Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Study of the impact of rainfall on freeway traffic flow in Southeast China  

Science Journals Connector (OSTI)

The purpose of this paper is to quantify the impact of rainfall on freeway traffic flow using toll station data and precipitation data. Five rainfall categories were classified based on precipitation intensity. Hourly traffic volume and travel times were retrieved and analysed in three spatial scales: at toll stations, on freeway sections between two toll stations, and on freeway corridors composed of multiple sections. Travel times for passenger cars in each rainfall category were studied and the impact of rainfall on traffic volume and travel time was quantified. The non-parametric Kruskal-Wallis test was performed to check the significance of difference among various categories.Calculated traffic volume reduction coefficients and travel time incremental coefficients for each rainfall category were compared with existing research results, which showed obvious differences. Potential causes are discussed to explain the discrepancy in coefficient values.

Saini Yang; Jiayuan Ye; Xuechi Zhang; Hao Liu

2012-01-01T23:59:59.000Z

2

Bypass Flow Study  

SciTech Connect (OSTI)

The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

Richard Schultz

2011-09-01T23:59:59.000Z

3

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network [OSTI]

Flow calculations for Yucca Mountain groundwater travelunsaturated model of Yucca Mountain, Nevada, Journal ofinto drifts at Yucca Mountain, Journal of Contaminant

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

4

Study of Impact of Orbit Path, Whirl Ratio and Clearance on the Flow Field and Rotordynamic Coefficients for a Smooth Annular Seal  

E-Print Network [OSTI]

and circular for orbit speeds ranging from 0 to 1. This was done using the FLUENT CFD code with a time - dependent solver which allowed the use of dynamic meshing and User Defined Functions (UDFs). The effect of clearance was also studied by simulating the flow...

Sekaran, Aarthi

2010-10-12T23:59:59.000Z

5

Economic impacts study  

SciTech Connect (OSTI)

This is a progress report on the first phase of a project to measure the economic impacts of a rapidly changing U.S. target base. The purpose of the first phase is to designate and test the macroeconomic impact analysis model. Criteria were established for a decision-support model. Additional criteria were defined for an interactive macroeconomic impact analysis model. After a review of several models, the Economic Impact Forecast System model of the U.S. Army Construction Research Laboratory was selected as the appropriate input-output tool that can address local and regional economic analysis. The model was applied to five test cases to demonstrate its utility and define possible revisions to meet project criteria. A plan for EIFS access was defined at three levels. Objectives and tasks for scenario refinement are proposed.

Brunsen, W.; Worley, W.; Frost, E.

1988-09-30T23:59:59.000Z

6

The impact of gravity segregation on multiphase non-Darcy flow in hydraulically fractured gas wells  

E-Print Network [OSTI]

THE IMPACT OF GRAVITY SEGREGATION ON MULTIPHASE NON-DARCY FLOW IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by MARK DICKINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 2008 Major Subject: Petroleum Engineering THE IMPACT OF GRAVITY SEGREGATION ON MULTIPHASE NON-DARCY FLOW IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by MARK DICKINS...

Dickins, Mark Ian

2008-10-10T23:59:59.000Z

7

On the impact of variability and assembly on turbine blade cooling flow and oxidation life  

E-Print Network [OSTI]

The life of a turbine blade is dependent on the quantity and temperature of the cooling flow sup- plied to the blade. The focus of this thesis is the impact of variability on blade cooling flow and, subsequently, its impact ...

Sidwell, Carroll Vincent, 1972-

2004-01-01T23:59:59.000Z

8

Two-phase flow studies  

SciTech Connect (OSTI)

The two-phase flow program is directed at understanding the hydrodynamics of two-phase flows. The two-phase flow regime is characterized by a series of flow patterns that are designated as bubble, slug, churn, and annular flow. Churn flow has received very little scientific attention. This lack of attention cannot be justified because calculations predict that the churn flow pattern will exist over a substantial portion of the two-phase flow zone in producing geothermal wells. The University of Houston is experimentally investigating the dynamics of churn flow and is measuring the holdup over the full range of flow space for which churn flow exists. These experiments are being conducted in an air/water vertical two-phase flow loop. Brown University has constructed and is operating a unique two-phase flow research facility specifically designed to address flow problems of relevance to the geothermal industry. An important feature of the facility is that it is dedicated to two-phase flow of a single substance (including evaporation and condensation) as opposed to the case of a two-component two-phase flow. This facility can be operated with horizontal or vertical test sections of constant diameter or with step changes in diameter to simulate a geothermal well profile.

Hanold, R.J.

1983-12-01T23:59:59.000Z

9

Studies of Flows in Plasmas  

SciTech Connect (OSTI)

Note a pdf document "DOE-flow-final-report' should be attached. If it somehow is not please notify Walter Gekelman (gekelman@physics.ucla.edu) who will e mail it directly

Gekelman, Walter; Morales, George; Maggs, James

2009-03-07T23:59:59.000Z

10

A preliminary study to Assess Model Uncertainties in Fluid Flows  

SciTech Connect (OSTI)

The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcy’s approximation. The ultimate goal is to compute the fluid flow models’ uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.

Marc Oliver Delchini; Jean C. Ragusa

2009-09-01T23:59:59.000Z

11

Grand valley irrigation return flow case study  

SciTech Connect (OSTI)

Irrigation water supply is furnished annually to about 71,500 acres of land in the Grand Valley of western Colorado. Return flows from that irrigation contribute about 780,000 tpy of salt to the Colorado River, causing an increase of 77 mg/l in the salinity concentration at Imperial Dam. A case study of water quality in this region is focused on: water quality data for irrigation and return flows/ identification of regulations that affect irrigation and return flows/ and a proposed program for controlling salinity levels. (1 map, 9 references, 8 tables)

Keys, J.W.

1981-06-01T23:59:59.000Z

12

Heat transfer to impacting drops and post critical heat flux dispersed flow  

E-Print Network [OSTI]

Heat transfer to drops impacting on a hot surface is examined in context of dispersions of flowing, boiling fluids. The liquid contribution to heat transfer from a hot tube to a two-phase dispersion is formulated in terms ...

Kendall, Gail E.

1978-01-01T23:59:59.000Z

13

Impact of rapid granular flows through open channels  

E-Print Network [OSTI]

diagram: Solid: F=1 at nozzle (separation of supercritical and subcritical flow in contraction) Dashed, ...? Need your suggestions! Questions? #12;Movie: new experiments water through contraction; Akers & Bokhove

Al Hanbali, Ahmad

14

Groundwater abstraction impacts on spring flow and base flow in the Hillsborough River Basin, Florida, USA  

Science Journals Connector (OSTI)

Groundwater abstraction has resulted in spring flow and groundwater base-flow declines in the Hillsborough River system of central Florida, USA. These declines have resulted in reduction of inflows to the Tamp...

Kenneth A. Weber; Robert G. Perry

2006-11-01T23:59:59.000Z

15

The Impact of RELAP5 Pipe Break Flow Rates Associated With Reverse Flow Limiter Removal for Steam Generator Replacement  

SciTech Connect (OSTI)

Pipe break flow rates are calculated for a main feedwater line break (FWLB) in the main steam valve vault (MSVV) for a PWR Steam Generator Replacement (SGR). A reverse flow limiter is installed in the original steam generator (OSG) feedwater nozzle to limit the blowdown flowrate in the event of a postulated FWLB. This feature is not incorporated in the replacement steam generator (RSG) design. The change in RSG nozzle design in conjunction with new operating conditions results in increased FWLB mass and energy releases which can impact environmental temperatures and pressures and flooding levels. In the United States, benchmarking for safety related analyses is necessary in consideration of 10CFR50.59 requirements. RELAP5/MOD3 is used to model the pipe break flowrates for a FWLB at different break locations. The benchmark FWLB blowdown releases are larger than the OSG design basis blowdown releases due to differences in RELAP5/MOD3 versions which are found to have different algorithms for subcooled choked flow. The SGR FWLB blowdown release rates are determined to have minimal impact on the compartment temperature and pressure response. However, the flooding levels and associated equipment qualification are potentially impacted. Modeling techniques used to minimize the impact of the SGR blowdown releases on MSVV flooding levels include modeling flashing effects, more realistic RSG temperature distribution, inventory depletion and Auxiliary Feedwater (AFW) flow initiation time, and considering loss of offsite power scenarios. A detailed flooding hazard evaluation is needed, which considers the actual main feedwater isolation times to ensure that environmentally qualified safety related components, required to mitigate the effects of a FWLB inside the MSVV, can perform their safety function prior to being submerged. (authors)

Dong Zheng; Jarvis, Julie M.; Vieira, Allen T. [Bechtel Power Corporation, Frederick, Maryland (United States)

2006-07-01T23:59:59.000Z

16

Alternative Fuels Data Center: Biofuels Program Impact Studies  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuels Program Biofuels Program Impact Studies to someone by E-mail Share Alternative Fuels Data Center: Biofuels Program Impact Studies on Facebook Tweet about Alternative Fuels Data Center: Biofuels Program Impact Studies on Twitter Bookmark Alternative Fuels Data Center: Biofuels Program Impact Studies on Google Bookmark Alternative Fuels Data Center: Biofuels Program Impact Studies on Delicious Rank Alternative Fuels Data Center: Biofuels Program Impact Studies on Digg Find More places to share Alternative Fuels Data Center: Biofuels Program Impact Studies on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Program Impact Studies The Oregon Department of Energy (ODOE) must conduct periodic impact studies

17

Groundwater flow near the Shoal Site, Sand Springs Range, Nevada: Impact of density-driven flow  

SciTech Connect (OSTI)

The nature of flow from a highland recharge area in a mountain range in north-central Nevada to discharge areas on either side of the range is evaluated to refine a conceptual model of contaminant transport from an underground nuclear test conducted beneath the range. The test, known as the Shoal event, was conducted in 1963 in granitic rocks of the Sand Springs Range. Sparse hydraulic head measurements from the early 1960s suggest flow from the shot location to the east to Fairview Valley, while hydrochemistry supports flow to salt pans in Fourmile Flat to the west. Chemical and isotopic data collected from water samples and during well-logging arc best explained by a reflux brine system on the west side of the Sand Springs Range, rather than a typical local flow system where all flow occurs from recharge areas in the highlands to a central discharge area in a playa. Instead, dense saline water from the playa is apparently being driven toward the range by density contrasts. The data collected between the range and Fourmile Flat suggest the groundwater is a mixture of younger, fresher recharge water with older brine. Chemical contrasts between groundwater in the east and west valleys reflect the absence of re-flux water in Fairview Valley because the regional discharge area is distant and thus there is no accumulation of salts. The refluxing hydraulic system probably developed after the end of the last pluvial period and differences between the location of the groundwater divide based on hydraulic and chemical indicators could reflect movement of the divide as the groundwater system adjusts to the new reflux condition.

Chapman, J.; Mihevc, T.; McKay, A.

1994-09-01T23:59:59.000Z

18

Economic impact study of consumer product efficiencies. Final report  

SciTech Connect (OSTI)

The economic impact study of household appliance efficiencies is briefly reported. Task I, Direct Impact on Industry, contains 4 subtasks: materials, labor inputs, energy inputs, and investment. Task II, Direct Impact on Consumers, contains 3 subtasks: life-cycle cost to the consumer, usage patterns, and long-term demand forecast and analysis. The 2 subtasks in Task III, Energy Savings and Impact on Utilities, are residential energy savings and cost and impact on utility generating capacity.

Not Available

1980-05-30T23:59:59.000Z

19

Ramakrishna Mission initiative impact study: final report  

SciTech Connect (OSTI)

This report has been prepared by the Tata Energy Research Institute (TERI) for the National Renewable Energy Laboratory. It presents the results of the evaluation and impact assessment of solar photovoltaic lighting systems in the region of Sunderbans, West Bengal, that were deployed by a reputable non-governmental organization (Ramakrishna Mission) under the auspices of the INDO-US collaborative project. The objectives of the study were to evaluate the solar photovoltaic systems for their impact on the individual households as well as on the community, to assess the effectiveness of the implementation and financial mechanisms, and to draw a long-term strategy for NREL's activities in Sunderbans based on case studies of similar interventions. Under the project, provision was made to supply 300 domestic lighting systems (DLS) based on 53-Wp module capacity to individual households and a few other systems such as for lighting, medical refrigeration, and pumping water to community centers. For this study, 152 households were surveyed, of which 29 had also been a part of earlier pre- and post-installation surveys, 47 had been a part of the earlier post-installation survey, and 76 were households that were surveyed for the first time. A set of 46, out of the total 152 households, was selected for evaluating the systems for their technical performance with respect to module output, condition of the battery, and daily energy consumption. Of the total 300 modules, 2 had been stolen, 9 out of the total 300 batteries needed to be replaced, and 10 out of the 300 charge controllers were non-functional. The statistics for the surveyed households indicate 32 luminaire-related faults (blackening or flickering of compact fluorescent lights) and 11 other faults related to fuses, switches, etc.

Chaurey, A.

2000-07-06T23:59:59.000Z

20

Ultrasonic flow imaging system: A feasibility study  

SciTech Connect (OSTI)

This report examines the feasibility and potential problems in developing a real-time ultrasonic flow imaging instrument for on-line monitoring of mixed-phased flows such as coal slurries. State-of-the-art ultrasonic imaging techniques are assessed for this application. Reflection and diffraction tomographies are proposed for further development, including image-reconstruction algorithms and parallel processing systems. A conventional ultrasonic C-scan technique is used to demonstrate the feasibility of imaging the particle motion in a solid/water flow. 13 refs., 11 figs.

Sheen, S.H.; Lawrence, W.P.; Chien, H.T.; Raptis, A.C.

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Study of Particle Resuspension by Impaction.  

E-Print Network [OSTI]

?? This thesis discusses particle resuspension from surfaces caused by particle impaction. The thesis also focuses on particle transport and different transport mechanisms regarding different… (more)

Hammersgård, Alexander

2011-01-01T23:59:59.000Z

22

TANK MIXING STUDY WITH FLOW RECIRCULATION  

SciTech Connect (OSTI)

The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

Lee, S.

2014-06-25T23:59:59.000Z

23

Study Shows Significant Economic Impact from Recovery Act | Department of  

Broader source: Energy.gov (indexed) [DOE]

Study Shows Significant Economic Impact from Recovery Act Study Shows Significant Economic Impact from Recovery Act Study Shows Significant Economic Impact from Recovery Act A study recently released shows the $1.6 billion the Savannah River Site (SRS) received from the American Recovery and Reinvestment Act has had a positive economic impact on the adjacent five-county region. The study's findings were presented at the University of South Carolina Aiken's (USC Aiken) Convocation Center. More than 75 people attended the meeting, where presenters commended the Recovery Act for accelerating Cold War cleanup at SRS and boosting employment and business in the local community. Study Shows Significant Economic Impact from Recovery Act More Documents & Publications EA-1605: Final Environmental Assessment EIS-0220: Final Environmental Impact Statement

24

Impact Study of Wind Power on Tourism on Gotland.  

E-Print Network [OSTI]

?? This study investigates the impact of wind power on tourism on Gotland. The main objective is toidentify how tourists on Gotland during their holidaying… (more)

Braunova, Vendula

2013-01-01T23:59:59.000Z

25

Studies on the Ecological Impact of Evaporation Retardation Monolayers  

E-Print Network [OSTI]

TR-6 1966 Studies on the Ecological Impact of Evaporation Retardation Monolayers B.G. Wixson Texas Water Resources Institute Texas A&M University ...

Wixson, B.G.

26

Stakeholder Engagement and Outreach: Wind Farm Economic Impact Studies  

Wind Powering America (EERE)

Information Information Resources Printable Version Bookmark and Share Publications Success Stories Webinars Podcasts Videos Stakeholder Interviews Lessons Learned Wind Working Groups Economic Impact Studies Wind Turbine Ordinances Wind Farm Economic Impact Studies Wind Powering America compiled studies about the economic impact of wind farms in rural communities in order to compared them side by side. The studies explore the types of information gathered when undertaking an economic impact study, what kind of information is most helpful in using these studies to further promote wind energy development in rural communities, and the limitations on collecting data for these studies. Pedden, M. (September 2004). "Analysis: Economic Impacts of Wind Applications in Rural Communities." Overview of data collection and

27

IMPACT OF BOUNDARY-LAYER CUTTING AND FLOW CONDITIONING ON FREE-SURFACE BEHAVIOR IN TURBULENT LIQUID SHEETS  

E-Print Network [OSTI]

IMPACT OF BOUNDARY-LAYER CUTTING AND FLOW CONDITIONING ON FREE-SURFACE BEHAVIOR IN TURBULENT LIQUID dimension) = 1 cm into ambient air are compared with empirical correlations at a nearly prototypical term, for a well- conditioned jet but is not a substitute for well-designed flow conditioning. I

California at San Diego, University of

28

Study on the flow production characteristics of deep geothermal wells  

Science Journals Connector (OSTI)

This paper describes a study on the potential flow production characteristics of three non-producing, deep (average depth 4000 m) geothermal wells in the Cerro Prieto geothermal field. The expected production characteristics of these wells were computed in order to determine whether their inability to sustain flow was due to: (1) heat loss effects in the well; (2) the influence of casing diameters; (3) transient temperature effects during the first days of well discharge, and/or (4) the effects of secondary low-enthalpy inflows. For the study, the conservation equations of mass, momentum and energy for two-phase homogeneous flow were solved for the wellbore, since homogeneous flow provides the simplest technique for analyzing two-phase flows when the flow patterns are not well established. The formation temperature distribution was computed assuming radial transient heat conduction. The numerical model was validated by comparison with analytical solutions and with measured pressure and temperature profiles of well H-17 from the Los Humeros geothermal field, Mexico. It was found that the wells should have sustained production. The early heat losses were so large that the flow needed to be induced, and flow will be sustained only after a few days of induced discharge. For well M-202, the analysis suggests that the inflow of secondary colder fluids was responsible for stopping the flow in this well.

Alfonso Garcia-Gutierrez; Gilberto Espinosa-Paredes; Isa??as Hernandez-Ramirez

2002-01-01T23:59:59.000Z

29

Study Shows Significant Economic Impact from Recovery Act | Department of  

Broader source: Energy.gov (indexed) [DOE]

Study Shows Significant Economic Impact from Recovery Act Study Shows Significant Economic Impact from Recovery Act Study Shows Significant Economic Impact from Recovery Act A study recently released shows the $1.6 billion the Savannah River Site (SRS) received from the American Recovery and Reinvestment Act has had a positive economic impact on the adjacent five-county region. The study's findings were presented at the University of South Carolina Aiken's (USC Aiken) Convocation Center. More than 75 people attended the meeting, where presenters commended the Recovery Act for accelerating Cold War cleanup at SRS and boosting employment and business in the local community. Study Shows Significant Economic Impact from Recovery Act More Documents & Publications 2010 ARRA Newsletters 2011 ARRA Newsletters Audit Report: OAS-RA-L-11-12

30

Particle-fluid-structure interaction for debris flow impact on flexible barriers  

E-Print Network [OSTI]

Flexible barriers are increasingly used for the protection from debris flow in mountainous terrain due to their low cost and environmental impact. However, a numerical tool for rational design of such structures is still missing. In this work, a hybrid computational framework is presented, using a total Lagrangian formulation of the Finite Element Method (FEM) to represent a flexible barrier. The actions exerted on the structure by a debris flow are obtained from simultaneous simulations of the flow of a fluid-grain mixture, using two conveniently coupled solvers: the Discrete Element Method (DEM) governs the motion of the grains, while the free-surface non-Newtonian fluid phase is solved using the Lattice-Boltzmann Method (LBM). Simulations on realistic geometries show the dependence of the momentum transfer on the barrier on the composition of the debris flow, challenging typical assumptions made during the design process today. In particular, we demonstrate that both grains and fluid contribute in a non-negligible way to the momentum transfer. Moreover, we show how the flexibility of the barrier reduces its vulnerability to structural collapse, and how the stress is distributed on its fabric, highlighting potential weak points.

A. Leonardi; F. K. Wittel; M. Mendoza; R. Vetter; H. J. Herrmann

2014-09-29T23:59:59.000Z

31

Heat flow and geothermal studies in the Great Plains  

SciTech Connect (OSTI)

In continental heat flow studies, sedimentary basins are usually avoided because of difficulties in obtaining thermal conductivity measurements and because temperature gradients may contain advective signals caused by moving groundwater. These problems are superimposed in the Denver, Kennedy and Williston Basins where complex geothermal gradients derive both from large contrasts among thermal conductivities of strata and from regional groundwater flow. The occurrence and magnitude of advective heat flow within the Denver, Kennedy and Williston Basins is conceptually consistent with simple models that relate groundwater flow to the piezometric surface and to subsurface structures, i.e., folds and faults. An advective heat flow of +25 mW/m/sup 2/ has been determined for an area in the eastern margin of the Denver Basin, and quantities of +35 mW/m/sup 2/ and +10 MW/m/sup 2/ have been determined respectively for parts of the southeastern and northeastern parts of the Williston Basin. A detailed analysis of bottom hole temperatures obtained from drill holes in the area of the Billings Anticline in the Williston Basin indicates that information on subsurface structures and groundwater flow may be obtained from heat flow studies. Additional information that may be derived from these heat flow studies includes: the occurrence and nature of geothermal resources, oil source rock maturation and secondary migration of petroleum, formation and deposition of strata-bound ores. 43 references.

Gosnold, W.D.; Fischer, D.W.

1985-12-01T23:59:59.000Z

32

Case study of groundwater impact caused by underground mining  

SciTech Connect (OSTI)

An investigative methodology is presented to assist mining and regulatory personnel in determining the effect underground mining can have on local aquifers in the Appalachian coal region. The impact of underground mining on groundwater may be more extensive than first realized by the mining industry and regulatory agencies. The primary reason for this possible under-assessment of deep mining's influence on groundwater is the methods used to calculate groundwater movement. Since groundwater calculations are based on primary hydraulic conductivity, i.e. the conductivity through solid rock measured from rock core samples, erroneous results may be expected. In many cases, groundwater flow times and the corresponding areas of influence are much greater than those assumed since water is rapidly moved through fractured zones that commonly occur throughout Appalachia. A case study illustrating this phenomenon is drawn from underground mining operations in Pike County. A survey of 144 wells was conducted to determine if any loss of water supply and/or quality was found. This was correlated to the extent and time progression of underground mining operations. Other parameters qualified are water level fluctuations, groundwater quality, precipitation, seasonal effects, geology, and mine dewatering. The analysis includes a comprehensive compilation of a well inventory of domestic water supplies. The case study draws conclusions regarding cause and effect relationships.

Sloan, P.; Warner, R.C.

1984-12-01T23:59:59.000Z

33

HIGH FIDELITY STUDIES OF INTERSTELLAR DUST ANALOGUE IMPACTS IN STARDUST  

E-Print Network [OSTI]

HIGH FIDELITY STUDIES OF INTERSTELLAR DUST ANALOGUE IMPACTS IN STARDUST AEROGEL AND FOILS F://www.ssl.berkeley.edu/~westphal/ISPE/. In 2000 and 2002 the Stardust Mission exposed aerogel collector panels for a total of about 200 days/s] interstellar dust (ISD) analogues onto Stardust aerogel and foil flight spares. Particle impact speeds up to 50

34

Heat flow and microearthquake studies, Coso Geothermal Area, China Lake,  

Open Energy Info (EERE)

and microearthquake studies, Coso Geothermal Area, China Lake, and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Heat flow and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Details Activities (2) Areas (1) Regions (0) Abstract: The present research effort at the Coso Geothermal Area located on the China Lake Naval Weapons Center, China Lake, California, was concerned with: (1) heat flow studies and (2) microearthquake studies associated with the geothermal phenomena in the Coso Hot Springs area. The sites for ten heat flow boreholes were located primarily using the available seismic ground noise and electrical resistivity data. Difficulty was encountered in the drilling of all of the holes due to altered, porous,

35

Numerical studies of hypersonic binary gas-mixture flows near a sphere  

E-Print Network [OSTI]

Numerical studies of hypersonic binary gas-mixture flows near a sphere V.V. Riabov 1 Diffusive] to study the flow. In the present study, diffusive effects in hypersonic flows of binary gas-mixtures near

Riabov, Vladimir V.

36

Case Study Impact Evaluations of the Industrial Energy Savings Plan  

E-Print Network [OSTI]

This paper presents the results of a series of five case study impact evaluations of Energy Savings Plan (ESP) industrial energy efficiency projects funded by the Bonneville Power Administration (BPA) and Seattle City Light (City Light...

Lilly, P.; Pearson, D.

