Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network (OSTI)

of multiphase, multicomponent fluid mixtures in porous andmultiphase heat and mass flow in unsaturated fractured porous

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

2

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network (OSTI)

Flow calculations for Yucca Mountain groundwater travelunsaturated model of Yucca Mountain, Nevada, Journal ofinto drifts at Yucca Mountain, Journal of Contaminant

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

3

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network (OSTI)

for both liquid and heat transfer processes. In order to beprocesses in hot fractured rock with ( 1) flow channeling in fractures, (2) interface reduction in F-M heat transfer,

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

4

Switching Surge and Lightning Impact on Increasing Power Flow  

Science Conference Proceedings (OSTI)

This report describes the effect of transient overvoltages on increasing the power flow on the electric power transmission system. The report focuses on the effect of system changes on transient recovery voltage (TRV) duties imposed on circuit breakers, and the impact of switching surges, lightning, and sustained overvoltages on transmission line upgrading.

2006-12-13T23:59:59.000Z

5

Performance Evaluation (Impact Studies)  

Science Conference Proceedings (OSTI)

... NIST-EEEL: Laser and Fiberoptic Power and Energy Calibration Services ... Also available are Strategic Planning Studies and Policy Studies. ...

2013-12-18T23:59:59.000Z

6

Vertical Flow Wetland Pilot Study  

Science Conference Proceedings (OSTI)

This is an interim report to present the preliminary results of a study conducted by Duke Energy to test the potential effectiveness of vertical flow wetlands (VFWs) for the removal of selenium, mercury, and other related compounds from a flue gas desulfurization (FGD) discharge. These compounds commonly are found in and regulated for coal-fired utility water discharges. There is a widespread need for a cost-effective alternative to physiochemical treatment to maintain compliance for these parameters, on...

2008-12-08T23:59:59.000Z

7

On the impact of variability and assembly on turbine blade cooling flow and oxidation life  

E-Print Network (OSTI)

The life of a turbine blade is dependent on the quantity and temperature of the cooling flow sup- plied to the blade. The focus of this thesis is the impact of variability on blade cooling flow and, subsequently, its impact ...

Sidwell, Carroll Vincent, 1972-

2004-01-01T23:59:59.000Z

8

Two-phase flow studies  

DOE Green Energy (OSTI)

The two-phase flow program is directed at understanding the hydrodynamics of two-phase flows. The two-phase flow regime is characterized by a series of flow patterns that are designated as bubble, slug, churn, and annular flow. Churn flow has received very little scientific attention. This lack of attention cannot be justified because calculations predict that the churn flow pattern will exist over a substantial portion of the two-phase flow zone in producing geothermal wells. The University of Houston is experimentally investigating the dynamics of churn flow and is measuring the holdup over the full range of flow space for which churn flow exists. These experiments are being conducted in an air/water vertical two-phase flow loop. Brown University has constructed and is operating a unique two-phase flow research facility specifically designed to address flow problems of relevance to the geothermal industry. An important feature of the facility is that it is dedicated to two-phase flow of a single substance (including evaporation and condensation) as opposed to the case of a two-component two-phase flow. This facility can be operated with horizontal or vertical test sections of constant diameter or with step changes in diameter to simulate a geothermal well profile.

Hanold, R.J.

1983-12-01T23:59:59.000Z

9

Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates  

Reports and Publications (EIA)

This report, summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns.

Information Center

1995-10-01T23:59:59.000Z

10

Impact of Flow and Brand Equity in 3D Virtual Worlds  

Science Conference Proceedings (OSTI)

This research is a partial test of Park et al.'s 2008 model to assess the impact of flow and brand equity in 3D virtual worlds. It draws on flow theory as its main theoretical foundation to understand and empirically assess the impact of flow on brand ... Keywords: 3D Virtual Worlds, Brand Equity, Challenges, Flow, Intention, Skills

David DeWester; Brenda Eschenbrenner; So Ra Park; Fiona Fui-Hoon Nah

2010-07-01T23:59:59.000Z

11

Commodity Flow Study - Clark County, Nevada, USA  

Science Conference Proceedings (OSTI)

The United States Department of Energy has designated Clark County, Nevada as an 'Affected Unit of Local Government' due to the potential for impacts by activities associated with the Yucca Mountain High Level Nuclear Waste Repository project. Urban Transit, LLC has led a project team of transportation including experts from the University of Nevada Las Vegas Transportation Research Center to conduct a hazardous materials community flow study along Clark County's rail and truck corridors. In addition, a critical infrastructure analysis has also been carried out in order to assess the potential impacts of transportation within Clark County of high level nuclear waste and spent nuclear fuel to a proposed repository 90 miles away in an adjacent county on the critical infrastructure in Clark County. These studies were designed to obtain information relating to the transportation, identification and routing of hazardous materials through Clark County. Coordinating with the United States Department of Energy, the U.S. Department of Agriculture, the U. S. Federal Highway Administration, the Nevada Department of Transportation, and various other stakeholders, these studies and future research will examine the risk factors along the entire transportation corridor within Clark County and provide a context for understanding the additional vulnerability associated with shipping spent fuel through Clark County. (authors)

Conway, S.Ph.D. [Urban Environmental Research LLC, Las Vegas, NV (United States); Navis, I. [AICP Planning Manager, Clark County Nuclear Waste Division, Department of Comprehensive Planning, Las Vegas, NV (United States)

2008-07-01T23:59:59.000Z

12

Studies of Flows in Plasmas  

SciTech Connect

Note a pdf document "DOE-flow-final-report' should be attached. If it somehow is not please notify Walter Gekelman (gekelman@physics.ucla.edu) who will e mail it directly

Gekelman, Walter; Morales, George; Maggs, James

2009-03-07T23:59:59.000Z

13

Materials Sustainability: Digital Resource Center - Flow Studies ...  

Science Conference Proceedings (OSTI)

Jun 26, 2008 ... This 2004 circular presents the results of flow studies for recycling of 26 metal commodities, including chromium, magnesium, niobium, ...

14

Radiographic study of impact in polymer-bonded explosives  

SciTech Connect

Computer-tomography generated material-density maps from flash x-ray radiographs of the impact of cylinders of mockup polymer-bonded explosive (PBX) striking a steel plate. Comparison of the density fields with computer simulation allowed discrimination of rather complex deformation and flow models for insensitive explosives to be used in further studies of chemical reactions initiated by shock waves.

Fugelso, E.; Jacobson, J.D.; Karpp, R.R.; Jensen, R.

1981-01-01T23:59:59.000Z

15

Impact of wettability correlations on multiphase flow through porous media  

E-Print Network (OSTI)

In the last decades, significant progress has been made in understanding the multiphase displacement through porous media with homogeneous wettability and its relation to the pore geometry. However, the role of wettability at the scale of the pore remains still little understood. In the present study the displacement of immiscible fluids through a two-dimensional porous medium is simulated by means of a mesoscopic particle approach. The substrate is described as an assembly of non-overlapping circular disks whose preferential wettability is distributed according to prescribed spatial correlations, from pore scale up to domains at system size. We analyze how this well-defined heterogeneous wettability affects the flow and try to establish a relationship among wettability-correlations and large-scale properties of the multiphase flow.

Marta S. de La Lama; Martin Brinkmann

2012-05-31T23:59:59.000Z

16

Impact of aspect ratio on flow boiling of water in rectangular microchannels  

SciTech Connect

In this paper we focus on the impact of varying the aspect ratio of rectangular microchannels, on the overall pressure drop involving water boiling. An integrated system comprising micro-heaters, sensors and microchannels has been realized on (110) silicon wafers, following CMOS compatible process steps. Rectangular microchannels were fabricated with varying aspect ratios (width [W] to depth [H]) but constant hydraulic diameter of 142{+-}2{mu}m and length of 20 mm. The invariant nature of the hydraulic diameter is confirmed through two independent means: physical measurements using profilometer and by measuring the pressure drop in single-phase fluid flow. The experimental results show that the pressure drop for two-phase flow in rectangular microchannels experiences minima at an aspect ratio of about 1.6. The minimum is possibly due to opposing trends of frictional and acceleration pressure drops, with respect to aspect ratio. In a certain heat flux and mass flux range, it is observed that the two-phase pressure drop is lower than the corresponding single-phase value. This is the first study to investigate the effect of aspect ratio in two-phase flow in microchannels, to the best of our knowledge. The results are in qualitative agreement with annular flow model predictions. These results improve the possibility of designing effective heat-sinks based on two-phase fluid flow in microchannels. (author)

Singh, S.G.; Kulkarni, A.; Duttagupta, S.P. [Nanoelectronics Center, Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Puranik, B.P.; Agrawal, A. [Suman Mashruwala Lab, Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

2008-10-15T23:59:59.000Z

17

Aluminum Honeycomb Impact Limiter Study  

Science Conference Proceedings (OSTI)

Scale model testing, static-materials testing, and static and dynamic structural analyses of data on impact limiters provided data for NRC licensing of a spent-fuel transport cask. The analysis of quarter-scale drop test data is reconciled with static and dynamic structural analysis data produced using the ANSYS program.

1991-08-13T23:59:59.000Z

18

Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings  

SciTech Connect

This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

2006-07-31T23:59:59.000Z

19

Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings  

SciTech Connect

This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

2006-07-31T23:59:59.000Z

20

Biofuels Impact Study2010 Biofuel Impact Study Executive Summary  

E-Print Network (OSTI)

Oregon has abundant human and natural capital that can contribute significantly to the State’s energy future. Our biomass resources have the potential to contribute to future energy needs while encouraging job creation and economic opportunities in rural Oregon. The Governor and the Oregon State Legislature have made significant commitments and investments towards realizing the full potential that bioenergy has for Oregon. Oregon has led the nation with policies that promote the use of biomass for fuel and energy production. State agencies, non-profits and the private sector are working hard to deliver this commitment of job creation, energy savings, and energy independence for Oregon businesses and residents. This is the first periodic report issued to the Legislature that assesses the impact of the State’s biofuel program. The report includes a summary of current incentives and policies that support biofuels, statistics about jobs at Oregon’s bioenergy facilities, and a description of the status of the bioenergy and biofuels industries in Oregon. More data is necessary to truly evaluate the impacts of Oregon’s bioenergy incentives to the health of the bioenergy industry and the creation of jobs. Several state agencies are working to collect some of these data, which will provide a clearer picture of the industry at the time of our next report to the Legislature. Biomass heating facility at the Harney Hospital in Burns, OR

unknown authors

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Heat transfer to impacting drops and post critical heat flux dispersed flow  

E-Print Network (OSTI)

Heat transfer to drops impacting on a hot surface is examined in context of dispersions of flowing, boiling fluids. The liquid contribution to heat transfer from a hot tube to a two-phase dispersion is formulated in terms ...

Kendall, Gail E.

1978-01-01T23:59:59.000Z

22

Pore-scale modeling of the impact of surrounding flow behavior on multiphase flow properties.  

E-Print Network (OSTI)

??Accurate predictions of macroscopic multiphase flow properties, such as relative permeability and capillary pressure, are necessary for making key decisions in reservoir engineering. These properties… (more)

Petersen, Robert Thomas

2010-01-01T23:59:59.000Z

23

Understanding the Impacts of Incremental Gas Supply on the Flow Dynamics Across the North American Grid  

Reports and Publications (EIA)

The presentation "Understanding the Impacts of Incremental Gas Supply on the Flow Dynamics Across the North American Grid" was given at the Canadian Institute's BC LNG Forum on November 20, 2006. The presentation provides an overview of EIA's long-term natural gas projections under reference case and sensitivity cases from the Annual Energy Outlook 2006, with special emphasis on natural gas flows in the West Coast.

Information Center

2006-12-14T23:59:59.000Z

24

Impacts of Dibasic Acid (DBA) Addition on the Performance of a Pilot Vertical Flow Cell: Duke Energy Marshall Steam Station  

Science Conference Proceedings (OSTI)

This report presents the results of a pilot study conducted to test the potential impact of dibasic acid (DBA) on vertical flow cells (VFCs) constructed to remove selenium and mercury from a flue gas desulfurization (FGD) scrubber discharge. VFCs are a passive treatment technology with very low operational and maintenance costs and the potential for order-of-magnitude savings over conventional treatment methods. A full-scale VFC system has been constructed at a power generating facility based on ...

2013-04-08T23:59:59.000Z

25

Groundwater flow near the Shoal Site, Sand Springs Range, Nevada: Impact of density-driven flow  

Science Conference Proceedings (OSTI)

The nature of flow from a highland recharge area in a mountain range in north-central Nevada to discharge areas on either side of the range is evaluated to refine a conceptual model of contaminant transport from an underground nuclear test conducted beneath the range. The test, known as the Shoal event, was conducted in 1963 in granitic rocks of the Sand Springs Range. Sparse hydraulic head measurements from the early 1960s suggest flow from the shot location to the east to Fairview Valley, while hydrochemistry supports flow to salt pans in Fourmile Flat to the west. Chemical and isotopic data collected from water samples and during well-logging arc best explained by a reflux brine system on the west side of the Sand Springs Range, rather than a typical local flow system where all flow occurs from recharge areas in the highlands to a central discharge area in a playa. Instead, dense saline water from the playa is apparently being driven toward the range by density contrasts. The data collected between the range and Fourmile Flat suggest the groundwater is a mixture of younger, fresher recharge water with older brine. Chemical contrasts between groundwater in the east and west valleys reflect the absence of re-flux water in Fairview Valley because the regional discharge area is distant and thus there is no accumulation of salts. The refluxing hydraulic system probably developed after the end of the last pluvial period and differences between the location of the groundwater divide based on hydraulic and chemical indicators could reflect movement of the divide as the groundwater system adjusts to the new reflux condition.

Chapman, J.; Mihevc, T.; McKay, A.

1994-09-01T23:59:59.000Z

26

A Study of Barotropic Model Flows: Intermittency, Waves and Predictability  

Science Conference Proceedings (OSTI)

The régime flows corresponding to the barotropic nondivergent equation with forcing, drag and subgrid-scale dissipation are studied using spectral model on the plane and on the sphere. The flow régimes obtained exhibit clear evidence of the ...

C. Basdevant; B. Legras; R. Sadourny; M. Béland

1981-11-01T23:59:59.000Z

27

Heat flow studies, Coso Geothermal Area, China Lake, California...  

Open Energy Info (EERE)

studies, Coso Geothermal Area, China Lake, California. Technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Heat flow studies, Coso Geothermal...

28

Alternative Fuels Data Center: Biofuels Program Impact Studies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Program Biofuels Program Impact Studies to someone by E-mail Share Alternative Fuels Data Center: Biofuels Program Impact Studies on Facebook Tweet about Alternative Fuels Data Center: Biofuels Program Impact Studies on Twitter Bookmark Alternative Fuels Data Center: Biofuels Program Impact Studies on Google Bookmark Alternative Fuels Data Center: Biofuels Program Impact Studies on Delicious Rank Alternative Fuels Data Center: Biofuels Program Impact Studies on Digg Find More places to share Alternative Fuels Data Center: Biofuels Program Impact Studies on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Program Impact Studies The Oregon Department of Energy (ODOE) must conduct periodic impact studies

29

Summary of California DSM impact evaluation studies  

SciTech Connect

Over the past several years, four of the largest investor-owned California utilities have completed more than 50 evaluation studies designed to measure the energy and demand impacts of their demand-side management (DSM) programs. These four are: Pacific Gas and Electric (PG and E), Southern California Edison (SCE), Southern California Gas (SoCalGas), and San diego Gas and Electric (SDG and E). These studies covered residential, commercial, industrial, and agricultural DSM programs and provided a wealth of information on program impacts. The objective of this report is to summarize the results of these DSM evaluation studies in order to describe what DSM has achieved in California, to assess how well these achievements were forecast, and to compare the effectiveness of different types of DSM programs. This report documents the sizable investment made by the California utilities in their 1990--92 DSM programs. Between 1990 and 1992, the four utilities spent $772 million on energy-efficiency/conservation programs. This report also summarizes the realization rates estimated by the 50+ evaluation studies. Realization rates are defined as ex-post net savings estimates divided by ex-ante net savings estimates. Realization rates are summarized for 158 programs and program segments.

Brown, M.A. [Oak Ridge National Lab., TN (United States); Mihlmester, P.E. [Aspen Systems Corp., Oak Ridge, TN (United States)

1994-10-01T23:59:59.000Z

30

2009 WIND TURBINE IMPACT STUDY APPRAISAL GROUP ONE 9/9/2009 WIND TURBINE IMPACT STUDY  

E-Print Network (OSTI)

This is a study of the impact that wind turbines have on residential property value. The wind turbines that are the focus of this study are the larger turbines being approximately 389ft tall and producing 1.0+ megawatts each, similar to the one pictured to the right. The study has been broken into three component parts, each looking at the value impact of the wind turbines from a different perspective. The three parts are: (1) a literature study, which reviews and summarizes what has been published on this matter found in the general media; (2) an opinion survey, which was given to area Realtors to learn their opinions on the impact of wind turbines in

Fond Du; Lac Counties Wisconsin

2009-01-01T23:59:59.000Z

31

Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)  

SciTech Connect

Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmon Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.

Not Available

1993-03-01T23:59:59.000Z

32

Heat flow and microearthquake studies, Coso Geothermal Area,...  

Open Energy Info (EERE)

and (2) microearthquake studies associated with the geothermal phenomena in the Coso Hot Springs area. The sites for ten heat flow boreholes were located primarily using the...

33

Economic impact study of consumer product efficiencies. Final report  

SciTech Connect

The economic impact study of household appliance efficiencies is briefly reported. Task I, Direct Impact on Industry, contains 4 subtasks: materials, labor inputs, energy inputs, and investment. Task II, Direct Impact on Consumers, contains 3 subtasks: life-cycle cost to the consumer, usage patterns, and long-term demand forecast and analysis. The 2 subtasks in Task III, Energy Savings and Impact on Utilities, are residential energy savings and cost and impact on utility generating capacity.

1980-05-30T23:59:59.000Z

34

Numerical Studies of Particle Laden Flow in Dispersed Phase  

E-Print Network (OSTI)

To better understand the hydrodynamic flow behavior in turbulence, Particle-Fluid flow have been studied using our Direct Numerical(DNS) based software DSM on MUSCL-QUICK and finite volume algorithm. The particle flow was studied using Eulerian-Eulerian Quasi Brownian Motion(QBM) based approach. The dynamics is shown for various particle sizes which are very relevant to spray mechanism for Industrial applications and Bio medical applications.

Dutta, R

2012-01-01T23:59:59.000Z

35

Impact of Surface Flux Formulations and Geostrophic Forcing on Large-Eddy Simulations of Diurnal Atmospheric Boundary Layer Flow  

Science Conference Proceedings (OSTI)

The impact of surface flux boundary conditions and geostrophic forcing on multiday evolution of flow in the atmospheric boundary layer (ABL) was assessed using large-eddy simulations (LES). The LES investigations included several combinations of ...

Vijayant Kumar; Gunilla Svensson; A. A. M. Holtslag; Charles Meneveau; Marc B. Parlange

2010-07-01T23:59:59.000Z

36

Evolving Multisensor Precipitation Estimation Methods: Their Impacts on Flow Prediction Using a Distributed Hydrologic Model  

Science Conference Proceedings (OSTI)

This study investigates evolving methodologies for radar and merged gauge–radar quantitative precipitation estimation (QPE) to determine their influence on the flow predictions of a distributed hydrologic model. These methods include the National ...

David Kitzmiller; Suzanne Van Cooten; Feng Ding; Kenneth Howard; Carrie Langston; Jian Zhang; Heather Moser; Yu Zhang; Jonathan J. Gourley; Dongsoo Kim; David Riley

2011-12-01T23:59:59.000Z

37

Ramakrishna Mission initiative impact study: final report  

DOE Green Energy (OSTI)

This report has been prepared by the Tata Energy Research Institute (TERI) for the National Renewable Energy Laboratory. It presents the results of the evaluation and impact assessment of solar photovoltaic lighting systems in the region of Sunderbans, West Bengal, that were deployed by a reputable non-governmental organization (Ramakrishna Mission) under the auspices of the INDO-US collaborative project. The objectives of the study were to evaluate the solar photovoltaic systems for their impact on the individual households as well as on the community, to assess the effectiveness of the implementation and financial mechanisms, and to draw a long-term strategy for NREL's activities in Sunderbans based on case studies of similar interventions. Under the project, provision was made to supply 300 domestic lighting systems (DLS) based on 53-Wp module capacity to individual households and a few other systems such as for lighting, medical refrigeration, and pumping water to community centers. For this study, 152 households were surveyed, of which 29 had also been a part of earlier pre- and post-installation surveys, 47 had been a part of the earlier post-installation survey, and 76 were households that were surveyed for the first time. A set of 46, out of the total 152 households, was selected for evaluating the systems for their technical performance with respect to module output, condition of the battery, and daily energy consumption. Of the total 300 modules, 2 had been stolen, 9 out of the total 300 batteries needed to be replaced, and 10 out of the 300 charge controllers were non-functional. The statistics for the surveyed households indicate 32 luminaire-related faults (blackening or flickering of compact fluorescent lights) and 11 other faults related to fuses, switches, etc.

Chaurey, A.

2000-07-06T23:59:59.000Z

38

Automation impact study of Army Training Management  

SciTech Connect

The main objectives of this impact study were to identify the potential cost savings associated with automated Army Training Management (TM), and to perform a cost-benefit analysis for an Army-wide automated TM system. A subsidiary goal was to establish baseline data for an independent evaluation of a prototype Integrated Training Management System (ITMS), to be tested in the fall of 1988. A structured analysis of TM doctrine was performed for comparison with empirical data gathered in a job analysis survey of selected units of the 9ID (MTZ) at Ft. Lewis, Washington. These observations will be extended to other units in subsequent surveys. The survey data concerning staffing levels and amount of labor expended on eight distinct TM tasks were analyzed in a cost effectiveness model. The main results of the surveys and cost effectiveness modelling are summarized. 18 figs., 47 tabs.

Sanquist, T.F.; Schuller, C.R.; McCallum, M.C.; Underwood, J.A.; Bettin, P.J.; King, J.L.; Melber, B.D.; Hostick, C.J.; Seaver, D.A.

1988-01-01T23:59:59.000Z

39

A CFD study of gas-solid jet in a CFB riser flow  

Science Conference Proceedings (OSTI)

Three-dimensional high-resolution numerical simulations of a gas–solid jet in a high-density riser flow were conducted. The impact of gas–solid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gas–solid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics of riser flow and the characteristics of gas–solid jet were reasonably predicted compared with the experimental measurements made at NETL.

Li, Tingwen; Guenther, Chris

2012-03-01T23:59:59.000Z

40

Evaluation of uncertainties due to hydrogeological modeling and groundwater flow analysis: Steady flow, transient flow, and thermal studies  

SciTech Connect

Starting with regional geographic, geologic, surface and subsurface hydrologic, and geophysical data for the Tono area in Gifu, Japan, we develop an effective continuum model to simulate subsurface flow and transport in a 4 km by 6 km by 3 km thick fractured granite rock mass overlain by sedimentary layers. Individual fractures are not modeled explicitly. Rather, continuum permeability and porosity distributions are assigned stochastically, based on well-test data and fracture density measurements. Lithologic layering and one major fault, the Tsukiyoshi Fault, are assigned deterministically. We conduct three different studies: (1) the so-called base case, in which the model simulates the steady-state groundwater flow through the site, and then stream trace analysis is used to calculate travel times to the model boundary from specified release points; (2) simulations of transient flow during long term pump tests (LTPT) using the base-case model; and (3) thermal studies in which coupled heat flow and fluid flow are modeled, to examine the effects of the geothermal gradient on groundwater flow. The base-case study indicates that the choice of open or closed lateral boundaries has a strong influence on the regional groundwater flow patterns produced by the models, but no field data exist that can be used to determine which boundary conditions are more realistic. The LTPT study cannot be used to distinguish between the alternative boundary conditions, because the pumping rate is too small to produce an analyzable pressure response at the model boundaries. In contrast, the thermal study shows that the temperature distributions produced by the open and closed models differ greatly. Comparison with borehole temperature data may be used to eliminate the closed model from further consideration.

Doughty, Christine; Karasaki, Kenzi

2002-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A longitudinal study of vibration-based water flow sensing  

Science Conference Proceedings (OSTI)

We present a long-term and cross-sectional study of a vibration-based water flow rate monitoring system in practical environments and scenarios. In our earlier research, we proved that a water flow monitoring system with vibration sensors is feasible ... Keywords: Application of sensor networks, adaptive sensor calibration, nonintrusive and spatially distributed sensing, parameter estimation via numerical optimization

Younghun Kim; Heemin Park; Mani B. Srivastava

2012-11-01T23:59:59.000Z

42

Impact of relative permeability models on fluid flow behavior for gas condensate reservoirs  

E-Print Network (OSTI)

Accurate assessments of reserves and evaluation of productivity trends for gas condensate systems depend on a basic understanding of phase and fluid flow behavior. In gas condensate reservoirs, the gas flow depends on liquid drop out at pressures below the dewpoint pressure. The liquid initially accumulates as a continuous film along the porous media because of the low interfacial tension. Then, as the volume of condensate increases, the interfacial tension increases and capillary forces become more important. Modeling fluid flow in these systems must consider the dependence of relative permeability on both viscous and capillary forces. This research focuses on the evaluation of several recently proposed relative permeability models and on the quantification of their impact on reservoir fluid flow and well performance. We selected three relative permeability models to compare the results obtained in the modeling of relative permeabilities for a published North Sea gas condensate reservoir. The models employ weighting factors to account for the interpolation between miscible and immiscible flow behavior. The Pusch model evaluated using Fevang's weighting factor gave the best estimation of relative permeability when compared to the published data. Using a sector model, we evaluated the effects at the field scale of the selected gas condensate relative permeability models on well performance under different geological heterogeneity and permeability anisotropy scenarios. The Bette and Pusch models as well as the Danesh model, as implemented in a commercial reservoir simulator, were used to quantify the impact of the relative permeability models on fluid-flow and well performance. The results showed that, if the transition between miscible and immiscible behavior is not considered, the condensate saturation could be overestimated and the condensate production could be underestimated. After twenty years of production, the heterogeneous model using the selected relative permeability models predicted between 7.5 - 13% more condensate recovery than was estimated using an immiscible relative permeability model. Using the same relative permeability models, the anisotropic model forecast between 3 - 10% more condensate recovery than predicted using an immiscible relative permeability model. Results using the anisotropic model showed that vertical communication could affect the liquid distribution in the reservoir.

Zapata Arango, Jose? Francisco

2002-01-01T23:59:59.000Z

43

Study Shows Significant Economic Impact from Recovery Act | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Shows Significant Economic Impact from Recovery Act Study Shows Significant Economic Impact from Recovery Act Study Shows Significant Economic Impact from Recovery Act A study recently released shows the $1.6 billion the Savannah River Site (SRS) received from the American Recovery and Reinvestment Act has had a positive economic impact on the adjacent five-county region. The study's findings were presented at the University of South Carolina Aiken's (USC Aiken) Convocation Center. More than 75 people attended the meeting, where presenters commended the Recovery Act for accelerating Cold War cleanup at SRS and boosting employment and business in the local community. Study Shows Significant Economic Impact from Recovery Act More Documents & Publications EA-1605: Final Environmental Assessment EIS-0220: Final Environmental Impact Statement

44

NETL: News Release - New Study Indicates Positive Economic Impact...  

NLE Websites -- All DOE Office Websites (Extended Search)

17, 2007 New Study Indicates Positive Economic Impact of DOE Laboratory NETL Contributes 283 Million, 3,200 Jobs to Pennsylvania, West Virginia Region WASHINGTON, DC - A recently...

45

Stakeholder Engagement and Outreach: Wind Farm Economic Impact Studies  

Wind Powering America (EERE)

Information Information Resources Printable Version Bookmark and Share Publications Success Stories Webinars Podcasts Videos Stakeholder Interviews Lessons Learned Wind Working Groups Economic Impact Studies Wind Turbine Ordinances Wind Farm Economic Impact Studies Wind Powering America compiled studies about the economic impact of wind farms in rural communities in order to compared them side by side. The studies explore the types of information gathered when undertaking an economic impact study, what kind of information is most helpful in using these studies to further promote wind energy development in rural communities, and the limitations on collecting data for these studies. Pedden, M. (September 2004). "Analysis: Economic Impacts of Wind Applications in Rural Communities." Overview of data collection and

46

Study Shows Significant Economic Impact from Recovery Act | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Shows Significant Economic Impact from Recovery Act Study Shows Significant Economic Impact from Recovery Act Study Shows Significant Economic Impact from Recovery Act A study recently released shows the $1.6 billion the Savannah River Site (SRS) received from the American Recovery and Reinvestment Act has had a positive economic impact on the adjacent five-county region. The study's findings were presented at the University of South Carolina Aiken's (USC Aiken) Convocation Center. More than 75 people attended the meeting, where presenters commended the Recovery Act for accelerating Cold War cleanup at SRS and boosting employment and business in the local community. Study Shows Significant Economic Impact from Recovery Act More Documents & Publications 2010 ARRA Newsletters 2011 ARRA Newsletters Audit Report: OAS-RA-L-11-12

47

Heat flow and microearthquake studies, Coso Geothermal Area, China Lake,  

Open Energy Info (EERE)

and microearthquake studies, Coso Geothermal Area, China Lake, and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Heat flow and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Details Activities (2) Areas (1) Regions (0) Abstract: The present research effort at the Coso Geothermal Area located on the China Lake Naval Weapons Center, China Lake, California, was concerned with: (1) heat flow studies and (2) microearthquake studies associated with the geothermal phenomena in the Coso Hot Springs area. The sites for ten heat flow boreholes were located primarily using the available seismic ground noise and electrical resistivity data. Difficulty was encountered in the drilling of all of the holes due to altered, porous,

48

Heat flow studies, Coso Geothermal Area, China Lake, California. Technical  

Open Energy Info (EERE)

studies, Coso Geothermal Area, China Lake, California. Technical studies, Coso Geothermal Area, China Lake, California. Technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Heat flow studies, Coso Geothermal Area, China Lake, California. Technical report Details Activities (1) Areas (1) Regions (0) Abstract: Heat flow studies in the Coso Geothermal Area were conducted at China Lake, California. Temperature measurements were completed in nine of the heat flow boreholes. Temperatures were measured at five meter intervals from the ground surface to the deepest five meter interval. Subsequently, temperatures were remeasured two or three times in each borehole in order to demonstrate that equilibrium thermal conditions existed. The maximum difference in temperature, at any of the five meter intervals, was 0.03 deg

49

The Impact of Ocean Data Assimilation on Seasonal-to-Interannual Forecasts: A Case Study of the 2006 El Nińo Event  

Science Conference Proceedings (OSTI)

This study investigates the impact of four different ocean analyses on coupled forecasts of the 2006 El Nińo event. Forecasts initialized in June 2006 using ocean analyses from an assimilation that uses flow-dependent background error covariances ...

Shu-Chih Yang; Michele Rienecker; Christian Keppenne

2010-08-01T23:59:59.000Z

50

Numerical investigation of electric heating impacts on solid/liquid glass flow patterns.  

SciTech Connect

A typical glass furnace consists of a combustion space and a melter. Intense heat is generated from the combustion of fuel and air/oxygen in the combustion space. This heat is transferred mainly by radiation to the melter in order to melt sand and cullet (scrap glass) eventually creating glass products. Many furnaces use electric boosters to enhance glass melting and increase productivity. The coupled electric/combustion heat transfer patterns are key to the glass making processes. The understanding of the processes can lead to the improvement of glass quality and furnace efficiency. The effects of electrical boosting on the flow patterns and heat transfer in a glass melter are investigated using a multiphase Computational Fluid Dynamics (CFD) code with addition of an electrical boosting model. The results indicate that the locations and spacing of the electrodes have large impacts on the velocity and temperature distributions in the glass melter. With the same total heat input, the batch shape (which is determined by the overall heat transfer and the batch melting rate) is kept almost the same. This indicates that electric boosting can be used to replace part of heat by combustion. Therefore, temperature is lower in the combustion space and the life of the furnace can be prolonged. The electric booster can also be used to increase productivity without increasing the furnace size.

Chang, S. L.; Zhou, C. Q.; Golchert, B.

2002-07-02T23:59:59.000Z

51

Factors Impacting Gasoline Prices and Areas for Further Study  

Gasoline and Diesel Fuel Update (EIA)

Factors Impacting Gasoline Prices and Areas for Further Study Factors Impacting Gasoline Prices and Areas for Further Study 8/10/01 Click here to start Table of Contents Factors Impacting Gasoline Prices and Areas for Further Study Different Factors Impact Different Aspects of Gasoline Price Correlation of Price to Inventory Levels Crude Prices Strongly Related to OECD.Crude & Product Inventories Gasoline Prices Also Influenced by Regional Gasoline Product Markets Tight Product Balance Pushes Up Product Spread (Spot Product - Crude Price) Retail Price Changes Lag Spot Prices Cumulative Gasoline Price Pass-through Illustration of How Lag Effect Dampens and Slows Retail Price Changes from Wholesale Recent Weekly Retail Price Changes Have Been as Expected Summary: Most Gasoline Price Movement Can Be Explained As Rational Market Behavior Author: Joanne Shore

52

Impact of background flow on dissolution trapping of carbon dioxide injected into saline aquifers  

E-Print Network (OSTI)

While there has been a large interest in studying the role of dissolution-driven free convection in the context of geological sequestration, the contribution of forced convection has been largely ignored. This manuscript considers CO$_2$ sequestration in saline aquifers with natural background flow and uses theoretical arguments to compute the critical background velocity needed to establish the forced convective regime. The theoretical arguments are supported by two dimensional high-resolution numerical simulations which demonstrate the importance of forced convection in enhancing dissolution in aquifers characterised by low Rayleigh numbers.

Rapaka, Saikiran

2011-01-01T23:59:59.000Z

53

A Study of Intermittent Buoyancy Induced Flow Phenomena in CANDU Fuel Channels.  

E-Print Network (OSTI)

??The present work focuses on the study of two-phase flow behavior called “Intermittent Buoyancy Induced Flow” (IBIF) resulting from the loss of coolant circulation in… (more)

Karchev, Zheko

2010-01-01T23:59:59.000Z

54

Orographic Clouds in Terrain-Blocked Flows: An Idealized Modeling Study  

Science Conference Proceedings (OSTI)

Idealized numerical simulations of moist strongly stratified flow over topography are used to study the processes that control orographic clouds in terrain-blocked flows as a joint function of the nondimensional flow parameter Nh/U, the ...

Joseph Galewsky

2008-11-01T23:59:59.000Z

55

Study of laminar, unsteady piston-cylinder flows  

SciTech Connect

The present paper concerns numerical investigation of a piston-driven, axisymmetric flow in a pipe assembly containing a sudden expansion. The piston closes the larger of the two pipes. The impulsively starting intake flow is the topic of this investigation. Results of numerical calculations and laser-Doppler measurements are presented to provide an insight into the features of the flow. The calculation procedure employed in this study is based on a finite-volume method with staggered grids and SIMPLE algorithm for pressure-velocity coupling. The convection and diffusion fluxes in the Navier-Stokes equations are discretized with first order upwind and second order central differences, respectively. A fully implicit Euler scheme is used to discretize the temporal derivatives. The Navier-Stokes equations were suitably transformed to allow prediction of the flow within the inlet pipe and cylinder region simultaneously. Laser-Doppler measurements of both axial and radial velocity components were performed. Refractive index matching was used to eliminate the wall curvature effects. For each measuring point 20 cycles were measured, showing high repetition rates. Comparison of measured and predicted velocity profiles shows good agreement.

Stroell, H. [Wehrtechnische Dienststelle fuer Fernmeldewesen und Elektronik, Greding (Germany); Durst, F.; Peric, M. [Univ. Erlangen (Germany). Lehrstuhl fuer Stroemungsmechanik; Pereira, J.C.F. [Inst. Superior Tecnico, Lisboa (Portugal); Scheuerer, G. [Advanced Scientific Computing, Holzkirchen (Germany)

1993-12-01T23:59:59.000Z

56

Energy policy act transportation study: Interim report on natural gas flows and rates  

Science Conference Proceedings (OSTI)

This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

NONE

1995-11-17T23:59:59.000Z

57

Study of Vehicle Front Structure Crashworthiness Based on Pole Impact with Different Position  

Science Conference Proceedings (OSTI)

Because of occupant injury severity in frontal pole impact, this paper conducted a computer simulation study on the frontal pole impact of passenger car. Three types of frontal pole impact FE analysis models were developed according to different impact ... Keywords: Frontal pole impact, Impact position, Vehicle Structure Deformation, Crashworthiness

Qihui Li, Jikuang Yang

2013-01-01T23:59:59.000Z

58

Well data and groundwater flow direction problem: Steuben County, Indiana case study  

SciTech Connect

The rapid industrial growth in Northeastern Indiana has lead to the demand for more complete geologic information for Steuben County, Indiana by the citizenry. The information would allow environmental scientists, geologists and engineers to more accurately predict the potential migration and impact of pollutants on the soil and groundwater. As part of ongoing environmental site investigations in Steuben County, well data were collected from Indiana Department of Environmental management (IDEM) and the State of Indiana Department of Natural Resources to determine local and regional groundwater flow directions. Of the 162 registered wells in the study area, only 67 of them, that is, 41% of the data could be used. The remaining well data could not be used because of poor, inaccurate or incomplete information on the forms (i.e., location description, well log, elevation, etc.). The regional groundwater flow direction was northwest as would be expected from the topography. A groundwater divide or ridge that was implied from the local groundwater flow directions could not be confirmed due to poor well data. The determination of groundwater flow direction was made more complicated due to incomplete well logs from drillers. Increased industrial activities in the region could lead to greater potential for surface and groundwater pollution problems. It is recommended that well data be collected by qualified personnel (field geologists) during well drilling.

Goings, M.H. (ATEC Associates, Inc., Fort Wayne, IN (United States)); Isiorho, S.A. (Indiana Univ-Purdue Univ., Fort Wayne, IN (United States). Dept. of Geosciences)

1994-04-01T23:59:59.000Z

59

Heat-flow studies in Wyoming, 1979 to 1981  

DOE Green Energy (OSTI)

Thirty heat flow values completed during May 1981 for Wyoming are tabulated and updated maps of heat flow in Wyoming and adjacent areas are presented.

Decker, E.R.; Heasler, H.P.; Buelow, K.L.

1981-12-01T23:59:59.000Z

60

Flow visualization study of the MOD-2 wind turbine wake  

DOE Green Energy (OSTI)

The specific objectives of the study reported were: to determine the geometry of the MOD-2 wind turbine wake in terms of wake height and width as a function of downstream distance under two conditions of atmospheric stability; to estimate the mean velocity deficit at several downstream stations in the turbine wake; and to investigate the behavior of the rotor-generated vortices, particularly their configuration and persistence. The background of the wake problem is briefly examined, including a discussion of the critical issues that the flow visualization study addresses. Experimental techniques and data analysis methods are described in detail. (LEW)

Liu H.T.; Waite, J.W.; Hiester, T.R.; Tacheron, P.H.; Srnsky, R.A.

1983-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Impacts of increased outdoor air flow rates on annual HVAC energy costs in office environment.  

E-Print Network (OSTI)

??The use of different ventilation systems has an important impact on the energy cost of office buildings. This paper examines the relationship between heating and… (more)

Destrez, Adrien

2011-01-01T23:59:59.000Z

62

Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport  

Science Conference Proceedings (OSTI)

Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represents initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial conditions for steady-state flow runs, simulations were executed to investigate the relative effects on contaminant transport from the increased upland fluxes. Contaminant plumes were analyzed for 1) peak concentrations and arrival times at downstream points of compliance, 2) the area of the aquifer contaminated at or above the drinking water standard (DWS), and 3) the total activity remaining in the domain at the end of the simulation. In addition to this analysis, unit source release simulations from a hypothetical tracer were executed to determine relative travel times from the Central Plateau. The results of this study showed that increases in the lateral recharge had limited impact on regional flow directions but accelerated contaminant transport. Although contaminant concentrations may have initially increased for the more mobile contaminants (tritium, technetium-99, and iodine-129), the accelerated transport caused dilution and a more rapid decline in concentrations relative to the Base Case (no additional flux). For the low-mobility uranium-238, higher lateral recharge caused increases in concentration, but these concentrations never approached the DWS. In this preliminary investigation, contaminant concentrations did not exceed the DWS study metric. With the increases in upland fluxes, more mass was transported out of the aquifer, and concentrations were diluted with respect to the base case where no additional flux was considered.

Freedman, Vicky L.

2008-01-30T23:59:59.000Z

63

A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent Predictability in the ECMWF Ensemble Prediction System  

Science Conference Proceedings (OSTI)

Understanding model error in state-of-the-art numerical weather prediction models and representing its impact on flow-dependent predictability remains a complex and mostly unsolved problem. Here, a spectral stochastic kinetic energy backscatter ...

J. Berner; G. J. Shutts; M. Leutbecher; T. N. Palmer

2009-03-01T23:59:59.000Z

64

Study the power flow control of a power system with unified power flow controller.  

E-Print Network (OSTI)

??Electrical power systems is a large interconnected network that requires a careful design to maintain the system with continuous power flow operation without any limitations.… (more)

Peesari, Vakula

2010-01-01T23:59:59.000Z

65

Study Shows Significant Economic Impact from Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 03, 2011 May 03, 2011 Study Shows Significant Economic Impact from Recovery Act AIKEN, S.C. - A study recently released shows the $1.6 billion the Savannah River Site (SRS) received from the American Recovery and Reinvestment Act has had a positive economic impact on the adjacent five-county region. The study's findings were presented at the University of South Carolina Aiken's (USC Aiken) Convocation Center. More than 75 people attended the meeting, where presenters commended the Recovery Act for accelerating Cold War cleanup at SRS and boosting employment and business in the local community. "I go out to the sites and talk to the people in the communities," EM Chief Operations Officer Cynthia Anderson said at the meeting. "The Recovery Act is

66

The case for coordination : equity, efficiency and passenger impacts in air traffic flow management  

E-Print Network (OSTI)

In this thesis, we develop multi-resource integer optimization formulations for coordinating Traffic Flow Management (TFM) programs with equity considerations. Our multi-resource approaches ignore aircraft connectivity ...

Fearing, Douglas (Douglas Stephen)

2010-01-01T23:59:59.000Z

67

Impact of Dynamic Ratings, Major Power Flow Upgrades, and Green Power Integration on System Planning  

Science Conference Proceedings (OSTI)

Electric power utilities around the world are undergoing a major transformation, which is redefining the utilization of existing power equipment in the electric transmission network due to limited financial incentives and lengthy licensing process for new construction. Under these circumstances, the utilities are forced to find new ways of increasing power flow quickly through existing transmission corridors with minimal investments. Increased power flows of transmission circuits can be achieved by contr...

