distributions of mean velocity, vorticity field, and flow structure. The experimental investigation was carried out to simulate two-phase discharge from a stratified region through branches located on a quarter-circular wall configuration exposed to a stratified gas-liquid environment. The quarter-circular test section is in close dimensional resemblance with that of a CANDU header-feeder system, with branches mounted at orientation angles of zero, 45 and 90 degrees from the horizontal. The experimental data for the phase development (mean velocity, flow structure, etc.) was collected during dual discharge through the horizontal branch and the 45 or 90 branch from an air-water stratified region over two selected Froude numbers in the horizontal branch while maintaining the Froude number in the other branch constant. These measurements were used to describe the effect of outlet flow conditions on phase redistribution in headers and understand the entrainment phenomena. (author)

Saleh, W.; Bowden, R.C.; Hassan, I.G.; Kadem, L. [Department of Mechanical and Industrial Engineering, Concordia University Montreal, QC (Canada)

2010-11-15T23:59:59.000Z

162

The measurement of absolute thermal neutron flux using liquid scintillation counting techniques  

E-Print Network [OSTI]

was computed as the square root of the sum of the squares of the individual errors . The flux at the same location in the core and at the same reactor power level was measured by the conventional technique of gold foil 34 activation. This measurement... back to 1932 when the neutron was discovered by Chadwick. With the advent of the nuclear reactor in 1942 the problem of absolute neutron flux determination became increasingly important. Since the operating power of a thermal reactor is directly...

Walker, Jack Vernon

2012-06-07T23:59:59.000Z

163

A Correction Scheme for Thermal Conductivity Measurement Using the Comparative Cut-bar Technique Based on a 3D Numerical Simulation  

SciTech Connect (OSTI)

As an important factor affecting the accuracy of the thermal conductivity measurement, systematic (bias) error in the guarded comparative axial heat flow (cut-bar) method was mostly neglected by previous researches. This bias is due primarily to the thermal conductivity mismatch between sample and meter bars (reference), which is common for a sample of unknown thermal conductivity. A correction scheme, based on a finite element simulation of the measurement system, was proposed to reduce the magnitude of the overall measurement uncertainty. This scheme was experimentally validated by applying corrections on four types of sample measurements in which the specimen thermal conductivity is much smaller, slightly smaller, equal and much larger than that of the meter bar. As an alternative to the optimum guarding technique proposed before, the correction scheme can be used to minimize uncertainty contribution from the measurement system with non-optimal guarding conditions. It is especially necessary for large thermal conductivity mismatches between sample and meter bars.

Douglas W. Marshall; Changhu Xing; Charles Folsom; Colby Jensen; Heng Ban

2014-05-01T23:59:59.000Z

164

Evaluation of Cerebral Energy Demand during Graded Hypercapnia and Validation of Optical Blood Flow Measurements against ASL fMRI  

Science Journals Connector (OSTI)

We validate optical cerebral blood flow measurements against functional MRI in a rat model during graded hypercapnia. We test the iso-metabolic assumption and demonstrate an apaprent...

Carp, Stefan; Franceschini, Maria A; Boas, David A; Kim, Young R

165

Optimum design of on-line measurements of thermophysical properties using temperature oscillation techniques  

SciTech Connect (OSTI)

The presented temperature oscillation techniques operate in a steady-periodic mode independent of initial conditions. They are used for on-line measurement of thermal diffusivity, conductivity and specific heat of liquids. Peltier-elements generate a periodic temperature oscillation at the outer surface of a reference layer, which is in contact with the liquid specimen. The temperature wave propagates through the reference layer into the specimen. The thermal diffusivity of the specimen is deduced by measuring and evaluating the amplitude attenuation and/or the phase shift between the fundamental temperature oscillation at the surface of the liquid specimen and at a well defined position inside the specimen. If the thermal diffusivity of the specimen is known, the thermal conductivity is determined by the measured amplitude attenuation and/or the phase shift between the fundamental temperature oscillation at both surfaces of the reference layer, one of which is in contact with the liquid specimen. With additional measurement of the density the specific heat capability is evaluated from thermal diffusivity and conductivity. Slab and semi-infinite body geometries are considered. The direct heat conduction problem is solved to specify the optimum design of the measurement apparatus by means of sensitivity coefficient studies. Measurement cells are designed and, to confirm the practical applicability, experiments are carried out with different liquids. Measured thermal diffusivities agree very well, and thermal conductivities and specific heat capacities reasonably well with data from the literature.

Czarnetzki, W.; Roetzel, W. [Univ. der Bundeswehr Hamburg (Germany)

1995-12-31T23:59:59.000Z

166

Method and apparatus for measuring butterfat and protein content using microwave absorption techniques  

DOE Patents [OSTI]

A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

Fryer, Michael O. (Roberts, ID); Hills, Andrea J. (Iowa City, IA); Morrison, John L. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

167

Two-dimensional flow of foam around an obstacle: force measurements  

E-Print Network [OSTI]

A Stokes experiment for foams is proposed. It consists in a two-dimensional flow of a foam, confined between a water subphase and a top plate, around a fixed circular obstacle. We present systematic measurements of the drag exerted by the flowing foam on the obstacle, \\emph{versus} various separately controlled parameters: flow rate, bubble volume, bulk viscosity, obstacle size, shape and boundary conditions. We separate the drag into two contributions, an elastic one (yield drag) at vanishing flow rate, and a fluid one (viscous coefficient) increasing with flow rate. We quantify the influence of each control parameter on the drag. The results exhibit in particular a power-law dependence of the drag as a function of the bulk viscosity and the flow rate with two different exponents. Moreover, we show that the drag decreases with bubble size, and increases proportionally to the obstacle size. We quantify the effect of shape through a dimensioned drag coefficient, and we show that the effect of boundary conditions is small.

Benjamin Dollet; Florence Elias; Catherine Quilliet; Christophe Raufaste; Miguel Aubouy; Francois Graner

2004-10-13T23:59:59.000Z

168

Thermal Energy Measurement with Tangential Paddlewheel Flow Meters: Summary of Experimental Results and in-situ Diagnostics  

E-Print Network [OSTI]

paddlewheel flow meters, and several new methods for in-situ diagnostic measures for ascertaining whether or not a flow meter is experiencing fluctuating flow conditions or if a flow meter is suffering a degraded signal due to shaft wear. INTRODUCTION Flow... section where it passes across the candidate sensor that is placed in the inter-changeable test section, through the orifice plate and finally into the is combined with Btu meter the threshold can be much higher than the published threshold of the flow...

Haberl, J. S.; Watt, J. B.

1994-01-01T23:59:59.000Z

169

Modeling the reactive inorganic solute distributions in the groundwater flow systems of the Hanford Site using inverse analytical modeling techniques  

E-Print Network [OSTI]

Wallula Gap Row Sand Hallow Flows Sliver Fans Flo Ginkgo Flows Palause Falls Flow Vantage Intarbad Undifferent a e 0 s Rocky Coulee Flow Levering Flow Cohaeeet Row Unnamed Flow Birkett Flow Undifferentiated Flows McCoy Canyon Flow Unnamed... penetrate and have provided water samples for the flow systems in the Frenchman Springs and Rocky Coulee flows are: Ford, McGee, Enyeart, DB-11, RRL-2, DC-16, DC-19, DC-2, DB-15, DC-7, and DC-15. Based on the hydraulic data obtained from these wells...

Adamski, Mark Robert

1993-01-01T23:59:59.000Z

170

Enthalpy and mass flowrate measurements for two-phase geothermal production by Tracer dilution techniques  

SciTech Connect (OSTI)

A new technique has been developed for the measurement of steam mass flowrate, water mass flowrate and total enthalpy of two-phase fluids produced from geothermal wells. The method involves precisely metered injection of liquid and vapor phase tracers into the two-phase production pipeline and concurrent sampling of each phase downstream of the injection point. Subsequent chemical analysis of the steam and water samples for tracer content enables the calculation of mass flowrate for each phase given the known mass injection rates of tracer. This technique has now been used extensively at the Coso geothermal project, owned and operated by California Energy Company. Initial validation of the method was performed at the Roosevelt Hot Springs geothermal project on wells producing to individual production separators equipped with orificeplate flowmeters for each phase.

Hirtz, Paul; Lovekin, Jim; Copp, John; Buck, Cliff; Adams, Mike

1993-01-28T23:59:59.000Z

171

Effect of sampling technique on the measurement of gasoline volatility. Technical report  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency is proposing the adoption of regulations that would reduce the amount of hydrocarbons released to the atmosphere due to evaporation of gasoline. One regulatory alternative under consideration is to put an upper limit on volatility. Volatility is typically quantified by measurement of Reid vapor pressure. The purpose of the report was to identify and quantify any differences in vapor pressure caused by the technique used to obtain the sample. The objective of the effort is identify and document a fast, inexpensive, and reliable method to obtain enforcement-quality samples at service station-type facilities. The report examines the effect of four sampling techniques and two methods of analysis on three types of fuels.

Scarbro, C.A.; White, J.T.

1987-07-01T23:59:59.000Z

172

Measurement of in-situ stress in salt and rock using NQR techniques  

SciTech Connect (OSTI)

A discussion of how stress and strain affect the quantities which can be measured in an NQR experiment shows that, for stresses of the magnitude to be expected at depths up to about 10,000 feet, quadrupole coupling constants will fall in the range of 1 to 10 kHz for both the sodium and chloride ions in NaCl. The most promising system involves pulsed nuclear double resonance detection; and alterative is to observe the quadrupolar splitting of the NMR signal. Choices to be made in the measurement and mapping techniques are discussed. The well-known perturbation of the homogenous stress field in the neighborhood of a borehole is shown to be advantageous from the point of view of obtaining directional information on the stress. Construction and operation of a borehole stress sensor are considered. The NQR technique seems feasible for measuring the magnitude and direction of underground stress with a resolution of about 25 psi, or 2.5% at 1000 psi. Downhole instrumentation suitable for in-situ determinations of stress appears within the state of the art. Additional tasks required on the project are identified.

Schempp, E.; Hirschfeld, T.; Klainer, S.

1980-12-01T23:59:59.000Z

173

Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique  

E-Print Network [OSTI]

PHYSICAL REVIEW A 81, 013813 (2010) Glucose concentration measured by the hybrid coherent anti-Stokes Raman-scattering technique Xi Wang, Aihua Zhang, Miaochan Zhi, Alexei V. Sokolov, and George R. Welch Department of Physics and Institute... is controlled by two translation stages (DS1 and DS2 in Fig. 1). They overlap at their focuses either in a crossing-beam configuration (Figs. 3, 4, and 7) as in Fig. 1 1050-2947/2010/81(1)/013813(6) 013813-1 ?2010 The American Physical Society WANG, ZHANG...

Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei V.; Welch, George R.

2010-01-01T23:59:59.000Z

174

The Multiply Scattering Effect on the Energy Measurement of UHE Cosmic Rays using Atmospheric Fluorescence Technique  

E-Print Network [OSTI]

Point sources in the atmosphere are surrounded by aureole because of atmospheric scattering. The properties of the time-dependent aureole radiance are calculated by use of a Monte Carlo approach and an iterative method. Since the aureole is particularly important in the ultraviolet, which is the region the Ultra-High-Energy (UHE) cosmic ray experiment using the air fluorescence technique like Fly's Eye or High-Resolution-Fly's-Eye(HiRes) are set in. The effect of the multiply scatteing on the energy measurement is studied.

Xingzhi Zhang

2000-04-12T23:59:59.000Z

175

PIV flow measurements for heat transfer characterization in two-pass square channels with smooth and 90 ribbed walls  

E-Print Network [OSTI]

PIV flow measurements for heat transfer characterization in two-pass square channels with smooth the correlation between the high- Reynolds number turbulent flow and wall heat transfer characteristics in a two number (Re) of 30,000. The PIV measurement results were compared with the heat transfer experimental data

Kihm, IconKenneth David

176

Laser Sheet Light Flow Visualization For Evaluating Room Air Flows From  

E-Print Network [OSTI]

LBNL-56483 Laser Sheet Light Flow Visualization For Evaluating Room Air Flows From Registers Iain S using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent

177

Scattering effects at near-wall flow measurements using Doppler global velocimetry  

SciTech Connect (OSTI)

Doppler global velocimetry (DGV) is considered to be a useful optical measurement tool for acquiring flow velocity fields. Often near-wall measurements are required, which is still challenging due to errors resulting from background scattering and multiple-particle scattering. Since the magnitudes of both errors are unknown so far, they are investigated by scattering simulations and experiments. Multiple-particle scattering mainly causes a stochastic error, which can be reduced by averaging. Contrary to this, background scattering results in a relative systematic error, which is directly proportional to the ratio of the background scattered light power to the total scattered light power. After applying a correction method and optimizing the measurement arrangement, a subsonic flat plate boundary layer was successfully measured achieving a minimum wall distance of 100 {mu}m with a maximum relative error of 6%. The investigations reveal the current capabilities and perspectives of DGV for near-wall measurements.

Fischer, Andreas; Haufe, Daniel; Buettner, Lars; Czarske, Juergen

2011-07-20T23:59:59.000Z

178

Atom interferometric techniques for measuring gravitational acceleration and constant magnetic field gradients  

E-Print Network [OSTI]

We discuss two techniques for probing the effects of a homogeneous force acting on cold atoms, such as that due to gravity or a constant magnetic field gradient, using grating echo-type atom interferometers. A comprehensive theoretical description of signals generated by both two-pulse and three-pulse interferometers, accounting for magnetic sub-levels in the atomic ground state, is shown to agree with experimental results. Laser-cooled samples of $^{85}$Rb with temperatures as low as 2.4 $\\mu$K have been achieved in a relatively large glass cell with well-suppressed magnetic fields. Using transit time limited interferometer signals, we demonstrate sensitivity to externally applied magnetic gradients as small as $\\sim 4$ mG/cm. With these timescales we estimate that precision measurements of the gravitational acceleration, $g$, are possible with both the two-pulse and three-pulse echo interferometers. Whereas the two-pulse signal is a position-sensitive technique to measure the absolute value of $g$, the thre...

Barrett, B

2011-01-01T23:59:59.000Z

179

Comparison of Selective Culturing and Biochemical Techniques for Measuring Biological Activity in Geothermal Process Fluids  

SciTech Connect (OSTI)

For the past three years, scientists at the Idaho National Engineering and Environmental Laboratory have been conducting studies aimed at determining the presence and influence of bacteria found in geothermal plant cooling water systems. In particular, the efforts have been directed at understanding the conditions that lead to the growth and accumulation of biomass within these systems, reducing the operational and thermal efficiency. Initially, the methods selected were based upon the current practices used by the industry and included the collection of water quality parameters, the measurement of soluble carbon, and the use of selective medial for the determination of the number density of various types of organisms. This data has been collected on a seasonal basis at six different facilities located at the Geysers’ in Northern California. While this data is valuable in establishing biological growth trends in the facilities and providing an initial determination of upset or off-normal conditions, more detailed information about the biological activity is needed to determine what is triggering or sustaining the growth in these facilities in order to develop improved monitoring and treatment techniques. In recent years, new biochemical approaches, based upon the analyses of phospholipid fatty acids and DNA recovered from environmental samples, have been developed and commercialized. These techniques, in addition to allowing the determination of the quantity of biomass, also provide information on the community composition and the nutritional status of the organisms. During the past year, samples collected from the condenser effluents of four of the plants from The Geysers’ were analyzed using these methods and compared with the results obtained from selective culturing techniques. The purpose of this effort was to evaluate the cost-benefit of implementing these techniques for tracking microbial activity in the plant study, in place of the selective culturing analyses that are currently the industry standard.

Pryfogle, Peter Albert

2000-09-01T23:59:59.000Z

180

Experiment Investigation on Concentration and Mass Flow Measurement of Pulverized Coal Using Electrical Capacitance Tomography  

Science Journals Connector (OSTI)

Accurate measurement of the concentration of pulverized coal in various pipes plays a key role in assuring safe and economic operation in a pulverized coal?fired boiler in the process of combustion. In this paper experimental studies are implemented on the measurement of a lean mass flow in a pneumatic conveying pipeline using electrical capacitance tomography (ECT). In this system a cyclone separator is employed where the sensors are placed in order to compensate the inhomogeneity of the sensor sensitivity. The mass flow rate is determined from the solids velocity and the volumetric concentration. The former is measured by cross?correlating the capacitance fluctuations caused by the conveyed solids and the latter by an image reconstruction method and then this two parameters are combined to give the solids mass flow rate. The distribution of void fraction in radial direction the average void fraction and the wavy characteristics are analyzed. The feasibility and reliability of the method are verified by the experimental results.

J. Liu; M. Sun; X. Y. Wang; S. Liu

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Lift, drag and flow-field measurements around a small ornithopter  

SciTech Connect (OSTI)

The aerodynamics of a flight-worthy, radio controlled ornithopter is investigated using a combination of Particle-Image Velocimetry (PIV), load cell measurements, and high-speed photography of smoke visualizations. The lift and thrust forces of the ornithopter are measured at various flow speeds, flapping frequencies and angles of attack to characterize the flight performance. These direct force measurements are then compared with forces estimated using control volume analysis on PIV data. High-speed photography of smoke streaks is used to visualize the evolution of leading edge vortices, and to qualitatively infer the effect of wing deformation on the net downwash. Vortical structures in the wake are compared to previous studies on root flapping, and direct measurements of flapping efficiency are used to argue that the current ornithopter operates sub-optimally in converting the input energy into propulsive work.

Balakumar, B J [Los Alamos National Laboratory; Chavez - Alarcon, Ramiro [NMSU; Shu, Fangjun [NMSU

2011-01-12T23:59:59.000Z

182

Impingement cooling and heat transfer measurement using transient liquid crystal technique  

E-Print Network [OSTI]

A heat transfer study on jet impingement cooling is presented. The study focuses on the effect of impingement jet flow rate, jet angle, and flow exit direction on various target surface heat transfer distributions. A two-channel test section...

Huang, Yizhe

2012-06-07T23:59:59.000Z

183

Techniques and tools for measuring energy efficiency of scientific software applications  

E-Print Network [OSTI]

The scale of scientific High Performance Computing (HPC) and High Throughput Computing (HTC) has increased significantly in recent years, and is becoming sensitive to total energy use and cost. Energy-efficiency has thus become an important concern in scientific fields such as High Energy Physics (HEP). There has been a growing interest in utilizing alternate architectures, such as low power ARM processors, to replace traditional Intel x86 architectures. Nevertheless, even though such solutions have been successfully used in mobile applications with low I/O and memory demands, it is unclear if they are suitable and more energy-efficient in the scientific computing environment. Furthermore, there is a lack of tools and experience to derive and compare power consumption between the architectures for various workloads, and eventually to support software optimizations for energy efficiency. To that end, we have performed several physical and software-based measurements of workloads from HEP applications running on ARM and Intel architectures, and compare their power consumption and performance. We leverage several profiling tools (both in hardware and software) to extract different characteristics of the power use. We report the results of these measurements and the experience gained in developing a set of measurement techniques and profiling tools to accurately assess the power consumption for scientific workloads.

David Abdurachmanov; Peter Elmer; Giulio Eulisse; Robert Knight; Tapio Niemi; Jukka K. Nurminen; Filip Nyback; Goncalo Pestana; Zhonghong Ou; Kashif Khan

2014-10-10T23:59:59.000Z

184

Precision lifetime measurements of exotic nuclei based on Doppler-shift techniques  

SciTech Connect (OSTI)

A recent progress in precision lifetime measurements of exotic nuclei at the National Superconducting Cyclotron Laboratory (NSCL), Michigan State University is presented. The Recoil Distance Doppler-shift (RDDS) technique has been applied to nuclear reactions involving intermediate-energy rare isotope (RI) beams, to determine absolute transition strengths between nuclear states model independently from level lifetimes of interest. As such an example, recent lifetime measurements of the first 2{sup +} states in the neutron-rich {sup 62,64,66}Fe isotopes at and around N=40 are introduced. The experiment was performed at the Coupled Cyclotron Facility at NSCL using a unique combination of several experimental instruments; the Segmented Germanium Array (SeGA), the plunger device, and the S800 spectrograph. The reduced E2 transition probabilities B(E2) are determined directly from the measured lifetimes. The observed trend of B(E2) clearly demonstrates that an enhanced collectivity persists in {sup 66}Fe despite the harmonic-oscillator magic number N=40. The present results are also discussed in comparison with the large-scale shell model calculations, pointing to a possible extension of the deformation region beyond N=40.

Iwasaki, Hironori [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States) and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan (United States)

2013-04-19T23:59:59.000Z

185

Advances in surface magnetic field measurement technique for detection and sizing of surface-breaking cracks in offshore structures  

SciTech Connect (OSTI)

In detecting and sizing cracks in metal structures, the two common techniques of eddy-current and potential-drop, suffer from a number of problems which may not be acceptable in offshore environments. This paper describes recent advances in the surface magnetic field measurement (SMFM) technique as an alternative method for integrity evaluation of offshore metal structures.

Mirshekar-Syahkal, D. [Univ. of Essex, Colchester (United Kingdom); Sadeghi, S.H.H. [Amirkabir Univ., Tehran (Iran, Islamic Republic of)

1994-12-31T23:59:59.000Z

186

Evaluation of HC1 measurement techniques at municipal and hazardous-waste incinerators  

SciTech Connect (OSTI)

Hydrogen chloride (HC1) emissions from hazardous waste incinerators are regulated by the EPA, and the Agency is considering HC1 regulations for municipal waste combustors. Until recently, techniques to adequately quantify these emissions using either instrumentation or wet-chemistry sampling methods have not been evaluated. The EPA has sponsored several field tests to assess the performance of commercially-available HC1 continuous emission monitoring systems (CEMS's) and a proposed manual sampling and analysis methodology for use at municipal and hazardous waste incinerators. Tests were performed (1) to determine the capability of HC1 CEMS's to provide valid measurement data, (2) to develop HC1 CEMS performance specifications, and (3) to develop a suitable performance test method.

Shanklin, S.A.; Steinsberger, S.C.; Logan, T.J.; Rollins, R.

1990-01-01T23:59:59.000Z

187

Development of a generalized correlation for phase-velocity measurements obtained from impedance-probe pairs in two-phase flow systems. [PWR  

SciTech Connect (OSTI)

A flag type electrical impedance probe has been developed at the Oak Ridge National Lab (ORNL) to measure liquid- and vapor-phase velocities in steam-water mixtures flowing through rod bundles. Measurements are made by utilizing the probes in pairs, installed in line, parallel to the flow direction, and extending out into the flow channel. The present study addresses performance difficulties by examining from a fundamental point of view the two-phase flow system which the impedance probes typically operate in. Specifically, the governing equations (continuity, momentum, energy) were formulated for both air-water and steam-water systems, and then subjected to a scaling analysis. The scaling analysis yielded the appropriate dimensionless parameters of significance in both kinds of systems. Additionally, with the aid of experimental data obtained at ORNL, those parameters of significant magnitude were established. As a result, a generalized correlation was developed for liquid and vapor phase velocities that makes it possible to employ the impedance probe velocity measurement technique in a wide variety of test configurations and fluid combinations.

Hsu, C.T.; Keshock, E.G.; McGill, R.N.

1983-01-01T23:59:59.000Z

188

EIS-0163-S: Supplemental EIS/1993 Interim Columbia and Snake Rivers Flow Improvement Measures for Salmon  

Broader source: Energy.gov [DOE]

The U.S. Army Corps of Engineers – Walla Walla District has prepared this statement to assess alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. The U.S. Department of Energy’s Bonneville Power Administration served as a cooperating agency in developing this supplement due to its key role in direct operation of the integrated and coordinated Columbia-Snake River System, and adopted this statement in March of 1993. This statement supplements the 1992 Columbia River Salmon Flow Measures Options Analysis Environmental Impact Statement, which evaluated ways to alter water management operations in 1992 on the lower Columbia and Snake rivers to enhance the survival of wild Snake River salmon.

189

A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements  

SciTech Connect (OSTI)

With the recent development of temperature measurement systems, continuous temperature profiles can be obtained with high precision. Small temperature changes can be detected by modern temperature measuring instruments such as fiber optic distributed temperature sensor (DTS) in intelligent completions and will potentially aid the diagnosis of downhole flow conditions. In vertical wells, since elevational geothermal changes make the wellbore temperature sensitive to the amount and the type of fluids produced, temperature logs can be used successfully to diagnose the downhole flow conditions. However, geothermal temperature changes along the wellbore being small for horizontal wells, interpretations of a temperature log become difficult. The primary temperature differences for each phase (oil, water, and gas) are caused by frictional effects. Therefore, in developing a thermal model for horizontal wellbore, subtle temperature changes must be accounted for. In this project, we have rigorously derived governing equations for a producing horizontal wellbore and developed a prediction model of the temperature and pressure by coupling the wellbore and reservoir equations. Also, we applied Ramey's model (1962) to the build section and used an energy balance to infer the temperature profile at the junction. The multilateral wellbore temperature model was applied to a wide range of cases at varying fluid thermal properties, absolute values of temperature and pressure, geothermal gradients, flow rates from each lateral, and the trajectories of each build section. With the prediction models developed, we present inversion studies of synthetic and field examples. These results are essential to identify water or gas entry, to guide flow control devices in intelligent completions, and to decide if reservoir stimulation is needed in particular horizontal sections. This study will complete and validate these inversion studies.

Keita Yoshioka; Pinan Dawkrajai; Analis A. Romero; Ding Zhu; A. D. Hill; Larry W. Lake

2007-01-15T23:59:59.000Z

190

Study on the Portable and Integrated Type Pore Plate Flow Measureing Device for Condensate Water of 300MW Steam Turbine  

Science Journals Connector (OSTI)

In order to insure the accuracy of steam turbine thermal test in power plant, the flowrate measurement accuracy of condensate water should be insured. In this paper, the portable and integrated type flow measuring device for condensate water of 300MW steam turbine flow is designed, which is based on the condensate water parameters and the specific pipeline conditions at the exit of the No. 5 low pressure heater for 300MW unit. A integration of non standard differential pressure orifice flow meter is designed in this paper Through calibration in standard experimental system, the reason of the large error is that the flow field is disturbed by the origin plate type downward welding connecting flanges. Then the welding neck flanges is designed for the connecting flanges. The distribution of connecting flanges of flow field is weaken, and the measurement accuracy can meet the demand of steam turbine thermal test.

Yong Li; Jia-yong Wang

2012-01-01T23:59:59.000Z

191

Application of a ratiometric laser induced fluorescence (LIF) thermometry for micro-scale temperature measurement for natural convection flows  

E-Print Network [OSTI]

A ratiometric laser induced fluorescence (LIF) thermometry applied to micro-scale temperature measurement for natural convection flows. To eliminate incident light non-uniformity and imperfection of recording device, two fluorescence dyes are used...