37

Heat flow studies, Coso Geothermal Area, China Lake, California. Technical  

Open Energy Info (EERE)

studies, Coso Geothermal Area, China Lake, California. Technical studies, Coso Geothermal Area, China Lake, California. Technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Heat flow studies, Coso Geothermal Area, China Lake, California. Technical report Details Activities (1) Areas (1) Regions (0) Abstract: Heat flow studies in the Coso Geothermal Area were conducted at China Lake, California. Temperature measurements were completed in nine of the heat flow boreholes. Temperatures were measured at five meter intervals from the ground surface to the deepest five meter interval. Subsequently, temperatures were remeasured two or three times in each borehole in order to demonstrate that equilibrium thermal conditions existed. The maximum difference in temperature, at any of the five meter intervals, was 0.03 deg

38

Factors Impacting Gasoline Prices and Areas for Further Study  

Gasoline and Diesel Fuel Update (EIA)

Factors Impacting Gasoline Prices and Areas for Further Study Factors Impacting Gasoline Prices and Areas for Further Study 8/10/01 Click here to start Table of Contents Factors Impacting Gasoline Prices and Areas for Further Study Different Factors Impact Different Aspects of Gasoline Price Correlation of Price to Inventory Levels Crude Prices Strongly Related to OECD.Crude & Product Inventories Gasoline Prices Also Influenced by Regional Gasoline Product Markets Tight Product Balance Pushes Up Product Spread (Spot Product - Crude Price) Retail Price Changes Lag Spot Prices Cumulative Gasoline Price Pass-through Illustration of How Lag Effect Dampens and Slows Retail Price Changes from Wholesale Recent Weekly Retail Price Changes Have Been as Expected Summary: Most Gasoline Price Movement Can Be Explained As Rational Market Behavior Author: Joanne Shore

39

Studies on flow resistance of regenerator in Stirling engine  

SciTech Connect (OSTI)

Studies on flow resistance of regenerator in Stirling engine are to be reported. The purpose of this study is to measure the flow resistance of regenerator in oscillating flow condition, compare with the results of previous studies and examine whether the friction factor changes between accelerating period and decelerating period of the oscillation cycle. New experimental apparatus for measurement of flow resistance of regenerator element was designed and built. Using semiconductor pressure transducer, instantaneous pressure drops during many oscillation cycle were measured. As regenerator elements, layer of usual mesh and packed mesh were used. It was clear that friction factor of usual mesh, obtained from maximum values of pressure drops in oscillation cycle, lay between two previous studies, while friction factor of packed mesh became higher than the previous studies. Also it became obvious that friction factor did not change between accelerating period and decelerating period of oscillation cycle under revolution speed of 100 rpm, while over 200 rpm, friction factor in decelerating period became higher than in accelerating period at same lower Reynolds number.

Sakano, Akira; Isshiki, Seita; Ushiyama, Izumi [Ashikaga Inst. of Technology, Ashikaga, Tochigi (Japan). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

40

Energy-Efficient Flow Time Scheduling: An Experimental Study  

E-Print Network [OSTI]

] and Intel's Speedstep [6]. Running a job at a slower speed saves energy, yet it takes longer time and may and energy. An algorithm called AJC (active job count) has been proposed [3, 7], in which the speedEnergy-Efficient Flow Time Scheduling: An Experimental Study Jude-Thaddeus Ojiaku (speaker) Daniel

Wong, Prudence W.H.

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A Study of Intermittent Buoyancy Induced Flow Phenomena in CANDU Fuel Channels.  

E-Print Network [OSTI]

??The present work focuses on the study of two-phase flow behavior called “Intermittent Buoyancy Induced Flow” (IBIF) resulting from the loss of coolant circulation in… (more)

Karchev, Zheko

2010-01-01T23:59:59.000Z

42

Numerical investigation of electric heating impacts on solid/liquid glass flow patterns.  

SciTech Connect (OSTI)

A typical glass furnace consists of a combustion space and a melter. Intense heat is generated from the combustion of fuel and air/oxygen in the combustion space. This heat is transferred mainly by radiation to the melter in order to melt sand and cullet (scrap glass) eventually creating glass products. Many furnaces use electric boosters to enhance glass melting and increase productivity. The coupled electric/combustion heat transfer patterns are key to the glass making processes. The understanding of the processes can lead to the improvement of glass quality and furnace efficiency. The effects of electrical boosting on the flow patterns and heat transfer in a glass melter are investigated using a multiphase Computational Fluid Dynamics (CFD) code with addition of an electrical boosting model. The results indicate that the locations and spacing of the electrodes have large impacts on the velocity and temperature distributions in the glass melter. With the same total heat input, the batch shape (which is determined by the overall heat transfer and the batch melting rate) is kept almost the same. This indicates that electric boosting can be used to replace part of heat by combustion. Therefore, temperature is lower in the combustion space and the life of the furnace can be prolonged. The electric booster can also be used to increase productivity without increasing the furnace size.

Chang, S. L.; Zhou, C. Q.; Golchert, B.

2002-07-02T23:59:59.000Z

43

The Impacts of Wind Power Integration on Sub-Daily Variation in River Flows Downstream of Hydroelectric Dams  

Science Journals Connector (OSTI)

The Impacts of Wind Power Integration on Sub-Daily Variation in River Flows Downstream of Hydroelectric Dams ... Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. ... In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). ...

Jordan D. Kern; Dalia Patino-Echeverri; Gregory W. Characklis

2014-07-25T23:59:59.000Z

44

The impact of technology on leadership education: a longitudinal study  

E-Print Network [OSTI]

Development (AGED 340) course. During 2003, more than 800 undergraduate students enrolled in the course. The current level of enrollment was capped only by limited facilities and available faculty (Townsend, 2002). The Texas A&M University and Texas Tech... THE IMPACT OF TECHNOLOGY ON LEADERSHIP EDUCATION: A LONGITUDINAL STUDY A Dissertation by ROBERT T. JONES Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

Jones, Robert T.

2004-11-15T23:59:59.000Z

45

Study Shows Significant Economic Impact from Recovery Act  

Broader source: Energy.gov (indexed) [DOE]

May 03, 2011 May 03, 2011 Study Shows Significant Economic Impact from Recovery Act AIKEN, S.C. - A study recently released shows the $1.6 billion the Savannah River Site (SRS) received from the American Recovery and Reinvestment Act has had a positive economic impact on the adjacent five-county region. The study's findings were presented at the University of South Carolina Aiken's (USC Aiken) Convocation Center. More than 75 people attended the meeting, where presenters commended the Recovery Act for accelerating Cold War cleanup at SRS and boosting employment and business in the local community. "I go out to the sites and talk to the people in the communities," EM Chief Operations Officer Cynthia Anderson said at the meeting. "The Recovery Act is

46

Numerical and experimental studies on the flow multiplicity phenomenon for gas–solids two-phase flows in CFB risers  

Science Journals Connector (OSTI)

The flow multiplicity phenomenon in circulating fluidized bed (CFB) risers, i.e. under the same superficial gas velocity and solids circulation rate, the CFB risers may sometimes exhibit multiple flow structures, was numerically and experimentally investigated in this study. To investigate the flow multiplicity phenomenon, the experiments of gas–solids two-phase flows in a 2-D CFB riser with different flow profiles at the inlet of the CFB riser were conducted. Specially designed gas inlet distributors with add-ons are used to generate different flow profiles at the inlet of the CFB rise. The CFD model using Eulerian–Eulerian approach with k–? turbulence model for each phase was employed to numerically analyze the flow multiplicity phenomenon. It is experimentally and numerically proved that for gas–solids two-phase flows, the flow profiles in the fully-developed region are dominated by the flow profiles at the inlet. The solids concentration profile is closely coupled with the velocity profile, and the inlet solids concentration and velocity profiles can largely influence the fully-developed solids concentration and velocity profiles.

B. Peng; J. Xu; J. Zhu; C. Zhang

2011-01-01T23:59:59.000Z

47

Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport  

SciTech Connect (OSTI)

Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represents initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial conditions for steady-state flow runs, simulations were executed to investigate the relative effects on contaminant transport from the increased upland fluxes. Contaminant plumes were analyzed for 1) peak concentrations and arrival times at downstream points of compliance, 2) the area of the aquifer contaminated at or above the drinking water standard (DWS), and 3) the total activity remaining in the domain at the end of the simulation. In addition to this analysis, unit source release simulations from a hypothetical tracer were executed to determine relative travel times from the Central Plateau. The results of this study showed that increases in the lateral recharge had limited impact on regional flow directions but accelerated contaminant transport. Although contaminant concentrations may have initially increased for the more mobile contaminants (tritium, technetium-99, and iodine-129), the accelerated transport caused dilution and a more rapid decline in concentrations relative to the Base Case (no additional flux). For the low-mobility uranium-238, higher lateral recharge caused increases in concentration, but these concentrations never approached the DWS. In this preliminary investigation, contaminant concentrations did not exceed the DWS study metric. With the increases in upland fluxes, more mass was transported out of the aquifer, and concentrations were diluted with respect to the base case where no additional flux was considered.

Freedman, Vicky L.

2008-01-30T23:59:59.000Z

48

Transverse flow reactor studies of the dynamics of radical reactions  

SciTech Connect (OSTI)

Radical reactions are in important in combustion chemistry; however, little state-specific information is available for these reactions. A new apparatus has been constructed to measure the dynamics of radical reactions. The unique feature of this apparatus is a transverse flow reactor in which an atom or radical of known concentration will be produced by pulsed laser photolysis of an appropriate precursor molecule. The time dependence of individual quantum states or products and/or reactants will be followed by rapid infrared laser absorption spectroscopy. The reaction H + O{sub 2} {yields} OH + O will be studied.

Macdonald, R.G. [Argonne National Laboratory, IL (United States)

1993-12-01T23:59:59.000Z

49

Impacts of increased outdoor air flow rates on annual HVAC energy costs in office environment.  

E-Print Network [OSTI]

??The use of different ventilation systems has an important impact on the energy cost of office buildings. This paper examines the relationship between heating and… (more)

Destrez, Adrien

2011-01-01T23:59:59.000Z

50

Waste package/repository impact study: Final report  

SciTech Connect (OSTI)

The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs.

Not Available

1985-09-01T23:59:59.000Z

51

Air Quality Impact Study for UMore Park Sand and Gravel Resources  

E-Print Network [OSTI]

DRAFT Air Quality Impact Study for UMore Park Sand and Gravel Resources Project City of Rosemount trademark of Short Elliott Hendrickson Inc. Air Quality Impact Study - DRAFT UOFMN 103496 University......................................................................... 2 2.3 Air Emissions

Netoff, Theoden

52

FliHy experimental facilities for studying open channel turbulent flows and heat transfer  

E-Print Network [OSTI]

FliHy experimental facilities for studying open channel turbulent flows and heat transfer B. Freeze) facility was constructed at UCLA to study open channel turbulent flow and heat transfer of low supercritical flow regimes (Fr /1), in which the surface waves are amplified and heat transfer is enhanced due

Abdou, Mohamed

53

FLIHY EXPERIMENTAL FACILITIES FOR STUDYING OPEN CHANNEL TURBULENT FLOWS AND HEAT TRANSFER  

E-Print Network [OSTI]

1 FLIHY EXPERIMENTAL FACILITIES FOR STUDYING OPEN CHANNEL TURBULENT FLOWS AND HEAT TRANSFER B was constructed at UCLA to study open channel turbulent flow and heat transfer of low-thermal and low supercritical flow regimes (Fr>1), in which the surface waves are amplified and heat transfer is enhanced due

California at Los Angeles, University of

54

Study of active control of instability in a boundary layer over a flat plate flow  

E-Print Network [OSTI]

A feasibility study of utilizing synthetic jet actuators as a mean to mitigate disturbances that can cause instability and turbulent flow is described. Prediction of flow transition via linear stability theory was performed by solving the Orr...

Oryu, Hiroshi

2012-06-07T23:59:59.000Z

55

Green Water Flow Kinematics and Impact Pressure on a Three Dimensional Model Structure  

E-Print Network [OSTI]

Flow kinematics of green water due to plunging breaking waves interacting with a simplified, three-dimensional model structure was investigated in laboratory. Two breaking wave conditions were tested: one with waves impinging and breaking...

Ariyarathne, Hanchapola Appuhamilage Kusalika Suranjani

2011-10-21T23:59:59.000Z

56

Assessment of modular IGCC plants based on entrained flow coal gasification supplemental studies  

SciTech Connect (OSTI)

In a previous study (1), Foster Wheeler made an assessment of modular IGCC power systems employing Texaco entrained flow gasification of Illinois No. 6 coal. In that study, five case studies were developed in order to compare the relative performance and economics of air vs. oxygen blown gasification and high temperature vs. low temperature gas cleanup. As a supplemental study, two additional IGCC design cases were developed as alternate to the original Case 2 and Case 3 configurations. The objective of the Case 2 alternate study was to assess the potential of zinc titanate in place of zinc ferrite. Compared to zinc ferrite, the zinc titanate system offered the following potential advantages: Does not require steam conditioning of the feed gas to avoid carbon formation; does not require reductive regeneration and the corresponding use of fuel gas; operates at higher temperature, about 1350{degree}F; and has a longer projected sorbent life. The objective of the alternate Case 3 study was to determine the economic impact of producing sulfuric acid, instead of elemental sulfur, as the by-product from high temperature desulfurization using zinc ferrite. Sulfur recovery as by-product sulfuric acid therefore offered the potential for reducing both the capital and operating costs. 6 refs., 5 figs., 15 tabs.

Fu, R.K.

1989-10-01T23:59:59.000Z

57

Numerical Study of Hypersonic Rarefied-Gas Flows About a Toroidal Ballute  

E-Print Network [OSTI]

Numerical Study of Hypersonic Rarefied-Gas Flows About a Toroidal Ballute Vladimir V. Riabov. Hypersonic flows of nitrogen, oxygen, argon, and carbon dioxide near a toroidal ballute have been of aerothermodynamics of simple-shape bodies have provided valuable information related to physics of hypersonic flows

Riabov, Vladimir V.

58

Progress in collective flow studies from the onset to Bevalac/SIS  

SciTech Connect (OSTI)

Collective flow in heavy ion collisions was first observed experimentally more than a decade ago at the Bevalac by the Plastic Ball collaboration. Although early calculations had suggested that measurement of the flow would place tight constraints on the nuclear equation of state, uncertainties in other input parameters of microscopic models, which also affect the flow, led to large ambiguities in the equation of state. This talk will discuss recent flow studies that attempt to overcome these difficulties. The EOS and FOPI experiments at the Bevalac and SIS accelerators have measured flow in the 200--2000 A-MeV bombarding energy range with better acceptance, particle identification, and systematics than was previously available. Meanwhile, programs at MSU and GANIL are studying the disappearance of flow around 50 A-MeV. Systematic comparison of these data with predictions of microscopic models is beginning to reduce the ambiguities in the extraction of physics quantities. Also, new directions in flow studies, such as the flow of produced particles and radial flow, offer the possibility of further information from flow studies. Recent accomplishments and new directions in flow studies are discussed, and areas where further study is needed are pointed out.

Lisa, M.A.

1995-03-01T23:59:59.000Z

59

PHYSICAL REVIEW E 85, 061301 (2012) Shock propagation in granular flow subjected to an external impact  

E-Print Network [OSTI]

. Examples include crater formation by wind jets in the context of lunar cratering [5], viscous fingering flowing on an inclined glass plane. In the experiment a steel ball, much larger in size than an individual, devoid of glass beads, whose radius increases with time. This radius was measured using high speed

Ravindran, Rajesh

60

A study of the coherent structures and installation effects in an orifice flow meter  

E-Print Network [OSTI]

. Errors on the order of approximately 250 millions of dollar per year have been estimated for the natural gas industry. The urgent need to improve the accuracy has fueled basic research in the area of orifice flow meters. The objectives of this present... study were to analyze the coherent structures present in an orifice flow meter, and to examine the effect of a flow conditioner placed upstream of the orifice plate on the flow meter's accuracy, The coherent structures were measured by performing...

Pattabhi, Srikanth

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A compressible multiphase flow model for violent aerated wave impact problems  

Science Journals Connector (OSTI)

...on breakwaters, sea walls and liquid storage tanks, etc., through carefully controlled...1000m3 for fresh water and 1025m3 for seawater). However, laboratory and field observations...persist for many wave periods especially in seawater. The peak pressure and impact duration...

2014-01-01T23:59:59.000Z

62

An experimental study on flow resistance of regenerator wire meshes in oscillatory flow  

SciTech Connect (OSTI)

Stirling engine is considered as an important energy system for utilizing Biomass energy. Regenerator is a very important element of the Stirling engine as it determines thermal efficiency and its flow resistance determines output power. This paper describes the experimental results on fluid motion in regenerator wire meshes of a Stirling engine in a oscillatory flow. Theoretical analysis on laminar flow in a circular pipe is described for a comparison. Simultaneous measurements of velocity nearby the mesh layer in the test section, pressure drops between entree and exit point of mesh layer and photo signal of top position of the piston were carried out in oscillatory flow condition. Experimental results shows that variation of pressure drops slightly advances toward velocity variation as is clarified in the theoretical analysis on laminar oscillatory flow in a circular pipe. Friction factors defined by adjusting phase angle shift between pressure drops and velocity variations show that it appears bigger in the accelerating period than in the decelerating period. This phenomenon seems to be explained because fluid motion requires more energy to make eddy structure in the accelerating period, while fluid motion in the decelerating period requires less energy as streamwise eddy structure is already developed.

Isshiki, Seita; Takasaki, Yousuke, Ushiyama, Izumi [Ashikaga Inst. of Tech., Tochigiken (Japan); Isshiki, Naotsugu [Nihon Univ., Setagayaku, Tokyo (Japan)

1997-12-31T23:59:59.000Z

63

A Hydrodynamic Study of Flow in Irrigation Furrows  

E-Print Network [OSTI]

profiles. An estimate of furrow hydraulic roughness was obtained from field data. A procedure for determining infiltration rates from measurements of surface flow volume and irrigation stream advance is proposed for the case for which the cumulative...

Wilke, O.C.

64

A New Aerosol Flow System for Photochemical and Thermal Studies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

be applied simultaneously. The residence time is of the order of an hour, and sampling ports located along the length of the flow tube allow for time-resolved measurements of...

65

A study of boiling water flow regimes at low pressures  

E-Print Network [OSTI]

"A comprehensive experimental program to examine flow regimes at pressures below 100 psia for boiling of water in tubes was carried out. An electrical probe, which measures the resistance of the fluid between the centerline ...

Fiori, Mario P.

1966-01-01T23:59:59.000Z

66

A comparative study of the aerodynamics of several wind turbines using flow visualization  

SciTech Connect (OSTI)

This paper reports flow visualization techniques used to study the flows over the Enertech 21-5, Carter 25, and Enertech 44-50. Despite centrifugal effects superimposed on the aerodynamics, tufting (gross aerodynamic behavior) and oil flow (average boundary layer behavior), tests reveal the nature and many of the details of the flows involved. Results were compared to expected flow patterns based on angles of attack calculated from the PROPPC code. Chord Reynolds numbers ranged between 75,000 (Enertech 21-5) to 1,340,000 (Enertech 44-50). The typical low Reynolds number flow characteristics of these airfoils, including laminar separation bubbles, turbulent reattachment, and complete separation were observed. full or partial reattachment due to tower shadow was observed on each machine. Spanwise flow was observed near the leading edge of the Enertech 21-5. Cyclic radial flow from tower dam effect was also noted.

Eggleston, D.M. (Control Engineering, Univ. of Texas of the Permian Basin, Odessa, TX (US)); Starcher, K. (Alternative Energy Inst., West Texas State Univ., Canyon, TX (US))

1990-11-01T23:59:59.000Z

67

Connecticut’s Health Impact Study Rapidly Increasing Weatherization Efforts  

Broader source: Energy.gov [DOE]

The Energy Department’s Weatherization Assistance Program is helping Connecticut reach its weatherization targets by supporting the development and release of the Health Impact Assessment.

68

Energy Impacts of Oversized Residential Air Conditioners -- Simulation Study of Retrofit Sequence Impacts  

SciTech Connect (OSTI)

This research addresses the question of what are the energy consequences for oversizing of an air conditioner in a home. Conventional wisdom holds that oversizing the AC results in significant energy penalties. However, the reason for this was shown to be due to crankcase heaters and not due to cycling performance of the AC, and is only valid for a particular set of assumptions. Adding or removing individual characteristics, such as ducts or crankcase heaters, can have measurable impacts on energy use. However, with all other home characteristics held constant, oversizing the AC generally has a small effect on cooling energy use, even if the cycling performance of the unit is poor. The relevant aspects of air conditioner modeling are discussed to illustrate the effects of the cycling loss coefficient, Cd, capacity, climate, ducts and parasitic losses such as crankcase heaters. A case study of a typical 1960's vintage home demonstrates results in the context of whole building simulations using EnergyPlus.

Booten, C.; Christensen, C.; Winkler, J.

2014-11-01T23:59:59.000Z

69

Flow Regime Study in a Circulating Fluidized Bed Riser with an Abrupt Exit: Fully Developed Flow in CFB Riser  

Science Journals Connector (OSTI)

Flow regime study was conducted in a 0.3 m diameter, 15.5 m height circulating fluidized bed (CFB) riser with an abrupt exit at the...2001a) as: The radial solids distribution in the riser no longer changes with ...

J. S. Mei; G. T. Lee; S. M. Seachman…

2010-01-01T23:59:59.000Z

70

Experimental Study of Single-Phase and Two-Phase Water-in-Crude-Oil Dispersed Flow Wax Deposition in a Mini Pilot-Scale Flow Loop  

Science Journals Connector (OSTI)

Experimental Study of Single-Phase and Two-Phase Water-in-Crude-Oil Dispersed Flow Wax Deposition in a Mini Pilot-Scale Flow Loop ... The axial length was discretized into 174 grid points (173 discretized sections). ...

Ekarit Panacharoensawad; Cem Sarica

2013-08-09T23:59:59.000Z

71

Numerical study of the effects of upstream flow condition upon orifice flow meter performance  

SciTech Connect (OSTI)

Recent experimental work has shown that when the mean velocity profile upstream of an orifice plate has a deficit on the centerline and higher velocities at the outer edges of the pipe, the pressure drop across the orifice is greater than if the flow upstream is fully developed. It is proposed that this increase in [Delta]P is directly correlated with the radial distribution of momentum upstream of the orifice plate. In an effort to investigate how the upstream flow condition affects the pressure distribution along the pipe wall and to determine if the hypothesis is correct, Creare.X Inc. 's FLUENT numerical analysis program was used to simulate the effects. Two [beta] ratios (0.50 and 0.75) have been considered with various mean velocity inlet profiles. Inlet profiles include the 1/16th, 1/7th, 1/8th, 1/9th and 1/10th power law power law, uniform flow, and two linear distributions. The results indicate that there is a correlation between the second and third-order moments of momentum and the value of the discharge coefficient. This empirical correlation, after being fully verified by experimental data, can be used to estimate the change in the coefficient of discharge given the inlet velocity profile.

Morrison, G.L.; Panak, D.L.; DeOtte, R.E. Jr. (Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.)

1993-11-01T23:59:59.000Z

72

Viscous resuspension in a tube: The impact of secondary flows resulting from second normal stress differences  

Science Journals Connector (OSTI)

The viscous resuspension of non-neutrally buoyant particles has been modeled as a competition between the rate of shear-induced diffusion and sedimentation or as a balance between gradients in the particle stress and gravity. Typically however the rheology of the suspension has been modeled using a simple concentration-dependent Newtonian viscosity. In this paper we demonstrate through theory and comparison with existing experimental results that the anisotropy of the total stress tensor must be included to accurately describe the resuspension process in a tube. At steady state the isotropic model predicts a secondary current within the tube cross section that flows downwards at the center and upwards near the sidewalls resulting in a concave upward interface between the clear suspending fluid and the particles [K. Zhang and A. Acrivos Int. J. Multiphase Flow20 579 (1994)]. In contrast with the inclusion of the known non-Newtonian suspension rheology the secondary current profile is reversed: upwards near the center and downwards near the walls. This leads to a concave downward shape of the interface between the suspending fluid and the suspension and is in quantitative agreement with the experimental measurements of Altobelli et al. [J. Rheol.35 721 (1991)].

Arun Ramachandran; David T. Leighton Jr.

2007-01-01T23:59:59.000Z

73

NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR  

E-Print Network [OSTI]

NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR TUBES CONFINED, Texas A&M University, College Station, Texas, USA Two-dimensional steady developing fluid flow and heat-volume technique. Grid independence study was carried out by running the developed code for several different grid

Bahaidarah, Haitham M.

74

Assessing the Impact of Potential Bridge Collapse on Road Network Vulnerability: a Case Study in Oklahoma.  

E-Print Network [OSTI]

??is study applied three different measures, which are unweighted increased travel time, increased travel time weighted by traffic flow, and decreased accessibility of cities, to… (more)

Zhao, Yun

2011-01-01T23:59:59.000Z

75

A lattice Boltzmann study of blood flow in stented aneurism  

Science Journals Connector (OSTI)

The treatment of cerebral aneurisms with a porous stent has recently been proposed as a minimally invasive way to prevent rupture and favor coagulation mechanism inside the aneurism. The efficiency of a stent is related to several parameters which are ... Keywords: aneurism, blood flow, hemodynamics, lattice Boltzmann, stents

Miki Hirabayashi; Makoto Ohta; Daniel A. Rüfenacht; Bastien Chopard

2004-08-01T23:59:59.000Z

76

A study on the directional sensitivity of intracranial responses following head impact  

Science Journals Connector (OSTI)

The objective of the present study was to investigate the directional sensitivity of intracranial responses following head impact using a validated mid-sized finite element model of Chinese human head. An impact force was applied to different locations of the model with deformable skull and rigid skull, respectively, under the same boundary conditions. Then a translational acceleration was applied to the rigid skull by keeping the same head position resulting in the same head injury criteria (HIC) as in the cases with impact force. The results showed that directional effect of head impact altered intracranial responses and injury patterns. Brain tissue at impact site was at high risk of contusion during vertical impact and corpus callosum was vulnerable to the impact at forehead when the head was impacted in a 45 degree angle. It was also found that this sensitivity contributed more by a rigid skull than a deformable one.