2009-12-14T23:59:59.000Z

68

Impact Studies Using a One Stage Light Gas Gun  

E-Print Network (OSTI)

The Center for Astrophysics,Space Physics, and Engineering Research (CASPER) has completed construction and calibration of a Light Gas Gun (LGG), which is used for low velocity impact studies. At geosynchronous orbit, space debris can impact commercial satellites at velocities of 500 m/s [1] reducing their useful lifetime. Additionally, there is an ever-increasing population of abandoned nonoperational satellites and related debris in these orbits [2]. Therefore, it is important to clearly understand the physics behind how such collisions can cause structural damage. This is most easily determined by measuring the damage incurred on representative material exposed to test collisions in the laboratory. Data collected in this manner will not only help illuminate the shock physics involved but can also aid in providing methods for designing advanced shielding for satellites.

Jorge Carmona; Mike Cook; Jimmy Schmoke; Katie Harper; Jerry Reay; Lorin Matthews; Truell Hyde

2004-01-29T23:59:59.000Z

69

Numerical Study on Flow Pass of a Three-Dimensional Obstacle under a Strong Stratification Condition  

Science Conference Proceedings (OSTI)

A three-dimensional, nonhydrostatic, numerical turbulent model was used to study the flow pass of a three-dimensional obstacle under a strong stratification condition. The numerical results clarify the behavior of the flow at a low Froude number, ...

W. Sha; K. Nakabayashi; H. Ueda

1998-10-01T23:59:59.000Z

70

Numerical Studies of the Beta Effect in Tropical Cyclone Motion. Part II: Zonal Mean Flow Effects  

Science Conference Proceedings (OSTI)

The motion of tropical vortices in east–west mean flows is studied with the barotropic vorticity equation on the beta plane. The vorticity equation is integrated numerically from an initially symmetric vortex embedded in (i) a linear shear flow ...

R. T. Williams; Johnny C-L. Chan

1994-04-01T23:59:59.000Z

71

The impact of climate, CO2, nitrogen deposition and land use change on simulated contemporary global river flow  

SciTech Connect

We investigated how climate, rising atmospheric CO2 concentration, increasing anthropogenic nitrogen deposition and land use change influenced continental river flow over the period 1948-2004 using the Community Land Model version 4 (CLM4) with coupled river transfer model (RTM), a global river routing scheme. The model results indicate that the global mean river flow shows significant decreasing trend and climate forcing likely functions as the dominant controller of the downward trend during the study period. Nitrogen deposition and land use change account for about 5% and 2.5% of the decrease in simulated global scale river flow, respectively, while atmospheric CO2 accounts for an upward trend. However, the relative role of each driving factor is heterogeneous across regions in our simulations. The trend in river flow for the Amazon River basin is primarily explained by CO2, while land use change accounts for 27.4% of the downward trend in river flow for the Yangtze rive basin. Our simulations suggest that to better understand the trends of river flow, it is not only necessary to take into account the climate, but also to consider atmospheric composition, carbon-nitrogen interaction and land use change, particularly for regional scales.

Shi, Xiaoying [ORNL; Mao, Jiafu [ORNL; Thornton, Peter E [ORNL; Hoffman, Forrest M [ORNL; Post, Wilfred M [ORNL

2011-01-01T23:59:59.000Z

72

Laboratory Study of Rotating, Stratified, Oscillatory Flow over a Seamount  

Science Conference Proceedings (OSTI)

Pure oscillatory flow of a rotating, linearly stratified fluid in the vicinity of an isolated topography of revolution is considered in the laboratory. The pertinent dimensionless parameters governing the motion are the Rossby (Ro), temporal ...

Xiuzhang Zhang; Don L. Boyer

1993-06-01T23:59:59.000Z

73

World Bank-Morocco Study on the Impact of Climate Change on the...  

Open Energy Info (EERE)

Morocco Study on the Impact of Climate Change on the Agricultural Sector Jump to: navigation, search Name World Bank-Morocco Study on the Impact of Climate Change on the...

74

Network flow model analysis of the impact of chlorofluorocarbon phaseout on acid-grade fluorspar. Information circular/1994  

SciTech Connect

Chlorofluorocarbons (CFC`s) are being phased out and eventually banned under extensive international agreements because the chlorine in CFC`s is thought to deplete the Earth`s ozone layer. As a result, the fluorspar mining industry, which is the source of fluorine in fluorocarbons through intermediate hydrofluoric acid, is being affected. Concern for this impact has led the U.S. Bureau of Mines to employ its capabilities to analyze various scenarios in the evolution of CFC replacements and substitutes to determine their effect on fluorspar mining. This report utilizes a network flow model to examine the effects of proposed replacements for CFC`s, in terms of fluorine content, on fluorspar operations worldwide and on hydrofluoric acid plants in North America and Europe.

Slatnick, J.A.; Fulton, R.B.

1994-12-31T23:59:59.000Z

75

A comparative study of the aerodynamics of several wind turbines using flow visualization  

Science Conference Proceedings (OSTI)

This paper reports flow visualization techniques used to study the flows over the Enertech 21-5, Carter 25, and Enertech 44-50. Despite centrifugal effects superimposed on the aerodynamics, tufting (gross aerodynamic behavior) and oil flow (average boundary layer behavior), tests reveal the nature and many of the details of the flows involved. Results were compared to expected flow patterns based on angles of attack calculated from the PROPPC code. Chord Reynolds numbers ranged between 75,000 (Enertech 21-5) to 1,340,000 (Enertech 44-50). The typical low Reynolds number flow characteristics of these airfoils, including laminar separation bubbles, turbulent reattachment, and complete separation were observed. full or partial reattachment due to tower shadow was observed on each machine. Spanwise flow was observed near the leading edge of the Enertech 21-5. Cyclic radial flow from tower dam effect was also noted.

Eggleston, D.M. (Control Engineering, Univ. of Texas of the Permian Basin, Odessa, TX (US)); Starcher, K. (Alternative Energy Inst., West Texas State Univ., Canyon, TX (US))

1990-11-01T23:59:59.000Z

76

Accepted Manuscript Integrated models to study the impact of ELMs and disruptions on lithium in  

E-Print Network (OSTI)

Accepted Manuscript Integrated models to study the impact of ELMs and disruptions on lithium the impact of ELMs and disruptions on lithium in the NSTX divertor, Journal of Nuclear Materials (2010), doi models to study the impact of ELMs and disruptions on lithium in the NSTX divertor Valeryi Sizyuk

Harilal, S. S.

77

MERCURY FLOWS IN EUROPE AND THE WORLD: THE IMPACT OF DECOMMISSIONED CHLOR-ALKALI PLANTS  

E-Print Network (OSTI)

care and due diligence, in accordance with the terms of Study Contract Nş B4-3040/2002/340756/MAR/D3,

Rue De; La Loi; Sprl Concorde

2004-01-01T23:59:59.000Z

78

A computational study of axial dispersion in segmented gas-liquid flow Metin Muradoglua  

E-Print Network (OSTI)

A computational study of axial dispersion in segmented gas-liquid flow Metin Muradoglua Department-dimensional gas-liquid flow is studied computationally using a finite-volume/front-tracking method. The effects models. © 2007 American Institute of Physics. DOI: 10.1063/1.2750295 I. INTRODUCTION Segmented gas-liquid

Muradoglu, Metin

79

Systematic Study of Directed Flow at RHIC Energies  

E-Print Network (OSTI)

Directed flow, v1, of charged hardons has been measured in Au-Au collisions at RHIC for center-of-mass energies sqrt(sNN) = 19.6, 130, 62.4, and 200 GeV using the PHOBOS detector. The large acceptance of PHOBOS for charged particles allows measurements over the full range of pseudorapidity |eta| <5.4. The results for a symmetric subevent method are shown at all four energies. Comparison is made to a mixed harmonic method for the highest energy, and compared to similar results from the STAR collaboration.

Alice C. Mignerey; for the Phobos Collaboration

2005-10-10T23:59:59.000Z

80

Case Study Impact Evaluations of the Industrial Energy Savings Plan  

E-Print Network (OSTI)

This paper presents the results of a series of five case study impact evaluations of Energy Savings Plan (ESP) industrial energy efficiency projects funded by the Bonneville Power Administration (BPA) and Seattle City Light (City Light). These industrial sector evaluations are among the first in the Pacific Northwest to evaluate both energy and non-energy effects. The projects chosen for evaluation cover a wide range of industrial processes and end-uses. Each industrial setting, the efficiency measures installed and the processes affected are described in this paper. The report presents energy (kWh) and peak demand (kW) savings indexed to changes in production volume, an assessment of non-energy benefits to the participating customer, and cost-effectiveness analyses from four stakeholder perspectives. Levelized cost (expressed in cents per kWh) and benefit-cost ratios were calculated for each project, both including and excluding quantifiable energy non-energy benefits. A summary of conclusions and lessons learned is also provided. The evaluation team included Patrick Lilly of Regional Economic Research Inc., Paresh Parekh of Unicade Inc., D'Arcy Swanson of Pacific Sciences Inc., and Dennis Pearson at Seattle City Light.

Lilly, P.; Pearson, D.

1999-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

An exploratory study of the selection of communication media: The relationship between flow and communication outcomes  

Science Conference Proceedings (OSTI)

This study examined how two communication media (e-mail and instant messaging) affected communication outcomes; and, more specifically, how these two media influenced the relationship between flow experience and communication outcomes. An experiment ... Keywords: Communication outcome, E-mail, Flow, Instant messaging, Interactive messaging, Media richness theory (MRT)

Kuanchin Chen; David C. Yen; Shin-Yuan Hung; Albert H. Huang

2008-11-01T23:59:59.000Z

82

Experimental studies of the flow of concentrated hard sphere suspensions into a constriction  

E-Print Network (OSTI)

Experimental studies of the flow of concentrated hard sphere suspensions into a constriction L Isa1 driven flow of dense suspensions of micron­ sized hard spheres into glass capillaries. The first one the presence of "particles" (blood cells) is taken into account, the scenario acquires more complexity

Weeks, Eric R.

83

Host Utility Study of System Operating Impacts of FACTS Technologies  

Science Conference Proceedings (OSTI)

Flexible AC Transmission system (FACTS) devices can enhance power system control via added economic transfers and increased security and reliability. This report assesses FACTS system impacts and identifies ways of improving system performance through centralized FACTS coordination and control.

1995-08-24T23:59:59.000Z

84

Shooting device for free-surface impact studies  

E-Print Network (OSTI)

The hydrodynamics of free-surface impacts are of great interest to scientists across many disciplines including ocean engineering, fluids mechanics, and biology. This thesis focuses on designing a mechanism to shoot small ...

Daigh, Sara L. (Sarah Louise), 1981-

2004-01-01T23:59:59.000Z

85

Numerical Study of Geometry and Rotation Dependence on the Flow in Labyrinth Seals  

E-Print Network (OSTI)

A computational study was conducted on the flow, both compressible and incompressible, in a labyrinth seal at various geometries and rotation rates. The computations were performed using the commercial software Fluent® which solves the k-? model to predict the flow field in the seal. Various clearance-pitch ratios were used to study the effect of clearance on the flow. The aspect ratio, which is defined as the pitch-height ratio was varied to study the influence of the depth of the cavity on the flow as a whole. These studies span a range of Taylor's number that is defined accordingly, while fixing the Reynolds number at 1000. The effects of clearance, aspect ratio and rotational rates are studied using carry-over coefficient and discharge coefficient. It is observed that a secondary recirculation zone (SRZ) occurs inside a seal cavity at above certain Taylor's number. This significantly changes the flow field in the seal and the cavity which results an increases in pressure drop across the seal for a given flow boundary condition. This formation of SRZ's is more evident in incompressible flow and occur at prohibitively high rotational speeds in case of air (compressible flow). It is also observed that flow with teeth on rotor are characterized by SRZ's while it's not case with teeth on stator. A flow map which shows the onset and presence of SRZ's is shown. The ratio of tangential velocity of the shaft to the average of the swirl velocity in a cavity at various geometries of the cavities are presented. They seem to be decreasing with decreasing depth and follow a linear pattern with the aspect ratios of the cavity.

Yamsani, Vamshi Krishna

2011-08-01T23:59:59.000Z

86

Study of gas flow dynamics in porous and granular media with laser-polarized ą˛?Xe NMR  

E-Print Network (OSTI)

This thesis presents Nuclear Magnetic Resonance (NMR) studies of gas flow dynamics in porous and granular media by using laser-polarized ą˛?Xe . Two different physical processes, the gas transport in porous rock cores and ...

Wang, Ruopeng, 1972-

2005-01-01T23:59:59.000Z

87

A Spectral Model for Process Studies of Rotating, Density-Stratified Flows  

Science Conference Proceedings (OSTI)

A numerical model designed for three-dimensional process studies of rotating, stratified flows is described. The model is freely available, parallel, and portable across a range of computer architectures. The underlying numerics are high quality, ...

K. B. Winters; J. A. MacKinnon; Bren Mills

2004-01-01T23:59:59.000Z

88

A Numerical Study of Thermal Effects on Flow and Pollutant Dispersion in Urban Street Canyons  

Science Conference Proceedings (OSTI)

This study investigates thermal effects on the flow and pollutant dispersion in urban street canyons. A two-dimensional numerical model with a k–? turbulent closure scheme is developed, and the heat transfer between the air and the building wall ...

Jae-Jin Kim; Jong-Jin Baik

1999-09-01T23:59:59.000Z

89

Environmental flow for Monsoon Rivers in India: The Yamuna River as a case study  

E-Print Network (OSTI)

We consider the flows of Monsoon Rivers in India that will permit the river to perform all its natural functions. About 80% of the total flow for Indian rivers is during the monsoon and the remaining 20% is during the non monsoon period. By carrying out a case study of the river Yamuna in Delhi we find that at least 50% of the virgin monsoon (July to September) flow is required for the transport of the full spectrum of soil particles in the river sediment. A similar flow is needed for adequate recharge of the floodplain aquifers along river. For the non monsoon period (October to June) about 60% of the virgin flow is necessary to avoid the growth of still water algae and to support river biodiversity.

Soni, Vikram; Singh, Diwan

2013-01-01T23:59:59.000Z

90

A Lattice Boltzmann study of flow along patterned surfaces and through channels with alternating slip length  

E-Print Network (OSTI)

In microfluidics, varying wetting properties, expressed in terms of the local slip length, can be used to influence the flow of a liquid through a device. We study flow past surfaces on which the slip length is modulated in stripes. We find that the effective slip length for such a flow can be expressed as a function of the individual slip lengths on the stripes. The angle dependence of the effective slip is in excellent agreement with a recent theory describing the slip length as a tensorial quantity. This tensorial nature allows to induce a transverse flow, which can be used in micro mixers to drive a vortex. In our simulations of a flow through a square channel with patterned surfaces we see a homogeneous rotation about the direction of the flow. We investigate the influence of patterns of cosine shaped varying local slip on the flow field depending on the orientation of the pattern and find the largest effective slip length for periods of stripes parallel to the flow direction.

Nayaz Khalid Ahmed; Martin Hecht

2009-10-14T23:59:59.000Z

91

A numerical study of flow-structure interactions with application to flow past a pair of cylinders  

E-Print Network (OSTI)

Flow-structure interaction is a generic problem for many engineering applications, such as flow--induced oscillations of marine risers and cables. In this thesis a Direct Numerical Simulation (DNS) approach based on ...

Papaioannou, Georgios (Georgios Vasilios), 1975-

2004-01-01T23:59:59.000Z

92

World Bank-Morocco Study on the Impact of Climate Change on the  

Open Energy Info (EERE)

Morocco Study on the Impact of Climate Change on the Morocco Study on the Impact of Climate Change on the Agricultural Sector Jump to: navigation, search Name World Bank-Morocco Study on the Impact of Climate Change on the Agricultural Sector Agency/Company /Organization World Bank Sector Land Focus Area Agriculture Topics Co-benefits assessment, Background analysis Resource Type Lessons learned/best practices Website http://www.fao.org/nr/climpag/ Country Morocco UN Region Northern Africa References Morocco Study on the Impact of Climate Change on the Agricultural Sector[1] Summary "The present document is an interim report on climate change impacts on crop yields in Morocco. It is part of a larger study led by the World Bank and the Government of Morocco on climate change and agriculture. The yield

93

Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report  

DOE Green Energy (OSTI)

The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.

Matthews, K.M.

1983-07-01T23:59:59.000Z

94

Engineering study and conceptual design report for primary ventilation duct flow monitoring  

DOE Green Energy (OSTI)

The objective of this engineering study is to develop the preferred method and concepts for measurement of the primary exhaust ventilation flow rates in Double Shell Tanks (DSTs) on the hydrogen watch list. This includes tanks 101-AW, 103, 104, and 105-AN, and 103-SY. A systems engineering approach is utilized to weight the desired characteristics of the flow monitoring system, and then select the best alternative

Hertelendy, N.A.

1995-10-31T23:59:59.000Z

95

Geothermal investigations in Idaho. Part 8. Heat flow study of the Snake River Plain region, Idaho  

DOE Green Energy (OSTI)

The Snake River Plain of Idaho has recent lava flows and a large number of thermal springs and wells. A heat flow study was initiated which, together with available geological and geophysical information, allows a better definition of the geothermal resource and evaluation of the geothermal potential. Local geothermal anomalies were not the objects of this study and have not been studied in detail. The quality of the heat flow values obtained varies as interpretation was necessary to determine geothermal gradients for many of the holes which had disturbances. A major problem in determining the heat flow values is the lack of knowledge of the in situ porosity of the rocks. The heat flow values obtained for the Eastern Snake River Plain are from shallow wells (< 200 m), hence the heat flow there is low (< 0.5 HFU) because of the water movement in the Snake Plain aquifer. The anomalous regional heat flow pattern around the Snake River Plain, together with other geophysical and geological data, suggest the presence of a major crustal heat source. With the exception of the area of the Snake Plain aquifer, high geothermal gradients were found in all areas of southern Idaho (40 to 100/sup 0/C/km). Temperatures hot enough for space heating can be found most anywhere in the Plain at relatively shallow depths (1 to 2 km). Temperatures hot enough for electrical power generation (200/sup 0/C) can be found beneath southern Idaho almost anywhere at depths of 3 to 4 kilometers. The Plain is fault bounded and hot water circulating along the fault zones from depths can be a very important geothermal resource at shallow depths. The margins of the Plain have the highest heat flow values, are the most faulted, and have possibly the highest geothermal resource potential.

Brott, C.A.; Blackwell, D.D.; Mitchell, J.C.

1976-09-01T23:59:59.000Z

96

Study of nuclear dynamics of neutron-rich colliding pair at energy of vanishing flow  

E-Print Network (OSTI)

We study nuclear dynamics at the energy of vanishing flow of neutron-rich systems having N/Z ratio 1.0, 1.6 and 2.0 throughout the mass range at semi central colliding geometry. In particular we study the behavior of average and maximum density with N/Z dependence of the system.

Sakshi Gautam

2011-07-28T23:59:59.000Z

97

Preliminary studies on the impact of smoke on digital equipment  

Science Conference Proceedings (OSTI)

Last year the USNRC initiated a program at Sandia National Laboratories to determine the potential impact of smoke on advanced safety-related digitial instrumentation. In recognition of the fact that the reliability of safety-related equipment during or shortly after a fire in a nuclear power plant is more risk significant than long-term effects, we are concentrating on short-term failures. We exposed a multiplexer module board to three different types of smoke to determine whether the smoke would affect its operation. The operation of the multiplexer board was halted by one out of the three smoke exposures. In coordination with Oak Ridge National Laboratory, an experimental digital safety system was also smoke tested. The series of tests showed that smoke can cause potentially serious failures of a safety system. Most of these failures were intermittent and showed that smoke can temporarily interrupt communication between digital systems.

Tanaka, T.J. [Sandia National Labs., Albuquerque, NM (United States); Korsah, K. [Oak Ridge National Lab., TN (United States); Antonescu, C. [USNRC Office of Research, Washington, DC (United States)

1995-12-01T23:59:59.000Z

98

Scoping Study on the Safety Impact of Valve Spacing in Natural Gas Pipelines  

Science Conference Proceedings (OSTI)

The U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration (PHMSA) is responsible for ensuring the safe, reliable, and environmentally sound operation of the nation's natural gas and hazardous liquid pipelines. Regulations adopted by PHMSA for gas pipelines are provided in 49 CFR 192, and spacing requirements for valves in gas transmission pipelines are presented in 49 CFR 192.179. The present report describes the findings of a scoping study conducted by Oak Ridge National Laboratory (ORNL) to assist PHMSA in assessing the safety impact of system valve spacing. Calculations of the pressures, temperatures, and flow velocities during a set of representative pipe depressurization transients were carried out using a one-dimensional numerical model with either ideal gas or real gas properties for the fluid. With both ideal gas and real gas properties, the high-consequence area radius for any resulting fire as defined by Stevens in GRI-00/0189 was evaluated as one measure of the pipeline safety. In the real gas case, a model for convective heat transfer from the pipe wall is included to assess the potential for shut-off valve failures due to excessively low temperatures resulting from depressurization cooling of the pipe. A discussion is also provided of some additional factors by which system valve spacing could affect overall pipeline safety. The following conclusions can be drawn from this work: (1) Using an adaptation of the Stephens hazard radius criteria, valve spacing has a negligible influence on natural gas pipeline safety for the pipeline diameter, pressure range, and valve spacings considered in this study. (2) Over the first 30 s of the transient, pipeline pressure has a far greater effect on the hazard radius calculated with the Stephens criteria than any variations in the transient flow decay profile and the average discharge rate. (3) Other factors besides the Stephens criteria, such as the longer burn time for an accidental fire, greater period of danger to emergency personnel, increased unavoidable loss of gas, and possible depressurization cooling of the shut-off valves may also be important when deciding whether a change in the required valve spacing would be beneficial from a safety standpoint. (4) The average normalized discharge rate of {lambda}{sub avg} = 0.33 assumed by Stephens in developing his safety criteria is an excellent conservative value for natural gas discharge at the pressures, valve spacings, and pipe diameter used in this study. This conclusion remains valid even when real rather than ideal gas properties are considered in the analysis. (5) Significant pipe wall cooling effects (T{sub w} pipeline rupture accident.

Sulfredge, Charles David [ORNL

2007-07-01T23:59:59.000Z

99

Characterizing the impact of end-system affinities on the end-to-end performance of high-speed flows  

Science Conference Proceedings (OSTI)

Multi-core end-systems use Receive Side Scaling (RSS) to parallelize protocol processing. RSS uses a hash function on the standard flow descriptors and an indirection table to assign incoming packets to receive queues which are pinned to specific cores. ... Keywords: 40 Gbps network, ESnet, RFS, RPS, application affinity, end-system performance, flow affinity, high-speed network, multi-core affinization

Nathan Hanford, Vishal Ahuja, Mehmet Balman, Matthew K. Farrens, Dipak Ghosal, Eric Pouyoul, Brian Tierney

2013-11-01T23:59:59.000Z

100

Impact of Precipitation on Aerosol Spectral Optical Depth and Retrieved Size Distributions: A Case Study  

Science Conference Proceedings (OSTI)

A case study is presented on the impact of two isolated, strong thundershowers during a prevailing dry, sunny season on the spectral optical depths and inferred columnar size characteristics of atmospheric aerosols at a tropical station. Results ...

Auromeet Saha; K. Krishna Moorthy

2004-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Experimental study on corrugated cross-flow air-cooled plate heat exchangers  

SciTech Connect

Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang [Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea); Lim, Hyug [Research and Development Center, LHE Co., Ltd., Gimhae 621-874 (Korea)

2010-11-15T23:59:59.000Z

102

Heat flow and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report  

DOE Green Energy (OSTI)

The present research effort at the Coso Geothermal Area located on the China Lake Naval Weapons Center, China Lake, California, was concerned with: (1) heat flow studies and (2) microearthquake studies associated with the geothermal phenomena in the Coso Hot Springs area. The sites for ten heat flow boreholes were located primarily using the available seismic ground noise and electrical resistivity data. Difficulty was encountered in the drilling of all of the holes due to altered, porous, faulted, and sometime highly fractures zones. Thermal conductivity measurements were completed using both the needle probe technique and the divided bar apparatus with a cell arrangement. Heat flow values were obtaned by combining equilibrium temperature measurements with the appropriate thermal conductivity values. Heat, in the upper few hundred meters of the subsurface associated with the Coso Geothermal Area, is being transferred by a conductive heat transfer mechanism with a value of approximately 15 ..mu..cal/cm/sup 2/-sec. This is typical of geothermal systems throughout the world and is approximately ten times the normal terrestrial heat flow of 1.5 HFU. The background heat flow for the Coso region is about 3.5 HFU.

Combs, J.

1975-01-01T23:59:59.000Z

103

Studies on Impact of Calcined Petroleum from Different Sources on ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium , Electrode Technology for Aluminium Production. Presentation Title, Studies ...

104

Preliminary Study of Turbulent Flow in the Lower Plenum of a Gas-Cooled Reactor  

Science Conference Proceedings (OSTI)

A preliminary study of the turbulent flow in a scaled model of a portion of the lower plenum of a gas-cooled advanced reactor concept has been conducted. The reactor is configured such that hot gases at various temperatures exit the coolant channels in the reactor core, where they empty into a lower plenum and mix together with a crossflow past vertical cylindrical support columns, then exit through an outlet duct. An accurate assessment of the flow behavior will be necessary prior to final design to ensure that material structural limits are not exceeded. In this work, an idealized model was created to mimic a region of the lower plenum for a simplified set of conditions that enabled the flow to be treated as an isothermal, incompressible fluid with constant properties. This is a first step towards assessing complex thermal fluid phenomena in advanced reactor designs. Once such flows can be computed with confidence, heated flows will be examined. Experimental data was obtained using three-dimensional Particle Image Velocimetry (PIV) to obtain non-intrusive flow measurements for an unheated geometry. Computational fluid dynamic (CFD) predictions of the flow were made using a commercial CFD code and compared to the experimental data. The work presented here is intended to be scoping in nature, since the purpose of this work is to identify improvements that can be made to subsequent computations and experiments. Rigorous validation of computational predictions will eventually be necessary for design and analysis of new reactor concepts, as well as for safety analysis and licensing calculations.

T. Gallaway; D.P. Guillen; H.M. McIlroy, Jr.; S.P. Antal

2007-09-01T23:59:59.000Z

105

A FLOW VISUALIZATION STUDY OF THE GAS DYNAMICS OF LIQUID METAL ATOMIZATION NOZZLES  

E-Print Network (OSTI)

A FLOW VISUALIZATION STUDY OF THE GAS DYNAMICS OF LIQUID METAL ATOMIZATION NOZZLES S.P. Mates and G-velocity gas to bear on the liquid metal, may point the way towards enhancing powder production capability Gas atomization of liquid metal via close-coupled nozzle technology is used to produce metal powders

Settles, Gary S.

106

A Numerical Study on Tropical Cyclone Intensification. Part I: Beta Effect and Mean Flow Effect  

Science Conference Proceedings (OSTI)

The effect of planetary vorticity gradient (beta) and the presence of a uniform mean flow on the intensification of tropical cyclones are studied using a limited-area primitive equation model. The most intense storm evolves on a constant-f plane ...

Melinda S. Peng; Bao-Fong Jeng; R. T. Williams

1999-05-01T23:59:59.000Z

107

Molecular Tagging Diagnostics for the Study of Kinematics and Mixing in Liquid-Phase Flows  

E-Print Network (OSTI)

Molecular Tagging Diagnostics for the Study of Kinematics and Mixing in Liquid-Phase Flows M. M based on molecular tagging approaches. These developments take advantage of a class of newly engineered and caged fluorescein are briefly discussed and compared. The application of molecular tagging velocimetry

Koochesfahani, Manoochehr M.

108

Theoretical Studies of Convectively Forced Mesoscale Flows in Three Dimensions. Part I: Uniform Basic-State Flow  

Science Conference Proceedings (OSTI)

Convectively forced mesoscale flows in three dimensions are theoretically investigated by examining the transient response of a stably stratified atmosphere to convective heating. Solutions for the equations governing small-amplitude ...

Ji-Young Han; Jong-Jin Baik

2009-04-01T23:59:59.000Z

109

Study of Performance of Heat Pump Usage in Sewage Treatment and Fouling Impact on System  

E-Print Network (OSTI)

A heat pump using disposed sewage as a heat source to heat raw sewage is presented to solve the problem that sewage temperature is low in sewage biologic treatment in cold region. According to the status of one medicine factory in Harbin, China, system performances are simulated. Then the impact of fouling on system performance is emulated in detail. The results show that the novel system is feasible to be utilized in sewage treatment for its energy-saving and high efficient characteristics, and that raw sewage temperature can be enhanced to 29.569?, and EER of system can reach 4.177. Fouling impact on system not only depends on the fouling thermal resistance, but also is related to heat transfer coefficient. Increased fouling leads to severely deteriorated performance of the compressor, and a decrease in EER and refrigerant mass flow rate.

Song, Y.; Yao, Y.; Ma, Z.; Na, W.

2006-01-01T23:59:59.000Z

110

Hydrodynamics of adiabatic inverted annular flow: an experimental study. [PWR; BWR  

SciTech Connect

For low-quality film boiling in tubes or rod bundles, the flow pattern may consist of a liquid jet-like core surrounded by a vapor annulus, i.e., inverted annular flow. The stability, shape, and break-up mechanisms of this liquid core must be understood in order to model correctly this regime and to develop appropriate interfacial transfer correlations. This paper reports on a study in which inverted annular flow was simulated in an adiabatic system. Turbulent water jets, issuing downward from long-aspect nozzles were enclosed within cocurrent gas annuli. Jet-core diameter and velocity, and gas-annulus diameter, velocity, and species were varied, yielding liquid Reynolds numbers up to 33,000, void fractions from 0.29 to 0.95, and relative velocities from near zero to over 80 m/s. Jet-core break-up lengths and secondarily, core break-up mechanisms, were observed visually, using strobe lighting.

De Jarlais, G.; Ishii, M.

1983-01-01T23:59:59.000Z

111

Integrated Experimental and Modeling Studies to Predict the Impact Response of Explosives and Propellants  

DOE Green Energy (OSTI)

Understanding and predicting the impact response of explosives and propellants remains a challenging area in the energetic materials field. Efforts are underway at LLNL (and other laboratories) to apply modern diagnostic tools and computational analysis to move beyond the current level of imprecise approximations towards a predictive approach more closely based on fundamental understanding of the relevant mechanisms. In this paper we will discuss a set of underlying mechanisms that govern the impact response of explosives and propellants: (a) mechanical insult (impact) leading to material damage and/or direct ignition; (b) ignition leading to flame spreading; (c) combustion being driven by flame spreading, perhaps in damaged materials; (d) combustion causing further material damage; (e) combustion leading to pressure build-up or relief; (f) pressure changes driving the rates of combustion and flame spread; (g) pressure buildup leading to structural response and damage, which causes many of the physical hazards. We will briefly discuss our approach to modeling up these mechanistic steps using ALE 3D, the LLNL hydrodynamic code with fully coupled chemistry, heat flow, mass transfer, and slow mechanical motion as well as hydrodynamic processes. We will identify the necessary material properties needed for our models, and will discuss our experimental efforts to characterize these properties and the overall mechanistic steps, in order to develop and parameterize the models in ALE 3D and to develop a qualitative understanding of impact response.

Maienschein, J L; Nichols III, A L; Reaugh, J E; McClelland, M E; Hsu, P C

2005-05-25T23:59:59.000Z

112

Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow through Porous Media  

E-Print Network (OSTI)

for Modeling Fluid and Heat Flow in Fractured Porous Media,"Newtonian fluid flow through porous or fractured media. The

Wu, Y.S.

1990-01-01T23:59:59.000Z

113

Scrape-Off-Layer Flow Studies in Tokamaks: Final Report of LDRD Project 09-ERD-025  

SciTech Connect

A summary is given of the work carried out under the LDRD project 09-ERD-025 entitled Scrape-Off-Layer Flow Studies in Tokamaks. This project has lead to implementation of the new prototype Fourier Transform Spectrometer edge plasma flow diagnostic on the DIII-D National Fusion Facility at General Atomics, acquisition of carbon impurity concentration and flow data, and demonstration that the resulting data compare reasonably well with LLNL's edge plasma transport code UEDGE. Details of the work are contained in attached published papers, while the most recent results that are being written-up for publication are summarized in the report. Boundary plasma flows in tokamak fusion devices are key in determining the distribution of fuel and impurity ions, with tritium build-up in the walls an especially critical operational issue. The intrusion of impurity ions to the hot plasma core region can result in serious energy-loss owing to line radiation. However, flow diagnostic capability has been severely limited in fusion-relevant hot edge plasmas where Langmuir-type probes cannot withstand the high heat flux and traditional Doppler spectroscopy has limited resolution and signal strength. Thus, new edge plasma flow diagnostic capabilities need to be developed that can be used in existing and future devices such as ITER. The understanding of such flows requires simulation with 2-dimensional transport codes owing to the geometrical complexity of the edge region in contact with material surfaces and the large number of interaction physical processes including plasma flow along and across the magnetic field, and coupling between impurity and neutral species. The characteristics of edge plasma flows are substantially affected by cross-magnetic-field drifts (ExB/B{sup 2} and BxVB/B{sup 2}), which are known to introduce substantial convergence difficulty for some cases. It is important that these difficulties be overcome so that drifts can be included in transport models, both for validation with existing data and for projection to future devices.

Rognlien, T D; Allen, S L; Ellis, R M; Porter, G D; Nam, S K; Weber, T R; Umansky, M V; Howard, J

2011-11-21T23:59:59.000Z

114

Compiler Analysis for Cache Coherence: Interprocedural Array Data-Flow Analysis and Its Impact on Cache Performance  

Science Conference Proceedings (OSTI)

AbstractżIn this paper, we present compiler algorithms for detecting references to stale data in shared-memory multiprocessors. The algorithm consists of two key analysis techniques, stale reference detection and locality preserving analysis. While the ... Keywords: Compiler, interprocedural analysis, data-flow analysis, cache coherence, shared-memory multiprocessors.

Lynn Choi; Pen-Chung Yew

2000-09-01T23:59:59.000Z

115

Laser velocimetry study of the flow field in a centrifugal pump with a shrouded impeller  

E-Print Network (OSTI)

This study provides laser velocimetry measurements of the flow field within a centrifugal pump. The pump had a shrouded impeller of 254 mm diameter with five blades of backswept design. Measurements were made using a laser-two-focus (L2F) velocimetry system, both within the rotating impeller passages and in the pump volute. Both design operating conditions and off-design conditions were investigated. A comparison was made with a previous study, wherein measurements of the flow field were completed within the same pump, with an open face impeller. The absolute velocity, relative velocity, and turbulence kinetic energy levels were measured. The flow field within the impeller passages for the shrouded case was notably more uniform than for the unshrouded case. In addition, the turbulence kinetic energy within the passages was substantially lower. The efficiency of the shrouded pump was, however, lower than the unshrouded version. This was attributed primarily to losses due to leakage in the clearance region between the impeller shroud and the pump casing; a rather large passage was necessary to permit optical access. Velocimetry measurements were successfully made in the clearance region, and a leakage flow calculation was made.

Moran, Michael Kevin

1994-01-01T23:59:59.000Z

116

Application Study of the Pump Water Flow Station for Building Energy Consumption Monitoring and Control Optimization  

E-Print Network (OSTI)

This paper presents a new building energy monitoring and pump speed control method. The pump speed is controlled to maintain the system resistance at an optimized value to approach the best pump efficiency and save pump power. The system resistance can be obtained by the pump head and the water flow rate calculated by the pump water-flow station (PWS), which was recently developed. The PWS measures the water flow rate using the pump head, pump speed, and pump performance curve. This method has been experimentally proved in real HVAC systems. A case study was demonstrated in this paper for application of this new method in a Continuous Commissioning (CC) practice. The case study shows that the PWS can control the pump speed to maintain the optimized system operating point. It can also measure the water flow rate and monitor energy consumption continuously with low installation and almost no maintenance cost. The results show that the new technology can save pump power and increase pump efficiency significantly.

Liu, G.; Liu, M.

2006-01-01T23:59:59.000Z

117

Flow visualisation in inclined louvered fins  

Science Conference Proceedings (OSTI)

In this study the flow within an interrupted fin design, the inclined louvered fin, is investigated experimentally through visualisation. The inclined louvered fin is a hybrid of the offset strip fin and standard louvered fin, aimed at improved performance at low Reynolds numbers for compact heat exchangers. The flow behaviour is studied in six geometrically different configurations over a range of Reynolds numbers and quantified using the concept of 'fin angle alignment factor'. The transition from steady laminar to unsteady flow was studied in detail. The fin geometry had a very large impact on the transitional flow behaviour, especially on vortex shedding. (author)

T'Joen, C.; De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University-UGent, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); Jacobi, A. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States)

2009-04-15T23:59:59.000Z

118

Droplet Laden Flow Data  

Science Conference Proceedings (OSTI)

... Flow Past a Heated Cylinder, Atomization and Sprays, 2006, 16(6 ... Numerical Modeling and Experimental Measurements of Water Spray Impact and ...

2013-07-15T23:59:59.000Z

119

Dynamics and rheology under continuous shear flow studied by X-ray photon correlation spectroscopy  

E-Print Network (OSTI)

X-ray Photon Correlation Spectroscopy (XPCS) has emerged as a unique technique allowing the measurement of dynamics in materials on mesoscopic lengthscales. In particular, applications in soft matter physics cover a broad range of topics which include, but are not limited to, nanostructured materials such as colloidal suspensions or polymers, dynamics at liquid surfaces, membranes and interfaces, and the glass or gel transition. One of the most common problems associated with the use of bright X-ray beams with soft materials is beam induced radiation damage, and this is likely to become an even more limiting factor at future synchrotron and free electron laser sources. Flowing the sample during data acquisition is one of the simplest method allowing to limit the radiation damage. In addition to distributing the dose over many different scatterers, the method also enables new functionalities such as time-resolved studies in mixing cells. Here, we further develop an experimental technique that was recently proposed combining XPCS and continuously flowing samples. More specifically, we use a model system to show how the macroscopic advective response to flow and the microscopic dissipative dynamics (diffusion) can be quantified from the X-ray data. The method has many potential applications, e.g. dynamics of glasses and gels under continuous shear/flow, protein aggregations processes, the interplay between dynamics and rheology in complex fluids.

Andrei Fluerasu; Pawel Kwasniewski; Chiara Caronna; Fanny Destremaut; Jean-Baptiste Salmon; Anders Madsen

2010-01-10T23:59:59.000Z

120

An experimental study of the flow and heat transfer between enhanced heat transfer plates for PHEs  

Science Conference Proceedings (OSTI)

The flow and heat transfer between inclined discrete rib plates for plate heat exchangers have been experimentally studied. Dye injection method is used to visualize the flow structures. The visualization results show that front vortex, rear vortex and main vortex are formed between the plates. The rib parameter influence is also studied using visualization method. The pressure drop and heat transfer between the inclined discrete rib plates as well as that between inclined continuous rib plates and smooth plates are also measured. The measured results show that the inclined discrete rib plate can enhanced heat transfer 20-25% at the same pumping power compared with the commonly used inclined continuous rib plates. (author)

Li, Xiao-wei [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Meng, Ji-an; Li, Zhi-xin [School of Aerospace, Tsinghua University, Beijing 100084 (China)

2010-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Preliminary study assesses potential impact of seismic event at Los Alamos  

NLE Websites -- All DOE Office Websites (Extended Search)

Preliminary study assesses potential impact of seismic event at Los Preliminary study assesses potential impact of seismic event at Los Alamos Preliminary study assesses potential impact of seismic event at Los Alamos New or proposed facilities are designed to meet the latest seismic response criteria. April 15, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

122

Numerical study of flow and heat transfer in 3D serpentine channels using colocated grids  

E-Print Network (OSTI)

channels, which have applications in heat-exchangers, were studied. A finite-volume code in FORTRAN was developed to solve this problem. Modules were made for generating rids in the domain, for valving the flow velocities and pressure, for solving temperature field and for post-processing the results. For solving the flow field, colocated grid formulation was used as opposed to the staggered-grid formulation, and the SIMPLE algorithm was used to link the velocity and pressure. The line-by-line method was used to solve the algebraic equations. The geometry of the problem facilitated the application of periodic inverted symmetry boundary condition. Since this is a forced convection problem, the flow field was solved first and the converged velocity field was input to the temperature solver module. The temperature field was solved for the uniform-wall-heat-flux boundary condition. The post-processing module obtained the overall friction-factor, which is representative of the pressure drop, the local and average Nusselt number. The numerical code developed was validated by solving for fully developed flow and heat transfer in a square straight channel. Grid-independent solution was established for a reference case of serpentine channel with the highest Reynolds number (Re=200). Periodically fully developed flow and heat transfer in serpentine channels were salved for different geometry parameters, for different Reynolds numbers and for two different Prandtl numbers ( 0.7 and 7.0 for air and water respectively). The results were plotted to study the effect of the independent parameters on the pressure drop and the heat transfer performance. The friction factor increased as the amplitude of the serpentine channel and the Reynolds number were increased. Similar trend was observed for the heat transfer coefficients. High heat transfer coefficients are observed at certain regions in the serpentine channels which are explained by the impingement phenomena. High Prandtl number (=7.0) gives higher heat transfer coefficients than the low Pr (=0.7) because of the thinner thermal boundary layer. The enhancement of heat transfer mechanism was explained by studying the plotted flow-field velocity vectors in different planes.

Chintada, Sailesh Raju

1998-01-01T23:59:59.000Z

123

Grid Impacts of Wind Power: A Summary of Recent Studies in the United States; Preprint  

DOE Green Energy (OSTI)

Several detailed technical investigations of grid ancillary service impacts of wind power plants in the United States have recently been performed. These studies were applied to Xcel Energy (in Minnesota) and PacifiCorp and the Bonneville Power Administration (both in the northwestern United States). Although the approaches vary, three utility time frames appear to be most at issue: regulation, load following, and unit commitment. This paper describes and compares the analytic frameworks from recent analysis and discusses the implications and cost estimates of wind integration. The findings of these studies indicate that relatively large-scale wind generation will have an impact on power system operation and costs, but these impacts and costs are relatively low at penetration rates that are expected over the next several years.

Parsons, B.; Milligan, M.; Zavadil, B.; Brooks, D.; Kirby, B.; Dragoon, K.; Caldwell, J.