Lee, Heon Ju

2004-11-15T23:59:59.000Z

192

Laboratory measurements of large-scale carbon sequestration flows in saline reservoirs  

SciTech Connect (OSTI)

Brine saturated with CO{sub 2} is slightly denser than the original brine causing it to sink to the bottom of a saline reservoir where the CO{sub 2} is safely sequestered. However, the buoyancy of pure CO{sub 2} relative to brine drives it to the top of the reservoir where it collects underneath the cap rock as a separate phase of supercritical fluid. Without additional processes to mix the brine and CO{sub 2}, diffusion in this geometry is slow and would require an unacceptably long time to consume the pure CO{sub 2}. However, gravity and diffusion-driven convective instabilities have been hypothesized that generate enhanced CO{sub 2}-brine mixing promoting dissolution of CO{sub 2} into the brine on time scale of a hundred years. These flows involve a class of hydrodynamic problems that are notoriously difficult to simulate; the simultaneous flow of mUltiple fluids (CO{sub 2} and brine) in porous media (rock or sediment). The hope for direct experimental confirmation of simulations is dim due to the difficulty of obtaining high resolution data from the subsurface and the high pressures ({approx}100 bar), long length scales ({approx}100 meters), and long time scales ({approx}100 years) that are characteristic of these flows. We have performed imaging and mass transfer measurements in similitude-scaled laboratory experiments that provide benchmarks to test reservoir simulation codes and enhance their predictive power.

Backhaus, Scott N [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

193

Hot-film anemometer measurements in adiabatic two-phase flow through a vertical duct  

SciTech Connect (OSTI)

A hot-film anemometer (HFA) probe was used to obtain local measurements of void fraction and bubble frequency in a vertically oriented, high aspect ratio duct containing R-134a under selected adiabatic two-phase flow conditions. Data were obtained along a narrow dimension scan over the range 0.03 {le} {bar Z} {le} 0.80, where {bar Z} is the distance from the wall normalized with the duct spacing dimension. The void fraction profiles displayed large gradients in the near-wall regions and broad maxima near the duct centerline. The trends in the bubble frequency data generally follow those for the local void fraction data. However, the relatively large number of bubbles at higher pressure implies a larger magnitude of the interfacial area concentration, for the same cross-sectional average void fraction. For the two annular flow conditions tested, analysis of the HFA output voltage signal enabled identification of three distinct regions of the flow field; liquid film with dispersed bubbles, interfacial waves, and continuous vapor with dispersed droplets.

Trabold, T.A.; Moore, W.E.; Morris, W.O. [Lockheed Martin Corp., Schenectady, NY (United States)

1997-06-01T23:59:59.000Z

194

A COMPREHENSIVE STATISTICALLY-BASED METHOD TO INTERPRET REAL-TIME FLOWING MEASUREMENTS  

SciTech Connect (OSTI)

In this project, we are developing new methods for interpreting measurements in complex wells (horizontal, multilateral and multi-branching wells) to determine the profiles of oil, gas, and water entry. These methods are needed to take full advantage of ''smart'' well instrumentation, a technology that is rapidly evolving to provide the ability to continuously and permanently monitor downhole temperature, pressure, volumetric flow rate, and perhaps other fluid flow properties at many locations along a wellbore; and hence, to control and optimize well performance. In this first year, we have made considerable progress in the development of the forward model of temperature and pressure behavior in complex wells. In this period, we have progressed on three major parts of the forward problem of predicting the temperature and pressure behavior in complex wells. These three parts are the temperature and pressure behaviors in the reservoir near the wellbore, in the wellbore or laterals in the producing intervals, and in the build sections connecting the laterals, respectively. Many models exist to predict pressure behavior in reservoirs and wells, but these are almost always isothermal models. To predict temperature behavior we derived general mass, momentum, and energy balance equations for these parts of the complex well system. Analytical solutions for the reservoir and wellbore parts for certain special conditions show the magnitude of thermal effects that could occur. Our preliminary sensitivity analyses show that thermal effects caused by near-wellbore reservoir flow can cause temperature changes that are measurable with smart well technology. This is encouraging for the further development of the inverse model.

Pinan Dawkrajai; Analis A. Romero; Keita Yoshioka; Ding Zhu; A.D. Hill; Larry W. Lake

2004-10-01T23:59:59.000Z

195

New Statistical Techniques in the Measurement of the inclusive Top Pair Production Cross Section  

E-Print Network [OSTI]

We present several different types of multivariate statistical techniques used in the measurement of the inclusive top pair production cross section in $p \\bar{p}$-collisions at $\\sqrt{s} = 1.96 \\text{TeV}$ employing the full RunII data ($9.7\\textrm{fb}^{-1}$) collected with the D0 detector at the Fermilab Tevatron Collider. We consider the final state of the top quark pair decays containing one electron or muon and at least two jets. We proceed various statistical homogeneity tests such as Anderson - Darling, Kolmogorov - Smirnov, and $\\varphi$-divergences tests to determine, which variables have good data-MC agreement, as well as a good separation power. We adjusted all tests for using weighted empirical distribution functions. Further we separate $t\\bar{t}$ signal from the background by the application of Generalized Linear Models, Gaussian Mixture Models), Neural Networks with Switching Units and confront them with familiar methods from ROOT TMVA package such as Boosted Decision Trees, and Multi-layer Per...

Franc, Ji?í; Št?pánek, Michal; K?s, Václav

2014-01-01T23:59:59.000Z

196

Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend  

DOE Patents [OSTI]

A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

Ortiz, M.G.

1998-02-10T23:59:59.000Z

197

A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements  

SciTech Connect (OSTI)

This project is motivated by the increasing use of distributed temperature sensors for real-time monitoring of complex wells (horizontal, multilateral and multi-branching wells) to infer the profiles of oil, gas, and water entry. Measured information can be used to interpret flow profiles along the wellbore including junction and build section. In this second project year, we have completed a forward model to predict temperature and pressure profiles in complex wells. As a comprehensive temperature model, we have developed an analytical reservoir flow model which takes into account Joule-Thomson effects in the near well vicinity and multiphase non-isothermal producing wellbore model, and couples those models accounting mass and heat transfer between them. For further inferences such as water coning or gas evaporation, we will need a numerical non-isothermal reservoir simulator, and unlike existing (thermal recovery, geothermal) simulators, it should capture subtle temperature change occurring in a normal production. We will show the results from the analytical coupled model (analytical reservoir solution coupled with numerical multi-segment well model) to infer the anomalous temperature or pressure profiles under various conditions, and the preliminary results from the numerical coupled reservoir model which solves full matrix including wellbore grids. We applied Ramey's model to the build section and used an enthalpy balance to infer the temperature profile at the junction. The multilateral wellbore temperature model was applied to a wide range of cases varying fluid thermal properties, absolute values of temperature and pressure, geothermal gradients, flow rates from each lateral, and the trajectories of each build section.

Pinan Dawkrajai; Keita Yoshioka; Analis A. Romero; Ding Zhu; A.D. Hill; Larry W. Lake

2005-10-01T23:59:59.000Z

198

Simultaneous Measurement of On-Road Vehicle Emissions and Traffic Flow Using Remote Sensing and an Area-Wide  

E-Print Network [OSTI]

, headway, vehicle type) were simultaneously measured using a video-based area-wide traffic detection system collected via conventional and advanced vehicle monitoring systems. The project is sponsored1 Simultaneous Measurement of On-Road Vehicle Emissions and Traffic Flow Using Remote Sensing

Frey, H. Christopher

199

A New Flow Control Technique Using Diluted Epinephrine in the N-butyl-2-cyanoacrylate Embolization of Visceral Artery Pseudoaneurysms Secondary to Chronic Pancreatitis  

SciTech Connect (OSTI)

Although n-butyl-2-cyanoacrylate (NBCA) has been used as an effective liquid embolization material, its indication for pseudoaneurysms has seemingly been limited because of the technical difficulties of using NBCA, such as reflux to the parent artery and causing significant infarction. Thus, considerable skill in using NBCA or a device to control blood flow during its polymerization is required to achieve embolization without severe complications. We report our new technique for controlling blood flow using diluted epinephrine in transcatheter arterial NBCA embolization of five pseudoaneurysms in four cases secondary to hemosuccus pancreaticus.

Morishita, Hiroyuki, E-mail: hmorif@koto.kpu-m.ac.jp [Japan Red Cross Kyoto Daiichi Hospital, Department of Diagnostic Radiology (Japan); Yamagami, Takuji [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science (Japan); Takeuchi, Yoshito [National Cancer Center, Division of Diagnostic Radiology (Japan); Matsumoto, Tomohiro; Asai, Shunsuke; Masui, Koji [Japan Red Cross Kyoto Daiichi Hospital, Department of Diagnostic Radiology (Japan); Sato, Hideki [Japan Red Cross Kyoto Daiichi Hospital, Department of Gastroenterology (Japan); Taniguchi, Fumihiro [Japan Red Cross Kyoto Daiichi Hospital, Department of Surgery (Japan); Sato, Osamu [Japan Red Cross Kyoto Daiichi Hospital, Department of Diagnostic Radiology (Japan); Nishimura, Tsunehiko [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science (Japan)

2012-08-15T23:59:59.000Z

200

Uniform and Preferential Flow Mechanisms in the Vadose Zone  

E-Print Network [OSTI]

flow and chemical leaching. The objectives of this paper are to describe and classify flow mechanisms on measurement techniques for preferential flow and with guidelines for the formu- lation of conceptual models. All rights reserved. Conceptual Models of Flow and Transport in the Fractured Vadose Zone http

Flury, Markus

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Compressive Sensing Based Machine Learning Strategy For Characterizing The Flow Around A Cylinder With Limited Pressure Measurements  

SciTech Connect (OSTI)

Compressive sensing is used to determine the flow characteristics around a cylinder (Reynolds number and pressure/flow field) from a sparse number of pressure measurements on the cylinder. Using a supervised machine learning strategy, library elements encoding the dimensionally reduced dynamics are computed for various Reynolds numbers. Convex L1 optimization is then used with a limited number of pressure measurements on the cylinder to reconstruct, or decode, the full pressure field and the resulting flow field around the cylinder. Aside from the highly turbulent regime (large Reynolds number) where only the Reynolds number can be identified, accurate reconstruction of the pressure field and Reynolds number is achieved. The proposed data-driven strategy thus achieves encoding of the fluid dynamics using the L2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting L1 norm.

Bright, Ido; Lin, Guang; Kutz, Nathan

2013-12-05T23:59:59.000Z

202

A noncontacting technique for measuring surface tension of liquids C. Cinbis and B. T. Khuri-Yakub  

E-Print Network [OSTI]

A noncontacting technique for measuring surface tension of liquids C. Cinbis and B. T. Khuri is the surface tension which acts to minimize the surface area of the liquid. Therefore, capillary wavesin of capillary wavesin order to mea- sure in siiu the surface tension of liquids. Current tech- niques of surface

Khuri-Yakub, Butrus T. "Pierre"

203

ELSEVIER The Science of the Total Environment 189/190 (1996) 175-180 Comparison of auto emission measurement techniques  

E-Print Network [OSTI]

conditions, has been designated as the standard test for new `enhanced' I/M pro- grams. RSDs, which use the vehicle of interest and directed the motorist to one of two test positions. All partici- pation-speedidle test, to two other measurement techniques:remotesensingdevices(RSDs)and the IM240 test,a loaded

Denver, University of

204

Technique of solving a verification measurement problem on the basis of truncated distribution functions  

Science Journals Connector (OSTI)

The present article is concerned with identification of a truncated probability distribution function of the basic error with equal number of parameters in a technique that involves calculation of the a posterior...

I. A. Suleiman

2012-04-01T23:59:59.000Z

205

Bernoulli Applications A Venturi meter is used to measure the flow rate through a tube.  

E-Print Network [OSTI]

objects, eg. wings of mills or wind turbines, sails on a sailboat, propellors). Air Flow along Wing Forces objects, eg. wings of mills or wind turbines, sails on a sailboat, propellors). Air Flow along Wing ,u uu

Weijgaert, Rien van de

206

Flow field-flow fractionation (FlFFF) coupled to sensitive detection techniques: a way to examine radionuclide interactions with nanoparticles  

Science Journals Connector (OSTI)

...bentonite that is commonly used as backfill and buffer material (Missana et al., 2003...tris-hydroxymethyl-aminomethane) buffer solution (5 mmol l1 at pH 7...2000) Field-Flow Fractionation Handbook . John Wiley Sons, New York...

M. Bouby; N. Finck; H. Geckeis

207

E-Print Network 3.0 - angle measure technique Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

time-reversal of ultrasonic waves in the vicinity of the Rayleigh angle at a fluid-solid interface Summary: angle to measure the speed of sound in solids without measuring waves...

208

Measuring of electrical changes induced by in situ combustion through flow-through electrodes in a laboratory sample of core material  

DOE Patents [OSTI]

Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front there through. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique. 12 figs.

Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

1986-12-09T23:59:59.000Z

209

Stress-dependent surface reactions and implications for a stress measurement technique  

E-Print Network [OSTI]

to roughen. This phenomenon has recently led to a novel experimental technique to determine the stress state is also known to change the mobility of a reaction. By this mechanism, the stress may either roughen at the troughs than at the crests, so that the wave amplitude grows over time, and the surface roughens. When

Suo, Zhigang

210

The Impact on Consumer Behavior of Energy Demand Side Management Programs Measurement Techniques and Methods.  

E-Print Network [OSTI]

??Much effort has gone into measuring the impact of Demand Side Management (DSM) programs on energy usage, particularly in regards to electric usage. However, there… (more)

Pursley, Jeffrey L

2014-01-01T23:59:59.000Z

211

A novel neutron spin echo technique for measuring phonon linewidths using magnetic Wollaston prisms  

Science Journals Connector (OSTI)

A neutron spin echo spectrometer based on neutron magnetic Wollaston prisms is introduced to measure the linewidth of dispersive phonon excitations over the entire Brillouin zone with ?eV resolution. By tuning the instrument electromagnetically, the linewidths of phonon excitations with high energy and large group velocity can be measured.

Li, F.

2014-10-17T23:59:59.000Z

212

Model of bubble velocity vector measurement in upward and downward bubbly two-phase flows using a four-sensor optical probe  

Science Journals Connector (OSTI)

Abstract The knowledge of bubble behaviors is of considerable significance for a proper understanding and modeling of two-phase flows. To obtain the information on the bubble motion, a novel model was developed, by which the bubble velocity vector can be directly calculated from six time intervals measured with a four-sensor probe. The measurements of local bubble velocity vector and void fraction were performed in both upward and downward bubbly flows by using a four-sensor optical probe. The area-averaged void fraction and bubble velocity obtained from the probe agree well with those measured by other cross-calibration methods, and the measurement errors are within 15% under various flow conditions. Experimental results of the bubble velocity vector reveal that the bubble lateral migration may be suppressed in upward flows, but be strengthened in downward flows as the liquid flow rate increases. Also, with an increase in gas flow rate, the bubble velocity distribution varies into the power–law profile in upward flows, but into an off-center peak profile in downward flows. In addition, the void fraction shows a core peak distribution at low void fraction for downward flows, but a wall peak distribution for upward flows. However, when the void fraction is relatively high, it displays an off-center peak distribution for downward flows but a core peak distribution for upward flows.

Daogui Tian; Changqi Yan; Licheng Sun

2015-01-01T23:59:59.000Z

213

Measurement of energy flow at large pseudorapidities in pp collisions at sqrt(s) = 0.9 and 7 TeV  

E-Print Network [OSTI]

The energy flow, dE/d(eta), is studied at large pseudorapidities in proton-proton collisions at the LHC, for centre-of-mass energies of 0.9 and 7 TeV. The measurements are made in the pseudorapidity range 3.15 energy-flow measurements. Inclusion of multiple-parton interactions in the Monte Carlo event generators is found to improve the description of the energy-flow measurements.

CMS Collaboration

2011-10-02T23:59:59.000Z

214

AN ASSESSMENT OF THE ACCURACY OF MAGENTIC RESONANCE PHASE VELOCITY MAPPING IN TURBULENT FLOW THROUGH ORIFICES.  

E-Print Network [OSTI]

?? Magnetic resonance phase velocity mapping (MRPVM) is an established clinical technique to measure blood flow. The acquired information can be used to diagnose a… (more)

Pidaparthi, Sahitya

2011-01-01T23:59:59.000Z

215

Planar velocity measurements in two rotorcraft flows are presented. The first is that of an isolated rotor  

E-Print Network [OSTI]

-light-based measurement system. The second flowfield is that of a rotor wake interacting with a fixed wing in a wind field. Isolated rotor in axial flight Substantial uncertainties remain in modeling the wake typical of a full-scale rotor wake. The clean periodicity of this flow allows capture of fundamental

216

A Comparison of Scale Estimation Schemes for a Quadrotor UAV based on Optical Flow and IMU Measurements  

E-Print Network [OSTI]

A Comparison of Scale Estimation Schemes for a Quadrotor UAV based on Optical Flow and IMU of autonomous UAV flight control, cameras are ubiquitously exploited as a cheap and effective onboard sensor linear velocity in the UAV body frame from direct measurement of the instantaneous (and non

Paris-Sud XI, Université de

217

Direct measurements of the mean flow and eddy kinetic energy structure of the upper ocean circulation in the NE Atlantic  

E-Print Network [OSTI]

Direct measurements of the mean flow and eddy kinetic energy structure of the upper ocean, University of Bergen, Bergen, Norway Tom Rossby Graduate School of Oceanography, University of Rhode Island and variable wind-forcing, and strong and variable deep currents that lead to large uncertainties in the use

218

Residual stress measurement on ductile cast iron using critically refracted longitudinal (Lcr) wave technique  

E-Print Network [OSTI]

using ultrasonics was approached. Residual stresses in castings are developed for various reasons. The presence of these stresses, coupled with applied stresses in service, sometimes results in the yield of material and subsequent failure of component.... Present work was focussed on development of an ultrasonic technique using critically refracted longitudinal (L g waves for evaluating residual stresses in ductile cast iron. An L probe suitable to work with ductile cast iron was designed and fabricated...

Chundu, Srinivasulu Naidu

2012-06-07T23:59:59.000Z

219

The application of a scintillation flask technique for the measurement of radon emanation  

E-Print Network [OSTI]

that these flasks are reliable in a wide spectrum of situations, including the severe conditions of uranium mines, because of their mechanical durability. Phosphors Scintillation cells are internally coated with a silver activated zinc sulfide phospor (Zn... Technique in Coating the Flask MATERIALS AND METHODS Procedures for Flask Construction Bonding Solution and Storage Construction of a Light Tight Box Electronics and Photomultiplier Tube Calibration of the Flask Accumulator Method 2 4 8 9 ll 12...

Charles, Martha

1984-01-01T23:59:59.000Z

220

Fissile material measurements using the differential die-away self interrogation technique  

SciTech Connect (OSTI)

Currently, there is substantial research effort focused on quantifying plutonium (Pu) mass in spent fuel using non-destructive assay (NDA) techniques. Of the several techniques being investigated for this purpose, Differential Die-Away Self-Interrogation (DDSI) is a recently proposed, neutron-based NDA technique capable of quantifying the total fissile content in an assembly. Unlike the conventional Differential Die-Away (DDA) technique, DOSI does not require an external neutron source for sample interrogation, but rather, uses the spontaneous fission neutrons originating from {sup 244}Cm within the spent fuel for self-interrogation. The essence of the technique lies in the time separation between the detection of spontaneous fission neutrons from {sup 244}Cm and the detection of induced fission neutrons at a later time. The DDSI detector design imposes this time separation by optimizing the die-away times ({tau}) of the detector and sample interrogation regions to obtain an early and late neutron distribution respectively. The ratio of the count rates in the late gate to the early gate for singles, doubles, and triples is directly proportional to the fissile content present in the sample, which has already been demonstrated for simplified fuel cases using the Monte Carlo N-Particle eXtended (MCNPX) code. The current work applies the DDSI concept to more complex samples, specifically spent Pressurized Water Reactor (PWR) assemblies with varying isotopics resulting from a range of initial enrichment, bumup, and cooling time. We assess the feasibility of using the late gate to early gate ratio as a reliable indicator of overall fissile mass for a range of assemblies by defining a {sup 239}Pu effective mass which indicates the mass of {sup 239}Pu that would yield the same DDSI signal as the combined mass of major fissile isotopes present in the sample. This work is important for assessing the individual capability of the DDSI instrument in quantifying fissile mass in an assembly in order to use this information for a possible integration with another NDA instrument for direct Pu mass determination.

Schear, Melissa A [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Evans, Louise G [Los Alamos National Laboratory; Lee, S Y [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ENERGY MEASUREMENTS IN THE SWASH-SURF ZONE  

Science Journals Connector (OSTI)

ABSTBACT. A technique has been devised for obtaining energy and sediment data in the swash-surf ... Conventional methods of measuring rates of fluid flow.

222

Calculation methods and detection techniques for electric and magnetic fields from power lines with measurement verification  

E-Print Network [OSTI]

An accurate determination and characterization of electric and magnetic fields produced by power lines is a complex task. Different models must be used for far fields and for near fields. This study is centered on computation and measurement aspects...

Mamishev, Alexander V

2012-06-07T23:59:59.000Z

223

Measurements of Neutron Yield from Deuterium Plasmas at JET by Activation Techniques  

SciTech Connect (OSTI)

The paper reports on experiments carried out at JET to test the possibility of using some activating materials (e.g. {sup 89}Y, {sup 167}Er, {sup 204}Pb, {sup 180}Hf, {sup 111}Cd, etc.) to perform multi-foil neutron activation measurements. It is shown that apart from indium other materials can be successfully used in these measurements delivering more exact information about fluxes and also energy spectra of the analysed neutrons. These and other materials have threshold energy in the interesting energy range (0.5-15 MeV) and relatively large cross sections for the nuclear reactions, but have not been used in the activation measurements supposedly because produce daughter nuclides with a relatively short half-life time. We propose then some modification of the JET activation system mainly in order to convey the activation samples faster to the detector.

Prokopowicz, R. [Institute of Plasma Physics and Laser Microfusion, P.O. Box 49, 00-908 Warsaw (Poland); Institute of Atomic Energy, 05-400 Otwock-Swierk (Poland); Scholz, M. [Institute of Plasma Physics and Laser Microfusion, P.O. Box 49, 00-908 Warsaw (Poland); Szydlowski, A. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Popovichev, S. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon 0X14 3DB (United Kingdom)

2008-03-19T23:59:59.000Z

224

Resonant ultrasound techniques for measurements from 500 mK to 700 K  

Science Journals Connector (OSTI)

Measuring elastic moduli using resonant ultrasound spectroscopy (RUS) over a very wide temperature range requires very specialized hardware. The authors have developed both this hardware and some interesting software to help make measurements in these very challenging conditions. Solutions to these problems will be presented along with results from some recent RUS experiments carried out at the National High Magnetic Field Laboratory in Los Alamos. [Work was supported by the National Science Foundation State of Florida and the U.S. Dept. of Energy.

Jonathan B. Betts; Albert Migliori; Arkady Shehter; Victor R. Fanelli; Fedor F. Balakirev

2011-01-01T23:59:59.000Z

225

Experimental correlations for transient soot measurement in diesel exhaust aerosol with light extinction, electrical mobility and diffusion charger sensor techniques  

Science Journals Connector (OSTI)

A study of soot measurement deviation using a diffusion charger sensor with three dilution ratios was conducted in order to obtain an optimum setting that can be used to obtain accurate measurements in terms of soot mass emitted by a light-duty diesel engine under transient operating conditions. The paper includes three experimental phases: an experimental validation of the measurement settings in steady-state operating conditions; evaluation of the proposed setting under the New European Driving Cycle; and a study of correlations for different measurement techniques. These correlations provide a reliable tool for estimating soot emission from light extinction measurement or from accumulation particle mode concentration. There are several methods and correlations to estimate soot concentration in the literature but most of them were assessed for steady-state operating points. In this case, the correlations are obtained by more than 4000 points measured in transient conditions. The results of the new two correlations, with less than 4% deviation from the reference measurement, are presented in this paper.

Vicente Bermúdez; José V Pastor; J Javier López; Daniel Campos

2014-01-01T23:59:59.000Z

226

Raman intensity measurements of single-walled carbon nanotube suspensions as a quantitative technique  

E-Print Network [OSTI]

Raman intensity measurements of single-walled carbon nanotube suspensions as a quantitative, Biological and Materials Engineering, Carbon Nanotube Technology Center (CANTEC), University of Oklahoma, 100 the purity of single-walled carbon nanotube (SWCNT) bulk samples based on Raman spectroscopy is reported

Resasco, Daniel

227

Diagnostic technique for measuring plasma parameters near surfaces in radio frequency discharges  

E-Print Network [OSTI]

of an inductively coupled plasma reactor which has an rf biased substrate. Although any three disjoint sets of measurements can ideally be used, a sensitivity analysis is used to show that certain sets may be more suitable reliability and performance. One ideally wants sensors that are nonobtrusive, simple to implement and which

Kushner, Mark

228

Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 5  

E-Print Network [OSTI]

source is an ultra- stable CO2 laser with a wavelength 10 m . The absorption cell is placed in a thermostat keeping the temperature at 273.15 K within 1.4 mK. We were able to measure with a relative spectroscopique est réalisée à l'aide d'un laser à CO2 ultra-stable de longueur d'onde 10 m . La cellule d

Boyer, Edmond

229

Review of automated custody transfer equipment for large-volume gas flow measurement. Final report, August 1, 1987-February 28, 1988  

SciTech Connect (OSTI)

The influence of electronic automation on the accuracy of gas custody transfer measurements was investigated. The term Electronic Flow Measurement (EFM) denotes both electronic flow correctors (for positive displacement meters) and flow computers (for orifice plate measurements). Electronic devices have potential to be slightly more accurate than their mechanical counterparts. Electronic systems have the additional benefits of greater application flexibility, reduced flow corrector inventory, reduced maintenance and calibration requirements, and data storage and communication capability. The primary concerns with EFM equipment are compatibility between units made by different manufacturers and their ability to function under extreme environmental conditions.

Rush, W.F.; Tamosaitis, V.

1989-06-01T23:59:59.000Z

230

APS 7-BM Beamline: Techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Motivation Motivation The major thrust of the 7-BM beamline is the application of synchrotron radiation tools to examine complex fluid flowfields. Two major techniques are applied: radiography and x-ray fluorescence spectroscopy. While optical techniques are often ideally suited to the study of fluid flowfields, there are certain flowfields for which optical diagnostics have significant challenges. These include: Multiphase flows: Visible light interacts strongly with phase boundaries. This leads to strong refraction, scattering, and attenuation of light. These effects hinder quantitative measurements of dense multiphase flowfields. Opaque media. Flows with strong refractive effects. Luminous flames: The strong light emission from sooting flames can hinder certain optical diagnostics.