Wei Zhao; Shijie Ruan; Haiyan Li; Shihai Cui; Lijuan He

2014-01-01T23:59:59.000Z

77

Preliminary Assessment of the Impact of 2014 Seismic Study on WTP Design  

Broader source: Energy.gov [DOE]

Preliminary Assessment of the Impact of 2014 Seismic Study on WTP Design Carl Costantino, Consultant to DOE Raman Venkata, DOE-WTP-WED,Richland,WA Farhang Ostadan, BNI

78

Shooting device for free-surface impact studies  

E-Print Network [OSTI]

The hydrodynamics of free-surface impacts are of great interest to scientists across many disciplines including ocean engineering, fluids mechanics, and biology. This thesis focuses on designing a mechanism to shoot small ...

Daigh, Sara L. (Sarah Louise), 1981-

2004-01-01T23:59:59.000Z

79

Development of a GIS as an analytical tool for instream flow determinations: Two case studies  

SciTech Connect (OSTI)

While many standard applications of Geographical Information Systems (GIS) software involve production of maps and overlays useful for planning and resource management, it also offers powerful analytical capabilities. These attributes of GIS can be useful in impact assessment, mitigation planning, and resource enhancement associated with the relicensing of hydroelectric projects. This paper describes two such applications where GIS was integrated into instream flow investigations. The first involves the application of GIS mapping techniques to develop functional relationships between streamflow and foraging habitat for bald eagles. In the second application, GIS is used to evaluate boating suitability at critical passage areas under different river flows.

Hanson, D.F. [EA Engineering, Science, and Technology, Lafayette, CA (United States); Running, S.K. [Pacific Gas and Electric Co., San Ramon, CA (United States); Leonard, P.M. [EDAW, Inc., Atlanta, GA (United States)

1995-12-31T23:59:59.000Z

80

Hydrologic test system for fracture flow studies in crystalline rock  

SciTech Connect (OSTI)

A hydrologic test system has been designed to measure the intrinsic permeabilities of individual fractures in crystalline rock. This system is used to conduct constant pressure-declining flow rate and pressure pulse hydraulic tests. The system is composed of four distinct units: (1) the Packer System, (2) Injection system, (3) Collection System, and (4) Electronic Data Acquisition System. The apparatus is built in modules so it can be easily transported and re-assembled. It is also designed to operate over a wide range of pressures (0 to 300 psig) and flow rates (0.2 to 1.0 gal/min). This system has proved extremely effective and versatile in its use at the Climax Facility, Nevada Test Site.

Raber, E; Lord, D.; Burklund, P.

1982-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cloud API Issues: an Empirical Study and Impact  

E-Print Network [OSTI]

Outages to the cloud infrastructures have been widely publicized and it would be easy to conclude that application developers only need to be concerned with large scale cloud provider infrastructure outages. Unfortunately, this is not the case. In-cloud applications heavily rely on cloud infrastructure APIs (directly or indirectly through scripts and consoles) for many sporadic activities such as deployment change, scaling out/in, backup, recovery and migration. Failures and/or issues around API calls are a large source of faults that could lead to application failures, especially during sporadic activities. Infrastructure outages can also be greatly exacerbated by API-related issues. In this paper we present an empirical study of issues in Amazon EC2 APIs. Some of the major findings around API issues include: 1) A majority (60%) of the cases of API failures are related to “stuck ” API calls or unresponsive API calls. 2) A significant portion (12%) of the cases of API failures are about slow responsive API calls. 3) 19 % of the cases of API failures are related to the output issues of API calls, including failed calls with unclear error messages, as well as missing output, wrong output, and unexpected output of API calls. 4) There are 9 % cases of API failures reporting that their calls (performing some actions and expecting a state change) were pending for a certain time and then returned to the original state without informing the caller properly or the calls were reported to be successful first but failed later. We also classify the causes of API issues and discuss the impact of API issues on application architectures.

Qinghua Lu; Liming Zhu; Len Bass; Xiwei Xu; Zhanwen Li; Hiroshi Wada

82

The Impact of Neighbourhood Density on the Energy Demand of Passive Houses and on Potential Energy Sources from the Waste Flows and Solar Energy.  

E-Print Network [OSTI]

??This study demonstrates how the density of a neighbourhood affects its energy demand, metabolism (energy and material flows) and its ability to produce its own… (more)

Stupka, Robert

2011-01-01T23:59:59.000Z

83

Exploratory study of flow domains arising from detonation waves induced in a wedged channel  

E-Print Network [OSTI]

Exploratory study of flow domains arising from detonation waves induced in a wedged channel H. Detonation of the flow of a combustible mixture over a wedged channel is numerically simulated. A two and standing detonation wave modes were found, both of which can be further subdivided depending on where

Texas at Arlington, University of

84

Author's personal copy Numerical study of interference between simple-shape bodies in hypersonic flows  

E-Print Network [OSTI]

Author's personal copy Numerical study of interference between simple-shape bodies in hypersonic 2008 Available online 3 December 2008 Keywords: Hypersonic rarefied-gas flows Direct simulation Monte-Carlo method Flow interference Simple-shape bodies Toroidal balloon a b s t r a c t Hypersonic rarefied

Riabov, Vladimir V.

85

Experimental study of turbulent unconfined groundwater flow in a single fracture  

E-Print Network [OSTI]

Experimental study of turbulent unconfined groundwater flow in a single fracture Jiazhong Qiana groundwater flow in a single fracture under the conditions of different surface roughness and apertures. We found that the gradient of the Reynolds number versus the average velocity in a single fracture

Zhan, Hongbin

86

COMPUTER SUPPORTED KNOWLEDGE DISCOVERY --A CASE STUDY IN FLOW RESISTANCE INDUCED BY VEGETATION  

E-Print Network [OSTI]

COMPUTER SUPPORTED KNOWLEDGE DISCOVERY -- A CASE STUDY IN FLOW RESISTANCE INDUCED BY VEGETATION). The paper firstly outlines elementary data mining principles, particularly when applied to analysis related to the additional resistance to the flow induced by flexible vegetation are presented. The data

Fernandez, Thomas

87

Impact of Ethanol on Benzene Plume Lengths: Microbial and Modeling Studies  

E-Print Network [OSTI]

Impact of Ethanol on Benzene Plume Lengths: Microbial and Modeling Studies Rula A. Deeb1 ; Jonathan with Federal Clean Air Act requirements for carbon monoxide and ozone attainment, ethanol is being considered as a replacement for MTBE. The objective of this study is to evaluate the potential impact of ethanol on benzene

Alvarez, Pedro J.

88

A study of exhaust plume interactions with external flow by the hydraulic analogy  

E-Print Network [OSTI]

A STUDY OF EXHAUST PLUME INTERACTIONS WITH EXTERNAL FLOW BY THE HYDRAULIC ANALOGY A Thesis by STEPHEN HAYES LAWTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1989 Major Subject: Mechanical Engineering A STUDY OF EXHAUST PLUME INTERACTIONS WITH EXTERNAL FLOW BY THE HYDRAULIC ANALOGY A Thesis by STEPHEN HAYES LA WTON Approved as to style and content by: Robert H. Page...

Lawton, Stephen Hayes

2012-06-07T23:59:59.000Z

89

World Bank-Morocco Study on the Impact of Climate Change on the  

Open Energy Info (EERE)

Morocco Study on the Impact of Climate Change on the Morocco Study on the Impact of Climate Change on the Agricultural Sector Jump to: navigation, search Name World Bank-Morocco Study on the Impact of Climate Change on the Agricultural Sector Agency/Company /Organization World Bank Sector Land Focus Area Agriculture Topics Co-benefits assessment, Background analysis Resource Type Lessons learned/best practices Website http://www.fao.org/nr/climpag/ Country Morocco UN Region Northern Africa References Morocco Study on the Impact of Climate Change on the Agricultural Sector[1] Summary "The present document is an interim report on climate change impacts on crop yields in Morocco. It is part of a larger study led by the World Bank and the Government of Morocco on climate change and agriculture. The yield

90

Experimental and numerical studies of high-velocity impact fragmentation  

SciTech Connect (OSTI)

Developments are reported in both experimental and numerical capabilities for characterizing the debris spray produced in penetration events. We have performed a series of high-velocity experiments specifically designed to examine the fragmentation of the projectile during impact. High-strength, well-characterized steel spheres (6.35 mm diameter) were launched with a two-stage light-gas gun to velocities in the range of 3 to 5 km/s. Normal impact with PMMA plates, thicknesses of 0.6 to 11 mm, applied impulsive loads of various amplitudes and durations to the steel sphere. Multiple flash radiography diagnostics and recovery techniques were used to assess size, velocity, trajectory and statistics of the impact-induced fragment debris. Damage modes to the primary target plate (plastic) and to a secondary target plate (aluminum) were also evaluated. Dynamic fragmentation theories, based on energy-balance principles, were used to evaluate local material deformation and fracture state information from CTH, a three-dimensional Eulerian solid dynamics shock wave propagation code. The local fragment characterization of the material defines a weighted fragment size distribution, and the sum of these distributions provides a composite particle size distribution for the steel sphere. The calculated axial and radial velocity changes agree well with experimental data, and the calculated fragment sizes are in qualitative agreement with the radiographic data. A secondary effort involved the experimental and computational analyses of normal and oblique copper ball impacts on steel target plates. High-resolution radiography and witness plate diagnostics provided impact motion and statistical fragment size data. CTH simulations were performed to test computational models and numerical methods.

Kipp, M.E.; Grady, D.E.; Swegle, J.W.

1993-08-01T23:59:59.000Z

91

Experimental Study of Two-Phase Flow Oscillation in Natural Circulation  

SciTech Connect (OSTI)

The experiment was performed on the test loop HRTL-5, which simulates the geometry and system design of the 5-MW nuclear heating reactor developed by the Institute of Nuclear Energy Technology, Tsinghua University. The flow behavior for a wide range of inlet subcoolings, in which the flow experience varies from single- to two-phase, is described in a natural circulation system at different pressures (p = 0.1, 0.24, and 1.5 MPa). Several kinds of flow instability are investigated, including geysering, flashing-related flow instability, and high-frequency flow oscillation at p = 0.1 and 0.24 MPa, as well as low steam quality density wave oscillation at p = 1.5 MPa. The mechanisms of geysering, which has new features, and flashing-related flow instability, which has never been studied well enough in this field, are particularly interpreted. The experimental results show the following: First, for a low-pressure natural circulation system, the two-phase flow is unstable in most inlet subcooling conditions, and the two-phase stable flow can be reached only with very low inlet subcoolings. Second, at high inlet subcoolings, the flow instability is dominated by subcooling boiling in the heated section, and at intermediate inlet subcoolings, it is dominated by void flashing in the adiabatic long riser. Third, in the two-phase stable flow region, the conditions for boiling out of the core, namely, single-phase flow in the heated section and two-phase flow in the riser due to vapor flashing, can be realized. The experimental results are of significance for the design and accident analysis of vessel and swimming pool-type natural circulation nuclear heating reactors.

Jiang, S.Y.; Wu, X.X.; Zhang, Y.J. [Tsinghua University (China)

2000-06-15T23:59:59.000Z

92

The effects of hyperventilation on peripheral blood flow: a study of cardiopulmonary interactions  

E-Print Network [OSTI]

skeletal muscle and diaphragm activity may occur. Therefore, this reflex may have important consequences in an increased ventilatory state. It is the purpose of this study to examine the effects of hyperventilation on peripheral blood flow. Levels...

Loy, Robin Ann

1991-01-01T23:59:59.000Z

93

The study and characterization of the major flow through rectangular slit virtual impactor  

E-Print Network [OSTI]

The major flow through a rectangular slit virtual impactor was experimentally studied. The impactor was a two-dimensional rectangular slit dichotomous sampler. A series of experiments were performed using monodisperse liquid oleic acid particles...

Gupta, Amit

2002-01-01T23:59:59.000Z

94

CASH FLOW MATCHING PROBLEM WITH CVaR CONSTRAINTS: A CASE STUDY WITH PORTFOLIO SAFEGUARD  

E-Print Network [OSTI]

CASH FLOW MATCHING PROBLEM WITH CVaR CONSTRAINTS: A CASE STUDY WITH PORTFOLIO SAFEGUARD Danjue problem is minimized. We use Portfolio Safeguard (PSG) decision support tool to solve the optimization

Uryasev, Stanislav

95

Experimental studies of 1 ton/day coal slurry feed type oxygen blown, entrained flow gasifier  

Science Journals Connector (OSTI)

Experimental Studies of a 1 Ton/Day coal slurry feed type oxygen blown, entrained flow gasifier have been performed with the slurry concentration and gasifier temperature at 65% and above 1,300...2.../coal feed r...

Young-Chan Choi; Tae-Jun Park; Jae-Ho Kim…

2001-07-01T23:59:59.000Z

96

Experimental study of the effects of wakes on separation in low pressure turbine flow  

E-Print Network [OSTI]

the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPTblade under periodic unsteady wake flow is presented...

O?ztu?rk, Burak

2003-01-01T23:59:59.000Z

97

Field impact insulation class (FIIC)—A case study  

Science Journals Connector (OSTI)

Impactnoise in buildings constitutes a potentially serious problem because of the short duration high intensity sounds involved [U.S. Department of Housing and Urban Development Airborne Impact and Structure Borne Noise Chapter 7 (1967)]. Since 1974 the State of California has tried to manage this problem by instituting the California Noise Insulation Standards which require any multi?family dwelling to provide an impact insulation class (IIC) rating of 50 based on laboratory tests or a field impact insulation class (FIIC) rating of 45 based on field tests [Office of Noise Control California Noise Insulation Standards 1–7 (1988)]. Concern about the acceptability of floor ceiling assemblies is increasing due to increased awareness of the problem and larger numbers of people moving into apartments condominiums and townhomes throughout California. Western Electro?Acoustic Laboratory (WEAL) had the opportunity to witness the installation of floor ceiling assemblies in an apartment complex in Bakersfield California. Six different assemblies were tested to determine how the FIIC value changed when minor modifications were made to the standard floor ceiling assembly. WEAL will show the results of the field?tested assemblies and compare the data with typical laboratory results for similar constructions.

John J. LoVerde; Gary Mange

1994-01-01T23:59:59.000Z

98

Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report  

SciTech Connect (OSTI)

The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.

Matthews, K.M.

1983-07-01T23:59:59.000Z

99

Investigating different types of research collaboration and citation impact: a case study of Harvard University's publications  

Science Journals Connector (OSTI)

This study aims to investigate the influence of different patterns of collaboration on the citation impact of Harvard University's publications. Those documents published by researchers affiliated with Harvard University in WoS from 2000---2009, constituted ... Keywords: Citation impact, Collaboration patterns, Harvard University

Ali Gazni; Fereshteh Didegah

2011-05-01T23:59:59.000Z

100

ISO9001 Certification in UK Organisations A comparative study of motivations and impacts.  

E-Print Network [OSTI]

ISO9001 Certification in UK Organisations A comparative study of motivations and impacts. Scott Mc considered as the minimum standard for a quality management system. The number of ISO 9001 certified if the motives for obtaining ISO 9001 certification, and the perceived impacts to be derived from ISO 9001

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sector reform impact on rural drinking water schemes -A case study from Raigad district in Maharashtra  

E-Print Network [OSTI]

- Sector reform impact on rural drinking water schemes - A case study from Raigad district of Technology, Bombay Abstract: This paper analyses the ground level impact of the national rural drinking water policy in Maharashtra. We observe that compared to what is reflected in the national rural drinking water

Sohoni, Milind

102

Electricit de France's study of the acoustic scintillation flow meter results in expanding its range and sensitivity  

E-Print Network [OSTI]

Electricité de France's study of the acoustic scintillation flow meter results in expanding its to study the Acoustic Scintillation Flow Meter (ASFM) developed by ASL AQFlow. The study was done for the next generation of acoustic scintillation flow meters. 1. Background For EDF's hydraulic power division

Paris-Sud XI, Université de

103

Experimental studies of zonal flow and field in compact helical system plasma  

SciTech Connect (OSTI)

The experimental studies on zonal flows and turbulence have been carried out in Compact Helical System [K. Matsuoka, S. Kubo, M. Hosokawa et al., in Plasma Physics and Controlled Nuclear Fusion Research, Proc. 12th Int. Conf., Nice, 1988 (International Atomic Energy Agency, Vienna, 1989, Vol. 2, p. 411] using twin heavy ion beam probes. The paper presents the experimental observations of stationary zonal flow, nonlinear couplings between zonal flow and turbulence, and the role of zonal flow in the improved confinement, together with the recent discovery of zonal magnetic field. The presented experimental results strongly support the new paradigm that the plasma transport should be considered as a system of drift wave and zonal flows, and provides the first direct evidence for turbulence dynamo that the structured magnetic field can be really generated by turbulence.

Fujisawa, A.; Itoh, K.; Shimizu, A.; Nakano, H.; Ohshima, S.; Iguchi, H.; Matsuoka, K.; Okamura, S.; Minami, T.; Yoshimura, Y.; Nagaoka, K.; Ida, K.; Toi, K.; Takahashi, C.; Kojima, M.; Nishimura, S.; Isobe, M.; Suzuki, C.; Akiyama, T.; Ido, T. [National Institute for Fusion Science, Oroshi-cho, Toki-shi, 509-52 (Japan)] (and others)

2008-05-15T23:59:59.000Z

104

Theoretical and numerical studies on the flow multiplicity phenomenon for gas–solids two-phase flows in CFB risers  

Science Journals Connector (OSTI)

The dependence of the fully-developed flow profiles on the inlet flow conditions for gas–solids two-phase flows, i.e. the flow multiplicity phenomenon, in circulating fluidized bed (CFB) risers was proposed and discussed in this article. The flow multiplicity phenomenon for gas–solids two-phase flows was first proved mathematically based on the conservation equations of mass and momentum. Then the CFD model using Eulerian–Eulerian approach with k–? turbulence model for each phase was further adopted to analyze the details of this flow multiplicity phenomenon. It is theoretically and numerically revealed that for gas–solids two-phase flows, the flow profiles in the fully-developed region are always dominated by the flow profiles at the inlet. The solids concentration profile is closely coupled with the velocity profile, and the inlet solids concentration and velocity profiles can largely influence the fully-developed concentration and velocity profiles.

B. Peng; C. Zhang; J. Zhu

2011-01-01T23:59:59.000Z

105

Experimental study of vortex generators effects on low Reynolds number airfoils in turbulent flow  

Science Journals Connector (OSTI)

In the present work, we study the aerodynamic effects of triangular vortex generators, as passive flow control devices, placed on the upper surface of an airfoil submitted to a low Reynolds number turbulent flow. In the experiments, different configurations of those devices have been studied. An Eppler 387 airfoil was used. The tests were performed in a turbulent boundary layer wind tunnel using a two component aerodynamic balance and flow visualisation systems. Turbulent flow characterisation was made by means of hot wire anemometry. Calculations of local turbulent intensity as well as temporal and spatial turbulent scales were made. Vortex generators were located at 10% and 20% of the airfoil chord from the leading edge, modifying its angle of incidence refereed to the free stream. The results show changes in the aerodynamic section coefficients, C1, Cd and C1, for the different vortex generator configurations. Neither hysteresis effects, nor leading edge bubbles were found in the experiments.

Juan Sebastián Delnero; Julio Marañon Di Leo; Mauricio Ezequiel Camocardi; Mariano A. Martinez; Jorge L. Colman Lerner

2012-01-01T23:59:59.000Z

106

Laser velocimetry study of the flow field in a centrifugal pump  

E-Print Network [OSTI]

May 1993 Major Subject: Mechanical Engineering LASER VELOCIMETRY STUDY OF THE FLOW FIELD IN A CENTRIFUGAL PUMP A Thesis by KAZI M. RASHID Approved as to style and content by: G. L. M rison (Co-Chair of Committee) R. E. DeOtte, Jr. (Co... analyzer Pump speed (rpm) Pump specific speed Optimum specific speed PMT P? PS R SCA SS TPHC Ui, . +ass Vimi mimi Static (wall) pressure Photomultiplier tube Stagnation pressure Pressure surface of impeller Flow rate Radial distance from...

Rashid, Kazi M.

1993-01-01T23:59:59.000Z

107

Electron impact study of ionization and dissociation of monosilane and disilane  

Science Journals Connector (OSTI)

Electron impact study of ionization and dissociation of monosilane and disilane ... Formation Mechanism of Hydrogenated Silicon Clusters during Thermal Decomposition of Disilane ... Formation Mechanism of Hydrogenated Silicon Clusters during Thermal Decomposition of Disilane ...

P. Potzinger; F. W. Lampe

1969-01-01T23:59:59.000Z

108

A Transcendental Phenomenological Examination on the Impact of Advising on the Decision to Study Abroad  

E-Print Network [OSTI]

to increase high-impact experiences for agricultural students, it is important to understand advisor and peer advisor perspectives. The purpose of this study was to understand departmental advisors’ and peer advisors’ perceptions related to a student’s intent...

Henry, Julianne Shauna

2014-08-06T23:59:59.000Z

109

World Bank-Morocco Study on the Impact of Climate Change on the...  

Open Energy Info (EERE)

report on climate change impacts on crop yields in Morocco. It is part of a larger study led by the World Bank and the Government of Morocco on climate change and agriculture. The...

110

Cotton flow  

E-Print Network [OSTI]

Using the conformally invariant Cotton tensor, we define a geometric flow, the "Cotton flow", which is exclusive to three dimensions. This flow tends to evolve the initial metrics into conformally flat ones, and is somewhat orthogonal to the Yamabe flow, the latter being a flow within a conformal class. We define an entropy functional, and study the flow of nine homogeneous spaces both numerically and analytically. In particular, we show that the arbitrarily deformed homogeneous 3-sphere flows into the round 3-sphere. Two of the nine homogeneous geometries, which are degenerated by the Ricci flow, are left intact by the Cotton flow.

Ali Ulas Ozgur Kisisel; Ozgur Sarioglu; Bayram Tekin

2008-06-17T23:59:59.000Z

111

The Impact of College Students' Life Experiences on the Various Dimensions of Wellness: A Qualitative Study  

E-Print Network [OSTI]

, hereafter Lone Star Liberty University (LSLU). More specifically, this study aims at evaluating which particular dimension of wellness these health education majors perceive as most influenced or impacted, by their college life experience. 10..., hereafter Lone Star Liberty University (LSLU). More specifically, this study aims at evaluating which particular dimension of wellness these health education majors perceive as most influenced or impacted, by their college life experience. 10...

Garcia, Kristina Marie

2012-07-16T23:59:59.000Z

112

A numerical study of flow-structure interactions with application to flow past a pair of cylinders  

E-Print Network [OSTI]

Flow-structure interaction is a generic problem for many engineering applications, such as flow--induced oscillations of marine risers and cables. In this thesis a Direct Numerical Simulation (DNS) approach based on ...

Papaioannou, Georgios (Georgios Vasilios), 1975-

2004-01-01T23:59:59.000Z

113

A New Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols  

SciTech Connect (OSTI)

For studying the formation and photochemical/thermal reactions of aerosols relevant to the troposphere, a unique, high-volume, slow-flow, stainless steel aerosol flow system equipped with 5 UV lamps has been constructed and characterized experimentally. The total flow system length 6 is 8.5 m and includes a 1.2 m section used for mixing, a 6.1 m reaction section and a 1.2 m 7 transition cone at the end. The 45.7 cm diameter results in a smaller surface to volume ratio than is found in many other flow systems and thus reduces the potential contribution from wall reactions. The latter are also reduced by frequent cleaning of the flow tube walls which is made feasible by the ease of disassembly. The flow tube is equipped with ultraviolet lamps for photolysis. This flow system allows continuous sampling under stable conditions, thus increasing the amount of sample available for analysis and permitting a wide variety of analytical techniques to be applied simultaneously. The residence time is of the order of an hour, and sampling ports located along the length of the flow tube allow for time-resolved measurements of aerosol and gas-phase products. The system was characterized using both an inert gas (CO2) and particles (atomized NaNO3). Instruments interfaced directly to this flow system include a NOx analyzer, an ozone analyzer, relative humidity and temperature probes, a scanning mobility particle sizer spectrometer, an aerodynamic particle sizer spectrometer, a gas chromatograph-mass spectrometer, an integrating nephelometer, and a Fourier transform infrared spectrophotometer equipped with a long path (64 m) cell. Particles collected with impactors and filters at the various sampling ports can be analyzed subsequently by a variety of techniques. Formation of secondary organic aerosol from ?-pinene reactions (NOx photooxidation and ozonolysis) are used to demonstrate the capabilities of this new system.

Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Perraud, Veronique; Bruns, Emily; Alexander, M. L.; Zelenyuk, Alla; Dabdub, Donald; Finlayson-Pitts, Barbara J.