2003-06-01T23:59:59.000Z

124

On the Use of Two-Dimensional Incompressible Flow to Study Secondary Eyewall Formation in Tropical Cyclones  

Science Conference Proceedings (OSTI)

Previous studies have offered hypotheses for the mechanisms that lead to secondary eyewall formation in tropical cyclones by using two-dimensional incompressible flow. Those studies represented the convection-induced vorticity field as either ...

Yumin Moon; David S. Nolan; Mohamed Iskandarani

2010-12-01T23:59:59.000Z

125

TOUGH: a numerical model for nonisothermal unsaturated flow to study waste canister heating effects  

Science Conference Proceedings (OSTI)

The physical processes modeled and the mathematical and numerical methods employed in a simulator for non-isothermal flow of water, vapor, and air in permeable media are briefly summarized. The simulator has been applied to study thermo-hydrological conditions in the near vicinity of high-level nuclear waste packages emplaced in unsaturated rocks. The studies reported here specifically address the question whether or not the waste canister environment will dry up in the thermal phase. 13 references, 8 figures, 2 tables.

Pruess, K.; Wang, J.S.Y.

1983-12-01T23:59:59.000Z

126

Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume I. Economic impacts  

DOE Green Energy (OSTI)

This analysis identifies the economic impacts associated with OTEC development and quantifies them at the national, regional, and industry levels. It focuses on the effects on the United States' economy of the domestic development and utilization of twenty-five and fifty 400 MWe OTEC power plants by the year 2000. The methodology employed was characteristic of economic impact analysis. After conducting a literature review, a likely future OTEC scenario was developed on the basis of technological, siting, and materials requirements parameters. These parameters were used to identify the industries affected by OTEC development; an economic profile was constructed for each of these industries. These profiles established an industrial baseline from which the direct, indirect, and induced economic impacts of OTEC implementation could be estimated. Each stage of this analysis is summarized; and the economic impacts are addressed. The methodology employed in estimating the impacts is described.

None

1981-12-22T23:59:59.000Z

127

The impact of water flow configuration on crystallisation in LiBr/H2O absorption water heater  

SciTech Connect

Lithium Bromide (LiBr) strong solution entering the absorber tends to crystallise when the absorber temperature is increased for a fixed evaporating pressure. This is considered the key technical barrier for the development of a LiBr absorption heat pump water heater. There are several approaches to avoid the crystallisation problem, such as chemical crystallisation inhibitors, heat and mass transfer enhancement and thermodynamic cycle modification. This paper investigates and compares two flow configurations of LiBr absorption heat pump water heater to evaluate the allowable operating conditions for each. The simulation results indicated that introducing the process water through the absorber first results in lower absorber temperature and hence less tendency for crystallisation.

Wang, Kai [ORNL; Abdelaziz, Omar [ORNL; Vineyard, Edward Allan [ORNL

2011-03-01T23:59:59.000Z

128

An experimental study on the impact of network segmentation to the resilience of physical processes  

Science Conference Proceedings (OSTI)

The fact that modern Networked Industrial Control Systems (NICS) depend on Information and Communication Technologies (ICT) is well known. Although many studies have focused on the security of NICS, today we still lack a proper understanding of the impact ... Keywords: cyber-physical, network segmentation, resilience, security

Béla Genge; Christos Siaterlis

2012-05-01T23:59:59.000Z

129

The Recent National Academy of Sciences Study on the Economic and Environmental Impacts of Biofuel Policy  

E-Print Network (OSTI)

The Recent National Academy of Sciences Study on the Economic and Environmental Impacts of Biofuel, Renewable Fuel Standard: Potential Economic and Environmental Effects of U.S. Biofuel Policy. Professor was that the U.S. is unlikely to meet the Renewable Fuel Standard (RFS) for 2022 for cellulosic biofuels. Wally

130

New Madrid and Wabash Valley Seismic Study: Assessing the Impacts on Natural Gas  

E-Print Network (OSTI)

New Madrid and Wabash Valley Seismic Study: Assessing the Impacts on Natural Gas Transmission.S. Natural Gas Pipeline System Key Findings ­ New Madrid and Wabash Events Summary of Damages and Estimated Restoration Time Seismic Performance of Underground Storage Facilities Conclusions ­ Natural Gas Pipeline

Kemner, Ken

131

Holographic Flow Visualization as a Tool for Studying Three-dimensional Coherent Structures and Instabilities  

Science Conference Proceedings (OSTI)

Holography is capable of three-dimensional (3D) representation of spatial objects such as fluid interfaces and particle ensembles. Based on this, we adapt it into a 3D flow visualization tool called Holographic Flow Visualization (HFV). This technique ... Keywords: drop instability, flame-vortex interaction, holographic PIV, holographic flow visualization, jet diffusion flame, particle-laden flows, vortex cascade, vortex ring instability

H. Meng; J. Estevadeordal; S. Gogineni; L. Goss; W. M. Roquemore

1998-04-01T23:59:59.000Z

132

Impacts of alternative residential energy standards - Rural Housing Amendments Study, Phase 1  

SciTech Connect

This report has examined the role of manufactured housing in the housing market, the energy impacts of three manufactured housing standards and three site-built standards in 13 cities, and the economic impacts of those standards in 6 cities. The three standards applied to manufactured housing are the HUD Title VI standard (Manufactured Housing Construction and Safety Standards, or MHCSS), the Hud Title II-E standard, and the existing FmHA Title V standard. Those applied to site-built homes are the HUD Minimum Property Standards (MPS), the ASHRAE 90A-80 standard, and the FmHA Title V standard. Based on energy consumption alone, these analyses show that the FmHA Title V standard is the most stringent standard for both housing types (a single-section menufactured home and a single-story detached ''ranch house''). The HUD Title VI standard is the least stringent for manufactured homes, while the HUD Minimum Property Standards are the least stringent for site-built homes. Cost-effectiveness comparisons required by the Act were made for the two prototypical homes. Results of this preliminary economic analysis indicate that none of the site-built standards reflect minimum life-cycle cost as a basic criterion of their development. For manufactured homes, both the FmHA standard and the HUD Title II-E standard reduce life-cycle cost and effect positive first-year cash flows in all cities analyzed when electric resistance heating is assumed. When natural gas heating is used, both standards pass the life-cycle cost test in all cities, but the FmHA standard fails the cash flow test in all but one city. However, in the worst case, net monthly expenditures in the first year are increased by less than $9.

Balistocky, S.; Bohn, A.A.; Heidell, J.A.; Hendrickson, P.L.; Lee, A.D.; Pratt, R.G.; Taylor, Z.T.

1985-11-01T23:59:59.000Z

133

Regional Economic Impacts of Electric Drive Vehicles and Technologies: Case Study of the Greater Cleveland Area  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs), which combine desirable aspects of battery electric vehicles and hybrid electric vehicles, offer owners the advantages of increased fuel efficiency and lower annual fuel bills without concern for dead batteries, long recharge time, or limited range. This study examines the potential regional economic impacts due to increasing electric transportation in the Greater Cleveland Area (GCA). By applying regional input-output (RIO) analysis, the study determines the imp...

2009-07-31T23:59:59.000Z

134

Application of a multi-block CFD code to investigate the impact of geometry modeling on centrifugal compressor flow field predictions  

Science Conference Proceedings (OSTI)

CFD codes capable of utilizing multi-block grids provide the capability to analyze the complete geometry of centrifugal compressors. Attendant with this increased capability is potentially increased grid setup time and more computational overhead with the resultant increase in wall clock time to obtain a solution. If the increase in difficulty of obtaining a solution significantly improves the solution from that obtained by modeling the features of the tip clearance flow or the typical bluntness of a centrifugal compressor`s trailing edge, then the additional burden is worthwhile. However, if the additional information obtained is of marginal use, then modeling of certain features of the geometry may provide reasonable solutions for designers to make comparative choices when pursuing a new design. In this spirit a sequence of grids were generated to study the relative importance of modeling versus detailed gridding of the tip gap and blunt trailing edge regions of the NASA large low-speed centrifugal compressor for which there is considerable detailed internal laser anemometry data available for comparison. The results indicate: (1) There is no significant difference in predicted tip clearance mass flow rate whether the tip gap is gridded or modeled. (2) Gridding rather than modeling the trailing edge results in better predictions of some flow details downstream of the impeller, but otherwise appears to offer no great benefits. (3) The pitchwise variation of absolute flow angle decreases rapidly up to 8% impeller radius ratio and much more slowly thereafter. Although some improvements in prediction of flow field details are realized as a result of analyzing the actual geometry there is no clear consensus that any of the grids investigated produced superior results in every case when compared to the measurements. However, if a multi-block code is available, it should be used, as it has the propensity for enabling better predictions than a single block code.

Hathaway, M.D. [Vehicle Technology Center, Cleveland, OH (United States); Wood, J.R. [NASA Lewis Research Center, Cleveland, OH (United States)

1997-10-01T23:59:59.000Z

135

Evaluation of a Triple-Axis Coherent Doppler Velocity Profiler for Measuring Near-Bed Flow: A Field Study  

Science Conference Proceedings (OSTI)

Collocated detailed measurements of near-bed turbulent and intrawave flow are important for studying sediment transport processes and seabed evolution. Existing commercially available triple-axis profiling instruments do not provide collocated ...

K. F. E. Betteridge; P. S. Bell; P. D. Thorne; J. J. Williams

2006-01-01T23:59:59.000Z

136

Validation studies for assessing unsaturated flow and transport through fractured rock  

SciTech Connect

*The objectives of this contract are to examine hypotheses and conceptual models concerning unsaturated flow and transport through heterogeneous fractured rock and to design and execute confirmatory field and laboratory experiments to test these hypotheses and conceptual models. Important new information is presented such as the application and evaluation of procedures for estimating hydraulic, pneumatic, and solute transport coefficients for a range of thermal regimes. A field heater experiment was designed that focused on identifying the suitability of existing monitoring equipment to obtain required data. A reliable method was developed for conducting and interpreting tests for air permeability using a straddle-packer arrangement. Detailed studies of fracture flow from Queen Creek into the Magina Copper Company ore haulage tunnel have been initiated. These studies will provide data on travel time for transport of water and solute in unsaturated tuff. The collection of rainfall runoff, and infiltration data at two small watersheds at the Apache Leap Tuff Site enabled us to evaluate the quantity and rate of water infiltrating into the subsurface via either fractures or matrix. Characterization methods for hydraulic parameters relevant to Weigh-level waste transport, including fracture apertures, transmissivity, matrix porosity, and fracture wetting front propagation velocities, were developed.

Bassett, R.L.; Neuman, S.P.; Rasmussen, T.C.; Guzman, A.; Davidson, G.R.; Lohrstorfer, C.F. [Arizona Univ., Tucson, AZ (United States). Dept. of Hydrology and Water Resources

1994-08-01T23:59:59.000Z

137

Economic Development Impacts of Wind Power--Case Studies Fact Sheet  

DOE Green Energy (OSTI)

OAK-B135 Interest in wind power development is growing as a means of expanding local economies. Such development holds promise as a provider of short-term employment during facility construction and long-term employment from ongoing facility operation and maintenance (O&M). It may also add to the supply of electric power in the area and support some expansion of the local economy through ripple effects resulting from initial increases in jobs and income. These ripple effects stem from subsequent expenditures for goods and services made possible by first-round income from the development, and are expressed in terms of a multiplier. If the local economy offers a wide range of goods and services the resulting multiplier can be substantial--as much as three or four. If not, then much of the initial income will leave the local economy to buy goods and services from elsewhere. Loss of initial income to other locales is referred to as a leakage. While there is a growing body of information about the local impacts of wind power, the economic impacts from existing wind power developments have not been thoroughly and consistently analyzed. Northwest Economic Associates, under contract to the National Wind Coordinating Committee (NWCC), conducted a study and produced a report entitled ''Assessing the Economic Development Impacts of Wind Power.'' The primary objective of the study was to provide examples of appropriate analyses and documentation of economic impacts from wind power development, using case studies of three existing projects in the United States. The findings from the case studies are summarized here; more detail is available in the report, available at NWCC's website http://www.nationalwind.org/. It should be noted that specific results presented apply only to the respective locales studied and are not meant to be representative of wind power in general. However, qualitative findings, discussed below, are likely to be replicated in most areas where wind development occurs.

NWCC Economic Development Work Group

2003-12-17T23:59:59.000Z

138

The impact of ground-based glaciogenic seeding on orographic clouds and precipitation: a multi-sensor case study  

Science Conference Proceedings (OSTI)

A case study is presented from the 2012 AgI Seeding Cloud Impact Investigation, an experiment conducted over the Sierra Madre in southern Wyoming to study the impact of ground-based glaciogenic seeding on precipitation. In this case, on 21 ...

Binod Pokharel; Bart Geerts; Xiaoqin Jing

139

A Numerical Study of Flow and Pollutant Dispersion Characteristics in Urban Street Canyons  

Science Conference Proceedings (OSTI)

The flow and pollutant dispersion in urban street canyons are investigated using a two-dimensional numerical model with the k–? turbulent closure scheme. It is shown that the flow field is characterized mainly by the number and intensity of ...

Jong-Jin Baik; Jae-Jin Kim

1999-11-01T23:59:59.000Z

140

Daytime Boundary Layer Evolution over Mountainous Terrain. Part II: Numerical Studies of Upslope Flow Duration  

Science Conference Proceedings (OSTI)

Numerical simulators of upslope flow forming on the lee side of a heated mountain ridge showed this flow to be a transient phenomenon, in agreement with observations. The simulations, performed with a two-dimensional, dry version of the cloud ...

Robert M. Banta

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study  

SciTech Connect

This paper presents an exploratory study of the possible physical impacts of climate change on the electric power system, and how these impacts could be incorporated into resource planning in the Western United States. While many aspects of climate change and energy have been discussed in the literature, there has not yet been a systematic review of the relationship between specific physical effects and the quantitative analyses that are commonly used in planning studies. The core of the problem is to understand how the electric system is vulnerable to physical weather risk, and how to make use of information from climate models to characterize the way these risks may evolve over time, including a treatment of uncertainty. In this paper, to provide the necessary technical background in climate science, we present an overview of the basic physics of climate and explain some of the methodologies used in climate modeling studies, particularly the importance of emissions scenarios. We also provide a brief survey of recent climate-related studies relevant to electric system planning in the Western US. To define the institutional context, we discuss the core elements of the resource and reliability planning processes used currently by utilities and by the Western Electricity Coordinating Council. To illustrate more precisely how climate-related risk could be incorporated into modeling exercises, we discuss three idealized examples. Overall, we argue that existing methods of analysis can and should be extended to encompass the uncertainties related to future climate. While the focus here is on risk related to physical impacts, the same principles apply to a consideration of how future climate change policy decisions might impact the design and functioning of the electric grid. We conclude with some suggestions and recommendations on how to begin developing this approach within the existing electric system planning framework for the West.

Coughlin, Katie; Goldman, Charles

2008-12-01T23:59:59.000Z

142

Studies on the development of mossy zinc electrodeposits from flowing alkaline electrolytes  

DOE Green Energy (OSTI)

The initiation and characteristics of mossy zinc electrodeposits have been investigated. Batteries with zinc electrodes are candidates for electric vehicle applications; however, this electrode is prone to form non-compact deposits that contribute to capacity loss and battery failure. Moss is deposited when the current density is far from the limiting current. This morphology first appears only after the bulk deposit is approximately 1 {mu}m thick. In this investigation, the effects of flow rate (Re=0--4000), current density (0--50 mA/cm{sup 2}), concentration of the electroactive species (0.25 and 0.5 M), and the concentration of supporting electrolyte (3, 6, and 12 M) on the initiation of moss were examined. The rotating concentric cylinder electrode was employed for most of the experiments; and a flow channel was used to study the development of morphology. After the experiment, the deposit was characterized using microscopic, x-ray diffraction, and profilometric techniques. 94 refs., 72 figs.

Mc Vay, L.

1991-07-01T23:59:59.000Z

143

Development of an entrained flow gasifier model for process optimization study  

SciTech Connect

Coal gasification is a versatile process to convert a solid fuel in syngas, which can be further converted and separated in hydrogen, which is a valuable and environmentally acceptable energy carrier. Different technologies (fixed beds, fluidized beds, entrained flow reactors) are used, operating under different conditions of temperature, pressure, and residence time. Process studies should be performed for defining the best plant configurations and operating conditions. Although 'gasification models' can be found in the literature simulating equilibrium reactors, a more detailed approach is required for process analysis and optimization procedures. In this work, a gasifier model is developed by using AspenPlus as a tool to be implemented in a comprehensive process model for the production of hydrogen via coal gasification. It is developed as a multizonal model by interconnecting each step of gasification (preheating, devolatilization, combustion, gasification, quench) according to the reactor configuration, that is in entrained flow reactor. The model removes the hypothesis of equilibrium by introducing the kinetics of all steps and solves the heat balance by relating the gasification temperature to the operating conditions. The model allows to predict the syngas composition as well as quantity the heat recovery (for calculating the plant efficiency), 'byproducts', and residual char. Finally, in view of future works, the development of a 'gasifier model' instead of a 'gasification model' will allow different reactor configurations to be compared.

Biagini, E.; Bardi, A.; Pannocchia, G.; Tognotti, L. [Consorzio Pisa Ric, Pisa (Italy). Div Energia Ambiente

2009-10-15T23:59:59.000Z

144

Experimental Study of Heat Transfer and Flow Characteristics for a New Type of Air Heater  

E-Print Network (OSTI)

A new type air heater was developed, and an experimental set-up was built to analyze its characteristics. Within the Reynolds number from 2000 to 15000, the integrated characteristics in air heater channels with and without holed baffles have been studied experimentally. The experimental results show that the average Nu number increases greatly but the friction factor increases only slightly with the Re number. The Webb performance evaluation criterion has been adopted for analysis purposes. It is found that the integrated characteristics of heat transfer and flow friction increase with the hole's diameter at the same hole density (which is equal to the ratio of the hole's total area to the baffle's area), and the heat transfer rate increases with the hole density at the same hole diameter. The C type baffle has the best performance at the same heat transfer surface area and fan power consumption; its heat transfer rate improves about 44 to 69 percent.

Zheng, H.; Fan, X.; Li, A.

2006-01-01T23:59:59.000Z

145

Adsorption studies of gases on Pt-Rh bimetallic catalysts by reversed-flow gas chromatography  

SciTech Connect

In the present work, the relatively new technique of reversed-flow gas chromatography was applied for the study of adsorption of carbon monoxide, oxygen, and carbon dioxide on Pt-Rh bimetallic catalysts. Using suitable mathematical analysis, equations were derived by means of which rate constants for adsorption, desorption, and disproportionation reaction were calculated. From the variation of these rate constants with temperature and the nature of the catalyst (Pt content), as well as from the finding that the CO adsorption is a dissociative process, useful conclusions concerning the mechanism for the CO oxidation reaction over Pt-Rh bimetallic catalysts were extracted. The catalytic fractional conversions for the CO disproportionation reaction were found to be higher for the Pt-RH bimetallic catalysts than those for the pure Pt catalyst, indicating the presence of beneficial Pt-Rh synergism.

Gavril, D.; Koliadima, A.; Karaiskakis, G. [Univ. of Patras (Greece). Dept. of Chemistry

1999-05-25T23:59:59.000Z

146

A plant kinetic study of alcoholic fermentation using reversed-flow gas chromatography  

SciTech Connect

The reversed-flow gas chromatographic sampling technique is used to study the kinetics of alcoholic fermentation in a factory in conjunction with measurements of suspended particles in the fermenting medium. It was found that the overall process consists of four phases which have different first-order rate constants during ethanol formation. The second phase is the slowest with its rate constant being 4.3 and 13 times smaller than that of the first and third phases, respectively. There is also a decrease of suspended particles during the second phase. These results show that there is the possibility of increasing the rate constant during this phase, thereby increasing the overall production rate of ethanol significantly and thus lowering its cost of production.

Economopoulos, N.; Athanassopoulos, N. (B.G. Spiliopoulos Distilleri S.A., Patras (Greece)); Katsanos, N.A.; Karaiskakis, G.; Agathonos, P.; Vassilakos, Ch. (Univ. of Patras (Greece))

1992-12-01T23:59:59.000Z

147

Influence of asperities on fluid and thermal flow in a fracture: a coupled Lattice Boltzmann study  

E-Print Network (OSTI)

The characteristics of the hydro-thermal flow which occurs when a cold fluid is injected into a hot fractured bedrock depend on the morphology of the fracture. We consider a sharp triangular asperity, invariant in one direction, perturbing an otherwise flat fracture. We investigate its influence on the macroscopic hydraulic transmissivity and heat transfer efficiency, at fixed low Reynolds number. In this study, numerical simulations are done with a coupled lattice Boltzmann method that solves both the complete Navier-Stokes and advection-diffusion equations in three dimensions. The results are compared with those obtained under lubrication approximations which rely on many hypotheses and neglect the three-dimensional (3D) effects. The lubrication results are obtained by analytically solving the Stokes equation and a two-dimensional (integrated over the thickness) advection-diffusion equation. We use a lattice Boltzmann method with a double distribution (for mass and energy transport) on hypercubic and cubic ...

Neuville, Amélie; Toussaint, Renaud

2013-01-01T23:59:59.000Z

148

Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules  

DOE Green Energy (OSTI)

Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

2011-10-01T23:59:59.000Z

149

Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network (OSTI)

Various analytical, semi-analytical, and empirical models have been proposed to characterize rate and pressure behavior as a function of time in tight/shale gas systems featuring a horizontal well with multiple hydraulic fractures. Despite a small number of analytical models and published numerical studies there is currently little consensus regarding the large-scale flow behavior over time in such systems. The purpose of this work is to construct a fit-for-purpose numerical simulator which will account for a variety of production features pertinent to these systems, and to use this model to study the effects of various parameters on flow behavior. Specific features examined in this work include hydraulically fractured horizontal wells, multiple porosity and permeability fields, desorption, and micro-scale flow effects. The theoretical basis of the model is described in Chapter I, along with a validation of the model. We employ the numerical simulator to examine various tight gas and shale gas systems and to illustrate and define the various flow regimes which progressively occur over time. We visualize the flow regimes using both specialized plots of rate and pressure functions, as well as high-resolution maps of pressure distributions. The results of this study are described in Chapter II. We use pressure maps to illustrate the initial linear flow into the hydraulic fractures in a tight gas system, transitioning to compound formation linear flow, and then into elliptical flow. We show that flow behavior is dominated by the fracture configuration due to the extremely low permeability of shale. We also explore the possible effect of microscale flow effects on gas effective permeability and subsequent gas species fractionation. We examine the interaction of sorptive diffusion and Knudsen diffusion. We show that microscale porous media can result in a compositional shift in produced gas concentration without the presence of adsorbed gas. The development and implementation of the micro-flow model is documented in Chapter III. This work expands our understanding of flow behavior in tight gas and shale gas systems, where such an understanding may ultimately be used to estimate reservoir properties and reserves in these types of reservoirs.

Freeman, Craig M.

2010-05-01T23:59:59.000Z

150

TVA Low Impact Hydro Feasibility Study: Phase 1 Technology and Site Assessment  

Science Conference Proceedings (OSTI)

As a result of the Tennessee Valley Authority (TVA)'s interest in further developing its green marketing program, it partnered with EPRI for guidance in a new study of TVA's hydropower resources. As a result of an EPRI solicitation of bids for TVA's "Low Impact Hydro Feasibility Study," Verdant Power, in its primary role as a systems integrator and site developer, was chosen to conduct the project. TVA's initial interest was to have surveyed 24 impoundment sites and several non-impoundment locations with...

2002-12-12T23:59:59.000Z

151

Feasibility Study of Developing a Virtual Chilled Water Flow Meter at Air Handling Unit Level  

E-Print Network (OSTI)

In this paper, a virtual Air handling unit (AHU) level water flow meter is explored by using a control valve as a measurement device. The flow through the valve is indirectly calculated using differential pressure over both the valve and its associated coil and valve stem position. Thus, the non-intrusive virtual flow meter introduced in this paper provides a solution to one of the measurement barriers and challenges: a low cost, reliable energy metering system at the AHU level. Mathematical models were built and the preliminary experiments were conducted to investigate the feasibility of the virtual flow meter applications. As a result, the valve flow meter can be a cost effective means for water flow measurements at the AHU and thus provides an effective index for detecting and diagnosing the AHU operation faults.

Song, L.; Swamy, A.; Shim, G.

2011-01-01T23:59:59.000Z

152

Session 1: Geothermal Pumping Systems and Two-Phase Flow Studies  

DOE Green Energy (OSTI)

Improvements in electric submersible pumping systems have resulted in a demonstrated downhole running life of one year for low horsepower units operating in 180 C brine. The implementation of a prototype pressurized lubrication system to prevent brine intrusion and loss of lubricating oil from the motor and protector sections has been successfully tested. Second generation pressurized lubrication systems have been designed and fabricated and will be utilized in downhole production pumping tests during FY84. Pumping system lifetime is currently limited by available power cable designs that are degraded by high-temperature brine. A prototype metal-sheathed power cable has been designed and fabricated and is currently undergoing destructive and nondestructive laboratory testing. This cable design has the potential for eliminating brine intrusion into the power delivery system through the use of a hermatically sealed cable from the surface to the downhole motor. The two-phase flow program is directed at understanding the hydrodynamics of two-phase flows. The two-phase flow regime is characterized by a series of flow patterns that are designated as bubble, slug, churn, and annular flow. Churn flow has received very little scientific attention. This lack of attention cannot be justified because calculations predict that the churn flow pattern will exist over a substantial portion of the two-phase flow zone in producing geothermal wells. The University of Houston is experimentally investigating the dynamics of churn flow and is measuring the holdup over the full range of flow space for which churn flow exists. These experiments are being conducted in an air/water vertical two-phase flow loop. Brown University has constructed and is operating a unique two-phase flow research facility specifically designed to address flow problems of relevance to the geothermal industry. An important feature of the facility is that it is dedicated to two-phase flow of a single substance (including evaporation and condensation) as opposed to the case of a two-component two-phase flow. This facility can be operated with horizontal or vertical test sections of constant diameter or with step changes in diameter to simulate a geothermal well profile.

Hanold, R.J.

1983-12-01T23:59:59.000Z

153

Study on Fluid Flow in a Twelve-strand Tundish under the Operation ...  

Science Conference Proceedings (OSTI)

Analysis of Residence Time Distribution (RTD) of Fluid Flows in a Four Strand Delta-shaped Tundish Operating Under Isothermal and Non-isothermal ...

154

A Large-Scale Matched-Index-of-Refraction Flow Facility for LDA Studies Around Complex Geometrics  

SciTech Connect

Abstract Useage of laser-Doppler anemometry (LDA) requires optical access to the flow field of interest. This has not always proved easy, as in the case of complex geometries or very near-wall boundary layer measurements. One solution is to employ a solid material and fluid with the same refractive index. In this case, there is no optical interference of the solid with the LDA. Although this technique is not new, previous studies have been limited to small flow apparatus and relatively unpleasant fluids. A large-scale flow tunnel has now been constructed, permitting matched index of refraction LDA measurements in difficult geometries, higher Reynolds numbers, and increased spatial resolution in the measurements. This paper describes the facility and fluid flow quality, and presents some preliminary results for very near-wall measurements of a transitional boundary layer behind a roughness element.

Stoots, Carl Marcel; Condie, Keith Glenn; McEligot, Donald Marinus; Becker, S.; Durst, F.

2001-04-01T23:59:59.000Z

155

Basic study of heat flow in fusion welding. Progress report, March 1, 1980-February 28, 1981  

SciTech Connect

During the past year the study of electroslag welding was essentially completed with good agreement between the experimental and the theoretical results. It is concluded that the ESW process has certain inherent limitations which were not appreciated previously. The study has expanded into a more complete analysis of heat and fluid flow in arc welding. It has been shown that the heat affected zone and fusion zone sizes are not simple functions of the net heat input as predicted by all current theories. This will affect the choice of welding parameters. For example, in single pass arc welds, the smallest HAZ is usually desirable, while in multipass welding large HAZ's may be desirable to provide tempering of the previous weld beads. It may be possible to achieve both these goals at equivalent heat input by proper adjustment of the welding parameters (such as voltage, current and travel speed). Goal of the current study is to predict which combinations of parameters maximize or minimize the size of the heat affected zone and fusion zone at equal heat input.

Szekely, J.; Eagar, T.W.

1981-01-01T23:59:59.000Z

156

Mathematical programming applied in the optimal power flow problem DC: case studies of market needs  

Science Conference Proceedings (OSTI)

This paper seeks to investigate the application of mathematical programming, considering it as a tool for optimal electrical power generation and management. Nowadays, observing signals of crisis in various countries, electrical power emerges not only ... Keywords: energy flow in electrical energy networks and markets, linear Programming, marketing theory, mathematical programming, optimum power flow DC

Emerson Eustáquio Costa; Luiz Danilo Barbosa Terra; George Leal Jamil

2008-04-01T23:59:59.000Z

157

Applying mathematical programming elements to answer market needs: case studies of optimization of electrical power flow  

Science Conference Proceedings (OSTI)

This paper seeks to investigate the application of mathematical programming, considering it as a tool for optimal electrical power generation and management. Nowadays, observing signals of crisis in various countries, electrical power emerges not only ... Keywords: energy flow in electrical energy networks and markets, linear programming, marketing theory, mathematical programming, optimum power flow DC

Emerson Eustáquio Costa; Luiz Danilo Barbosa Terra; George Leal Jamil

2008-01-01T23:59:59.000Z

158

Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium  

DOE Green Energy (OSTI)

FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

2004-12-14T23:59:59.000Z

159

Experimental studies of adiabatic flow boiling in fractal-like branching microchannels  

SciTech Connect

Experimental results of adiabatic boiling of water flowing through a fractal-like branching microchannel network are presented and compared to numerical model simulations. The goal is to assess the ability of current pressure loss models applied to a bifurcating flow geometry. The fractal-like branching channel network is based on channel length and width ratios between adjacent branching levels of 2{sup -1/2}. There are four branching sections for a total flow length of 18 mm, a channel height of 150 {mu}m and a terminal channel width of 100 {mu}m. The channels were Deep Reactive Ion Etched (DRIE) into a silicon disk. A Pyrex disk was anodically bonded to the silicon to form the channel top to allow visualization of the flow within the channels. The flow rates ranged from 100 to 225 g/min and the inlet subcooling levels varied from 0.5 to 6 C. Pressure drop along the flow network and time averaged void fraction in each branching level were measured for each of the test conditions. The measured pressure drop ranged from 20 to 90 kPa, and the measured void fraction ranged from 0.3 to 0.9. The measured pressure drop results agree well with separated flow model predictions accounting for the varying flow geometry. The measured void fraction results followed the same trends as the model; however, the scatter in the experimental results is rather large. (author)

Daniels, Brian J.; Liburdy, James A.; Pence, Deborah V. [Mechanical Engineering, Oregon State University, Corvallis, OR 97330 (United States)

2011-01-15T23:59:59.000Z

160

Experimental techniques for subnanosecond resolution of laser-launched plates and impact studies  

SciTech Connect

Miniature laser-launched plates have applications in shock wave physics, studying dynamic properties of materials and can be used to generate experimental data in a manner similar to a laboratory gas gun for one-dimensional impact experiments. Laser-launched plates have the advantage of small size, low kinetic energy, and can be launched with ubiquitous laboratory lasers. Because of the small size and high accelerations (10{sup 7}--10{sup 10} g`s), improved temporal resolution and optical non-contact methods to collect data are required. Traditional mechanical in-situ gauges would significantly impair the data quality and do not have the required time response.

Paisley, D.L.; Warnes, R.H.; Stahl, D.B. [Los Alamos National Lab., NM (United States). Dynamic Experimentation Div.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NGFAST: a simulation model for rapid assessment of impacts of natural gas pipeline breaks and flow reductions at U.S. state borders and import points  

Science Conference Proceedings (OSTI)

This paper describes NGfast, the new simulation and impact-analysis tool developed by Argonne National Laboratory for rapid, first-stage assessments of impacts of major pipeline breaks. The methodology, calculation logic, and main assumptions are discussed. ...

Edgar C. Portante; Brian A. Craig; Stephen M. Folga

2007-12-01T23:59:59.000Z

162

Studying impact damage on carbon-fiber reinforced aircraft composite panels with sonicir  

SciTech Connect

Composites are becoming more important materials in commercial aircraft structures such as the fuselage and wings with the new B787 Dreamliner from Boeing which has the target to utilize 50% by weight of composite materials. Carbon-fiber reinforced composites are the material of choice in aircraft structures. This is due to their light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, by reducing the aircraft's body weight by using such lighter structures, the cost of fuel can be greatly reduced with the high jet fuel price for commercial airlines. However, these composites are prone to impact damage and the damage may occur without any observable sign on the surface, yet resulting in delaminations and disbonds that may occur well within the layers. We are studying the impact problem with carbon-fiber reinforced composite panels and developing SonicIR for this application as a fast and wide-area NDE technology. In this paper, we present our results in studying composite structures including carbon-fiber reinforced composite materials, and preliminary quantitative studies on delamination type defect depth identification in the panels.

Han Xiaoyan; Zhang Ding; He Qi; Song Yuyang; Lubowicki, Anthony [Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202 (United States); Zhao Xinyue; Newaz, Golam. [Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202 (United States); Favro, Lawrence D.; Thomas, Robert L. [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48202 (United States)

2011-06-23T23:59:59.000Z

163

Numerical modeling of species transport in turbulent flow and experimental study on aerosol sampling  

E-Print Network (OSTI)

Numerical simulations were performed to study the turbulent mixing of a scalar species in straight tube, single and double elbow flow configurations. Different Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulation (LES) models were used to model the turbulence in the flow. Conventional and dynamic Smagorinsky sub-grid scale models were used for the LES simulations. Wall functions were used to resolve the near wall boundary layer. These simulations were run with both two-dimensional and three-dimensional geometries. The velocity and tracer gas concentration Coefficient of Variations were compared with experimental results. The results from the LES simulations compared better with experimental results than the results from the RANS simulations. The level of mixing downstream of a S-shaped double elbow was higher than either the single elbow or the U-shaped double elbow due to the presence of counter rotating vortices. Penetration of neutralized and non-neutralized aerosol particles through three different types of tubing was studied. The tubing used included standard PVC pipes, aluminum conduit and flexible vacuum hose. Penetration through the aluminum conduit was unaffected by the presence or absence of charge neutralization, whereas particle penetrations through the PVC pipe and the flexible hosing were affected by the amount of particle charge. The electric field in a space enclosed by a solid conductor is zero. Therefore charged particles within the conducting aluminum conduit do not experience any force due to ambient electric fields, whereas the charged particles within the non-conducting PVC pipe and flexible hose experience forces due to the ambient electric fields. This increases the deposition of charged particles compared to neutralized particles within the 1.5� PVC tube and 1.5� flexible hose. Deposition 2001a (McFarland et al. 2001) software was used to predict the penetration through transport lines. The prediction from the software compared well with experiments for all cases except when charged particles were transported through non-conducting materials. A Stairmand cyclone was designed for filtering out large particles at the entrance of the transport section.

Vijayaraghavan, Vishnu Karthik

2006-12-01T23:59:59.000Z

164

Design and Development of a Test Facility to Study Two-Phase Steam/Water Flow in Porous Media  

DOE Green Energy (OSTI)

The concept of relative permeability is the key concept in extending Darcy's law for single phase flow through porous media to the two-phase flow regime. Relative permeability functions are needed for simulation studies of two-phase geothermal reservoirs. These are poorly known inspite of considerable theoretical and experimental investigations during the last decade. Since no conclusive results exist, many investigators use ad hoc parametrization, or adopt results obtined from flow of oil and gas (Corey, 1954). It has been shown by Reda and Eaton (1980) that this can lead to serious deficiencies. Sensitivity of the relative permeability curves for prediction of mass flow rate and flowing enthalpy into geothermal wells has been studied by many investigators (e.g. Eaton and Reda (1980), Bodvarsson et al (1980), Sun and Ershagi (1979) etc.). It can be concluded from these studies that the beehavior of a two-phase steam/water reservoir depends greatly on the relative permeability curves used. Hence, there exists a need for obtaining reliable relative permeability functions.

Verma, Ashok K.; Pruess, Karsten; Bodvarsson, G.S.; Tsang, C.F.; Witherspoon, Paul A.

1983-12-15T23:59:59.000Z

165

Islands in Zonal Flow  

Science Conference Proceedings (OSTI)

The impact of a meridional gradient in sea surface temperature (warm toward the equator, cold toward the pole) on the circulation around an island is investigated. The upper-ocean eastward geostrophic flow that balances such a meridional gradient ...

Michael A. Spall

2003-12-01T23:59:59.000Z

166

Vanadium redox flow battery efficiency and durability studies of sulfonated Diels Alder poly(phenylene)s  

Science Conference Proceedings (OSTI)

Sulfonated Diels Alder poly(phenylene) (SDAPP) was examined for vanadium redox flow battery (VRFB) use. The ion exchange capacity (IEC) was varied from 1.4, 1.6 and 2.0 meq/g in order to tune the proton conductivity and vanadium permeability. Coulombic efficiencies between 92 to 99% were observed, depending on IEC (lower IEC, higher coulombic efficiencies). In all cases the SDAPP displayed comparable energy efficiencies (88 - 90%) to Nafion 117 (88%) at 50mA/cm2. Membrane durability also was dependent on IEC; SDAPP with the highest IEC lasted slightly over 50 cycles while SDAPP with the lowest IEC lasted over 400 cycles and testing was discontinued only due to time constraints. Accelerated vanadium lifetime studies were initialed with SDAPP, by soaking films in a 0.1 M V5+ and 5.0 M total SO4-2 solution. The rate of degradation was also proportional with IEC; the 2 meq/g sample dissolved within 376 hours, the 1.6 meq/g sample dissolved after 860 hours, while the 1.4 meq/g sample broke apart after 1527 hours.

Fujimoto, Cy H.; Kim, Soowhan; Stains, Ronald; Wei, Xiaoliang; Li, Liyu; Yang, Zhenguo

2012-07-01T23:59:59.000Z

167

Experimental and Kinetic Modeling Study of Extinction and Ignition of Methyl Decanoate in Laminar Nonpremixed Flows  

DOE Green Energy (OSTI)

Methyl decanoate is a large methyl ester that can be used as a surrogate for biodiesel. In this experimental and computational study, the combustion of methyl decanoate is investigated in nonpremixed, nonuniform flows. Experiments are performed employing the counterflow configuration with a fuel stream made up of vaporized methyl decanoate and nitrogen, and an oxidizer stream of air. The mass fraction of fuel in the fuel stream is measured as a function of the strain rate at extinction, and critical conditions of ignition are measured in terms of the temperature of the oxidizer stream as a function of the strain rate. It is not possible to use a fully detailed mechanism for methyl decanoate to simulate the counterflow flames because the number of species and reactions is too large to employ with current flame codes and computer resources. Therefore a skeletal mechanism was deduced from a detailed mechanism of 8555 elementary reactions and 3036 species using 'directed relation graph' method. This skeletal mechanism has only 713 elementary reactions and 125 species. Critical conditions of ignition were calculated using this skeletal mechanism and are found to agree well with experimental data. The predicted strain rate at extinction is found to be lower than the measurements. In general, the methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

Seshadri, K; Lu, T; Herbinet, O; Humer, S; Niemann, U; Pitz, W J; Law, C K

2008-01-09T23:59:59.000Z

168

Tropical Cyclone Data Impact Studies: Influence of Model Bias and Synthetic Observations  

Science Conference Proceedings (OSTI)

The impacts of assimilating dropwindsonde data and enhanced atmospheric motion vectors (AMVs) on tropical cyclone track forecasts are examined using the Navy global data assimilation and forecasting systems. Enhanced AMVs have the largest impact ...

Carolyn A. Reynolds; Rolf Langland; Patricia M. Pauley; Christopher Velden

169

Tropical Cyclone Data Impact Studies: Influence of Model Bias and Synthetic Observations  

Science Conference Proceedings (OSTI)

The impacts of assimilating dropwindsonde data and enhanced atmospheric motion vectors (AMVs) on tropical cyclone track forecasts are examined using the Navy global data assimilation and forecasting systems. Enhanced AMVs have the largest impact ...

Carolyn A. Reynolds; Rolf Langland; Patricia M. Pauley; Christopher Velden

2013-12-01T23:59:59.000Z

170

The impact of business-to-business electronic marketplaces: a field study  

Science Conference Proceedings (OSTI)

Although business to business electronic marketplaces (EMs) are new phenomena and their impact on firms is still limited, its worth well keeping track of the impacts since more and more firms participate in EMs. This research is a preliminary ...

Shan Wang; Shi Zheng

2011-05-01T23:59:59.000Z

171

The Half-Inertial Flow in the Eastern Equatorial Pacific: A Case Study  

Science Conference Proceedings (OSTI)

We address the problem of the oscillatory periods of two observed phenomena in the instability zone in the eastern equatorial Pacific. The first case concerns two high-speed anticyclonic flow with periods of approximately 12 and 15 mean solar ...

Frank Chew; Mark H. Bushnell

1990-07-01T23:59:59.000Z

172

The Interaction of Katabatic Flow and Mountain Waves. Part II: Case Study Analysis and Conceptual Model  

Science Conference Proceedings (OSTI)

Via numerical analysis of detailed simulations of an early September 1993 case night, the authors develop a conceptual model of the interaction of katabatic flow in the nocturnal boundary layer with mountain waves (MKI). A companion paper (Part I)...

Gregory S. Poulos; James E. Bossert; Thomas B. McKee; Roger A. Pielke Sr.

2007-06-01T23:59:59.000Z

173

Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow through Porous Media  

E-Print Network (OSTI)

of Multicomponent, Multiphase Displacement in Porous Media,"C. M. (1981) : Multiphase Flow in Porous Media, Technip,porous media can always be considered as a special case of the multiphase

Wu, Y.S.

1990-01-01T23:59:59.000Z

174

Numerical Study of Rarefied Hypersonic Flow Interacting With a Continuum Jet  

Science Conference Proceedings (OSTI)

An uncoupled CFD-DSMC technique is developed and applied to provide solutions for continuum jets interacting with rarefied external flows. The technique is based on a correlation of the appropriate Bird breakdown parameter for a transitional-rarefied ...

Glass Christopher E.

2000-11-01T23:59:59.000Z

175

A Collaborative Approach to Study Northwest Flow Snow in The Southern Appalachians  

Science Conference Proceedings (OSTI)

Upslope-enhanced snowfall events during periods of northwesterly flow in the southern Appalachians have been recognized as a significant winter forecasting problem for some time. However, only in recent years has this problem received noteworthy ...