231

Method and apparatus to measure vapor pressure in a flow system  

DOE Patents [OSTI]

The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

Grossman, Mark W. (Belmont, MA); Biblarz, Oscar (Swampscott, MA)

1991-01-01T23:59:59.000Z

232

A study of structure and dynamics of polyelectrolyte solutions using flow birefringence measurements  

E-Print Network [OSTI]

Stress optical data from polyelectrolytes (sodium polystyrenesulfonate) in aqueous solutions have been determined using flow birefringence. The stress optical rule was found to be violated in the semidilute unentangled concentration regime...

Chen, Shih Ping

2012-06-07T23:59:59.000Z

233

Field-Scale Measurements for Separation of Catchment Discharge into Flow Route Contributions  

Science Journals Connector (OSTI)

...observed acceleration of the transfer of nutrients and other agrochemicals through the hydrologic system has been attributed to these...Mehuys. 2003. Intra-storm study of solute chemical composition of overland flow water in two agricultural fields. J. Environ...

Ype van der Velde; Joachim C. Rozemeijer; Gerrit H. de Rooij; Frans C. van Geer; Hans Peter Broers

234

Caged Molecular Fluorescence Velocimetry to measure meso-to micro-scale thermal flow fields  

E-Print Network [OSTI]

Velocimetry Concept . . . 16 Figure 9. Bulk Region Flow in D = 5 mm Scale; (a) with the Heater Oriented Above (Left of) the Meniscus, (b) with the Heater Oriented Below (Right of) the Meniscus . 20 Figure 10 Meniscus Region Flow in 6 & I mm Scale; (a...) with the Heater Oriented Above (Left of) the Meniscus, (b) with the Heater Oriented Below (Rightof)the Meniscus . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . 22 Figure 11 Two Velocity Profiles...

Park, Jaesung

2012-06-07T23:59:59.000Z

235

A comparison of neutron dose measurement techniques at the K500 Superconducting Cyclotron facility  

E-Print Network [OSTI]

encountered in accelerator environments. On the forefront, previous work at the Health Physics Research Reactor (HPRR) at Oak Ridge National Laboratory (ORNL) has focused on intercomparisons of dosimeter response in a reactor environment (Swaja et al. 1985..., theoretically, the differential TLD method (using the Li and Li chips') allows for measurements of 0. 1 mSv of neutrons in a gamma field of 2 mSv. The ORNL study cited in the introduction revealed that the TLD albedo dosimeters provided the best overall...

Ford, Michael Scott

1989-01-01T23:59:59.000Z

236

Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency  

Science Journals Connector (OSTI)

Abstract Power and drag (or thrust) measurements were performed in a towing tank for two different helical cross-flow marine hydrokinetic energy conversion devices—a cylindrical Gorlov Helical Turbine (GHT) and a Lucid Spherical Turbine (LST). The turbines are compared with respect to their various design parameters, with the GHT overall operating at higher power and drag coefficients. An estimate for the exergy efficiency of a turbine in free flow is formulated using momentum theory, and this quantity is computed for both devices. The GHT's exergy efficiency advantage over the LST was higher than that based on the power coefficient. Momentum theory-based blockage corrections were applied to the measurements and compared with the non-corrected data. The results presented here will help increase the amount of experimental data for helical devices in the literature, which is necessary for the development of more accurate engineering tools that take into account the unique three-dimensional nature of these devices.

Peter Bachant; Martin Wosnik

2015-01-01T23:59:59.000Z

237

UHV Cantilever Beam Technique for Quantitative Measurements of Magnetization, Magnetostriction, and Intrinsic Stress of Ultrathin Magnetic Films  

Science Journals Connector (OSTI)

A new method—based on the cantilever beam principle—is presented, by means of which quantitative values of the magnetization, magnetostriction, and intrinsic stress of magnetic thin films can be determined. Moreover investigations of magnetic anisotropies and Curie temperature are possible. The high sensitivity achievable enables measurements even on films approaching monolayer thickness. The method is fully compatible with UHV and—via the intrinsic stress—additionally provides important information on growth mode and microstructure of the films under investigation. First results on polycrystalline Fe films demonstrate impressively the performance of the technique.

M. Weber, R. Koch, and K. H. Rieder

1994-08-22T23:59:59.000Z

238

Techniques and tools for measuring energy efficiency of scientific software applications  

E-Print Network [OSTI]

The scale of scientific High Performance Computing (HPC) and High Throughput Computing (HTC) has increased significantly in recent years, and is becoming sensitive to total energy use and cost. Energy-efficiency has thus become an important concern in scientific fields such as High Energy Physics (HEP). There has been a growing interest in utilizing alternate architectures, such as low power ARM processors, to replace traditional Intel x86 architectures. Nevertheless, even though such solutions have been successfully used in mobile applications with low I/O and memory demands, it is unclear if they are suitable and more energy-efficient in the scientific computing environment. Furthermore, there is a lack of tools and experience to derive and compare power consumption between the architectures for various workloads, and eventually to support software optimizations for energy efficiency. To that end, we have performed several physical and software-based measurements of workloads from HEP applications running o...

Abdurachmanov, David; Eulisse, Giulio; Knight, Robert; Niemi, Tapio; Nurminen, Jukka K; Nyback, Filip; Pestana, Goncalo; Ou, Zhonghong; Khan, Kashif

2014-01-01T23:59:59.000Z

239

EVALUATION OF TEMPORAL VARIATIONS IN HYDRAULIC CAPTURE DUE TO CHANGING FLOW PATTERNS USING MAPPING AND MODELING TECHNIQUES  

SciTech Connect (OSTI)

Robust performance evaluation represents one of the most challenging aspects of groundwater pump-and-treat (P&T) remedy implementation. In most cases, the primary goal of the P&T system is hydraulic containment, and ultimately recovery, of contaminants to protect downgradient receptors. Estimating the extent of hydraulic containment is particularly challenging under changing flow patterns due to variable pumping, boundaries and/or other conditions. We present a systematic approach to estimate hydraulic containment using multiple lines of evidence based on (a) water-level mapping and (b) groundwater modeling. Capture Frequency Maps (CFMs) are developed by particle tracking on water-level maps developed for each available water level data set using universal kriging. In a similar manner, Capture Efficiency Maps (CEMs) are developed by particle tracking on water-levels calculated using a transient groundwater flow model: tracking is undertaken independently for each stress period using a very low effective porosity, depicting the 'instantaneous' fate of each particle each stress period. Although conceptually similar, the two methods differ in their underlying assumptions and their limitations: their use together identifies areas where containment may be reliable (i.e., where the methods are in agreement) and where containment is uncertain (typically, where the methods disagree). A field-scale example is presented to illustrate these concepts.

SPILIOTOPOULOS AA; SWANSON LC; SHANNON R; TONKIN MJ

2011-04-07T23:59:59.000Z

240

Benchmark validation comparisons of measured and calculated delayed neutron detector responses for a pulsed photonuclear assessment technique  

SciTech Connect (OSTI)

An MCNPX-based calculational methodology has been developed to numerically simulate the complex electron–photon–neutron transport problem for the active interrogation system known as the pulsed photonuclear assessment (PPA) technique. The PPA technique uses a pulsed electron accelerator to generate bremsstrahlung photons in order to fission nuclear materials. Delayed neutron radiation is then detected with helium-3 neutron detectors as evidence of the nuclear material presence. Two experimental tests were designed, setup and run to generate experimental data for benchmarking purposes. The first test irradiated depleted uranium in air, and the second test, depleted uranium in a simulated cargo container (plywood pallet), using 10 MeV electron pulses. Time-integrated, post-flash, delayed neutron counts were measured and compared to calculated count predictions in order to benchmark the calculational methodology and computer models. Comparisons between the experimental measurements and numerical predictions of the delayed neutron detector responses resulted in reasonable experiment/calculated ratios of 1.42 and 1.06 for the two tests. High-enriched uranium (HEU) predictions were also made with the benchmarked models.

J. W. Sterbentz; J. L. Jones; W. Y. Yoon; D. R. Norman; K. J. Haskell

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Low differential pressure and multiphase flow measurements by means of differential pressure devices  

E-Print Network [OSTI]

The response of slotted plate, Venturi meter and standard orifice to the presence of two phase, three phase and low differential flows was investigated. Two mixtures (air-water and air-oil) were used in the two-phase analysis while a mixture of air...

Justo, Hernandez Ruiz,

2004-11-15T23:59:59.000Z

242

Method and apparatus to measure vapor pressure in a flow system  

DOE Patents [OSTI]

The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

Grossman, M.W.; Biblarz, O.

1991-10-15T23:59:59.000Z

243

Modified Centrality Measure Based on Bidirectional Power Flow for Smart and Bulk Power  

E-Print Network [OSTI]

the directionality of power flow of future smart grid. Appli- cability of the proposed method has been evaluated smart and new technologies by utilities [1]. The scope of smart grid includes various generation options systems is the most lucrative part of smart grid from the point of view of regulating energy usage. Excess

Pota, Himanshu Roy

244

A New Model of Centrality Measure based on Bidirectional Power Flow for  

E-Print Network [OSTI]

power flow based model to evaluate the criticality in smart grid environment. Change in direction of smart grid includes various generation options, primarily in the distribution side ­ near consumers. Engagement of customers with the energy management systems is the most lucrative part of smart grid from

Pota, Himanshu Roy

245

What do elliptic flow measurements tell us about the matter created in the little Bang at RHIC?  

E-Print Network [OSTI]

Elliptic flow measurements are presented and discussed with emphasis on the hydrodynamic character of the hot and dense QCD matter created in heavy ion collisions at RHIC. Predictions from perfect fluid hydrodynamics for the scaling of the elliptic flow coefficient $v_2$ with eccentricity, system size and transverse energy are validated. A universal scaling for the flow of both mesons and baryons is observed for a broad transverse kinetic energy range when quark number scaling is employed. This suggests a new state of nuclear matter at extremely high density and temperature whose primary constituents have the quantum numbers of quarks and anti-quarks in chemical equilibrium. The scaled flow is used to constrain estimates for several transport coefficients including the sound speed $c_s$, shear viscosity to entropy ratio $\\eta/s$, diffusion coefficient ($D_c$) and sound attenuation length ($\\Gamma$). The estimated value $\\eta/s \\sim 0.1$, is close to the absolute lower bound ($1/4\\pi$), and may signal thermodynamic trajectories for the decaying matter which lie close to the QCD critical end point.

Roy A. Lacey; Arkadij Taranenko

2006-10-19T23:59:59.000Z

246

Method for single-cell mass and electrophoretic mobility measurement  

E-Print Network [OSTI]

Analysis of single cells using flow cytometry techniques has created a wealth of knowledge about cellular phenomena that could not be obtained by population average measurements. As these techniques are integrated with ...

Dextras, Philip

2010-01-01T23:59:59.000Z

247

An optimal guarding scheme for thermal conductivity measurement using a guarded cut-bar technique, part 1 experimental study  

SciTech Connect (OSTI)

In the guarded cut-bar technique, a guard surrounding the measured sample and reference (meter) bars is temperature controlled to carefully regulate heat losses from the sample and reference bars. Guarding is typically carried out by matching the temperature profiles between the guard and the test stack of sample and meter bars. Problems arise in matching the profiles, especially when the thermal conductivitiesof the meter bars and of the sample differ, as is usually the case. In a previous numerical study, the applied guarding condition (guard temperature profile) was found to be an important factor in measurement accuracy. Different from the linear-matched or isothermal schemes recommended in literature, the optimal guarding condition is dependent on the system geometry and thermal conductivity ratio of sample to meter bar. To validate the numerical results, an experimental study was performed to investigate the resulting error under different guarding conditions using stainless steel 304 as both the sample and meter bars. The optimal guarding condition was further verified on a certified reference material, pyroceram 9606, and 99.95% pure iron whose thermal conductivities are much smaller and much larger, respectively, than that of the stainless steel meter bars. Additionally, measurements are performed using three different inert gases to show the effect of the insulation effective thermal conductivity on measurement error, revealing low conductivity, argon gas, gives the lowest error sensitivity when deviating from the optimal condition. The result of this study provides a general guideline for the specific measurement method and for methods requiring optimal guarding or insulation.

Changhu Xing [Utah State Univ., Logan, UT (United States). Dept. of Mechanical and Aerospace Engineering; Colby Jensen [Utah State Univ., Logan, UT (United States). Dept. of Mechanical and Aerospace Engineering; Charles Folsom [Utah State Univ., Logan, UT (United States). Dept. of Mechanical and Aerospace Engineering; Heng Ban [Utah State Univ., Logan, UT (United States). Dept. of Mechanical and Aerospace Engineering; Douglas W. Marshall [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

2014-01-01T23:59:59.000Z

248

Assessment of microwave power flow for reflectometry measurements in tokamak plasmas  

E-Print Network [OSTI]

measurements in tokamak plasmas P. -A. Gourdain a , W. A.are widely employed in tokamak fusion plasmas, and are alsoresearch devices, such as tokamaks, microwave reflectometry

Gourdain, P-A; Peebles, W. A.

2008-01-01T23:59:59.000Z

249

EIS-0163: 1992 Columbia River Salmon Flow Measures Options Analysis/EIS  

Broader source: Energy.gov [DOE]

The U.S. Army Corps of Engineers – Walla Walla District prepared this statement to analyze four general alternatives to modify the flow of water in the lower Columbia-Snake River in order to help anadromous fish migrate past eight multipurpose Federal dams. The U.S. Department of Energy’s Bonneville Power Administration served as a cooperating agency due to its key role in direct operation of the integrated and coordinated Columbia-Snake River System, and adopted this statement on February 10, 1992.

250

Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

Modeling Techniques Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

251

Simultaneous measurement of bubble size, velocity and void fraction in two-phase bubbly flows with time-resolved X-ray imaging  

Science Journals Connector (OSTI)

Key parameters of two-phase flows, such as void fraction and microscale bubble size, shape and velocity, were simultaneously measured using time-resolved X-ray imaging.

Jung, S.Y.

2014-01-30T23:59:59.000Z

252

Laboratory measurements of gas flow along a pressurized grout/membrane/halite interface for the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

A series of laboratory gas-flow tests has been performed on interfaces comprised of concrete, very low-density polyethylene membrane, and halite. These tests were conducted to (1) evaluate whether a meaningful test can be run to quantify the effectiveness of a membrane, and (2) aid in the design of an Alcove Gas Barrier at the Waste Isolation Pilot Plant (WIPP), where membranes of this type are being considered for use at the interface between the concrete or grout of the gas barrier structure and the surrounding halite. Over 400 longitudinal transient-flow and steady-state radial-flow tests have been completed. However, it is not clear from these tests that the test results can be meaningfully applied to the full-scale Alcove Gas Barrier configuration because the measured permeabilities are several orders of magnitude higher than the meter-scale in situ concrete seal tests conducted at the WIPP as part of the Small-Scale Seal Performance Tests. Results show that the membranes decrease gas permeability along the concrete/halite interface by one to two orders of magnitude to below 10{sup {minus}15} m{sup 2} for the simplified test configurations. 28 refs., 11 figs., 16 tabs.

Ucpirti, H.; Daemen, J.J.K. [Univ. of Nevada, Reno, NV (United States); Finley, R.E.; George, J.T. [Sandia National Labs., Albuquerque, NM (United States)

1995-01-01T23:59:59.000Z

253

Method for spectroradiometric temperature measurements in two phase flows. 2: Experimental verification  

Science Journals Connector (OSTI)

A new method for emission–absorption pyrometric measurements has been developed to account for the effects of scattering particles suspended in an absorbing gas. In this paper, the...

Paul, Phillip H; Self, Sidney A

1989-01-01T23:59:59.000Z

254

Measurement of wall pressure fluctuations in the presence of vibrations induced by a turbulent flow  

Science Journals Connector (OSTI)

A systematic study of the methods of measuring wall pressure fluctuations against a background of intense vibrations is carried out. The method of separating the turbulent signal from noise on the basis of mon...

E. B. Kudashev

2003-03-01T23:59:59.000Z

255

Ethylene mass flow measurements with an automatic CO2 laser long-path absorption system  

Science Journals Connector (OSTI)

A computer controlled CO2 laser long-path absorption system has been used in a field experiment to measure the total emission of ethylene from a petrochemical factory. The...

Persson, U; Johansson, J; Marthinsson, B; Eng, S T

1982-01-01T23:59:59.000Z

256

Optimal Contool for a Mixed Flow of Hamiltonian and Gradient Type in Space of Probability Measures  

E-Print Network [OSTI]

Abstract. In this paper we investigate an optimal control problem in the space of measures on R2. The problem is motivated by a stochastic interacting particle model which gives the 2-D Navier-Stokes equations in their ...

Feng, Jin; Swiech, Andrezej; Stefanov, Atanas

2013-08-01T23:59:59.000Z

257

New models for wind noise measured in a flat surface under turbulent flow.  

Science Journals Connector (OSTI)

We have previously developed models for predicting the power spectral density of the wind noisepressuremeasured in a flat plate outdoors from the measured power spectral density of the turbulence and the measured wind velocity profile above the plate [Yu et al. Proceedings of NCAD 2008 NoiseCon2008?ASME NCAD]. Recently we have corrected an error in the model for the logarithmic profile wind velocity gradient results and have developed an improved integration method. Also we have developed a prediction for arbitrary wind velocity profiles using the previous single exponential model. Typical results comparing our predictions with our measurements are presented and analyzed. A simple algebraic fit to the prediction for the logarithmic profile fit form is also provided for use by others. [Research supported by the U.S. Army TACOM?ARDEC at Picatinny Arsenal NJ.

2009-01-01T23:59:59.000Z

258

Phase-space representation of digital holographic and light field imaging with application to two-phase flows  

E-Print Network [OSTI]

In this thesis, two computational imaging techniques used for underwater research, in particular, two-phase flows measurements, are presented. The techniques under study, digital holographic imaging and light field imaging, ...

Tian, Lei, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

259

Simultaneous Measurements of Macrophage-induced Cytostasis and Cytotoxicity of EMT6 Cells by Flow Cytometry  

Science Journals Connector (OSTI)

...argon-ion laser (Spectra Physics Model 164) oper ating at 457...argon-ion laser (Spectra Physics Model 164-05) operating in...measured using a 530-nm band pass filter in combination with a...significant difference in the growth rate was observed. However, when...

Anita P. Stevenson; John C. Martin; and Carleton C. Stewart

1986-01-01T23:59:59.000Z

260

Measurement/Evaluation Techniques and Nuclear Data Associated with Fission of 239Pu by Fission Spectrum Neutrons  

SciTech Connect (OSTI)

This Panel was chartered to review and assess new evaluations of work on fission product data, as well as the evaluation process used by the two U.S. nuclear weapons physics laboratories. The work focuses on fission product yields resulting from fission spectrum neutrons incident on plutonium, and includes data from measurements that had not been previously published as well as new or revised fission product cumulative yield data, and related quantities such as Q values and R values. This report documents the Panel's assessment of the work presented by Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). Based on the work presented we have seven key observations: (1) Experiments conducted in the 1970s at LANL, some of which were performed in association with a larger, NIST-led, program, have recently been documented. A preliminary assessment of this work, which will be referred to in this document as ILRR-LANL, shows it to be technically sound. (2) LLNL has done a thorough, unbiased review and evaluation of the available literature and is in the process of incorporating the previously unavailable LANL data into its evaluation of key fission product yields. The results of the LLNL effort, which includes a preliminary evaluation of the ILRR-LANL data, have been documented. (3) LANL has also conducted an evaluation of fission product yields for fission spectrum neutrons on plutonium including a meta-analysis of benchmark data as part of a planned upgrade to the ENDF/B compilation. We found that the approach of using meta-analysis provides valuable additional insight for evaluating the sparse data sets involved in this assessment. (4) Both laboratories have provided convincing evidence for energy dependence in the fission product yield of {sup 147}Nd produced from the bombardment of {sup 239}Pu with fission spectrum neutrons over an incident neutron energy range of 0.2 to 1.9 MeV. (5) Consistent, complete, and explicit treatment of both systematic and statistical uncertainties, including correlations, are critical to the assessment of both the experimental measurements (due to variations between experimental techniques, irradiation conditions, calibration procedures, etc.), and the evaluation of those experiments to extract fundamental nuclear data. A clear example of the importance of uncertainty analysis is in the justification for energy-dependent {sup 147}Nd fission product yield, where the magnitude of the effect is comparable to the uncertainties of the individual fission product yield measurements. Both LANL and LLNL are committed to the inclusion of full uncertainty analysis in their evaluations. (6) The Panel reviewed in detail two methods for determining/evaluating fission product yields from which fission assessments can be made: the K factor method and high-resolution gamma spectroscopy (both described more fully in Sections 3 and 4). The panel concluded that fission product yields, and thus fission assessments, derived using either approach are equally valid, provided that the data were obtained from well understood, direct fission measurements and that the key underlying calibrations and/or data are valid for each technique. (7) The Panel found the process of peer review of the two complementary but independent methods to be an extremely useful exercise. Although work is still ongoing and the numbers presented to the Panel may change slightly, both groups are now in much better agreement on not just one, but four key fission product yields. The groups also have a better appreciation of the strengths and weaknesses of each other's methods.

Baisden, P; Bauge, E; Ferguson, J; Gilliam, D; Granier, T; Jeanloz, R; McMillan, C; Robertson, D; Thompson, P; Verdon, C; Wilkerson, C; Young, P

2010-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

3rd International symposium on fluid flow measurement effects of acoustic noise on orifice meters  

SciTech Connect (OSTI)

It is known that in-pipe acoustic noise can cause errors in orifice plate metering. The international metering community voted this topic as the highest priority for further research during a {open_quotes}working{close_quotes} held at N.T.I.S. in 1983. Most published work to date has been concerned with periodic, low frequency noise or pulsations, as encountered on reciprocating compressor installations where errors or their side effects may be readily noticed. Many orifice metering locations are, however, subject to high frequency noise emanating from control valves and centrifugal compressors. High frequency in-pipe noise is seldom suspected as a source of metering error and consequently it is a neglected topic. Square root error, which stems form the non-linear flow-differential pressure relationship of an orifice plate, has been well researched for low frequencies but the work has not been extended to high frequencies. To investigate this topic, high pressure studies at the British Gas Bishop Auckland Test Facility were carried out with a noise source (a pressure drop across a ball valve) and a 600 mm 0.4 {beta} orifice meter. These studies identified the effect of high frequency acoustic noise on orifice plate accuracy.

Norman, R.; Graham, P.; Drew, W.A. [Engineering Research Station, Newcastle Upon Tyne (United Kingdom)

1995-12-31T23:59:59.000Z

262

1992 Columbia River Salmon Flow Measures Options Analysis/EIS : Appendices.  

SciTech Connect (OSTI)

This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described. The document concludes with an evaluation of the potential effects that could result from implementing proposed actions. The conclusions are based on evaluation of existing data, utilization of numerical models, and application of logical inference. This volume contains the appendices.

Not Available

1992-01-01T23:59:59.000Z

263

Energy performance evaluation of fishing vessels by fuel mass flow measuring system  

Science Journals Connector (OSTI)

A new fuel consumption monitoring system was set up for research purpose in order to evaluate the energy performance of fishing vessels under different operating conditions. The system has been tested on two semi-pelagic pair trawlers in the Adriatic Sea with an engine power of around 900 kW, and with length overall of around 30 m. Both vessels work with a gear of similar design and size, the differences between the two vessels are in the propeller design and the hull material: the first with a controllable pitch propeller (CPP) and a metal hull, the second with a fixed pitch propeller (FPP) and a wooden hull. The fuel monitoring system conceived at CNR-ISMAR Ancona (Italy) consists of two mass flow sensors, one multichannel recorder and one GPS data logger. The working time duration, the vessel speed, the total fuel consumption and the instant fuel rate were logged by the system. A typical commercial round trip for a semi-pelagic trawler consists of several fishing operations (steaming, trawling sailing, etc.). Fuel consumption rate and vessel speed data were used to identify energy performance under different vessel-operating conditions. The highest fuel demands were during the trawling (130 l/h at 4.4 kn) and the steaming (100–130 l/h at 11 kn) phases. Fuel savings of up to 15% could be obtained by reducing the navigation speed of half a knot.

Antonello Sala; Francesco De Carlo; Gabriele Buglioni; Alessandro Lucchetti

2011-01-01T23:59:59.000Z

264

Large scale test rig for flow visualization and leakage measurement of labyrinth seals  

E-Print Network [OSTI]

number. Heffner (1959) measured the leakage rates of air through stationary true size labyrinth seals with the goal of predicting leakage rates for new seal designs through correlation charts developed from his investigation. Leakage resistance... geometries and land surfaces with the objective of obtaining optimized seal design criteria. The test rig utilized a flat two-dimensional stationary seal with a radial clearance-to-width ratio of approximately 100:1 to reduce wall end effects. Air...

Broussard, Daniel Harold

2012-06-07T23:59:59.000Z

265

Homogeneous nucleation rates of higher n -alcohols measured in a laminar flow diffusion chamber  

Science Journals Connector (OSTI)

Nucleation rate isotherms of n-butanol n-pentanol n-hexanol n-heptanol and n-octanol were measured in a laminar flowdiffusion chamber using helium as carrier gas. The measurements were made at 250–310 K corresponding to reduced temperatures of 0.43–0.50 and at atmospheric pressure. Experimental nucleation rate range was from 10 3 to 10 7 ? cm ?3 ? s ?1 . The expression and accuracy of thermodynamic parameters in particular equilibrium vapor pressure were found to have a significant effect on calculated nucleation rates. The results were compared to the classical nucleation theory (CNT) the self-consistency corrected classical theory (SCC) and the Hale’s scaled model of the CNT. The average ratio between the experimental and theoretical nucleation rates for all alcohols used was 1.5×10 3 when the CNT was used and 0.2×10 ?1 when the SCC was used and 0.7×10 ?1 when the Hale’s scaled theory was used. The average values represent all the alcohols used at the same reduced temperatures. The average ratio was about the same throughout the temperature range although J exp /J the calculated with the Hale’s scaled theory increased slightly with increasing temperature. The saturation ratio dependency was predicted closest to experiment with the classical nucleation theory. The nucleation rates were compared to those found in the literature. The measurements were in reasonable agreement with each other. The molecular content of critical alcohol clusters was between 35 and 80 molecules. At a fixed reduced temperature the number of molecules in a critical cluster decreased as a function of alcohol carbon chain length. The number of molecules in critical clusters was compared to those predicted by the Kelvin equation. The theory predicted the critical cluster sizes well.