2010-05-01T23:59:59.000Z

114

Experimental study of heat flows in the walls of a high-enthalpy mhd channel  

SciTech Connect (OSTI)

This article reports results of experimental studies of local heat flows in the walls of an MHD channel during different regimes of its operation. Special attention was given to aspects of the reliability of measurement of heat flow to B-walls. Tests were conducted on a unit consisting of a Faraday MHD channel with sectional electrodes operating in the accelerator regime. A basic diagram of the unit is shown. Tests were conducted with the primary nozzle and power was supplied along zones 160 and 280 mm long. The data obtained were analyzed using the electrogasdynamic flow pattern established for each regime from numerical solution of a system of quasiunidimensional magnetogasdynamic equations. Results are presented of measurement and analysis of gasdynamic and electrodynamic characteristics of flow in the MHD channel.

Alferov, V.I.; Rudakova, A.P.; Shcherbakov, G.I.; Sukhobokov, A.D.; Vitskoskaya, O.N.

1986-01-01T23:59:59.000Z

115

Velocity and Concentration Studies of Flowing Suspensions by Nuclear Magnetic Resonance Imaging  

SciTech Connect (OSTI)

Nuclear magnetic resonance imaging (NMRI) techniques were developed to study concentrated suspension flows. Some of the proposed tasks were completed and others partly completed before the funding was terminated. The tasks completed were (1) materials selection for imaging of both particle and fluid components, (2) pipe flow measurements, and (3) flows in complex geometries. The task tackled with good progress is to develop rapid imaging techniques by analog compensation of eddy currents generated by the gradient pulses and real-time image reconstruction from the rapidly obtained data. The most suitable combination of materials arrived at is pharmaceutical beads in silicon oil. Their relaxation times T, are sufficiently different to permit imaging the two components separately. The pipe flow experiment used 3 mm, neutrally buoyant, plastic particles, up to 40% by volume, in 80-90W transmission oil flowing in a 5 cm diameter pipe. A series of distances ranging from 60 cm to 6 m downstream from a commercial mixer was studied. The flow is fully developed at 6 m and the velocity and concentration profiles agree with the earlier lower resolution experiments.

Fukushima, E.

1997-04-01T23:59:59.000Z

116

Velocity and Concentration Studies of Flowing Suspensions by Nuclear Magnetic Resonance Imaging  

SciTech Connect (OSTI)

Nuclear magnetic resonance imaging (NMRI) techniques were developed to study concentrated suspension flows. Some of the proposed tasks were completed and others partly completed before the funding was terminated. The tasks completed were (1) materials selection for imaging of both particle and fluid components, (2) pipe flow measurements, and (3) flows in complex geometries. The task tackled with good progress is to develop rapid imaging techniques by analog compensation of eddy currents generated by the gradient pulses and real-time image reconstruction from the rapidly obtained data. The most suitable combination of materials arrived at is pharmaceutical beads in silicon oil. Their relaxation times T, are sufficiently different to permit imaging the two components separately. The pipe flow experiment used 3 mm, neutrally buoyant, plastic particles, up to 40% by volume, in 80-90W transmission oil flowing in a 5 cm diameter pipe. A series of distances ranging from 60 cm to 6 m downstream from a commercial mixer was studied. The flow is fully developed at 6 m and the velocity and concentration profiles agree with the earlier lower resolution experiments. The eddy current compensation scheme works well for two channels and is being extended to eight channels including the uniform field compensation term. In addition, we have implemented a rapid reconstruction hardware that processes and displays images in a fraction of a second.

Fukushima, E.

1997-01-01T23:59:59.000Z

117

Study of nuclear dynamics of neutron-rich colliding pair at energy of vanishing flow  

E-Print Network [OSTI]

We study nuclear dynamics at the energy of vanishing flow of neutron-rich systems having N/Z ratio 1.0, 1.6 and 2.0 throughout the mass range at semi central colliding geometry. In particular we study the behavior of average and maximum density with N/Z dependence of the system.

Sakshi Gautam

2011-07-28T23:59:59.000Z

118

PROBABILISTIC SIMULATION OF SUBSURFACE FLUID FLOW: A STUDY USING A NUMERICAL SCHEME  

SciTech Connect (OSTI)

There has been an increasing interest in probabilistic modeling of hydrogeologic systems. The classical approach to groundwater modeling has been deterministic in nature, where individual layers and formations are assumed to be uniformly homogeneous. Even in the case of complex heterogeneous systems, the heterogeneities describe the differences in parameter values between various layers, but not within any individual layer. In a deterministic model a single-number is assigned to each hydrogeologic parameter, given a particular scale of interest. However, physically there is no such entity as a truly uniform and homogeneous unit. Single-number representations or deterministic predictions are subject to uncertainties. The approach used in this work models such uncertainties with probabilistic parameters. The resulting statistical distributions of output variables are analyzed. A numerical algorithm, based on axiomatic principles of probability theory, performs arithmetic operations between probability distributions. Two subroutines are developed from the algorithm and incorporated into the computer program TERZAGI, which solves groundwater flow problems in saturated, multi-dimensional systems. The probabilistic computer program is given the name, PROGRES. The algorithm has been applied to study the following problems: one-dimensional flow through homogeneous media, steady-state and transient flow conditions, one-dimensional flow through heterogeneous media, steady-state and transient flow conditions, and two-dimensional steady-stte flow through heterogeneous media. The results are compared with those available in the literature.

Buscheck, Timothy Eric

1980-03-01T23:59:59.000Z

119

Experimental Study on Heat Transfer of Single-Phase Flow and Boiling Two-Phase Flow in Vertical Narrow Annuli  

SciTech Connect (OSTI)

Water single-phase and nucleate boiling heat transfer were experimentally investigated in vertical annuli with narrow gaps. The experimental data about water single-phase flow and boiling two-phase flow heat transfer in narrow annular channel were accumulated by two test sections with the narrow gaps of 1.0 mm and 1.5 mm. Empirical correlations to predict the heat transfer of the single-phase flow and boiling two-phase flow in the narrow annular channel were obtained, which were arranged in the forms of the Dittus-Boelter for heat transfer coefficients in a single-phase flow and the Jens-Lottes formula for a boiling two-phase flow in normal tubes, respectively. The mechanism of the difference between the normal channel and narrow annular channel were also explored. From experimental results, it was found that the turbulent heat transfer coefficients in narrow gaps are nearly the same to the normal channel in the experimental range, and the transition Reynolds number from a laminar flow to a turbulent flow in narrow annuli was much lower than that in normal channel, whereas the boiling heat transfer in narrow annular gap was greatly enhanced compared with the normal channel. (authors)

Suizheng Qiu; Guanghui Su; Dounan Jia [Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049 (China); Minoru Takahashi [Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152 (Japan)

2002-07-01T23:59:59.000Z

120

Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization  

E-Print Network [OSTI]

). Inexplicably and inexcusably the diagrams of surface shear stress lines labelled figure 15(a) (i) and (ii. 570 should be replaced by the following text: Lykoudis (Purdue)gave an analysis of liquid-metal MHD- developed laminar-flow analysis for an MHD duct flow, to work out the effects of these two layers. He

Cambridge, University of

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Study of Gas Solid Flow Characteristics in Cyclone Inlet Ducts of A300Mwe CFB Boiler  

Science Journals Connector (OSTI)

Gas solid flow characteristics in cyclone’s inlet duct of a 300MW CFB boiler were studied in a cold circulating fluidized bed (CFB) experimental setup according to a 410t/h CFB boiler with a scale of 10?1....Figs...

J. Y. Tang; X. F. Lu; J. Lai; H. Z. Liu

2010-01-01T23:59:59.000Z

122

The 2007/08 Iowa Grain and Biofuel Flow Study: A Survey Report  

E-Print Network [OSTI]

by the expanding production of biofuels, the linkage between the agricultural and energy markets is evolvingThe 2007/08 Iowa Grain and Biofuel Flow Study: A Survey Report Tun-Hsiang (Edward) Yu and Chad Hart: www.card.iastate.edu. Permission is granted to excerpt or quote this information with appropriate

Grissino-Mayer, Henri D.

123

Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study  

E-Print Network [OSTI]

Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study Fridolin of Denmark, DTU Nanotech, Kongens Lyngby, Denmark Abstract In recent years, the interest in small-scale bio-reactors microfluidic bio-reactors, we develop a general design of a continually feed bio- reactor with uniform

124

Preliminary study assesses potential impact of seismic event at Los Alamos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Preliminary study assesses potential impact of seismic event at Los Preliminary study assesses potential impact of seismic event at Los Alamos Preliminary study assesses potential impact of seismic event at Los Alamos New or proposed facilities are designed to meet the latest seismic response criteria. April 15, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

125

Experimental study on heat transfer to supercritical water flowing through tubes  

SciTech Connect (OSTI)

A test facility named SWAMUP (Supercritical Water Multi-Purpose Loop) has been constructed in Shanghai Jiao Tong Univ. to investigate heat transfer and pressure drop through tubes and rod bundles. SWAMUP is a closed loop with operating pressure up to 30 MPa, outlet-water temperature up to 550 deg. C, and mass flow rate up to 5 t/h. In this paper, experimental study has been carried out on heat transfer of supercritical water flowing vertically through tubes (ID=7.6 and 10 mm). A large number of test points in tubes has been obtained with a wide range of heat flux (200-1500 kw/m{sup 2}) and mass flux (450-2000 kg/m{sup 2}s). Test results showed that heat transfer deterioration (HTD) caused by buoyancy effect only appears in upward flow and HTD caused by acceleration effect appears both in upward flow and downward flow. The heat transfer coefficients (HTC) produced in tube tests were compared with existing heat transfer correlations. (authors)

Zhao, M.; Gu, H.; Cheng, X. [School of Nuclear Science and Engineering, Shanghai Jiao Tong Univ. SJTU, 800 Dongchuan Road, Shanghai (China)

2012-07-01T23:59:59.000Z

126

Numerical study of transition to supersonic flows in the edge plasma  

SciTech Connect (OSTI)

The plasma scrape-off layer (SOL) in a tokamak is characterized by ion flow down a long narrow flux tube terminating on a solid surface. The ion flow velocity along a magnetic field line can be equal to or greater than sonic at the entrance of a Debye sheath or upstream in the presheath. This paper presents a numerical study of the transition between subsonic and supersonics flows. A quasineutral one-dimensional (1D) fluid code has been used for modeling of plasma transport in the SOL along magnetic field lines, both in steady state and under transient conditions. The model uses coupled equations for continuity, momentum, and energy balance with ionization, radiation, charge exchange, and recombination processes. The recycled neutrals are described in the diffusion approximation. Standard Bohm sheath criterion is used as boundary conditions at the material surface. Three conditions conducive for the generation of supersonic flows in SOL plasmas have been explored. It is found that in steady state high (attached) and low (detached) divertor temperatures cases, the role of particle, momentum, and energy loss is critical. For attached case, the appearance of shock waves in the divertor region if the incoming plasma flow is supersonic and its effect on impurity retention is presented. In the third case, plasma expansion along the magnetic field can yield time-dependent supersonic solutions in the quasineutral rarefaction wave. Such situations can arise in the parallel transport of intermittent structures such as blobs and edge localized mode filaments along field lines.

Goswami, Rajiv, E-mail: rajiv@ipr.res.in; Artaud, Jean-François; Imbeaux, Frédéric [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar—382428 (India)

2014-07-15T23:59:59.000Z

127

Scoping Study on the Safety Impact of Valve Spacing in Natural Gas Pipelines  

SciTech Connect (OSTI)

The U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration (PHMSA) is responsible for ensuring the safe, reliable, and environmentally sound operation of the nation's natural gas and hazardous liquid pipelines. Regulations adopted by PHMSA for gas pipelines are provided in 49 CFR 192, and spacing requirements for valves in gas transmission pipelines are presented in 49 CFR 192.179. The present report describes the findings of a scoping study conducted by Oak Ridge National Laboratory (ORNL) to assist PHMSA in assessing the safety impact of system valve spacing. Calculations of the pressures, temperatures, and flow velocities during a set of representative pipe depressurization transients were carried out using a one-dimensional numerical model with either ideal gas or real gas properties for the fluid. With both ideal gas and real gas properties, the high-consequence area radius for any resulting fire as defined by Stevens in GRI-00/0189 was evaluated as one measure of the pipeline safety. In the real gas case, a model for convective heat transfer from the pipe wall is included to assess the potential for shut-off valve failures due to excessively low temperatures resulting from depressurization cooling of the pipe. A discussion is also provided of some additional factors by which system valve spacing could affect overall pipeline safety. The following conclusions can be drawn from this work: (1) Using an adaptation of the Stephens hazard radius criteria, valve spacing has a negligible influence on natural gas pipeline safety for the pipeline diameter, pressure range, and valve spacings considered in this study. (2) Over the first 30 s of the transient, pipeline pressure has a far greater effect on the hazard radius calculated with the Stephens criteria than any variations in the transient flow decay profile and the average discharge rate. (3) Other factors besides the Stephens criteria, such as the longer burn time for an accidental fire, greater period of danger to emergency personnel, increased unavoidable loss of gas, and possible depressurization cooling of the shut-off valves may also be important when deciding whether a change in the required valve spacing would be beneficial from a safety standpoint. (4) The average normalized discharge rate of {lambda}{sub avg} = 0.33 assumed by Stephens in developing his safety criteria is an excellent conservative value for natural gas discharge at the pressures, valve spacings, and pipe diameter used in this study. This conclusion remains valid even when real rather than ideal gas properties are considered in the analysis. (5) Significant pipe wall cooling effects (T{sub w} < -50 F or 228 K) can extend for a mile or more upstream from the rupture point within 30 s of a break. These conditions are colder than the temperature range specifications for many valve lubricants. The length of the low-temperature zone due to this cooling effect is also essentially independent of the system shut-off valve spacing or the distance between the break and a compressor station. (6) Having more redundant shut-off valves available would reduce the probability that pipe cooling effects could interfere with isolating the broken area following a pipeline rupture accident.

Sulfredge, Charles David [ORNL

2007-07-01T23:59:59.000Z

128

Study of junction flows in louvered fin round tube heat exchangers using the dye injection technique  

SciTech Connect (OSTI)

Detailed studies of junction flows in heat exchangers with an interrupted fin design are rare. However, understanding these flow structures is important for design and optimization purposes, because the thermal hydraulic performance of heat exchangers is strongly related to the flow behaviour. In this study flow visualization experiments were performed in six scaled-up models of a louvered fin round tube heat exchanger. The models have three tube rows in a staggered layout and differ only in their fin spacing and louver angle. A water tunnel was designed and built and the flow visualizations were carried out using dye injection. At low Reynolds numbers the streakline follows the tube contours, while at higher Reynolds numbers a horseshoe vortex is developed ahead of the tubes. The two resulting streamwise vortex legs are destroyed by the downstream louvers (i.e. downstream the turnaround louver), especially at higher Reynolds numbers, smaller fin pitches and larger louver angles. Increasing the fin spacing results in a larger and stronger horseshoe vortex. This illustrates that a reduction of the fin spacing results in a dissipation of vortical motion by mechanical blockage and skin friction. Furthermore it was observed that the vortex strength and number of vortices in the second tube row is larger than in the first tube row. This is due to the thicker boundary layer in the second tube row, and the flow deflection, which is typical for louvered fin heat exchangers. Visualizations at the tube-louver junction showed that in the transition part between the angled louver and the flat landing a vortex is present underneath the louver surface which propagates towards the angled louver. (author)

Huisseune, H.; Willockx, A.; De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); T'Joen, C. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); Department Radiation, Radionuclides and Reactors, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); De Jaeger, P. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); NV Bekaert SA, Bekaertstraat 2, 8550 Zwevegem (Belgium)

2010-11-15T23:59:59.000Z

129

Studies on the applicability of a flow coupler to a liquid-metal fast breeder reactor plant  

SciTech Connect (OSTI)

A flow coupler is considered as an alternative to the conventional primary pump in a liquid-metal fast breeder reactor (LMFBR). A conceptual design of a flow coupler combined with an intermediate heat exchanger in a pool-type LMFBR was done. Based on this design, a one-tenth-scale flow coupler model was built and successfully operated in a high-temperature sodium loop. To estimate the flow coupler characteristics, a quasi-one-dimensional code was developed. From these studies, the flow coupler pump concept appears to be feasible for actual use in an LMFBR.

Hattori, S.; Takuma, S.; Nemoto, K. (Central Research Institute of the Electric Power Industry, 1-6-1 Ohtemachi,, Chiyoda-ku, Tokyo 100 (JP)); Terada, M.; Sano, T. (Mitsubishi Heavy Industries, Ltd., 2-5-1 Marunouchi, Chiyoda-ku, Tokyo 100 (JP))

1990-04-01T23:59:59.000Z

130

Flow visualisation in inclined louvered fins  

SciTech Connect (OSTI)

In this study the flow within an interrupted fin design, the inclined louvered fin, is investigated experimentally through visualisation. The inclined louvered fin is a hybrid of the offset strip fin and standard louvered fin, aimed at improved performance at low Reynolds numbers for compact heat exchangers. The flow behaviour is studied in six geometrically different configurations over a range of Reynolds numbers and quantified using the concept of 'fin angle alignment factor'. The transition from steady laminar to unsteady flow was studied in detail. The fin geometry had a very large impact on the transitional flow behaviour, especially on vortex shedding. (author)

T'Joen, C.; De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University-UGent, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); Jacobi, A. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States)

2009-04-15T23:59:59.000Z

131

A Comparative Study on the Environmental Impact of CO2 Supermarket Refrigeration Systems  

SciTech Connect (OSTI)

Supermarket refrigeration systems have high environmental impact due to their large refrigerant charge and high leak rates. Accordingly, the interest in using natural refrigerants, such as carbon dioxide (CO2), and new refrigerant blends with low GWP in such systems is increasing. In this paper, an open-source Life Cycle Climate Performance (LCCP) framework is presented and used to compare the environmental impact of three supermarket refrigeration systems. These systems include a transcritical CO2 booster system, a cascade CO2/N-40 system, and a baseline R-404A multiplex direct expansion system. The study is performed for cities representing different climates within the USA using EnergyPlus to simulate the systems' hourly performance. Finally, a parametric analysis is performed to study the impact of annual leak rate on the systems' LCCP.

Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Sharma, Vishaldeep [ORNL; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

2014-01-01T23:59:59.000Z

132

Grid Impacts of Wind Power: A Summary of Recent Studies in the United States; Preprint  

SciTech Connect (OSTI)

Several detailed technical investigations of grid ancillary service impacts of wind power plants in the United States have recently been performed. These studies were applied to Xcel Energy (in Minnesota) and PacifiCorp and the Bonneville Power Administration (both in the northwestern United States). Although the approaches vary, three utility time frames appear to be most at issue: regulation, load following, and unit commitment. This paper describes and compares the analytic frameworks from recent analysis and discusses the implications and cost estimates of wind integration. The findings of these studies indicate that relatively large-scale wind generation will have an impact on power system operation and costs, but these impacts and costs are relatively low at penetration rates that are expected over the next several years.

Parsons, B.; Milligan, M.; Zavadil, B.; Brooks, D.; Kirby, B.; Dragoon, K.; Caldwell, J.

2003-06-01T23:59:59.000Z

133

Modeling multiphase flow for high viscosity liquids: a study of vertical/inclined zero net liquid flow  

E-Print Network [OSTI]

° for higher viscosities. The trend suggests that the flow distribution coefficient, C[], varies with fluid viscosity and inclination angle, therefore affecting the liquid holdup in the pipe. A new model is proposed to take into account these factors and its...

Rodriguez, Jose Ramon

2012-06-07T23:59:59.000Z

134

Simulating the impact of pricing policies on residential water demand: a Southern France case study  

E-Print Network [OSTI]

, with an estimated price elasticity of -0.2, is not yet very responsive to price variation. A regional water model water pricing. Keywords: demand elasticity, France, water pricing, residential water demand, simulationSimulating the impact of pricing policies on residential water demand: a Southern France case study

Paris-Sud XI, Université de

135

"Climate change is sure to occur in some form." The study of climate impacts notes  

E-Print Network [OSTI]

"Climate change is sure to occur in some form." 1 #12;The study of climate impacts notes how scientists generally agree that humans are changing the climate, and that if we continue pumping carbon we learn from past climate variations? How can we best adapt to climate change? This report attempts

136

The Recent National Academy of Sciences Study on the Economic and Environmental Impacts of Biofuel Policy  

E-Print Network [OSTI]

The Recent National Academy of Sciences Study on the Economic and Environmental Impacts of Biofuel, Renewable Fuel Standard: Potential Economic and Environmental Effects of U.S. Biofuel Policy. Professor was that the U.S. is unlikely to meet the Renewable Fuel Standard (RFS) for 2022 for cellulosic biofuels. Wally

Ginzel, Matthew

137

Using Reconstructed Dust Climatology to Study the Impacts of Martian Dust Storms on Dynamics  

E-Print Network [OSTI]

Using Reconstructed Dust Climatology to Study the Impacts of Martian Dust Storms on Dynamics L@atm.ox.ac.uk) Abstract We have reconstructed the climatology of the dust on Mars using available retrievals and estimates) a reconstruction of the dust optical depth climatology based on weighted gridding for Martian years 24

Cambridge, University of

138

Solar radiation management impacts on agriculture in China: A case study in the Geoengineering  

E-Print Network [OSTI]

Solar radiation management impacts on agriculture in China: A case study in the Geoengineering, Environment Canada, Toronto, Ontario, Canada, 3 School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada, 4 State Key Laboratory of Earth Surface Processes and Resource Ecology

Robock, Alan

139

Agricultural Economic Impacts of Climate Change in Yolo County (Preliminary) Study objective  

E-Print Network [OSTI]

Agricultural Economic Impacts of Climate Change in Yolo County (Preliminary) Study objective Document the history and projections of agriculturally relevant climate change in Yolo County and assess, and 90% of vegetable revenue is from processed tomatoes. Yolo agriculture has been moving toward more

Ferrara, Katherine W.

140

The Impact of Selected Factors on Effective Advertising: the Case Study of Tanzania Telecommunications Company Limited (TTCL) .  

E-Print Network [OSTI]

??This study examined the impact of selected factors on effective advertising in Tanzania Telecommunications Company Limited with the view that this might be applicable to… (more)

Lusama, Peter N.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Journal of Power Sources xxx (2006) xxxxxx The impact of channel path length on PEMFC flow-field design  

E-Print Network [OSTI]

in three dimensions in a PEMFC. These distributions can lead to flooding or drying of the membrane that may; Flow-field design; Fuel cell simulation; Commercial size PEMFC; Parallel computing; ES-PEMFC 1 flooding when the local partial pressure of water exceeds the saturation pressure for water at the local

Van Zee, John W.

142

Sand transverse dune aerodynamics: 3D Coherent Flow Structures from a computational study  

E-Print Network [OSTI]

The engineering interest about dune fields is dictated by the their interaction with a number of human infrastructures in arid environments. The aerodynamic behaviour of sand dunes in atmospheric boundary layer belongs to the class of bluff bodies. Because of their simple geometry and their frequent occurrence in desert area, transverse sand dunes are usually adopted in literature as a benchmark to investigate dune aerodynamics by means of both computational or experimental approach, usually in nominally 2D setups. The writers suspect the flow in the wake is characterised by 3D features and affected by wind tunnel setup - e.g. blockage effect, duct side wall boundary layer, incoming velocity profile - when experimental studies are carried out. The present study aims at evaluating the 3D flow features of an idealised transverse dune under different setup conditions by means of computational simulations and to compare the obtained results with experimental measurements.

Bruno, Luca

2015-01-01T23:59:59.000Z

143

A study of flow patterns and dissolution kinetics in bubble columns  

SciTech Connect (OSTI)

Research objectives were to: study liquid and gas phase flow patterns in a bubble column reactor by comparing observations made with reported observations and hydrodynamic models; study mixing of two miscible liquid solutions with and without solid suspension in a bubble column reactor; study the kinetics of dissolution of a reactive solid phase suspended in the liquid phase in a bubble column reactor; and calculate mass transfer coefficients and apparent reaction rate from suitable mathematical models. Observations and conclusions are summarized in a series of viewgraphs.

Long, R.; Holbrook, S.; Chang, T. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Chemical Engineering

1997-11-01T23:59:59.000Z

144

Numerical Study of Heavy Oil Flow on Horizontal Pipe Lubricated by Water  

Science Journals Connector (OSTI)

This chapter reports information related to multiphase flow with emphasis to core-annular flow. Industrial application has been given to transient water-heavy ultraviscous oil two-phase flow in horizontal pipe...

Tony Herbert Freire de Andrade…

2012-01-01T23:59:59.000Z

145

A numerical study on the effects of 2d structured sinusoidal elements on fluid flow and heat transfer at microscale  

E-Print Network [OSTI]

Computational fluid dynamics Microchannel Minichannel Surface roughness Roughness elements Heat transfer Fluid to achieve enhancement in heat transfer with relatively low cooling fluid flow rate [1]. In spite of havingA numerical study on the effects of 2d structured sinusoidal elements on fluid flow and heat

Kandlikar, Satish

146

Online Community Experience (OCE) and its impact on customer attitudes: an exploratory study  

Science Journals Connector (OSTI)

Many companies have realised the critical importance of online product communities as a tool to facilitate interactions amongst their customers and to strengthen customer-product ties. This study proposes a new construct, Online Community Experience (OCE), to enhance our understanding of customers' online interactions in such communities and its impact on customers' product-related perceptions and attitudes. We draw on diverse theoretical areas including computer-mediated communication, information processing, and brand communities to identify the critical antecedents of OCE. The model was validated using data collected from a sample of 108 subjects through a set of two questionnaires. The study findings offer strong support for the model and indicate the importance of OCE as a critical mediating variable in understanding the impact of online community participation on customer attitudes and perceptions. The key implications for future research and managerial practice in the areas of online communities, marketing communication, and customer relationship management are discussed.