Steve Keighton; Laurence Lee; Blair Holloway; David Hotz; Steven Zubrick; Jeffrey Hovis; Gary Votaw; L. Baker Perry; Gary Lackmann; Sandra E. Yuter; Charles Konrad; Douglas Miller; Brian Etherton

2009-07-01T23:59:59.000Z

176

A Comparative Study of Daytime Thermally Induced Upslope Flow on Mars and Earth  

Science Conference Proceedings (OSTI)

Several characteristics of thermally induced mesoscale upslope flow on Mars and its comparison with that on Earth were investigated using both analytical and numerical model approaches. The conclusions obtained from the analytical and the ...

Z. J. Ye; M. Segal; R. A. Pielke

1990-03-01T23:59:59.000Z

177

A Numerical Modeling Study of Warm Offshore Flow over Cool Water  

Science Conference Proceedings (OSTI)

Numerical simulations of boundary layer evolution in offshore flow of warm air over cool water are conducted and compared with aircraft observations of mean and turbulent fields made at Duck, North Carolina. Two models are used: a two-dimensional,...

Eric D. Skyllingstad; Roger M. Samelson; Larry Mahrt; Phil Barbour

2005-02-01T23:59:59.000Z

178

A Numerical Model Study of Nocturnal Drainage Flows with Strong Wind and Temperature Gradients  

Science Conference Proceedings (OSTI)

A second-moment turbulence-closure model described in Yamada and Bunker is used to simulate nocturnal drainage flows observed during the 1984 ASCOT field expedition in Brush Creek, Colorado. In order to simulate the observed strong wind ...

T. Yamada; S. Bunker

1989-07-01T23:59:59.000Z

179

GUFMEX: A Study of Return Flow in the Gulf of Mexico  

Science Conference Proceedings (OSTI)

During February and March 1988, a limited field experiment was conducted over the Gulf of Mexico to gather data on two phenomena: air mass modification over the Loop Current, and return flow characteristics of modified polar air returning to the ...

J. M. Lewis; C. M. Hayden; R. T. Merrill; J. M. Schneider

1989-01-01T23:59:59.000Z

180

Heat flow studies in the Steamboat Mountain-Lemei Rock area, Skamania County, Washington. Information circular 62  

DOE Green Energy (OSTI)

In order to investigate the possible occurrence of geothermal energy in areas of Quaternary basaltic volcanism, the Washington State Department of Natural Resources drilled several 152 m deep heat-flow holes in the Steamboat Mountain-Lemei Rock area of Skamania County, Washington. The study area is located in the southern part of Washington's Cascade Mountains between 45/sup 0/54' and 46/sup 0/07' N. and 121/sup 0/40' and 121/sup 0/53'W. This area was selected for study because geologic mapping had identified a north-trending chain of late Quaternary basaltic volcanoes that had extruded a sequence of lava flows up to 600 m thick and because the chain of volcanoes is areally coincident with a well-defined gravity low with a minimum value of about -110 mgals. Gradients of 52.7 and 53.4/sup 0/C/km and heat flows of 1.8 and 1.6 ..mu..cal/cm/sup 2/sec, respectively, were measured in two drill holes near the east flank of the chain of volcanoes. Gradients of 44.5 and 58/sup 0/C/km and heat flows of 1.3 and 1.6 ..mu..cal/cm/sup 2/ sec, respectively, were measured in two holes near the axis of the chain, and one gradient of 49.8/sup 0/C/km and heat flow of 1.5 ..mu..cal/cm/sup 2/ sec were measured in a drill hole near the west flank of the chain. All gradients and heat flows are terrain corrected. These heat-flow values are typical regional heat-flow values for the Cascade Mountains. The data show that there is no large-sized heat source body within the general area of the heat-flow study. However, there is only one location in Washington, also in the Cascade Mountains, where higher gradients have been measured.

Schuster, J.E.; Blackwell, D.D.; Hammond, P.E.; Huntting, M.T.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Experimental and Analytic Study on the Core Bypass Flow in a Very High Temperature Reactor  

SciTech Connect

Core bypass flow has been one of key issues in the very high temperature reactor (VHTR) design for securing core thermal margins and achieving target temperatures at the core exit. The bypass flow in a prismatic VHTR core occurs through the control element holes and the radial and axial gaps between the graphite blocks for manufacturing and refueling tolerances. These gaps vary with the core life cycles because of the irradiation swelling/shrinkage characteristic of the graphite blocks such as fuel and reflector blocks, which are main components of a core's structure. Thus, the core bypass flow occurs in a complicated multidimensional way. The accurate prediction of this bypass flow and counter-measures to minimize it are thus of major importance in assuring core thermal margins and securing higher core efficiency. Even with this importance, there has not been much effort in quantifying and accurately modeling the effect of the core bypass flow. The main objectives of this project were to generate experimental data for validating the software to be used to calculate the bypass flow in a prismatic VHTR core, validate thermofluid analysis tools and their model improvements, and identify and assess measures for reducing the bypass flow. To achieve these objectives, tasks were defined to (1) design and construct experiments to generate validation data for software analysis tools, (2) determine the experimental conditions and define the measurement requirements and techniques, (3) generate and analyze the experimental data, (4) validate and improve the thermofluid analysis tools, and (5) identify measures to control the bypass flow and assess its performance in the experiment.

Richard Schultz

2012-04-01T23:59:59.000Z

182

High velocity impact of metal sphere on thin metallic plates: a comparative smooth particle hydrodynamics study  

Science Conference Proceedings (OSTI)

Four different shock-capturing schemes used in smooth particle hydrodynamics are compared as applied to moderately high-velocity impacts (at 3 km/s) and hypervelocity impacts (at ?6 km/s) of metallic projectiles on thin metal plates. The target ... Keywords: Riemann problem, artificial viscosity, hydrocode, hypervelocity impact

Vishal Mehra; Shashank Chaturvedi

2006-02-01T23:59:59.000Z

183

Study on flow parameters optimisation for marine gas turbine intercooler system based on simulation experiment  

Science Conference Proceedings (OSTI)

The thermodynamic calculation software of Intercooled-Cycle gas turbine was developed to observe the impacts that the environmental parameters and cold degrees of intercooler produce quantitatively on this marine engine performance. And then, the mathematical ...

Yu-long Ying; Yun-peng Cao; Shu-ying Li; Zhi-tao Wang

2013-06-01T23:59:59.000Z

184

Laser velocimetry study of the flow field in a centrifugal pump  

E-Print Network (OSTI)

The flow field in the impeller passages in a centrifugal pump was measured using a two dimensional laser 2-focus velocimeter. Measurements were taken at three circumferential (azimuthal) locations at the design and off-design operating conditions for the pump. The velocity components, flow directions and turbulence kinetic energy were determined for the flow. At design operating condition the vectors representing absolute and relative velocities do not show any sign of distortion in the flow direction. However, the off-design flow direction is somewhat distorted at the impeller inlet near the front wall (z/H = 0. 18) of the blades. A leakage flow is evident from the impeller exit to the inlet. Static pressure measured across the front casing shows an asymmetry in the pressure distribution. Higher value of wall pressure and a high turbulence were observed at the volute tongue near the discharge side. The velocity profile in the pipe upstream of the inlet showed a basically uniform distribution with only a slight asymmetry while the velocity profile downstream of the pump discharge was distorted.

Rashid, Kazi M.

1993-01-01T23:59:59.000Z

185

Structure of the Atmospheric Boundary Layer in the Vicinity of a Developing Upslope Flow System: A Numerical Model Study  

Science Conference Proceedings (OSTI)

The development of a morning upslope flow is studied by means of idealized numerical simulations. In particular, two cases are examined: a plane slope connecting a lower plain and an elevated plateau and a symmetric mountain in the middle of a ...

Stefano Serafin; Dino Zardi

2010-04-01T23:59:59.000Z

186

Experiments in the ISX-B tokamak electron cyclotron heating, ripple studies, pellet fueling, impurity flow reversal and surface physics  

DOE Green Energy (OSTI)

The wide variety of experiments on the ISX-B tokamak includes electron cyclotron heating, ripple effects, hydrogen pellet fueling, impurity flow reversal mechanisms, plasma edge studies, and testing of limiter coatings. The most significant results in each of these areas are discussed.

Isler, R.C. [Oak Ridge National Laboratory (ORNL); Peng, Yueng Kay Martin [ORNL

1981-01-01T23:59:59.000Z

187

Google scholar's ranking algorithm: The impact of citation counts (an empirical study).” to be published  

E-Print Network (OSTI)

Google Scholar is one of the major academic search engines but its ranking algorithm for academic articles is unknown. In recent studies we partly reverse-engineered the algorithm. This paper presents the results of our third study. While the first study provided a broad overview and the second study focused on researching the impact of citation counts, the current study focused on analyzing the correlation of an article’s age and its ranking in Google Scholar. In other words, it was analyzed if older/recent published articles are more/less likely to appear in a top position in Google Scholar’s result lists. For our study, age and rankings of 1,099,749 articles retrieved via 2,100 search queries were analyzed. The analysis revealed that an article’s age seems to play no significant role in Google Scholar’s ranking algorithm. It is also discussed why this might lead to a suboptimal ranking. 1.

Jöran Beel

2009-01-01T23:59:59.000Z

188

Flow-temperature-humidity control system operating manual. [Controlled atmospheres for industrial hygiene and air pollution studies  

SciTech Connect

A manual containing operating, maintenance, and troubleshooting procedures for the flow-temperature-humidity control system used at the Lawrence Livermore Laboratory to prepare test atmospheres for industrial hygiene and air pollution studies is presented. The system consists of two basic components: a commercially available temperature/humidity indicator unit and a specially built flow-temperature-humidity control module. Procedures are given for using the control system with a vapor generation system or with a trace-gas flowmeter to add vapor or a trace gas to the airstream after it leaves the control module.

Nelson, G.O.; Taylor, R.D.

1978-11-16T23:59:59.000Z

189

Environmental impact assessment of abnormal events: a follow-up study  

DOE Green Energy (OSTI)

Impact analyses included in environmental assessments for a selected nuclear power plant, petroleum storage facility, crude oil pipeline, and geopressure well that have experienced operational, abnormal events are compared with the data quantifying the environmental impacts of the events. Comparisons of predicted vs actual impacts suggests that prediction of the types of events and associated impacts could be improved; in some instances, impacts have been underestimated. Analysis of abnormal events is especially important in environmental assessment documents addressing a technology that is novel or unique to a particular area. Incorporation of abnormal event impact analysis into project environmental monitoring and emergency response plans can help improve these plans and can help reduce the magnitude of environmental impacts resulting from said events.

Hunsaker, D.B. Jr.; Lee, D.W.

1985-01-01T23:59:59.000Z

190

Design and development of a test facility to study two-phase steam/water flow in porous media  

DOE Green Energy (OSTI)

The approach taken at Lawrence Berkeley Laboratory to obtain relative permeability curves and their dependence on fluid and matrix properties is summarized. Thermodynamic studies are carried out to develop the equations governing two-phase steam/water flow in porous media and to analyze the relationship between mass flow rate and flowing enthalpy. These relationships will be verified against experimental results and subsequently will be used to develop a field analysis technique to obtain in-situ relative permeability parameters. Currently our effort is concentrated on thermodynamic analysis and development of an experimental facility. Some of the findings of the theoretical work are presented and also the design and development effort for the experimental facility is described.

Verma, A.K.; Pruess, K.; Bodvarsson, G.S.; Tsang, C.F.; Witherspoon, P.A.

1983-12-01T23:59:59.000Z

191

Computational study of flow dynamics from a dc arc plasma jet  

E-Print Network (OSTI)

Plasma jets produced by direct-current (DC) non-transferred arc plasma torches, at the core of technologies ranging from spray coating to pyrolysis, present intricate dynamics due to the coupled interaction of fluid flow, thermal, and electromagnetic phenomena. The flow dynamics from an arc discharge plasma jet are investigated using time-dependent three-dimensional simulations encompassing the dynamics of the arc inside the torch, the evolution of the jet through the discharge environment, and the subsequent impingement of the jet over a flat substrate. The plasma is described by a chemical equilibrium and thermodynamic nonequilibrium (two-temperature) model. The numerical formulation of the physical model is based on a monolithic and fully-coupled treatment of the fluid and electromagnetic equations using a Variational Multiscale Finite Element Method. Simulation results uncover distinct aspects of the flow dynamics, including the jet forcing due to the movement of the electric arc, the prevalence of deviat...

Trelles, Juan Pablo

2013-01-01T23:59:59.000Z

192

Land Market Impacts of Urban Rail Transit and Joint Development: An Empirical Study of Rail Transit in Washington, D.C. and Atlanta  

E-Print Network (OSTI)

Market Impacts of Urban Rail Transit and Joint Development:An Empirical Study of Rail Transit in Washington, D.C. andMarket Impacts of Urban Rail Transit and Joint Development:

Cervero, Robert

1992-01-01T23:59:59.000Z

193

Star Formation Rates in Cooling Flow Clusters: A UV Pilot Study with Archival XMM-Newton Optical Monitor Data  

E-Print Network (OSTI)

We have analyzed XMM-Newton Optical Monitor (OM) UV (180-400 nm) data for a sample of 33 galaxies, of which 30 are cluster members. Nine of these are central cluster galaxies (CCGs) in cooling flow clusters, having mass deposition rates which span a range of 8 to 525 solar masses per year. Using the ratio of UV to 2MASS J band flux, we find a significant UV excess in many, but not all, cooling flow CCGs. This UV excess is a direct indication of the presence of young massive stars, and therefore recent star formation, in these galaxies. Using the Starburst99 spectral energy distribution (SED) model of continuous star formation over a 900 Myr period, we derive star formation rates of 0.2 to 219 solar masses per year for the cooling flow sample. For 2/3 of this sample it is possible to equate Chandra/XMM cooling flow mass deposition rates with UV inferred star formation rates, for a combination of starburst lifetime and IMF slope. This is a pilot study of the well populated XMM UV cluster archive and a more extensive follow up study is currently underway.

Amalia K. Hicks; Richard Mushotzky

2005-08-04T23:59:59.000Z

194

I A STUDY OF THE WORKABILITY OF URANIUM BY MEANS OF TENSILE-IMPACT, HARDNESS, AND DROP-HAMMER  

Office of Legacy Management (LM)

A STUDY OF THE WORKABILITY OF URANIUM BY A STUDY OF THE WORKABILITY OF URANIUM BY MEANS OF TENSILE-IMPACT, HARDNESS, AND DROP-HAMMER I EVALUATIONS AT ELEVATED TEMPERATURES PROPOSAL TO NATIONAL LEAD COMPANY OF OHIO A STUDY OF THE WORKABILITY OF URANIUM BY MEANS OF TENSILE-IMPACT, HARDNESS, AND DROP-HAMMER EVALUATIONS AT ELEVATED TEMPERATURES PROPOSAL TO NATIONAL LEAD COMPANY OF OHIO Southern Research Institute Birmingham, Alabama January 30, 1963 Proposal No. 2152 Copy of original document Iccated in FEMP Archives. .L TABLEOFCONTENTS Page INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..I SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..z EQUIPMENT AND PROCEDURES . . . . . . . . . . . . . . . . . . . 3 A. Hot-Hardness Evaluations .................. 3

195

Children's physical activity and parents' perception of the neighborhood environment: neighborhood impact on kids study  

E-Print Network (OSTI)

Health: The built environment: Designing communities toRosenberg DE: Neighborhood environment and physical activity455. 3. Impact of the built environment on health. http://

Tappe, Karyn A; Glanz, Karen; Sallis, James F; Zhou, Chuan; Saelens, Brian E

2013-01-01T23:59:59.000Z

196

An NDE Study of Impact Damage in Multi-Layered Transparent ...  

Science Conference Proceedings (OSTI)

For both transparent and opaque protective systems, low velocity impact damage compromises the structural integrity and increases the likelihood of further ...

197

Bonneville Second Powerhouse Tailrace and High Flow Outfall: ADCP and drogue release field study  

DOE Green Energy (OSTI)

The Bonneville Project is one of four US Army Corps of Engineers operated dams along the Lower Columbia River. Each year thousands of smelt pass through this Project on their way to the Pacific Ocean. High flow outfalls, if specifically designed for fish passage, are thought to have as good or better smelt survival rates as spillways. To better understand the hydrodynamic flow field around an operating outfall, the Corps of Engineers commissioned measurement of water velocities in the tailrace of the Second Powerhouse. These data also are necessary for proper calibration and verification of three-dimensional numerical models currently under development at PNNL. Hydrodynamic characterization of the tailrace with and without the outfall operating was accomplished through use of a surface drogue and acoustic Doppler current profiler (ADCP). Both the ADCP and drogue were linked to a GPS (global positioning system); locating the data in both space and time. Measurements focused on the area nearest to the high flow outfall, however several ADCP transects and drogue releases were performed away from the outfall to document ambient flow field conditions when the outfall was not operating.

Cook, Chris B; Richmond, Marshall C; Guensch, Greg

2001-03-20T23:59:59.000Z

198

Numerical study of self-induced transonic flow oscillations behind a sudden duct enlargement  

E-Print Network (OSTI)

-reducing valves and by flow control devices in pipe systems of power plants. Large pressure oscillations for shock waves. © 2009 American Institute of Physics. doi:10.1063/1.3247158 I. INTRODUCTION Shock values of the area ratio h/H and of the channel length-to-height ratio L/H. Boundary layer- shock wave

Paris-Sud XI, Université de

199

A study of the spontaneous air flow through a moving porous medium  

Science Conference Proceedings (OSTI)

When a layer of porous material such as the felt moves with respect to the surrounding air, the induced pressure difference will drive the air through the moving porous material. In many industrial applications including the paper machine drying pocket ... Keywords: permeable felt, porus medium, spontaneous air flow

Jianyao Mou; G. Randall Straley; Xiaodong Wang

2003-06-01T23:59:59.000Z

200

Modeling study of ventilation, IAQ and energy impacts of residential mechanical ventilation  

SciTech Connect

This paper reports on a simulation study of indoor air quality, ventilation and energy impacts of several mechanical ventilation approaches in a single-family residential building. The study focused on a fictitious two-story house in Spokane, Washington and employed the multizone airflow and contaminant dispersal model CONTAM. The model of the house included a number of factors related to airflow including exhaust fan and forced-air system operation, duct leakage and weather effects, as well as factors related to contaminant dispersal including adsorption/desorption of water vapor and volatile organic compounds, surface losses of particles and nitrogen dioxide, outdoor contaminant concentrations, and occupant activities. The contaminants studied include carbon monoxide, carbon dioxide, nitrogen dioxide, water vapor, fine and coarse particles, and volatile organic compounds. One-year simulations were performed for four different ventilation approaches: a base case of envelope infiltration only, passive inlet vents in combination with exhaust fan operation, an outdoor intake duct connected to the forced-air system return balanced by exhaust fan operation, and a continuously-operated exhaust fan. Results discussed include whole building air change rates, air distribution within the house, heating and cooling loads, contaminants concentrations, and occupant exposure to contaminants.

Persily, A.K.

1998-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study  

SciTech Connect

In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable quantitative assessment of the CASL modeling of Crud-Induced Power Shift (CIPS) phenomenon, in particular, and the CASL advanced predictive capabilities, in general. This report is prepared for the Department of Energy’s Consortium for Advanced Simulation of LWRs program’s VUQ Focus Area.

Anh Bui; Nam Dinh; Brian Williams

2013-09-01T23:59:59.000Z

202

Theoretical and empirical study of single-substance, upward two-phase flow in a constant-diameter adiabatic pipe  

DOE Green Energy (OSTI)

A scheme is developed to describe the upward flow of a two-phase mixture of a single substance in a vertical adiabatic constant area pipe. The scheme is based on dividing the mixture into a homogeneous core surrounded by a liquid film. This core may be a mixture of bubbles in a contiguous liquid phase, or a mixture of droplets in a contiguous vapor phase. The core is turbulent, whereas the liquid film may be laminar or turbulent. The working fluid is Dichlorotetrafluoroethane CClF/sub 2/-CClF/sub 2/ known as refrigerant 114 (R-114); the two-phase mixture is generated from the single phase substance by the process of flashing. In this study, the effect of the Froude and Reynolds numbers on the liquid film characteristics is examined. An expression for an interfacial friction coefficient between the turbulent core and the liquid film is developed; it is similar to Darcy's friction coefficient for a single phase flow in a rough pipe. Results indicate that for the range of Reynolds and Froude numbers considered, the liquid film is likely to be turbulent rather than laminar. The study also shows that two-dimensional effects are important, and the flow is never fully developed either in the film or the core. In addition, the new approach for the turbulent film is capable of predicting a local net flow rate that may be upward, downward, stationary, or stalled. An actual steam-water geothermal well is simulated. A similarity theory is used to predict the steam-water mixture pressure and temperature starting with laboratory measurements on the flow of R-114. Results indicate that the theory can be used to predict the pressure gradient in the two-phase region based on laboratory measurements.

Laoulache, R.N.; Maeder, P.F.; DiPippo, R.

1987-05-01T23:59:59.000Z

203

AN ASSESSMENT OF THE STUDIES USED TO DETECT IMPACTS TO MARINE  

E-Print Network (OSTI)

Impacts Thermal impacts occur as a result of discharging water used to cool the power plant back and Pittsburg Power Plants thermal effects assessment, 1991-1992. Pacific Gas and Electric Co., San Francisco Luis Obispo. 7 pp. Tenera (Tenera Environmental Sciences). 1997. Diablo Canyon Power Plant Thermal

204

IMPACT OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION MELT RATE STUDIES  

SciTech Connect

This study was undertaken to evaluate the potential impacts of the Small Column Ion Exchange (SCIX) streams - particularly the addition of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) - on the melt rate of simulated feed for the Defense Waste Processing Facility (DWPF). Additional MST was added to account for contributions from the Salt Waste Processing Facility (SWPF). The Savannah River National Laboratory (SRNL) Melt Rate Furnace (MRF) was used to evaluate four melter feed compositions: two with simulated SCIX and SWPF material and two without. The Slurry-fed Melt Rate Furnace (SMRF) was then used to compare two different feeds: one with and one without bounding concentrations of simulated SCIX and SWPF material. Analyses of the melter feed materials confirmed that they met their targeted compositions. Four feeds were tested in triplicate in the MRF. The linear melt rates were determined by using X-ray computed tomography to measure the height of the glass formed along the bottom of the beakers. The addition of the SCIX and SWPF material reduced the average measured melt rate by about 10% in MRF testing, although there was significant scatter in the data. Two feeds were tested in the SMRF. It was noted that the ground CST alone (ground CST with liquid in a bucket) was extremely difficult to resuspend during preparation of the feed with material from SCIX and SWPF. This feed was also more difficult to pump than the material without MST and CST due to settling occurring in the melter feed line, although the yield stress of both feeds was high relative to the DWPF design basis. Steady state feeding conditions were maintained for about five hours for each feed. There was a reduction in the feed and pour rates of approximately 15% when CST and MST were added to the feed, although there was significant scatter in the data. Analysis of samples collected from the SMRF pour stream showed that the composition of the glass changed as expected when MST and CST were added to the feed. These reductions in melt rate are consistent with previous studies that showed a negative impact of increased TiO{sub 2} concentrations on the rate of melting. The impact of agitating the melt pool via bubbling was not studied as part of this work, but may be of interest for further testing. It is recommended that additional melt rate testing be performed should a potential reduction in melt rate of 10-15% be considered an issue of concern, or should the anticipated composition of the glass with the addition of material from salt waste processing be modified significantly from the current projections, either due to changes in sludge batch preparation or changes in the composition or volume of SCIX and SWPF material.

Fox, K.; Miller, D.; Koopman, D.

2011-04-26T23:59:59.000Z

205

Experimental and Computational Studies of Fluid Flow Phenomena in Carbon Dioxide Sequestration in Brine and Oil Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID FLOW PHENOMENA IN CARBON DIOXIDE SEQUESTRATION IN BRINE AND OIL FIELDS Chuang Ji ( chuang.ji@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 BOX 5725 Clarkson University Potsdam, NY 13699 Goodarz Ahmadi ( ahmadi@clarkson.edu ) BOX 5725 Clarkson University Potsdam, NY 13699 Duane H. Smith ( duane.smith@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 2 INTRODUCTION Sequestration of CO 2 by injection into deep geological formations is a method to reduce CO 2 emissions into the atmosphere. However, when CO 2 is injected underground, it forms fingers extending into the rock pores saturated with brine or petroleum. This flow

206

Steam Generator Management Program: Experimental Studies of Flow Around Foreign Objects in a Tube Array  

Science Conference Proceedings (OSTI)

Tube wear caused by foreign objects (FOs) in steam generators can lead to unplanned and costly forced outages. The complex flow field within the tube bundle, coupled with the wide range of FO sizes and possible configurations relative to the tubes, poses a challenge to the understanding of the fundamental mechanisms of FO-tube interaction and prediction of the resulting tube wear.The goals of the project were (1) to develop an experimental apparatus and measurement system capable of ...

2013-12-18T23:59:59.000Z

207

A study of relative permeability for steam-water flow in porous media  

SciTech Connect

We report on continuing experimental and numerical efforts to obtain steam-water relative permeability functions and to assess effect of heat transfer and phase change. To achieve these, two sets of steady-state flow experiments were conducted: one with nitrogen and water and another with steam and water. During these experiments, a mixture of nitrogen-water (or steam-water) was injected into a Berea sandstone core. At the onset of steady state conditions, three-dimensional saturation distributions were obtained by using a high resolution X-ray computer tomography scanner. By identifying a length of the core over which a flat saturation profile exists and measuring the pressure gradient associated with this length, we calculated relative permeabilities for nitrogen-water flow experiments. The relative permeability relations obtained in this case were in good agreement with those reported by other investigators. Another attempt was also made to conduct a steam-water flow experiment under adiabatic conditions. This experiment was completed with partial success due to the difficulties encountered during the experiment. The results of this experiment showed that a flat saturation profile actually developed over a substantial length of the core even at a comparatively modest injection rate (6 grams per minute) with low steam quality (4% by mass). The completion of this set of experiments should yield steam-water relative permeability relations in the near future.

Ambusso, Willis; Satik, Cengiz; Horne, Roland

1996-01-24T23:59:59.000Z

208

DWPF COAL-CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION BASED ON EXPERIMENTAL WORK (TANK 48 IMPACT STUDY)  

DOE Green Energy (OSTI)

This report summarizes the results of both experimental and modeling studies performed using Sludge Batch 10 (SB10) simulants and FBSR product from Tank 48 simulant testing in order to develop higher levels of coal-carbon that can be managed by DWPF. Once the Fluidized Bed Steam Reforming (FBSR) process starts up for treatment of Tank 48 legacy waste, the FBSR product stream will contribute higher levels of coal-carbon in the sludge batch for processing at DWPF. Coal-carbon is added into the FBSR process as a reductant and some of it will be present in the FBSR product as unreacted coal. The FBSR product will be slurried in water, transferred to Tank Farm and will be combined with sludge and washed to produce the sludge batch that DWPF will process. The FBSR product is high in both water soluble sodium carbonate and unreacted coal-carbon. Most of the sodium carbonate is removed during washing but all of the coal-carbon will remain and become part of the DWPF sludge batch. A paper study was performed earlier to assess the impact of FBSR coal-carbon on the DWPF Chemical Processing Cell (CPC) operation and melter off-gas flammability by combining it with SB10-SB13. The results of the paper study are documented in Ref. 7 and the key findings included that SB10 would be the most difficult batch to process with the FBSR coal present and up to 5,000 mg/kg of coal-carbon could be fed to the melter without exceeding the off-gas flammability safety basis limits. In the present study, a bench-scale demonstration of the DWPF CPC processing was performed using SB10 simulants spiked with varying amounts of coal, and the resulting seven CPC products were fed to the DWPF melter cold cap and off-gas dynamics models to determine the maximum coal that can be processed through the melter without exceeding the off-gas flammability safety basis limits. Based on the results of these experimental and modeling studies, the presence of coal-carbon in the sludge feed to DWPF is found to have both positive (+) and negative (-) impact as summarized below: (-) Coal-carbon is a melter reductant. If excess coal-carbon is present, the resulting melter feed may be too reducing, potentially shortening the melter life. During this study, the Reduction/Oxidation Potential (REDOX) of the melter could be controlled by varying the ratio of nitric and formic acid. (-) The addition of coal-carbon increases the amount of nitric acid added and decreases the amount of formic acid added to control melter REDOX. This means that the CPC with the FBSR product is much more oxidizing than current CPC processing. In this study, adequate formic acid was present in all experiments to reduce mercury and manganese, two of the main goals of CPC processing. (-) Coal-carbon will be oxidized to carbon dioxide or carbon monoxide in the melter. The addition of coal-carbon to the FBSR product will lead to approximately 55% higher offgas production from formate, nitrate and carbon due to the decomposition of the carbon at the maximum levels in this testing. Higher offgas production could lead to higher cold cap coverage or melter foaming which could decrease melt rate. No testing was performed to evaluate the impact of the higher melter offgas flow. (+) The hydrogen production is greatly reduced in testing with coal as less formic acid is added in CPC processing. In the high acid run without coal, the peak hydrogen generation was 15 times higher than in the high acid run with added coal-carbon. (+) Coal-carbon is a less problematic reducing agent than formic acid, since the content of both carbon and hydrogen are important in evaluating the flammability of the melter offgas. Processing with coal-carbon decreases the amount of formic acid added in the CPC, leading to a lower flammability risk in processing with coal-carbon compared to the current DWPF flowsheet. (+) The seven SB10 formulations which were tested during the bench-scale CPC demonstration were all determined to be within the off-gas flammability safety basis limits during the 9X/5X off-gas surge for normal bubbled melter

Lambert, D.; Choi, A.

2010-10-15T23:59:59.000Z

209

DWPF COAL-CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION BASED ON EXPERIMENTAL WORK (TANK 48 IMPACT STUDY)  

Science Conference Proceedings (OSTI)

This report summarizes the results of both experimental and modeling studies performed using Sludge Batch 10 (SB10) simulants and FBSR product from Tank 48 simulant testing in order to develop higher levels of coal-carbon that can be managed by DWPF. Once the Fluidized Bed Steam Reforming (FBSR) process starts up for treatment of Tank 48 legacy waste, the FBSR product stream will contribute higher levels of coal-carbon in the sludge batch for processing at DWPF. Coal-carbon is added into the FBSR process as a reductant and some of it will be present in the FBSR product as unreacted coal. The FBSR product will be slurried in water, transferred to Tank Farm and will be combined with sludge and washed to produce the sludge batch that DWPF will process. The FBSR product is high in both water soluble sodium carbonate and unreacted coal-carbon. Most of the sodium carbonate is removed during washing but all of the coal-carbon will remain and become part of the DWPF sludge batch. A paper study was performed earlier to assess the impact of FBSR coal-carbon on the DWPF Chemical Processing Cell (CPC) operation and melter off-gas flammability by combining it with SB10-SB13. The results of the paper study are documented in Ref. 7 and the key findings included that SB10 would be the most difficult batch to process with the FBSR coal present and up to 5,000 mg/kg of coal-carbon could be fed to the melter without exceeding the off-gas flammability safety basis limits. In the present study, a bench-scale demonstration of the DWPF CPC processing was performed using SB10 simulants spiked with varying amounts of coal, and the resulting seven CPC products were fed to the DWPF melter cold cap and off-gas dynamics models to determine the maximum coal that can be processed through the melter without exceeding the off-gas flammability safety basis limits. Based on the results of these experimental and modeling studies, the presence of coal-carbon in the sludge feed to DWPF is found to have both positive (+) and negative (-) impact as summarized below: (-) Coal-carbon is a melter reductant. If excess coal-carbon is present, the resulting melter feed may be too reducing, potentially shortening the melter life. During this study, the Reduction/Oxidation Potential (REDOX) of the melter could be controlled by varying the ratio of nitric and formic acid. (-) The addition of coal-carbon increases the amount of nitric acid added and decreases the amount of formic acid added to control melter REDOX. This means that the CPC with the FBSR product is much more oxidizing than current CPC processing. In this study, adequate formic acid was present in all experiments to reduce mercury and manganese, two of the main goals of CPC processing. (-) Coal-carbon will be oxidized to carbon dioxide or carbon monoxide in the melter. The addition of coal-carbon to the FBSR product will lead to approximately 55% higher offgas production from formate, nitrate and carbon due to the decomposition of the carbon at the maximum levels in this testing. Higher offgas production could lead to higher cold cap coverage or melter foaming which could decrease melt rate. No testing was performed to evaluate the impact of the higher melter offgas flow. (+) The hydrogen production is greatly reduced in testing with coal as less formic acid is added in CPC processing. In the high acid run without coal, the peak hydrogen generation was 15 times higher than in the high acid run with added coal-carbon. (+) Coal-carbon is a less problematic reducing agent than formic acid, since the content of both carbon and hydrogen are important in evaluating the flammability of the melter offgas. Processing with coal-carbon decreases the amount of formic acid added in the CPC, leading to a lower flammability risk in processing with coal-carbon compared to the current DWPF flowsheet. (+) The seven SB10 formulations which were tested during the bench-scale CPC demonstration were all determined to be within the off-gas flammability safety basis limits during the 9X/5X off-gas surge for normal bubbled melter

Lambert, D.; Choi, A.

2010-10-15T23:59:59.000Z

210

A Numerical Study of Gravity Wave Breaking and Impacts on Turbulence and Mean State  

Science Conference Proceedings (OSTI)

A model system is established that includes three interactive components: a dynamics model, a turbulence model, and a chemistry model. The dynamics model solves the two-dimensional, nonlinear, nonhydrostatic, compressible, and viscous flow ...

H-L. Liu; P. B. Hays; R. G. Roble

1999-07-01T23:59:59.000Z

211

Potential Impacts of Desalination Concentrate on Salinity of Irrigation Water: A Case Study in the El Paso Valley  

E-Print Network (OSTI)

Winter returnflow has not been fully utilized for crop irrigation in the El Paso Valley. There are, however, emerging interests in utilizing it for urban water supply through desalting. This study examined the potential impact of concentrate discharge on salinity, sodicity, and ionic composition of irrigation water supply, using historical or published records. The analyses performed consisted of the estimate of riverflow rates on river water quality, a review of concentrate and permeate quality from nanofiltration (NF) and reverse osmosis (RO), and the impacts of dilution or blending on water quality. Riverflow and quality data from the U.S. Section, International Boundary and Water Commission (US-IBWC) were examined first. This analysis has shown that salinity and ionic composition of riverflow can be described by a simple power function as related to the momentary riverflow rate when water samples were taken for chemical analyses. This method provides more accurate estimates of monthly salinity than the use of monthly average flow which has a high degree of variation. In addition, this approximation technique allows for the estimation of river salinity and ionic compositions at any riverflow rates of interest. A review of published articles on NF processes indicates that there are essentially two types of membranes: one has a low rejection rate for Na and Cl, and the other has a high rejection rate. If the objective is to minimize Na and Cl ions while maximizing Ca and Mg concentrations in the concentrate, the first type is preferred. However, the sodium adsorption ratio (SAR) of concentrate from the first type of NF membrane is also influenced by feed water quality. Typically, the SAR of the concentrate does not change appreciably in water that is rich in SO4, as the rejection rate of SO4 is high, and SO4 ions remain in the concentrate along with accompanying cations. The SAR of the concentrate is not necessarily lower than that of feed water, due to the salt concentration effect on SAR. The SAR value which directly impacts the cation exchange reaction in soils decreases with dilution, but increases due to the increased formation of sulfate-divalent cation ion-pairs. Sodicity of the concentrate from the second type is higher than the sodicity of feed water or that of the concentrate from the first type, and approaches the concentrate composition from a RO process. The most significant changes that take place in the concentrate composition from the first type are an increase in TDS and divalent cations and anions, whereas sodicity and chloride concentrations remain more or less the same as those of feed water. Permeate from the first type of NF membrane is likely to be higher in Na, Cl, and TDS than from the second type. These elevated salt levels limit the opportunity for blending with the river water, which has elevated salinity and SO4 concentrations, especially at a low riverflow of 5 Mm3/mo or less. Sodicity and the concentrations of Na and Cl in the permeate could also exceed the unofficial water quality guidelines for irrigating urban landscape. If the RO process or the second type of NF membrane is used, the permeate can be blended with river water at nearly a 1:1 ratio. This means that a lesser quantity of water needs to be treated when a RO process is used. If river water high in Na and Cl concentrations is used for blending, the salt load of the concentrate from the NF process can actually be greater than that from the RO process, because of the limited blending possibility. If the NF option is to be retained, a NF membrane with some rejection of Cl ions may be warranted, unless blending water low in Cl is available at or near the site. Assuming that flow and salinity monitoring data at the Courchesne Bridge are realistic, the disposal of NF concentrate from 5 and 10 MGD membrane processes at a riverflow rate of 5 Mm3/mo may increase salinity of riverwater by around 7 and 16%, respectively, over the existing salinity. This estimate is for a NF membrane with a low

Miyamoto, S.

2008-05-01T23:59:59.000Z

212

Impact Study of AMSR-E Radiances in the NCEP Global Data Assimilation System  

Science Conference Proceedings (OSTI)

The impact of radiance observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) was investigated in the National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS). The GDAS ...

Masahiro Kazumori; Quanhua Liu; Russ Treadon; John C. Derber

2008-02-01T23:59:59.000Z

213

Definition of a facility for experimental studies of two-phase flows and heat transfer in porous materials  

DOE Green Energy (OSTI)

A facility-development effort is currently underway at Sandia National Laboratories in order to create an experimental capability for the study of two-phase, steam/water flows through a variety of porous media. The facility definition phase of this project is described. Equations are derived for the steady, adiabatic, macroscopically-linear two-phase flow of a single-component fluid through a porous medium, including energy transfer both by convection and conduction. These equations are then solved to give relative permeabilities for the steam and water phases as functions of known and/or measurable quantities. A viable experimental approach was thereby formulated, leading to the definition of facility components and instrumentation requirements, including the application of gamma-beam densitometry for the measurement of liquid-saturation distributions in porous media. Finally, a state-of-the-art computer code was utilized to numerically simulate the proposed experiments, providing an estimate of the facility operating envelope.

Reda, D.C.; Eaton, R.R.

1981-12-31T23:59:59.000Z

214

Towards developing a framework for measuring organizational impact of IT- enabled BPR: case studies of three firms  

Science Conference Proceedings (OSTI)

This article reports on a case study of three firms which examined the organizational-level measures and process-level measures that were used to identify the effects of IT-enabled BPR (Business Process Redesign) projects. Firms in three distinct industry ... Keywords: IT, business process reengineering, information technology payoff, measurement, organizational impact, process theory

Rajiv Kohli; Ellen Hoadley

2006-01-01T23:59:59.000Z

215

A simulation study using EFA and CFA programs based the impact of missing data on test dimensionality  

Science Conference Proceedings (OSTI)

This study examines the impact of missing rates and data imputation methods on test dimensionality. We consider how missing rate levels (10%, 20%, 30%, and 50%) and the six missed data imputation methods (Listwise, Serial Mean, Linear Interpolation, ... Keywords: Confirmatory factor analysis, Data imputation, Exploratory factor analysis, Statistics package for social science, Test dimensionality

Shin-Feng Chen; Shuyi Wang; Chen-Yuan Chen

2012-03-01T23:59:59.000Z

216

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network (OSTI)

phases stored in matrix pores, the energy E M contained in VEnough energy is transmitted from the matrix to effectivelyfor energy transfer from the adjacent hot rock matrix rather

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

217

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network (OSTI)

is related to the heat transfer between the two phasespossibly be affected. Heat transfer from the matrix can beof Fracture-Matrix Heat Transfer Jens T. Birkholzer and

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

218

Effects of Atmospheric Thermal Stability and Slope Steepness on the Development of Daytime Thermally Induced Upslope Flow  

Science Conference Proceedings (OSTI)

The impact of background atmospheric thermal stability and slope steepness on the daytime thermally induced upslope flows was investigated using analytical and numerical model approaches. The study focuses on meso-? domains and considers the noon ...

Z. J. Ye; M. Segal; R. A. Pielke

1987-11-01T23:59:59.000Z

219

Theoretical and empirical study of single-substance, upward two-phase flow in a constant-diameter adiabatic pipe  

SciTech Connect

A Scheme is developed to describe the upward flow of a two-phase mixture of a single substance in a vertical adiabatic constant area pipe. The scheme is based on dividing the mixture into a homogeneous core surrounded by a liquid film. This core may be a mixture of bubbles in a contiguous liquid phase, or a mixture of droplets in a contiguous vapor phase. Emphasis is placed upon the latter case since the range of experimental measurements of pressure, temperature, and void fraction collected in this study fall in the slug-churn''- annular'' flow regimes. The core is turbulent, whereas the liquid film may be laminar or turbulent. Turbulent stresses are modeled by using Prandtl's mixing-length theory. The working fluid is Dichlorotetrafluoroethane CCIF{sub 2}-CCIF{sub 2} known as refrigerant 114 (R-114); the two-phase mixture is generated from the single phase substance by the process of flashing. In this study, the effect of the Froude and Reynolds numbers on the liquid film characteristics is examined. The compressibility is accounted for through the acceleration pressure gradient of the core and not directly through the Mach number. An expression for an interfacial friction coefficient between the turbulent core and the liquid film is developed; it is similar to Darcy's friction coefficient for a single phase flow in a rough pipe. Finally, an actual steam-water geothermal well is simulated; it is based on actual field data from New Zealand. A similarity theory is used to predict the steam-water mixture pressure and temperature starting with laboratory measurements on the flow of R-114.

Laoulache, R.N.; Maeder, P.F.; DiPippo, R.

1987-05-01T23:59:59.000Z

220

Ngfast : a simulation model for rapid assessment of impacts of natural gas pipeline breaks and flow reductions at U. S. state borders and import points.  

Science Conference Proceedings (OSTI)

This paper describes NGfast, the new simulation and impact-analysis tool developed by Argonne National Laboratory for rapid, first-stage assessments of impacts of major pipeline breaks. The methodology, calculation logic, and main assumptions are discussed. The concepts presented are most useful to state and national energy agencies tasked as first responders to such emergencies. Within minutes of the occurrence of a break, NGfast can generate an HTML-formatted report to support briefing materials for state and federal emergency responders. Sample partial results of a simulation of a real system in the United States are presented.