Antti-Pekka Hyvärinen; Heikki Lihavainen; Yrjö Viisanen; Markku Kulmala

2004-01-01T23:59:59.000Z

266

Dynamic Heat Flow Measurements to Study the Distribution of Phase-Change Material in an Insulation Matrix  

SciTech Connect (OSTI)

Phase change materials (PCMs) are used in building envelopes in many forms. The PCMs may be encased in discrete pouches or containers, or they may be distributed within another medium, such as in a board or within a loose fill product. In addition, most PCM products are blends containing fire retardants and chemical stabilizers. However, the current test method to measure the dynamic characteristics of PCMs, the differential scanning calorimeter (DSC), requires specimens that are relatively uniform and very small. Considering the limitations of DSC test results when applied to more complex PCM building envelope applications, we developed a combined experimental analytical protocol to determine the amount of phase-change energy actually available to provide thermal storage. This paper presents this new methodology for performing dynamic heat flow analysis of complex PCM-enhanced building materials. The experimental analytical protocol uses a conventional heat-flow apparatus and three-dimensional (3-D), finite-difference modeling. Based upon results from this methodology, ORNL researchers developed a simplified one-dimensional (1-D) model that can be easily used in whole-building simulations. This paper describes this methodology as applied to an insulation assembly containing a complex array of PCM pouches.

Kosny, Jan [ORNL] [ORNL; Stovall, Therese K [ORNL] [ORNL; Yarbrough, David W [ORNL] [ORNL

2010-01-01T23:59:59.000Z

267

NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 * November 2010 4 * November 2010 2-D image of a PEM fuel cell membrane sample measured with the NREL device (corresponding optical image in inset). The image shows bubble defects and a color shift in the sample. An area of approximately three inches by three inches is shown. NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells Project: Fuel Cell MEA Manufacturing R&D NREL Team: Hydrogen Technologies & Systems Center and National Center for Photovoltaics Accomplishment: NREL developed a technique to measure the two-dimensional thickness of polymer electrolyte membrane (PEM) fuel cell membranes for in-line quality control during manufacturing (first reported in May 2009). The technique is based on an NREL-developed instrument currently used in continuous manufacturing of photovoltaic cells. This

268

Tests of a calorimetric technique for measuring the energy of cosmic ray muons in the TeV energy range  

Science Journals Connector (OSTI)

Previous energy measurements of cosmic ray muons have used magnetic spectrometers to measure the momentum of muons. Measurements using magnets fail for muons in the TeV range because at ultra-high muon energies, ...

A. P. Chikkatur; L. Bugel; A. Alton…

1997-06-01T23:59:59.000Z

269

Propeller Flow Meter  

E-Print Network [OSTI]

Propeller flow meters are commonly used to measure water flow rate. They can also be used to estimate irrigation water use. This publication explains how to select, install, read and maintain propeller flow meters....

Enciso, Juan; Santistevan, Dean; Hla, Aung K.

2007-10-01T23:59:59.000Z

270

Kinematic measures and stroke rate variability in elite female 200-m swimmers in the four swimming techniques: Athens 2004 Olympic semi-finalists and French National  

E-Print Network [OSTI]

1 Kinematic measures and stroke rate variability in elite female 200-m swimmers in the four of this work was to study stroke rate variability in elite female swimmers (200-m events, all four techniques semi-finalists (group N, n=64). Since swimming speed (V) is the product of stroke rate (SR) and stroke

Paris-Sud XI, Université de

271

Inhomogeneity of fluid flow in Stirling engine regenerators  

SciTech Connect (OSTI)

The literature relating to inhomogeneity of flow regenerators is briefly reviewed. It is noted that, in contrast to other applications of regenerators, relatively little attention has been paid to the consequences of flow inhomogeneity for thermal regeneration in Stirling cycle machines. The construction of regenerator capsules for a large stationary Stirling engine is described. A test rig is developed to measure the gas velocity profile across the face of the packed regenerator capsules under steady flow conditions. Measured flow profiles for a number of different matrix materials and construction techniques are presented, and it is noted that stacked-mesh regenerator matrices tend to display marked inhomogeneities of flow. The consequences of flow inhomogeneity for flow friction and regenerator effectiveness are analyzed theoretically, and approximate formulae deduced. One method for reducing flow inhomogeneity in stacked-screen matrice

Jones, J.D. (School of Engineering Science, Simon Fraser Univ. Burnaby, British Columbia (CA))

1989-10-01T23:59:59.000Z

272

Tidal Flow Turbulence Measurements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

max quire specification of a turbulence intensity, and it is a metric in the wind energy industry. For acoustic Dop surements, a noise-corrected expression of...

273

A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers  

E-Print Network [OSTI]

This paper proposes a technique that can simultaneously retrieve distributions of temperature, concentration of chemical species, and pressure based on broad bandwidth, frequency-agile tomographic absorption spectroscopy. The technique holds...

Cai, Weiwei; Kaminski, Clemens F.

2014-01-21T23:59:59.000Z

274

Simultaneous measurement of x-ray absorption spectra and kinetics : a fixed-bed, plug-flow operando reactor.  

SciTech Connect (OSTI)

An inexpensive fixed-bed, plug-flow operando reactor is described in which X-ray absorbance and kinetic data can be measured simultaneously. Pt L3 (11.56 keV) XANES and EXAFS data were obtained on a 1.5% Pt/silica catalyst in borosilicate glass reactors of different diameters, 3-6 mm, and thicknesses, 0.3-1.2 mm, some of which are capable of operation at pressures up to about 40 atm. Additionally, polyimide tubular reactors with low absorbance can be used for lower energy edges of the 3d transition metals, or fluorescence detection for low concentration or highly absorbing supports. With the polyimide reactor, however, the pressure is limited to {approx}3.5 atm and the reaction temperature to about 300 C. To validate the reactor, the rate and activation energies for the water-gas shift reaction on 2% Pd, 13.7% Zn on Al2O3 catalyst were within 15% of those obtained in a standard laboratory reactor, which is within laboratory reproducibility. In addition, the Pd K edge (24.35 keV) XANES and EXAFS data on pre-reduced catalyst were identical to that previously determined on a regular cell. The EXAFS data show that the degree of Pd-Zn alloy formation changes with reaction temperature demonstrating the importance of characterizing the catalyst under reaction conditions.

Fingland, B. R.; Ribeiro, F. H.; Miller, J. T.; Purdue Univ.

2009-08-01T23:59:59.000Z

275

FLOW CONDITIONING DESIGN IN TURBULENT  

E-Print Network [OSTI]

for HYLIFE-II · Measure loss coefficient across the flow conditioner / nozzle assembly for different flow conditioner configurations #12;5 Flow Loop A Pump H 400 gal tank B Bypass line I Butterfly valve C Flow meter

276

Elliptic flow phenomenon at ATLAS  

E-Print Network [OSTI]

We summarize measurements of elliptic flow and higher order flow harmonics performed by the ATLAS experiment at the LHC. Results on event-averaged flow measurements and event-plane correlations in Pb+Pb collisions are discussed along with the event-by-event flow measurements. Further, we summarize results on flow in p+Pb collisions.

Martin Spousta

2014-06-20T23:59:59.000Z

277

Measurement of the $WW+WZ$ Production Cross Section Using a Matrix Element Technique in Lepton + Jets Events  

SciTech Connect (OSTI)

We present a measurement of the WW + WZ production cross section observed in a final state consisting of an identified electron or muon, two jets, and missing transverse energy. The measurement is carried out in a data sample corresponding to up to 4.6 fb{sup -1} of integrated luminosity at {radical}s = 1.96 TeV collected by the CDF II detector. Matrix element calculations are used to separate the diboson signal from the large backgrounds. The WW + WZ cross section is measured to be 17.4 {+-} 3.3 pb, in agreement with standard model predictions. A fit to the dijet invariant mass spectrum yields a compatible cross section measurement.

Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Apresyan, A.; /Purdue U.; Arisawa, T.; /Waseda U. /Dubna, JINR

2010-08-01T23:59:59.000Z

278

Potential errors in conventional DOT measurement techniques in shake flasks and verification using a rotating flexitube optical sensor  

Science Journals Connector (OSTI)

Dissolved oxygen tension (DOT) is an important parameter for evaluating a bioprocess. Conventional means to measure DOT in shake flasks using fixed Clark-type electrodes immersed in the bulk liquid are problem...

Sven Hansen; Frank Kensy; Andreas Käser; Jochen Büchs

2011-05-01T23:59:59.000Z

279

Real-time vibration measurement by a spatial phase-shifting technique with a tilted holographic interferogram  

Science Journals Connector (OSTI)

Real-time vibration measurement by a tilted holographic interferogram is presented that utilizes the real-time digital fringe processor of a video signal. Three intensity data sampled...

Nakadate, Suezou; Isshiki, Masaki

1997-01-01T23:59:59.000Z

280

Measurements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

magnetic field induced by a turbulent flow of liquid metal a... M. D. Nornberg, E. J. Spence, R. D. Kendrick, C. M. Jacobson, and C. B. Forest b Department of Physics, University...

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Determining flow, recharge, and vadose zonedrainage in anunconfined aquifer from groundwater strontium isotope measurements, PascoBasin, WA  

SciTech Connect (OSTI)

Strontium isotope compositions (87Sr/86Sr) measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. The impact of millions of cubic meters of wastewater discharged to the vadose zone (103-105 times higher than ambient drainage) shows up strikingly on maps of groundwater 87Sr/86Sr. Extensive access through the many groundwater monitoring wells at the site allows for an unprecedented opportunity to evaluate the strontium geochemistry of a major aquifer, hosted primarily in unconsolidated sediments, and relate it to both long term properties and recent disturbances. Groundwater 87Sr/86Sr increases systematically from 0.707 to 0.712 from west to east across the Hanford Site, in the general direction of groundwater flow, as a result of addition of Sr from the weathering of aquifer sediments and from diffuse drainage through the vadose zone. The lower 87Sr/86Sr groundwater reflects recharge waters that have acquired Sr from Columbia River Basalts. Based on a steady-state model of Sr reactive transport and drainage, there is an average natural drainage flux of 0-1.4 mm/yr near the western margin of the Hanford Site, and ambient drainage may be up to 30 mm/yr in the center of the site assuming an average bulk rock weathering rate of 10-7.5 g/g/yr.

mjsingleton@lbl.gov

2004-06-29T23:59:59.000Z

282

Technique for Direct eV-Scale Measurements of the Mu and Tau Neutrino Masses Using Supernova Neutrinos  

E-Print Network [OSTI]

Early black hole formation in a core-collapse supernova will abruptly truncate the neutrino fluxes. The sharp cutoff can be used to make model-independent time-of-flight neutrino mass tests. Assuming a neutrino luminosity of $10^{52}$ erg/s per flavor at cutoff and a distance of 10 kpc, SuperKamiokande can detect an electron neutrino mass as small as 1.8 eV, and the proposed OMNIS detector can detect mu and tau neutrino masses as small as 6 eV. This {\\it Letter} presents the first technique with direct sensitivity to eV-scale mu and tau neutrino masses.

J. F. Beacom; R. N. Boyd; A. Mezzacappa

2000-06-01T23:59:59.000Z

283

Measurements of wall heat (mass) transfer for flow through blockages with round and square holes in a wide rectangular channel  

E-Print Network [OSTI]

COMMANDS . . APPENDIX C: UNCERTAINTY ANALYSIS . APPENDIX D: RAW DATA & RESULTS . . 71 . . . . 74 77 VITA. 134 vu1 LIST OF FIGURES Page Figurc 1 Internal and external cooling concepts used in modem gas turbine airfoils (Han et al. ). Figure 2... . . . . . . . . . . . . . . . . . . . . . . . . . 62 xt NOMENCLATURE A, flow cross-sectional area of test channel, m 2 surface area, m 2 D?hydraulic diameter of test channel, m friction factor f, reference friction factor for fully developed turbulent flow in smooth channel heat transfer...

Cervantes, Joel

2012-06-07T23:59:59.000Z

284

Fast 3D Modeling of Borehole Induction Measurements in Dipping and Anisotropic Formations using a Novel Approximation Technique  

E-Print Network [OSTI]

Fast 3D Modeling of Borehole Induction Measurements in Dipping and Anisotropic Formations using of subsurface geophysical problems have been reported, including 3D EM scattering in the presence of complex introduces a novel efficient 3D EM approx- imation based on a new integral equation formulation. The main

Torres-Verdín, Carlos

285

Mass Dependence of Directed Collective Flow  

SciTech Connect (OSTI)

Sidewards directed fragment flow has been extracted for {sup 84}Kr+{sup 197}Au collisions at {ital E}/{ital A}=200 MeV, using techniques that are free of reaction plane dispersion. The fragment flow per nucleon increases with mass, following a thermal or coalescencelike behavior, and attains roughly constant limiting values at 4{le}{ital A}{le}12. Comparisons of the impact parameter dependences of the measured coalescence-invariant proton flow to Boltzmann-Uehling-Uhlenbeck calculations clearly favor a momentum dependent nuclear mean field. {copyright} {ital 1996 The American Physical Society.}

Huang, M.J.; Lemmon, R.C.; Daffin, F.; Lynch, W.G.; Schwarz, C.; Tsang, M.B.; Williams, C.; Danielewicz, P.; Haglin, K.; Bauer, W.; Carlin, N.; Charity, R.J.; de Souza, R.T.; Gelbke, C.K.; Hsi, W.C.; Kunde, G.J.; Lemaire, M.; Lisa, M.A.; Lynen, U.; Peaslee, G.F.; Pochodzalla, J.; Sann, H.; Sobotka, L.G.; Souza, S.R.; Trautmann, W. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States)] [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); [Laboratoire National SATURNE, CEN Saclay, 91191 Gif-sur-Yvette Cedex (France); [Department of Chemistry, Washington University, St. Louis, Missouri 63130 (United States); [Gesellschaft fuer Schwerionenforschung, D-6100 Darmstadt 11 (Germany); [Indiana University Cyclotron Facility and Department of Chemistry, Indiana University, Bloomington, Indiana 47405 (United States); [Instituto de Fisica, Universidade de Sao Paulo, CEP 01498, Sao Paulo (Brazil)

1996-10-01T23:59:59.000Z

286

Femtosecond carrier dynamics in Ge measured by a luminescence up-conversion technique and near-band-edge infrared excitation  

Science Journals Connector (OSTI)

The luminescence at the direct band edge of bulk intrinsic and p-type Ge (p?2×1019 cm-3) samples was measured in a two-wavelength up-conversion experiment with ?=1.25–1.35 ?m excitation and at lattice temperatures 20 and 300 K. The near-band-edge carrier dynamics, measured with 100-fs temporal resolution and at carrier densities of 5×1016–2×1018 cm-3, are dominated by electron-phonon intervalley scattering and electron thermalization. Thermalization governs the initial rise of the luminescence in the first 500 fs and is studied as a function of energy and electron density. With excitation photon energy 100 meV greater than the direct band gap, the thermalization time of electrons was measured to decrease with increasing density as n-0.55±0.1. Degeneracy has a strong influence on the thermalization rate with 50 meV excess energy. The L-electron cooling through the electron-hole interaction, as well as hole screening and degeneracy in p-type Ge, is discussed.

G. Mak and W. W. Rühle

1995-10-15T23:59:59.000Z

287

Data and Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

and Modeling Techniques and Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data and Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, and fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

288

A Fast Network Flow Model is used in conjunction with Measurements of Filter Permeability to calculate the Performance of Hot Gas Filters  

SciTech Connect (OSTI)

Two different technologies that are being considered for generating electric power on a large scale by burning coal are Pressurized Fluid Bed Combustion (PFBC) systems and Integrated Gasification and Combined Cycle (IGCC) systems. Particulate emission regulations that have been proposed for future systems may require that these systems be fitted with large scale Hot Gas Clean-Up (HGCU) filtration systems that would remove the fine particulate matter from the hot gas streams that are generated by PFBC and IGCC systems. These hot gas filtration systems are geometrically and aerodynamically complex. They typically are constructed with large arrays of ceramic candle filter elements (CFE). The successful design of these systems require an accurate assessment of the rate at which mechanical energy of the gas flow is dissipated as it passes through the filter containment vessel and the individual candle filter elements that make up the system. Because the filtration medium is typically made of a porous ceramic material having open pore sizes that are much smaller than the dimensions of the containment vessel, the filtration medium is usually considered to be a permeable medium that follows Darcy's law. The permeability constant that is measured in the lab is considered to be a function of the filtration medium only and is usually assumed to apply equally to all the filters in the vessel as if the flow were divided evenly among all the filter elements. In general, the flow of gas through each individual CFE will depend not only on the geometrical characteristics of the filtration medium, but also on the local mean flows in the filter containment vessel that a particular filter element sees. The flow inside the CFE core, through the system manifolds, and inside the containment vessel itself will be coupled to the flow in the filter medium by various Reynolds number effects. For any given filter containment vessel, since the mean flows are different in different locations inside the vessel, the flow of gas through an individual CFE will adjust itself to accommodate the local mean flows that prevail in its general location. In some locations this adjustment will take place at High Reynolds numbers and in other locations this will occur at low Reynolds numbers. The analysis done here investigates the nature of this coupling.

VanOsdol, J.G.; Chiang, T-K.

2002-09-19T23:59:59.000Z

289

Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique  

E-Print Network [OSTI]

1.1 This test method establishes a procedure to measure the susceptibility of steel to a time-delayed failure such as that caused by hydrogen. It does so by measuring the threshold for the onset of subcritical crack growth using standard fracture mechanics specimens, irregular-shaped specimens such as notched round bars, or actual product such as fasteners (2) (threaded or unthreaded) springs or components as identified in SAE J78, J81, and J1237. 1.2 This test method is used to evaluate quantitatively: 1.2.1 The relative susceptibility of steels of different composition or a steel with different heat treatments; 1.2.2 The effect of residual hydrogen in the steel as a result of processing, such as melting, thermal mechanical working, surface treatments, coatings, and electroplating; 1.2.3 The effect of hydrogen introduced into the steel caused by external environmental sources of hydrogen, such as fluids and cleaners maintenance chemicals, petrochemical products, and galvanic coupling in an aqueous enviro...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

290

Use of Activation Technique and MCNP Calculations for Measurement of Fast Neutron Spatial Distribution at the MJ Plasma Focus Device.  

Science Journals Connector (OSTI)

In this paper Plasma-Focus (PF) neutron emission properties have been studied using Monte Carlo calculations for neutron and photon transport. A Thermal Neutron Scaling Factor as a function of angular position of silver activation detectors placed around MJ Plasma Focus (PF-1000) device has been calculated. Detector responses calculated for 2.5 MeV neutrons and neutrons produced by Am-Be calibration source have been obtained .The results have shown the detector response dependence on the kind of calibration neutron source and on local geometrical/structural characteristics of the PF-1000 devices. Thus the proper calibration procedure ought to be performed for correct measurement of neutron yield within Plasma-Focus devices.

B. Bienkowska; M. Scholz; K. Wincel; B. Zar?ba

2008-01-01T23:59:59.000Z

291

Anal. Chem. 1994,66, 2694-2700 Real-Time Measurement of Electroosmotic Flow in Capiliary  

E-Print Network [OSTI]

that drives a plug- like bulk flow of electrolyte through the capillary column. Thischaracteristicgives {-potential (Cc), electric field (E),and temperature (T), all of which affect the electroosmotic velocity way of addressing the problem of variability in the electric field, temperature, and capillary surface

Zare, Richard N.

292

TIME-DISTANCE HELIOSEISMOLOGY WITH f MODES AS A METHOD FOR MEASUREMENT OF NEAR-SURFACE FLOWS  

E-Print Network [OSTI]

600­1200. In this range the f -mode kinetic energy is concentrated within 2 Mm of the solar photosphere. There are several advantages to using the f mode as a tracer of flows near the solar surface. DUVALL JR.1 and L. GIZON2 1Laboratory for Astronomy and Solar Physics, NASA/Goddard Space Flight Center

Gizon, Laurent

293

Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells Using AFM-Based Electrical Techniques with Nanometer Resolution: Preprint  

SciTech Connect (OSTI)

Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.

2011-07-01T23:59:59.000Z

294

Wear Measurement of Highly Cross-linked UHMWPE using a 7Be Tracer Implantation Technique  

SciTech Connect (OSTI)

The very low wear rates achieved with the current highly cross-linked ultrahigh molecular weight polyethylenes (UHMWPE) used in joint prostheses have proven to be difficult to measure accurately by gravimetry. Tracer methods are there- fore being explored. The purpose of this study was to perform a proof-of-concept experiment on the use of the radioactive tracer beryllium-7 (7Be) for the determination of in vitro wear in a highly cross-linked orthopedic UHMWPE. Three cross-linked and four conventional UHMWPE pins made from compression- molded GUR 1050, were activated with 109 to 1010 7Be nuclei using a new implantation setup that produced a homogenous distribution of implanted nuclei up to 8.5 lm below the surface. The pins were tested for wear in a six-station pin-on-flat appara- tus for up to 7.1 million cycles (178 km). A Germanium gamma detector was employed to determine activity loss of the UHMWPE pins at preset intervals during the wear test. The wear of the cross-linked UHMWPE pins was readily detected and esti- mated to be 17 6 3 lg per million cycles. The conventional-to- cross-linked ratio of the wear rates was 13.1 6 0.8, in the expected range for these materials. Oxidative degradation dam- age from implantation was negligible; however, a weak depend- ence of wear on implantation dose was observed limiting the number of radioactive tracer atoms that can be introduced. Future applications of this tracer technology may include the analysis of location-specific wear, such as loss of material in the post or backside of a tibial insert.

Wimmer, Markus A. [Rush Uniiv. Medical Center; Laurent, Michael P. [Rush Univ. Medical Center; Dwivedi, Yasha [Rush Univ. Medical Center; Gallardo, Luis A. [Rush Univ. Medical Center; Chipps, K. [Colorado School of Mines, Golden; Blackmon, Jeffery C [Louisiana State University; Kozub, R. L. [Tennessee Technological University; Bardayan, Daniel W [ORNL; Gross, Carl J [ORNL; Stracener, Daniel W [ORNL; Smith, Michael Scott [ORNL; Nesaraja, Caroline D [ORNL; Erikson, Luke [Colorado School of Mines, Golden; Patel, Nidhi [Colorado School of Mines, Golden; Rehm, Karl E. [Argonne National Laboratory (ANL); Ahmad, Irshad [Argonne National Laboratory (ANL); Greene, John P. [Argonne National Laboratory (ANL); Greife, Uwe [Colorado School of Mines, Golden

2013-01-01T23:59:59.000Z

295

Flow optimization in diving helmets  

SciTech Connect (OSTI)

Improved carbon dioxide transport from the annular space between the head and helmet is necessary to reduce fresh gas flow and associated noise. This paper gives an overview of new techniques for investigating this transport, and for optimizing helmet flow to remove CO{sub 2}. An analytical model predicts inhaled carbon dioxide fraction in terms of helmet and respiration characteristics. Fundamental behavior over a wide range of helmet parameters is computed. An experimental model uses Reynolds scaling with water and dye to simulate fresh gas and carbon dioxide respectively. The water/dye model supports measurement of inhaled dye concentration, and flow visualization. Detailed behavior is investigated for one helmet with air/CO{sub 2} and water/dye experiments. Results support validity of the analytic and water models, provide new insight to CO{sub 2} transport mechanisms, and suggest directions for optimizing helmet design.

Camperman, J.M. [Naval Surface Warfare Center, Panama City, FL (United States). Coastal Systems Station; Tennant, J.S. [Florida Atlantic Univ., Boca Raton, FL (United States). Ocean Engineering Dept.

1996-09-01T23:59:59.000Z

296

Measurement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

localization that limits the present measurements. The knowledge thus gained will have input not only to fusion research, but to may ques- tions of basic plasma physics....

297

Measurement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the Department of Physics & Astronomy. Chapel Hill 2005 Approved: A. E. Champagne, Advisor J. C. Blackmon, Reader C. Iliadis, Reader ABSTRACT Ryan P. Fitzgerald: Measurement of...

298

Computational physical oceanography -- A comprehensive approach based on generalized CFD/grid techniques for planetary scale simulations of oceanic flows. Final report, September 1, 1995--August 31, 1996  

SciTech Connect (OSTI)

The original intention for this work was to impart the technology that was developed in the field of computational aeronautics to the field of computational physical oceanography. This technology transfer involved grid generation techniques and solution procedures to solve the governing equations over the grids thus generated. Specifically, boundary fitting non-orthogonal grids would be generated over a sphere taking into account the topography of the ocean floor and the topography of the continents. The solution methodology to be employed involved the application of an upwind, finite volume discretization procedure that uses higher order numerical fluxes at the cell faces to discretize the governing equations and an implicit Newton relaxation technique to solve the discretized equations. This report summarizes the efforts put forth during the past three years to achieve these goals and indicates the future direction of this work as it is still an ongoing effort.

Beddhu, M.; Jiang, M.Y.; Whitfield, D.L.; Taylor, L.K.; Arabshahi, A.

1997-02-20T23:59:59.000Z

299

Well Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Testing Techniques Well Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(17) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Enable estimation of in-situ reservoir elastic parameters Stratigraphic/Structural: Fracture distribution, formation permeability, and ambient tectonic stresses Hydrological: provides information on permeability, location of permeable zones recharge rates, flow rates, fluid flow direction, hydrologic connections, storativity, reservoir pressures, fluid chemistry, and scaling.

300

Portable wastewater flow meter  

DOE Patents [OSTI]

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1999-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Portable wastewater flow meter  

DOE Patents [OSTI]

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1990-01-01T23:59:59.000Z

302

Measurements of wall heat (mass) transfer for flow through blockages with round and square holes in a wide rectangular channel.  

E-Print Network [OSTI]

??Naphthalene sublimation and pressure measurement experiments were conducted to study heat (mass) transfer enhancement by blockages with staggered round and square holes for turbulent air… (more)

Cervantes, Joel

2012-01-01T23:59:59.000Z

303

Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(20) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

304

Departures from local thermodynamic equilibrium in cutting arc plasmas derived from electron and gas density measurements using a two-wavelength quantitative Schlieren technique  

SciTech Connect (OSTI)

A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.

Prevosto, L.; Mancinelli, B. [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto 2600, Santa Fe (Argentina); Artana, G. [Laboratorio de Fluidodinamica, Departamento Ing. Mecanica, Facultad de Ingenieria (UBA), Paseo Colon 850, C1063ACV, Buenos Aires (Argentina); Kelly, H. [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto 2600, Santa Fe (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales (UBA), Instituto de Fisica del Plasma (CONICET), Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)

2011-03-15T23:59:59.000Z

305

Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

Downhole Techniques Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Techniques Details Activities (0) Areas (0) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Determination of lithology, grain size Stratigraphic/Structural: Thickness and geometry of rock strata, fracture identification Hydrological: Porosity, permeability, water saturation Thermal: Formation temperature with depth Dictionary.png Downhole Techniques: Downhole techniques are measurements collected from a borehole environment which provide information regarding the character of formations and fluids

306

Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geophysical Techniques Geophysical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geophysical Techniques Details Activities (2) Areas (1) Regions (0) NEPA(4) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: may be inferred Stratigraphic/Structural: may be inferred Hydrological: may be inferred Thermal: may be inferred Dictionary.png Geophysical Techniques: Geophysics is the study of the structure and composition of the earth's interior. Other definitions:Wikipedia Reegle Introduction Geophysical techniques measure physical phenomena of the earth such as gravity, magnetism, elastic waves, electrical and electromagnetic waves.