Priya Nambisan; James Watt

2008-01-01T23:59:59.000Z

147

An experimental and analytical study of annular two phase flow friction pressure drop in a reduced acceleration field  

E-Print Network [OSTI]

AN EXPERIMENTAL AND ANALYTICAL STUDY OF ANNULAR TWO PHASE FLOW FRICTION PRESSURE DROP IN A REDUCED ACCELERATION FIELD A Thesis by MONTCPMERY WHEELER Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Nuclear Engineering AN EXPERIMENTAL AND ANALYTICAL STUDY OF ANNULAR TWO PHASE FLOW FRICTION PRESSURE DROP IN A REDUCED ACCELERATION FIELD A Thesis by MONTGOMERY WHEELER...

Wheeler, Montgomery

1992-01-01T23:59:59.000Z

148

Experimental study on flow and ventilation behaviours over idealised urban roughness  

Science Journals Connector (OSTI)

Flows in the urban boundary layer (UBL) are strongly affected by the inhomogeneous roughness elements at the bottom surface. In particular, in the near-ground region (roughness sublayer), the effect of the surface roughness dominates that complicates the behaviours of mean flow and turbulence and subsequently the near-wall transport processes. To safeguard the health of urban inhabitants, it is crucial to develop an in-depth understanding of the correlation among near-wall fluid motions, UBL turbulence and city ventilation. However, rather limited information is available. In this study, physical modelling in a laboratory wind tunnel is employed to measure the profiles of both stream-wise and vertical velocities over an array consisting of idealised two-dimensional (2D) roughness elements. Various arrangements are adopted in attempt to cover different flow regimes to examine city ventilation problems. The ventilation performance is measured by the air exchange rate (ACH). Consistent with our previous large-eddy simulation (LES) results, the current wind tunnel measurements suggest that city ventilation is dominated by the ACH turbulent component, i.e., air masses are mainly driven by atmospheric turbulence (at least 80% of the total ACH).

Yat-Kiu Ho; Chun-Ho Liu

2014-01-01T23:59:59.000Z

149

Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study  

SciTech Connect (OSTI)

This paper presents an exploratory study of the possible physical impacts of climate change on the electric power system, and how these impacts could be incorporated into resource planning in the Western United States. While many aspects of climate change and energy have been discussed in the literature, there has not yet been a systematic review of the relationship between specific physical effects and the quantitative analyses that are commonly used in planning studies. The core of the problem is to understand how the electric system is vulnerable to physical weather risk, and how to make use of information from climate models to characterize the way these risks may evolve over time, including a treatment of uncertainty. In this paper, to provide the necessary technical background in climate science, we present an overview of the basic physics of climate and explain some of the methodologies used in climate modeling studies, particularly the importance of emissions scenarios. We also provide a brief survey of recent climate-related studies relevant to electric system planning in the Western US. To define the institutional context, we discuss the core elements of the resource and reliability planning processes used currently by utilities and by the Western Electricity Coordinating Council. To illustrate more precisely how climate-related risk could be incorporated into modeling exercises, we discuss three idealized examples. Overall, we argue that existing methods of analysis can and should be extended to encompass the uncertainties related to future climate. While the focus here is on risk related to physical impacts, the same principles apply to a consideration of how future climate change policy decisions might impact the design and functioning of the electric grid. We conclude with some suggestions and recommendations on how to begin developing this approach within the existing electric system planning framework for the West.

Coughlin, Katie; Goldman, Charles

2008-12-01T23:59:59.000Z

150

Numerical Study of Geometry and Rotation Dependence on the Flow in Labyrinth Seals  

E-Print Network [OSTI]

for a given flow boundary condition. This formation of SRZ's is more evident in incompressible flow and occur at prohibitively high rotational speeds in case of air (compressible flow). It is also observed that flow with teeth on rotor are characterized...

Yamsani, Vamshi Krishna

2011-10-21T23:59:59.000Z

151

The impact of railroad mergers on grain transportation markets: a Kansas case study  

Science Journals Connector (OSTI)

While there have been many studies of the impact of railroad deregulation on agricultural transportation markets there have been very few that address the impact of railroad mergers on rail grain prices and the distribution of efficiency gains. The purpose of this paper is to add to the sparse literature regarding the effect of railroad mergers on agricultural transportation markets. Given the ever declining number of Class I railroads, this research is very timely. The specific objectives of the research are as follows: (1) Analyze the impact of the Burlington Northern (BN)–Santa Fe (SF) merger on the ability of the BNSF to increase prices on movements of Kansas wheat to Houston, Texas. (2) Analyze the impact of the Union Pacific (UP)–Southern Pacific (SP) merger on the ability of the UPSP to increase prices on movements of Kansas wheat to Houston, Texas. (3) Analyze changes in Kansas wheat logistics system costs as a result of the BN–SF and UP–SP mergers. Two models are developed to achieve the objectives of the study. A network model of the wheat logistics system is used to identify the least cost transportation routes from the Kansas study area to the market at Houston, Texas. A profit improvement algorithm is developed to measure the amount by which railroads can raise their prices above variable cost. The BNSF and UPSP achieve only minor increases in market power (measured by the ratio of revenue to variable cost) because the merged railroads have only slight advantages in cost relative to other railroads that serve the same areas as the merged railroads. Wheat shippers benefit from merger-induced reductions in transportation and handling costs. Shippers are likely to capture a significant share of these cost reductions since intrarailroad competition is present after the mergers. Transport cost reductions accompany mergers due to more direct routing of wheat shipments and the assumption that the merged railroad operates at the costs of the lower cost partner.

Joon Je Park; Michael W. Babcock; Kenneth Lemke

1999-01-01T23:59:59.000Z

152

A STUDY OF THE STRUCTURAL CONTROL OF FLUID FLOW WITHIN THE CERRO PRIETO GEOTHERMAL FIELD, BAJA CALIFORNIA, MEXICO  

E-Print Network [OSTI]

Imperial and Mexicali Valleys. 8 A Study of the Structural Control of Fluid Flow within the Cerro Prieto GeothermalImperial-Mexicali Valley is recognized as having a potential for large scale production of elec- dominated geothermal

Noble, John E.

2011-01-01T23:59:59.000Z

153

Experimental Study on Gas-Solid Flow Charcteristics in a CFB Riser Of 54M in Height  

Science Journals Connector (OSTI)

Understanding the height effect on the gas-solid flow characteristics in a CFB riser is important as more and more large capacity CFB boilers are used and to be developed. In this study, a cold CFB test rig with ...

N. Hu; H. R. Yang; H. Zhang; R. Q. Zhang…

2010-01-01T23:59:59.000Z

154

A numerica1 study of fluid flow and heat transfer in different microchannel heat sinks for electronic chip cooling  

Science Journals Connector (OSTI)

Four different microchannel heat sinks are designed to study the effects of structures in microchannel heat sinks for electronic chips cooling. Based on the theoretic analysis and numerical computation of flow...

Shanglong Xu; Guangxin Hu; Jie Qin…

2012-04-01T23:59:59.000Z

155

List of Publications A Numerical Study of Transient Mixed Convection Flows in a Thermal Storage Tank, J. Solar  

E-Print Network [OSTI]

List of Publications A Numerical Study of Transient Mixed Convection Flows in a Thermal Storage Tank, J. Solar Energy Eng. 105, 246­253 (1983) (with A.M.C. Chan & D. Giusti) An Approximate Analytical

Smereka, Peter

156

Nucleic Acid Content and Nuclear Chromatin Structure of Human Bladder Cell Culture Lines as Studied by Flow Cytofluorometry  

Science Journals Connector (OSTI)

...characterizing tissue culture cell lines, as we have done home,and perhaps in distinguishing benign and malignant epithelial...Sharpless, T., and Darzynkiewicz, z. Urinary Cytology Automation. Preliminary Studies with Acridine Orange Stain and Flow-Through...

Myron R. Melamed; Zbigniew Darzynkiewicz; Frank Traganos; and Thomas K. Sharpless

1977-04-01T23:59:59.000Z

157

Impact of electric vehicles on distribution substations: A Swiss case study  

Science Journals Connector (OSTI)

Abstract An increasing number of electric vehicles (EVs) will have a significant impact on the electricity grids. For target grid planning, it is essential to identify and quantify this impact in terms of local infrastructure overloads. We study the impact of EV charging loads on Swiss distribution substations under different penetration levels and pricing regimes. Unlike mainly conceptual studies focusing on generic distribution grids, we use real data—driving profiles matched to regional circumstances, Swiss substation capacity and load data in the high-voltage grid together with electricity prices—as the main data inputs. To reflect current regulation and contracting schemes, we apply decentral decision-making instead of central control. The results indicate that under a flat electricity tariff and EV penetration levels around 16% the current substation capacity will be sufficient to cover additional EV charging load. However, beyond penetration levels of 50% an increasing number of substations will be overloaded. More significantly, the introduction of dynamic electricity prices can further increase the risk of substation overloads. These results show that EV charging loads can also cause bottlenecks on substations in the high-voltage grid.

Florian Salah; Jens P. Ilg; Christoph M. Flath; Hauke Basse; Clemens van Dinther

2015-01-01T23:59:59.000Z

158

A parametric study of shock jump chemistry, electron temperature, and radiative heat transfer models in hypersonic flows  

E-Print Network [OSTI]

A PARAMETRIC STUDY OF SHOCK JUMP CHEMISTRY, ELECTRON TEMPERATURE, AND RADIATIVE HEAT TRANSFER MODELS IN HYPERSONIC FLOWS A Thesis by ROBERT BRIAN GREENDYKE Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Aerospace Engineering A PARAMETRIC STUDY OF SHOCK JUMP CHEMISTRY, ELECTRON TEMPERATURE, AND RADIATIVE HEAT TRANSFER MODELS IN HYPERSONIC FLOWS A Thesis by ROBERT BRIAN...

Greendyke, Robert Brian

2012-06-07T23:59:59.000Z

159

Impact of ozone on indoor air quality: a preliminary field study M. Nicolas, O. Ramalho, F. Maupetit  

E-Print Network [OSTI]

indoor air quality (IAQ) since they produce secondary pollutants, mainly aldehydes which are known to document the impact on IAQ of outdoor ozone during summer air pollution episodes. For this purpose, a oneImpact of ozone on indoor air quality: a preliminary field study M. Nicolas, O. Ramalho, F

Boyer, Edmond

160

Experimental study of dynamic barite sag in oil-based drilling fluids using a modified rotational viscometer and a flow loop  

Science Journals Connector (OSTI)

During drilling operations, control of the sub-surface pressure is of utmost importance. High density minerals, such as barite and hematite, are used to increase the density of drilling fluids and thereby control these pressures. However, contributing factors, such as the gravitational force, cause the weighting material particles to settle out of the suspension. This is designated as “sag” within the drilling industry and can lead to a variety of major drilling problems, including lost circulation, well control difficulties, poor cement jobs, and stuck pipes. The study of this phenomenon, including ways to mitigate its effects, has long been of interest. In this paper several methods for evaluating dynamic barite sag in oil-based drilling fluids are examined in a flow loop with the use of a rotational viscometer modified by the addition of a sag shoe (MRV). Tests using the MRV in the range of 0–100 RPM were conducted, and the effects of rotation speed on sag were correlated with flow loop tests performed by varying the inner pipe rotation speed. The combined effects of eccentricity and pipe rotation on dynamic barite sag in oil-based drilling fluids are also described in this paper. Flow loop test results indicate that pipe rotation has a greater impact on reducing sag when the pipe is eccentric rather than concentric. Additionally, results in the MRV indicate a strong correlation between the test RPM and the degree of measured sag.

Tan Nguyen; Stefan Miska; Mengjiao Yu; Nicholas Takach; Ramadan Ahmed; Arild Saasen; Tor Henry Omland; Jason Maxey

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Experimental Study on Flow Technology and Steel Corrosion of Lead-Bismuth  

SciTech Connect (OSTI)

For the feasibility study of Pb-Bi-cooled fast reactors (FR) and the Pb-Bi target of accelerator-driven nuclear transmutation systems, Pb-Bi flow technologies were developed and steel corrosion behavior in a Pb-Bi flow was investigated using a Pb-Bi circulation loop. The performance of an electro-magnetic flow meter with electrically insulated electrodes plated with Rh was better than those of conventional and tubular types. Oxygen concentration was controlled by continuous injection of Ar, H{sub 2} and H{sub 2}O mixture gas into the Pb-Bi flow. In order to have desired oxygen potential, the partial pressure ratio of P{sub H{sub 2}}/P{sub H{sub 2}}{sub O} was chosen in the range from 0.12 to 2.2 by bubbling the mixture of Ar and H{sub 2} in water columns at the room temperature. By injecting the mixture gas into the loop for sufficient time, the oxygen potentials measured by the oxygen sensor made of solid electrolyte ZrO{sub 2}-Y{sub 2}O{sub 3} agreed well with those in the injected gas mixture. In the first corrosion test, steels were exposed to a Pb-Bi flow at the temperature of 550 deg. C, the velocity of 2 m/s and the oxygen concentration of {approx}5.0x10{sup -7} wt.% for 959 hours. It was found that the weight loss was larger in the order of SS316, low Cr steel (SCM420) and high Cr steels (STBA26, SUS405, SUS430). Corrosion was suppressed by a Cr oxide layer for high Cr steels. A porous layer was formed on SS316 surface due to high solubility of Ni in Pb-Bi,. In the second corrosion test, the oxygen concentration was kept at 3.6x10{sup -7} wt.% by injecting Ar, H{sub 2} and H{sub 2}O mixture gas into a Pb-Bi flow, and steels were exposed to a Pb-Bi flow at the temperature of 550 deg. C, the velocity of 2 m/s for 1000 hours. Serious erosion damage was observed in SCM420 at the entrance, and some erosion damages appeared in low Cr steels: SCM420, F82H, STBA26 and HCM12 downstream. Crack type damage was observed on the surface of HCM12, and pitting-type damage was observed on the surface of 2 1/4Cr-1Mo steel. Some penetration of Pb-Bi into the materials appeared in some of the erosion-damaged steels. (authors)

Minoru Takahashi; Hiroshi Sekimoto; Kotaro Ishikawa; Naoki Sawada; Tadashi Suzuki; Susumu Yoshida; Toyohiko Yano; Masamitsu Imai [Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Koji Hata [Nuclear Development Corporation, 622-12 Funaishikawa, Tokai-mura, Ibaraki 319-1111 (Japan); Suizheng Qiu [Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049 (China)

2002-07-01T23:59:59.000Z

162

Application Study of the Pump Water Flow Station for Building Energy Consumption Monitoring and Control Optimization  

E-Print Network [OSTI]

. For example, the Venturi meter is commonly used for steam flow measurement, but it is less commonly used for water flow measurement because of the poor accuracy at low flow rates and high installation cost. 2) Displacement flow meter: The meter works... by using the fluid to rotate or displace a device inserted into the flow stream, e.g., a turbine flow meter, tangential paddlewheel meter, etc. It causes extra pressure drop. The bearing wears out and calibration is often needed to ensure accuracy...

Liu, G.; Liu, M.

2006-01-01T23:59:59.000Z

163

Velocity and concentration studies of flowing suspensions by nuclear magnetic resonance imaging. Final report, October 7, 1994--October 6, 1996  

SciTech Connect (OSTI)

Nuclear magnetic resonance imaging techniques were developed to study concentrated suspension flows. The tasks completed were: (1) materials selection for imaging of both particle and fluid components, (2) pipe flow measurements, and (3) flows in complex geometries. The partially completed task is the development of rapid imaging techniques by analog compensation of eddy currents, generated by the gradient pulses, and real-time image reconstruction from the data. The best combination of materials found is pharmaceutical beads in silicon oil. Their relaxation times T{sub 1} are sufficiently different to permit imaging the two components separately. The pipe flow experiment used 3 mm, neutrally buoyant, plastic particles, up to 40% by volume, in 80--90W transmission oil flowing in a 5 cm diameter pipe. Distances ranging from 60 cm to 6 m downstream from a commercial mixer was studied. The flow is fully developed at 6 m and the concentration and velocity profiles agree with earlier lower resolution experiments. The eddy current compensation scheme works well for two channels and is being extended to eight channels. The authors have also built a rapid reconstruction hardware that processes and displays images in a fraction of a second. They studied the flow of neutrally buoyant concentrated suspension past a step expansion and contraction in a cylindrical pipe. Interesting transition is observed at the expansion whereby the high fluids-fraction outer layer spreads to become the outer layer in the larger pipe.

NONE

1996-12-31T23:59:59.000Z

164

Visualization study of bubble behavior in a subcooled flow boiling channel under rolling motion  

Science Journals Connector (OSTI)

Abstract Boiling heat transfer equipment in a vessel can be affected by the additional force which is generated by the rolling, swing and heaving motion of the vessel. Bubble behavior is very important for the research of boiling phenomenon. Bubble behavior under rolling motion condition is experimentally studied by using a high speed camera. The experiment is conducted in a subcooled flow boiling rectangular channel, and the cross section size of the channel is 2 mm × 40 mm. Two types of bubbles with large discrepancies in sliding and condensation behaviors can be observed in the captured images. The first type bubbles disappear quickly after generation and the slide distance is only a few times of bubble maximum diameter, while the second type bubbles can survive a longer time after leaving the nucleation site and slide for a long distance with the flowing fluid. Bubble characteristics under rolling motion are separately studied for different type bubbles based on the above reasons. The results show that the lifetime, maximum diameter, nucleation frequency and sliding velocity of the first type bubble are periodically fluctuated and the period is same with the rolling motion. The fluctuation intensity of the bubble lifetime and maximum diameter can be enhanced by the increase of the rolling amplitude. The peak value of bubble lifetime, maximum diameter, and nucleation frequency appears when the rolling platform plate rolls to the maximum positive angle, while opposite trend can be observed in the variation of bubble sliding velocity. In view of the characteristics of the second type bubbles, lifetime and maximum diameter are not measured. And the variation of nucleation frequency and sliding velocity of the second type bubbles under the effect of rolling motion is same with the first type bubbles. Furthermore, the effects of additional force, variation of local pressure and flow rate oscillation on bubble behavior are analyzed. The results indicate that the fluctuations of the bubble parameters can be generated by the variation of local pressure caused by rolling motion even no influential flow rate fluctuation occurs. The effect of the acceleration variation vertical to the heated surface on bubble behavior is unclear and need more researches in the future work.

Shaodan Li; Sichao Tan; Chao Xu; Puzhen Gao

2015-01-01T23:59:59.000Z

165

Viscosity from elliptic flow: the path to precision  

E-Print Network [OSTI]

Using viscous relativistic hydrodynamics we show that systematic studies of the impact parameter dependence of the eccentricity scaled elliptic flow can distinguish between different models for the calculation of the initial source eccentricity. This removes the largest present uncertainty in the extraction of the specific viscosity of the matter created in relativistic heavy-ion collisions from precise elliptic flow measurements.

Ulrich W. Heinz; J. Scott Moreland; Huichao Song

2009-08-18T23:59:59.000Z

166

Experimental and simulation study of the impact of increased photovoltaic integration with the grid  

Science Journals Connector (OSTI)

The abundance availability and climate-friendly characteristics of solar photovoltaic (PV) energy encourage nations around the globe to adopt it to assist in overcoming global warming as well as build a sustainable society for the future. The intermittent nature of solar energy generation and the associated power electronic inverters with connected consumer loads creates a number of potential challenges in integrating large-scale PV into the grid that affects power quality of the distribution networks. This paper investigates the impacts of varying PV integration into the grid through experimental and simulation studies. Initially several experiments were conducted with varying PV penetration and load conditions using the Renewable Energy Integration Facility at CSIRO Newcastle Australia. Later a simulation model was developed that mimics the experimental facility used at CSIRO to investigate the adverse impacts on integrating large-scale PV into the grid using the power system simulation software PSS Sincal. Experimental and simulation analyses clearly indicate that integration of PV into the grid causes power quality issues such as voltage instability harmonic injection and low power factor into the networks and the level of these impacts increases with the increase of PV penetration.

2014-01-01T23:59:59.000Z

167

Development of an entrained flow gasifier model for process optimization study  

SciTech Connect (OSTI)

Coal gasification is a versatile process to convert a solid fuel in syngas, which can be further converted and separated in hydrogen, which is a valuable and environmentally acceptable energy carrier. Different technologies (fixed beds, fluidized beds, entrained flow reactors) are used, operating under different conditions of temperature, pressure, and residence time. Process studies should be performed for defining the best plant configurations and operating conditions. Although 'gasification models' can be found in the literature simulating equilibrium reactors, a more detailed approach is required for process analysis and optimization procedures. In this work, a gasifier model is developed by using AspenPlus as a tool to be implemented in a comprehensive process model for the production of hydrogen via coal gasification. It is developed as a multizonal model by interconnecting each step of gasification (preheating, devolatilization, combustion, gasification, quench) according to the reactor configuration, that is in entrained flow reactor. The model removes the hypothesis of equilibrium by introducing the kinetics of all steps and solves the heat balance by relating the gasification temperature to the operating conditions. The model allows to predict the syngas composition as well as quantity the heat recovery (for calculating the plant efficiency), 'byproducts', and residual char. Finally, in view of future works, the development of a 'gasifier model' instead of a 'gasification model' will allow different reactor configurations to be compared.

Biagini, E.; Bardi, A.; Pannocchia, G.; Tognotti, L. [Consorzio Pisa Ric, Pisa (Italy). Div Energia Ambiente

2009-10-15T23:59:59.000Z

168

Studies on the development of mossy zinc electrodeposits from flowing alkaline electrolytes  

SciTech Connect (OSTI)

The initiation and characteristics of mossy zinc electrodeposits have been investigated. Batteries with zinc electrodes are candidates for electric vehicle applications; however, this electrode is prone to form non-compact deposits that contribute to capacity loss and battery failure. Moss is deposited when the current density is far from the limiting current. This morphology first appears only after the bulk deposit is approximately 1 {mu}m thick. In this investigation, the effects of flow rate (Re=0--4000), current density (0--50 mA/cm{sup 2}), concentration of the electroactive species (0.25 and 0.5 M), and the concentration of supporting electrolyte (3, 6, and 12 M) on the initiation of moss were examined. The rotating concentric cylinder electrode was employed for most of the experiments; and a flow channel was used to study the development of morphology. After the experiment, the deposit was characterized using microscopic, x-ray diffraction, and profilometric techniques. 94 refs., 72 figs.

Mc Vay, L.

1991-07-01T23:59:59.000Z

169

LES and experimental studies of cold and reacting flow in a swirled partially premixed burner with and without fuel modulation  

SciTech Connect (OSTI)

In devices where air and fuel are injected separately, combustion processes are influenced by oscillations of the air flow rate but may also be sensitive to fluctuations of the fuel flow rate entering the chamber. This paper describes a joint experimental and numerical study of the mechanisms controlling the response of a swirled complex-geometry combustor burning natural gas and air. The flow is first characterized without combustion and LDV results are compared to large eddy simulation (LES) data. The nonpulsated reacting regime is then studied and characterized in terms of the heat release field. Finally the fuel flow rate is pulsated at several amplitudes and the response of the chamber is analyzed using phase-locked averaging and acoustic analysis. Results show that LES and acoustic analysis predict the flame dynamics in this complex configuration with accuracy when heat losses (radiation and convection) are accounted for. (author)

Sengissen, A.X. [CERFACS, 42 Avenue G. Coriolis, 31057 Toulouse cedex (France); Van Kampen, J.F.; Huls, R.A.; Stoffels, G.G.M.; Kok, J.B.W. [University of Twente, Faculty of Engineering, 7500 AE Enschede (Netherlands); Poinsot, T.J. [CERFACS, 42 Avenue G. Coriolis, 31057 Toulouse cedex (France); IMFT, Avenue C. Soula, 31400 Toulouse (France)

2007-07-15T23:59:59.000Z

170

A Phenomenological Study of High-Impact Practices: Exploring Learning Through Coupling Internships and Service-Learning  

E-Print Network [OSTI]

This study describes the experiences of college-age students (18–24 years) engaged in multiple high-impact practices simultaneously in an internship experience in Washington, DC, and in a service-learning experience. They reflected weekly...

Shehane, Melissa Renee'

2014-04-16T23:59:59.000Z

171

The impact of parental involvement: a study of the relationship between homework and kindergarten Texas Primary Reading Inventory scores  

E-Print Network [OSTI]

The purpose of this study was to examine the impact of School Home Links activity guide homework on kindergarten Texas Primary Reading Inventory scores. Student Texas Primary Reading Inventory (TPRI) scores were obtained and analyzed for gains...