Portante, E. C.; Craig, B. A.; Folga, S.M.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube  

SciTech Connect

A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)

Tao, Y.B.; He, Y.L. [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)

2010-10-15T23:59:59.000Z

222

of Homeownership. Center for Community Capitalism: Chapel Hill, NC. Community Advantage Panel Study: Social Impacts of Homeownership  

E-Print Network (OSTI)

This working paper presents our theoretical approach to the study of the social impacts of homeownership. Previous studies of these social impacts have primarily focused on basic differences in economic and social outcomes or psychological status between owners and renters without providing insight into how homeownership brings about these outcomes. In an extensive review of literature on the social impact of homeownership, Rohe, McCarthy and Van Zandt (2000) identified two major shortcomings of existing research. Their first conclusion was that future research needs to do a better job of identifying processes or mechanisms through which homeownership influences the different social variables of interest. Second, they concluded that future research needs to do a better job of addressing the self-selection bias inherent in research on the impacts of homeownership. That is, these studies have been unable to isolate the effects of homeownership, making it impossible to know if the attitudes, behaviors, and social outcomes of owners are the result of homeownership or if people who hold such attitudes or are likely to experience such social outcomes are more likely to become homeowners. We propose to address these shortcomings of previous research in three ways. First, we use current social-psychological theories of rational action, the Theory of

Michael Hubbard Phd; Walter Davis; Michael Hubbard; Walter Davis

2002-01-01T23:59:59.000Z

223

Optimal homogenization of perfusion flows in microfluidic bio-reactors; a numerical study  

E-Print Network (OSTI)

To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continuously feed bio-reactor with uniform perfusion flow. This is achieved by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for e.g. cell culturing and analysis, and in feeding bio-arrays.

Okkels, Fridolin; Bruus, Henrik

2009-01-01T23:59:59.000Z

224

Impact of Urban Growth on Surface Climate: A Case Study in Oran, Algeria  

Science Conference Proceedings (OSTI)

The authors develop a land use map discriminating urban surfaces from other cover types over a semiarid region in North Africa and use it in a land surface model to assess the impact of urbanized land on surface energy, water, and carbon ...

Lahouari Bounoua; Abdelmounaine Safia; Jeffrey Masek; Christa Peters-Lidard; Marc L. Imhoff

2009-02-01T23:59:59.000Z

225

Rigorous evaluation of a soil heat transfer model for mesoscale climate change impact studies  

Science Conference Proceedings (OSTI)

The influence of Climate Change on plant development as well as on carbon and nitrogen cycling in soils is an important research topic for Global Change impact assessment at the regional scale. These changes affect the availability and quality of ground ... Keywords: Energy balance, GLOWA-Danube, Land surface, Mesoscale, Soil temperature

Markus Muerth; Wolfram Mauser

2012-07-01T23:59:59.000Z

226

Modeling the Economic Impact of Pandemic Influenza: A Case Study in Turkey  

Science Conference Proceedings (OSTI)

Influenza pandemics have occurred intermittently throughout the 20th century and killed millions of people worldwide. It is expected that influenza pandemics will continue to occur in the near future. Huge number of deaths and cases is the most troublesome ... Keywords: Cost analysis, Economic impact, Pandemic influenza, Turkey

Elcin Yoldascan; Behice Kurtaran; Melik Koyuncu; Esra Koyuncu

2010-04-01T23:59:59.000Z

227

Influence of shear flow on vesicles near a wall: a numerical study  

E-Print Network (OSTI)

We describe the dynamics of three-dimensional fluid vesicles in steady shear flow in the vicinity of a wall. This is analyzed numerically at low Reynolds numbers using a boundary element method. The area-incompressible vesicle exhibits bending elasticity. Forces due to adhesion or gravity oppose the hydrodynamic lift force driving the vesicle away from a wall. We investigate three cases. First, a neutrally buoyant vesicle is placed in the vicinity of a wall which acts only as a geometrical constraint. We find that the lift velocity is linearly proportional to shear rate and decreases with increasing distance between the vesicle and the wall. Second, with a vesicle filled with a denser fluid, we find a stationary hovering state. We present an estimate of the viscous lift force which seems to agree with recent experiments of Lorz et al. [Europhys. Lett., vol. 51, 468 (2000)]. Third, if the wall exerts an additional adhesive force, we investigate the dynamical unbinding transition which occurs at an adhesion strength linearly proportional to the shear rate.

Sreejith Sukumaran; Udo Seifert

2001-02-07T23:59:59.000Z

228

Feasibility study of a new zinc-air battery concept using flowing alkaline electrolyte  

SciTech Connect

Proof-of-principle experiments are reported for a new concept in electrically rechargeable zinc-air battery. The zinc electrode is a porous flow-thru type using a copper foam metal substrate with zinc deposition onto the foam metal from concentrated zincate electrolyte (as used in zinc-slurry type batteries). The bifunctional air electrode employs low-cost materials, being fabricated entirely from carbon-based precursors and small amounts of nickel and/or cobalt oxide. Corrosion measurements on the graphite materials in the air electrode indicate sufficient corrosion resistance for 8000 h life on charge. A prototype single cell was constructed having 1.5 Ah capacity producing 1.2 V discharge -2.0 charge at the three hour rate and has produced stable voltages for more than 150 cycles. Based on the 1.5 Ah prototype characteristics, design calculations for a 32 kWh battery project an energy density of about 110 Wh/kg, peak power density of 140 W/kg, electrical efficiency of 60% and an attractive materials cost of less than or equal to$20 per kWh.

Ross, P.N. Jr.

1986-04-01T23:59:59.000Z

229

INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS  

SciTech Connect

The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted following an analytical plan. A review of the individual oxides for each glass revealed that there were no errors in batching significant enough to impact the outcome of the study. A comparison of the measured compositions of the replicates indicated an acceptable degree of repeatability as the percent differences for most of the oxides were less than 5% and percent differences for all of the oxides were less than 10 wt%. Chemical durability was measured using the Product Consistency Test (PCT). All but two of the study glasses had normalized leachate for boron (NL [B]) values that were well below that of the Environmental Assessment (EA) reference glass. The two highest NL [B] values were for the CCC versions of glasses US-18 and US-27 (10.498 g/L and 15.962 g/L, respectively). Nepheline crystallization was identified by qualitative XRD in five of the US-series glasses. Each of these five glasses (US-18, US-26, US-27, US-37 and US-43) showed a significant increase in NL [B] values after the CCC heat treatment. This reduction in durability can be attributed to the formation of nepheline during the slow cooling cycle and the removal of glass formers from the residual glass network. The liquidus temperature (T{sub L}) of each glass in the study was determined by both optical microscopy and XRD methods. The correlation coefficient of the measured XRD TL data versus the measured optical TL data was very good (R{sup 2} = 0.9469). Aside from a few outliers, the two datasets aligned very well across the entire temperature range (829 C to 1312 C for optical data and 813 C to 1310 C for XRD crystal fraction data). The data also correlated well with the predictions of a PNNL T{sub L} model. The correlation between the measured and calculated data had a higher degree of merit for the XRD crystal fraction data than for the optical data (higher R{sup 2} value of 0.9089 versus 0.8970 for the optical data). The SEM-EDS analysis of select samples revealed the presence of undissolved RuO{sub 2} in all glasses due to the low solubility of RuO{sub 2} in borosilicate glass. These

Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

2008-09-23T23:59:59.000Z

230

Impacts of Varying Penetration of Distributed Resources with & without Volt/Var Control: Case Study of Varying Load Types  

SciTech Connect

This paper provides a follow-up to an earlier one on impacts of distributed energy resources (DR) on distribution feeders. As DR penetration level on the feeder increases, there can be impacts to distribution system/feeder capacity, line losses, and voltage regulation. These can vary as the penetration level reaches the capacity of the distribution feeder/system or loading. The question is how high of a DR level can be accommodated without any major changes to system operation, system design and protection. Our objective for this work was to address the question of how the DR impacts vary in regards to both DR voltage regulation capability and load mix. A dynamic analysis was used to focus on the impacts of DR with and without volt/var control with different load composition on the distribution feeder. The study considered an example 10MVA distribution feeder in which two inverter-based DRs were used to provide voltage regulation. The results due to DR without voltage regulation capability are compared with DR capable of providing local (at its bus) voltage regulation. The analysis was repeated for four different feeder load compositions consisting of (1) constant power, (2) constant impedance, (3) constant current and (4) ZIP (equal combination of previous three).

Rizy, D Tom [ORNL; Li, Huijuan [ORNL; Li, Fangxing [ORNL; Xu, Yan [ORNL; Adhikari, Sarina [ORNL; Irminger, Philip [ORNL

2011-01-01T23:59:59.000Z

231

WIND POWER Impacts on Wildlife and Government Responsibilities for Regulating Development and Protecting Wildlife Why GAO Did This Study  

E-Print Network (OSTI)

Wind power has recently experienced dramatic growth in the United States, with further growth expected. However, several wind power-generating facilities have killed migratory birds and bats, prompting concern from wildlife biologists and others about the species affected, and the cumulative effects on species populations. GAO assessed (1) what available studies and experts have reported about the impacts of wind power facilities on wildlife in the United

Protecting Wildlife

2005-01-01T23:59:59.000Z

232

Potential impacts of Title I nonattainment on the electric power industry: A Chicago case study (Phase 2)  

Science Conference Proceedings (OSTI)

This study uses version IV of the Urban Airshed Model (UAM-IV) to examine the potential impacts of Title I (nonattainment) and Title IV (acid rain) of the Clean Air Act Amendments of 1990 (CAAA) on the utility industry. The UAM is run for a grid that covers the Commonwealth Edison Power Pool and encompasses the greater Chicago area and surrounding rural areas. Meteorological conditions are selected from an ozone (O{sub 3}) episode on July 5 and 6, 1988.

Fernau, M.E.; Makofske, W.J.; South, D.W.

1993-06-01T23:59:59.000Z

233

East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An Overview  

Science Conference Proceedings (OSTI)

As the most populated region of the world, Asia is a major source of aerosols with potential large impact over vast downstream areas. Papers published in this special section describe the variety of aerosols observed in China and their effects and interactions with the regional climate as part of the East Asian Study of Tropospheric Aerosols and Impact on Regional Climate (EAST-AIRC). The majority of the papers are based on analyses of observations made under three field projects, namely, the Atmospheric Radiation Measurements (ARM) Mobile Facility mission in China (AMF10 China), the East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE), and the Atmospheric Aerosols of China and their Climate Effects (AACCE). The former two are US-China collaborative projects and the latter is a part of the China’s National Basic Research program (or often referred to as “973 project”). Routine meteorological data of China are also employed in some studies. The wealth of general and specialized measurements lead to extensive and close-up investigations of the optical, physical and chemical properties of anthropogenic, natural, and mixed aerosols; their sources, formation and transport mechanisms; horizontal, vertical and temporal variations; direct and indirect effects and interactions with the East Asian monsoon system. Particular efforts are made to advance our understanding of the mixing and interaction between dust and anthropogenic pollutants during transport. Several modeling studies were carried out to simulate aerosol impact on radiation budget, temperature, precipitation, wind and atmospheric circulation, fog, etc. In addition, impacts of the Asian monsoon system on aerosol loading are also simulated.

Li, Zhanqing; Li, C.; Chen, H.; Tsay, S. C.; Holben, B. N.; Huang, J.; Li, B.; Maring, H.; Qian, Yun; Shi, Guangyu; Xia, X.; Yin, Y.; Zheng, Y.; Zhuang, G.

2011-02-01T23:59:59.000Z

234

STUDIES OF MICROMORPHOLOGY AND CURRENT EFFICIENCY OF ZINC ELECTRODEPOSITED FROM FLOWING CHLORIDE ELECTROLYTES  

E-Print Network (OSTI)

Battery Systems Purpose and Scope of this Study .. Literature Review . 13 Recent Historybattery (11) L5 r XBB II. LITERATURE REVIEW Recent History

Mc Vay, L.

2011-01-01T23:59:59.000Z

235

Life cycle assessment of TV sets in China: A case study of the impacts of CRT monitors  

Science Conference Proceedings (OSTI)

Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with the Eco-indicator' 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step-the end-of-life stage-can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China.

Song Qingbin [Faculty of Science and Technology, University of Macau (Macao); Wang Zhishi, E-mail: zswang@umac.mo [Faculty of Science and Technology, University of Macau (Macao); Li Jinhui; Zeng Xianlai [School of Environment, Tsinghua University, Beijing 100084 (China)

2012-10-15T23:59:59.000Z

236

Continuous-flow study and scale-up of conventionally difficult chemical processes  

E-Print Network (OSTI)

Microfluidic systems provide valuable tools for exploring, studying, and optimizing organic syntheses. The small scales and fast transport rates allow for faster experiments and lower amounts of chemicals to be used, ...

Zaborenko, Nikolay

2010-01-01T23:59:59.000Z

237

Friction pressure drop measurements and flow distribution analysis for LEU conversion study of MIT Research Reactor  

E-Print Network (OSTI)

The MIT Nuclear Research Reactor (MITR) is the only research reactor in the United States that utilizes plate-type fuel elements with longitudinal fins to augment heat transfer. Recent studies on the conversion to low-enriched ...

Wong, Susanna Yuen-Ting

2008-01-01T23:59:59.000Z

238

Study of Linear Steady Atmospheric Flow above a Finite Surface Heating  

Science Conference Proceedings (OSTI)

The steady-state atmospheric responses to a finite surface heating through thermal eddy diffusion are studied. The effects of the mean wind, the earth's rotation, and the thermal stratification are considered in a linear system. Scale analysis ...

Hsiao-Ming Hsu

1987-01-01T23:59:59.000Z

239

Generalized multi-commodity network flows : case studies in space logistics and complex infrastructure systems  

E-Print Network (OSTI)

In transition to a new era of human space exploration, the question is what the next-generation space logistics paradigm should be. The past studies on space logistics have been mainly focused on a "vehicle" perspective ...

Ishimatsu, Takuto

2013-01-01T23:59:59.000Z

240

Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes  

SciTech Connect

This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

Chang, Shyy Woei [Thermal Fluids Laboratory, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143 (China); Yang, Tsun Lirng [Department of Marine Engineering, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143 (China)

2009-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sensitivity studies of heat transfer: forced convection across a cylindrical pipe and duct flow  

E-Print Network (OSTI)

We consider two common heat transfer processes and perform a through sensitivity study of the variables involved. We derive and discuss analytical formulas for the heat transfer coefficient in function of film velocity, air temperature and pipe diameter. The according plots relate to a qualitative analysis of the multi-variable function $h$, according to functional optimization. For each process, we provide with graphs and tables of the parameters of interest, such as the Reynolds number. This method of study and the specific values can constitute a useful reference for didactic purposes.

Ferrantelli, Andrea; Viljanen, Martti

2013-01-01T23:59:59.000Z

242

Density and Flow-Velocity Measurement Technology for Dredging Applications - Proof of Concept Study  

SciTech Connect

This technical letter report provides the results of all PNNL managed activities on this project, and contains a description of the data acquisition configuration and testing protocols, results and conclusions from this work. This technical letter report constitutes the final deliverable to be submitted to the client for this proof-of-concept study.

Greenwood, Margaret S.; Tucker, Brian J.; Diaz, Aaron A.

2004-10-01T23:59:59.000Z

243

Katabatic Flows and Their Relation to the Formation of Convective Clouds—Idealized Case Studies  

Science Conference Proceedings (OSTI)

The formation of a convective cloud system as a result of a katabatic-induced surface cold front at the eastern Andes Mountains of South America was investigated in a numerical model study. The occurrence of this cloud system is hypothesized to be ...

Katja Trachte; Joerg Bendix

2012-08-01T23:59:59.000Z

244

A comparison study of multi-component Lattice Boltzmann models for flow in porous media applications  

Science Conference Proceedings (OSTI)

A comparison study of three different multi-component Lattice Boltzmann models is carried out to explore their capability of describing binary immiscible fluid systems. The Shan-Chen pseudo potential model, the Oxford free energy model and the colour ... Keywords: Binary fluids, Lattice Boltzmann, Multi-component models

Jianhui Yang; Edo S. Boek

2013-03-01T23:59:59.000Z

245

Characterizing the Impacts of Significant Wind Generation Facilities on Bulk Power System Operations Planning: Utility Wind Interest Group - Xcel Energy-North Case Study  

Science Conference Proceedings (OSTI)

This report describes a case study evaluation of the impact of wind generation on electricity grid operations in the Xcel Energy-North service area around Minneapolis, Minnesota. The project's methodology and results will be useful when evaluating the operating impacts of wind generation at other locations.

2003-12-17T23:59:59.000Z

246

Mathematical study of the selective removal of different classes of atmospheric aerosols by coagulation, condensation, and gravitational settling, and the health impact  

Science Conference Proceedings (OSTI)

The aim of this paper is to study the scavenging efficiencies of aerosol particles after some given dynamic mechanisms of removal (known as coagulation, condensation, and gravitational settling) as a function of time. In addition, the health impact of ... Keywords: Aerosols, Computational fluid dynamics, Health impact, Numerical methods, Precipitation scavenging

P. J. García Nieto; J. J. Del Coz Diaz; A. Martín Rodríguez; J. M. Matías Fernández

2008-03-01T23:59:59.000Z

247

The impact of immersion training on complementing organizational goals and accelerating culture change - a field study  

SciTech Connect

At Los Alamos National Laboratory, a national defense laboratory with a history of working in seclusion and secrecy, scientists and engineers have received an important new mission to partner with industry. The scientists and engineers need to expand their skill base beyond science and understand the business of innovation to be successful in this new environment. An administrative field experiment of conducting intensive, immersion training about the commercialization process was piloted at Los Alamos in September, 1992. This Field Research Project addresses the following research question: {open_quotes}Does {open_quotes}immersion{close_quotes} commercialization training complement organizational goals and does the method accelerate cultural change?{close_quotes} The field experiment first began as a pilot Commercialization Workshop conducted for twelve scientists in September, 1992. The objective was to create commercialization action plans for promising environmental technologies. The immersion method was compared to the indoctrination method of training also. The indoctrination training was a one-day lecture style session conducted for one hundred and fifty scientists in July, 1993. The impact of the training was measured by perceived attitude change and the amount of subsequent industrial partnerships that followed the training. The key management question addressed on the job was, {open_quotes}With a limited budget, how do we maximize the impact of training and achieve the best results?{close_quotes}

Hayes, S.M.

1996-02-01T23:59:59.000Z

248

Cost study application of the guidebook on integrated community energy systems: indirect economic and energy impacts  

SciTech Connect

An ICES is being considered for a community located in a small New England city. (MCW) It is part of the city's newer development. It is a commercial park of offices, shopping center, bank, hospital, and hotel. The ICES for this community is designed to meet all heating, cooling, steam, and hot water needs. Electricity from the cogeneration unit is to be sold to the local utility, and electricity for the community will be purchased as at present. However, future electrical demand will be reduced, since absorption chillers, which will be powered by heat recovered from the central ICES unit, will partially replace electric air conditioners. In addition, hot-water heating from ICES will, in some cases, lower electrical use. Thus, the ICES involves substitution of energy forms as well as modification of fuel requirements. Examination of the integrated system, in comparison with existing energy systems, includes both indirect economic impacts (employment and fiscal effects on the city) and indirect energy impacts. The indirect economic analysis proceeds from an initial description of conditions that determine employment and fiscal results through specific estimates of employment and then revenues and costs to municipal government and finally to an evaluation of ICES's worth to the city. The indirect energy analysis compares energy resource requirements of the ICES with those for gas, oil, and electric systems now serving the community. (MCW)

1978-11-01T23:59:59.000Z

249

DWPF FLOWSHEET STUDIES WITH SIMULANT TO DETERMINE THE IMPACT OF NEXT GENERATION SOLVENT ON THE CPC PROCESS AND GLASS FORMULATION  

SciTech Connect

As a part of the Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS), a new strip acid, and modified monosodium titanate (mMST) will be deployed. The NGS is comprised of four components: 0.050 M MaxCalix (extractant), 0.50 M Cs-7SB (modifier), 0.003 M guanidine-LIX-79, with the balance ({approx}74 wt%) being Isopar{reg_sign} L. The strip acid will be changed from dilute nitric acid to dilute boric acid (0.01 M). Because of these changes, experimental testing with the next generation solvent and mMST was required to determine the impact of these changes in 512-S and Defense Waste Processing Facility (DWPF) operations, as well as Chemical Process Cell (CPC), glass formulation activities, and melter operations. Because of these changes, experimental testing with the next generation solvent and mMST is required to determine the impact of these changes. A Technical Task Request (TTR) was issued to support the assessments of the impact of the next generation solvent and mMST on the downstream DWPF flowsheet unit. The TTR identified five tasks to be investigated: (1) CPC Flowsheet Demonstration for NGS; (2) Solvent Stability for DWPF CPC Conditions; (3) Glass Formulation Studies; (4) Boron Volatility and Melt Rate; and (5) CPC Flowsheet Demonstration for mMST.

Newell, J.; Peeler, D.; Edwards, T.; Hay, M.; Stone, M.

2011-06-29T23:59:59.000Z

250

Flume Studies of Sediment Transportation in Shallow Flow with Simulated Rainfall  

E-Print Network (OSTI)

This study involves four of the twelve major river basins of the state of Texas and is essentially a proposal to divert water from the Red River into the Trinity, Neches and Sabine River Basins. When first considered, it appears to be a rather unusual plan. It proposes to take water from the Red River at Lake Texoma, which is often of poor quality and in some areas of the basin scarce, and transport this water into a portion of the state that has an apparent abundance. There are, however, numerous advantages to this plan. First, a dependable supply of water Is made available to the upper reaches of the receiving basins without the cost of reservoir construction. It also creates a potential for peak period hydroelectric power generation and supplies the lower portion of the basins with an increased water supply which can be put to beneficial use. This may involve water quality control of municipal and industrial pollution, control of salt water intrusion, or redistribution. In an age of grandiose water supply schemes, e.g., the California Water Plan 2 and the preliminary Texas Water Plan,3 the cost of this proposal is very reasonable. Some of the disadvantages of this proposal are discussed briefly in the following paragraph. The Red River is an interstate stream; consequently, division of its waters among the states included in the basin must be by compact. Compact Commissioners representing the states of Texas, Oklahoma, Arkansas, and Louisiana, with a chairman representing the Federal Government, have been negotiating a Red River Compact. Most of the details have been worked out and the draft of this agreement is being reviewed by federal and state agencies. The Red River Compact will then need approval by the legislatures of each of the states and by the Congress before it will become effective. Until final arrangements have been made concerning the allocation of water, the proposed diversion cannot legally be made. Since the quality of the Red River water has been poor much of the time, the Corps of Engineers has begun work to alleviate the natural salt pollution. The states concerned have agreed to aid the Federal Government by close control of manmade pollutants. The quality of the Red River water is dependent upon these control programs. Finally, the development of this plan would require revision of the master plans for the specific basins because a number of existing reservoirs would be affected. If for no other reason, this study and the evolved proposal have been valuable as a training program for use of the many recently developed water resources planning techniques. In order to insure a sense of direction, it seems apropos to present a brief outline of the study procedure. Chapter II, entitled, "The Economic Development and Potential for the Red, Trinity, Neches and Sabine River Basins," is a general discussion of the economic factors as they are related to demand for water in each basin. In addition to a statewide outlook, a separate discussion for each basin is presented which includes future population projections. In closing this chapter, a table of the anticipated municipal and industrial water requirements is presented. Careful consideration of the information in this chapter is necessary for any type of water resources planning. The largest section in this study is Chapter III, "The Water Resources of the Neches and Red River Basins." A comprehensive investigation of the water resources of all the basins in the proposal would have been desirable; however, the work required would have approached development of a master plan for a major portion of the state of Texas Detailed examination and research of the donating basin and for a single receiving basin was considered adequate for the objectives of this study. The specific subtopics which were discussed are too numerous to list here and are available in the Table of Contents section. Chapter IV, "The Proposed Physical Plan," contains a description of the diversion facilities required to t

Nail, F.M.

1966-01-01T23:59:59.000Z

251

Making Connections: Case Studies of Interconnection Barriers and their Impact on Distributed Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of Interconnection of Interconnection Barriers and their Impact on Distributed Power Projects M a k i n g M a k i n g Connections Connections NREL/SR-200-28053 Revised July 2000 United States Department Of Energy Distributed Power Program Office of Energy Efficiency and Renewable Energy, Office of Power Technologies Joseph Galdo DOE Distributed Power Program Manager Office of Power Technologies, EE-15 U.S. Department of Energy Forrestal Building, 5H-021 1000 Independence Avenue SW Washington, DC 20585 Phone: (202) 586-0518 Fax: (202) 586-1640 Richard DeBlasio NREL Distributed Power Program Manager National Renewable Energy Laboratory 1617 Cole Blvd. (MS 3214) Golden, CO 80601 Phone: (303) 384-6452 Fax: (303) 384-6490 Gary Nakarado* National Renewable Energy Laboratory NREL Distributed Power Program Technical Monitor

252

Study of two tantalum Taylor impact specimens using experiments and stochastic polycrystal plasticity simulation  

SciTech Connect

We compare the experimentally obtained response of two cylindrical tantalum Taylor impact specimens. The first specimen is manufactured using a powder metallurgy (P/M) process with a random initial texture and relatively equiaxed crystals. The second is sectioned from a roundcorner square rolled (RCSR) rod with an asymmetric texture and elongated crystals. The deformed P/M specimen has an axisymmetric footprint while the deformed RCSR projectile has an eccentric footprint with distinct corners. Also, the two specimens experienced similar crystallographic texture evolution, though the RCSR specimen experienced greater plastic deformation. Our simulation predictions mimic the texture and deformation data measured from the P/M specimen. However, our RCSR specimen simulations over-predict the texture development and do not accurately predict the deformation, though the deformation prediction is improved when the texture is not allowed to evolve. We attribute this discrepancy to the elongated crystal morphology in the RCSR specimen which is not represented in our mean-field model.

Tonks, Michael R [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

253

Climate impacts of carbonaceous and other non-sulfate aerosols: A proposed study  

SciTech Connect

In addition to sulfate aerosols, carbonaceous and other non-sulfate aerosols are potentially significant contributors to global climate change. We present evidence that strongly suggests that current assessments of the effects of aerosols on climate may be inadequate because major aerosol components, especially carbonaceous aerosols, are not included in these assessments. Although data on the properties and distributions of anthropogenic carbonaceous aerosols are insufficient to allow quantification of their climate impacts, the existing information suggests that climate forcing by this aerosol component may be significant and comparable to that by sulfate aerosols. We propose that a research program be undertaken to support a quantitative assessment of the role in climate forcing of non-sulfate, particularly carbonaceous, aerosols.

Andreae, M.O.; Crutzen, P.J. [Max Planck Institute for Chemistry, Mainz (Germany); Cofer, W.R. III; Hollande, J.M. [NASA Langley Research Center, Hampton, VA (United States). Atmospheric Sciences Division] [and others

1995-06-01T23:59:59.000Z

254

Energy flows in a secondary city: a case study of Nakuru, Kenya  

SciTech Connect

Secondary cities are currently seen as an important focus for promoting a more spatially-equitable pattern of economic infrastructure in developing countries, but their energy needs have not been considered. To test the thesis of this work - that the present pattern of energy demand in secondary cities differs, in important ways, from that of primary cities - a case study was conducted in the East African city of Nakuru, Kenya. Energy supplies used in Nakuru fall into two categories: industrial sources (electricity and petroleum) and traditional sources (wood, charcoal, and agricultural residues). This analysis of Nakuru's use of industrial sources is introduced by a historical discussion of nationwide patterns of distribution, use, and pricing of electricity and petroleum products, and is followed by data gathered from Nakuru's suppliers of these energy sources. The portrait of energy use in Nakuru is completed with an analysis of the demand for traditional energy sources. Surveys were conducted to estimate the total quantities of charcoal, wood, and agricultural resides used in Nakuru. The cornerstone of this effort was a residential energy survey stratified according to income. Nakuru is shown to rely on biomass fuels (charcoal) to a much greater degree than Nairobi, thereby proving the thesis.

Milukas, M.V.

1987-01-01T23:59:59.000Z

255

Comparative studies on charged particle flow in a double plasma device  

Science Conference Proceedings (OSTI)

An experiment is conducted to study the comparative effect of a transverse magnetic field (TMF) and stainless steel (ss) plates in a filament discharge in a double plasma device (DPD). A variable transverse magnetic field is setup between the source and the target regions of the DPD using permanent magnets. By changing the distance between magnetic pole separations, the magnetic field is varied in the range of 80 Gauss to 300 Gauss. Plasma diffuses from the source to the target region through this field. Changing the discharge voltage and the discharge current varies the discharge conditions. Langmuir probes are placed in the source and target regions to measure the plasma parameters. Ss plates of similar surface area then replace the TMF and these data are compared with the TMF data to show the effect of the TMF on plasma parameters in comparison to the ss plates. It is seen that the magnetic field causes the plasma parameters to vary in a consistent way when the discharge parameters are varied.

Chakraborty, M.; Das, B. K. [Centre of Plasma Physics-Institute for Plasma Research, Tepesia, Kamrup, Assam (India)

2011-10-15T23:59:59.000Z

256

Colorado economic impact study on the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993  

Science Conference Proceedings (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1993. To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are: Direct employment was estimated at 894 workers; An estimated 89 percent of all direct employment was local; Secondary employment resulting from remedial action at the active Colorado UMTRA Project sites and the Grand Junction vicinity property program is estimated at 546 workers. Total employment (direct and secondary) is estimated at 1440 workers for the period of study (July 1, 1992, to June 30, 1993). An estimated $24.1 million was paid in wages to UMTRA workers in Colorado during FY1993; Direct and secondary wage earnings were estimated at $39.9 million; Income tax payments to the state of Colorado were estimated at $843,400 during FY1993; The gross economic impact of UMTRA Project activities in the state of Colorado is estimated at $70 million during the 1-year study period; and the net economic benefit to the state of Colorado was estimated at $57.5 million, or $5.90 per dollar of funding provided by Colorado. This figure includes both direct and secondary benefits but does not include the impact of alternative uses of the state funding.

Not Available

1993-11-12T23:59:59.000Z

257

The impact of a study abroad program in China on its participants' attitudes towards China.  

E-Print Network (OSTI)

??China is becoming an increasingly popular study abroad destination for outbound students in the United States. There is, however, a lack of research on study… (more)

Yang, Li

2012-01-01T23:59:59.000Z

258

Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995  

Science Conference Proceedings (OSTI)

This Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1995 (1 July 1994 through 30 June 1995). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock, Colorado. Economic data were requested from the Remedial Action Contractor (RAC), the Technical Assistance Contractor (TAC) and the US Department of Energy (DOE). The most significant benefits associated with the UMTRA Project in Colorado are summarized.

NONE

1995-12-01T23:59:59.000Z

259

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993  

Science Conference Proceedings (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1993 (July 1, 1992, through June 30, 1993). To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized.

Not Available

1993-12-01T23:59:59.000Z

260

TAO: Impact  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact Impact Home Download Documentation Publications Referencing TAO Impact Who We Are Acknowledgements License Contact Us Research and Publications that make use of TAO Dressed TDDFT study of low-lying electronic excited states in selected linear polyenes and diphenylopolyenes, Mazur, G., Makowski, M., Włodarczyk, R., and Aoki, Y., International Journal of Quantum Chemistry, 111, 4, 819--825, 2011. BibTeX Secondary thermal cracks in EGS: a variational approach, Bourdin, B., Knepley, M., and Maurini, C., Proceedings of the 34th annual meeting of the Geothermal resources council, 2010. BibTeX Adaptive Real-Time Bioheat Transfer Models for Computer Driven MR-guided Laser Induced Thermal Therapy, Fuentes, D., Feng, Y., Elliott, A., Shetty, A., McNichols, R. J., Oden, J. T., and Stafford, R. J., IEEE Trans. Biomed. Eng., 5, 1024--1030, 2010. BibTeX

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

1991 New Mexico economic impact study for the Uranium Mill Tailings Remedial Action Project, Ambrosia Lake, New Mexico, site  

SciTech Connect

The University of New Mexico Bureau of Business and Economic Research completed an abbreviated cost-benefit analysis of the income and employment impact of the US Department of Energy (DOE) and contractor offices in Albuquerque. Since the Project Office will have a significant positive impact on the State`s economy (shown on Table 8), the impact is combined with the impact of remedial actions at the Ambrosia Lake site to highlight the cost-benefit of the entire Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project at the Ambrosia Lake site will generate $12.509 million in gross labor income in New Mexico between 1989 and 1994. This includes $1.161 million in federal tax revenue, $1.015 million in State personal income tax revenue, and seven thousand in local tax revenue. The UMTRA Project will generate the equivalent of 84 full-time jobs during the peak year of remedial action at Ambrosia Lake site. New Mexico`s total funding requirement for the UMTRA Project is estimated to be $2.963 million. The net economic benefit of the Ambrosia Lake portion of the UMTRA Project to New Mexico after the State`s share of the project`s cost, the federal income tax, and the $0.936 million income impact of the alternate use of the State funding are subtracted, will be $7.451 million between 1990 and 1994. In Fiscal Year 1990 the UMTRA Project DOE and contractor offices in Albuquerque directly employed 163 people. Another 78 jobs were also maintained in support of the industry sector and 166 jobs were also maintained in other sections of the New Mexico economy. It is estimated that $19 million dollars of income was generated and 1.949 million of State and local taxes were collected. The University of New Mexico study shows that for every dollar the State of New Mexico invests in the UMTRA Project, it will realize $95.05 in gross labor income. This corresponds to a net return on the States investment in the Project of $97.20 for every dollar invested.

Not Available

1991-06-01T23:59:59.000Z

262

The Interface or Air–Sea Flux Component of the TOGA Coupled Ocean–Atmosphere Response Experiment and Its Impact on Subsequent Air–Sea Interaction Studies  

Science Conference Proceedings (OSTI)

The interface or air–sea flux component of the Coupled Ocean–Atmosphere Response Experiment (COARE) of the Tropical Ocean Global Atmosphere (TOGA) research program and its subsequent impact on studies of air–sea interaction are described. The ...

Robert A. Weller; Frank Bradley; Roger Lukas

2004-02-01T23:59:59.000Z

263

A Case Study of High-Impact Wet Snowfall in Northwest Germany (25–27 November 2005): Observations, Dynamics, and Forecast Performance  

Science Conference Proceedings (OSTI)

Accurate numerical weather prediction of intense snowfall events requires the correct representation of dynamical and physical processes on various scales. In this study, a specific event of high-impact wet snowfall is examined that occurred in ...

Claudia Frick; Heini Wernli

2012-10-01T23:59:59.000Z

264

Impact of Urbanization on Heavy Convective Precipitation under Strong Large-Scale Forcing: A Case Study over the Milwaukee-Lake Michigan Region  

Science Conference Proceedings (OSTI)

In this study, observational and numerical modeling analyses based on the Weather Research and Forecasting (WRF) model are used to investigate the impact of urbanization on heavy rainfall over the Milwaukee-Lake Michigan region. We examine urban ...

Long Yang; James A. Smith; Mary Lynn Baeck; Elie Bou-Zeid; Stephen M. Jessup; Fuqiang Tian; Heping Hu

265

A Numerical Sensitivity Study on the Impact of Soil Moisture on Convection-Related Parameters and Convective Precipitation over Complex Terrain  

Science Conference Proceedings (OSTI)

The impact of soil moisture on convection-related parameters and convective precipitation over complex terrain is studied by numerical experiments using the nonhydrostatic Consortium for Small-Scale Modeling (COSMO) model. For 1 day of the ...

Christian Barthlott; Norbert Kalthoff

2011-12-01T23:59:59.000Z

266

An automatic method to create flow lines for determination of glacier length: A pilot study with Alaskan glaciers  

Science Conference Proceedings (OSTI)

Glacier length is a key parameter in global glacier inventories, but difficult to determine in a consistent way and subject to frequent change. Its vector representation (a flow line) is a most important input for modeling future glacier evolution, but ... Keywords: Algorithm, Flow lines, Glacier, Remote sensing

Raymond Le Bris, Frank Paul

2013-03-01T23:59:59.000Z

267

Environmental Impact  

U.S. Energy Information Administration (EIA)

Environmental Impact - a single comprehensive bibliographic information resource on climate change & other impacts of humans on the biosphere.

268

Analytical and experimental study of the acoustics and the flow field characteristics of cavitating self-resonating water jets  

DOE Green Energy (OSTI)

Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigma STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.

Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.; Frederick, G.S.

1984-09-01T23:59:59.000Z

269

Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995. Revision 1  

Science Conference Proceedings (OSTI)

As required by the Romer-Twining Agreement of 1990, the US Department of Energy (DOE) has prepared this annual economic impact study for the state of Colorado. This report assesses the economic impacts related to the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project in Colorado during the state fiscal year (FY) between 1 July 1994 and 30 June 1995. To estimate net economic benefit, employment, salaries and wages, and other related economic benefits are discussed, quantified, and then compared to the state`s 10 percent share of the remedial action costs. Actual data obtained from sites currently undergoing remedial action were used as the basis for analyses. If data were not available, estimates were used to derive economic indicators. This study describes the types of employment associated with the UMTRA Project and estimates of the numbers of people employed by UMTRA Project subcontractors in Colorado during state FY 1995. Employment totals are reported in estimated average annual jobs; however, the actual number of workers at the site fluctuates depending on weather and on the status of remedial action activities. In addition, the actual number of people employed on the Project during the year may be higher than the average annual employment reported due to the temporary nature of some of the jobs.

NONE

1995-12-01T23:59:59.000Z

270

A simplified sizing and mass model for axial flow turbines  

SciTech Connect

An axial flow turbine mass model has been developed and used to study axial flow turbines for space power systems. Hydrogen, helium-xenon, hydrogen-water vapor, air, and potassium vapor working fluids have been investigated to date. The impact of construction material, inlet temperature, rotational speed, pressure ratio, and power level on turbine mass and volume has been analyzed. This paper presents the turbine model description and results of parametric studies showing general design trends characteristic of any axial flow machine. Also, a comparison of axial flow turbine designs using helium-xenon mixtures and potassium vapor working fluids, which are used in Brayton and Rankine space power systems, respectively, is presented. 9 refs., 4 figs., 2 tabs.

Hudson, S.L.

1989-01-01T23:59:59.000Z

271

Previous work conducted in the laboratory demonstrated optimal control of refrigerant flow and airflow for a breadboard CVSHP (Miller 1987a). This previous work was continued in the present study by investigation  

E-Print Network (OSTI)

#12;Previous work conducted in the laboratory demonstrated optimal control of refrigerant flow optimal refrigerant flow and airflow control settings. Previous studies by Tanaka and Yamanaka (1982 pump were replaced with fine metering hand valves having variable flow area for both heating

Oak Ridge National Laboratory

272

Experimental study of the performance of a laminar flow silica gel desiccant packing suitable for solar air conditioning application  

DOE Green Energy (OSTI)

An experimental study of the performance of a low pressure drop silica gel desiccant packing has been carried out. The packing is in the form of narrow passages lined with a single layer of small silica gel particles. A near optimum particle size of 0.25 mm, and a range of passage widths of 1.46 to 3.75 mm were chosen based on the predictions of a computer simulation model. A test chamber was constructed with sufficient thermal insulation to allow close to adiabatic conditions for the 12 cm x 12 cm cross section of packing. Step change adsorption and desorption tests were performed for various plate spacings, air flow rates, air inlet conditions, and gel initial water contents. Air outlet moisture content and temperature, as well as pressure drop were measured. The experimental results were compared with predictions of the computer simulation model: This model is based on gas side controlled heat and mass transfer, with the small solid side mass transfer resistance incorporated in a crude manner, and heat transfer into the packing handled as a lumped thermal capacitance. Reasonable agreement was obtained between theoretical prediction and experiment. The match was found to improve with increased passage width. The discrepancies are chiefly attributed to an excessive air bypass, and to inaccurate accounting for heat transfer from the sides of the unit. Use of the computer code for prototype scale design purposes is recommended.

Biswas, P.

1983-02-01T23:59:59.000Z

273

A study of pressure drop in a Capillary tube-viscometer for a two-phase flow  

SciTech Connect

The analysis of pipeline transportation of highly concentrated suspensions such as coal-water slurries, can exhibit several flow characteristics depending on the concentration and the physical parameters of the dispersed phase. Experiments were conducted for coal-water slurries flows in a series of horizontal capillary tubes of diameters 0.8, 1.5 and 3.0 mm and 100 mm in length, in order to investigate the effect of concentration, pressure drop, and the transitional Reynolds number from laminar to turbulent flow in a homogeneous slurry. The solid concentration was varied from 15% to 63% in 0.1% xanthum gum solution. Pressure drop and the volume flow measurement were made using HVA-6 Capillary viscometer. The Reynolds numbers obtained were found to be dependent on the slurry concentration and the viscosity of the slurry mixture, but independent of the capillary diameter.

Ohene, F.; Livingston, C.; Matthews, C.; Rhone, Y.

1995-09-01T23:59:59.000Z

274

A Large-Eddy Simulation Study of Thermal Effects on Turbulent Flow and Dispersion in and above a Street Canyon  

Science Conference Proceedings (OSTI)

Thermal effects on turbulent flow and dispersion in and above an idealized street canyon with a street aspect ratio of 1 are numerically investigated using the parallelized large-eddy simulation model (“PALM”). Each of upwind building wall, street ...

Seung-Bu Park; Jong-Jin Baik; Siegfried Raasch; Marcus Oliver Letzel

2012-05-01T23:59:59.000Z

275

Numerical Study of Some Unstably Stratified Boundary-Layer Flows over a Valley at Moderate Richardson Number  

Science Conference Proceedings (OSTI)

A two-dimensional numerical model is utilized to investigate steady-state, three-dimensional turbulent flow over a valley under unstable thermal stratifications. An eddy viscosity turbulence model is employed, in which the mixing length is a ...

J. D. Carlson; M. R. Foster

1986-02-01T23:59:59.000Z

276

Climate Studies with a Multilayer Energy Balance Model. Part III: Climatic Impact of Stratospheric Volcanic Aerosols  

Science Conference Proceedings (OSTI)

The radiative and climatic effects of stratospheric volcanic aerosols are studied with a multilayer energy balance model. The results show that the latitudinal distribution of aerosols has a significant effect on climate sensitivity. When ...

Ming-Dah Chou; Li Peng; Albert Arking

1984-03-01T23:59:59.000Z

277

Dynamical Downscaling with Reinitializations: A Method to Generate Finescale Climate Datasets Suitable for Impact Studies  

Science Conference Proceedings (OSTI)

To retain the sequence of events of a regional climate model (RCM) simulation driven by a reanalysis, a method that has not been widely adopted uses an RCM with frequent reinitializations toward its driving field. In this regard, this study ...

Philippe Lucas-Picher; Fredrik Boberg; Jens H. Christensen; Peter Berg

2013-08-01T23:59:59.000Z

278

Impact of ASCAT soil moisture assimilation on regional precipitation forecasts: A case study for Austria  

Science Conference Proceedings (OSTI)

In this study, remotely sensed soil moisture data from the Advanced Scatterometer (ASCAT) on the meteorological operational (METOP) satellite are assimilated in the regional forecasting model ALADIN-AUSTRIA using a simplified Extended Kalman ...