307

A Comparison Between Boundary Layer Measurements in a Laminar Separation Bubble Flow and Linear Stability Theory Calculations  

Science Journals Connector (OSTI)

This research examines the details of the boundary layer flowfield from wind tunnel measurements of a two-dimensional Liebeck LA2573A airfoil over a range of Reynolds numbers from 235000 to 500000. In this range,...

P. LeBlanc; R. Blackwelder; R. Liebeck

1989-01-01T23:59:59.000Z

308

System and method for measuring particles in a sample stream of a flow cytometer using a low power laser source  

DOE Patents [OSTI]

A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

Graves, Steven W; Habbersett, Robert C

2013-10-22T23:59:59.000Z

309

System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source  

DOE Patents [OSTI]

A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

Graves, Steven W.; Habbersett, Robert C.

2014-07-01T23:59:59.000Z

310

An ECT/ERT dual-modality sensor for oil-water two-phase flow measurement  

SciTech Connect (OSTI)

This paper presents a new sensor for ECT/ERT dual-modality system which can simultaneously obtain the permittivity and conductivity of the materials in the pipeline. Quasi-static electromagnetic fields are produced by the inner electrodes array sensor of electrical capacitance tomography (ECT) system. The results of simulation show that the data of permittivity and conductivity can be simultaneously obtained from the same measurement electrode and the fusion of two kinds of data may improve the quality of the reconstructed images. For uniform oil-water mixtures, the performance of designed dual-modality sensor for measuring the various oil fractions has been tested on representative data and the results of experiments show that the designed sensor broadens the measurement range compared to single modality.

Wang, Pitao [School of Electronic Engineering and Automation, Tianjin University, 300072 and School of Electronic Engineering, University of Jinan (China); Wang, Huaxiang; Sun, Benyuan; Cui, Ziqiang [School of Electronic Engineering and Automation, Tianjin University, 300072 (China); Huang, Wenrui [HuaDian Heavy Industries Co. Ltd, Beijing, 100077 (China)

2014-04-11T23:59:59.000Z

311

Certification of flow monitors for utility boilers  

SciTech Connect (OSTI)

The use of CEMS for measuring opacity, SO{sub 2}, NO{sub x}, CO{sub 2}, and O{sub 2} concentration was well proven prior to implementing the Part 75 CEMS program. However, the use of continuous flue gas flow monitoring devices is a relatively new instrumental technique. Limited operating data for flow monitors were available and little or no certification relative accuracy data were available prior to the Summer of 1993. However, because of the Part 75 requirements, utility companies contracted with CEMS vendors to install, start-up and certify flow monitors on Phase 1 and Phase 2 units. This paper presents the certification history of three different types of flow monitors (ultrasonic, pressure differential ({Delta}p) and thermal) installed at various utilities in the US. The data and experience was obtained from approximately 100 Phase 1 CEMS units and 200 Phase 1 CEMS units.

Bensink, J.; Beachler, D.; Joseph, J.

1995-12-31T23:59:59.000Z

312

Diagnosis of Fracture Flow Conditions with Acoustic Sensing  

E-Print Network [OSTI]

processing techniques and quantitative analysis are used to measure flow rates in a simulated fractured well. Production into a 5-½ inch OD well was simulated by injecting fluid through packed bed of 16/30 mesh, 20/40 mesh and 30/50 mesh proppant. Gas...

Martinez, Roberto

2014-07-10T23:59:59.000Z

313

Numerical simulation of three-dimensional electrical flow through geomaterials  

E-Print Network [OSTI]

properties of geomaterials; to locate subsurface anomalies; and to detect and delineate subsurface contamination. Several geophysical techniques that measure the electrical resistivity of the geomaterials to quantify variation of electrical properties... geophysical resistivity analytical solutions. Comparisons are also made with an analytical solution for electrical flow around a cone penetrometer. The excellent agreement between the simulation and analytical solutions shows that the proposed methodology...

Akhtar, Anwar Saeed

2012-06-07T23:59:59.000Z

314

Flow Visualization Studies in the Novacor Left Ventricular Assist System CRADA PC91-002, Final Report  

SciTech Connect (OSTI)

This paper discusses a series of experiments to visualize and measure flow fields in the Novacor left ventricular assist system (LVAS). The experiments utilize a multiple exposure, optical imaging technique called fluorescent image tracking velocimetry (FITV) to hack the motion of small, neutrally-buoyant particles in a flowing fluid.

Borovetz, H.S.; Shaffer, F.; Schaub, R.; Lund, L.; Woodard, J.

1999-01-01T23:59:59.000Z

315

Measurement of the 183 keV Resonance in 17O(p,alpha)14N using a Novel Technique  

SciTech Connect (OSTI)

We have developed a novel technique for measurements of low energy (p,alpha) reactions using heavy ion beams and a differentially-pumped windowless gas target. We applied this new approach to study the 183 keV resonance in the 17O(p,alpha)14}N reaction. We report a resonance energy (center-of-mass) of 183.5{+0.1}{-0.4} keV, a resonance strength of 1.70 +/- 0.15 meV, and set an upper limit (95\\% confidence) on the total width of the state of < 0.1 keV. This resonance is important for the 17O(p,alpha)14}N reaction rate, and we find that 18F production is significantly decreased in low mass ONeMg novae but less affected in more energetic novae. We also report the first determination of the stopping power for oxygen ions in hydrogen gas near the peak of the Bragg curve (E=193 keV/u) to be (63+/-1)e-15 eV-cm2.

Moazen, Brian H [ORNL; Bardayan, Daniel W [ORNL; Blackmon, Jeff C [ORNL; Chae, Kyung Yuk [ORNL; Chipps, Kelly A [ORNL; Domizioli, Carlo P [ORNL; Fitzgerald, Ryan [ORNL; Greife, Uwe [ORNL; Hix, William Raphael [ORNL; Grzywacz-Jones, Kate L [ORNL; KOZUB, RAYMOND L [ORNL; Lingerfelt, Eric J [ORNL; Livesay, Jake [ORNL; Nesaraja, Caroline D [ORNL; Pain, Steven D [ORNL; Roberts, Luke F [ORNL; Shriner, Jr., John F [ORNL; Smith, Michael Scott [ORNL; Thomas, Jeffrey S [ORNL

2007-01-01T23:59:59.000Z

316

Seismic Absorption and Modulus Measurements in Porous Rocks Under Fluid and Gas Flow-Physical and Chemical Effects: a Laboratory Study  

SciTech Connect (OSTI)

This paper describes the culmination of a research project in which we investigated the complex modulus change in partially fluid saturated porous rocks. The investigation started with simple flow experiments over ''clean'' and ''contaminated'' surfaces, progressed to moduli measurements on partially filled single cracks, to measurements in ''clean'' and ''contaminated'' porous rocks and finally to a feasibility study in the field. For the experiments with the simple geometries we were able to measure fundamental physical properties such as contact angles of the meniscus and time dependent forces required to get the meniscus moving and to keep it moving at various velocities. From the data thus gathered we were able to interpret the complex elastic moduli data we measured in the partially saturated single cracks. While the geometry in real rocks is too complex to make precise calculations we determined that we had indeed identified the mechanisms responsible for the changes in the moduli we had measured. Thus encouraged by the laboratory studies we embarked on a field experiment in the desert of Arizona. The field site allowed for controlled irrigation. Instrumentation for fluid sampling and water penetration were already in place. The porous loosely consolidated rocks at the site were not ideal for finding the effects of the attenuation mechanism we had identified in the lab, but for logistic and cost constraint reasons we chose to field test the idea at that site. Tiltmeters and seismometers were installed and operated nearly continuously for almost 3 years. The field was irrigated with water in the fall of 2003 and with water containing a biosurfactant in the fall of 2004. We have indications that the biosurfactant irrigation has had a notable effect on the tilt data.

Harmut Spetzler

2005-11-28T23:59:59.000Z

317

Measurement of the higher-order anisotropic flow coefficients for identified hadrons in Au$+$Au collisions at $\\sqrt{s_{_{NN}}}$ = 200 GeV  

E-Print Network [OSTI]

New PHENIX measurements of the anisotropic flow coefficients $v_2\\{\\Psi_2\\}$, $v_3\\{\\Psi_3\\}$, $v_4\\{\\Psi_4\\}$ and $v_4\\{\\Psi_2\\}$ for identified particles ($\\pi^{\\pm}$, $K^{\\pm}$, and $p+\\bar{p}$) obtained relative to the event planes $\\Psi_n$ in Au$+$Au collisions at $\\sqrt{s_{_{NN}}}$ = 200 GeV are presented as functions of collision centrality and particle transverse momenta $p_T$. The $v_n$ coefficients show characteristic patterns consistent with hydrodynamical expansion of the matter produced in the collisions. For each harmonic $n$, a modified valence quark number $n_q$ scaling plotting $v_n/(n_q)^{n/2}$ versus ${\\rm KE}_T/n_q$ is observed to yield a single curve for all the measured particle species for a broad range of transverse kinetic energies ${\\rm KE}_T$. A simultaneous blast wave model fit to the observed particle spectra and $v_n(p_T)$ coefficients identifies spatial eccentricities $s_n$ at freeze-out, which are much smaller than the initial-state geometric values.

Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Aoki, K; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Chen, C -H; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Connors, M; Constantin, P; Csanád, M; Csörg?, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Jr., \\,; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gunji, T; Gustafsson, H -Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Hartouni, E P; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ide, J; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Jacak, B V; Jia, J; Jin, J; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, E -J; Kim, S H; Kim, Y -J; Kinney, E; Kiriluk, K; Kiss, Á; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Leitner, E; Lenzi, B; Li, X; Liebing, P; Levy, L A Linden; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Luechtenborg, R; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mignerey, A C; Mikeš, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mizuno, S; Mohanty, A K; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Nouicer, R; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, J; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J -C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Reygers, K; Reynolds, D; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ruži?ka, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Seto, R; Sharma, D; Shein, I; Shibata, T -A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slune?ka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Sparks, N A; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Themann, H; Thomas, T L; Todoroki, T; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Wood, J P; Woody, C L; Wright, R M; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zolin, L

2014-01-01T23:59:59.000Z

318

Measurement of the higher-order anisotropic flow coefficients for identified hadrons in Au$+$Au collisions at $\\sqrt{s_{_{NN}}}$ = 200 GeV  

E-Print Network [OSTI]

New PHENIX measurements of the anisotropic flow coefficients $v_2\\{\\Psi_2\\}$, $v_3\\{\\Psi_3\\}$, $v_4\\{\\Psi_4\\}$ and $v_4\\{\\Psi_2\\}$ for identified particles ($\\pi^{\\pm}$, $K^{\\pm}$, and $p+\\bar{p}$) obtained relative to the event planes $\\Psi_n$ in Au$+$Au collisions at $\\sqrt{s_{_{NN}}}$ = 200 GeV are presented as functions of collision centrality and particle transverse momenta $p_T$. The $v_n$ coefficients show characteristic patterns consistent with hydrodynamical expansion of the matter produced in the collisions. For each harmonic $n$, a modified valence quark number $n_q$ scaling plotting $v_n/(n_q)^{n/2}$ versus ${\\rm KE}_T/n_q$ is observed to yield a single curve for all the measured particle species for a broad range of transverse kinetic energies ${\\rm KE}_T$. A simultaneous blast wave model fit to the observed particle spectra and $v_n(p_T)$ coefficients identifies spatial eccentricities $s_n$ at freeze-out, which are much smaller than the initial-state geometric values.

A. Adare; S. Afanasiev; C. Aidala; N. N. Ajitanand; Y. Akiba; H. Al-Bataineh; J. Alexander; K. Aoki; Y. Aramaki; E. T. Atomssa; R. Averbeck; T. C. Awes; B. Azmoun; V. Babintsev; M. Bai; G. Baksay; L. Baksay; K. N. Barish; B. Bassalleck; A. T. Basye; S. Bathe; V. Baublis; C. Baumann; A. Bazilevsky; S. Belikov; R. Belmont; R. Bennett; A. Berdnikov; Y. Berdnikov; A. A. Bickley; J. S. Bok; K. Boyle; M. L. Brooks; H. Buesching; V. Bumazhnov; G. Bunce; S. Butsyk; C. M. Camacho; S. Campbell; C. -H. Chen; C. Y. Chi; M. Chiu; I. J. Choi; R. K. Choudhury; P. Christiansen; T. Chujo; P. Chung; O. Chvala; V. Cianciolo; Z. Citron; B. A. Cole; M. Connors; P. Constantin; M. Csanád; T. Csörg?; T. Dahms; S. Dairaku; I. Danchev; K. Das; A. Datta; G. David; A. Denisov; A. Deshpande; E. J. Desmond; O. Dietzsch; A. Dion; M. Donadelli; O. Drapier; A. Drees; K. A. Drees; J. M. Durham; A. Durum; D. Dutta; S. Edwards; Y. V. Efremenko; F. Ellinghaus; T. Engelmore; A. Enokizono; H. En'yo; S. Esumi; B. Fadem; D. E. Fields; M. Finger; M. Finger; \\, Jr.; F. Fleuret; S. L. Fokin; Z. Fraenkel; J. E. Frantz; A. Franz; A. D. Frawley; K. Fujiwara; Y. Fukao; T. Fusayasu; I. Garishvili; A. Glenn; H. Gong; M. Gonin; Y. Goto; R. Granier de Cassagnac; N. Grau; S. V. Greene; M. Grosse Perdekamp; T. Gunji; H. -Å. Gustafsson; J. S. Haggerty; K. I. Hahn; H. Hamagaki; J. Hamblen; R. Han; J. Hanks; E. P. Hartouni; E. Haslum; R. Hayano; X. He; M. Heffner; T. K. Hemmick; T. Hester; J. C. Hill; M. Hohlmann; W. Holzmann; K. Homma; B. Hong; T. Horaguchi; D. Hornback; S. Huang; T. Ichihara; R. Ichimiya; J. Ide; Y. Ikeda; K. Imai; M. Inaba; D. Isenhower; M. Ishihara; T. Isobe; M. Issah; A. Isupov; D. Ivanischev; B. V. Jacak; J. Jia; J. Jin; B. M. Johnson; K. S. Joo; D. Jouan; D. S. Jumper; F. Kajihara; S. Kametani; N. Kamihara; J. Kamin; J. H. Kang; J. Kapustinsky; K. Karatsu; D. Kawall; M. Kawashima; A. V. Kazantsev; T. Kempel; A. Khanzadeev; K. M. Kijima; B. I. Kim; D. H. Kim; D. J. Kim; E. Kim; E. -J. Kim; S. H. Kim; Y. -J. Kim; E. Kinney; K. Kiriluk; Á. Kiss; E. Kistenev; L. Kochenda; B. Komkov; M. Konno; J. Koster; D. Kotchetkov; A. Kozlov; A. Král; A. Kravitz; G. J. Kunde; K. Kurita; M. Kurosawa; Y. Kwon; G. S. Kyle; R. Lacey; Y. S. Lai; J. G. Lajoie; A. Lebedev; D. M. Lee; J. Lee; K. Lee; K. B. Lee; K. S. Lee; M. J. Leitch; M. A. L. Leite; E. Leitner; B. Lenzi; X. Li; P. Liebing; L. A. Linden Levy; T. Liška; A. Litvinenko; H. Liu; M. X. Liu; B. Love; R. Luechtenborg; D. Lynch; C. F. Maguire; Y. I. Makdisi; A. Malakhov; M. D. Malik; V. I. Manko; E. Mannel; Y. Mao; H. Masui; F. Matathias; M. McCumber; P. L. McGaughey; N. Means; B. Meredith; Y. Miake; A. C. Mignerey; P. Mikeš; K. Miki; A. Milov; M. Mishra; J. T. Mitchell; S. Mizuno; A. K. Mohanty; Y. Morino; A. Morreale; D. P. Morrison; T. V. Moukhanova; J. Murata; S. Nagamiya; J. L. Nagle; M. Naglis; M. I. Nagy; I. Nakagawa; Y. Nakamiya; T. Nakamura; K. Nakano; J. Newby; M. Nguyen; R. Nouicer; A. S. Nyanin; E. O'Brien; S. X. Oda; C. A. Ogilvie; M. Oka; K. Okada; Y. Onuki; A. Oskarsson; M. Ouchida; K. Ozawa; R. Pak; V. Pantuev; V. Papavassiliou; I. H. Park; J. Park; S. K. Park; W. J. Park; S. F. Pate; H. Pei; J. -C. Peng; H. Pereira; V. Peresedov; D. Yu. Peressounko; C. Pinkenburg; R. P. Pisani; M. Proissl; M. L. Purschke; A. K. Purwar; H. Qu; J. Rak; A. Rakotozafindrabe; I. Ravinovich; K. F. Read; K. Reygers; D. Reynolds; V. Riabov; Y. Riabov; E. Richardson; D. Roach; G. Roche; S. D. Rolnick; M. Rosati; C. A. Rosen; S. S. E. Rosendahl; P. Rosnet; P. Rukoyatkin; P. Ruži?ka; B. Sahlmueller; N. Saito; T. Sakaguchi; K. Sakashita; V. Samsonov; S. Sano; T. Sato; S. Sawada; K. Sedgwick; J. Seele; R. Seidl; A. Yu. Semenov; R. Seto; D. Sharma; I. Shein; T. -A. Shibata; K. Shigaki; M. Shimomura; K. Shoji; P. Shukla; A. Sickles; C. L. Silva; D. Silvermyr; C. Silvestre; K. S. Sim; B. K. Singh; C. P. Singh; V. Singh; M. Slune?ka; R. A. Soltz; W. E. Sondheim; S. P. Sorensen; I. V. Sourikova; N. A. Sparks; P. W. Stankus; E. Stenlund; S. P. Stoll; T. Sugitate; A. Sukhanov; J. Sziklai; E. M. Takagui; A. Taketani; R. Tanabe; Y. Tanaka; K. Tanida; M. J. Tannenbaum; S. Tarafdar; A. Taranenko; P. Tarján; H. Themann; T. L. Thomas; T. Todoroki; M. Togawa; A. Toia; L. Tomášek; H. Torii; R. S. Towell; I. Tserruya; Y. Tsuchimoto; C. Vale; H. Valle; H. W. van Hecke; E. Vazquez-Zambrano; A. Veicht; J. Velkovska; R. Vértesi; A. A. Vinogradov; M. Virius; V. Vrba; E. Vznuzdaev; X. R. Wang; D. Watanabe; K. Watanabe; Y. Watanabe; F. Wei; R. Wei; J. Wessels; S. N. White; D. Winter; J. P. Wood; C. L. Woody; R. M. Wright; M. Wysocki; W. Xie; Y. L. Yamaguchi; K. Yamaura; R. Yang; A. Yanovich; J. Ying; S. Yokkaichi; Z. You; G. R. Young; I. Younus; I. E. Yushmanov; W. A. Zajc; C. Zhang; S. Zhou; L. Zolin

2014-12-02T23:59:59.000Z

319

Dismantling techniques  

SciTech Connect (OSTI)

Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

Wiese, E.

1998-03-13T23:59:59.000Z

320

Proximal bodies in hypersonic flow  

SciTech Connect (OSTI)

Hypersonic flows involving two or more bodies travelling in close proximity to one another are encountered in several important situations, both natural and man-made. The present work seeks to investigate one aspect of the resulting flow problem by exploring the forces experienced by a secondary body when it is within the domain of influence of a primary body travelling at hypersonic speeds. An analytical methodology based on the blast wave analogy is developed and used to predict the secondary force coefficients for simple geometries in both two and three dimensions. When the secondary body is entirely inside the primary shocked region, the nature of the lateral force coefficient is found to depend strongly on the relative size of the two bodies. For two spheres, the methodology predicts that the secondary body will experience an exclusively attractive lateral force if the secondary diameter is larger than one-sixth the primary diameter. The analytical results are compared with those from numerical simulations and reasonable agreement is observed if an appropriate normalization for the lateral displacement is used. Results from a series of experiments in the T5 hypervelocity shock tunnel are also presented and compared with perfect-gas numerical simulations, with good agreement. A new force-measurement technique for short-duration hypersonic facilities, enabling the experimental simulation of the proximal bodies problem, is described. This technique provides two independent means of measurement, and the agreement observed between the two gives a further degree of confidence in the results obtained.

Deiterding, Ralf [ORNL; Laurence, Stuart J [California Institute of Technology, Pasadena; Hornung, Hans G [California Institute of Technology, Pasadena

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Measurement of the Sintering Kinetics of Coal Ash  

Science Journals Connector (OSTI)

Measurement of the Sintering Kinetics of Coal Ash ... A new technique has been developed to determine the sintering rate of coal ash based on the measurement of the pressure-drop across a pellet of ash. ... The technique developed in this study shows a good repeatability of the rate of sintering and confirms that viscous flow is the dominant mechanism for sintering of coal ash. ...

A. Y. Al-Otoom; L. K. Elliott; T. F. Wall; B. Moghtaderi

2000-08-16T23:59:59.000Z

322

Cotton flow  

E-Print Network [OSTI]

Using the conformally invariant Cotton tensor, we define a geometric flow, the "Cotton flow", which is exclusive to three dimensions. This flow tends to evolve the initial metrics into conformally flat ones, and is somewhat orthogonal to the Yamabe flow, the latter being a flow within a conformal class. We define an entropy functional, and study the flow of nine homogeneous spaces both numerically and analytically. In particular, we show that the arbitrarily deformed homogeneous 3-sphere flows into the round 3-sphere. Two of the nine homogeneous geometries, which are degenerated by the Ricci flow, are left intact by the Cotton flow.

Ali Ulas Ozgur Kisisel; Ozgur Sarioglu; Bayram Tekin

2008-06-17T23:59:59.000Z

323

Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Log Techniques Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Log Techniques Details Activities (4) Areas (4) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: depth and thickness of formations; lithology and porosity can be inferred Stratigraphic/Structural: reservoir thickness, reservoir geometry, borehole geometry Hydrological: permeability and fluid composition can be inferred Thermal: direct temperature measurements; thermal conductivity and heat capacity Dictionary.png Well Log Techniques: Well logging is the measurement of formation properties versus depth in a

324

X-ray photon correlation spectroscopy under flow  

E-Print Network [OSTI]

X-ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X-ray techniques with microfluidics is an experimental strategy that reduces the risk of x-ray induced beam damage and also allows time-resolved studies of processes taking place in flowcells. The experimental results and theoretical predictions presented here, show that in the low shear limit, for a ``transverse flow'' scattering geometry (scattering wave vector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and in particular, for a ``longitudinal flow'' (q || flow) scattering geometry, the relaxation times are strongly affected by the flow-induced motion of the particles. Our results show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q.

Andrei Fluerasu; Abdellatif Moussaid; Henri Gleyzolle; Peter Falus; Anders Madsen

2008-03-10T23:59:59.000Z

325

Dynamic Distributed Flow Scheduling with Load Balancing for Data Center Networks  

Science Journals Connector (OSTI)

Abstract Current Flow Scheduling techniques in Data Center Networks(DCN) results in overloaded or underutilized links. Static flow scheduling techniques such as ECMP and VLB use hashing techniques for scheduling the flows. In case of hash collision a path gets selected number of times resulting overloading of that path and underutilization of other paths. Dynamic flow scheduling techniques like global first fit employ centralized scheduler and always selects first fittest candidate path for scheduling. Thus in addition to single-point-of-failure the overall link uti- lization also remains a problem as the flows are not scheduled on the best available candidate path. This paper presents firstly a Dynamic Distributed Flow Scheduling(DDFS) mechanism that will lead to fair link utilization in globally used fat-tree topology of DCN. Secondly, it presents a mechanism to restrict the flow scheduling de- cisions to the lower layers thus avoiding saturation of core switches. The entire DCN is simulated using Colored Petri Nets (CPN). The load measured at the aggregate switches for various flow patterns in DCN reveals that the load factors at the aggregate switches vary by at most 0.11 which signifies the fair utilization of links.

Sourabh Bharti; K.K. Pattanaik

2013-01-01T23:59:59.000Z

326

Flow Noise Prediction and Control in Steam Piping Systems for Nuclear Power Plants  

Science Journals Connector (OSTI)

The flow noise of steam in pipe lines particularly in power plants is a major noise source and contributor to OSHA noise problems. The ability to predict flow noise levels is vital to efficient and economical noise control. Octave?band measurements of flow noise in the main steam piping system of a nuclear power plant were made. To determine the effect of velocity measurements were conducted for a wide range of velocities during plant start?up. Results in the form of plots of measured flow noise as a function of velocity were compared with limited data that have been recently published. An empirical formula for prediction of flow noise and corresponding design techniques for control of noise by proper pipe sizing have been developed. Alternate methods of noise control are reviewed.

F. H. Brittain; S. W. Giampapa

1973-01-01T23:59:59.000Z

327

Study on the flow production characteristics of deep geothermal wells  

Science Journals Connector (OSTI)

This paper describes a study on the potential flow production characteristics of three non-producing, deep (average depth 4000 m) geothermal wells in the Cerro Prieto geothermal field. The expected production characteristics of these wells were computed in order to determine whether their inability to sustain flow was due to: (1) heat loss effects in the well; (2) the influence of casing diameters; (3) transient temperature effects during the first days of well discharge, and/or (4) the effects of secondary low-enthalpy inflows. For the study, the conservation equations of mass, momentum and energy for two-phase homogeneous flow were solved for the wellbore, since homogeneous flow provides the simplest technique for analyzing two-phase flows when the flow patterns are not well established. The formation temperature distribution was computed assuming radial transient heat conduction. The numerical model was validated by comparison with analytical solutions and with measured pressure and temperature profiles of well H-17 from the Los Humeros geothermal field, Mexico. It was found that the wells should have sustained production. The early heat losses were so large that the flow needed to be induced, and flow will be sustained only after a few days of induced discharge. For well M-202, the analysis suggests that the inflow of secondary colder fluids was responsible for stopping the flow in this well.

Alfonso Garcia-Gutierrez; Gilberto Espinosa-Paredes; Isa??as Hernandez-Ramirez

2002-01-01T23:59:59.000Z

328

Binary fish passage models for uniform and nonuniform flows  

SciTech Connect (OSTI)

Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow prediction of the percentage 43 of fish passing would be particularly useful near flow speed thresholds where binary 44 passage models are clearly limited.