Davis, Jill Marie

2004-09-30T23:59:59.000Z

172

Sustainability impact assessment of transportation policies – A case study for Bangalore city  

Science Journals Connector (OSTI)

Abstract The first part of the current study proposes a model for assessing the impact of various transportation policies and projects based on the variation in three pillars of sustainability – environmental, economic and social. The methodology consists of determination of different indicators of sustainability pillars and thus the Composite Sustainability Index (CSI) before and after introduction of a transportation policy. Indicators include air pollution indicators, natural resource consumption indicators, health indicators, accessibility indicators, mobility indicators, commute indicators, and cost indicators. CSI is obtained by summing all these indicators after weighing them using an Analytical Hierarchy Process (AHP). The indicator value under a transportation policy scenario is obtained using the mode shift found using a mode choice model incorporated with the policy variable. The second part consists of a case study for the city of Bangalore where the sustainability impact due to introduction of congestion pricing in the CBD, during peak hour, is tested. A choice model developed from Revealed Preference data (RP) is used in the study. The choice model estimated a reduction of 14.11% and 2.4% respectively in the total trip distance travelled by car and bike trips after introduction of congestion charging. There was also an increase of 1.7% in CSI because of congestion pricing.

Ashish Verma; T.M. Rahul; Malvika Dixit

2014-01-01T23:59:59.000Z

173

Trade liberalisation and the impact of regional trade flows on the mark-ups in South African manufacturing industries.  

E-Print Network [OSTI]

??Since the mid-1990s South Africa has made considerable progress in opening up its trade regime.This study presents estimates of average mark-ups for the manufacturing industries… (more)

Van de Winkel, Tijl

2005-01-01T23:59:59.000Z

174

A cold model experimental study on the flow characteristics of bed material in a fluidized bed bottom ash cooler in a CFB boiler  

Science Journals Connector (OSTI)

A cold model experimental study on the flowing characteristics of bed material between a fluidized bed ash cooler and a furnace of CFB boiler were discussed in this paper. The research results showed that flowing...

Xiaofeng Lu; Yourong Li

2000-12-01T23:59:59.000Z

175

Numerical study for CANDU moderator temperature prediction by using the two-phase flow analysis code, CUPID  

Science Journals Connector (OSTI)

Abstract KAERI has been developing a component-scale thermal–hydraulics code, CUPID. The code adopts a three-dimensional, transient, three-field model for two-phase flow. In this study, we investigated the thermal hydraulic behavior of the moderator inside the Calandria tank of a CANDU reactor by using the CUPID code. At first, we have validated the CUPID code using the experiments that were performed at Stern Laboratories Inc. To avoid the complexity to generate computational geometry around the Calandria tube bundles, a porous media approach was applied for that region and the flow resistance inside the porous media zone was modeled by an empirical correlation. An open media is applied to generate the outer fluid layer including the inlet nozzles. Computational grids near the inlet nozzles should be well-generated because the flow field is very sensitive to the momentum flux from the nozzle. Since the axial flow can be assumed to be invariant for this experiment, a two-dimensional approach was adopted. The mixed flow pattern of forced and natural convection inside the Calandria vessel has been successfully predicted by the CUPID code. The analysis has been further extended to two-phase flow conditions and, then, a map of the local maximum moderator temperature in the Calandria vessel versus the injection flow rate was derived, which can be used to predict the local subcooled margin in the vessel.

Jae Ryong Lee; Sang Gi Park; Han Young Yoon; Hyoung Tae Kim; Jae Jun Jeong

2013-01-01T23:59:59.000Z

176

Economic impact and preservation: a case study of the Big Thicket National Preserve in east Texas  

E-Print Network [OSTI]

Policy Act (NEPA) of 1969, the United States attempted to implement this idea. Among other things, the act required that an environmental impact statement be produced for any new development within the national park system An environmental impact... a finding of no significant impact. By declaring this finding, the park service did not have to comply as strictly with NEPA. However, an economic impact statement was still produced. These original economic assessments in their entirety...

Powis, Jennifer

2013-02-22T23:59:59.000Z

177

Experimental study of fluid flow and heat transfer in tortuous microchannels.  

E-Print Network [OSTI]

??Tortuous microchannels have attracted increasing interest due to great potential to enhance fluid mixing and heat transfer. While the fluid flow and heat transfer in… (more)

Dai, Zhenhui

2014-01-01T23:59:59.000Z

178

THEORETICAL STUDIES ON THE ROLE OF FLOWS AND CURRENTS IN THE...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the Reynolds stress becomes significant. This drives a toroidal flow, which in turn drives the radial electric field. As fluctuation amplitudes decrease, the pressure...

179

Physical and computational studies of slag behavior in an entrained flow gasifier.  

E-Print Network [OSTI]

??This work details an investigation of how to modify slag flow so as to maintain a clear line of sight across the reaction section of… (more)

Pummill, Randy

2012-01-01T23:59:59.000Z

180

Session 1: Geothermal Pumping Systems and Two-Phase Flow Studies  

SciTech Connect (OSTI)

Improvements in electric submersible pumping systems have resulted in a demonstrated downhole running life of one year for low horsepower units operating in 180 C brine. The implementation of a prototype pressurized lubrication system to prevent brine intrusion and loss of lubricating oil from the motor and protector sections has been successfully tested. Second generation pressurized lubrication systems have been designed and fabricated and will be utilized in downhole production pumping tests during FY84. Pumping system lifetime is currently limited by available power cable designs that are degraded by high-temperature brine. A prototype metal-sheathed power cable has been designed and fabricated and is currently undergoing destructive and nondestructive laboratory testing. This cable design has the potential for eliminating brine intrusion into the power delivery system through the use of a hermatically sealed cable from the surface to the downhole motor. The two-phase flow program is directed at understanding the hydrodynamics of two-phase flows. The two-phase flow regime is characterized by a series of flow patterns that are designated as bubble, slug, churn, and annular flow. Churn flow has received very little scientific attention. This lack of attention cannot be justified because calculations predict that the churn flow pattern will exist over a substantial portion of the two-phase flow zone in producing geothermal wells. The University of Houston is experimentally investigating the dynamics of churn flow and is measuring the holdup over the full range of flow space for which churn flow exists. These experiments are being conducted in an air/water vertical two-phase flow loop. Brown University has constructed and is operating a unique two-phase flow research facility specifically designed to address flow problems of relevance to the geothermal industry. An important feature of the facility is that it is dedicated to two-phase flow of a single substance (including evaporation and condensation) as opposed to the case of a two-component two-phase flow. This facility can be operated with horizontal or vertical test sections of constant diameter or with step changes in diameter to simulate a geothermal well profile.

Hanold, R.J.

1983-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Flume studies of sediment transportation in shallow flow with simulated rainfall  

E-Print Network [OSTI]

force exerted on a particle by flowing water, which according to Newton, was equal to Trr V 2 where s is a shape factor (0. 79 for spheres), g is the specific weight s of the particle, r is its radius, and V is the critical bottom velocity. cr... water pipe flow . Turbulent flow can be visualized as being divided into sheets of fluid having one velocity. These sheets are traversed by eddies, and in this manner the flow tends to establish a condition of equilibrium by a mixing process...

Nail, Frank Mitchell

2012-06-07T23:59:59.000Z

182

A study of the effect of surfactants on the flow of water and oil in small capillaries  

E-Print Network [OSTI]

f. f S ftAR + ldM pp(t E~& Pf IEX~g A STUDY OF THE EFFECT OF SURFACTANTS ON THE FLOW OF WATER AND OIL IN SMALL CAPILLARIES ay ) WILLIAM Rx~ LANCASTER Subxnitted to the Graduate School of the Agricultural and Mechanical College of Texas bx... partial fulfillment of the requirements for the degree of MASTER OF SCIENCE hhjxjgxxjg 1$5g jjjBbj t:pt*1 ~Ejjeerla A STUDY OF THE EFFECT OF SURFACTANTS ON THE FLOW OF WATER AND OIL IN SMALL CAPILLARIES A Thesis WILLIAM R. LANCASTER Approved...

Lancaster, William Richard

2012-06-07T23:59:59.000Z

183

A radiant flow reactor for high?temperature reactivity studies of pulverized solids  

Science Journals Connector (OSTI)

Our radiant two?phase flow reactor presents several new possibilities for high?temperature reactivity studies. Most importantly the thermal histories of the suspension and entrainment gas can be independently regulated over wide ranges. At low suspension loadings outlet temperatures can differ by hundreds of degrees and gas temperatures are low enough to inhibit hydrocarbon cracking chemistry so primary products are quenched as soon as they are expelled. With coal suspensions tars were generated with the highest H/C ratio and lowest proton aromaticity ever reported. Alternatively particles and gas can be heated at similar rates to promote secondary chemistry by increasing particle loading. Simply by regulating the furnace temperature arbitrary extents of conversion of coal tar into soot were observed for fixed total mass loss. Under both circumstances heat fluxes are comparable to those in large furnaces so relevant heating rates and reaction times are accessible. Suspensions remain optically thin even for the highest loadings of technological interest because they are only 1 cm wide. Consequently the macroscopic behavior remains firmly connected to single?particle phenomena. Mass and elemental closures are rarely breached by more than 5% in individual runs so interpretations are not subject to inordinate scatter in the data. The reactor is also well suited for combustion studies as demonstrated by extents of carbon and nitrogen burnout from 50% to 100% for various gas?stream oxygen levels.

John C. Chen; Stephen Niksa

1992-01-01T23:59:59.000Z

184

Design and Development of a Test Facility to Study Two-Phase Steam/Water Flow in Porous Media  

SciTech Connect (OSTI)

The concept of relative permeability is the key concept in extending Darcy's law for single phase flow through porous media to the two-phase flow regime. Relative permeability functions are needed for simulation studies of two-phase geothermal reservoirs. These are poorly known inspite of considerable theoretical and experimental investigations during the last decade. Since no conclusive results exist, many investigators use ad hoc parametrization, or adopt results obtined from flow of oil and gas (Corey, 1954). It has been shown by Reda and Eaton (1980) that this can lead to serious deficiencies. Sensitivity of the relative permeability curves for prediction of mass flow rate and flowing enthalpy into geothermal wells has been studied by many investigators (e.g. Eaton and Reda (1980), Bodvarsson et al (1980), Sun and Ershagi (1979) etc.). It can be concluded from these studies that the beehavior of a two-phase steam/water reservoir depends greatly on the relative permeability curves used. Hence, there exists a need for obtaining reliable relative permeability functions.

Verma, Ashok K.; Pruess, Karsten; Bodvarsson, G.S.; Tsang, C.F.; Witherspoon, Paul A.

1983-12-15T23:59:59.000Z

185

Feasibility Study of Developing a Virtual Chilled Water Flow Meter at Air Handling Unit Level  

E-Print Network [OSTI]

In this paper, a virtual Air handling unit (AHU) level water flow meter is explored by using a control valve as a measurement device. The flow through the valve is indirectly calculated using differential pressure over both the valve and its...

Song, L.; Swamy, A.; Shim, G.

2011-01-01T23:59:59.000Z

186

Environmental impact assessment of abnormal events: a follow-up study  

SciTech Connect (OSTI)

Impact analyses included in environmental assessments for a selected nuclear power plant, petroleum storage facility, crude oil pipeline, and geopressure well that have experienced operational, abnormal events are compared with the data quantifying the environmental impacts of the events. Comparisons of predicted vs actual impacts suggests that prediction of the types of events and associated impacts could be improved; in some instances, impacts have been underestimated. Analysis of abnormal events is especially important in environmental assessment documents addressing a technology that is novel or unique to a particular area. Incorporation of abnormal event impact analysis into project environmental monitoring and emergency response plans can help improve these plans and can help reduce the magnitude of environmental impacts resulting from said events.

Hunsaker, D.B. Jr.; Lee, D.W.

1985-01-01T23:59:59.000Z

187

National energy strategy: Recent studies comparing the health impacts of energy technologies  

SciTech Connect (OSTI)

The human health impacts of energy technologies arise mostly from routine emissions of pollutants and from traumatic accidents, which may also release pollutants. The natures and magnitudes of the risks differ among technologies -- they are a lot different for some -- and so the differences must be included in any evaluation of their relative merits. Based on the characteristics of their health risks, energy technologies can be classified into three groups: The fuel group, the renewable resources group, and the nuclear group. Within these technology groups, health risks are similar in form and magnitude. But among the groups they are quite different. They occur in different parts of the fuel cycle, to different people, and their characteristics are different with respect to public perceptions of their relative importance in decision making. These groups are compared in this study.

Rowe, M.D.

1990-08-01T23:59:59.000Z

188

Environmental Protection Agency's Model Building Code Noise Control Provisions and Economic Impact Study  

Science Journals Connector (OSTI)

The U.S. E.P.A. Office of Noise Abatement and Control has developed an eight step approach to abate noise in multi?family and educational buildings. The core of this program is the adoption and implementation of the E P.A.'s ModelNoise Control Provisions which can be adopted by state and local jurisdictions and inserted into their existing building codes. The Model Provisions contain recommended noise standards that the E.P.A. feels are practical and sufficient to reduce noise in an average community. A supporting study to the E.P.A.'s Building Code Program is an Economic Impact Study. This study presents a technique for evaluating the acoustical insulation costs defrayed by energy savings. The Cost Minimization Model developed by the National Bureau of Standards for the E.P.A. is also presented. In addition the N.B.S. is undertaking a Benefit Study for the E.P.A. designed to estimate both acoustical benefits to be derived from implementation of the E.P.A.s Model Building Code Noise Control Provisions by local officials and the number of people in their community who will receive these benefits.

C. Caccavari; F. J. Pesce; F. F. Rudder Jr.; S. W. Weber

1981-01-01T23:59:59.000Z

189

I A STUDY OF THE WORKABILITY OF URANIUM BY MEANS OF TENSILE-IMPACT, HARDNESS, AND DROP-HAMMER  

Office of Legacy Management (LM)

A STUDY OF THE WORKABILITY OF URANIUM BY A STUDY OF THE WORKABILITY OF URANIUM BY MEANS OF TENSILE-IMPACT, HARDNESS, AND DROP-HAMMER I EVALUATIONS AT ELEVATED TEMPERATURES PROPOSAL TO NATIONAL LEAD COMPANY OF OHIO A STUDY OF THE WORKABILITY OF URANIUM BY MEANS OF TENSILE-IMPACT, HARDNESS, AND DROP-HAMMER EVALUATIONS AT ELEVATED TEMPERATURES PROPOSAL TO NATIONAL LEAD COMPANY OF OHIO Southern Research Institute Birmingham, Alabama January 30, 1963 Proposal No. 2152 Copy of original document Iccated in FEMP Archives. .L TABLEOFCONTENTS Page INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..I SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..z EQUIPMENT AND PROCEDURES . . . . . . . . . . . . . . . . . . . 3 A. Hot-Hardness Evaluations .................. 3

190

Experimental and Kinetic Modeling Study of Extinction and Ignition of Methyl Decanoate in Laminar Nonpremixed Flows  

SciTech Connect (OSTI)

Methyl decanoate is a large methyl ester that can be used as a surrogate for biodiesel. In this experimental and computational study, the combustion of methyl decanoate is investigated in nonpremixed, nonuniform flows. Experiments are performed employing the counterflow configuration with a fuel stream made up of vaporized methyl decanoate and nitrogen, and an oxidizer stream of air. The mass fraction of fuel in the fuel stream is measured as a function of the strain rate at extinction, and critical conditions of ignition are measured in terms of the temperature of the oxidizer stream as a function of the strain rate. It is not possible to use a fully detailed mechanism for methyl decanoate to simulate the counterflow flames because the number of species and reactions is too large to employ with current flame codes and computer resources. Therefore a skeletal mechanism was deduced from a detailed mechanism of 8555 elementary reactions and 3036 species using 'directed relation graph' method. This skeletal mechanism has only 713 elementary reactions and 125 species. Critical conditions of ignition were calculated using this skeletal mechanism and are found to agree well with experimental data. The predicted strain rate at extinction is found to be lower than the measurements. In general, the methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

Seshadri, K; Lu, T; Herbinet, O; Humer, S; Niemann, U; Pitz, W J; Law, C K

2008-01-09T23:59:59.000Z

191

Cross flow filtration for radwaste applications reverse osmosis demonstration case studies  

SciTech Connect (OSTI)

Today`s radwaste economic and regulatory scenarios signify the importance in the improvement of operational practices to reduce generator liabilities. This action is largely due to the rising cost dealing with burial sites and the imposed waste volume restriction. To control the economical burdens associated with waste burial and to comply with stricter environmental regulations, NPP`s are attempting to modify their radwaste system(s) design and operating philosophy by placing a major emphasis on waste volume reduction and processing techniques. The utilization of reverse osmosis technology as a means for treatment of process and wastewater streams in the nuclear power industry has been investigated for many years. This paper will outline reverse osmosis theory and highlight performance data for process and waste stream purification applications. Case studies performed at 5 nuclear plants have been outlined. The demonstrations were performed on a widely variety of process stream for both a PWR and BWR application. The data provided by the pilot systems, the equipment design, and the economical impact a reverse osmosis unit will have on producing treated (high purity) are as follows.

Malkmus, D. [VECTRA Technologies, Inc., Columbia, SC (United States)

1995-05-01T23:59:59.000Z

192

A review of the environmental and human impacts from wind parks. A case study for the Prefecture of Lasithi, Crete  

Science Journals Connector (OSTI)

A review of the wind parks’ environmental and human impacts, based on extended research on the most recent relevant bibliography, is carried out in the present paper. The results of former studies are presented on:• the impact on the aesthetic of the landscape • the noise emissions • the impact on birds and wildlife • the shadow flicker from wind turbines • the occupation of land • the wind turbines electromagnetic interference. In addition, the results of case studies for selected wind parks installed in the Prefecture of Lasithi in Crete, concerning their visual impacts and their noise emissions are presented. A statistical survey implemented in Crete concerning the public opinion on wind parks and wind energy is also presented. The accomplished tasks indicated:• There are no serious impacts caused by the installation or operation of wind parks. The wind parks’ impacts may be eliminated with the optimum selection of the installation sites and the appropriate siting of the wind turbines. • People in Crete exhibit a strongly positive attitude towards wind energy and wind parks, although they are not willing to pay a higher price for the electricity produced from wind parks. A map with the optimum sites for wind parks installation in the Prefecture of Lasithi was constructed, taking into account all possible restrictions concerning the use of land, the environmental conservation and the impacts on human life. This map can constitute a flexible tool for the optimum site selection for a wind park installation, contributing to the elimination of environmental and human impacts of new wind parks, to the minimization of the required project's licensing time and to the limitation of possible negative public reactions.

Dimitris Al. Katsaprakakis

2012-01-01T23:59:59.000Z

193

Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study  

E-Print Network [OSTI]

on high-elevation hydropower generation in California’sCO2 [58] Solar Irradiance Hydropower Hadley et al. Franco &summer flows decrease hydropower production in summer and

Coughlin, Katie

2008-01-01T23:59:59.000Z

194

Computational study of subcritical response in flow past a circular cylinder C. D. Cantwell* and D. Barkley  

E-Print Network [OSTI]

Computational study of subcritical response in flow past a circular cylinder C. D. Cantwell* and D is investigated in the subcritical regime, below the onset of Bénard-von Kármán vortex shedding at Reynolds number as Re=2.2. Throughout much of the subcritical regime the maximum energy amplification increases

Barkley, Dwight

195

P~!ETRIC STUDY OF HEAT FLOW DURING RESISTANCE SPOT WELDING Euiwhan Kim and Thomas W. Eagar  

E-Print Network [OSTI]

pieces , electrical contact resistance, material properties, phase changes and heat dissipationi ...) P~!ETRIC STUDY OF HEAT FLOW DURING RESISTANCE SPOT WELDING Euiwhan Kim and Thomas W. Eagar Department of Materials Science and Engineering Hassachusetts Institute of Technology Cambridge, MA 02139

Eagar, Thomas W.

196

An experimental and numerical study of surface tension-driven melt flow R.A. Parsons a,, F. Nimmo a  

E-Print Network [OSTI]

An experimental and numerical study of surface tension-driven melt flow R.A. Parsons a,, F. Nimmo 2007 Abstract To determine the role of surface tension-driven melt migration in planetary bodies, we, surface tension causes the melt to relax back to a homogeneous distribution. Samples composed of 76 vol

Nimmo, Francis

197

Co-Gasification of Biomass Wastes and Coal?Coke Blends in an Entrained Flow Gasifier: An Experimental Study  

Science Journals Connector (OSTI)

An experimental study of entrained flow, air-blown cogasification of biomass and a coal?coke mixture has been performed in order to evaluate the effect of the relative fuel/air ratio (ranging between 2.5 and 7.5), the reaction temperature (ranging between ...

Juan J. Hernández; Guadalupe Aranda-Almansa; Clara Serrano

2010-03-29T23:59:59.000Z

198

Magnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac BaFFe deposits  

E-Print Network [OSTI]

of anisotropy of magnetic susceptibility (AMS) to describe the mineralizing process in hydrothermal systems. BaMagnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac Ba hydrothermal textures and tectonic structures have been described in veins, sinters, and sandstone cemented

Paris-Sud XI, Université de

199

Application of plasma focus installations for a study of the influence of deuterium cumulative flows on materials  

Science Journals Connector (OSTI)

In this work, as an example of an application of the plasma focus (PF) device, we study the influence...7 cm/s for deuterium and 2.107 cm/s for argon fillings of plasma focus chamber; the shape of the flow is...

L. I. Ivanov; A I. Dedyurin; I. V. Borovitskaya; O. N. Krokhin; V. YA Nikulin…

2003-12-01T23:59:59.000Z

200

Electron Paramagnetic Resonance Stopped-Flow Kinetic Study of Manganese(II) Sorption--Desorption on Birnessite  

E-Print Network [OSTI]

Electron Paramagnetic Resonance Stopped-Flow Kinetic Study of Manganese(II) Sorption- nique is demonstrated by investigating the sorption of Mn2+ on S- MnOj. The sorption reaction+ was observed. Measurement of the initial reaction rate al- lowed the forward (sorption) rate constant

Sparks, Donald L.

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Water management studies in PEM fuel cells, Part II: Ex situ investigation of flow maldistribution, pressure drop  

E-Print Network [OSTI]

by externally humidified air and hydrogen gas streams, must be present within the fuel cell to maintain 4 5 6 #12;a fuel cell blocks gas transport pathways in the catalyst layers, gas diffusion layersWater management studies in PEM fuel cells, Part II: Ex situ investigation of flow maldistribution

Kandlikar, Satish

202

A Numerical Study of Methods for Moist Atmospheric Flows: Compressible Equations  

Science Journals Connector (OSTI)

Two common numerical techniques for integrating reversible moist processes in atmospheric flows are investigated in the context of solving the fully compressible Euler equations. The first is a one-step, coupled technique based on using ...

Max Duarte; Ann S. Almgren; Kaushik Balakrishnan; John B. Bell; David M. Romps

2014-11-01T23:59:59.000Z

203

Stability study of a constant-volume thin film flow J. M. Gomba,* J. Diez,  

E-Print Network [OSTI]

, there is an increas- ing interest in understanding flows in microscopic devices designed to propel and mix small volumes of liquids. Micro- metric ducts, pumps, turbines, and valves are all examples of such small

Kondic, Lou

204

An experimental and computational study of transonic three-dimensional flow in a turbine cascade  

SciTech Connect (OSTI)

Detailed experimental measurements of the flow in a cascade of turbine rotor blades with a nonplanar end wall are reported. The cascade geometry was chosen to model as closely as possible that of a H.P. gas turbine rotor blade. The blade section is designed for supersonic flow with an exit Mach number of 1.15 and the experiments covered a range of exit Mach numbers from 0.7-1.2. Significant three-dimensional effects were observed and the origin of these is discussed. The measurements are compared with data for the same blade section in a two-dimensional cascade and also with the predictions of two different fully three-dimensional inviscid flow calculation methods. It is found that both these calculations predict the major threedimensional effects on the flow correctly.

Camus, J.J.; Denton, J.D.; Scrivener, C.T.J.; Soulis, J.V.

1984-04-01T23:59:59.000Z

205

A study of structure and dynamics of polyelectrolyte solutions using flow birefringence measurements  

E-Print Network [OSTI]

Stress optical data from polyelectrolytes (sodium polystyrenesulfonate) in aqueous solutions have been determined using flow birefringence. The stress optical rule was found to be violated in the semidilute unentangled concentration regime...

Chen, Shih Ping

2012-06-07T23:59:59.000Z

206

Numerical study of flow and heat transfer in 3D serpentine channels using colocated grids  

E-Print Network [OSTI]

and average Nusselt number. The numerical code developed was validated by solving for fully developed flow and heat transfer in a square straight channel. Grid-independent solution was established for a reference case of serpentine channel with the highest...

Chintada, Sailesh Raju

1998-01-01T23:59:59.000Z

207

Study on the general layout of semi-submersible offshore drilling platforms based on process flow  

Science Journals Connector (OSTI)

The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency ... a reference for implementation of domestic designs of semi-submersible rigs.

Ji-xiang Yue ???; Yao-guang Qi ???…

2009-06-01T23:59:59.000Z

208

Laser velocimetry study of the flow field in a centrifugal pump with a shrouded impeller  

E-Print Network [OSTI]

was measured using taps located at the flanges. Flow straighteners were placed twelve diameters upstream and five diameters downstream of the orifice plate. The accuracy of the orifice meter was verified by comparison with measurements of the flow rate made... L2F MCA N N, N, NOMENCLATURE Cross-sectional area of the inlet pipe Area of orifice Best efficiency point Coefficient of discharge for orifice meter Constant fraction discriminator in the L2F processor Beam diameter at probe volume...