Stefan Schneider; Yong Wang; Wolfgang Wagner; Jean-Francois Mahfouf

279

Tropical Impacts of SST Forcing. A Case Study for 1987 versus 1988  

Science Conference Proceedings (OSTI)

The response of the NASA/Goddard Institute for Space Studies GCM to large tropical sea surface temperature (SST) anomalies is investigated by evaluating model simulations of the particularly contrasting summer monsoon seasons 1987 and 1988. These ...

Leonard M. Druyan; Stefan Hastenrath

1994-09-01T23:59:59.000Z

280

A modeling study on the climate impacts of black carbon aerosols  

E-Print Network (OSTI)

The role of black carbon (BC) aerosols in climate change is important because of its strong capability in causing extinction of solar radiation. A three-dimensional interactive aerosol-climate model has been used to study ...

Wang, Chien.

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Experimental Study of an Artificial Thermal Plume in the Boundary Layer. Part I: Flow Characteristics near the Heat Source  

Science Conference Proceedings (OSTI)

The work reported here describes the environmental impact of emitting about 1000 MW of dry heat from a concentrated source into the atmosphere. It is based on a large field program conducted jointly by the Centre de Recherches Atmosphériques and ...

B. Bénech; J. Noilhan; A. Druilhet; J. M. Brustet; C. Charpentier

1986-04-01T23:59:59.000Z

282

SCIX IMPACT ON DWPF CPC  

Science Conference Proceedings (OSTI)

A program was conducted to systematically evaluate potential impacts of the proposed Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) Chemical Processing Cell (CPC). The program involved a series of interrelated tasks. Past studies of the impact of crystalline silicotitanate (CST) and monosodium titanate (MST) on DWPF were reviewed. Paper studies and material balance calculations were used to establish reasonable bounding levels of CST and MST in sludge. Following the paper studies, Sludge Batch 10 (SB10) simulant was modified to have both bounding and intermediate levels of MST and ground CST. The SCIX flow sheet includes grinding of the CST which is larger than DWPF frit when not ground. Nominal ground CST was not yet available, therefore a similar CST ground previously in Savannah River National Laboratory (SRNL) was used. It was believed that this CST was over ground and that it would bound the impact of nominal CST on sludge slurry properties. Lab-scale simulations of the DWPF CPC were conducted using SB10 simulants with no, intermediate, and bounding levels of CST and MST. Tests included both the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. Simulations were performed at high and low acid stoichiometry. A demonstration of the extended CPC flowsheet was made that included streams from the site interim salt processing operations. A simulation using irradiated CST and MST was also completed. An extensive set of rheological measurements was made to search for potential adverse consequences of CST and MST and slurry rheology in the CPC. The SCIX CPC impact program was conducted in parallel with a program to evaluate the impact of SCIX on the final DWPF glass waste form and on the DWPF melter throughput. The studies must be considered together when evaluating the full impact of SCIX on DWPF. Due to the fact that the alternant flowsheet for DWPF has not been selected, this study did not consider the impact of proposed future alternative DWPF CPC flowsheets. The impact of the SCIX streams on DWPF processing using the selected flowsheet need to be considered as part of the technical baseline studies for coupled processing with the selected flowsheet. In addition, the downstream impact of aluminum dissolution on waste containing CST and MST has not yet been evaluated. The current baseline would not subject CST to the aluminum dissolution process and technical concerns with performing the dissolution with CST have been expressed. Should this option become feasible, the downstream impact should be considered. The main area of concern for DWPF from aluminum dissolution is an impact on rheology. The SCIX project is planning for SRNL to complete MST, CST, and sludge rheology testing to evaluate any expected changes. The impact of ground CST transport and flush water on the DWPF CPC feed tank (and potential need for decanting) has not been defined or studied.

Koopman, D.

2011-07-14T23:59:59.000Z

283

Economic Impacts of Controlling Soil-Loss from Silviculture Activities: A Case STudy of Cherokee County, Texas  

E-Print Network (OSTI)

Section 208 of the 1972 Amendments to the Federal Water Pollution Control Act (Public Law 92-500) requires the states to develop plans which: (1) contain processes to identify nonpoint sources of pollution, and (2) set forth procedures and methods to control such sources of pollution to the extent feasible. Among the land use activities which are explicitly identified within Section 208 as potential sources of nonpoint pollution problems is silviculture. Texas, since it contains an estimated 12.5 million acres of commercial forest land (Murphy, 1976), has for some time been actively involved in developing the required planning procedures and materials. This document represents one component of this overall planning process. The "extent feasible" clause of Section 208 can be interpreted as recognizing the need to consider economic tradeoffs in reaching a decision as to what level of control, if any, should be exercised to limit nonpoint source pollution from whatever type of activity. This would seem to be a reasonable interpretation since it would be illogical to envision extending controls to the point that their marginal costs would exceed their marginal benefits. Broadly conceived, the purpose of this investigation has been to make a first approximation of the economic tradeoffs that would be associated with any effort to limit the extent of nonpoint pollution resulting from silvicultural activities in Texas. More specifically the study has sought to achieve the following objectives: 1. To develop a methodology For assessing the economic impacts associated with imposing alternative silvicultural nonpoint source controls at varying intensities. 2. To demonstrate how the methodology could be applied to a specific study area to facilitate decision-making about the economic rationality of imposing controls. As the study plan for this project was developed, choices had to be made regarding the range of potential pollutants to consider, the range of alternative control techniques to consider, and the range of economic impacts to consider. Since the nature of these choices represent limitations on the scope of the project, they should be made explicit from the outset. As regards the range of potential pollutants considered, it is recognized that silvicultural nonpoint source pollution can conceivably assume a variety of forms -- nutrients, chemical, thermal, and so on. Nonetheless, in this investigation sediment is the only potential silvicultural pollutant which has been addressed -- and this only indirectly.1 The focal point of the analysis is on the economic impacts of restricting soil loss (i.e. sheet and rill erosion) which is not directly equivalent to sediment yield. Conversion of soil loss figures to sediment yield figures requires knowledge of an appropriate sediment delivery ratio. While this might appear to be a significant limitation of the study, the investigators are of the opinion that it is not. This conclusion rests upon essentially two facts. First, the bulk of the available evidence pertaining to the potential impacts of silvicultural activities on water quality indicates that in those instances where such activities appear to be creating a problem sediment is generally the potential pollutant of greatest importance. Secondly, sediment yields will bear a constant proportional relationship to soil loss. Indeed, if the study unit used in this investigation had been a physical watershed instead of a county, the analysis could have dealt directly with sediment yields rather than soil loss.2 In turn, if actual sediment yields had been estimated, other potential pollutants could have been introduced into the analysis, if so desired, by the use of appropriate loading functions. As regards the range of alternative control techniques that might conceivably be used to limit silvicultural nonpoint source pollution, this investigation specifically considers four possibilities. These are: (1) a countywide limit on allowable soi

Hickman, C.A.; Jackson, B.D.

1978-03-01T23:59:59.000Z

284

Simulation Analysis of Within-Day Flow Fluctuation Effects on Trout below Flaming Gorge Dam  

Science Conference Proceedings (OSTI)

This report demonstrates the use of an individual-based model for studying the impact of river flow fluctuations resulting from hydroelectric project operation on a tailwater trout fishery. The study was conducted at the Flaming Gorge Hydroelectric Project on the Green River in Utah.

2006-04-20T23:59:59.000Z

285

Railroad impact study: 63 rail-line segments in South Dakota  

SciTech Connect

The primary concern of the study (in 2 volumes) was the trade area served by a rail line. The trade area was determined on the assumption that a farmer will haul his grain to the nearest elevator located on a railroad line. The basic approach in this study has been to measure potential demand for rail transportation, not to analyze the traffic data accumulated in the recent past. The first five chapters give the summaries for the entire state of South Dakota. The rail-line segments have been revised and recorded to comply as nearly as possible, with that, used by the various railroad companies. Some railroad data were made available for this study to provide a basis for estimating the rail potential in the major cities of South Dakota.

Poth, L.A.; Peterson, J.

1977-12-01T23:59:59.000Z

286

Final environmental impact statement/report. Volume 2. Technical studies. Northeast corridor improvement project electrification: New Haven, CT to Boston, MA  

SciTech Connect

This document is the final environmental impact statement and final environmental impact report (FEIS/R) on the proposal by the National Railroad Passenger Corporation (Amtrak) to complete the electrification of the Northeast Corridor main line by extending electric traction from New Haven, CT, to Boston, MA. This document (Volume II) presents additional technical studies to supplement Volume III of the DEIS/R issued in October 1993 (PB94-111838).

NONE

1994-10-01T23:59:59.000Z

287

Impact of informed-choice invitations on diabetes screening knowledge, attitude and intentions: an analogue study  

E-Print Network (OSTI)

conducted the screening clinics led by Marian Bosman; MRC Field Epidemiology team; Nicola Popplewell, Helen Morris, Kate Williams and Rachel Crockett for their contribution to the development of the study and the materials Author details 1Psychology... 2007, 5(2):112-119. 20. World Medical Association: Declaration of Helsinki. 2008 [http://www.wma. net/en/30publications/10policies/b3/17c.pdf]. 21. Muir J, Mant D, Jones L, Yudkin P, on behalf of the Imperial Cancer Research Fund OXCHECK study group...

Mann, Eleanor; Kellar, Ian; Sutton, Stephen; Kinmonth, Ann Louise; Hankins, Matthew; Griffin, Simon J; Marteau, Theresa M

2010-12-17T23:59:59.000Z

288

Eddy-Mean Flow Interactions in the Along-Stream Development of a Western Boundary Current Jet: An Idealized Model Study  

Science Conference Proceedings (OSTI)

A theoretical study on the role of eddy-mean flow interactions in the time-mean dynamics of a zonally evolving, unstable, strongly inertial jet in a configuration and parameter regime that is relevant to oceanic western boundary current (WBC) jets ...

Stephanie Waterman; Steven R. Jayne

2011-04-01T23:59:59.000Z

289

Trends in Tropical Cyclone Impact: A Study in Andhra Pradesh, India  

Science Conference Proceedings (OSTI)

Contrary to the common perception that tropical cyclones are on the increase, due perhaps to global warming, studies all over the world show that, although there are decadal variations, there is no definite long-term trend in the frequency or ...

S. Raghavan; S. Rajesh

2003-05-01T23:59:59.000Z

290

Assessing programming language impact on development and maintenance: a study on c and c++  

Science Conference Proceedings (OSTI)

Billions of dollars are spent every year for building and maintaining software. To reduce these costs we must identify the key factors that lead to better software and more productive development. One such key factor, and the focus of our paper, is the ... Keywords: developer productivity, empirical studies, high-level languages, software evolution, software quality

Pamela Bhattacharya; Iulian Neamtiu

2011-05-01T23:59:59.000Z

291

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1  

SciTech Connect

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information.

Not Available

1994-12-01T23:59:59.000Z

292

Development of a Pilot Study Simulation to Investigate the Impact of Target Costing on Team Dynamics and Design Aesthetics  

E-Print Network (OSTI)

Target costing is widely accepted across the automobile manufacturing industries such as the Toyota Corporation followed by other manufacturing companies such as Nissan, Chrysler, Boeing, Sony, etc. However, its use in the construction industry has been limited. The application of target costing in the construction industry has been referred to as Target Value Design (TVD), which forms an important fragment of the whole lean delivery system, Integrated Project Delivery. For the purpose of studying the team dynamics and the impact of cost on aesthetics, this research is split in to the following two parts. 1. Conducting simple experiments /simulations with students, such as designing and building a product to target cost to explore the impact of cost on the design of the product and the team dynamics. 2. Exploring the challenges faced by the teams while working on TVD through literature review and Focus Group Interviews with construction industry professionals with experience in the TVD process. Similar to other lean simulations like the airplane game and the dice game, aimed at demonstrating the impact of lean, this simulation of designing a two feet (2’) tall wine glass holder with materials such as paper, Styrofoam plates, cups etc. is an attempt to understand the challenges of designing to target cost process. The simulation conducted is to mirror the real world TVD process. Results of the experiment conclude that cost does not have a negative influence on the design. There is no correlation between the high costs and better design, that is, the most expensive solutions are not always the best solutions. However, correlation existed between the target cost and the design aesthetics. Indeed, cost as a constraint aided the team in focusing on the design and developing solutions within the project constraints. The results of the experiment are similar to the practice of the TVD in reality as case studies and interviews arrive at similar conclusions. Finally, the experiment depicted that collaborating and working in a team might result in arguments but generates competitive design solutions without affecting the team dynamics. The research is of significance to construction industry professionals and owners to investigate the challenges and implications of implementing target costing in designing to target cost.

Gottipati, Udaya Naidu

2010-08-01T23:59:59.000Z

293

Impacts of Energy Storage Systems in Addressing Regional Wind Penetration: Case Studies in NYISO and ERCOT  

Science Conference Proceedings (OSTI)

Optimal use of electric energy storage systems is expected to play a key role in supporting wind integration, relieving transmission and distribution (T&D) congestion, and improving the balance of supply and demand. However, there have been very limited assessments of what types and sizes of storage systems are optimal and what locations are the most promising. In 2009, an EPRI initial assessment of energy storage in ERCOT (EPRI report 1017824) recommended more regional market simulation studies to furth...

2010-12-23T23:59:59.000Z

294

Capabilities for information flow  

Science Conference Proceedings (OSTI)

This paper presents a capability-based mechanism for permissive yet secure enforcement of information-flow policies. Language capabilities have been studied widely, and several popular implementations, such as Caja and Joe-E, are available. By making ... Keywords: capabilities, information flow control

Arnar Birgisson; Alejandro Russo; Andrei Sabelfeld

2011-06-01T23:59:59.000Z

295

The impact of epistemology on learning: A case study from introductory physics  

E-Print Network (OSTI)

We discuss a case study of the influence of epistemology on learning for a student in an introductory college physics course. An analysis of videotaped class work, written work, and interviews indicates that many of the student's difficulties were epistemological in nature. Our primary goal is to show instructors and curriculum developers that a student's epistemological stance - her ideas about knowledge and learning - can have a direct, causal influence on her learning of physics. This influence exists even when research-based curriculum materials provide implicit epistemological support. For this reason, curriculum materials and teaching techniques could become more effective by explicitly attending to students' epistemologies.

Lising, L; Lising, Laura; Elby, Andrew

2004-01-01T23:59:59.000Z

296

Indoor Conditions Study and Impact on the Energy Consumption for a Large Commercial Building  

E-Print Network (OSTI)

This study is focused on the analysis of indoor conditions for a new commercial building that will be constructed in an East-European country. Based on the initial HVAC design parameters the surface of the building was divided in thermal zones that were studied using dynamic simulations. The article provides interesting insights of the building indoor conditions (summer/winter comfort), humidity, air temperature, mean operative temperature and energy consumption using hourly climate data. A dynamic variation of the PMV (Predicted Mean Vote Index) was obtained for different thermal zones of the building (retails stores, mall circulation, corridors) and in most of the cases the acceptable values of plus/minus 0.5 are exceeded. Among the most important energy efficiency measures it is mentioned a decrease of the heating set point temperature, increase of the walls and roof thermal resistance and the use of a heat recovery on the ventilation system. In this work it is demonstrated how simple measures can enhance the indoor conditions and reduce the energy consumption for this kind of construction.

Catalina, T.

2011-01-01T23:59:59.000Z

297

Mason and Enterprise Development under the Biogas Program in Vietnam: An Impact Study of the Effects of the Biogas Program.  

E-Print Network (OSTI)

??The research proposed to analyze the impact of a renewable energy project entitled ‘The Biogas Project Program for the department of Animal Husbandry and livestock… (more)

Schaart, I.G.

2010-01-01T23:59:59.000Z

298

Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"  

E-Print Network (OSTI)

Impacts of a 25-Percent Renewable Electricity Standard asand lower costs: Combining renewable energy and energyand I. Horowitz. 2009. Renewable portfolio standards and

Cappers, Peter

2010-01-01T23:59:59.000Z

299

Impact of technical expertise in a nonmetropolitan siting dispute: a case study of the Hersey WFPP controversy  

SciTech Connect

This research study further illuminates public response to the scale of energy-resource development by examination of a case involving a renewable energy technology - a 25-MW wood-fired electric power plant (WFPP) to have been sited in the remote nonmetropolitan Michigan community of Hersey. The controversy began late in 1978 shortly after the three prime sites were announced and concluded in 1980 when the proposal was withdrawn in the face of a local hazardous and toxic waste ordinance. Offers followed from other communities while opposition continued to develop throughout the region. Using a case history approach that relies on a variety of data sources complemented by a content analysis of the Hersey site hearing and accounts from the local newspaper, this study focuses on a number of the salient issues of power plant siting. Foremost among these is the social and political impact of technical expertise. Expertise is evaluated in terms of facts/values and local/cosmopolitan orientations. Content analysis was also applied to the issues in the controversy. Policy implications are discussed for scale and centralization in energy development, the concomitant distribution of costs, and the use of technical expertise as a tool to depoliticize issues. This study suggests that public concerns relative to the scale of energy development may not be allayed by continued resort to expertise alone.

Frankena, F.

1983-01-01T23:59:59.000Z

300

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1994  

SciTech Connect

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994. To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized. This study assesses benefits associated with the Grand Junction, Gunnison, Naturita, and Rifle UMTRA Projects sites for the 1-year period under study. Work at the Naturita site was initiated in April 1994 and involved demolition of buildings at the processing site. Actual start-up of remediation of Naturita is planned to begin in the spring of 1995. Work at the Slick Rock and Maybell sites is expected to begin in 1995. The only current economic benefits associated with these sites are related to UMTRA Project support work.

Not Available

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Image analysis algorithms for estimating porous media multiphase flow variables from computed microtomography data: a validation study  

Science Conference Proceedings (OSTI)

Image analysis of three-dimensional microtomographic image data has become an integral component of pore scale investigations of multiphase flow through porous media. This study focuses on the validation of image analysis algorithms for identifying phases and estimating porosity, saturation, solid surface area, and interfacial area between fluid phases from gray-scale X-ray microtomographic image data. The data used in this study consisted of (1) a two-phase high precision bead pack from which porosity and solid surface area estimates were obtained and (2) three-phase cylindrical capillary tubes of three different radii, each containing an air-water interface, from which interfacial area was estimated. The image analysis algorithm employed here combines an anisotropic diffusion filter to remove noise from the original gray-scale image data, a k-means cluster analysis to obtain segmented data, and the construction of isosurfaces to estimate solid surface area and interfacial area. Our method was compared with laboratory measurements, as well as estimates obtained from a number of other image analysis algorithms presented in the literature. Porosity estimates for the two-phase bead pack were within 1.5% error of laboratory measurements and agreed well with estimates obtained using an indicator kriging segmentation algorithm. Additionally, our method estimated the solid surface area of the high precision beads within 10% of the laboratory measurements, whereas solid surface area estimates obtained from voxel counting and two-point correlation functions overestimated the surface area by 20--40%. Interfacial area estimates for the air-water menisci contained within the capillary tubes were obtained using our image analysis algorithm, and using other image analysis algorithms, including voxel counting, two-point correlation functions, and the porous media marching cubes. Our image analysis algorithm, and other algorithms based on marching cubes, resulted in errors ranging from 1% to 20% of the analytical interfacial area estimates, whereas voxel counting and two-point correlation functions overestimated the analytical interfacial area by 20--40%. In addition, the sensitivity of the image analysis algorithms on the resolution of the microtomographic image data was investigated, and the results indicated that there was little or no improvement in the comparison with laboratory estimates for the resolutions and conditions tested.

Porter, Mark L.; Wildenschild, Dorthe; (Oregon State U.)

2010-09-03T23:59:59.000Z

302

Flow Rate Measurement Using {sup 99m}Tc Radiotracer Method in a Pipe Installation  

SciTech Connect

Flow rate is a significant parameter for managing processes in chemical processing plants and water processing facility. Accurate measurement of the flow rate allows engineers to monitor the delivery of process material, which in turn impacts a plant's capacity to produce their products. One of the available methods for determining the flow rate of a process material is by introducing a radiotracer to the system that mimics the material's flow pattern. In this study, a low activity Technetium-99m radioisotope was injected into a water piping setup and the 2'' x 2'' NaI (Tl) detectors were calibrated to detect spectrum peaks at specific points of the pipe installation. Using pulse velocity method, water flow rate was determined to be 11.3 litres per minute. For the sampling method, at different pump capacity, the flow rate was 15.0 litres per minute.

Sipaun, S. M.; Bakar, A. Q. Abu; Othman, N.; Shaari, M. R.; Adnan, M. A. K. [Industrial Technology Division, Malaysian Nuclear Agency, 43000 Bangi (Malaysia); Yusof, J. Mohd; Demanah, R. [Waste and Environmental Technology Divison, Malaysian Nuclear Agency, 43000 Bangi (Malaysia)

2010-07-07T23:59:59.000Z

303

Formulating a simplified equivalent representation of distribution circuits for PV impact studies.  

SciTech Connect

With an increasing number of Distributed Generation (DG) being connected on the distribution system, a method for simplifying the complexity of the distribution system to an equivalent representation of the feeder is advantageous for streamlining the interconnection study process. The general characteristics of the system can be retained while reducing the modeling effort required. This report presents a method of simplifying feeders to only specified buses-of-interest. These buses-of-interest can be potential PV interconnection locations or buses where engineers want to verify a certain power quality. The equations and methodology are presented with mathematical proofs of the equivalence of the circuit reduction method. An example 15-bus feeder is shown with the parameters and intermediate example reduction steps to simplify the circuit to 4 buses. The reduced feeder is simulated using PowerWorld Simulator to validate that those buses operate with the same characteristics as the original circuit. Validation of the method is also performed for snapshot and time-series simulations with variable load and solar energy output data to validate the equivalent performance of the reduced circuit with the interconnection of PV.

Reno, Matthew J.; Broderick, Robert Joseph; Grijalva, Santiago [Georgia Institute of Technology, Atlanta, GA

2013-04-01T23:59:59.000Z

304

Momentum and scalar transport in vegetated shear flows  

E-Print Network (OSTI)

Environmental aquatic flows are seldom free of vegetative influence. However, the impact of submerged vegetation on the hydrodynamics and mixing processes in aquatic flows remains poorly understood. In this thesis, I present ...

Ghisalberti, Marco (Marco Andrea), 1976-

2005-01-01T23:59:59.000Z

305

Study on wave impact force prediction of different shore connecting structure based on improved BP neural network  

Science Conference Proceedings (OSTI)

In this paper, the advanced Neural Network technology was introduced to the field of the wave impact force prediction. A three-layered BP neural network is employed and the units of input layer are wave style, wave period, incident wave height, relative ... Keywords: BP, prediction, shore connecting structure, wave impact force

Xiaoguo Zhou; Shuguang Luan

2009-09-01T23:59:59.000Z

306

Study of the potential health and environmental impacts from the development of liquid-dominated geothermal resources  

DOE Green Energy (OSTI)

This document describes seven programs to provide scientific input, understanding, and forecasting capability for hydrothermal energy areas needing resolution. The three major areas addressed are (1) the impacts on living components of the aqueous and terrestrial ecosystems, (2) the impacts on the quality of the abiotic environment itself, and (3) the techniques needed to measure releases from hydrothermal activities.

Williams, J.M. (ed.)

1982-09-01T23:59:59.000Z

307

HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS  

Science Conference Proceedings (OSTI)

This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

Liu, Xiaobing [ORNL

2011-01-01T23:59:59.000Z

308

NIST Economic Impact Studies  

Science Conference Proceedings (OSTI)

... date demonstrates that the rates of return on NIST infratechnologies consistently match or exceed rates of return to private investment in technology ...

2011-11-25T23:59:59.000Z

309

X-ray Diffraction Studies of Forward and Reverse Plastic Flow in Nanoscale Layers during Thermal Cycling  

Science Conference Proceedings (OSTI)

The biaxial stress-strain response of layers within Cu/Ni nanolaminates is determined from in-plane x-ray diffraction spectra during heating/cooling. Thinner (11 nm) Cu and Ni layers with coherent, cube-on-cube interfaces reach ~1.8 GPa (Cu) and ~2.9 GPa (Ni) without yielding. Thicker (21 nm) layers with semi-coherent interfaces exhibit unusual plastic phenomena, including extraordinary plastic work hardening rates, and forward vs. reverse plastic flow with small (~10%) changes in stress, and evidence that threshold plastic stress in Ni layers is altered by preceding plastic flow in Cu layers. Line energy, pinning strength, net interfacial dislocation density and hardness are provided.

Gram, Michael D [Ohio State University, Columbus; Carpenter, John S [Los Alamos National Laboratory (LANL); Payzant, E Andrew [ORNL; Misra, Amit [Los Alamos National Laboratory (LANL); Anderson, Peter M [Ohio State University, Columbus

2013-01-01T23:59:59.000Z

310

Lattice Boltzmann study of flow and mixing characteristics of two-dimensional confined impinging streams with uniform and non-uniform inlet jets  

Science Conference Proceedings (OSTI)

Previous works have shown that impinging streams are susceptible to instabilities which will lead to asymmetric and deflecting flows. The inlet velocity profiles as one factor may affect the flow, temperature and mixing characteristics of this flow, ... Keywords: Flow characteristics, Flow instability, Impinging streams, Inlet velocity profiles, Mixing characteristics

Wenhuan Zhang; Zhenhua Chai; Baochang Shi; Zhaoli Guo

2013-02-01T23:59:59.000Z

311

Flow cytometric applications of tumor biology: prospects and pitfalls. [Applications in study of spontaneous dog tumors and in drug and radiation effects on cultured V79 cells  

SciTech Connect

A brief review of cytometry instrumentation and its potential applications in tumor biology is presented using our recent data. Age-distribution measurements of cells from spontaneous dog tumors and cultured cells after exposure to x rays, alpha particles, or adriamycin are shown. The data show that DNA fluorescence measurements have application in the study of cell kinetics after either radiation or drug treatment. Extensive and careful experimentation is needed to utilize the sophisticated developments in flow cytometry instrumentation.

Raju, M.R.; Johnson, T.S.; Tokita, N.; Gillette, E.L.

1979-01-01T23:59:59.000Z

312

A MULTI-WAVELENGTH STUDY OF LOW-REDSHIFT CLUSTERS OF GALAXIES. II. ENVIRONMENTAL IMPACT ON GALAXY GROWTH  

Science Conference Proceedings (OSTI)

Galaxy clusters provide powerful laboratories for the study of galaxy evolution, particularly the origin of correlations of morphology and star formation rate (SFR) with density. We construct visible to MIR spectral energy distributions of galaxies in eight low-redshift (z 99% confidence) with no dependence on R/R{sub 200} or projected local density at fixed mass. A merged sample of galaxies from the five best measured clusters shows (SFR){proportional_to}(R/R{sub 200}){sup 1.1{+-}0.3} for galaxies with R/R{sub 200} {R {R{sub 200}. The increase in the fraction of SFGs toward larger R/R{sub 200} and the isolation of SFGs with reduced SFRs near the cluster center are consistent with the truncation of star formation by ram-pressure stripping, as is the tendency for more massive SFGs to have higher SFRs. We conclude that stripping is more likely than slower processes to drive the properties of SFGs with R R{sub 200} in clusters. We also find that galaxies near the cluster center are more massive than galaxies farther out in the cluster at {approx}3.5{sigma}, which suggests that dynamical relaxation significantly impacts the distribution of cluster galaxies as the clusters evolve.

Atlee, David W.; Martini, Paul, E-mail: atlee@noao.edu [Department of Astronomy, Ohio State University, 4055 McPherson Laboratory, 140 W. 18th Ave., Columbus, OH 43210 (United States)

2012-12-20T23:59:59.000Z

313

Idaho Water Rental Pilot Project Probability/Coordination Study Resident Fish and Wildlife Impacts Phase III, 1997 Annual Report.  

SciTech Connect

Phase III began in 1995 with the overall goal of quantifying changes in resident fish habitat in the Snake River Basin upstream of Brownlee Reservoir resulting from the release of salmon flow augmentation water.

Leitzinger, Eric J. (Idaho Department of Fish and Game, Boise, ID)

1998-10-01T23:59:59.000Z

314

he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study  

SciTech Connect

This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistryâ??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earthâ??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

Keene, William C. [University of Virginia] [University of Virginia; Long, Michael S. [University of Virginia] [University of Virginia

2013-05-20T23:59:59.000Z

315

Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate  

SciTech Connect

The Tibetan Plateau (TP), the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating extensively at a speed faster than any other part of the world. In this study a series of experiments with a global climate model are designed to simulate black carbon (BC) and dust in snow and their radiative forcing and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow, respectively, on the snowpack over the TP, as well as their subsequent impacts on the Asian monsoon climate and hydrological cycle. Results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 µk/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust) in snow compared to other snow-covered regions in the world. The aerosol-induced snow albedo perturbations generate surface radiative forcing of 5-25 W m-2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0oC averaged over the TP and reduces snowpack over the TP more than that induced by pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere during spring. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. The TP also influences the South (SAM) and East (EAM) Asian monsoon through its dynamical and thermal forcing. During boreal spring, aerosols are transported by the southwesterly and reach the higher altitude and/or deposited in the snowpack over the TP. While BC and OM in the atmosphere directly absorb sunlight and warm the air, the darkened snow surface polluted by BC absorbs more solar radiation and increases the skin temperature, which warms the air above by the increased sensible heat flux over the TP. Both effects enhance the upward motion of air and spur deep convection along the TP during pre-monsoon season, resulting in earlier onset of the SAM and increase of moisture, cloudiness and convective precipitation over northern India. BC-in-snow has a more significant impact on the EAM in July than CO2 increase and carbonaceous particles in the atmosphere. Contributed by the significant increase of both sensible heat flux associated with the warm skin temperature and latent heat flux associated with increased soil moisture with long memory, the role of the TP as a heat pump is elevated from spring through summer as the land-sea thermal contrast increases to strengthen the EAM. As a result, both southern China and northern China become wetter, but central China (i.e. Yangtze River Basin) becomes drier - a near zonal anomaly pattern that is consistent with the dominant mode of precipitation variability in East Asia. ?

Qian, Yun; Flanner, M. G.; Leung, Lai-Yung R.; Wang, Weiguo

2011-03-02T23:59:59.000Z

316

A Two-Season Impact Study of NOAA Polar-Orbiting Satellites in the NCEP Global Data Assimilation System  

Science Conference Proceedings (OSTI)

Observing system experiments (OSEs) during two seasons are used to quantify the important contributions made to forecast quality from the use of the National Oceanic and Atmospheric Administration’s (NOAA) polar-orbiting satellites. The impact is ...

James A. Jung; Tom H. Zapotocny; John F. Le Marshall; Russ E. Treadon

2008-10-01T23:59:59.000Z

317

A Two-Season Impact Study of Satellite and In Situ Data in the NCEP Global Data Assimilation System  

Science Conference Proceedings (OSTI)

Observing system experiments are used to quantify the contributions to the forecast made by conventional in situ and remotely sensed satellite data. The impact of each data type is assessed by comparing the analyses and forecasts based on an ...

Tom H. Zapotocny; James A. Jung; John F. Le Marshall; Russ E. Treadon

2007-08-01T23:59:59.000Z

318

The urban economic development impacts of ethnic entrepreneurship : a case study of Dominican entrepreneurs in Lawrence, Massachusetts  

E-Print Network (OSTI)

This thesis examines the process through which ethnic entrepreneurship impacts urban economic development. In many urban places across the United States, demographic change has led to the rise of ethnic communities and the ...

Cheigh, Brian Chaneung

2005-01-01T23:59:59.000Z

319

New Madrid and Wabash Valley seismic study: simulating the impacts on natural gas transmission pipelines and downstream markets  

Science Conference Proceedings (OSTI)

This paper summarizes the methodology, simulation tools, and major initial findings made by Argonne National Laboratory (Argonne) on the potential impact of simultaneous, high-intensity New Madrid and Wabash Valley Seismic Events on the natural gas interstate ...

Edgar C. Portante; Stephen M. Folga; Gustav Wulfkuhle; Brian A. Craig; Leah E. Talaber

2009-12-01T23:59:59.000Z

320

An LES Study of the Impacts of Land Surface Heterogeneity on Dispersion in the Convective Boundary Layer  

Science Conference Proceedings (OSTI)

A systematic analysis of the impacts of heat patches and topographical features on the dispersion of passive materials in a shear-free convective boundary layer (CBL) was performed. Large eddy simulations and a Lagrangian particle dispersion ...

S. G. Gopalakrishnan; Roni Avissar

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Dynamic Heat Flow Measurements to Study the Distribution of Phase-Change Material in an Insulation Matrix  

DOE Green Energy (OSTI)

Phase change materials (PCMs) are used in building envelopes in many forms. The PCMs may be encased in discrete pouches or containers, or they may be distributed within another medium, such as in a board or within a loose fill product. In addition, most PCM products are blends containing fire retardants and chemical stabilizers. However, the current test method to measure the dynamic characteristics of PCMs, the differential scanning calorimeter (DSC), requires specimens that are relatively uniform and very small. Considering the limitations of DSC test results when applied to more complex PCM building envelope applications, we developed a combined experimental analytical protocol to determine the amount of phase-change energy actually available to provide thermal storage. This paper presents this new methodology for performing dynamic heat flow analysis of complex PCM-enhanced building materials. The experimental analytical protocol uses a conventional heat-flow apparatus and three-dimensional (3-D), finite-difference modeling. Based upon results from this methodology, ORNL researchers developed a simplified one-dimensional (1-D) model that can be easily used in whole-building simulations. This paper describes this methodology as applied to an insulation assembly containing a complex array of PCM pouches.

Kosny, Jan [ORNL; Stovall, Therese K [ORNL; Yarbrough, David W [ORNL

2010-01-01T23:59:59.000Z

322

A study of pumps for the Hot Dry Rock Geothermal Energy extraction experiment (LTFT (Long Term Flow Test))  

DOE Green Energy (OSTI)

A set of specifications for the hot dry rock (HDR) Phase II circulation pumping system is developed from a review of basic fluid pumping mechanics, a technical history of the HDR Phase I and Phase II pumping systems, a presentation of the results from experiment 2067 (the Initial Closed-Loop Flow Test or ICFT), and consideration of available on-site electrical power limitations at the experiment site. For the Phase II energy extraction experiment (the Long Term Flow Test or LTFT) it is necessary to provide a continuous, low maintenance, and highly efficient pumping capability for a period of twelve months at variable flowrates up to 420 gpm and at surface injection pressures up to 5000 psi. The pumping system must successfully withstand attacks by corrosive and embrittling gases, erosive chemicals and suspended solids, and fluid pressure and temperature fluctuations. In light of presently available pumping hardware and electric power supply limitations, it is recommended that positive displacement multiplex plunger pumps, driven by variable speed control electric motors, be used to provide the necessary continuous surface injection pressures and flowrates for LTFT. The decision of whether to purchase the required circulation pumping hardware or to obtain contractor provided pumping services has not been made.

Tatro, C.A.

1986-10-01T23:59:59.000Z

323

An RTD study for the flow of lignite particles through a pilot rotary dryer. Part 2: Flighted drum case  

SciTech Connect

In Part 2 of this work a flighted pilot rotating cylindrical drum, intended to be used as either a dryer or calciner (kiln), has been used to investigate the flow, through it, of pulverized moist lignite. Tracer pulse input-response experiments have been performed. Residence Time Distribution (RTD) data have been deduced for three types of flight geometry, namely: Rectangular (RA), Equal Angular Distribution (EAD) and Equal Horizontal Distribution (EHD). For each flight shape, mean residence time {bar t} has been correlated with drum operating conditions. The sequence {bar t}{sub EAD} < {bar t}{sub RA} < {bar t}{sub EHD} has been validated. A comparison between the residence time predictions for the flighted and the bare drum has indicated that {bar t} for the former may be higher by up to 3.5 times than that for the latter. Exceptionally high solids hold-up values (i.e., Z = 0.13--0.42) have been observed and compared to theoretical predictions. Particle size segregation during lignite flow through the flighted drum was not confirmed.

Hatzilyberis, K.S.; Androutsopoulos, G.P. [National Technical Univ. of Athens (Greece). Dept. of Chemical Engineering

1999-04-01T23:59:59.000Z

324

Increased Power Flow Guidebook  

Science Conference Proceedings (OSTI)

The Increased Power Flow (IPF) Guidebook is a state-of-the-art and best practices guidebook on increasing power flow capacities of existing overhead transmission lines, underground cables, power transformers, and substation equipment without compromising safety and reliability. The Guidebook discusses power system concerns and limiting conditions to increasing capacity, reviews available technology options and methods, illustrates alternatives with case studies, and analyzes costs and benefits of differe...

2005-11-16T23:59:59.000Z

325

Idaho Water Rental Pilot Project probability/coordination study resident fish and wildlife impacts, Phase III. Annual report  

DOE Green Energy (OSTI)

Phase III began in 1995 with the overall goal of quantifying changes in resident fish habitat in the Snake River basin upstream of Brownlee Reservoir resulting from the release of salmon flow augmentation water. Existing data, in the form of weighted usable area versus flow relationships, were used to estimate habitat changes for white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss)in the Snake River between C.J. Strike Dam and Brownlee pool. The increased flows resulted in increased white sturgeon habitat for most life stages. Rainbow trout adult and spawning habitat increased while juvenile and fry habitat generally decreased. Whether or not these short term increases in habitat result in long term benefits to the fish populations has yet to be determined.

Leitzinger, E.

1996-09-01T23:59:59.000Z

326

Impact of Geomagnetically Induced Currents on Power Transformers.  

E-Print Network (OSTI)

??This thesis deals with the impact of Geomagnetically Induced Current (GIC) on power transformers in electrical power systems. A simulator to calculate the flows of… (more)

Berge, Jonathan E

2011-01-01T23:59:59.000Z

327

High-silicon {sup 238}PuO{sub 2} fuel characterization study: Half module impact tests  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements. The modular GPHS design was developed to address both survivability during launch abort and return from orbit. Previous testing conducted in support of the Galileo and Ulysses missions documented the response of GPHSs to a variety of fragment- impact, aging, atmospheric reentry, and Earth-impact conditions. The evaluations documented in this report are part of an ongoing program to determine the effect of fuel impurities on the response of the heat source to conditions baselined during the Galileo/Ulysses test program. In the first two tests in this series, encapsulated GPHS fuel pellets containing high levels of silicon were aged, loaded into GPHS module halves, and impacted against steel plates. The results show no significant differences between the response of these capsules and the behavior of relatively low-silicon fuel pellets tested previously.

Reimus, M.A.H.

1997-01-01T23:59:59.000Z

328

ENVIRONMENTAL CHAMBER STUDIES OF OZONE IMPACTS OF COATINGS VOCs Final Report to the California Air Resources Board Contract No. 07-339 By  

E-Print Network (OSTI)

An environmental chamber and modeling study was conducted to reduce uncertainties in atmospheric ozone impacts for volatile organic compounds (VOCs) emitted from coatings. Some coatings VOCs (Texanol ® and low-aromatic petroleum distillates) have near-zero or negative incremental ozone reactivities in chamber experiments, but calculations show positive ozone impacts in the atmosphere. Modeling indicated that experiments with increased light intensity and added H2O2 should give reactivities that better correlate with those in the atmosphere. After upgrading our chamber’s light source, experiments to test the new method performed as expected, and gave good correlations between experimental and atmospheric MIR values for the VOCs tested. These experiments also appear to be more sensitive to effects of VOCs on secondary organic aerosol (SOA) formation than previous experiments. Such experiments should be included in future environmental chamber reactivity studies, though other types of experiments are also needed for adequate mechanism evaluation. Experiments were also conducted to assess ozone impacts of ethyl methyl ketone oxime (EMKO), and soy ester solvents. The EMKO results indicated it has both radical sinks and NOx sources in its mechanism, and has no measurable impact on SOA formation. The EMKO mechanism that simulated the data gave a negative MIR of-1.27 gm O3 /gm VOC, but positive MOIR and EBIR values of

William P. L. Carter

2011-01-01T23:59:59.000Z

329

FLOW GATING  

DOE Patents (OSTI)

BS>This invention is a fast gating system for eiectronic flipflop circuits. Diodes connect the output of one circuit to the input of another, and the voltage supply for the receiving flip-flop has two alternate levels. When the supply is at its upper level, no current can flow through the diodes, but when the supply is at its lower level, current can flow to set the receiving flip- flop to the same state as that of the circuit to which it is connected. (AEC)

Poppelbaum, W.J.

1962-12-01T23:59:59.000Z

330

Gas-phase chemistry during the conversion of cyclohexane to carbon: Flow reactor studies at low and intermediate pressure  

DOE Green Energy (OSTI)

The gas-phase branching during the conversion of cyclohexane to solid carbon has been measured in a high-temperature-flow reactor. The experiments show that cyclohexane decomposes into a broad distribution of hydrocarbons that further decompose into the more kinetically stable products hydrogen, methane, acetylene, ethylene, benzene, and PAH. At 1363 K, the evolution to these species occurs quickly. We also observe the buildup of significant amounts of aromatic molecules at later stages in the decomposition, with as much as 15% of the total carbon in PAH and 25% in benzene. At later stages, the gas-phase molecules react slowly, even though the system is not at equilibrium, because of their kinetic stability and the smaller radical pool. The decomposition does not appear to depend sensitively on pressure in the regime of 25 to 250 torr. Thus, to a first approximation, these results can be extrapolated to atmospheric pressure.

Osterheld, T.H.; Allendorf, M.D.; Larson, R.

1995-07-01T23:59:59.000Z

331

Study of full implicit petroleum engineering finite volume scheme for compressible two phase flow in porous media  

E-Print Network (OSTI)

An industrial scheme, to simulate the two compressible phase flow in porous media, consists in a finite volume method together with a phase-by-phase upstream scheme. The implicit finite volume scheme satisfies industrial constraints of robustness. We show that the proposed scheme satisfy the maximum principle for the saturation, a discrete energy estimate on the pressures and a function of the saturation that denote capillary terms. These stabilities results allow us to derive the convergence of a subsequence to a weak solution of the continuous equations as the size of the discretization tends to zero. The proof is given for the complete system when the density of the each phase depends on the own pressure.