Neary, Vincent S [ORNL

2011-01-01T23:59:59.000Z

329

Measurement of flow maldistribution in parallel channels and its application to ex-situ and in-situ experiments in PEMFC water management studies  

E-Print Network [OSTI]

to sig- nificant reduction in effectiveness for high NTU heat exchangers [1], about 7% for condensers in the effective operation of a proton exchange membrane fuel cell (PEMFC). Presently there are a few theoretically effects, two-phase separation and resultant flow non-uniformity. (b) Uneven flow resistances

Kandlikar, Satish

330

GUI for Hypersonic flow solver Master Project  

E-Print Network [OSTI]

GUI for Hypersonic flow solver Master Project Student : Enrique Guzman concerns the design of a GUI for commanding hypersonic flow applications using CFD techniques, as well as its potential applications. These problems are quite complex, since the called hypersonic regime

Diggavi, Suhas

331

1046 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 4, APRIL 2010 Measuring and Reporting High Quality Factors of  

E-Print Network [OSTI]

analyzers with standard calibration techniques, reporting values of 50 or higher demands careful fundamentally, is defined in terms of the peak energy stored divided by the energy dissipated per cycle (2 published April 14, 2010. This work was sup- ported in part under a contract by Honeywell Federal

Kuhn, William B.

332

Isotope 18O/16O ratio measurements of water vapor by use of the 950-nm wavelength region with cavity ring-down and photoacoustic spectroscopic techniques  

Science Journals Connector (OSTI)

Two optical methods, cavity ring-down spectroscopy and photoacoustic spectroscopy, are applied to the measurement of the isotope ratio 18O/16O in water-vapor...

Samura, Ken; Hashimoto, Satoshi; Kawasaki, Masahiro; Hayashida, Akira; Kagi, Eriko; Ishiwata, Takashi; Matsumi, Yutaka

2002-01-01T23:59:59.000Z

333

Investigation of the effects of correlated measurement errors in time series analysis techniques applied to nuclear material accountancy data. [Program COVAR  

SciTech Connect (OSTI)

It has been shown in previous work that the Kalman Filter and Linear Smoother produces optimal estimates of inventory and loss from a material balance area. The assumptions of the Kalman Filter/Linear Smoother approach assume no correlation between inventory measurement error nor does it allow for serial correlation in these measurement errors. The purpose of this report is to extend the previous results by relaxing these assumptions to allow for correlation of measurement errors. The results show how to account for correlated measurement errors in the linear system model of the Kalman Filter/Linear Smoother. An algorithm is also included for calculating the required error covariance matrices.

Pike, D.H.; Morrison, G.W.; Downing, D.J.

1982-04-01T23:59:59.000Z

334

In Situ Measurement Technique for Simultaneous Detection of K, KCl, and KOH Vapors Released During Combustion of Solid Biomass Fuel in a Single Particle Reactor  

Science Journals Connector (OSTI)

A quantitative and simultaneous measurement of K, KCl, and KOH vapors from a burning fuel sample combusted in a single particle reactor was performed using collinear photofragmentation...

Sorvajärvi, Tapio; DeMartini, Nikolai; Rossi, Jussi; Toivonen, Juha

2014-01-01T23:59:59.000Z

335

INTRODUCTION Few post-wildfire hazards are as potentially devastating as a debris flow. Debris flows  

E-Print Network [OSTI]

INTRODUCTION Few post-wildfire hazards are as potentially devastating as a debris flow. Debris the influence of fire, a wildfire can transform a watershed with no recent history of debris flows are developing new techniques to assess the hazards posed by debris flows after wildfires. These techniques can

336

COMPARISON OF SOLAR SURFACE FLOWS INFERRED FROM TIME-DISTANCE HELIOSEISMOLOGY AND COHERENT STRUCTURE TRACKING USING HMI/SDO OBSERVATIONS  

SciTech Connect (OSTI)

We compare measurements of horizontal flows on the surface of the Sun using helioseismic time-distance inversions and coherent structure tracking of solar granules. Tracking provides two-dimensional horizontal flows on the solar surface, whereas the time-distance inversions estimate the full three-dimensional velocity flows in the shallow near-surface layers. Both techniques use Helioseismic and Magnetic Imager observations as input. We find good correlations between the various measurements resulting from the two techniques. Further, we find a good agreement between these measurements and the time-averaged Doppler line-of-sight velocity, and also perform sanity checks on the vertical flow that resulted from the three-dimensional time-distance inversion.

Svanda, Michal [Astronomical Institute, Academy of Sciences of the Czech Republic (v. v. i.), Fricova 298, CZ-25165 Ondrejov (Czech Republic); Roudier, Thierry; Rieutord, Michel [Institut de Recherche en Astrophysique et Planetologie, Universite de Toulouse, 14 avenue Edouard Belin, F-31400, Toulouse (France); Burston, Raymond; Gizon, Laurent, E-mail: michal@astronomie.cz [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany)

2013-07-01T23:59:59.000Z

337

Two-phase flow studies  

SciTech Connect (OSTI)

The two-phase flow program is directed at understanding the hydrodynamics of two-phase flows. The two-phase flow regime is characterized by a series of flow patterns that are designated as bubble, slug, churn, and annular flow. Churn flow has received very little scientific attention. This lack of attention cannot be justified because calculations predict that the churn flow pattern will exist over a substantial portion of the two-phase flow zone in producing geothermal wells. The University of Houston is experimentally investigating the dynamics of churn flow and is measuring the holdup over the full range of flow space for which churn flow exists. These experiments are being conducted in an air/water vertical two-phase flow loop. Brown University has constructed and is operating a unique two-phase flow research facility specifically designed to address flow problems of relevance to the geothermal industry. An important feature of the facility is that it is dedicated to two-phase flow of a single substance (including evaporation and condensation) as opposed to the case of a two-component two-phase flow. This facility can be operated with horizontal or vertical test sections of constant diameter or with step changes in diameter to simulate a geothermal well profile.

Hanold, R.J.

1983-12-01T23:59:59.000Z

338

CFD simulation of airflow over a regular array of cubes. Part I: Three-dimensional simulation of the flow and validation with wind-tunnel measurements  

Science Journals Connector (OSTI)

Air flow inside an array of cubes is simulated. Cubes (edge length 0.15 m) are arranged in a regular array, separated by 0.15 m in the streamwise and spanwise directions. Numerical simulations are performed based...

Jose Luis Santiago; Alberto Martilli; Fernando Martín

2007-03-01T23:59:59.000Z

339

A Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow...  

Open Energy Info (EERE)

Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow Measurements And Heat-Flow Estimates From The Uk Geothermal Catalogue Jump to: navigation, search OpenEI Reference...

340

Insulating and sheathing materials of electric and optical cables: common test methods part 4-1: methods specific to polyethylene and polypropylene compounds – resistance to environmental stress cracking – measurement of the melt flow index – carbon black and/or mineral filler content measurement in polyethylene by direct combustion – measurement of carbon black content by thermogravimetric analysis (TGA) – assessment of carbon black dispersion in polyethylene using a microscope  

E-Print Network [OSTI]

Specifies the test methods to be used for testing polymeric insulating and sheathing materials of electric cables for power distribution and telecommunications including cables used on ships. Gives the methods for measurements of the resistance to environmental stress cracking, for wrapping test after thermal ageing in air, for measurement of melt flow index and for measurement of carbon black and/or mineral filler content, which apply to PE and PP coumpounds, including cellular compounds and foam skin for insulation.

International Electrotechnical Commission. Geneva

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Measurement of the Zero-Field Hyperfine Structure of a Single Vibration-Rotation Level of Na2 by a Laser-Fluorescence Molecular-Beam-Resonance Technique  

Science Journals Connector (OSTI)

By replacing the A and B magnets of the conventional molecular-beam-resonance technique with laser optical-pumping regions, we have developed a method for the observation of hfs in a single molecular-vibration-rotation level of arbitrary J. We obtain for the electric quadrupole and spin-rotation constants of the X?g1+, v??=0, J??=28 level of Na2: eqQ=-463.7±0.9 kHz; |c|=0.17±0.03 kHz. We also report the first observation of a spin-rotation transition.

S. D. Rosner; R. A. Holt; T. D. Gaily

1975-09-22T23:59:59.000Z

342

Pouring flows  

Science Journals Connector (OSTI)

Free surface flows of a liquid poured from a container are calculated numerically for various configurations of the lip. The flow is assumed to be steady two dimensional and irrotational; the liquid is treated as inviscid and incompressible; and gravity is taken into account. It is shown that there are jetlike flows with two free surfaces and other flows with one free surface which follow along the underside of the lip or spout. The latter flows occur in the well?known ‘‘teapot effect ’’ which was treated previously without including gravity. Some of the results are applicable also to flows over weirs and spillways.

Jean?Marc Vanden?Broeck; Joseph B. Keller

1986-01-01T23:59:59.000Z

343

Instrumentation development for multi-dimensional two-phase flow modeling  

SciTech Connect (OSTI)

A multi-faceted instrumentation approach is described which has played a significant role in obtaining fundamental data for two-phase flow model development. This experimental work supports the development of a three-dimensional, two-fluid, four field computational analysis capability. The goal of this development is to utilize mechanistic models and fundamental understanding rather than rely on empirical correlations to describe the interactions in two-phase flows. The four fields (two dispersed and two continuous) provide a means for predicting the flow topology and the local variables over the full range of flow regimes. The fidelity of the model development can be verified by comparisons of the three-dimensional predictions with local measurements of the flow variables. Both invasive and non-invasive instrumentation techniques and their strengths and limitations are discussed. A critical aspect of this instrumentation development has been the use of a low pressure/temperature modeling fluid (R-134a) in a vertical duct which permits full optical access to visualize the flow fields in all two-phase flow regimes. The modeling fluid accurately simulates boiling steam-water systems. Particular attention is focused on the use of a gamma densitometer to obtain line-averaged and cross-sectional averaged void fractions. Hot-film anemometer probes provide data on local void fraction, interfacial frequency, bubble and droplet size, as well as information on the behavior of the liquid-vapor interface in annular flows. A laser Doppler velocimeter is used to measure the velocity of liquid-vapor interfaces in bubbly, slug and annular flows. Flow visualization techniques are also used to obtain a qualitative understanding of the two-phase flow structure, and to obtain supporting quantitative data on bubble size. Examples of data obtained with these various measurement methods are shown.

Kirouac, G.J.; Trabold, T.A.; Vassallo, P.F.; Moore, W.E.; Kumar, R. [Lockheed Martin Corp., Schenectady, NY (United States)

1999-06-01T23:59:59.000Z

344

Rapport Technique  

E-Print Network [OSTI]

new classifications criteria for measuring the robustness of both scenarios ... [13, 32, 35, 51], machine learning and statistics [10, 63, 62], and energy sys-.

duhamel

2014-07-16T23:59:59.000Z

345

Liquid metal Flow Meter - Final Report  

SciTech Connect (OSTI)

Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

Andersen C, Hoogendoom S, Hudson B, Prince J, Teichert K, Wood J, Chase K

2007-01-30T23:59:59.000Z

346

Measurement of the top-quark mass in the lepton+jets channel using a matrix element technique with the CDF II detector  

SciTech Connect (OSTI)

A measurement of the top-quark mass is presented using Tevatron data from proton-antiproton collisions at center-of-mass energy ?s = 1.96 TeV collected with the CDF II detector. Events are selected from a sample of candidates for production of tt? pairs that decay into the lepton+jets channel. The top-quark mass is measured with an unbinned maximum likelihood method where the event probability density functions are calculated using signal and background matrix elements, as well as a set of parameterized jet-to-parton transfer functions. The likelihood function is maximized with respect to the top-quark mass, the signal fraction in the sample, and a correction to the jet energy scale (JES) calibration of the calorimeter jets. The simultaneous measurement of the JES correction ({Delta}{sub JES}) amounts to an additional in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using the data sample of 578 lepton+jets candidate events, corresponding to 3.2 fb-1 of integrated luminosity, the top-quark mass is measured to be mt = 172.4± 1.4 (stat + ?JES) ± 1.3 (syst) GeV/c2.

Aaltonen, T [Helsinki Inst. of Phys.; Alvarez Gonzalez, B [Oviedo U., Cantabria Inst. of Phys.; Amerio, S [INFN, Padua; Amidei, D [Michigan U.; Anastassov, A [Northwestern U.; Annovi, A [Frascati

2011-10-14T23:59:59.000Z

347

Denitrification, Dissimilatory Reduction of Nitrate to Ammonium, and Nitrification in a Bioturbated Estuarine Sediment as Measured with 15N and Microsensor Techniques  

Science Journals Connector (OSTI)

...using Bunsen solubility coefficients...Details of both gas chromatographic...stagnant water. Diffusion...inorganic nitrogen compounds...nitrate in water using ammonia...measurement of nitrogen gas fluxes from...1970. The solubility of nitrogen, oxygen and argon in water and seawater...

Svend Jørgen Binnerup; Kim Jensen; Niels Peter Revsbech; Mikael Hjorth Jensen; Jan Sørensen

1992-01-01T23:59:59.000Z

348

Measurement of the top-quark mass in the lepton+jets channel using a matrix element technique with the CDF II detector  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

A measurement of the top-quark mass is presented using Tevatron data from proton-antiproton collisions at center-of-mass energy ?s = 1.96 TeV collected with the CDF II detector. Events are selected from a sample of candidates for production of tt? pairs that decay into the lepton+jets channel. The top-quark mass is measured with an unbinned maximum likelihood method where the event probability density functions are calculated using signal and background matrix elements, as well as a set of parameterized jet-to-parton transfer functions. The likelihood function is maximized with respect to the top-quark mass, the signal fraction in the sample, and a correction to the jet energy scale (JES) calibration of the calorimeter jets. The simultaneous measurement of the JES correction ({Delta}{sub JES}) amounts to an additional in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using the data sample of 578 lepton+jets candidate events, corresponding to 3.2 fb-1 of integrated luminosity, the top-quark mass is measured to be mt = 172.4± 1.4 (stat + ?JES) ± 1.3 (syst) GeV/c2.

Aaltonen, T [Helsinki Inst. of Phys.; Alvarez Gonzalez, B [Oviedo U., Cantabria Inst. of Phys.; Amerio, S [INFN, Padua; Amidei, D [Michigan U.; Anastassov, A [Northwestern U.; Annovi, A [Frascati

2011-10-14T23:59:59.000Z

349

Evaluation of the phosphorus concentration and its effect on viscous flow and reflow in phosphosilicate glass  

SciTech Connect (OSTI)

This study describes the use of x-ray fluorescence as an analytical tool for determining phosphorus concentration in phosphosilicate glass. By comparison with other available methods, we shall demonstrate that this direct measurement technique is accurate, simple, fast, reproducible, and nondestructive. With the use of this technique, flow and reflow profiles of phosphosilicate glass will be illustrated at different phosphorous concentrations and representative thermal cycles.

Levy, R.A.; McGahan, T.E.; Vincent, S.M.

1985-06-01T23:59:59.000Z

350

Detection and effects of pump low-flow operation  

SciTech Connect (OSTI)

Operating experience and previous studies have shown that a significant cause of pump problems and failures can result from low- flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure caused by low-flow induced phenomena. ORNL is investigating the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation. A new, enhanced application of motor current and power data analysis has been developed that uses a signal comparison methodology to produce an instability ratio indicative of normal or unstable flow conditions. Examples of this type of low-flow detection technique are presented in this paper along with a brief discussion of the various types of technologies currently being used by licensees to evaluate pump operation and determine possible degradation.

Casada, D.A.; Greene, R.H.

1993-12-01T23:59:59.000Z

351

Field Techniques | Open Energy Information  

Open Energy Info (EERE)

Field Techniques Field Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Map surface geology and hydrothermal alteration. Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Bulk and trace element analysis of rocks, minerals, and sediments. Identify and document surface geology and mineralogy. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Locates active faults in the area of interest. Map fault and fracture patterns, kinematic information. Can reveal relatively high permeability zones. Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting.

352

Rheo-optical determination of flow birefringence and flow dichroism with the pulsed laser method  

E-Print Network [OSTI]

Rheo-optical determination of flow birefringence and flow dichroism with the pulsed laser method online 29 August 2006 Rheo-optical measurements of the flow birefringence, flow dichroism systems under flow. However, the standard setup of an optical train, using phase modulation for the rheo-optical

353

Infrared Inspection Techniques  

E-Print Network [OSTI]

. By means of a TV monitor tube, a thermal picture is formed where lighter parts represent areas with higher temperatures. Absolute temperature levels of objects can be measured with this technique from -300C to +20000C. A conventional camera is attached...

Hill, A. B.; Bevers, D. V.

1979-01-01T23:59:59.000Z

354

On the Performance of Spin Diffusion NMR Techniques in Oriented Solids: Prospects for Resonance Assignments and Distance Measurements from Separated Local Field Experiments  

Science Journals Connector (OSTI)

We conclude that, in order to assign SLF spectra and measure short- and long-range distances, the combined use of homonuclear correlation spectra, such as the ones surveyed in this work, are necessary. ... (1-11) To accurately probe membrane protein topology, separated local field (SLF) experiments such as PISEMA,(12, 13) SAMPI4,(14) HIMSELF,(15) and their sensitivity-enhanced variants(16-18) are used to measure DC and CS. ... For membrane proteins, SLF-type spectra are assigned using selectively and/or uniformly labeled samples that rely on the periodic nature of the DC and CS (polar index slant angle, PISA, wheel pattern(22, 23)) that results from the periodicity of secondary structures (helices and sheets) commonly present in membrane proteins. ...

Nathaniel J. Traaseth; T. Gopinath; Gianluigi Veglia

2010-10-11T23:59:59.000Z

355

'Magnetoscan': a modified Hall probe scanning technique for the detection of inhomogeneities in bulk high temperature superconductors  

Science Journals Connector (OSTI)

We present a novel technique for the investigation of local variations of the critical current density in large bulk superconductors. In contrast to the usual Hall probe scanning technique, the sample is not magnetized as a whole before the scan, but locally by a small permanent magnet, which is fixed near the Hall probe, during the scanning process. The resulting signal can be interpreted as a qualitative measure of the local shielding currents flowing at the surface.

M Eisterer; S Haindl; T Wojcik; H W Weber

2003-01-01T23:59:59.000Z

356

Bypass Flow Study  

SciTech Connect (OSTI)

The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

Richard Schultz

2011-09-01T23:59:59.000Z

357

Atom probe: a direct technique for kinetic measurements. [Fe-24Cr; Fe-32Cr; Fe-28. 5Cr-10. 6Co  

SciTech Connect (OSTI)

The atom probe has been used to study the phase transformations occurring within the low-temperature miscibility gaps in Fe-Cr and Fe-Cr-Co alloys. The morphology of the two-phase microstructure resulting from phase separation deep within the miscibility gaps was found to be highly interconnected and charactristic of an isotropic spinodal reaction. The characteristic dimensions of the microstructure and the changes in composition were measured as a function of aging. The coarsening of the network structures could be fitted with a power law with time exponents that were significantly less than the classical Lifshitz-Slyozov-Wagner value of one-third.

Miller, M.K.; Brenner, S.S.; Camus, P.P.; Soffa, W.A.

1984-04-04T23:59:59.000Z

358

15 - Measurement  

Science Journals Connector (OSTI)

Publisher Summary This chapter focuses on the various methods and equipments used in the measurement of liquids and gases in pipelines. Streams that transport mixed natural gas liquids require the use of mass measurement to accurately account for the volume of the components, which make up the mix. Mass measurement eliminates the effects of non-ideal mixing and the need for compressibility factors. The measurement system that provides basic simplicity, reliability, wide acceptance, and the capability of handling variable mix streams without breaking new frontiers in measurement methods is the orifice flow measuring element with online density meter and microprocessor flow computer. The orifice is a static device generally inert to the measured fluid conditions, and calibration consists of simple dimensional measurement and conformance to specified physical tolerances. The second element, the density meter, is an external unit that is easily isolated from the flowing stream for calibration, inspection, and maintenance. The relative insensitivity of CO2 density to small changes in pressure in the primary flow to the orifice meters permits locating the density meter upstream of the meter manifold, thereby serving several meters. The microprocessor flow computer, or third element of the system, is essential to achieve the advantages of integrated mass flow, which comes from the ability of the computer to make computations in essentially "real time." A development program to improve the overall uncertainty of orifice metering was initiated by Shell Pipeline Corporation. The program's goal was to develop an economical method for proving ethylene orifice meters under actual operating conditions. Shell's ethylene systems are operated in the dense phase fluid region due to lower transportation costs. The ethylene meter stations operate in two regions, the dense-phase fluid and single-phase gas regions.

2005-01-01T23:59:59.000Z

359

The Impact of Refrigerant Charge, Air Flow and Expansion Devices on the Measured Performance of an Air-Source Heat Pump Part I  

SciTech Connect (OSTI)

This paper describes extensive tests performed on a 3-ton R-22 split heat pump in heating mode. The tests contain 150 steady-state performance tests, 18 cyclic tests and 18 defrost tests. During the testing work, the refrigerant charge level was varied from 70 % to 130% relative to the nominal value; the outdoor temperature was altered by three levels at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C); indoor air flow rates ranged from 60% to 150% of the rated air flow rate; and the expansion device was switched from a fixed-orifice to a thermal expansion value. Detailed performance data from the extensive steady state cyclic and defrost testing performed were presented and compared.

Shen, Bo [ORNL

2011-01-01T23:59:59.000Z

360

Flow chamber  

DOE Patents [OSTI]

A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

Morozov, Victor (Manassas, VA)

2011-01-18T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Feasibility study for measurement of insulation compaction in the cryogenic rocket fuel storage tanks at Kennedy Space Center by fast/thermal neutron techniques  

SciTech Connect (OSTI)

The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.

Livingston, R. A. [Materials Science and Engineering Dept., U. of Maryland, College Park, MD (United States); Schweitzer, J. S. [Physics Dept., U. of Connecticut, Storrs (United States); Parsons, A. M. [Goddard Space Flight Center, Greenbelt (United States); Arens, E. E. [John F. Kennedy Space Center, FL (United States)

2014-02-18T23:59:59.000Z

362

Interlaboratory study of the reproducibility of the single-pass flow-through test method : measuring the dissolution rate of LRM glass at 70 {sup {degree}}C and pH 10.  

SciTech Connect (OSTI)

An international interlaboratory study (ILS) was conducted to evaluate the precision with which single-pass flow-through (SPFT) tests can be conducted by following a method to be standardized by the American Society for Testing and Materials - International. Tests for the ILS were conducted with the low-activity reference material (LRM) glass developed previously for use as a glass test standard. Tests were conducted at 70 {+-} 2 C using a LiCl/LiOH solution as the leachant to impose an initial pH of about 10 (at 70 C). Participants were provided with LRM glass that had been crushed and sieved to isolate the -100 +200 mesh size fraction, and then washed to remove fines. Participants were asked to conduct a series of tests using different solution flow rate-to-sample mass ratios to generate a range of steady-state Si concentrations. The glass dissolution rate under each test condition was calculated using the steady-state Si concentration and solution flow rate that were measured in the test. The glass surface area was estimated from the mass of glass used in the test and the Si content of LRM glass was known. A linear relationship between the rate and the steady-state Si concentration (at Si concentrations less than 10 mg/L) was used to estimate the forward dissolution rate, which is the rate in the absence of dissolved Si. Participants were asked to sample the effluent solution at least five times after reaction times of between 3 and 14 days to measure the Si concentration and flow rate, and to verify that steady-state was achieved. Results were provided by seven participants and the data sets provided by five participants were sufficient to determine the forward rates independently.

Ebert, W. L.; Chemical Engineering

2006-02-28T23:59:59.000Z

363

Supersonic combustion of a transverse injected H sub 2 jet in a radio frequency heated flow  

SciTech Connect (OSTI)

The combustion of a single hydrogen jet, normally injected into a radio frequency (RF) heated, oxidant-containing, supersonic flow, has been established to characterize the chemical and fluid dynamic phenomena associated with the reaction process and ultimately validate the predictive capability of computational computer dynamic (CFD) codes. The experimental system employed for this study is unique in that it uses an electrodeless, inductively coupled plasma tube to generate the high temperature oxidant-containing gas for subsequent nozzle expansion. Advantages of an RF heated flow system include reduced free-stream chemical contamination, continuous operation, and relative ease of integration into a typical flow laboratory environment. A description of the system utilized for this study is presented including preliminary results of the reactive flow characterization. In addition, the use of the laser-based diagnostic techniques, such as planar laser-induced fluorescence (PLIF), for measuring flow properties is also discussed. 8 refs., 7 figs.

Wantuck, P.J.; Tennant, R.A.; Watanabe, H.H.

1991-01-01T23:59:59.000Z

364

Laser techniques for studying chemical vapor deposition  

SciTech Connect (OSTI)

Chemical vapor deposition (CVD) is widely used to produce thin films for microelectronics, protective coatings and other materials processing applications. Despite the large number of applications, however, little is known about the fundamental chemistry and physics of most CVD processes. CVD recipes have generally been determined empirically, but as process requirements become more stringent, a more basic understanding will be needed to improve reactor design and speed process optimization. In situ measurements of the reacting gas are important steps toward gaining such an understanding, both from the standpoint of characterizing the reactor and testing models of a CVD process. Our work, a coordinated program of experimental and theoretical research in the fundamental mechanisms of CVD, illustrates the application of laser techniques to the understanding of a CVD system. We have used a number of laser-based techniques to probe CVD systems and have compared our measurements with predictions from computer models, primarily for the silane CVD system. The silane CVD model solves the two-dimensional, steady-state boundary layer equations of fluid flow coupled to 26 elementary chemical reactions describing the thermal decomposition of silane and the subsequent reactions of intermediate species that result in the deposition of a silicon film.

Ho, P.; Breiland, W.G.; Coltrin, M.E.

1990-01-01T23:59:59.000Z

365

Feasibility of Flow Cytometry for Measurements of Plasmodium falciparum Parasite Burden in Studies in Areas of Malaria Endemicity by Use of Bidimensional Assessment of YOYO-1 and Autofluorescence  

Science Journals Connector (OSTI)

...the hands of trained personnel. A cost/benefit analysis...study and all additional personnel involved; the children...technique to field site personnel, and quality checked...falciparum-malaria by in vivo selection of competent strains...area under the receiver operating characteristic, 0...