Moran, Michael Kevin

2012-06-07T23:59:59.000Z

209

The impact of the networked global economy on Chinese public hospitals: a case study of Jiangsu Province Hospital  

Science Journals Connector (OSTI)

The purpose of this research is to investigate the impacts of globalisation on Chinese public hospitals and from this, then develop a strategic framework to facilitate how these hospitals should respond and accommodate such impacts; and thereby, improve their operations. Results from a case study of Jiangsu Province Hospital are provided. This exemplar case study serves to identify that globalisation offers some significant opportunities and challenges for Chinese public hospitals and that these hospitals have to make every effort to progress so that they are fully prepared and ready to maximise these opportunities. Recommendations regarding this are provided.

Jianqiu Kou; Zhongmin Wang; Nilmini Wickramasinghe

2012-01-01T23:59:59.000Z

210

Impact assessment and remediation strategies for roadway construction in acid-bearing media: case study from Mid-Appalachia  

SciTech Connect (OSTI)

The likelihood of encountering land impacted by current and/or historic coal mining activities is high when constructing roadways in the Mid-Appalachian region. Through additional disturbance of these lands, environmental impacts such as acid and dissolved metals loading and subsequent impacts to aquatic flora and fauna will ensue. Consequently, it is necessary to affect a paradigm shift in roadway design and construction to account for the presence of factors that compound the already difficult task of working in a region characterized by steep topography and aggressive geochemistry. In this study, assessments of the water chemistry and biological impacts of a waste pile containing spoils from previous mining and the presence of an exposed coal mine bench were made as representative microcosmic examples of typical conditions found in the region. Based on quantitative measurements of water quality and biological conditions, recommendations are presented for the assessment and avoidance of impacts prior to construction through acid-bearing materials and suggestions are offered for postconstruction remediation at previously impacted sites.

Viadero, R.C.; Fortney, R.H.; Creel, A.T. [Western Illinois University, Macomb, IL (United States)

2008-09-15T23:59:59.000Z

211

Electron-impact study of PO2 using the R-matrix method  

Science Journals Connector (OSTI)

The R-matrix approach is used to study the electron scattering from PO2 radical at low electron impact energies. The elastic scattering phenomenon is studied in static-exchange, one-state and many-states close-coupling approximation. The elastic differential cross sections, corresponding momentum-transfer cross sections, and collision frequency are calculated in the one-state configuration interaction approximation only. Calculations reveal a stable bound state of PO2? having symmetry 1A1, a configuration of ?8a12,?2b12,?5b22,?1a22, and vertical electron affinity of 2.94 eV. The excited state of anion PO2? having symmetry 3B1 is also just bound relative to the ground state of PO2 at its equilibrium geometry. The shape, core-excited, and Feshbach resonances are analyzed in different symmetries up to 7 eV. The partial waves up to l=4 are used to represent continuum electron. The converged cross sections are obtained for the partial waves having l greater than 4 by applying Born correction. Certain interesting spectroscopic properties of radical are also reported.

Anand Bharadvaja; Savinder Kaur; K. L. Baluja

2013-06-06T23:59:59.000Z

212

Climate Change Impacts and Adaptation Analysis How to Link Physical Climate Data and Economic Studies  

E-Print Network [OSTI]

Climate Change Impacts and Adaptation Analysis ­ How to Link Physical Climate Data and Economic There are a number of structural and conceptual differences between the information provided by climate change models of economic concepts applied to climate change impact and adaptation policy assessment, and to illustrate how

213

IMPACT OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION MELT RATE STUDIES  

SciTech Connect (OSTI)

This study was undertaken to evaluate the potential impacts of the Small Column Ion Exchange (SCIX) streams - particularly the addition of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) - on the melt rate of simulated feed for the Defense Waste Processing Facility (DWPF). Additional MST was added to account for contributions from the Salt Waste Processing Facility (SWPF). The Savannah River National Laboratory (SRNL) Melt Rate Furnace (MRF) was used to evaluate four melter feed compositions: two with simulated SCIX and SWPF material and two without. The Slurry-fed Melt Rate Furnace (SMRF) was then used to compare two different feeds: one with and one without bounding concentrations of simulated SCIX and SWPF material. Analyses of the melter feed materials confirmed that they met their targeted compositions. Four feeds were tested in triplicate in the MRF. The linear melt rates were determined by using X-ray computed tomography to measure the height of the glass formed along the bottom of the beakers. The addition of the SCIX and SWPF material reduced the average measured melt rate by about 10% in MRF testing, although there was significant scatter in the data. Two feeds were tested in the SMRF. It was noted that the ground CST alone (ground CST with liquid in a bucket) was extremely difficult to resuspend during preparation of the feed with material from SCIX and SWPF. This feed was also more difficult to pump than the material without MST and CST due to settling occurring in the melter feed line, although the yield stress of both feeds was high relative to the DWPF design basis. Steady state feeding conditions were maintained for about five hours for each feed. There was a reduction in the feed and pour rates of approximately 15% when CST and MST were added to the feed, although there was significant scatter in the data. Analysis of samples collected from the SMRF pour stream showed that the composition of the glass changed as expected when MST and CST were added to the feed. These reductions in melt rate are consistent with previous studies that showed a negative impact of increased TiO{sub 2} concentrations on the rate of melting. The impact of agitating the melt pool via bubbling was not studied as part of this work, but may be of interest for further testing. It is recommended that additional melt rate testing be performed should a potential reduction in melt rate of 10-15% be considered an issue of concern, or should the anticipated composition of the glass with the addition of material from salt waste processing be modified significantly from the current projections, either due to changes in sludge batch preparation or changes in the composition or volume of SCIX and SWPF material.

Fox, K.; Miller, D.; Koopman, D.

2011-04-26T23:59:59.000Z

214

Use of sup 14 C-labeled seston to study fine particulate organic matter dynamics in flowing water  

SciTech Connect (OSTI)

Transport, deposition, and resuspension of fine particulate organic matter (FPOM, <1 mm) is an important aspect of the energy dynamics in streams. However, it has been virtually impossible to study these factors because of the difficulty in working with particles of such small sizes. Two papers (Banks and Wolfinbarger 1981 and Wolfinbarger and Crosby 1983) describing methods for labeling marine detritus with {sup 14}C led us to explore these methods for studying FPOM dynamics in flowing water.

Cushing, C.E. (Battelle-Pacific Northwest Laboratory, Richland, WA (USA)); Minshall, G.W. (Idaho State Univ., Pocatello (USA)); Newbold, J.D. (Academy of Natural Sciences of Philadelphia, Avondale, PA (USA))

1990-01-01T23:59:59.000Z

215

Comparative study of laminar and turbulent flow model with different operating parameters for radio frequency-inductively coupled plasma torch working at 3??MHz frequency at atmospheric pressure  

Science Journals Connector (OSTI)

This paper provides 2D comparative study of results obtained using laminar and turbulent flow model for RF (radio frequency) Inductively Coupled Plasma (ICP) torch. The study was done for the RF-ICP torch operating at 50?kW DC power and 3?MHz frequency located at BARC. The numerical modeling for this RF-ICP torch is done using ANSYS software with the developed User Defined Function. A comparative study is done between laminar and turbulent flow model to investigate how temperature and flow fields change when using different operating conditions such as (a) swirl and no swirl velocity for sheath gas flow rate (b) variation in sheath gas flow rate and (c) variation in plasma gas flow rate. These studies will be useful for different material processing applications.

Sangeeta B. Punjabi; S. N. Sahasrabudhe; N. K. Joshi; H. A. Mangalvedekar; A. K. Das; D. C. Kothari

2014-01-01T23:59:59.000Z

216

Computational Hydrocode Study of Target Damage due to Fragment-Blast Impact  

SciTech Connect (OSTI)

A target's terminal ballistic effects involving explosively generated fragments, along with the original blast, are of critical importance for many different security and safety related applications. Personnel safety and protective building design are but a few of the practical disciplines that can gain from improved understanding combined loading effects. Traditionally, any engineering level analysis or design effort involving explosions would divide the target damage analysis into two correspondingly critical areas: blast wave and fragment related impact effects. The hypothesis of this paper lies in the supposition that a linear combination of a blast-fragment loading, coupled with an accurate target response description, can lead to a non-linear target damage effect. This non-linear target response could then stand as the basis of defining what a synergistic or combined frag-blast loading might actually look like. The table below, taken from Walters, et. al. categorizes some of the critical parameters driving any combined target damage effect and drives the evaluation of results. Based on table 1 it becomes clear that any combined frag-blast analysis would need to account for the target response matching similar ranges for the mechanics described above. Of interest are the critical times upon which a blast event or fragment impact loading occurs relative to the target's modal response. A blast, for the purposes of this paper is defined as the sudden release of chemical energy from a given material (henceforth referred to as an energetic material) onto its surrounding medium. During the coupling mechanism a discrete or discontinuous shockwave is generated. This shockwave travels outward from the source transferring energy and momentum to any surrounding objects including personnel and engineering structures. From an engineering perspective blast effects are typically characterized by way of physical characteristics such as Peak Pressure (PP), Time of Arrival (TOA), Pressure-Impulse (PI) and Time of Duration (TD). Other peculiarities include the radial decrease in pressure from the source, any fireball size measurement, and subsequent increase in temperature from the passing of the shockwave through the surrounding medium. In light of all of these metrics, the loading any object receives from a blast event becomes intricately connected to the distance between itself and the source. Because of this, a clear distinction is made between close-in effects and those from a source far away from the object of interest. Explosively generated fragments on the other hand are characterized by means of their localized damage potential. Metrics such as whether the fragment penetrates or perforates a given object is quantified as well as other variables including fragment's residual velocity, % kinetic energy decrease, residual fragment mass and other exit criteria. A fragment launched under such violent conditions could easily be traveling at speeds in excess of 2500 ft/s. Given these speeds it is conceivable to imagine how any given fragment could deliver a concentrated load to a target and penetrates through walls, vehicles or even the protection systems of nearby personnel. This study will focus on the individual fragment-target impact event with the hopes of expanding it to eventually include statistical procedures. Since this is a modeling excursion into the combined frag-blast target damage effects the numerical methods used to frame this problem become important in-so-far as the simulations are done in a consistent manner. For this study a Finite-Element based Hydrocode solution called ALE3D (ALE=Arbitrary Lagrangian-Eulerian) was utilized. ALE3D is developed by Lawrence Livermore National Laboratory (Livermore, CA), and as this paper will show, successfully implemented a converged ALE formulation including as many of the different aspects needed to query the synergistic damage on a given target. Further information on the modeling setup is included.

Hatch-Aguilar, T; Najjar, F; Szymanski, E

2011-03-24T23:59:59.000Z

217

DWPF COAL-CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION BASED ON EXPERIMENTAL WORK (TANK 48 IMPACT STUDY)  

SciTech Connect (OSTI)

This report summarizes the results of both experimental and modeling studies performed using Sludge Batch 10 (SB10) simulants and FBSR product from Tank 48 simulant testing in order to develop higher levels of coal-carbon that can be managed by DWPF. Once the Fluidized Bed Steam Reforming (FBSR) process starts up for treatment of Tank 48 legacy waste, the FBSR product stream will contribute higher levels of coal-carbon in the sludge batch for processing at DWPF. Coal-carbon is added into the FBSR process as a reductant and some of it will be present in the FBSR product as unreacted coal. The FBSR product will be slurried in water, transferred to Tank Farm and will be combined with sludge and washed to produce the sludge batch that DWPF will process. The FBSR product is high in both water soluble sodium carbonate and unreacted coal-carbon. Most of the sodium carbonate is removed during washing but all of the coal-carbon will remain and become part of the DWPF sludge batch. A paper study was performed earlier to assess the impact of FBSR coal-carbon on the DWPF Chemical Processing Cell (CPC) operation and melter off-gas flammability by combining it with SB10-SB13. The results of the paper study are documented in Ref. 7 and the key findings included that SB10 would be the most difficult batch to process with the FBSR coal present and up to 5,000 mg/kg of coal-carbon could be fed to the melter without exceeding the off-gas flammability safety basis limits. In the present study, a bench-scale demonstration of the DWPF CPC processing was performed using SB10 simulants spiked with varying amounts of coal, and the resulting seven CPC products were fed to the DWPF melter cold cap and off-gas dynamics models to determine the maximum coal that can be processed through the melter without exceeding the off-gas flammability safety basis limits. Based on the results of these experimental and modeling studies, the presence of coal-carbon in the sludge feed to DWPF is found to have both positive (+) and negative (-) impact as summarized below: (-) Coal-carbon is a melter reductant. If excess coal-carbon is present, the resulting melter feed may be too reducing, potentially shortening the melter life. During this study, the Reduction/Oxidation Potential (REDOX) of the melter could be controlled by varying the ratio of nitric and formic acid. (-) The addition of coal-carbon increases the amount of nitric acid added and decreases the amount of formic acid added to control melter REDOX. This means that the CPC with the FBSR product is much more oxidizing than current CPC processing. In this study, adequate formic acid was present in all experiments to reduce mercury and manganese, two of the main goals of CPC processing. (-) Coal-carbon will be oxidized to carbon dioxide or carbon monoxide in the melter. The addition of coal-carbon to the FBSR product will lead to approximately 55% higher offgas production from formate, nitrate and carbon due to the decomposition of the carbon at the maximum levels in this testing. Higher offgas production could lead to higher cold cap coverage or melter foaming which could decrease melt rate. No testing was performed to evaluate the impact of the higher melter offgas flow. (+) The hydrogen production is greatly reduced in testing with coal as less formic acid is added in CPC processing. In the high acid run without coal, the peak hydrogen generation was 15 times higher than in the high acid run with added coal-carbon. (+) Coal-carbon is a less problematic reducing agent than formic acid, since the content of both carbon and hydrogen are important in evaluating the flammability of the melter offgas. Processing with coal-carbon decreases the amount of formic acid added in the CPC, leading to a lower flammability risk in processing with coal-carbon compared to the current DWPF flowsheet. (+) The seven SB10 formulations which were tested during the bench-scale CPC demonstration were all determined to be within the off-gas flammability safety basis limits during the 9X/5X off-gas surge for normal bubbled melter

Lambert, D.; Choi, A.

2010-10-15T23:59:59.000Z

218

Small scale laboratory studies of flow and transport phenomena in pores and fractures: Phase 2. Technical completion report  

SciTech Connect (OSTI)

Pore level laboratory experiments using microscopy permit the in situ visualization of flow and transport phenomena, that can be recorded on film or videotape. One of the principal tools for visualization is the etched glass micromodel, which is composed of a transparent two dimensional network of three dimensional pores. The spatial scale of interest in these models extends from the individual pore, up to a network of pores, perhaps with small scale heterogeneities. Micromodels are best used to help validate concepts and assumptions, and to elucidate new, previously unrecognized phenomena for further study. They are not quantitative tools, but should be used in combination with quantitative tools such as column studies or mathematical models. There are three applications: multi-phase flow, colloid transport, and bacterial transport and colonization. Specifically the authors have examined behavior of relevance to liquid-liquid mass transfer (solubilization of capillary trapped organic liquids); liquid-gas mass transfer (in situ volatilization); mathematical models of multi-phase pressure-saturation relationships; colloid movement, attachment and detachment in the presence of fluid-fluid interfaces, clay interference with multi-phase flow; and heterogeneity effects on multi-phase flow and colloid movement.

Wilson, J.L.

1997-01-01T23:59:59.000Z

219

A study on the control method of single duct VAV terminal unit through the determination of proper minimum air flow  

Science Journals Connector (OSTI)

Abstract The objective of this study was proposed a control method for the minimum air flow rate of a VAV terminal unit at an office building. The minimum air flow rate of the VAV terminal unit is the key factor affecting the thermal comfort, indoor air quality (IAQ), stratification and energy consumption, depending on the operating mode of the VAV system. Therefore, selecting the proper minimum air flow is very important. In this study, an algorithm was proposed considering the IAQ and stratification. The vertical air temperature was analyzed to find the supply air temperature that did not cause stratification. The integrated control algorithm with an air flow increase model in the VAV terminal unit and outdoor air intake rate increase model in the AHU was developed by comparing the energy consumption. Finally, the existing and proposed control algorithms were compared through a simulation. The proposed method was found to be more effective than the existing control method. The proposed VAV terminal unit control method satisfies all the conditions of indoor thermal comfort, IAQ and stratification issue. As a result of the energy comparison with the existing control method, the method satisfies not only the indoor thermal comfort, IAQ and stratification issue, but also reduces the energy consumption.

Su-Hyun Kang; Hyo-Jun Kim; Young-Hum Cho

2014-01-01T23:59:59.000Z

220

Facilities, testing program and modeling needs for studying liquid metal magnetohydrodynamic flows in fusion blankets  

Science Journals Connector (OSTI)

Abstract Since many years, liquid metal flows for applications in fusion blankets have been investigated worldwide. A review is given about modeling requirements and existing experimental facilities for investigations of liquid metal related issues in blankets with the focus on magnetohydrodynamics (MHD). Most of the performed theoretical and experimental works were dedicated to fundamental aspects of MHD flows under very strong magnetic fields as they may occur in generic elements of fusion blankets like pipes, ducts, bends, expansions and contractions. Those experiments are required to progressively validate numerical tools with the purpose of obtaining codes capable to predict MHD flows at fusion relevant parameters in complex blanket geometries, taking into account electrical and thermal coupling between fluid and structural materials. Scaled mock-up experiments support the theoretical activities and help deriving engineering correlations for cases which cannot be calculated with required accuracy up to now.

L. Bühler; C. Mistrangelo; J. Konys; R. Bhattacharyay; Q. Huang; D. Obukhov; S. Smolentsev; M. Utili

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Validation Studies for Numerical Simulations of Flow Phenomena Expected in the Lower Plenum of a Prismatic VHTR Reference Design  

SciTech Connect (OSTI)

The final design of the very high temperature reactor (VHTR) of the fourth generation of nuclear power plants (Gen IV) has not yet been established. The VHTR may be either a prismatic (block) or pebble bed type. It may be either gas-cooled or cooled with an as yet unspecified molten salt. However, a conceptual design of a gas-cooled VHTR, based on the General Atomics GT-MHR, does exist and is called the prismatic VHTR reference design, MacDonald et al [2003], General Atomics [1996]. The present validation studies are based on the prismatic VHTR reference design. In the prismatic VHTR reference design, the flow in the lower plenum will be introduced by dozens of turbulent jets issuing into a large crossflow that must negotiate dozens of cylindrical support columns as it flows toward the exit duct of the reactor vessel. The jets will not all be at the same temperature due to the radial variation of power density expected in the core. However, it is important that the coolant be well mixed when it enters the power conversion unit to ensure proper operation and long life of the power conversion machinery. Hence, it is deemed important to be able to accurately model the flow and mixing of the variable temperature coolant in the lower plenum and exit duct. Accurate flow modeling involves determining modeling strategies including the fineness of the grid needed, iterative convergence tolerance, numerical discretization method used, whether the flow is steady or unsteady, and the turbulence model and wall treatment employed. It also involves validation of the computer code and turbulence model against a series of separate and combined flow phenomena and selection of the data used for the validation. The present report describes progress made to date for the task entitled ‘CFD software validation of jets in crossflow’ which was designed to investigate the issues pertaining to the validation process.

Richard W. Johnson

2005-09-01T23:59:59.000Z

222

Study on Performance and Internal Flow Condition of Mini Turbo?Pump  

Science Journals Connector (OSTI)

Mini turbo?pumps which have a diameter smaller than 100mm are utilized in many fields; automobile radiator pump artificial heart pump cooling pump for electric devices washing machine pump and so on. And the needs for the mini turbo?pumps would become larger with the increase of the application of it for electrical machines. It is desirable that the mini turbo?pump design is as simple as possible due to the limitation of the precision for manufacture. But the design method for the mini turbo?pump is not established because the internal flow condition for these small?sized fluid machineries is not clarified and conventional theory is not conductive for small?sized pumps because of the low Reynolds number and the size effects. Therefore we started the research of the mini turbo?pump for the purpose of development of high performance mini turbo?pump with simple structure. As a first step of this research mini turbo?pump with the 46mm rotor diameter was designed based on the conventional design method in order to clarify the problems for the application of conventional method for mini turbo?pump in details. The three dimensional steady numerical flow analysis was conducted with the commercial code (Fluent6.3). The numerical flow analysis was also performed under the condition with and without a tip clearance because the tip clearance influence on the performance and internal flow condition is extremely large for mini turbo?pumps. It was clarified from the numerical results that head of the mini turbo?pump at the designed point without the tip clearance satisfied the designed value head H?=?1.2 m and the efficiency is about ??=?60% which is acceptable value for the centrifugal pump. On the other hand head and efficiency decreased drastically with the increase of the tip clearance. The flow condition near the tip region was influenced by the leakage flow from the blade tip. And it is observed by the results of the total pressure distributions that the total pressure loss near the tip is considerably large. In the present paper the performance of the mini turbo?pump is shown and the internal flow condition is clarified with the results of the numerical flow analysis. Furthermore the effects of the tip clearance on the performance are investigated and high performance rotor design for mini turbo?pump would be considered.

Toru Shigemitsu; Junichiro Fukutomi; Ryoichi Nasada

2010-01-01T23:59:59.000Z

223

The Impact Snow Has on Solar Energy Production: A case study of the Morley photovoltaic array and the necessity for  

E-Print Network [OSTI]

Williams 1 The Impact Snow Has on Solar Energy Production: A case study of the Morley photovoltaic Williams 5/19/09 GEOS 206 Final Project Paper #12;Williams 2 Introduction Solar energy has long seemed one , solar cells were barely capable of converting energy at 1% efficiency (NREL). Needless to say

Aalberts, Daniel P.

224

A model study of the impact of magnetic field structure on atmospheric composition during solar proton events  

E-Print Network [OSTI]

A model study of the impact of magnetic field structure on atmospheric composition during solar is possible into regions that are at the moment effectively shielded by the Earth's magnetic field. A two (process, timescale, magnetostratigraphy); 1650 Global Change: Solar variability; 2716 Magnetospheric

Steinhoff, Heinz-Jürgen

225

Climate change impacts on forest growth and tree mortality: a data-driven modeling study in the mixed-  

E-Print Network [OSTI]

in the mixed- conifer forest of the Sierra Nevada, California John J. Battles & Timothy Robards & Adrian Das evaluated the impacts of climate change on the productivity and health of a forest in the mixed-conifer a case study for a mixed-conifer forest in the northern Sierra Nevada. This specificity allowed us to use

Battles, John

226

An empirical study of the impact of human resource configurations and intellectual capital on organisational performance in the Australian biotechnology industry.  

E-Print Network [OSTI]

??The objective of this study is to examine the impact of human resource (HR) configurations (combinations) and intellectual capital (lC) in the Australian biotechnology industry.… (more)

Lee, Chao-Ying

2008-01-01T23:59:59.000Z

227

An experimental study of the impact of location on the effectiveness of recruitment clusters for Red-cockaded Woodpeckers at the Savannah River Site.  

SciTech Connect (OSTI)

An experimental study of the impact of location on the effectiveness of recruitment clusters for Red-Cockaded Woodpeckers at the Savannah River Site.

Walters, Jeffrey, R.; Johnston, Peter, A.; Crowder, Larry, B.; Priddy, Jeffrey, A.

2008-05-31T23:59:59.000Z

228

Integration of Green Energy into Power Distribution Systems: Study of Impacts and Development of Control Methodology  

Science Journals Connector (OSTI)

Distributed generation (DG) is gaining popularity as it has a positive environmental impact and the capability to reduce high transmission costs and power losses. Although the integration of renewable energy-base...

N. K. Roy; H. R. Pota

2014-01-01T23:59:59.000Z

229

A Case Study of Color-Blindness: The Racially Disparate Impacts of Arizona's  

E-Print Network [OSTI]

and the Failure of Comprehensive Immigration Reform Kevin R. Johnson* Introduction .............................................................................................334 B. The Rise, Fall, Rise, and Fall of Comprehensive Immigration Reform:313 II. The Racially Disparate Impacts of the Failure of Comprehensive Immigration Reform

Rose, Michael R.

230

Further studies of the continuous UV emission produced by electron impact on CF4  

Science Journals Connector (OSTI)

The intense continuous UV emission which extends from 200 nm to beyond 500 nm produced by electron impact on carbontetrafluoride, CF4, has been investigated in a crossed electron-beam — gas-beam apparatus as well...

U. Müller; T. Bubel; G. Schulz; A. Sevilla…

1992-01-01T23:59:59.000Z

231

Assessing the Socio-Economic Impacts of Mining: Case Study of the Landau Colliery, South Africa  

Science Journals Connector (OSTI)

This chapter analyses the socio-economic impacts of the Landau Colliery in South Africa, an operation of Anglo Coal. The aim is to contribute to an ... low and middle income countries can enhance socio-economic d...

Anthony Dane

2010-01-01T23:59:59.000Z

232

Numerical and experimental study on the effects of elbows upon the flow downstream  

E-Print Network [OSTI]

diameters of straight pipe between the two elbows, two elbows arranged to make an 90 degree bend: for 1 and 11 pipe diameters of straight pipe between the two elbows. For each case, the simulation of the flow field was performed using the Fluent...