Saad, Bilal

2012-01-01T23:59:59.000Z

332

A Spatial Structural and Statistical Approach to Building Classification of Residential Function for City-Scale Impact Assessment Studies  

Science Conference Proceedings (OSTI)

In order to implement robust climate change adaption and mitigation strategies in cities fine spatial scale information on building stock is required. However, for many cities such information is rarely available. In response, we present a methodology ... Keywords: City Spatial Planning and Impact Assessment, Morphological and Spatial Metrics, Multinomial Logistic Regression, Residential Building Classification

Dimitrios P. Triantakonstantis; Stuart L. Barr

2009-07-01T23:59:59.000Z

333

Flow cytometer  

DOE Patents (OSTI)

A Faraday cage enclosing the flow chamber of a cytometer and ground planes associated with each field deflection plate in concert therewith inhibit electric fields from varying the charge on designated events/droplets and further concentrates and increases forces applied to a charged event passing therethrough for accurate focus thereof while concomitantly inhibiting a potential shock hazard.

van den Engh, Ger (Seattle, WA)

1995-01-01T23:59:59.000Z

334

Flow cytometer  

DOE Patents (OSTI)

A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

Van den Engh, G.

1995-11-07T23:59:59.000Z

335

A Study on Zoning Regulations' Impact on Thermal Comfort Conditions in Non-conditioned Apartment Buildings in Dhaka City  

E-Print Network (OSTI)

Unfavorable thermal comfort conditions are common in the non-conditioned apartment buildings typical of Dhaka (Ali, 2007; Hafiz, 2004). Causes behind such unfavorable thermal comfort conditions include (but are not limited to) Dhaka?s climate, microclimate in Dhaka's typical residential neighborhood, its socio-economic context, housing type, and its inadequate planning regulations. Dhaka's climate is hot humid but it can be tackled with well designed buildings as well as well as designed neighborhoods, both of which demands ample open space. However, due to land scarcity and high population density, building developments lack open spaces and that results in unfavorable thermal comfort conditions in apartment buildings. Dhaka?s previous zoning regulations were unable to control this dense development, and therefore, a new set of zoning regulations were enacted (2008). However, no post-evaluation study was conducted to research the effect of this new set of regulations. The intention of this research is to first evaluate the existing regulations, and second, to suggest appropriate zoning regulation schemes for Dhaka's non-conditioned apartment buildings (for a lot size of 1/3 acre), which would provide favorable thermal comfort conditions without changing its existing density. To accomplish the first goal, this research analyzed two existing zoning schemes (one based on regulations of 1996, and the other based on the regulations of 2008). To accomplish the second goal, this research analyzed two hypothetical zoning schemes. The hypothetical ones were studied because this research finds 1996 and 2008 regulations to be two extremes (in terms of allowing open space and building height), and therefore examination of in-between alternative zoning schemes seemed essential for this study. To analyze the four zoning regulation schemes' impact on thermal comfort in apartment buildings, four sets of built environment were created in EnergyPlus (Energy Simulation software) as well as in Fluent (Computational Fluid Dynamics software). Each set of built environment is a cluster of nine buildings; and each set is different from each other in terms of their building footprints and building heights. The building on the center was modeled implicitly, and remaining buildings were modeled as solid blocks (to act as neighboring buildings) for blocking sun and wind. The ES and CFD software simulated possible solar, daylight, and wind availability inside the central building, and consequently produce data on thermal comfort conditions, namely indoor temperature and air velocity. The simulation results were compared to see which zoning schemes provided the most favorable thermal comfort conditions. This research found one of the in-between schemes (60% allowable footprint, 9-story height limit) to be more appropriate in terms of thermal comfort conditions than the other three schemes; because it provides better solar protection and better natural ventilation and consequently it reduces indoor temperature and increases indoor air velocity.

Islam, Saiful

2011-12-01T23:59:59.000Z

336

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

337

Visualization and Diagnostics of Thermal Plasma Flows  

Science Conference Proceedings (OSTI)

Flow visualization is a key tool for the study of thermal plasma flows. Because of their high temperature and associated self emission, standard and high speed photography is commonly used for flow and temperature field visualization. Tracer techniques ... Keywords: d.c. plasma jet, enthalpy probe techniques, induction plasma, laser strobe, photographic techniques, schlieren, thermal plasma flows

M. I. Boulos

2001-01-01T23:59:59.000Z

338

Research | Children’s Health Substance Flow Analysis: A Case Study of Fluoride Exposure through Food and Beverages in Young Children Living in Ethiopia  

E-Print Network (OSTI)

Con t e x t: Dental and skeletal fluorosis is endemic in the Ethiopian Rift Valley. Children are especially vulnerable to excessive fluoride intake because their permanent teeth are still being formed. Strategies to reduce the total fluoride intake by children are thus warranted. Case presentation: By combining the results of field studies in Ethiopia, the relevant pathways for fluoride intake have been identified in 28 children 2–5 years of age living in two villages on the Wonji Shoa Sugar Estate in the Ethiopian Rift Valley. The focus of the present study was to simulate the fluoride intake of the children using the methods of material flow analysis (MFA) and substance flow analysis. Discussion: With a model based on MFA, we quantified the potential reduction in total fluoride intake given different scenarios—for example, by reducing the fluoride intake from drinking water and cooking water. The results show clearly that only by removing fluoride completely from both drinking and cooking water does the probability of remaining below the daily tolerable upper intake level exceed 50%. Both prepared food and food ingredients must be taken into consideration when assessing the total fluoride intake by children living in high-fluoride areas. Relevance: This knowledge will help health personnel, the government, and the food authorities to give scientifically based advice on strategies for reducing the total fluoride intake by children living in high-fluoride areas in the Ethiopian Rift Valley.

Marian Kjellevold Malde; Ruth Scheidegger; Kĺre Julshamn; Hans-peter Bader

2010-01-01T23:59:59.000Z

339

Effects of Flaming Gorge Dam hydropower operations on downstream flow, stage, and sediment transport  

DOE Green Energy (OSTI)

Hydropower operations at Flaming Gorge Dam, located on the Green River in Utah, can produce rapid downstream changes in flow and stage. These changes can in turn affect sediment transport and ecologic resources below the dam. To evaluate these effects, four hydropower operational scenarios with varying degrees of hydropower-release fluctuations were examined. This study demonstrates that the combined use of river-flow routing, water-surface profile, and sediment-transport models can provide useful information for evaluating the potential impacts of hydropower-operations on ecological and other resources downstream of the dam. Study results show that flow fluctuations may or may not persist for a long distance, depending on the initial magnitude of fluctuation and the duration of hydropower peaking. Stage fluctuations depend not only on flow fluctuations but also on river channel characteristics, such as channel width and longitudinal slope.

Yin, S.C.L.; Tomasko, D.; Cho, H.E.; Williams, G. [Argonne National Lab., IL (United States); McCoy, J.; Palmer, C. [USDOE Western Area Power Administration, Salt Lake City, UT (United States)

1996-11-01T23:59:59.000Z

340

Determination of elemental constituents in different matrix materials and flow injection studies by the electrolyte cathode glow discharge technique with a new design  

SciTech Connect

An open-to-air type electrolyte cathode discharge (ELCAD) has been developed with a new design. The present configuration leads to a stable plasma even at low flow rates (0.96 mL/min). Plasma fluctuations arising from the variations in the gap between solid anode and liquid cathode were eliminated by providing a V-groove to the liquid glass-capillary. Cathode (ground) connection is given to the solution at the V-groove itself. Interfaced to atomic emission spectrometry (AES), its analytical performance is evaluated. The optimized molarity of the solution is 0.2 M. The analytical response curves for Ca, Cu, Cd, Pb, Hg, Fe, and Zn demonstrated good linearity. The limit of detections of Ca, Cu, Cd, Pb, Hg, Fe, and Zn are determined to be 17, 11, 5, 45, 15, 28, and 3 ng mL{sup -1}. At an integration time of 0.3 s, the relative standard deviation (RSD) values of the acid blank solutions are found to be less than 10% for the elements Ca, Cu, Cd, Hg, Fe, and Zn and 18% for Pb. The method is applied for the determination of the elemental constituents in different matrix materials such as tuna fish (IAEA-350), oyster tissue (NIST SRM 1566a), and coal fly ash (CFA SRM 1633b). The obtained results are in good agreement with the certified values. The accuracy is found to be between 7% and 0.6% for major to trace levels of constituent elements and the precision between 11% and 0.6%. For the injection of 100 {mu} L of 200 ng mL{sup -1} mercury solution at the flow rate of 0.8 mL/min, the flow injection studies resulted in the relative standard deviation (RSD) of 8%, concentration detection limit of 10 ng/mL, and mass detection limit of 1 ng for mercury.

Shekhar, R.; Karunasagar, D.; Ranjit, M.; Arunachalam, J. [Bhabha Atomic Research Centre, Hyderabad (India)

2009-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DISCOVER-AQ Outlook for Monday, July 11, 2011 Tomorrow the study region will be dominated by southwesterly flow around the west side of the  

E-Print Network (OSTI)

impact. #12;Tuesday: Some impact from wildfires/western power plants (seems like western and southern and on new approaching short wave) Thurs., July 14: Fly (Canadian air mass) #12;GOES Visible Imagery for 1815

342

Flow reference method testing and analysis: Field test plan, Texas Utilities Decordova Steam Electric Station  

SciTech Connect

This report describes the experimental design and test plan for the first of three field tests that the US Environmental Protection Agency (EPA) conducted in 1997 as part of a major study to evaluate potential improvements to Method 2, EPA`s test method for measuring flue gas volumetric flow in stacks. The experimental design involved four test teams taking concurrent in-stack measurements with velocity sensing probes. Seven types of probes were included in the study. Three test matrices were used to gather data for inter-probe and inter-team comparisons and to assess the impact of velocity decline near the stack wall on volumetric flow measurements.

Lieberman, E.; Werner, A.S.

1997-05-30T23:59:59.000Z

343

Analytical and Numerical Studies of the Beta-Effect in Tropical Cyclone Motion. Part I: Zero Mean Flow  

Science Conference Proceedings (OSTI)

The ?-effect on tropical cyclone motion is studied using an analytical as well as a numerical model in a nondivergent barotropic framework. The analytical model and the linear version of the numerical model give essentially the same result: the ...

Johnny C. L. Chan; R. T. Williams

1987-05-01T23:59:59.000Z

344

Instrumentation for Increased Power Flow  

Science Conference Proceedings (OSTI)

This report is the second Technical Update of the Instrumentation for Managing Increased Power Flow project, part of EPRI's Increased Power Flow (IPF) program. The project, initiated in 2006 and expected to continue for several years, studies the feasibility of new instrumentation to support increased power flow strategies. In 2007 the work focused on two primary developments: the Backscatter Sensor for the real-time measurement of transmission line temperature and current and the Emissivity Test Instrum...

2007-12-06T23:59:59.000Z

345

Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts  

SciTech Connect

Increased interest by state (and federal) policymakers and regulatory agencies in pursuing aggressive energy efficiency efforts could deliver significant utility bill savings for customers while having long-term implications for ratepayers (e.g. potential rate impacts). Equity and distributional concerns associated with the authorized recovery of energy efficiency program costs may necessitate the pursuit of alternative program funding approaches. In 2008, Massachusetts passed the Green Communities Act which directed its energy efficiency (EE) program administrators to obtain all cost-effective EE resources. This goal has translated into achieving annual electric energy savings equivalent to a 2.4% reduction in retail sales from energy efficiency programs in 2012. Representatives of electricity consumer groups supported the new portfolio of EE programs (and the projected bill savings) but raised concerns about the potential rate impacts associated with achieving such aggressive EE goals, leading policymakers to seek out alternative funding sources which can potentially mitigate these effects. Utility administrators have also raised concerns about under-recovery of fixed costs when aggressive energy efficiency programs are pursued and have proposed ratemaking policies (e.g. decoupling) and business models that better align the utility's financial interests with the state's energy efficiency public policy goals. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other states looking to significantly increase savings targets that can be achieved from their own ratepayer-funded energy efficiency programs. We use a pro-forma utility financial model to quantify the bill and rate impacts on electricity customers when very aggressive annual energy efficiency savings goals ({approx}2.4%) are achieved over the long-term and also assess the impact of different cost recovery approaches that integrate alternative revenue sources. We also analyze alternative lost fixed cost recovery approaches to better understand how to mitigate the erosion of utility shareholder returns in states that have adopted (and achieved) very aggressive savings targets.

Cappers, Peter; Satchwell, Andrew; Goldman, Charles; Schlegel, Jeff

2010-08-06T23:59:59.000Z

346

Systematic parameter study of hadron spectra and elliptic flow from viscous hydrodynamic simulations of Au+Au collisions at {radical}(s{sub NN})=200 GeV  

Science Conference Proceedings (OSTI)

Using the (2+1)-dimensional viscous hydrodynamic code vish2+1[H. Song and U. Heinz, Phys. Lett. B 658, 279 (2008); H. Song and U. Heinz, Phys. Rev. C 77, 064901 (2008); H. Song, Ph. D. thesis, The Ohio State University, 2009], we present systematic studies of the dependence of pion and proton transverse-momentum spectra and their elliptic flow in 200A GeV Au+Au collisions on the parameters of the hydrodynamic model (thermalization time, initial entropy density distribution, decoupling temperature, equation of state, and specific shear viscosity {eta}/s). We identify a tension between the slope of the proton spectra, which (within hydrodynamic simulations that assume a constant shear viscosity to entropy density ratio) prefer larger {eta}/s values, and the slope of the p{sub T} dependence of charged hadron elliptic flow, which prefers smaller values of {eta}/s. Changing other model parameters does not appear to permit dissolution of this tension.

Shen Chun; Heinz, Ulrich; Huovinen, Pasi; Song, Huichao [Department of Physics, Ohio State University, Columbus, Ohio 43210-1117 (United States); Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Strasse 1, D-60438 Frankfurt am Main (Germany); Department of Physics, Ohio State University, Columbus, Ohio 43210-1117 (United States) and Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS70R0319, Berkeley, California 94720 (United States)

2010-11-15T23:59:59.000Z

347

A parametric study of the impact of various error contributions on the flux distribution of a solar dish concentrator.  

SciTech Connect

Dish concentrators can produce highly concentrated flux for the operation of an engine, a chemical process, or other energy converter. The high concentration allows a small aperture to control thermal losses, and permits high temperature processes at the focal point. A variety of optical errors can influence the flux pattern both at the aperture and at the absorber surface. Impacts of these errors can be lost energy (intercept losses), aperture compromise (increased size to accommodate flux), high peak fluxes (leading to part failure or life reduction), and improperly positioned flux also leading to component failure. Optical errors can include small scale facet errors ('waviness'), facet shape errors, alignment (facet pointing) errors, structural deflections, and tracking errors. The errors may be random in nature, or may be systematic. The various sources of errors are often combined in a 'root-mean-squared' process to present a single number as an 'error budget'. However, this approach ignores the fact that various errors can influence the performance in different ways, and can mislead the designer, leading to component damage in a system or poor system performance. In this paper, we model a hypothetical radial gore dish system using Sandia's CIRCE2 optical code. We evaluate the peak flux and incident power through the aperture and onto various parts of the receiver cavity. We explore the impact of different error sources on the character of the flux pattern, and demonstrate the limitations of lumping all of the errors into a single error budget.

Yellowhair, Julius; Iverson, Brian D.; Andraka, Charles E.

2010-04-01T23:59:59.000Z

348

A real two-phase submarine debris flow and tsunami  

Science Conference Proceedings (OSTI)

The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the submarine debris speed can be faster than the tsunami speed. This information can be useful for early warning strategies in the coastal regions. These findings substantially increase our understanding of complex multi-phase systems and multi-physics and flows, and allows for the proper modeling of landslide and debris induced tsunami, the dynamics of turbidity currents and sediment transport, and the associated applications to hazard mitigation, geomorphology and sedimentology.

Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)

2012-09-26T23:59:59.000Z

349

A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design  

SciTech Connect

Knowledge of the charge efficiency of lead-acid batteries near top-of-charge is important to the design of small photovoltaic systems. In order to know how much energy is required from the photovoltaic array in order to accomplish the task of meeting load, including periodic full battery charge, a detailed knowledge of the battery charging efficiency as a function of state of charge is required, particularly in the high state-of-charge regime, as photovoltaic systems are typically designed to operate in the upper 20 to 30% of battery state-of-charge. This paper presents the results of a process for determining battery charging efficiency near top-of-charge and discusses the impact of these findings on the design of small PV systems.

Stevens, J.W.; Corey, G.P.

1996-07-01T23:59:59.000Z

350

Session: What have studies of communications towers suggested regarding the impact of guy wires and lights on birds and bats  

DOE Green Energy (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The paper ''Wind turbines and Avian Risk: Lessons from Communications Towers'' was given by Paul Kerlinger. The presenter outlined lessons that have been learned from research on communications (not cell) towers and about the impacts of guy wires and lights on birds and bats and how they could be useful to wind energy developers. The paper also provided specific information about a large 'fatality' event that occurred at the Mountaineer, WC wind energy site in May 2003, and a table of Night Migrant Carcass search findings for various wind sites in the US.

Kerlinger, Paul

2004-09-01T23:59:59.000Z

351

Cell-surface changes in cadmium-resistant Euglena: Studies using lectin-binding techniques and flow cytometry  

Science Conference Proceedings (OSTI)

Most in vitro studies on contaminants focus on the short-term effects of pollutants on cells, without regard to long-term effects and the ability of cells or microorganisms to develop a specific resistance to a pollutant. Cadmium is ubiquitous environmental contaminant. This heavy metal enters the aquatic environment mainly through vapor emissions and fallout during smelting operations. Diverse mechanisms of algal resistance to toxic metals are known. Among these, the most general mechanism is the development of metal-binding proteins. In cadmium-resistant unicellular Euglena gracilis Z algae cells, the metal did not appear to be sequestered on soluble metal-binding ligands. Previous experiments have shown that resistance development is related to a diminution of cadmium penetration into cells, implicating cell surface or membrane alteration. This research investigates the mechanisms of development of cadmium resistance in Euglena cells at the cell-surface level. Sugar chains of glycoproteins and glycolipids are a predominant feature of the surface of cells. Moreover, the cell-response to environmental changes is often orchestrated through surface macromolecules such as glycoproteins. In this study, we applied this lectin method to investigate surface carbohydrate expression during and after resistance development. Our interest was twofold: (1) to learn more about the carbohydrate composition of the cell-surface of Euglena; and (2) to determine whether transition from wild cells to Cd-resistant cells changes the expression of cell-surface carbohydrates. 13 refs., 2 figs., 1 tab.

Bonaly, J.; Brochiero, E. [Faculte de Pharmacie, Chatenay-Malabry (France)

1994-01-01T23:59:59.000Z

352

A Case Study of Gender Bias at the Postdoctoral Level in Physics, and its Resulting Impact on the Academic Career Advancement of Females  

E-Print Network (OSTI)

This case study of a typical U.S. particle physics experiment explores the issues of gender bias and how it affects the academic career advancement prospects of women in the field of physics beyond the postdoctoral level; we use public databases to study the career paths of the full cohort of 57 former postdoctoral researchers on the Run II Dzero experiment to examine if males and females were treated in a gender-blind fashion on the experiment. The study finds that the female researchers were on average significantly more productive compared to their male peers, yet were allocated only 1/3 the amount of conference presentations based on their productivity. The study also finds that the dramatic gender bias in allocation of conference presentations appeared to have significant negative impact on the academic career advancement of the females.

Towers, S

2008-01-01T23:59:59.000Z

353

An RTD study for the flow of lignite particles through a pilot rotary dryer. Part 1: Bare drum case  

SciTech Connect

In Part 1 of the present work a pilot rotating cylindrical drum, without an internal lifting flight system (bare), has been employed for the study of lignite motion through it, at ambient temperature. Tracer pulse stimulus-response experiments have been carried out to deduce residence time distribution (RTD) data and relate them to the operating conditions (slope, speed of revolution, etc.). Mean residence time, space-time and solids hold-up have been correlated with the drum operating conditions. Experimental data of mean axial velocity of solids have been compared with theoretical predictions and found to deviate within a {+-}15% margin. A size segregation of particles during their motion through the kiln under a variety of operating conditions has been confirmed and quantified. An average maximum divergence of 20% between the residence time of the smallest and that of the largest nominal particle sizes has been assessed.

Hatzilyberis, K.S.; Androutsopoulos, G.P. [National Technical Univ. of Athens (Greece). Dept. of Chemical Engineering

1999-04-01T23:59:59.000Z

354

ESS 2012 Peer Review - Impact Study of Value-Added Functionality on Inverters in ESS - Eric Green & Vivek Ramachandran, NC State  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Results (Model Validation) Results (Model Validation) Figure 6: Real and Reactive Power Reference vs. Output Figure 7: IGBT and Diode Loss from Manufacturer (Fuji) Figure 8: IGBT and Diode Loss from Simulation Impact Study of Value-Added Functionality on Inverters in Energy Storage Systems Motivation Power conversion systems (PCS) developers are incorporating value-added functions; little is known about the on overall PCS reliability. Objective Develop electrical models to gain an understanding of the degradation of a PCS and its internal components due to value- added functionality; primarily VAR generation. Investigation and modeling of frequency support applications may be considered as a secondary objective.

355

Generating Economic Development from a Wind Power Plant in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts  

Wind Powering America (EERE)

Generating Economic Development from a Wind Power Generating Economic Development from a Wind Power Project in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts Sandra Reategui Edwin R. Stafford, Ph.D. Cathy L. Hartman, Ph.D. Center for the Market Diffusion of Renewable Energy and Clean Technology Jon M. Huntsman School of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 January 2009 DOE/GO-102009-2760 Acknowledgements ....................................................................................................................... 1 Introduction ................................................................................................................................... 2 Report Overview ......................................................................................................................... 2

356

Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: A case study for the Amsterdam ArenA stadium  

Science Conference Proceedings (OSTI)

Wind flow in urban environments is an important factor governing the dispersion of heat and pollutants from streets, squares and buildings. This paper presents a coupled CFD modelling approach for urban wind flow and indoor natural ventilation. A specific ... Keywords: Air exchange rate, Air quality, Computational Fluid Dynamics (CFD), Cross-ventilation, Full-scale measurements, Grid generation technique, Integrated model, Model validation and solution verification, Numerical simulation, Outdoor and indoor air flow, Sports stadium

T. van Hooff; B. Blocken

2010-01-01T23:59:59.000Z

357

Improved Fluid Flow Measurements: Feedwater Flow  

Science Conference Proceedings (OSTI)

This report describes the combined results of a utility survey and site visits concerning feedwater flow measurement in fossil-fueled power plants. In addition, a summary is provided of the technologies available to measure the volumetric feedwater flow rate in plants. This volumetric flow rate can be converted to a mass flow rate by knowing the pressure and temperature of the flow media. Velocity meters, differential pressure meters, and other closed-conduit flowmeters are discussed along with ...

2012-11-28T23:59:59.000Z

358

Specification of Surface Roughness for Hydraulic Flow Test Plates  

Science Conference Proceedings (OSTI)

A study was performed to determine the surface roughness of the corrosion layer on aluminum clad booster fuel plates for the proposed Gas Test Loop (GTL) system to be incorporated into the Advanced Test Reactor (ATR) at the Idaho National Laboratory. A layer of boehmite (a crystalline, non-porous gamma-alumina hydrate) is typically pre-formed on the surface of the fuel cladding prior to exposure to reactor operation to prevent the uncontrolled buildup of corrosion product on the surface. A representative sample coupon autoclaved with the ATR driver fuel to produce the boehmite layer was analyzed using optical profilometry to determine the mean surface roughness, a parameter that can have significant impact on the coolant flow past the fuel plates. This information was used to specify the surface finish of mockup fuel plates for a hydraulic flow test model. The purpose of the flow test is to obtain loss coefficients describing the resistance of the coolant flow paths, which are necessary for accurate thermal hydraulic analyses of the water-cooled booster fuel assembly. It is recommended that the surface roughness of the boehmite layer on the fuel cladding be replicated for the flow test. While it is very important to know the order of magnitude of the surface roughness, this value does not need to be matched exactly. Maintaining a reasonable dimensional tolerance for the surface finish on each side of the 12 mockup fuel plates would ensure relative uniformity in the flow among the four coolant channels. Results obtained from thermal hydraulic analyses indicate that ±15% deviation from a surface finish (i.e., Ra) of 0.53 ěm would have a minimal effect on coolant temperature, coolant flow rate, and fuel temperature.

Donna Post Guillen; Timothy S. Yoder

2006-05-01T23:59:59.000Z

359

Cold flow modeling of pulverized coal combustors for magnetohydrodynamic channel applications  

DOE Green Energy (OSTI)

This report describes an experimental program and techniques for studying the internal aerodynamics of pulverized coal combustors of the type used in magnetohydrodynamic test trains at The University of Tennessee Space Institute. The combustors are modeled with small scale, cold flow models that permit both flow visualization and velocity field surveys to be performed. Water was selected as the working fluid so that the model flow fields had the same Reynolds number as the actual reactive combustors, and also to facilitate flow visualization. The systems used for flow visualization and velocity field surveying are described in detail. The velocity field survey equipment is based on a vector-velocity, laser doppler velocimeter coupled to a controllable field scanning device and a microprocessor for on-line data reduction. Results are presented that were obtained from a laser velocimeter study of recirculating flows in a combustor model. The results show that, even for exceedingly simple geometrical arrangements of oxidant injector configurations, complex three dimensional highly turbulent flow fields exist in the combustor. A brief discussion of the impact of the results on fuel injector positioning is presented.

Schulz, R.J.; Giel, T.V.; Ghosh, A.; Morris, R.D.

1984-03-01T23:59:59.000Z

360

A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part IV: The Uptake and Redistribution of Aerosol Particles through Nucleation and Impaction Scavenging by Growing Cloud Drops and Ice Particles  

Science Conference Proceedings (OSTI)

A theoretical model has been formulated which allows the study of the effects of an ice phase on the removal of atmospheric aerosol particles by nucleation and impaction scavenging in a convective cloud. This microphysical model—although in ...

R. R. Alheit; A. I. Flossmann; H. R. Pruppacher

1990-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Study of flow and loss processes at the ends of a linear theta pinch. Progress report for the period June 1, 1976--May 31, 1977  

DOE Green Energy (OSTI)

Experimental and analytical studies initiating and supporting research on flow and energy losses at the ends of a linear theta pinch have been carried out. A 25 cm linear pinch coil has been driven by a 515,000 A discharge with 10 ..mu..sec half-cycle time supplied by a 100 ..mu..F, 18 kV energy storage system. With reliable preionization generated up to 400 mT He, current sheath behavior has been identified with magnetic loop probes and double loop probes. Spectroscopic determination of preionization has been made. A ruby laser Thomson scattering diagnostic has been designed and is being procured. A study of transient plasma behavior in a 10 cm theta pinch has been carried out with a Twyman-Green interferometer using a 7 mW He--Ne CW laser. Pressure, electric field, and velocity probe diagnostics have received preliminary testing. Design work has been completed for the doubling of pinch length and energy storage system. Studies of particle loss scaling and reactor scaling of linear theta pinch devices have been reported. Detailed calculations of plasma properties at the end of the pinch coil following expansion from the central coil have been carried out. A O--D, time dependent computer code that includes conduction, convection, and magnetic field diffusion has been developed. Predicted plasma behavior is in good agreement with experimental data.

York, T.M.; Klevans, E.H.

1977-02-01T23:59:59.000Z

362

Economic impact  

Science Conference Proceedings (OSTI)

In federal fiscal year 2000 (FY00), Berkeley Lab had 4,347 full- and part-time employees. In addition, at any given time of the year, there were more than 1,000 Laboratory guests. These guests, who also reside locally, have an important economic impact on the nine-county Bay Area. However, Berkeley Lab's total economic impact transcends the direct effects of payroll and purchasing. The direct dollars paid to the Lab's employees in the form of wages, salaries, and benefits, and payments made to contractors for goods and services, are respent by employees and contractors again and again in the local and greater economy. Further, while Berkeley Lab has a strong reputation for basic scientific research, many of the Lab's scientific discoveries and inventions have had direct application in industry, spawning new businesses and creating new opportunities for existing firms. This analysis updates the Economic Impact Analysis done in 1996, and its purpose is to describe the economic and geographic impact of Laboratory expenditures and to provide a qualitative understanding of how Berkeley Lab impacts and supports the local community. It is intended as a guide for state, local, and national policy makers as well as local community members. Unless otherwise noted, this analysis uses data from FY00, the most recent year for which full data are available.

Technology Transfer Department

2001-06-01T23:59:59.000Z

363

The transition from two phase bubble flow to slug flow  

E-Print Network (OSTI)

The process of transition from bubble to slug flow in a vertical pipe has been studied analytically and experimentally. An equation is presented which gives the agglomeration time as a function of void fraction, channel ...

Radovcich, Nick A.

1962-01-01T23:59:59.000Z

364

How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study  

DOE Green Energy (OSTI)

This paper is a brief introduction to the scope of the Western Wind and Solar Integration Study (WWSIS), inputs and scenario development, and the key findings of the study.

Lew, D.; Piwko, D.; Miller, N.; Jordan, G.; Clark, K.; Freeman, L.

2010-12-01T23:59:59.000Z

365

Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control: Preprint  

DOE Green Energy (OSTI)

This paper describes wind turbine flow fields that can cause adverse aerodynamic loading and can impact active aerodynamic control methodologies currently contemplated for wind turbine applications.

Schreck, S.; Robinson, M.

2007-08-01T23:59:59.000Z

366

Prospects for electric cars: electric vehicle impact assessment study. Final report, 15 December 1975--30 April 1978  

DOE Green Energy (OSTI)

The characteristics of future electric cars were projected by means of parametric models of weight, cost, and performance. They included urban ranges as much as two to four times those of recent electric cars: up to 150 km for improved lead-acid batteries, 250 km for nickel-zinc batteries, and 450 km for lithium-sulfur batteries. From data tapes of major travel surveys in Los Angeles and Washington, these ranges were found to be sufficient for most needs of all three major groups of drivers: secondary and primary drivers at multi-driper households, and drivers at one-driver households. Even with the longest design ranges, however, the electric cars would be incapable of occasional long trips now made by conventional cars, and only at the shortest design ranges would they be competitive in cost. Through modeling of supply and demand for over 200 U.S. utilities it was projected that, by the year 2000, almost 60% of US cars could be electrified, only 17% of the recharging power would come from petroleum. Modeling of air pollutant emissions for 24 large urban regions showed that electrification of all cars would reduce regional hydrocarbons and carbon monoxide emissions by roughly half, but increase sulfur oxide emissions some 20%. Traffic noise would be significantly reduced, even after major quieting of conventional vehicles. Identified resources of battery materials suffice for tens of millions of electric cars, but not necessarily for complete electrification of all US autos. Economic impacts aside from added costs for motorists would be relatively minor.

Hamilton, W.

1978-11-01T23:59:59.000Z

367

A Two-Season Impact Study of the WindSat Surface Wind Retrievals in the NCEP Global Data Assimilation System  

Science Conference Proceedings (OSTI)

A two-season observing system experiment (OSE) was used to quantify the impacts of assimilating the WindSat surface winds product developed by the Naval Research Laboratory (NRL). The impacts of assimilating these surface winds were assessed by ...

Li Bi; James A. Jung; Michael C. Morgan; John F. Le Marshall

2010-06-01T23:59:59.000Z

368

Subcooled flow boiling of fluorocarbons  

E-Print Network (OSTI)

A study was conducted of heat transfer and hydrodynamic behavior for subcooled flow boiling of Freon-113, one of a group of fluorocarbons suitable for use in cooling of high-power-density electronic components. Problems ...

Murphy, Richard Walter

1971-01-01T23:59:59.000Z

369

A laboratory scale supersonic combustive flow system  

DOE Green Energy (OSTI)

A laboratory scale supersonic flow system [Combustive Flow System (CFS)] which utilizes the gaseous products of methane-air and/or liquid fuel-air combustion has been assembled to provide a propulsion type exhaust flow field for various applications. Such applications include providing a testbed for the study of planar two-dimensional nozzle flow fields with chemistry, three-dimensional flow field mixing near the exit of rectangular nozzles, benchmarking the predictive capability of various computational fluid dynamic codes, and the development and testing of advanced diagnostic techniques. This paper will provide a detailed description of the flow system and data related to its operation.

Sams, E.C.; Zerkle, D.K.; Fry, H.A.; Wantuck, P.J.

1995-02-01T23:59:59.000Z

370

Modeling fluid flow through single fracture using experimental, stochastic, and simulation approaches  

E-Print Network (OSTI)

This research presents an approach to accurately simulate flow experiments through a fractured core using experimental, stochastic, and simulation techniques. Very often, a fracture is assumed as a set of smooth parallel plates separated by a constant width. However, the flow characteristics of an actual fracture surface are quite different, affected by tortuosity and the impact of surface roughness. Though several researchers have discussed the effect of friction on flow reduction, their efforts lack corroboration from experimental data and have not converged to form a unified methodology for studying flow on a rough fracture surface. In this study, an integrated methodology involving experimental, stochastic, and numerical simulations that incorporate the fracture roughness and the friction factor is shown to describe flow through single fractures more efficiently. Laboratory experiments were performed to support the study in quantifying the flow contributions from the matrix and the fracture. The results were used to modify the cubic law through reservoir simulations. Observations suggest that the fracture apertures need to be distributed to accurately model the experimental results. The methodology successfully modeled fractured core experiments, which were earlier not possible using the parallel plate approach. A gravity drainage experiment using an X-ray CT scan of a fractured core has also validated the methodology.

Alfred, Dicman

2003-12-01T23:59:59.000Z

371

Active flow control in an advanced serpentine jet engine inlet duct  

E-Print Network (OSTI)

An experimental investigation was performed to understand the development and suppression of the secondary flow structures within a compact, serpentine jet engine inlet duct. By employing a variety of flow diagnostic techniques, the formation of a pair of counter-rotating vortices was revealed. A modular fluidic actuator system that would apply several different methods of flow control was then designed and manufactured to improve duct performance. At the two bends of the inlet, conformal flow control devices were installed to deliver varying degrees of boundary layer suction, suction and steady fluid injection, and suction and oscillatory injection. Testing showed that suction alone could delay flow separation and improve the pressure recovery of the duct by as much as 70%. However, this technique was not able to rid the duct completely of the nonuniformities that exist at the engine face plane. Suction with steady blowing, however, increased pressure recovery by 37% and reduced distortion by 41% at the engine face. Suction with pulsed injection had the least degree of success in suppressing the secondary flow structures, with improvements in pressure recovery of only 16.5% and a detrimental impact on distortion. The potential for gains in the aerodynamic efficiency of serpentine inlets by active flow control was demonstrated in this study.

Kirk, Aaron Michael

2006-12-01T23:59:59.000Z

372

Use of Lasers to Study the Impact of Fractionation and Condensation on the Toxicity of Nuclear Weapon Fallout  

SciTech Connect

An experimental concept has been developed to collect data to aid in the refinement of simulation programs designed to predict the fallout effects arising from surface and shallowly buried nuclear weapon detonations. These experiments, called the Condensation Debris Experiments (CDE), are intended to study the condensation/fractionation of material that is liberated following an initial deposition of laser energy onto a small, characterized target. The CDE effort also encompasses target development and material studies as well as supporting computational efforts studying radiation hydrodynamics, computational fluid dynamics, and relevant neutron activation processes (not discussed here).

Vidnovic III, T; Bradley, K S; Debonnel, C S; Dipeso, G; Fournier, K; Karpenko, V P; Tobin, M

2005-04-01T23:59:59.000Z

373

Numerical Study of Urban Impact on Boundary Layer Structure: Sensitivity to Wind Speed, Urban Morphology, and Rural Soil Moisture  

Science Conference Proceedings (OSTI)

A mesoscale model with a detailed urban surface exchange parameterization is used to study urban influences on boundary layer structure. The parameterization takes into account thermal and mechanical factors, and it is able to reproduce the most ...

Alberto Martilli

2002-12-01T23:59:59.000Z

374

Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"  

E-Print Network (OSTI)

first-year 2012 cost for wind energy under a power purchaseCost Study of the 2015 Wind Challenge: An Assessment of Wind Energycosts, we assumed that the super-utility had a preference for wind energy.

Cappers, Peter

2010-01-01T23:59:59.000Z

375

Tropical Atlantic Decadal Oscillation and Its Potential Impact on the Equatorial Atmosphere–Ocean Dynamics: A Simple Model Study  

Science Conference Proceedings (OSTI)

Simple coupled atmosphere–ocean models are used to study the potential influence of the tropical Atlantic Ocean decadal oscillation on the equatorial Atlantic atmosphere–ocean dynamics. Perturbing the model tropical Atlantic at the extratropics (...

Sang-Ki Lee; Chunzai Wang

2008-01-01T23:59:59.000Z

376

An Airborne Profiling Radar Study of the Impact of Glaciogenic Cloud Seeding on Snowfall from Winter Orographic Clouds  

Science Conference Proceedings (OSTI)

Data from an airborne vertically pointing millimeter-wave Doppler radar are used to study the cloud microphysical effect of glaciogenic seeding of cold-season orographic clouds. Fixed flight tracks were flown downstream of ground-based silver ...

Bart Geerts; Qun Miao; Yang Yang; Roy Rasmussen; Daniel Breed

2010-10-01T23:59:59.000Z

377

Hydromagnetic Instability in Differentially Rotating Flows  

E-Print Network (OSTI)

We study the stability of a compressible differentially rotating flows in the presence of the magnetic field, and we show that the compressibility profoundly alters the previous results for a magnetized incompressible flow. The necessary condition of newly found instability can be easily satisfied in various flows in laboratory and astrophysical conditions and reads $B_{s} B_{\\phi} \\Omega' \

Bonanno, A

2006-01-01T23:59:59.000Z

378

A Seasonal Precipitation and Stream Flow Hindcast and Prediction Study in the Western United States during the 1997/98 Winter Season Using a Dynamic Downscaling System  

Science Conference Proceedings (OSTI)

The authors present a seasonal hindcast and prediction of precipitation in the western United States and stream flow in a northern California coastal basin for December 1997–February 1998 (DJF) using the Regional Climate System Model (RCSM). In ...

Jinwon Kim; Norman L. Miller; John D. Farrara; Song-You Hong

2000-08-01T23:59:59.000Z

379

flow_measurements_cryogenic  

Science Conference Proceedings (OSTI)

... A dynamic weighing system is used to measure ... using liquid nitrogen at flow rates of 1 ... For volumetric flow rate measurement, the uncertainty in fluid ...

2013-06-17T23:59:59.000Z

380

Multiphase flow calculation software  

DOE Patents (OSTI)

Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

Fincke, James R. (Idaho Falls, ID)

2003-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Multiphase Flow Modeling Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Chris Guenther, Director Computational Science Division RUA Spring Meeting, Morgantown, WV March 2013 2 NETL's Multiphase Flow Science Team * The Multiphase Flow Science...

382

Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study  

Science Conference Proceedings (OSTI)

Scenarios for a Clean Energy Future (CEF) studied the role that efficient clean energy technologies can play in meeting the economic and environmental challenges for our future energy supply. The study describes a portfolio of policies that would motivate energy users and businesses to invest in innovative energy efficient technologies. On the basis of the portfolios, two policy scenarios have been developed, i.e. a moderate scenario and an advanced scenario. We focus on the industrial part of the CEF-study. The studied policies include a wide scope of activities, which are organized under the umbrella of voluntary industrial sector agreements. The policies for the policy scenarios have been modeled using the National Energy Modeling System (CEF-NEMS). Under the reference scenario industrial energy use would grow to 41 Quads in 2020, compared to 34.8 Quads in 1997, with an average improvement of the energy intensity by 1.1% per year. In the Moderate scenario the annual improvement is a bout 1.5%/year, leading to primary energy use of 37.8 Quads in 2020, resulting in 10% lower CO2 emissions by 2020 compared to the reference scenario. In the Advanced scenario the annual improvement increases to 1.8% per year, leading to primary energy use of 34.3 Quads in 2020, and 29% lower CO2 emissions. We report on the policies, assumptions and results for industry.

Worrell, Ernst; Price, Lynn

2001-07-24T23:59:59.000Z

383

Interim Results from a Study of the Impacts of Tin (II) Based Mercury Treatment in a Small Stream Ecosystem: Tims Branch, Savannah River Site  

SciTech Connect

A research team is assessing the impacts of an innovative mercury treatment system in Tims Branch, a small southeastern stream. The treatment system, installed in 2007, reduces and removes inorganic mercury from water using tin(II) (stannous) chloride addition followed by air stripping. The system results in discharge of inorganic tin to the ecosystem. This screening study is based on historical information combined with measurements of contaminant concentrations in water, fish, sediment, biofilms and invertebrates. Initial mercury data indicate that first few years of mercury treatment resulted in a significant decrease in mercury concentration in an upper trophic level fish, redfin pickerel, at all sampling locations in the impacted reach. For example, the whole body mercury concentration in redfin pickerel collected from the most impacted pond decreased approximately 72% between 2006 (pre-treatment) and 2010 (post-treatment). Over this same period, mercury concentrations in the fillet of redfin pickerel in this pond were estimated to have decreased from approximately 1.45 {micro}g/g (wet weight basis) to 0.45 {micro}g/g - a decrease from 4.8x to 1.5x the current EPA guideline concentration for mercury in fillet (0.3 {micro}g/g). Thermodynamic modeling, scanning electron microscopy, and other sampling data for tin suggest that particulate tin (IV) oxides are a significant geochemical species entering the ecosystem with elevated levels of tin measured in surficial sediments and biofilms. Detectable increases in tin in sediments and biofilms extended approximately 3km from the discharge location. Tin oxides are recalcitrant solids that are relatively non-toxic and resistant to dissolution. Work continues to develop and validate methods to analyze total tin in the collected biota samples. In general, the interim results of this screening study suggest that the treatment process has performed as predicted and that the concentration of mercury in upper trophic level fish, as a surrogate for all of the underlying transport and transformation processes in a complex ecosystem, has declined as a direct result of the elimination of inorganic mercury inputs. Inorganic tin released to the ecosystem has been found in compartments where particles accumulate with notable levels measured in biofilms.

Looney, Brian [Savannah River National Laboratory (SRNL); BryanJr., Larry [Savannah River Ecology Laboratory; Mathews, Teresa J [ORNL; Peterson, Mark J [ORNL; Roy, W Kelly [ORNL; Jett, Robert T [ORNL; Smith, John G [ORNL

2012-03-01T23:59:59.000Z

384

Quantifying the Impacts of Time-Based Rates, Enabling Technology, and Other Treatments in Consumer Behavior Studies: Protocols and Guidelines  

Science Conference Proceedings (OSTI)

This report offers guidelines and protocols for measuring the effects of time-based rates, enabling technology, and various other treatments on customers’ levels and patterns of electricity usage. Although the focus is on evaluating consumer behavior studies (CBS) that involve field trials and pilots, the methods can be extended to assessing the large-scale programs that may follow. CBSs are undertaken to resolve uncertainties and ambiguities about how consumers respond to inducements to ...