Joseph J. Campo; John J. Aponte; Augusto J. Nhabomba; Jahit Sacarlal; Iñigo Angulo-Barturen; María Belén Jiménez-Díaz; Pedro L. Alonso; Carlota Dobaño

2011-01-12T23:59:59.000Z

366

Measurement of the centrality and pseudorapidity dependence of the integrated elliptic flow in lead-lead collisions at sqrt(s_NN)=2.76 TeV with the ATLAS detector  

E-Print Network [OSTI]

The integrated elliptic flow of charged particles produced in Pb+Pb collisions at sqrt(s_NN)=2.76 TeV has been measured with the ATLAS detector using data collected at the Large Hadron Collider. The anisotropy parameter, v_2, was measured in the pseudorapidity range |eta| <= 2.5 with the event-plane method. In order to include tracks with very low transverse momentum pT, thus reducing the uncertainty in v_2 integrated over pT, a 1 mu b-1 data sample without a magnetic field in the tracking detectors is used. The centrality dependence of the integrated v_2 is compared to other measurements obtained with higher pT thresholds. A weak pseudorapidity dependence of the integrated elliptic flow is observed for central collisions, and a small decrease when moving away from mid-rapidity is observed only in peripheral collisions. The integrated v2 transformed to the rest frame of one of the colliding nuclei is compared to the lower-energy RHIC data.

ATLAS Collaboration

2014-05-16T23:59:59.000Z

367

Flow Test At Rye Patch Area (DOE GTP, 2011) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

368

Commissioning Measurements and Experience Obtained from the Installation of a Fissile Mass Flow monitor in the URAL Electrochemical Integrated Plant (UEIP) in Novouralsk  

SciTech Connect (OSTI)

The Blend Down Monitoring System (BDMS) equipment sent earlier to the Ural Electrochemical Integrated Plant (UEIP) at Novouralsk, Russia, was installed and implemented successfully on February 2, 1999. The BDMS installation supports the highly enriched uranium (HEU) Transparency Implementation Program for material subject to monitoring under the HEU purchase agreement between the United States of America (USA) and the Russian Federation (RF). The BDMS consists of the Oak Ridge National Laboratory (ORNL) Fissile (uranium-235) Mass Flow Monitor (FMFM) and the Los Alamos National Laboratory (LANL) Enrichment Monitor (EM). Two BDMS?s for monitoring the Main and Reserve HEU blending process lines were installed at UEIP. Independent operation of the FMFM Main and FMFM Reserve was successfully demonstrated for monitoring the fissile mass flow as well as the traceability of HEU to the product low enriched uranium. The FMFM systems failed when both systems were activated during the calibration phase due to a synchronization problem between the systems. This operational failure was caused by the presence of strong electromagnetic interference (EMI) in the blend point. The source-modulator shutter motion of the two FMFM systems was not being properly synchronized because of EMI producing a spurious signal on the synchronization cable connecting the two FMFM cabinets. The signature of this failure was successfully reproduced at ORNL after the visit. This unexpected problem was eliminated by a hardware modification and software improvements during a recent visit (June 9-11, 1999) to UEIP, and both systems are now operating as expected.

March-Leuba, J.; Mastal, E.; Powell, D.; Sumner, J.; Uckan, T.; Vines, V.

1999-07-25T23:59:59.000Z

369

Cytology Automation by Flow Cytometry  

Science Journals Connector (OSTI)

...measured individually at rates of several hundred/sec...sured individually at rates of several hundred/sec...individually by flow cytometry at rates of several hundred/sec...flow cytometer (Bio/ Physics Systems Cytofluono graf...instrument and are made to pass through a 250-@rn-diameter...

Myron R. Melamed; Zbigniew Darzynkiewicz; Frank Traganos; and Thomas Sharpless

1977-08-01T23:59:59.000Z

370

Earth's Crust: Heat Flow Relationships  

Science Journals Connector (OSTI)

... of heat flow through the Earth's surface at any point requires two measurements, the geothermal gradient itself and the thermal conductivity of the adjacent rocks. In the oceanic crust, ... variations in heat flow from point to point are governed essentially by variations in the geothermal gradient. In continents, however, the story is different. Correlation and regression analyses carried ...

Our Geomagnetism Correspondent

1970-07-11T23:59:59.000Z

371

Slug flow  

E-Print Network [OSTI]

Introduction: When two phases flow concurrently in a pipe, they can distribute themselves in a number of different configurations. The gas could be uniformly dispersed throughout the liquid in the form of small bubbles. ...

Griffith, P.

1959-01-01T23:59:59.000Z

372

Sandia National Laboratories: advanced measurement techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbide Thyristors On March 29, 2013, in Capabilities, Distribution Grid Integration, Energy, Energy Efficiency, Energy Storage Systems, Global Climate & Energy, Grid Integration,...

373

Comparison of Torsional Vibration Measurement Techniques  

Science Journals Connector (OSTI)

Noise and vibration performance plays an important role in the ... compressors and pumps. The presence of torsional vibrations and other specific phenomena require the dynamic ... of the instrumentation and chall...

Karl Janssens; Laurent Britte

2014-01-01T23:59:59.000Z

374

In-Pile Measurement Technique Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

System High Temperature Vacuum Furnace Tube Furnace (1200C) Tube Furnace (1800C) Laser Welder X-ray Clean Room Weld Room Autoclave Drawbench Material Property...

375

Power and Energy Measurement Units and Techniques  

Science Journals Connector (OSTI)

The SI system (International System of Units) is a set of definitions and rules which provides an organic and consistent approach for obtaining the units for each quantity.

Giovanni Petrecca

1993-01-01T23:59:59.000Z

376

Power and Energy Measurement Units and Techniques  

Science Journals Connector (OSTI)

The SI system (International System of Units) is a set of definitions and rules which provides an organic and consistent approach for obtaining the units for each quantity.

Giovanni Petrecca

2014-01-01T23:59:59.000Z

377

Mechanical property measurement by indentation techniques  

E-Print Network [OSTI]

The mechanical properties of materials are usually evaluated by performing a tensile or hardness test on the sample. Tensile tests are often time consuming, destructive and need specially prepared specimens. On the other hand, there is no direct...

Janakiraman, Balasubramanian

2006-04-12T23:59:59.000Z

378

Effect of flow fluctuations and nonflow on elliptic flow methods  

SciTech Connect (OSTI)

We discuss how the different estimates of elliptic flow are influenced by flow fluctuations and nonflow effects. It is explained why the event-plane method yields estimates between the two-particle correlation methods and the multiparticle correlation methods. It is argued that nonflow effects and fluctuations cannot be disentangled without other assumptions. However, we provide equations where, with reasonable assumptions about fluctuations and nonflow, all measured values of elliptic flow converge to a unique mean v_2,PP elliptic flow in the participant plane and, with a Gaussian assumption on eccentricity fluctuations, can be converted to the mean v_2,RP in the reaction plane. Thus, the 20percent spread in observed elliptic flow measurements from different analysis methods is no longer mysterious.

Ollitrault, Jean-Yves; Poskanzer, Arthur M.; Voloshin, Sergei A.

2009-04-16T23:59:59.000Z

379

Measurement of the Rates of Production and Dissipation of Turbulent Kinetic Energy in an Energetic Tidal Flow: Red Wharf Bay Revisited  

Science Journals Connector (OSTI)

Simultaneous measurements of the rates of turbulent kinetic energy (TKE) dissipation (?) and production (P) have been made over a period of 24 h at a tidally energetic site in the northern Irish Sea in water of 25-m depth. Some ? profiles from ?5 ...

Tom P. Rippeth; John H. Simpson; Eirwen Williams; Mark E. Inall

2003-09-01T23:59:59.000Z

380

Fractal Networks Explain Regional Myocardial Flow Heterogeneity  

Science Journals Connector (OSTI)

Regional myocardial blood flow is very heterogeneous. This has been found by injection of radioactively labeled microspheres, or the “molecular microsphere” iododesmethylimipramine, and measuring the depositio...

Johannes H. G. M. van Beek; James B. Bassingthwaighte…

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Quantitative imaging of turbulent and reacting flows  

SciTech Connect (OSTI)

Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

382

Convective heat flow probe  

DOE Patents [OSTI]

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

383

Flow Test At Chena Geothermal Area (Holdmann, Et Al., 2006) ...  

Open Energy Info (EERE)

Exploration Activity Details Location Chena Geothermal Area Exploration Technique Flow Test Activity Date 2005 - 2007 Usefulness useful DOE-funding Unknown Exploration Basis...

384

Method for measuring the effectiveness of gaseous-contaminant removal filters  

SciTech Connect (OSTI)

The report presents a brief review of the gas-adsorption kinetics theory applicable to adsorption of gaseous contaminants by filter media, and an algorithm for assessing the effectiveness of filtering devices with flow bypass. It briefly describes the selected testing technique for measuring the effectiveness of filter media, and presents experimental data for adsorption of n-butane, toluene, and carbon monoxide.

Mahajan, B.M.

1989-08-01T23:59:59.000Z

385

Handbook on research techniques  

Science Journals Connector (OSTI)

Handbook on research techniques ... A request for contributions to a handbook entitled "Handbook of Research Techniques" for gifted children. ...

William Marina

1972-01-01T23:59:59.000Z

386

Continuous Flow Multi-Step Organic Synthesis  

E-Print Network [OSTI]

Using continuous flow techniques for multi-step synthesis enables multiple reaction steps to be combined into a single continuous operation. In this mini-review we discuss the current state of the art in this field and ...

Webb, Damien

387

Comparison of Tracking Techniques Applied to Digital PIV  

Science Journals Connector (OSTI)

Digital Particle Image Velocimetry (DPIV) aims at flow visualization and measurement of flow dynamics in numerous applications, including hydrodynamics, combustion processes and aeronautical phenomena. The fluid is seeded with particles that follow the ...

2000-09-01T23:59:59.000Z

388

Data Flow Testing Neelam Gupta  

E-Print Network [OSTI]

Data Flow Testing Neelam Gupta The University of Arizona, Tucson, Arizona and Rajiv Gupta The University of Arizona, Tucson, Arizona Software testing techniques are designed to execute a program on a set of test cases that provide suÃ?cient coverage under some speci#12;c well-de#12;ned test coverage criterion

Gupta, Rajiv

389

Anisotropic Flow from RHIC to the LHC  

E-Print Network [OSTI]

Anisotropic flow is recognized as one of the main observables providing information on the early stage of a heavy-ion collision. At RHIC the large observed anisotropic flow and its successful description by ideal hydrodynamics is considered evidence for an early onset of thermalization and almost ideal fluid properties of the produced strongly coupled Quark Gluon Plasma. This write-up discusses some key RHIC anisotropic flow measurements and for anisotropic flow at the LHC some predictions.

Raimond Snellings

2006-10-05T23:59:59.000Z

390

Velocity and Concentration Studies of Flowing Suspensions by Nuclear Magnetic Resonance Imaging  

SciTech Connect (OSTI)

Nuclear magnetic resonance imaging (NMRI) techniques were developed to study concentrated suspension flows. Some of the proposed tasks were completed and others partly completed before the funding was terminated. The tasks completed were (1) materials selection for imaging of both particle and fluid components, (2) pipe flow measurements, and (3) flows in complex geometries. The task tackled with good progress is to develop rapid imaging techniques by analog compensation of eddy currents generated by the gradient pulses and real-time image reconstruction from the rapidly obtained data. The most suitable combination of materials arrived at is pharmaceutical beads in silicon oil. Their relaxation times T, are sufficiently different to permit imaging the two components separately. The pipe flow experiment used 3 mm, neutrally buoyant, plastic particles, up to 40% by volume, in 80-90W transmission oil flowing in a 5 cm diameter pipe. A series of distances ranging from 60 cm to 6 m downstream from a commercial mixer was studied. The flow is fully developed at 6 m and the velocity and concentration profiles agree with the earlier lower resolution experiments.

Fukushima, E.

1997-04-01T23:59:59.000Z

391

Velocity and Concentration Studies of Flowing Suspensions by Nuclear Magnetic Resonance Imaging  

SciTech Connect (OSTI)

Nuclear magnetic resonance imaging (NMRI) techniques were developed to study concentrated suspension flows. Some of the proposed tasks were completed and others partly completed before the funding was terminated. The tasks completed were (1) materials selection for imaging of both particle and fluid components, (2) pipe flow measurements, and (3) flows in complex geometries. The task tackled with good progress is to develop rapid imaging techniques by analog compensation of eddy currents generated by the gradient pulses and real-time image reconstruction from the rapidly obtained data. The most suitable combination of materials arrived at is pharmaceutical beads in silicon oil. Their relaxation times T, are sufficiently different to permit imaging the two components separately. The pipe flow experiment used 3 mm, neutrally buoyant, plastic particles, up to 40% by volume, in 80-90W transmission oil flowing in a 5 cm diameter pipe. A series of distances ranging from 60 cm to 6 m downstream from a commercial mixer was studied. The flow is fully developed at 6 m and the velocity and concentration profiles agree with the earlier lower resolution experiments. The eddy current compensation scheme works well for two channels and is being extended to eight channels including the uniform field compensation term. In addition, we have implemented a rapid reconstruction hardware that processes and displays images in a fraction of a second.

Fukushima, E.

1997-01-01T23:59:59.000Z

392

Improved analysis techniques for cylindrical and spherical double probes  

SciTech Connect (OSTI)

A versatile double Langmuir probe technique has been developed by incorporating analytical fits to Laframboise's numerical results for ion current collection by biased electrodes of various sizes relative to the local electron Debye length. Application of these fits to the double probe circuit has produced a set of coupled equations that express the potential of each electrode relative to the plasma potential as well as the resulting probe current as a function of applied probe voltage. These equations can be readily solved via standard numerical techniques in order to determine electron temperature and plasma density from probe current and voltage measurements. Because this method self-consistently accounts for the effects of sheath expansion, it can be readily applied to plasmas with a wide range of densities and low ion temperature (T{sub i}/T{sub e} Much-Less-Than 1) without requiring probe dimensions to be asymptotically large or small with respect to the electron Debye length. The presented approach has been successfully applied to experimental measurements obtained in the plume of a low-power Hall thruster, which produced a quasineutral, flowing xenon plasma during operation at 200 W on xenon. The measured plasma densities and electron temperatures were in the range of 1 Multiplication-Sign 10{sup 12}-1 Multiplication-Sign 10{sup 17} m{sup -3} and 0.5-5.0 eV, respectively. The estimated measurement uncertainty is +6%/-34% in density and +/-30% in electron temperature.

Beal, Brian; Brown, Daniel; Bromaghim, Daron [Air Force Research Laboratory, 1 Ara Rd., Edwards Air Force Base, California 93524 (United States); Johnson, Lee [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109 (United States); Blakely, Joseph [ERC Inc., 1 Ara Rd., Edwards Air Force Base, California 93524 (United States)

2012-07-15T23:59:59.000Z

393

On the validation of magnetic resonance velocimetry in single-phase turbulent pipe flows  

SciTech Connect (OSTI)

A nuclear magnetic resonance imaging technique is used to measure velocity distributions in turbulent pipe flows up to Re = 24580. While turbulent intensity is usually determined from signal attenuation, we deduce turbulent intensity from velocity distribution with no need to suppose a Gaussian distribution for velocity fluctuations. Skewness and flatness measurements are also presented in this paper. Comparison with DNS show good agreement and we show that NMR data is sufficiently accurate to provide turbulent viscosity profile. The low field system used in this study allow the suppression of susceptibility artifacts and thus open its use for studying two-phase flows. We postulate that the method used here could be applied to two-phase flows and would thus provide valuable information on turbulent viscosity models. (authors)

Jullien, P.; Lemonnier, H. [CEA Grenoble, DTN LITA SE2T, F-38054 Grenoble 9, (France)

2012-03-15T23:59:59.000Z

394

A New Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols  

SciTech Connect (OSTI)

For studying the formation and photochemical/thermal reactions of aerosols relevant to the troposphere, a unique, high-volume, slow-flow, stainless steel aerosol flow system equipped with 5 UV lamps has been constructed and characterized experimentally. The total flow system length 6 is 8.5 m and includes a 1.2 m section used for mixing, a 6.1 m reaction section and a 1.2 m 7 transition cone at the end. The 45.7 cm diameter results in a smaller surface to volume ratio than is found in many other flow systems and thus reduces the potential contribution from wall reactions. The latter are also reduced by frequent cleaning of the flow tube walls which is made feasible by the ease of disassembly. The flow tube is equipped with ultraviolet lamps for photolysis. This flow system allows continuous sampling under stable conditions, thus increasing the amount of sample available for analysis and permitting a wide variety of analytical techniques to be applied simultaneously. The residence time is of the order of an hour, and sampling ports located along the length of the flow tube allow for time-resolved measurements of aerosol and gas-phase products. The system was characterized using both an inert gas (CO2) and particles (atomized NaNO3). Instruments interfaced directly to this flow system include a NOx analyzer, an ozone analyzer, relative humidity and temperature probes, a scanning mobility particle sizer spectrometer, an aerodynamic particle sizer spectrometer, a gas chromatograph-mass spectrometer, an integrating nephelometer, and a Fourier transform infrared spectrophotometer equipped with a long path (64 m) cell. Particles collected with impactors and filters at the various sampling ports can be analyzed subsequently by a variety of techniques. Formation of secondary organic aerosol from ?-pinene reactions (NOx photooxidation and ozonolysis) are used to demonstrate the capabilities of this new system.

Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Perraud, Veronique; Bruns, Emily; Alexander, M. L.; Zelenyuk, Alla; Dabdub, Donald; Finlayson-Pitts, Barbara J.

2010-05-01T23:59:59.000Z

395

Fluid flow monitoring device  

DOE Patents [OSTI]

A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

1993-11-30T23:59:59.000Z

396

Fluid flow monitoring device  

DOE Patents [OSTI]

A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

1993-01-01T23:59:59.000Z

397

SFTEL: Flow Cell | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flow Cell EMSL's Subsurface Flow and Transport Experimental Laboratory offers several meter-scale flow cells and columns for research in saturated and unsaturated porous media....

398

Ultrasonic flow imaging system: A feasibility study  

SciTech Connect (OSTI)

This report examines the feasibility and potential problems in developing a real-time ultrasonic flow imaging instrument for on-line monitoring of mixed-phased flows such as coal slurries. State-of-the-art ultrasonic imaging techniques are assessed for this application. Reflection and diffraction tomographies are proposed for further development, including image-reconstruction algorithms and parallel processing systems. A conventional ultrasonic C-scan technique is used to demonstrate the feasibility of imaging the particle motion in a solid/water flow. 13 refs., 11 figs.

Sheen, S.H.; Lawrence, W.P.; Chien, H.T.; Raptis, A.C.

1991-09-01T23:59:59.000Z

399

Velocity and concentration studies of flowing suspensions by nuclear magnetic resonance imaging. Final report, October 7, 1994--October 6, 1996  

SciTech Connect (OSTI)

Nuclear magnetic resonance imaging techniques were developed to study concentrated suspension flows. The tasks completed were: (1) materials selection for imaging of both particle and fluid components, (2) pipe flow measurements, and (3) flows in complex geometries. The partially completed task is the development of rapid imaging techniques by analog compensation of eddy currents, generated by the gradient pulses, and real-time image reconstruction from the data. The best combination of materials found is pharmaceutical beads in silicon oil. Their relaxation times T{sub 1} are sufficiently different to permit imaging the two components separately. The pipe flow experiment used 3 mm, neutrally buoyant, plastic particles, up to 40% by volume, in 80--90W transmission oil flowing in a 5 cm diameter pipe. Distances ranging from 60 cm to 6 m downstream from a commercial mixer was studied. The flow is fully developed at 6 m and the concentration and velocity profiles agree with earlier lower resolution experiments. The eddy current compensation scheme works well for two channels and is being extended to eight channels. The authors have also built a rapid reconstruction hardware that processes and displays images in a fraction of a second. They studied the flow of neutrally buoyant concentrated suspension past a step expansion and contraction in a cylindrical pipe. Interesting transition is observed at the expansion whereby the high fluids-fraction outer layer spreads to become the outer layer in the larger pipe.

NONE

1996-12-31T23:59:59.000Z

400

Equidistribution results for geodesic flows  

E-Print Network [OSTI]

Using the works of Ma\\~n\\'e \\cite{Ma} and Paternain \\cite{Pat} we study the distribution of geodesic arcs with respect to equilibrium states of the geodesic flow on a closed manifold, equipped with a $\\mathcal{C}^{\\infty}$ Riemannian metric. We prove large deviations lower and upper bounds and a contraction principle for the geodesic flow in the space of probability measures of the unit tangent bundle. We deduce a way of approximating equilibrium states for continuous potentials.

Abdelhamid Amroun

2011-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

September 2006 FORENSIC TECHNIQUES  

E-Print Network [OSTI]

September 2006 FORENSIC TECHNIQUES: HELPING ORGANIZATIONS IMPROVE THEIR RESPONSES TO INFORMATION SECURITY INCIDENTS FORENSIC TECHNIQUES: HELPING ORGANIZATIONS IMPROVE THEIR RESPONSES TO INFORMATION and Technology National Institute of Standards and Technology Digital forensic techniques involve the application

402

Paleomagnetic Measurements | Open Energy Information  

Open Energy Info (EERE)

Paleomagnetic Measurements Paleomagnetic Measurements Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Paleomagnetic Measurements Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Can determine detailed information about rock composition and morphology Stratigraphic/Structural: Historic structure and deformation of land Hydrological: Thermal: Dictionary.png Paleomagnetic Measurements: Paleomagnetism is the study of remnant magnetization in rocks. Paleomagnetic measurements are measurements of the magnetic properties in rocks; these properties are locked in during the formation of the rock. A

403

A method to visualise near wall fluid flow patterns using locally resolved heat transfer experiments  

Science Journals Connector (OSTI)

Abstract The present study demonstrates an alternative approach for describing fluid flow characteristics very close to the wall, using locally resolved convective heat transfer experiments. Heat transfer coefficients on the base surface and around a surface mounted vortex generator of delta-wing shape design, are evaluated with the transient liquid crystal measurement technique and over a range of freestream velocities. Therefore, the local values of exponent m in the equation Nu x ? Re x m , which is directly linked to the structure of the boundary layer, can be determined over the complete heat transfer area. The local distributions of exponent m are then directly compared to the footprint of the flow obtained with typical oil and dye surface flow visualisation. The results indicate that a more appropriate interpretation of the flow structures very close to the wall is possible by analysing the spatial variation of exponent m, which approximates better the flow pattern compared to the heat transfer coefficients. As a result, fluid flow topologies can be directly evaluated from the heat transfer experiments since the distributions of oil-flow visualisation and exponent m are qualitatively similar.

Alexandros Terzis; Jens von Wolfersdorf; Bernhard Weigand; Peter Ott

2015-01-01T23:59:59.000Z

404

Chapter 15 - Measurement  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with the multiphase flow meter. The major parts of the TopFlow meter are the Venturi insert and the electrodes inside the Venturi throat. The flow rates of oil, water, and gas are calculated based on the measurements performed by the electrodes and the measurement of the differential pressure across the Venturi inlet. The TopFlow meter utilizes a capacitance sensor for oil-continuous liquid mixtures, where the capacitance caused by the dielectric constant of the fluid mixture is measured in the throat of the Venturi. Similarly, it utilizes a four-electrode conductance sensor for water-continuous liquid mixtures, where the conductance is caused by the conductivity of the fluid mixture. All the necessary electrodes are incorporated within a Venturi that is somewhat modified. Advanced data processing is utilized to have continuous readings of the flow rates of oil, water, and gas.

E.W. McAllister

2009-01-01T23:59:59.000Z

405

Optimized Anion Exchange Membranes for Vanadium Redox Flow Batteries  

Science Journals Connector (OSTI)

vanadium redox flow battery; anion exchange membrane; ion exchange capacity; cycling performance; power density ... All electrochemical measurements were conducted using a fully automated redox flow battery testing system (Scribner 857 Redox Flow Cell System). ... Characteristics of a new all-vanadium redox flow battery ...

Dongyang Chen; Michael A. Hickner; Ertan Agar; E. Caglan Kumbur

2013-06-25T23:59:59.000Z

406

Improving Work Flow Reliability Proceedings IGLC-7 275  

E-Print Network [OSTI]

Ballard1 ABSTRACT Improving work flow reliability is important for the productivity of linked productionImproving Work Flow Reliability Proceedings IGLC-7 275 IMPROVING WORK FLOW RELIABILITY Glenn units, and consequently for project cost and duration. One measure of work flow reliability is PPC

Tommelein, Iris D.

407

Air/water subchannel measurements of the equilibrium quality and mass-flux distribution in a rod bundle. [BWR  

SciTech Connect (OSTI)

Subchannel measurements were performed in order to determine the equilibrium quality and mass flux distribution in a four rod bundle, using air/water flow. An isokinetic technique was used to sample the flow in the center, side and corner subchannels of this test section. Flow rates of the air and water in each sampled subchannel were measured. Experiments were performed for two test-section-average mass fluxes (0.333x10/sup 6/ and 0.666x10/sup 6/ lb/sub m//h-ft/sup 2/), and the test-section-average quality was varied from 0% to 0.54% for each mass flux. Single-phase liquid, bubbly, slug and churn-turbulent two-phase flow regimes were achieved. The observed data trends agreed with previous diabatic measurements in which the center subchannel had the highest quality and mass flux, while the corner subchannel had the lowest.

Sterner, R.W.; Lahey, R.T. Jr.

1983-07-01T23:59:59.000Z

408

Examples of vibration measurements  

Science Journals Connector (OSTI)

A detailed treatment of the vibration measurement techniques, applied in various fields of engineering ... only some of the most widely used modern measurement methods will be briefly presented, as well...

Gheorghe Buzdugan; Elena Mih?ilescu; Mircea Rade?

1986-01-01T23:59:59.000Z

409

Chemical preconcentrator with integral thermal flow sensor  

DOE Patents [OSTI]

A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2003-01-01T23:59:59.000Z

410

Definition: Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search Dictionary.png Electromagnetic Profiling Techniques Electromagnetic profiling techniques map lateral variations in subsurface resistivity.[1] View on Wikipedia Wikipedia Definition Exploration geophysics is the applied branch of geophysics which uses surface methods to measure the physical properties of the subsurface Earth, along with the anomalies in these properties, in order to detect or infer the presence and position of ore minerals, hydrocarbons, geothermal reservoirs, groundwater reservoirs, and other geological structures. Exploration geophysics is the practical application of physical methods (such as seismic, gravitational, magnetic, electrical and electromagnetic) to measure the physical properties of rocks, and in particular, to detect

411

NDA safeguards techniques for LMFBR assemblies  

SciTech Connect (OSTI)

The significant safeguards concerns for liquid-metal fast breeder reactors (LMFBRs), and for the LMFBR fuel handling systems are the accountability, surveillance, and identification of fuel and blanket assemblies. The introduction of fuel assemblies with a high content of Pu into the receiving and shipping areas of the LMFBR fuel cycle does allow a more direct near-real-time assay profile of the disposition of Pu. Isotope correlations and neutron assay methods have been investigated and implemented for determining plutonium and burnup in fresh and spent LMFBR fuel assemblies. The methods are based on active and passive neutron coincidence counting (NCC) techniques. Preliminary studies on neutron yield rates from the spontaneous fission of plutonium and curium isotopes have indicated that the NCC system is a most effective measure in the verification of nuclear material flow in assembly form for the entire reactor fuel handling cycle, i.e., from the fresh- to the spent-fuel stage. A consequence of the high plutonium concentration level throughout the fuel irradiation period in an LMFBR, is that the spontaneous fission neutron yield from the 242-curium and 244-curium does not dominate the spontaneous fission neutron yield from the plutonium isotopes in the spent fuel stage.

Persiani, P.J.; Gundy, M.L.

1982-08-01T23:59:59.000Z

412

E-Print Network 3.0 - air-water bubbly flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Chemistry 6 Hydrodynamic and statistical parameters of slug flow Lev Shemer * Summary: identification from dynamic void fraction measurements in vertical air-water flows. Int....

413

CERN News: Selection of the type of superconducting coil for the Omega project; New intensity records at the proton synchrotron; Progress with the Spiral Reader film measuring equipment; New technique at transition energy on the proton synchrotron; CERN Courier 10th anniversary; Equipment travelling from and to Serpukhov  

E-Print Network [OSTI]

CERN News: Selection of the type of superconducting coil for the Omega project; New intensity records at the proton synchrotron; Progress with the Spiral Reader film measuring equipment; New technique at transition energy on the proton synchrotron; CERN Courier 10th anniversary; Equipment travelling from and to Serpukhov

1969-01-01T23:59:59.000Z

414

LLNL Energy Flow Charts | Open Energy Information  

Open Energy Info (EERE)

LLNL Energy Flow Charts LLNL Energy Flow Charts Jump to: navigation, search Tool Summary Name: LLNL Energy Flow Charts Agency/Company /Organization: Lawrence Livermore National Lab Sector: Energy Focus Area: Renewable Energy Topics: Pathways analysis References: LLNL Energy Flow Charts [1] Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization

415

Hybrid Particle-Continuum Methods for Nonequilibrium Gas and Plasma Flows  

SciTech Connect (OSTI)

Two different hybrid particle-continuum methods are described for simulation of nonequilibrium gas and plasma dynamics. The first technique, used for nonequilibrium hypersonic gas flows, uses either a continuum description or a particle method throughout a flow domain based on local conditions. This technique is successful in reproducing the results of full particle simulations at a small fraction of the cost. The second method uses a continuum model of the electrons combined with a particle description of the ions and atoms for simulating plasma jets. The physical accuracy of the method is assessed through comparisons with plasma plume measurements obtained in space. These examples illustrate that the complex physical phenomena associated with nonequilibrium conditions can be simulated with physical accuracy and numerical efficiency using such hybrid approaches.

Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI (United States)

2011-05-20T23:59:59.000Z

416

Collective flow by the azimuthal correlation of projectile fragments in relativistic heavy-ion collisions  

Science Journals Connector (OSTI)

An analysis that does not require the determination of reaction plane on an event-by-event basis, and involves only azimuthal correlation function of the projectile fragment pairs, has been employed to measure the collective flow of nuclear matter. Using this technique, we study the flow of projectile fragments of charge Z?2 produced in Au197 induced-emulsion reactions at 10.6A GeV. The collective flow is observed to be the most pronounced in semicentral collisions. The results are compared with those of Si28 at 14.5A GeV, U238 at 0.96A GeV, Kr84 at 1.52A GeV, and Fe56 at 1.7A GeV.

G. Singh and P. L. Jain

1994-06-01T23:59:59.000Z

417

Portable Liquid Flow Metering for Energy Conservation Programs  

E-Print Network [OSTI]

meters to measure liquids. This paper reviews the principles of ultrasonic flow meters. Applications and costs of ultrasonic versus orifice flow meters are important to consider in energy audits. A discussion follows on 'how' and 'where' to use...

Miles, F. J.

1982-01-01T23:59:59.000Z

418

Low volume flow meter  

DOE Patents [OSTI]

The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

Meixler, Lewis D. (East Windsor, NJ)

1993-01-01T23:59:59.000Z

419

Viscous hypersonic flow physics predictions using unstructured Cartesian grid techniques.  

E-Print Network [OSTI]

??Aerothermodynamics is an integral component in the design and implementation of hypersonic transport systems. Accurate estimates of the aerodynamic forces and heat transfer rates are… (more)

Sekhar, Susheel Kumar

2012-01-01T23:59:59.000Z

420

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program...

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Crustal Heat Flow: a guide to measurement and modeling G. R. Beardsmore & J. P. Cull, Cambridge University Press, 2001, ISBN 0-521-79289-4, Hardback, £70, and ISBN 0-521-79703-9, Softback, £24.95  

Science Journals Connector (OSTI)

......since the multi-author Handbook of Terrestrial heat flow...data collection, but does not mention Stein's...examples. As before, it does not draw on recent examples...simple shear models and does not discuss more advanced...Thermal Conductivity, in Handbook of Terrestrial Heat-Flow......

Christoph Clauser

2003-05-01T23:59:59.000Z

422

Assessor Training Assessment Techniques  

E-Print Network [OSTI]

NVLAP Assessor Training Assessment Techniques: Communication Skills and Conducting an Assessment listener ·Knowledgeable Assessor Training 2009: Assessment Techniques: Communication Skills & Conducting, truthful, sincere, discrete · Diplomatic · Decisive · Selfreliant Assessor Training 2009: Assessment

423

Rapidity Dependence of Elliptic Flow at RHIC  

E-Print Network [OSTI]

The measured elliptic flow (v2) of identified particles as a function of pT and centrality at RHIC suggests the created medium in Au+Au collisions achieves early local thermal equilibrium that is followed by hydrodynamic expansion. It is not known if the eta dependence on v2 is a general feature of elliptic flow or reflects other changes in the particle spectra in going from mid-rapidity to foward rapidities. The BRAHMS experiment provides a unique capability compared to the other RHIC experiments to measure v2 for identified particles over a wide rapidity range. From Run 4 Au+Au collision at sqrt{s_{NN}} = 200GeV, identified elliptic flow is studied using the BRAHMS spectrometers, which cover 0flow and to measure the pT-integrated flow for charged hadrons.

Erik Johnson

2006-01-04T23:59:59.000Z

424

Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia`s Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93.

Howarth, S.M.

1993-07-01T23:59:59.000Z

425

Dispersed flow film boiling  

E-Print Network [OSTI]

Dispersed flow consists of small liquid droplets entrained in a flowing vapor. This flow regime can occur in cryogenic equipment, in steam generators, and during nuclear reactor loss of coolant accidents. A theoretical ...

Yoder, Graydon L.

1980-01-01T23:59:59.000Z

426

Bacteria in shear flow  

E-Print Network [OSTI]

Bacteria are ubiquitous and play a critical role in many contexts. Their environment is nearly always dynamic due to the prevalence of fluid flow: creeping flow in soil, highly sheared flow in bodily conduits, and turbulent ...

Marcos, Ph.D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

427

Mach flow angularity probes for scramjet engine flow path diagnostics  

SciTech Connect (OSTI)

Mach-flow angularity (MFA) probes were developed for use in scramjet flow path probe rakes. Prototype probes were fabricated to demonstrate the assembly processes (numerical control machining, furnace brazing, and electron beam welding). Tests of prototype probes confirmed the thermal durability margins and life cycle. Selected probes were calibrated in air at Mach numbers from 1.75 to 6.0. Acceptance criteria for the production probes stressed thermal durability and pressure (and, consequently, Mach number) measurement quality. This new water-cooled MFA probe has 0.397-cm shaft diameter and is capable of withstanding heat fluxes of 2.724 kW/sq cm.

Jalbert, P.A.; Hiers, R.S. Jr. [Sverdrup Technology, Inc., Arnold AFS, TN (United States)

1993-12-31T23:59:59.000Z

428

Monte carlo Techniques for the Comprehensive Modeling of Isotopic Inventories in Future Nuclear Systems and Fuel Cycles  

SciTech Connect (OSTI)

The development of Monte Carlo techniques for isotopic inventory analysis has been explored in order to facilitate the modeling of systems with flowing streams of material through varying neutron irradiation environments. This represents a novel application of Monte Carlo methods to a field that has traditionally relied on deterministic solutions to systems of first-order differential equations. The Monte Carlo techniques were based largely on the known modeling techniques of Monte Carlo radiation transport, but with important differences, particularly in the area of variance reduction and efficiency measurement. The software that was developed to implement and test these methods now provides a basis for validating approximate modeling techniques that are available to deterministic methodologies. The Monte Carlo methods have been shown to be effective in reproducing the solutions of simple problems that are possible using both stochastic and deterministic methods. The Monte Carlo methods are also effective for tracking flows of materials through complex systems including the ability to model removal of individual elements or isotopes in the system. Computational performance is best for flows that have characteristic times that are large fractions of the system lifetime. As the characteristic times become short, leading to thousands or millions of passes through the system, the computational performance drops significantly. Further research is underway to determine modeling techniques to improve performance within this range of problems. This report describes the technical development of Monte Carlo techniques for isotopic inventory analysis. The primary motivation for this solution methodology is the ability to model systems of flowing material being exposed to varying and stochastically varying radiation environments. The methodology was developed in three stages: analog methods which model each atom with true reaction probabilities (Section 2), non-analog methods which bias the probability distributions while adjusting atom weights to preserve a fair game (Section 3), and efficiency measures to provide local and global measures of the effectiveness of the non-analog methods (Section 4). Following this development, the MCise (Monte Carlo isotope simulation engine) software was used to explore the efficiency of different modeling techniques (Section 5).

Paul P.H. Wilson

2005-07-30T23:59:59.000Z

429

2D X-ray scanner and its uses in laboratory reservoir characterization measurements  

SciTech Connect (OSTI)

X-ray techniques are used in petroleum laboratories for a variety of reservoir characterization measurements. This paper describes the configuration of a 2D X-ray scanner and many of the ways in which it simplifies and improves accuracy`s of laboratory measurements. Linear X-ray scanners are most often used to provide descriptions of fluid saturations within core plugs during flow tests. We configured our linear scanner for both horizontal and vertical movement. Samples can be scanned horizontally, vertically, or according to horizontal and vertical grids. X-ray measurements are fast, allowing measurements of two- and three-phase fluid saturations during both steady- and unsteady-state flow processes. Rock samples can be scanned while they are subjected to stress, pore pressure, and temperature conditions simulating those of a petroleum reservoir. Many types of measurements are possible by selecting appropriate X-ray power settings, dopes, filters, and collimator configurations. The scanner has been used for a variety of applications besides fluid saturation measurements. It is useful for measuring porosity distributions in rocks, concentrations of X-ray dopes within flow streams during tracer tests, gap widths in fracture flow cells, fluid interface levels in PVT cells and fluid separators, and other features and phenomena.

Maloney, D.; Doggett, K.

1997-08-01T23:59:59.000Z

430

Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry  

E-Print Network [OSTI]

In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a three dimensional laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently f...

Crua, Cyril

2015-01-01T23:59:59.000Z

431

Flow Distances on Open Flow Networks  

E-Print Network [OSTI]

Open flow network is a weighted directed graph with a source and a sink, depicting flux distributions on networks in the steady state of an open flow system. Energetic food webs, economic input-output networks, and international trade networks, are open flow network models of energy flows between species, money or value flows between industrial sectors, and goods flows between countries, respectively. Flow distances (first-passage or total) between any given two nodes $i$ and $j$ are defined as the average number of transition steps of a random walker along the network from $i$ to $j$ under some conditions. They apparently deviate from the conventional random walk distance on a closed directed graph because they consider the openness of the flow network. Flow distances are explicitly expressed by underlying Markov matrix of a flow system in this paper. With this novel theoretical conception, we can visualize open flow networks, calculating centrality of each node, and clustering nodes into groups. We apply fl...

Guo, Liangzhu; Shi, Peiteng; Wang, Jun; Huang, Xiaohan; Zhang, Jiang

2015-01-01T23:59:59.000Z

432

Triaxial thermopile array geo-heat-flow sensor  

DOE Patents [OSTI]

A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings. 6 figs.

Carrigan, C.R.; Hardee, H.C.; Reynolds, G.D.; Steinfort, T.D.

1990-01-01T23:59:59.000Z

433

Triaxial thermopile array geo-heat-flow sensor  

DOE Patents [OSTI]

A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.

Carrigan, Charles R. (Tracy, CA); Hardee, Harry C. (Albuquerque, NM); Reynolds, Gerald D. (Tijeras, NM); Steinfort, Terry D. (Tijeras, NM)

1992-01-01T23:59:59.000Z

434

Criterion for purely elastic Taylor-Couette instability in the flows of shear-banding fluids  

E-Print Network [OSTI]

In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected exhibit unexplained spatio-temporal ...

Fardin, M. A.

435

Biophysical modeling of hemodynamic-based neuroimaging techniques  

E-Print Network [OSTI]

Two different hemodynamic-based neuroimaging techniques were studied in this work. Near-Infrared Spectroscopy (NIRS) is a promising technique to measure cerebral hemodynamics in a clinical setting due to its potential for ...

Gagnon, Louis, 1984-

2013-01-01T23:59:59.000Z

436

Applied Science/Techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Science/Techniques Applied Science/Techniques Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing provided by beamlines and equipment from the ALS's Optical Metrology Lab and Berkeley Lab's Center for X-Ray Optics. New and/or continuously improved experimental techniques are also a crucial element of a thriving scientific facility. At the ALS, examples of such "technique" highlights include developments in lensless imaging, soft x-ray tomography, high-throughput protein analysis, and high-power coherent terahertz radiation.

437

Measurement-Measurement-  

E-Print Network [OSTI]

Internet Measurement- System A Measurement- System B Control System GPS Satellite GPS Satellite GPS Receiver GPS Receiver 2) measurement 3) data1) command Methodology for One-way IP Performance Measurement This paper proposes a methodology for measurement of one-way IP performance metrics such as one-way delay

Jeong, Jaehoon "Paul"

438

Data Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Data Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Data Techniques: The collection, processing, and interpretation of data from various methods so accurate interpretations can be made about the subject matter. Other definitions:Wikipedia Reegle Introduction Data techniques are any technique where data is collected and organized in a manner so that the information is useful for geothermal purposes. The

439

Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...  

Open Energy Info (EERE)

correlations. Downhole measurements of the tracer response exiting from discrete fracture zones permit further characterization of reservoir fluid flow behavior. Tracer...

440

Interference well testing—variable fluid flow rate  

Science Journals Connector (OSTI)

At present when conducting an interference well test a constant flow rate (at the 'active' well) is utilized and the type-curve matching technique (where only 2–3 values of pressure drops are matched) is used to estimate the porosity–total compressibility product and formation permeability. For oil and geothermal reservoirs with low formation permeability the duration of the test may require a long period of time and it can be difficult to maintain a constant flow rate. The qualitative term 'long' period of time means that (at a given distance between the 'active' and 'observational' well) more test time (for low permeability formations) is needed to obtain tangible pressure drops in the 'observational' well. In this study we present working equations which will allow us to process field data when the flow rate at the 'active' well is a function of time. The shut-in period is also considered. A new method of field data processing, where all measured pressure drops are utilized, is proposed. The suggested method allows us to make use of the statistical theory to obtain error estimates on the regression parameters. It is also shown that when high precision (resolution) pressure gauges are employed the pressure time derivative equations can be used for the determination of formation hydraulic diffusivity. An example is presented to demonstrate the data processing procedure.

I M Kutasov; L V Eppelbaum; M Kagan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NMR imaging and hydrodynamic analysis of neutrally buoyant non-Newtonian slurry flows  

SciTech Connect (OSTI)

The flow of solids loaded suspension in cylindrical pipes has been the object of intense experimental and theoretical investigations in recent years. These types of flows are of great interest in chemical engineering because of their important use in many industrial manufacturing processes. Such flows are for example encountered in the manufacture of solid-rocket propellants, advanced ceramics, reinforced polymer composites, in heterogenous catalytic reactors, and in the pipeline transport of liquid-solids suspensions. In most cases, the suspension microstructure and the degree of solids dispersion greatly affect the final performance of the manufactured product. For example, solid propellant pellets need to be extremely-well dispersed in gel matrices for use as rocket engine solid fuels. The homogeneity of pellet dispersion is critical to allow good uniformity of the burn rate, which in turn affects the final mechanical performance of the engine. Today`s manufacturing of such fuels uses continuous flow processes rather than batch processes. Unfortunately, the hydrodynamics of such flow processes is poorly understood and is difficult to assess because it requires the simultaneous measurements of liquid/solids phase velocities and volume fractions. Due to the recent development in pulsed Fourier Transform NMR imaging, NMR imaging is now becoming a powerful technique for the non intrusive investigation of multi-phase flows. This paper reports and exposes a state-of-the-art experimental and theoretical methodology that can be used to study such flows. The hydrodynamic model developed for this study is a two-phase flow shear thinning model with standard constitutive fluid/solids interphase drag and solids compaction stresses. this model shows good agreement with experimental data and the limitations of this model are discussed.

Bouillard, J.X. [Argonne National Lab., IL (United States); Sinton, S.W. [Lockheed Missiles and Space Co., Palo Alto, CA (United States). Research Lab.

1995-02-01T23:59:59.000Z

442

Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed  

SciTech Connect (OSTI)

A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi-phase flow systems in high temperature and high pressure conditions, typical in many industrial applications.

Qussai Marashdeh

2012-09-30T23:59:59.000Z

443

Offshore hydraulic fracturing technique  

SciTech Connect (OSTI)

This paper describes the frac-and-pack completion technique currently being used in the Gulf of Mexico, and elsewhere, for stimulation and sand control. The paper describes process applications and concerns that arise during implementation of the technique and discusses the completion procedure, treatment design, and execution.

Meese, C.A. (Marathon Oil Co., Houston, TX (United States)); Mullen, M.E. (Marathon Oil Co., Lafayette, LA (United States)); Barree, R.D. (Marathon Oil Co., Littleton, CO (United States))

1994-03-01T23:59:59.000Z

444

Analog signal isolation techniques  

SciTech Connect (OSTI)

This paper discusses several techniques for isolating analog signals in an accelerator environment. The techniques presented here encompass isolation amplifiers, voltage-to-frequency converters (VIFCs), transformers, optocouplers, discrete fiber optics, and commercial fiber optic links. Included within the presentation of each method are the design issues that must be considered when selecting the isolation method for a specific application.

Beadle, E.R.

1992-01-01T23:59:59.000Z

445

Analog signal isolation techniques  

SciTech Connect (OSTI)

This paper discusses several techniques for isolating analog signals in an accelerator environment. The techniques presented here encompass isolation amplifiers, voltage-to-frequency converters (VIFCs), transformers, optocouplers, discrete fiber optics, and commercial fiber optic links. Included within the presentation of each method are the design issues that must be considered when selecting the isolation method for a specific application.

Beadle, E.R.

1992-12-31T23:59:59.000Z

446

NREL: Measurements and Characterization - About Measurements and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Measurements and Characterization About Measurements and Characterization Graphic of three intersecting circles depicting the M&C modes of support, collaborative R&D, and technique development. The modes of operation for the M&C group at NREL integrates support, collaborative R&D, and technique development. The Measurements and Characterization (M&C) division at the National Renewable Energy Laboratory and the National Center for Photovoltaics provides characterization support, collaborative research, and the development of new measurement techniques for the advancement of the photovoltaic (PV) generation of energy. The M&C group uses experienced researchers and state-of-the-art capabilities to solve problems in all phases of material and device development. Throughout this site you will

447

An evaluation of heat flow transducers as a means of determining soil heat flow  

E-Print Network [OSTI]

provided to the Micrometeorology Section, Department of Oceanography and Meteorology, ARM College of Texas by the Signal Corps of the United States Army, under Contract No. DA 36-039 AMC-02195 (E). The heat flow plates used in this study were provided... surface soil heat flow. The results show that acceptable performance of the plates in the measurement of heat flow is possible although in general should not be expected without thorough testing, and even then there are restrictive considerations...

King, Barney L. D

2012-06-07T23:59:59.000Z

448

Applied Science/Techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Science/Techniques Print Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing provided by beamlines and equipment from the ALS's Optical Metrology Lab and Berkeley Lab's Center for X-Ray Optics. New and/or continuously improved experimental techniques are also a crucial element of a thriving scientific facility. At the ALS, examples of such "technique" highlights include developments in lensless imaging, soft x-ray tomography, high-throughput protein analysis, and high-power coherent terahertz radiation.

449

Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)  

SciTech Connect (OSTI)

Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemical industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles at various planes. Together, these two techniques can provide the needed local solids flow dynamic information for the same setup under identical operating conditions, and the data obtained can be used as a benchmark for development, and refinement of the appropriate riser models. For the above reasons these two techniques were implemented in this study on a fully developed section of the riser. To derive the global mixing information in the riser, accurate solids RTD is needed and was obtained by monitoring the entry and exit of a single radioactive tracer. Other global parameters such as Cycle Time Distribution (CTD), overall solids holdup in the riser, solids recycle percentage at the bottom section of the riser were evaluated from different solids travel time distributions. Besides, to measure accurately and in-situ the overall solids mass flux, a novel method was applied.

Muthanna Al-Dahhan; Milorad P. Dudukovic; Satish Bhusarapu; Timothy J. O'hern; Steven Trujillo; Michael R. Prairie

2005-06-04T23:59:59.000Z

450

Development of a portable grain mass flow sensor test rig  

Science Journals Connector (OSTI)

A portable grain mass flow sensor test rig was built to measure the accuracy of a mass flow sensor with dual use in the field as well as in the lab. Concurrently, a synchronization method was developed that employs GPS timing data to synchronize the ... Keywords: Mass flow sensor, Test rig, Yield monitor accuracy, Yield monitor error

M. Loghavi; R. Ehsani; R. Reeder

2008-05-01T23:59:59.000Z

451

Microfluidic Flow-Flash: Method for Investigating Protein Dynamics  

E-Print Network [OSTI]

Microfluidic Flow-Flash: Method for Investigating Protein Dynamics Michael W. Toepke, Scott H Institute, Troy, New York 12180 We report a new method, microfluidic flow-flash, for measuring protein reaction kinetics. The method couples a microscope imaging detection system with a microfluidic flow cell

Kenis, Paul J. A.

452

High Performance Computing linear algorithms for two-phase flow in porous media  

E-Print Network [OSTI]

High Performance Computing linear algorithms for two-phase flow in porous media Robert Eymard High Performance Computing techniques. This implies to handle the difficult problem of solving

Paris-Sud XI, Université de

453

Flow Test At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Exploration Activity Details Location Jemez Pueblo Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

454

Flow Test At Crump's Hot Springs Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Details Location Crump's Hot Springs Geothermal Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

455

Flow Test At Steamboat Springs Area (Combs, Et Al., 1999) | Open...  

Open Energy Info (EERE)

Exploration Activity Details Location Steamboat Springs Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References Jim Combs, John...

456

Flow Test At Newberry Caldera Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Exploration Activity Details Location Newberry Caldera Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

457

Expanding operation ranges using active flow control in Francis turbines; Lastområdesutvidgning med aktiv flödeskontroll i Francisturbiner.  

E-Print Network [OSTI]

?? This report contains an investigation of fluid injection techniques used in the purpose of reducing deleterious flow effects occurring in the draft tube of… (more)

Adolfsson, Sebastian

2014-01-01T23:59:59.000Z

458

Electrical Techniques | Open Energy Information  

Open Energy Info (EERE)

Electrical Techniques Electrical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electrical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the electrical resistivity of the

459

Geochemical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geochemical Techniques Geochemical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geochemical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geochemical Techniques: No definition has been provided for this term. Add a Definition Related Techniques Geochemical Techniques Geochemical Data Analysis Geothermometry Gas Geothermometry Isotope Geothermometry Liquid Geothermometry Cation Geothermometers Multicomponent Geothermometers Silica Geothermometers Thermal Ion Dispersion

460

Fiber optic diagnostic techniques for the electrical discharge machining process.  

E-Print Network [OSTI]

??Plasma sparks from an electrical discharge machining phics. (EDM) process were observed using fiber optics positioned the dielectric oil. New measurement techniques were developed to… (more)

Pillans, Brandon William

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow measurement techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

alternative fabrication techniques: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in terms of functional and nonfunctional requirements. Vasilescu, Rares 2009-01-01 11 Alternative techniques for beam halo measurements CERN Preprints Summary: In future high...

462

MSET modeling of Crystal River-3 venturi flow meters.  

SciTech Connect (OSTI)

The analysis of archived Crystal River-3 feedwater flow data reveals a slow and steady degradation of the flow meter measurements during the 1992/1993 operating cycle. MSET can reliably estimate the true flow rate and quantify the degree of departure between the indicated signal and the true flow rate with high accuracy. The MSET computed flow rate could, in principle, be used to provide an improved estimate of the reactor power and hence avoid the revenue loss associated with derating the reactor based on a faulty feedwater flow rate indication.

Bockhorst, F. K.; Gross, K. C.; Herzog, J. P.; Wegerich, S. W.

1998-01-05T23:59:59.000Z

463

A Numerical Study of Methods for Moist Atmospheric Flows: Compressible Equations  

Science Journals Connector (OSTI)

Two common numerical techniques for integrating reversible moist processes in atmospheric flows are investigated in the context of solving the fully compressible Euler equations. The first is a one-step, coupled technique based on using ...

Max Duarte; Ann S. Almgren; Kaushik Balakrishnan; John B. Bell; David M. Romps

2014-11-01T23:59:59.000Z

464

Effect of a co?flowing annular outer flow on the flow and acoustics in a porous tube.  

Science Journals Connector (OSTI)

One of the most important aspects of flow in a gas turbine combustor is the cooling airflow introduced through the combustor liner. The co?flowing annular cooling air affects the flow and the acoustic field of the main combustor. A generic study is in progress to study the effect of a co?flowing annular outer flow on the flow and acoustics in a porous tube. This work is an idealization of the actual gas turbine combustor flow. The results generated here will be used to validate the computational codes currently being used by the gas turbine industry to calculate these flow fields. In the present experimental work a 6?in.?diam tube made out of perforated sheet is located coaxially in an 8?in.?diam outer tube. Airflows in the inner perforated tube as well as in the annular space between the two tubes. Detailed measurements of the turbulence structure using hot wire anemometry and of the acoustic field using microphonetransducers are being made. Effects of parameters such as porosity of the tube relative areas of annular space and cross section of inner tube and flow Reynolds number on the turbulence quantities and the acoustic field will be reported.

Sundar Ramamoorthy; Fariborz Khodabakhsh; Sastry Munukutla

1992-01-01T23:59:59.000Z

465

Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows  

Science Journals Connector (OSTI)

CO2 microbubbles as a contrast agent were fabricated and a velocity field of 40% hematocrit blood flows was acquired using the synchrotron X-ray particle image velocimetry technique.

Lee, S.J.

2014-07-31T23:59:59.000Z