2013-07-17T23:59:59.000Z

385

A Case Study of Gender Bias at the Postdoctoral Level in Physics, and its Resulting Impact on the Academic Career Advancement of Females  

E-Print Network (OSTI)

This case study of a typical U.S. particle physics experiment explores the issues of gender bias and how it affects the academic career advancement prospects of women in the field of physics beyond the postdoctoral level; we use public databases to study the career paths of the full cohort of 57 former postdoctoral researchers on the Run II Dzero experiment to examine if males and females were treated in a gender-blind fashion on the experiment. The study finds that the female researchers were on average significantly more productive compared to their male peers, yet were allocated only 1/3 the amount of conference presentations based on their productivity. The study also finds that the dramatic gender bias in allocation of conference presentations appeared to have significant negative impact on the academic career advancement of the females. The author has a PhD in particle physics and worked for six years as a postdoctoral research scientist, five of which were spent collaborating at Fermilab. She is currently completing a graduate degree in statistics.

S. Towers

2008-04-12T23:59:59.000Z

386

Engineering Fundamentals - Heat Transfer & Fluid Flow, Version 6.0  

Science Conference Proceedings (OSTI)

The Heat Transfer and Fluid Flow module covers basic terms and concepts of heat transfer and fluid flow and discusses their applications in nuclear power plants. This course will help new engineers understand how their work might impact and/or be ...

2013-01-17T23:59:59.000Z

387

BURNER DEVELOPMENT AND OPERABILITY ISSUES ASSOCIATED WITH STEADY FLOWING SYNGAS  

E-Print Network (OSTI)

BURNER DEVELOPMENT AND OPERABILITY ISSUES ASSOCIATED WITH STEADY FLOWING SYNGAS FIRED COMBUSTORS-Mu¨nchen, Garching, Germany This article addresses the impact of syngas fuel composition on combustor blowout, flash flashback mechanisms are present in swirling flows, and the key thermophysical properties of a syngas

Lieuwen, Timothy C.

388

Impacts of alternative fuels on air quality  

DOE Green Energy (OSTI)

The objective of this project was to determine the impact of alternative fuels on air quality, particularly ozone formation. The alternative fuels of interest are methanol, ethanol, liquefied petroleum gas, and natural gas. During the first year of study, researchers obtained qualitative data on the thermal degradation products from the fuel-lean (oxidative), stoichiometric, and fuel-rich (pyrolytic) decomposition of methanol and ethanol. The thermal degradation of ethanol produced a substantially larger number of intermediate organic by-products than the similar thermal degradation of methanol, and the organic intermediate by-products lacked stability. Also, a qualitative comparison of the UDRI flow reactor data with previous engine test showed that, for methanol, formaldehyde and acetone were the organic by-products observed in both types of tests; for ethanol, only very limited data were located.

Taylor, P.H.; Dellinger, B. [Dayton Univ., OH (United States). Research Inst.

1994-06-01T23:59:59.000Z

389

Impact of Screening on Behavior During Storage and Cost of Ground Small-Diameter Pine Trees: A Case Study  

DOE Green Energy (OSTI)

Whole comminuted trees are known to self-heat and undergo quality changes during storage. Trommel screening after grinding is a process that removes fines from the screened material and removes a large proportion of high-ash, high-nutrient material. In this study, the trade-off between an increase in preprocessing cost from trommel screening and an increase in quality of the screened material was examined. Fresh lodgepole pine (Pinus contorta) was comminuted using a drum grinder with a 10-cm screen, and the resulting material was distributed into separate fines and overs piles. A third pile of unscreened material, the unsorted pile, was also examined. The three piles exhibited different characteristics during a 6-week storage period. The overs pile was much slower to heat. The overs pile reached a maximum temperature of 56.88 degrees C, which was lower than the maximum reached by the other two piles (65.98 degrees C and 63.48 degrees C for the unsorted and fines, respectively). The overs also cooled faster and dried to a more uniform moisture content and had a lower ash content than the other two piles. Both piles of sorted material exhibited improved airflow and more drying than the unsorted material. Looking at supply system costs from preprocessing through in-feed into thermochemical conversion, this study found that trommel screening reduced system costs by over $3.50 per dry matter ton and stabilized material during storage.

Erin Searcy; Brad D Blackwelder; Mark E Delwiche; Allison E Ray; Kevin L Kenney

2011-10-01T23:59:59.000Z

390

Absorptive Capacity and Interpretation System’s Impact when ‘Going Green’: an Empirical Study of Ford, Volvo Cars  

E-Print Network (OSTI)

Whether or not it pays to be green or under what circumstances is an important ongoing debate among economic researchers. However, this question, with its rather instrumental rationality, may underestimate another key issue: the ability of companies to create value that can be captured from customers. This paper reports on three companies in the automotive industry developing and launching cars with improved eco-environmental performance and less petrol consumption. The study reveals that, despite being captured in the same technological paradigm, the individual company’s mode of environmental interpretation and its aspiration to exploit new technology may be two important explanatory factors in its ability to go green profitably. The study indicates that an enacting mode of environmental interpretation may be superior to a discovering mode, and suggests that for companies having a discovering mode there may be a need to complement existing engineering practice with insights into consumer psychology, and bundling of common good versus private good product attributes. The research upon which this paper is based was conducted using an

Bus Strat Env; Toyota

2005-01-01T23:59:59.000Z

391

Erosion and Sediment Damages and Economic Impacts of Potential 208 Controls: A Summary of Five Watershed Studies in Texas  

E-Print Network (OSTI)

This report summarizes results of economic analyses of erosion and sedimentation in five agricultural watersheds in Texas (see fig. 1). Economic analyses of the study areas considered both the on-farm economics of soil conservation and the economic consequences of various sedimentation control options. These topics were joined in the studies because they deal with different facets of the same problem. Unlike some potential pollutants, soil particles transported from a farmer's field that may become a problem downstream are a valuable resource, not a waste product. Because soil is valuable in itself, some level of soil conservation is going to be economically desirable even if downstream damages are not present or are not considered by the farmer. Results of the studies show that soil conservation does indeed pay in many situations and that its value is greater the longer the planning horizon of a farmer. This suggests that an educational program in this regard may reduce sediment damage while increasing farm income at the same time . Sediment can cause environmental damage (off-site costs) both directly and indirectly. Directly, the soil particles can cause environmental damage by filling up reservoirs and flood control structures and by deposition in other places. Indirectly, sediment can cause environmental costs by carrying plant nutrients that are potential pollutants. For the study watersheds, no evidence was found that the concentration of plant nutrients in the water posed health hazards to livestock or humans, nor caused undue eutrophication in the watersheds. Consequently, the study focused on off-site sediment damages resulting from shortened economic lives of reservoir and flood control structures and from sediment deposition in the watershed. Annualized off-site sediment damages ranged from a high of 26 cents per ton of gross erosion in Lake Lavon watershed to 14 cents per ton of gross erosion in Duck Creek, to 13.5 cents per ton of gross erosion in Lower Running Water Draw, to a negligible amount in Turkey Creek and Cameron County. These estimates are considerably lower than off-site sediment damages in corn belt watersheds (Lee & Guntermann). Policy Options for Controlling Sediment Public policies that can be implemented to abate off-site sediment damages include direct regulation, provision of economic incentives, education, and public investment. For point sources of pollutants, regulations are typically directed toward the pollutant at or near the point of emission into waterways. However, this is infeasible with non-point sources such as sediment because they enter waterways at an infinite number of points. Hence, regulations must be directed toward the practices that cause erosion and thus sedimentation. The economic incentive option includes alternatives such as Federal or State cost-sharing for adoption of conservation practices, and disincentives such as taxes or penalties on erosion. Education is a viable policy option in situations where producers are not adopting soil conservation practices that would be profitable. In these situations a successful education program would increase producer's income as well as reducing off-site sediment damages. Public investment could be used to pay for dredging sediment from reservoirs and flood control structures to prevent loss of flood control, water supply and recreational benefits. Social benefits and costs of various policy options based on direct regulation, taxation, and provision of economic incentives were estimated for three watersheds: Lake Lavon, Duck Creek, and Lower Running Water Draw. Items considered in the benefit-cost analysis were: (a) farm income consequences; (b) off-site sediment damages abated; (c) governmental cost or revenue; and (d) administration and enforcement costs associated with each policy. The major conclusion of this social benefit and cost analysis is that off-site damages are not large enough to warrant controls on agricultural activities in any of the watersheds; that i

Taylor, C. R.; Reneau, D. R.; Harris, B. L.

1979-01-01T23:59:59.000Z

392

Granular Dynamics during Impact  

E-Print Network (OSTI)

We study the impact of a projectile onto a bed of 3 mm grains immersed in an index-matched fluid. Specifically, we vary the amount of prestrain on the sample, strengthening the force chains within the system. We find this affects only the prefactor of linear depth-dependent term in the stopping force. We therefore attribute this term to pressure within the material, and not the grain-intruder friction as is sometimes suggested. Using a laser sheet scanning technique to visualize internal grain motion, a high-speed camera, and particle tracking, we can measure the trajectory of each grain throughout an impact event. Microscopically, our results indicate that weaker initial force chains result in more irreversible, plastic rearrangements during impact, suggesting static friction between grains does play a substantial role in the energy dissipation within the granular material.

Kerstin Nordstrom; Emily Lim; Matthew Harrington; Wolfgang Losert

2013-04-23T23:59:59.000Z

393

Impact of Preoperative Radiotherapy on General and Disease-Specific Health Status of Rectal Cancer Survivors: A Population-Based Study  

SciTech Connect

Purpose: To date, few studies have evaluated the impact of preoperative radiotherapy (pRT) on long-term health status of rectal cancer survivors. Using a population-based sample, we assessed the impact of pRT on general and disease-specific health status of rectal cancer survivors up to 10 years postdiagnosis. The health status of older ({>=}75 years old at diagnosis) pRT survivors was also compared with that of younger survivors. Methods and Materials: Survivors identified from the Eindhoven Cancer Registry treated with surgery only (SU) or with pRT between 1998 and 2007 were included. Survivors completed the Short Form-36 (SF-36) health survey questionnaire and the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Colorectal 38 (EORTC QLQ-CR38) questionnaire. The SF-36 and EORTC QLQ-CR38 (sexuality subscale) scores of the survivors were compared to an age- and sex-matched Dutch normal population. Results: A total of 340 survivors (response, 85%; pRT survivors, 71%) were analyzed. Overall, survivors had similar general health status. Both short-term (<5 years) and long-term ({>=}5 years) pRT survivors had significantly poorer body image and more problems with gastrointestinal function, male sexual dysfunction, and defecation than SU survivors. Survivors had comparable general health status but greater sexual dysfunction than the normal population. Older pRT survivors had general and disease-specific health status comparable to that of younger pRT survivors. Conclusions: For better survivorship care, rectal cancer survivors could benefit from increased clinical and psychological focus on the possible long-term morbidity of treatment and its effects on health status.

Thong, Melissa S.Y., E-mail: M.Thong@uvt.nl [Center of Research on Psychology in Somatic Diseases (CoRPS), Tilburg University (Netherlands); Comprehensive Cancer Centre South, Eindhoven (Netherlands); Mols, Floortje [Center of Research on Psychology in Somatic Diseases (CoRPS), Tilburg University (Netherlands); Comprehensive Cancer Centre South, Eindhoven (Netherlands); Lemmens, Valery E.P.P. [Comprehensive Cancer Centre South, Eindhoven (Netherlands); Department of Public Health, Erasmus University Medical Centre, Rotterdam (Netherlands); Rutten, Harm J.T. [Department of Surgery, Catharina Hospital, Eindhoven (Netherlands); Roukema, Jan A. [Department of Surgery, St. Elisabeth Hospital, Tilburg (Netherlands); Martijn, Hendrik [Department of Radiotherapy, Catharina Hospital, Eindhoven (Netherlands); Poll-Franse, Lonneke V. van de [Center of Research on Psychology in Somatic Diseases (CoRPS), Tilburg University (Netherlands); Comprehensive Cancer Centre South, Eindhoven (Netherlands)

2011-11-01T23:59:59.000Z

394

Modeling the Power Distribution Network of a Virtual City and Studying the Impact of Fire on the Electrical Infrastructure  

E-Print Network (OSTI)

The smooth and reliable operation of key infrastructure components like water distribution systems, electric power systems, and telecommunications is essential for a nation?s economic growth and overall security. Tragic events such as the Northridge earthquake and Hurricane Katrina have shown us how the occurrence of a disaster can cripple one or more such critical infrastructure components and cause widespread damage and destruction. Technological advancements made over the last few decades have resulted in these infrastructure components becoming highly complicated and inter-dependent on each other. The development of tools which can aid in understanding this complex interaction amongst the infrastructure components is thus of paramount importance for being able to manage critical resources and carry out post-emergency recovery missions. The research work conducted as a part of this thesis aims at studying the effects of fire (a calamitous event) on the electrical distribution network of a city. The study has been carried out on a test bed comprising of a virtual city named Micropolis which was modeled using a Geographic Information System (GIS) based software package. This report describes the designing of a separate electrical test bed using Simulink, based on the GIS layout of the power distribution network of Micropolis. It also proposes a method of quantifying the damage caused by fire to the electrical network by means of a parameter called the Load Loss Damage Index (LLDI). Finally, it presents an innovative graph theoretic approach for determining how to route power across faulted sections of the electrical network using a given set of Normally Open switches. The power is routed along a path of minimum impedance. The proposed methodologies are then tested by running numerous simulations on the Micropolis test bed, corresponding to different fire spread scenarios. The LLDI values generated from these simulation runs are then analyzed in order to determine the most damaging scenarios and to identify infrastructure components of the city which are most crucial in containing the damage caused by fire to the electrical network. The conclusions thereby drawn can give useful insights to emergency response personnel when they deal with real-life disasters.

Bagchi, Arijit

2009-12-01T23:59:59.000Z

395

Portable wastewater flow meter  

DOE Patents (OSTI)

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1999-02-02T23:59:59.000Z

396

Portable wastewater flow meter  

DOE Patents (OSTI)

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1990-01-01T23:59:59.000Z

397

TWO-PHASE FLOW STUDIES IN NUCLEAR POWER PLANT PRIMARY CIRCUITS USING THE THREE-DIMENSIONAL THERMAL-HYDRAULIC CODE BAGIRA.  

SciTech Connect

In this paper we present recent results of the application of the thermal-hydraulic code BAGIRA to the analysis of complex two-phase flows in nuclear power plants primary loops. In particular, we performed benchmark numerical simulation of an integral LOCA experiment performed on a test facility modeling the primary circuit of VVER-1000. In addition, we have also analyzed the flow patterns in the VVER-1000 steam generator vessel for stationary and transient operation regimes. For both of these experiments we have compared the numerical results with measured data. Finally, we demonstrate the capabilities of BAGIRA by modeling a hypothetical severe accident for a VVER-1000 type nuclear reactor. The numerical analysis, which modeled all stages of the hypothetical severe accident up to the complete ablation of the reactor cavity bottom, shows the importance of multi-dimensional flow effects.

KOHURT, P. (BNL), KALINICHENKO, S.D.; KROSHILIN, A.E.; KROSHILIN, V.E.; SMIRNOV, A.V.

2006-06-04T23:59:59.000Z

398

Two-Phase Flow Studies in Nuclear Power Plant Primary Circuits Using the Three-Dimensional Thermal-Hydraulic Code BAGIRA  

Science Conference Proceedings (OSTI)

in this paper we present recent results of the application of the thermal-hydraulic code BAGIRA to the analysis of complex two-phase flows in nuclear power plants primary loops. In particular, we performed benchmark numerical simulation of an integral LOCA experiment performed on a test facility modeling the primary circuit of VVER-1000. In addition, we have also analyzed the flow patterns in the VVER-1000 steam generator vessel for stationary and transient operation regimes. For both of these experiments we have compared the numerical results with measured data. Finally, we demonstrate the capabilities of BAGIRA by modeling a hypothetical severe accident for a VVER-1000 type nuclear reactor. The numerical analysis, which modeled all stages of the hypothetical severe accident up to the complete ablation of the reactor cavity bottom, shows the importance of multi-dimensional flow effects. (authors)

Kalinichenko, S.D.; Kroshilin, A.E.; Kroshilin, V.E.; Smirnov, A.V. [All-Russian Research Institute for Nuclear Power Plant Operations (VNIIAES) 25 Ferganskaya St., 109507 Moscow (Russian Federation); Kohut, P. [Brookhaven National Laboratory, Bldg. 475 Upton, NY 11973, (United States)

2006-07-01T23:59:59.000Z

399

Characterizing Blast and Impact of Long Carbon Fiber Reinforced Concrete.  

E-Print Network (OSTI)

??The primary objective of the study was to investigate the blast and impact resistance of carbon fiber reinforced concrete. The impact resistance was assessed through… (more)

Musselman, Eric

2007-01-01T23:59:59.000Z

400

Impact of Ethanol Blending on U.S. Gasoline Prices  

DOE Green Energy (OSTI)

This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

Not Available

2008-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Quantifying the Impacts of Time-based Rates, Enabling Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Impacts of Time-based Rates, Enabling Technology, and Other Treatments in Consumer Behavior Studies: Protocols and Guidelines Title Quantifying the Impacts of Time-based Rates,...

402

Lattice splitting under intermittent flows  

E-Print Network (OSTI)

We study the splitting of regular square lattices subject to stochastic intermittent flows. By extensive Monte Carlo simulations we reveal how the time span until the occurence of a splitting depends on various flow patterns imposed on the lattices. Increasing the flow fluctuation frequencies shortens this time span which reaches a minimum before rising again due to inertia effects incorporated in the model. The size of the largest connected component after the splitting is rather independent of the flow fluctuations but sligthly decreases with the link capacities. Our results are relevant for assessing the robustness of real-life systems, such as electric power grids with a large share of renewable energy sources including wind turbines and photovoltaic systems.

Schläpfer, Markus

2010-01-01T23:59:59.000Z

403

Impact of Rotor Surface Velocity, Leakage Models and Real Gas Properties on Rotordynamic Force Predictions of Gas Labyrinth Seals  

E-Print Network (OSTI)

Rotordynamic coefficients of a gas labyrinth seal are assumed to be frequency independent. However, this assumption loses its validity as rotor surface velocity approaches Mach 1. The solution procedure of 1CV model by Childs and Scharrer which assumes frequency independent force coefficients is modified to allow for calculating frequency dependent force coefficients. A comparative study of the impact of using frequency-dependent model and the original frequency-independent model on stability analysis is made. The results indicate that frequency dependency of force coefficients should be accounted for in stability analysis as rotor surface velocity approaches a significant fraction of Mach number. The bulk flow rotordynamic analysis model by Childs and Scharrer is modified to investigate the impact of leakage-flow models on predictions. A number of leakage models are incorporated in the one-control volume model, and a comparative study is made. Kinetic energy carryover factor of a leakage equation is one of the dominant factors in seal cross-force generation. A leakage equation based on a model proposed by Gamal which uses Hodkinson?s kinetic energy carryover factor is found to improve predictions of direct damping and cross-coupled stiffness. A test case is implemented to study the impact of variation of seal axial radial clearance on stability characteristics. The 1CV model by Childs and Scharrer and subsequent bulk flow models are based on the assumption of isothermal flow across the labyrinth seal. The 1CV model by Childs and Scharrer is modified to include energy equation, and the flow process is assumed to be adiabatic. However, predicted cross-coupled stiffness and direct damping coefficients using the new model do not compare well with the experimental results by Picardo as compared to the isothermal model. The impact of using real gas properties on static and rotordynamic characteristics of the seal is studied.

Thorat, Manish R.

2010-05-01T23:59:59.000Z

404

Analyzing Unsatirated Flow Patterns in Fractured Rock Using an Integrated Modeling Approach  

Science Conference Proceedings (OSTI)

Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems.

Y.S. Wu; G. Lu; K. Zhang; L. Pan; G.S. Bodvarsson

2006-08-03T23:59:59.000Z

405

Steam Generator Management Program: Benchmark Study of EPRI and EDF Steam Generator Thermal-Hydraulic and Flow Induced Vibration Cod es  

Science Conference Proceedings (OSTI)

Steam generator thermal-hydraulics software codes and flow induced vibration software codes are used for steam generator design, root cause investigations, and assessment of operational changes. Organizations within the steam generator industry develop and maintain such software codes. Capabilities of existing codes are being challenged by current demands for more comprehensive results to troubleshoot ...

2012-12-12T23:59:59.000Z

406

Near-Term Effects of the Lower Atmosphere in Simulated Northwest Flow Snowfall Forced over the Southern Appalachians  

Science Conference Proceedings (OSTI)

Northwest flow snowfall (NWFS) impacts the southern Appalachian Mountains after the upper-level trough has departed from the region, when moist northwesterly flow near the ground is lifted after encountering the mountains. Snowfall associated with ...

Douglas K. Miller

2012-10-01T23:59:59.000Z

407

The gradient flow in a twisted box  

E-Print Network (OSTI)

We study the perturbative behavior of the gradient flow in a twisted box. We apply this information to define a running coupling using the energy density of the flow field. We study the step-scaling function and the size of cutoff effects in SU(2) pure gauge theory. We conclude that the twisted gradient flow running coupling scheme is a valid strategy for step-scaling purposes due to the relatively mild cutoff effects and high precision.

Ramos, A

2013-01-01T23:59:59.000Z

408

AEROSOL PARTICLE COLLECTOR DESIGN STUDY  

Science Conference Proceedings (OSTI)

A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

Lee, S; Richard Dimenna, R

2007-09-27T23:59:59.000Z

409

Prediction of flow pattern of gas-liquid flow through circular microchannel using probabilistic neural network  

Science Conference Proceedings (OSTI)

The present study attempts to develop a flow pattern indicator for gas-liquid flow in microchannel with the help of artificial neural network (ANN). Out of many neural networks present in literature, probabilistic neural network (PNN) has been chosen ... Keywords: Hydrodynamics, Microchannel, Microstructure, Multiphase flow, Probabilistic neural network, Transition boundary, Turbulence

Seim Timung; Tapas K. Mandal

2013-04-01T23:59:59.000Z

410

Unsteady flow volumes  

SciTech Connect

Flow volumes are extended for use in unsteady (time-dependent) flows. The resulting unsteady flow volumes are the 3 dimensional analog of streamlines. There are few examples where methods other than particle tracing have been used to visualize time varying flows. Since particle paths can become convoluted in time there are additional considerations to be made when extending any visualization technique to unsteady flows. We will present some solutions to the problems which occur in subdivision, rendering, and system design. We will apply the unsteady flow volumes to a variety of field types including moving multi-zoned curvilinear grids.

Becker, B.G.; Lane, D.A.; Max, N.L.

1995-03-01T23:59:59.000Z

411

Impacts of oil disturbances: lessons from experience. [1973-1974 Oil Crisis; 1978-1979 Iranian Revolution; 1980-1981 Iran-Iraq War  

SciTech Connect

An analysis of the impacts of previous oil distrubances can be used to suggest the impacts of future oil disturbances. This paper reviews how the 1973-1974 Oil Crisis, the 1978-1979 Iranian Revolution, and the 1980-1981 Iran-Iraq War impacted the US and world oil markets. Various measures of impacts are considered, such as impacts on physical flows of crude and products, crude and product price changes on the US and world markets, impacts on stocks of crude and products, and impacts on refiners' inputs and outputs. Various macroeconomic indicators, such as gross national product, inflation rates, and unemployment, are also considered. Of particular interest in this study are the impacts that oil disturbances have had (and could have) on the availabilities of particular crude types and the abilities of US refiners to process crudes of various types in the short run. In addition, this paper reviews how the actions of the consuming countries and the major oil companies affected the impacts of past disturbances. The paper briefly discusses the likely causes and impacts of future oil distrubances and summarizes the lessons to be learned from past reactions to oil disturbances.

Curlee, T R

1983-01-01T23:59:59.000Z

412

IMPACT-T: Accelerator Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPACTT General Description IMPACT-T (Integrated Map and Particle Accelerator Tracking-Time) is a parallel, three-dimensional, quasi-static beam dynamics code used to study...

413

Time-Dependent Two-Layer Hydraulic Exchange Flows  

Science Conference Proceedings (OSTI)

A theory is presented for time-dependent two-layer hydraulic flows through straits. The theory is used to study exchange flows forced by a periodic barotropic (tidal) flow. For a given strait geometry the resulting flow is a function of two ...

Karl R. Helfrich

1995-03-01T23:59:59.000Z

414

Advanced Laser Diagnostics Development for the Characterization of Gaseous High Speed Flows  

E-Print Network (OSTI)

The study of high-speed flows represents a challenging problem in the fluid dynamics field due to the presence of chemical reactions and non-equilibrium effects. Hypersonic flights, where speeds reach Mach 5 and above, are particularly influenced by these effects, resulting in a direct impact on the flow and consequently on the aerodynamic performance of a vehicle traveling at these speeds. The study of hypersonic flow conditions requires the experimental capability of determining local temperatures, pressures and velocities using non-intrusive techniques. Furthermore, the simultaneous measurement of two or more variables in a complex flow boosts the amount of information that is obtained since valuable correlations can be established. This research includes the design, construction and characterization of a hypersonic flow apparatus explicitly intended as a tool for advanced laser diagnostics development. This apparatus is characterized by its pulsed operation mode that translates into a significant reduction in mass flow rates and can be operated for long periods at Mach numbers ranging from 2.8 to 6.2. The flow conditions during the uniform flow time interval of each pulse vary by less than 1%, generating a flow of sufficient quality for quantitative measurements. The development of a laser diagnostic technique, the VENOM technique, which is a non-intrusive method to provide simultaneous 2-D measurements of the mean and instantaneous fluctuations in two-component velocity and temperature is also presented. This technique represents the first single diagnostic capable of instantaneous two-component velocimetry and thermometry in a gaseous flow field by combining two Nitric Oxide Planar Laser Induced Fluorescence methods: two-component Molecular Tagging Velocimetry and two-line thermometry, employing the nascent NO(v"=1) arising from the NO2 photodissociation as a molecular tracer. The VENOM technique is expected to be not only applicable to cold high-speed flows, which is the focus of the present work, but also to combustion and other reactive or high-enthalpy flow fields.

Sanchez-Gonzalez, Rodrigo

2012-05-01T23:59:59.000Z

415

INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE  

Science Conference Proceedings (OSTI)

Mercury (Hg) has been identified as a 'persistent, bioaccumulative and toxic' pollutant with widespread impacts throughout North America and the world (EPA. 1997a, 1997b, 1998a, 1998b, 2000). Although most of the mercury in the environment is inorganic Hg, a small proportion of total Hg is transformed through the actions of aquatic microbes into methylmercury (MeHg). In contrast to virtually all other metals, MeHg biomagnifies or becomes increasingly concentrated as it is transferred through aquatic food chains so that the consumption of mercury contaminated fish is the primary route of this toxin to humans. For this reason, the ambient water quality criterion (AWQC) for mercury is based on a fish tissue endpoint rather than an aqueous Hg concentration, as the tissue concentration (e.g., fish are more closely linked to aqueous MeHg than to inorganic Hg concentrations (Sveinsdottir and Mason 2005), but MeHg production is not easily predicted or controlled. At point-source contaminated sites, mercury methylation is not only affected by the absolute mercury load, but also by the form of mercury loaded. In addition, once MeHg is formed, the hydrology, trophic structure, and water chemistry of a given system affect how it is transformed and transferred through the food chain to fish. Decreasing inorganic Hg concentrations and loading may often therefore be a more achievable remediation goal, but has led to mixed results in terms of responses in fish bioaccumulation. A number of source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in upper trophic level fish and other biota; this is a key environmental endpoint since reducing mercury concen

Looney, B.; Bryan, L.; Mathews, T.

2012-03-30T23:59:59.000Z

416

Structure of Offshore Flow  

Science Conference Proceedings (OSTI)

The horizontal and vertical structure of the mean flow and turbulent fluxes are examined using aircraft observations taken near a barrier island on the east coast of the United States during offshore flow periods. The spatial structure is ...

Dean Vickers; L. Mahrt; Jielun Sun; Tim Crawford

2001-05-01T23:59:59.000Z

417

Impacts of Urban Processes and Urbanization on Summer Precipitation: A Case Study of Heavy Rainfall in Beijing on 1 August 2006  

Science Conference Proceedings (OSTI)

Finescale simulations (with 500-m grid spacing) using the Weather Research and Forecasting Model (WRF) were used to investigate impacts of urban processes and urbanization on a localized, summer, heavy rainfall in Beijing. Evaluation using radar ...

Shiguang Miao; Fei Chen; Qingchun Li; Shuiyong Fan

2011-04-01T23:59:59.000Z

418

A Two-Season Impact Study of Four Satellite Data Types and Rawinsonde Data in the NCEP Global Data Assimilation System  

Science Conference Proceedings (OSTI)

Extended-length observing system experiments (OSEs) during two seasons are used to quantify the contributions made to forecast quality by conventional rawinsonde data and four types of remotely sensed satellite data. The impact is measured by ...

Tom H. Zapotocny; James A. Jung; John F. Le Marshall; Russ E. Treadon

2008-02-01T23:59:59.000Z

419

Ultrasonic flow metering system  

DOE Patents (OSTI)

A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Mauseth, Jason A. (Pocatello, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

420

Elbow mass flow meter  

SciTech Connect

Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Differential impact of immediate total deregulation of wellhead prices of natural gas on minority and low-income homeowners: a general review and a case study in the Washington, DC area  

SciTech Connect

In this study, the authors evaluate the impact of total deregulation of wellhead prices of natural gas on various strata of the residential consuming population, and compare it to the baseline impact of a continuation of the Natural Gas Policy Act of 1978. They found that minority and poverty homeowners will suffer greater relative welfare losses than their white and non-poverty counterparts. They developed quantitative estimates of the extent of these differentials, and offered some policy proposals suggested by these findings. 54 refs., 8 figs., 68 tabs.

Green, R.D.; Gilbert, H.R.

1983-01-01T23:59:59.000Z

422

QGP flow fluctuations and the characteristics of higher moments  

E-Print Network (OSTI)

The dynamical development of expanding Quark-gluon Plasma (QGP) flow is studied in a 3+1D fluid dynamical model with a globally symmetric, initial condition. We minimize fluctuations arising from complex dynamical processes at finite impact parameters and from fluctuating random initial conditions to have a conservative fluid dynamical background estimate for the statistical distributions of the thermodynamical parameters. We also avoid a phase transition in the equation of state, and we let the matter supercool during the expansion. Then central Pb+Pb collisions at $\\sqrt{s_{NN}} = 2.76$ TeV are studied in an almost perfect fluid dynamical model, with azimuthally symmetric initial state generated in a dynamical flux-tube model. The general development of thermodynamical extensives are also shown for lower energies. We observe considerable deviations from a thermal equilibrium source as a consequence of the fluid dynamical expansion arising from a least fluctuating initial state.

D. J. Wang; L. P. Csernai; D. Strottman; Cs. Anderlik; Y. Cheng; D. M. Zhou; Y. L. Yan; X. Cai; B. H. Sa

2012-05-22T23:59:59.000Z

423

Energy impacts of attic duct retrofits in Sacramento houses  

Science Conference Proceedings (OSTI)

Inefficiencies in air distribution systems have been identified as a major source of energy loss in US sunbelt homes. Research indicates that approximately 30--40% of the thermal energy delivered to the ducts passing through unconditioned spaces is lost through air leakage and conduction through the duct walls. Field experiments over the past several years have well documented the expected levels of air leakage and the extent to which that leakage can be reduced by retrofit. Energy savings have been documented to a more limited extent, based upon a few field studies and simulation model results. Simulations have also indicated energy loss through ducts during the off cycle caused by thermosiphon-induced flows, however this effect had not been confirmed experimentally. A field study has been initiated to separately measure the impacts of combined duct leak sealing and insulation retrofits, and to optimize a retrofit protocol for utility DSM programs. This paper describes preliminary results from 6 winter and 5 summer season houses. These retrofits cut overall duct leakage area approximately 64%, which translated to a reduction in envelope ELA of approximately 14%. Wrapping ducts and plenums with R-6 insulation translated to a reduction in average flow-weighted conduction losses of 33%. These experiments also confirmed the appropriateness of using duct ELA and operating pressures to estimate leakage flows for the population, but indicated significant variations between these estimates and measured flows on a house by house basis. In addition, these experiments provided a confirmation of the predicted thermosiphon flows, both under winter and summer conditions. Finally, average material costs were approximately 20% of the total retrofit costs, and estimates of labor required for retrofits based upon these experiments were: 0.04 person-hrs/cm{sup 2} of duct sealed and 0.21 person-hrs/m{sup 2} of duct insulated.

Jump, D.; Modera, M. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-08-01T23:59:59.000Z

424

Redox Flow Batteries: a Review  

NLE Websites -- All DOE Office Websites (Extended Search)

1137-1164 Date Published 102011 ISSN 1572-8838 Keywords Flow battery, Flow cell, Redox, Regenerative fuel cell, Vanadium Abstract Redox flow batteries (RFBs) are enjoying a...

425

Characterization of Foam Flow in Pipes Using Two Flow Regime Concept.  

E-Print Network (OSTI)

??The objective of this study is to investigate the characteristics of foam flow behavior in pipes in a wide range of experimental conditions, including two… (more)

Gajbhiye, Rahul Narayanrao

2011-01-01T23:59:59.000Z

426

Lateral flow strip assay  

DOE Patents (OSTI)

A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

Miles, Robin R. (Danville, CA); Benett, William J. (Livermore, CA); Coleman, Matthew A. (Oakland, CA); Pearson, Francesca S. (Livermore, CA); Nasarabadi, Shanavaz L. (Livermore, CA)

2011-03-08T23:59:59.000Z

427

Small Particles, Big Impact  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Particles, Big Impact Small Particles, Big Impact Small-scale effects of Aerosols Add up Over Time August 24, 2011 | Tags: Climate Research, Earth Sciences, Environmental...

428

Experimental study of a R-407C drop-in test on an off-the-shelf air conditioner with a counter-cross-flow evaporator  

SciTech Connect

An off-the-shelf 2-ton window air conditioner having an energy efficiency ratio of 10 was used to perform a drop-in test with R-407C. Laboratory tests were performed using a parallel-cross-flow (PCF) evaporator and a counter-cross-flow (CCF) evaporator. The CCF configuration is designed to take advantage of the temperature glide of R-407C so that the warm evaporator inlet air will be in contact with the higher temperature part of the evaporator coils first. The test results indicated that, at the Air Conditioning and Refrigeration Institute-rated indoor and outdoor conditions, the cooling capacity was 8% higher and system coefficient of performance about 3.8% higher for the CCF evaporator than for the PCF evaporator. The test results also showed that the latent load for CCF was 30.6% higher than for PCF. The far better dehumidification effect provided by the CCF evaporator design is desirable for areas where the latent load is high. The experimental findings should be useful for future efforts to design a dehumidifier that uses a zeotropic refrigerant that provides a significant temperature glide. R-22 test data from a previous project are included as a reference.

Mei, V.C.; Domitrovic, R.; Chen, F.C.

1998-03-01T23:59:59.000Z

429

Flow assurance and multiphase pumping  

E-Print Network (OSTI)

A robust understanding and planning of production enhancement and flow assurance is required as petroleum E&P activities are targeting deepwaters and long distances. Different flow assurance issues and their solutions are put together in this work. The use of multiphase pumps as a flow assurance solution is emphasized. Multiphase pumping aids flow assurance in different ways. However, the problem causing most concern is sand erosion. This work involved a detection-based sand monitoring method. Our objectives are to investigate the reliability of an acoustic sand detector and analyze the feasibility of gel injection as a method to mitigate sand erosion. Use of a sand detector coupled with twin-screw pumps is studied under varying flow conditions. The feasibility of gel injection to reduce slip and transport produced solids through twin-screw pump is investigated. A unique full-scale laboratory with multiphase pumps was utilized to carry out the experimental tests. The test results indicate that acoustic sand detection works in a narrow window around the calibration signature. An empirical correlation for predicting the twin-screw pump performance with viscous fluids was developed. It shows good agreement in the practical operational limits – 50% to 100% speed. The results indicate that viscous gel injection should be an effective erosion mitigation approach as it reduces slip, the principle cause of erosive wear. To correlate the performance of viscous fluid injection to hydroabrasive wear, further experimental investigation is needed.

Nikhar, Hemant G.

2006-12-01T23:59:59.000Z

430

Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modeling study using WRF-Chem  

Science Conference Proceedings (OSTI)

Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 Oct–Nov 16, 2008). The effects of oceanic aerosols on cloud properties, precipitation, and the shortwave forcing counteract those of anthropogenic aerosols. Despite the relatively small changes in Na concentrations (2-12%) from regional oceanic emissions, their net effect (direct and indirect) on the surface shortwave forcing is opposite and comparable or even larger in magnitude compared to those of regional anthropogenic emissions over the SEP. Two distinct regions are identified in the VOCALS-REx domain. The near-coast polluted region is characterized with strong droplet activation suppression of small particles by sea-salt particles, the more important role of the first than the second indirect effect, low surface precipitation rate, and low aerosol-cloud interaction strength associated with anthropogenic emissions. The relatively clean remote region is characterized with large contributions of Cloud Condensation Nuclei (CCN, number concentration denoted by NCCN) and droplet number concentrations (Nd) from non-local sources (lateral boundaries), a significant amount of surface precipitation, and high aerosol-cloud interactions under a scenario of five-fold increase in anthropogenic emissions. In the clean region, cloud properties have high sensitivity (e.g., 13% increase in cloud-top height and a 9% surface albedo increase) to the moderate increase in CCN concentration (?Nccn = 13 cm-3; 25%) produced by a five-fold increase in regional anthropogenic emissions. The increased anthropogenic aerosols reduce the precipitation amount over the relatively clean remote ocean. The reduction of precipitation (as a cloud water sink) more than doubles the wet scavenging timescale, resulting in an increased aerosol lifetime in the marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol. The positive feedback ultimately alters the cloud micro- and macro-properties, leading to strong aerosol-cloud-precipitation interactions. The higher sensitivity of clouds to anthropogenic aerosols over this region is also related to a 16% entrainment rate increase due to anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions are stronger at night over the clean marine region, while during the day, solar heating results in more frequent decoupling, thinner clouds, reduced precipitation, and reduced sensitivity to anthropogenic emissions. The simulated high sensitivity to the increased anthropogenic emissions over the clean region suggests that the perturbation of the clean marine environment with anthropogenic aerosols may have a larger effect on climate than that of already polluted marine environments.

Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Wang, Minghuai; Ghan, Steven J.; Berg, Larry K.; Leung, Lai-Yung R.; Morrison, H.

2012-09-28T23:59:59.000Z

431

A constitutive law for dense granular flows  

E-Print Network (OSTI)

A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

Pierre Jop; Yoël Forterre; Olivier Pouliquen

2006-12-05T23:59:59.000Z

432

Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions.  

DOE Green Energy (OSTI)

Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) techniques. The major challenges facing commercialization of steam electrolysis technology are related to efficiency, cost, and durability of the SOECs. The goal of this effort is to guide the design and optimization of performance for high temperature electrolysis (HTE) systems. An SOEC module developed by FLUENT Inc. as part of their general CFD code was used for the SOEC analysis by INL. ANL has developed an independent SOEC model that combines the governing electrochemical mechanisms based on first principals to the heat transfer and fluid dynamics in the operation of SOECs. The ANL model was embedded into the commercial STAR-CD CFD software, and is being used for the analysis of SOECs by ANL. The FY06 analysis performed by ANL and reported here covered the influence of electrochemical properties, SOEC component resistances and their contributing factors, SOEC size and inlet flow conditions, and SOEC flow configurations on the efficiency and expected durability of these systems. Some of the important findings from the ANL analysis are: (1) Increasing the inlet mass flux while going to larger cells can be a compromise to overcome increasing thermal and current density gradients while increasing the cell size. This approach could be beneficial for the economics of the SOECs; (2) The presence of excess hydrogen at the SOEC inlet to avoid Ni degradation can result in a sizeable decrease in the process efficiency; (3) A parallel-flow geometry for SOEC operation (if such a thing be achieved without sealing problems) yields smaller temperature gradients and current density gradients across the cell, which is favorable for the durability of the cells; (4) Contact resistances can significantly influence the total cell resistance and cell temperatures over a large range of operating potentials. Thus it is important to identify and avoid SOEC stack conditions leading to such high resistances due to poor contacts.

Yildiz, B.; Smith, J.; Sofu, T.; Nuclear Engineering Division

2008-06-25T23:59:59.000Z

433

Economic Impacts of Flow-Control Machining Technology ...  

Science Conference Proceedings (OSTI)

... price of gasoline has dropped to levels prior to the oil shocks, and ... This legislation imposes "gas guzzler" taxes on buyers of low-mpg vehicles, and ...

1999-11-04T23:59:59.000Z

434

Understanding the Impacts of Incremental Gas Supply on the Flow ...  

U.S. Energy Information Administration (EIA)

High natural gas prices and sharply higher oil and natural gas field revenues are expected to drive a resurgence in natural gas-directed drilling activity this year ...

435

INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE  

SciTech Connect

Mercury (Hg) has been identified as a 'persistent, bioaccumulative and toxic' pollutant with widespread impacts throughout North America and the world (EPA. 1997a, 1997b, 1998a, 1998b, 2000). Although most of the mercury in the environment is inorganic Hg, a small proportion of total Hg is transformed through the actions of aquatic microbes into methylmercury (MeHg). In contrast to virtually all other metals, MeHg biomagnifies or becomes increasingly concentrated as it is transferred through aquatic food chains so that the consumption of mercury contaminated fish is the primary route of this toxin to humans. For this reason, the ambient water quality criterion (AWQC) for mercury is based on a fish tissue endpoint rather than an aqueous Hg concentration, as the tissue concentration (e.g., < 0.3 {mu}g/g fillet) is considered to be a more consistent indicator of exposure and risk (EPA, 2001). Effective mercury remediation at point-source contaminated sites requires an understanding of the nature and magnitude of mercury inputs, and also knowledge of how these inputs must be controlled in order to achieve the desired reduction of mercury contamination in biota necessary for compliance with AWQC targets. One of the challenges to remediation is that mercury body burdens in fish are more closely linked to aqueous MeHg than to inorganic Hg concentrations (Sveinsdottir and Mason 2005), but MeHg production is not easily predicted or controlled. At point-source contaminated sites, mercury methylation is not only affected by the absolute mercury load, but also by the form of mercury loaded. In addition, once MeHg is formed, the hydrology, trophic structure, and water chemistry of a given system affect how it is transformed and transferred through the food chain to fish. Decreasing inorganic Hg concentrations and loading may often therefore be a more achievable remediation goal, but has led to mixed results in terms of responses in fish bioaccumulation. A number of source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in upper trophic level fish and other biota; this is a key environmental endpoint since reducing mercury concen