Tung, Karine

2012-06-07T23:59:59.000Z

233

Cell cycle parameters of slowly growing Escherichia coli B/r studied by flow cytometry.  

Science Journals Connector (OSTI)

...A cells, the average rate of mass increase was 11...for B/r K cells the rate of mass increase was twice...and Department ofMedical Physics, The Norwegian Radium...with a decreasing growth rate and that the B period...laminar flow of water, pass one by one through the...

K Skarstad; H B Steen; E Boye

1983-05-01T23:59:59.000Z

234

Experimental Study of Heat Transfer and Flow Characteristics for a New Type of Air Heater  

E-Print Network [OSTI]

. It is found that the integrated characteristics of heat transfer and flow friction increase with the hole's diameter at the same hole density (which is equal to the ratio of the hole's total area to the baffle's area), and the heat transfer rate increases...

Zheng, H.; Fan, X.; Li, A.

2006-01-01T23:59:59.000Z

235

Growth of Myxococcus xanthus in Continuous-Flow-Cell Bioreactors as a Method for Studying Development  

Science Journals Connector (OSTI)

...single-chamber flow cell was approximately 7.5 ml. Design files were generated using the computer-aided design program AutoCAD (Autodesk Inc., San Rafael, CA) and are available at http://microbiology.ucdavis.edu/singer/ for immediate download and...

Gregory T. Smaldone; Yujie Jin; Damion L. Whitfield; Andrew Y. Mu; Edward C. Wong; Stefan Wuertz; Mitchell Singer

2014-02-07T23:59:59.000Z

236

Analytical and Experimental Study of Annular Two-Phase Flow Friction Pressure Drop Under Microgravity  

E-Print Network [OSTI]

to design reliable two-phase systems. The main objective of this present research is to develop a new mathematical model that can accurately predict the annular two-phase friction pressure drop to optimize the design of two-phase systems. The two-phase flow...

Nguyen, Ngoc Thanh

2011-02-22T23:59:59.000Z

237

Study of a numerical scheme for miscible two-phase flow in porous media  

E-Print Network [OSTI]

phase in the underground. In the framework of nuclear waste management, some gaseous hydrogen, produced by acid attack of metallic containers containing the nuclear waste, may flow within porous soils initially is small compared to the effect of dispersed velocities at the pore scale). The function S(q) denotes

238

Experimental and Computational Studies of Fluid Flow Phenomena in Carbon Dioxide Sequestration in Brine and Oil Fields  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID FLOW PHENOMENA IN CARBON DIOXIDE SEQUESTRATION IN BRINE AND OIL FIELDS Chuang Ji ( chuang.ji@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 BOX 5725 Clarkson University Potsdam, NY 13699 Goodarz Ahmadi ( ahmadi@clarkson.edu ) BOX 5725 Clarkson University Potsdam, NY 13699 Duane H. Smith ( duane.smith@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 2 INTRODUCTION Sequestration of CO 2 by injection into deep geological formations is a method to reduce CO 2 emissions into the atmosphere. However, when CO 2 is injected underground, it forms fingers extending into the rock pores saturated with brine or petroleum. This flow

239

Comparative Study of Gasification Performance between Bituminous Coal and Petroleum Coke in the Industrial Opposed Multiburner Entrained Flow Gasifier  

Science Journals Connector (OSTI)

SUMMARY : Co-gasification performance of coal and petroleum coke (petcoke) blends in a pilot-scale pressurized entrained-flow gasifier was studied exptl. ... Two different coals, including a subbituminous coal (Coal A) and a bituminous coal (Coal B), individually blended with a petcoke in the gasifier were considered. ... results suggested that, when the petcoke was mixed with Coal A over 70%, the slagging problem, which could shorten the operational period due to high ash content in the coal, was improved. ...

Zhonghua Sun; Zhenghua Dai; Zhijie Zhou; Jianliang Xu; Guangsuo Yu

2012-09-27T23:59:59.000Z

240

A study of radial-flow turbomachinery blade vibration measurements using Eulerian laser Doppler vibrometry  

Science Journals Connector (OSTI)

The structural integrity of blades is critical to the health of turbomachinery. Since operational failure of these blades can possibly lead to catastrophic failure of the machine it is important to have knowledge of blade conditions in an online fashion. Due to several practical implications it is desired to measure blade vibration with a non-contact technique. The application of laser Doppler vibrometry towards the vibration based condition monitoring of axial-flow turbomachinery blades has been successfully demonstrated in previous work. In this paper the feasibility of using laser Doppler vibrometry to measure radial-flow turbomachinery blade vibrations is investigated with the aid of digital image correlation and strain gauge telemetry.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy confinement studies in the tandem mirror experiment (TMX): Power flow  

Science Journals Connector (OSTI)

Using the measured plasma densities and energies the flow of power between the different particle species and regions of the tandem mirror experiment (TMX) is analyzed. The power flow is described by a simple classical model modified to include: (1) a halo of cool plasma that reduces end?cell ion losses due to charge exchange on background gas (2) instability heating of the central?cell ions both in the central cell and as they escape through the plugs (3) electron energy transport along the field lines which is less than predicted and (4) radial transport of the central?cell ions. Our global power balance including all particles and regions accounts for 87±27% of the trapped neutral?beam power.

D. P. Grubb; S. L. Allen; T. A. Casper; J. F. Clauser; F. H. Coensgen; R. H. Cohen; D. L. Correll; W. C. Cummins; J. C. Davis; R. P. Drake; J. H. Foote; A. H. Futch; R. K. Goodman; G. E. Gryczkowski; E. B. Hooper Jr.; R. S. Hornady; A. L. Hunt; C. V. Karmendy; W. E. Nexsen; W. L. Pickles; G. D. Porter; P. Poulsen; T. D. Rognlien; T. C. Simonen; D. R. Slaughter; P. Coakley; G. A. Hallock; O. T. Strand

1983-01-01T23:59:59.000Z

242

The decomposition of methyltrichlorosilane: Studies in a high-temperature flow reactor  

SciTech Connect (OSTI)

Experimental measurements of the decomposition of methyltrichlorosilane (MTS), a common silicon carbide precursor, in a high-temperature flow reactor are presented. The results indicate that methane and hydrogen chloride are major products of the decomposition. No chlorinated silane products were observed. Hydrogen carrier gas was found to increase the rate of MTS decomposition. The observations suggest a radical-chain mechanism for the decomposition. The implications for silicon carbide chemical vapor deposition are discussed.

Allendorf, M.D.; Osterheld, T.H.; Melius, C.F.

1994-01-01T23:59:59.000Z

243

Osha`s 1974 vinyl chloride standard. Retrospective evaluation of the rulemaking`s feasibility/impact estimates. Case study  

SciTech Connect (OSTI)

This report documents a case study of the Occupational Safety and Health Administration`s (OSHA) permanent health standard of 1974 for workplace exposures to vinyl chloride (monomer). OSHA`s assessment of hazard control options and estimates of compliance costs and other regulatory impacts prepared as part of the rationale for the rulemaking are reviewed and then compared and contrasted with the actual post-promulgation outcomes as affected industries adjusted to the new compliance requirements. This case study has been prepared as part of a larger Office of Technology Assessment (OTA) evaluation of the control technology and regulatory impact analyses that OSHA prepares to support its rulemakings. Congress requested in May 1992 that OTA examine OSHA`s procedures and methods in these regards. The case reported here is one of eight OSHA health and safety standards that have been similarly studied on a pre- and post-promulgation basis.

Boroush, M.A.

1993-11-01T23:59:59.000Z

244

Numerical Study of Convective Heat Transfer in Flat Tube Heat Exchangers Operating in Self-Sustained Oscillatory Flow Regimes  

E-Print Network [OSTI]

Laminar, two-dimensional, constant-property numerical simulations of flat tube heat exchanger devices operating in flow regimes in which self-sustained oscillations occur were performed. The unsteady flow regimes were transition flow regimes...

Fullerton, Tracy

2012-02-14T23:59:59.000Z

245

The impact of camping activity on vegetation and soils: a case study at Tyler State Park  

E-Print Network [OSTI]

in al 1 eviat1ng soil compaction . This research was designed to assess the impact of recreat1onal use at Tyler State Park. This research had three objectives: l) to determine the nature and extent of camping impact by use categories on selected... BOAT HOUSE SWMMING BEACH DAM~ QP R LAKE FISHING PIER P 2 I "3 R HFUNG TRAIL TENT CAMPMG AREA GR RESTROOM OP PARKING AREA BIG PINE R TRAILER CAMPWG AREA PICNIC AREA CI CONCESSION BLDG NATURE TRAIL I aa MINI-BNE TRAIL...

Koehler, Janet Elaine

2012-06-07T23:59:59.000Z

246

INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS  

SciTech Connect (OSTI)

The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted following an analytical plan. A review of the individual oxides for each glass revealed that there were no errors in batching significant enough to impact the outcome of the study. A comparison of the measured compositions of the replicates indicated an acceptable degree of repeatability as the percent differences for most of the oxides were less than 5% and percent differences for all of the oxides were less than 10 wt%. Chemical durability was measured using the Product Consistency Test (PCT). All but two of the study glasses had normalized leachate for boron (NL [B]) values that were well below that of the Environmental Assessment (EA) reference glass. The two highest NL [B] values were for the CCC versions of glasses US-18 and US-27 (10.498 g/L and 15.962 g/L, respectively). Nepheline crystallization was identified by qualitative XRD in five of the US-series glasses. Each of these five glasses (US-18, US-26, US-27, US-37 and US-43) showed a significant increase in NL [B] values after the CCC heat treatment. This reduction in durability can be attributed to the formation of nepheline during the slow cooling cycle and the removal of glass formers from the residual glass network. The liquidus temperature (T{sub L}) of each glass in the study was determined by both optical microscopy and XRD methods. The correlation coefficient of the measured XRD TL data versus the measured optical TL data was very good (R{sup 2} = 0.9469). Aside from a few outliers, the two datasets aligned very well across the entire temperature range (829 C to 1312 C for optical data and 813 C to 1310 C for XRD crystal fraction data). The data also correlated well with the predictions of a PNNL T{sub L} model. The correlation between the measured and calculated data had a higher degree of merit for the XRD crystal fraction data than for the optical data (higher R{sup 2} value of 0.9089 versus 0.8970 for the optical data). The SEM-EDS analysis of select samples revealed the presence of undissolved RuO{sub 2} in all glasses due to the low solubility of RuO{sub 2} in borosilicate glass. These

Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

2008-09-23T23:59:59.000Z

247

Studies Show No Evidence of Impacts from Wind on Residential Property Values  

Broader source: Energy.gov [DOE]

DOE's Lawrence Berkeley National Laboratory and the University of Connecticut analyzed more than 122,000 home sales near 26 wind facilities (more than 1,500 of which were located within a mile of operating turbines) in the densely populated State of Massachusetts but found no evidence of impacts to nearby home property values.

248

Domestic Food and Sustainable Design: A Study of University Student Cooking and its Impacts  

E-Print Network [OSTI]

gas emissions and direct energy connected to the food and cooking, and talked to participants about design for cooking and eat- ing at home and quantify the potential impacts. We outline the relation; everyday life; energy; greenhouse gas ACM Classification Keywords H.5.2 Information Interfaces

Hazas, Mike

249

High-speed photography and stress gauge studies of jet impact upon surfaces  

Science Journals Connector (OSTI)

...source barrel QCA5 power supply nitrogen...impact using a low power microscope...flat-ended projectile fired from a single stage gas gun onto a PMMA...However, the generation of the high-speed...results from the generation of the release...

1997-01-01T23:59:59.000Z

250

Measurement of spin-exchange effects in electron-hydrogen collisions: Further studies of impact ionization  

SciTech Connect (OSTI)

Using a Fano-effect polarized electron source and a state-selected thermally dissociated hydrogen beam, we measured the interference between the direct and exchange scattering amplitudes for electron-impact ionization of atomic hydrogen between 13.8 and 30.0 eV. We report the data from these measurements and the results of corrections applied to previously published data.

Gay, T.J.; Fletcher, G.D.; Alguard, M.J.; Hughes, V.W.; Wainwright, P.F.; Lubell, M.S.

1982-12-01T23:59:59.000Z

251

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network [OSTI]

of Fracture-Matrix Heat Transfer Jens T. Birkholzer andon the magnitude of heat transfer from the matrix, waterthe interface area for heat transfer between the matrix and

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

252

Pore-Scale Study of the Impact of Fracture and Wettability on Two-Phase Flow Properties of Rock  

E-Print Network [OSTI]

Energy (DOE) under Contract No. DE-AC02-05CH11231 and the International Research Institute of Stavanger, Norway.

Silin, D.

2014-01-01T23:59:59.000Z

253

1 Xray imaging of water motion during capillary imbibition: 2 A study on how compaction bands impact fluid flow  

E-Print Network [OSTI]

by 1 order of magnitude from 24 estimations from previous laboratory measurements. 25 Citation: Pons, A., C. David, J. Fortin, S. Stanchits, B. Menéndez, and J. M. Mengus (2011), Xray imaging of water in laboratory 42experiments [Olsson and Holcomb, 2000; Klein et al., 2001; 43Baud et al., 2004; Fortin et al

Fortin, Jérôme

254

Life cycle assessment of TV sets in China: A case study of the impacts of CRT monitors  

SciTech Connect (OSTI)

Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with the Eco-indicator' 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step-the end-of-life stage-can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China.

Song Qingbin [Faculty of Science and Technology, University of Macau (Macao); Wang Zhishi, E-mail: zswang@umac.mo [Faculty of Science and Technology, University of Macau (Macao); Li Jinhui; Zeng Xianlai [School of Environment, Tsinghua University, Beijing 100084 (China)

2012-10-15T23:59:59.000Z

255

Study on environmental impact model of grid-connected wind power generation  

Science Journals Connector (OSTI)

As a clean and renewable energy source, wind power is independent from the traditional external energy change, which makes it one of the most promising ways of clean energy generation. It is well known that wind power has obvious energy saving efficiency. But for long-term consideration, wind power generation still has certain impacts on human life. Therefore, standing in the point of the negative effects of wind energy, this paper makes a further research on environmental issues of wind energy development and utilisation. Then combining with fuzzy theory, the environmental impact model of wind energy utilisation is constructed, the science and effectiveness of the model is validated thorough example analysis, which aims to lay a solid theoretical foundation to solve the problems of wind farm grid-connection.

Hao Chang; Jicheng Liu; Cunbin Li

2013-01-01T23:59:59.000Z

256

Computational study of subcritical response in flow past a circular cylinder  

E-Print Network [OSTI]

Flow past a circular cylinder is investigated in the subcritical regime, below the onset of Benard-von Karman vortex shedding at Re_c ~ 47. The transient response of infinitesimal perturbations is computed. The domain requirements for obtaining converged results is discussed at length. It is shown that energy amplification occurs as low as Re=2.2. Throughout much of the subcritical regime the maximum energy amplification increases approximately exponentially in the square of Re reaching 6800 at Re_c$. The spatiotemporal structure of the optimal transient dynamics is shown to be transitory Benard-von Karman vortex streets. At Re ~ 42 the long-time structure switches from exponentially increasing downstream to exponentially decaying downstream. Three-dimensional computations show that two-dimensional structures dominate the energy growth except at short times.

Cantwell, Christopher D; 10.1103/PhysRevE.82.026315

2013-01-01T23:59:59.000Z

257

A numerical study of steady fluid flow in the entry region of a straight circular tube  

E-Print Network [OSTI]

region. The Basic Equations The flow under i nves ti gati on is governed by the Navier-Stokes equations p ? = F - . + uv Du Dt x ax p ? = F - @uv v, Dv a A 2 Dt y ay (2) Dw= F ma+ Dt w as and the continuity equation "u av aw + ? = p ay... + w D a a a a Ut = at ax ay as and 2 a2 a2 a2 ax2 ay2 as2 Expressed in cylindrical form, the previous equations become 2 P = Fr M + & v V r e D Ve 2aV Dt r " ar r2ae DVe V Ve 2aV V p + ? = Fe - ~a + u & Ve + r - e Dt r rae (2a) F -22+ pv V...

Crain, John Kee

2012-06-07T23:59:59.000Z

258

Numerical study of unsteady, thermally stratified flow in an idealized thermoacoustic stack  

Science Journals Connector (OSTI)

A computational model for the simulation of unsteady thermally stratified flow within an idealized thermoacoustic stack is developed. The model is based on a vorticity?based formulation of the low?Mach?number conservation equations. The numerical scheme combines fast Poisson solvers with domain decomposition/boundary Green’s?function techniques. The model is applied to analyze the response of the stack to imposed finite?amplitude acoustic oscillations. Computed results are used to visualize the essential features of the vorticity field and temperature distribution quantify the heat transfer between the gas and plates and analyze thermal and mechanical energy losses. [The work of A.S.W. and O.M.K. is supported by the Office of Naval Research. R.K. is partially supported by Deutsche Forschungsgemeinschaft (DFG).

Aniruddha S. Worlikar; Omar M. Knio; Rupert Klein

1996-01-01T23:59:59.000Z

259

Optimal homogenization of perfusion flows in microfluidic bio-reactors; a numerical study  

E-Print Network [OSTI]

To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continuously feed bio-reactor with uniform perfusion flow. This is achieved by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for e.g. cell culturing and analysis, and in feeding bio-arrays.

Okkels, Fridolin; Bruus, Henrik

2009-01-01T23:59:59.000Z

260

Polarization study of the extreme-ultraviolet emission from helium following electron impact  

Science Journals Connector (OSTI)

Experimental results are presented on the degree of linear polarization of the extreme-ultraviolet emission of neutral and ionized helium following electron-impact excitation and ionization excitation of helium. The polarization of the photon emission from the decay of He (1snp) 1Po states with wavelengths of 517 to 584 Å has been extended to electron-impact energies of 1500 eV, and compared with theory for electron-impact excitation of neutral helium. In addition, the polarization of a number of the He+ decays with wavelengths between 256 and 1640 Å have been measured. Particular attention has been paid to the (2p) 2Po?(1s) 2S and (3p) 2Po?(1s) 2S decays with wavelengths of 304 and 256 Å, respectively. These have been measured from threshold (66 and 73 eV, respectively) to 1500 eV using a characterized molybdenum/silicon multilayer mirror polarimeter whose reflection and polarization characteristics have been optimized at 304 Å He+(2p) 2Po results are compared with a recent threshold alignment measurement and distorted-wave Born-approximation calculation for the (e-,2e-) reaction of ionization excitation. Very good agreement with the threshold theoretical predictions is obtained. These results indicate that near threshold, partial waves with L>0 contribute substantially to the two-electron wave function of the escaping electrons. Measurements on the unresolved multiplets at 1215 and 1640 Å, made using a more conventional reflection-type polarization analyzer, indicate that relative fine-structure cross sections are quite different than predicted by some theories.

H. Merabet, M. Bailey, R. Bruch, D. V. Fursa, I. Bray, J. W. McConkey, and P. Hammond

1999-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fully differential study of interference effects in the ionization of H2 by proton impact  

Science Journals Connector (OSTI)

We have measured fully differential cross sections for ionization of H2 by 75-keV proton impact. The coherence length of the projectile beam was varied by changing the distance between a collimating slit and the target. By comparing the cross sections measured for large and small coherence lengths pronounced interference effects could be identified in the data. A surprising result is that the phase angle in the interference term is primarily determined by the momentum transfer and only to a lesser extent by the recoil-ion momentum.

S. Sharma; T. P. Arthanayaka; A. Hasan; B. R. Lamichhane; J. Remolina; A. Smith; M. Schulz

2014-11-12T23:59:59.000Z

262

The Impact of Refrigerant Charge, Air Flow and Expansion Devices on the Measured Performance of an Air-Source Heat Pump Part I  

SciTech Connect (OSTI)

This paper describes extensive tests performed on a 3-ton R-22 split heat pump in heating mode. The tests contain 150 steady-state performance tests, 18 cyclic tests and 18 defrost tests. During the testing work, the refrigerant charge level was varied from 70 % to 130% relative to the nominal value; the outdoor temperature was altered by three levels at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C); indoor air flow rates ranged from 60% to 150% of the rated air flow rate; and the expansion device was switched from a fixed-orifice to a thermal expansion value. Detailed performance data from the extensive steady state cyclic and defrost testing performed were presented and compared.

Shen, Bo [ORNL

2011-01-01T23:59:59.000Z

263

The impact of immersion training on complementing organizational goals and accelerating culture change - a field study  

SciTech Connect (OSTI)

At Los Alamos National Laboratory, a national defense laboratory with a history of working in seclusion and secrecy, scientists and engineers have received an important new mission to partner with industry. The scientists and engineers need to expand their skill base beyond science and understand the business of innovation to be successful in this new environment. An administrative field experiment of conducting intensive, immersion training about the commercialization process was piloted at Los Alamos in September, 1992. This Field Research Project addresses the following research question: {open_quotes}Does {open_quotes}immersion{close_quotes} commercialization training complement organizational goals and does the method accelerate cultural change?{close_quotes} The field experiment first began as a pilot Commercialization Workshop conducted for twelve scientists in September, 1992. The objective was to create commercialization action plans for promising environmental technologies. The immersion method was compared to the indoctrination method of training also. The indoctrination training was a one-day lecture style session conducted for one hundred and fifty scientists in July, 1993. The impact of the training was measured by perceived attitude change and the amount of subsequent industrial partnerships that followed the training. The key management question addressed on the job was, {open_quotes}With a limited budget, how do we maximize the impact of training and achieve the best results?{close_quotes}

Hayes, S.M.

1996-02-01T23:59:59.000Z

264

Numerical Study of Three Dimensional Low Magnetic Reynolds Number Hypersonic Magnetohydrodynamic Flows.  

E-Print Network [OSTI]

??Hypersonic vehicles generate shocks that can heat the air sufficiently to partially ionize the air and create an electrically conducting plasma that can be studied… (more)

Lee, Jaejin

2011-01-01T23:59:59.000Z

265

Numerical study of fluid flow and heat transfer characteristics in an intermittent turbulent impinging round jet  

Science Journals Connector (OSTI)

Abstract The flow structure and heat transfer of the air pulsed turbulent impinging jet are studied numerically. The gas turbulence is modelled with the Reynolds stress model. The effects of pulse frequency, ratio of on time to total cycle time, distance between pipe outlet and impinging flat plate and Reynolds number on heat transfer are numerically studied. The impingement heat transfer increases with distance from the pipe edge and target surface. The heat transfer decreases at high distance from the pipe edge and target surface. An increase in the Reynolds number causes reduction of heat transfer enhancement. Reduced heat transfer in comparison with the steady-state impinging jet is typical in the range of low frequencies of the pulse impinging jet.

M.A. Pakhomov; V.I. Terekhov

2015-01-01T23:59:59.000Z

266

A study of numerical methods to solve quasi one-dimensional, unsteady, compressible viscous flow with shock  

E-Print Network [OSTI]

The numerical simulation of a quasi one-dimensional internal flow in a subsonicsupersonic nozzle is obtained. Shocks due to high pressure ratio are computed for both inviscid and viscous flows, using an original two point subsonic...

Goy, Matthieu Pierre Bernard

1994-01-01T23:59:59.000Z

267

Making Connections: Case Studies of Interconnection Barriers and their Impact on Distributed Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Interconnection of Interconnection Barriers and their Impact on Distributed Power Projects M a k i n g M a k i n g Connections Connections NREL/SR-200-28053 Revised July 2000 United States Department Of Energy Distributed Power Program Office of Energy Efficiency and Renewable Energy, Office of Power Technologies Joseph Galdo DOE Distributed Power Program Manager Office of Power Technologies, EE-15 U.S. Department of Energy Forrestal Building, 5H-021 1000 Independence Avenue SW Washington, DC 20585 Phone: (202) 586-0518 Fax: (202) 586-1640 Richard DeBlasio NREL Distributed Power Program Manager National Renewable Energy Laboratory 1617 Cole Blvd. (MS 3214) Golden, CO 80601 Phone: (303) 384-6452 Fax: (303) 384-6490 Gary Nakarado* National Renewable Energy Laboratory NREL Distributed Power Program Technical Monitor

268

Climate impacts of carbonaceous and other non-sulfate aerosols: A proposed study  

SciTech Connect (OSTI)

In addition to sulfate aerosols, carbonaceous and other non-sulfate aerosols are potentially significant contributors to global climate change. We present evidence that strongly suggests that current assessments of the effects of aerosols on climate may be inadequate because major aerosol components, especially carbonaceous aerosols, are not included in these assessments. Although data on the properties and distributions of anthropogenic carbonaceous aerosols are insufficient to allow quantification of their climate impacts, the existing information suggests that climate forcing by this aerosol component may be significant and comparable to that by sulfate aerosols. We propose that a research program be undertaken to support a quantitative assessment of the role in climate forcing of non-sulfate, particularly carbonaceous, aerosols.

Andreae, M.O.; Crutzen, P.J. [Max Planck Institute for Chemistry, Mainz (Germany); Cofer, W.R. III; Hollande, J.M. [NASA Langley Research Center, Hampton, VA (United States). Atmospheric Sciences Division] [and others

1995-06-01T23:59:59.000Z

269

Exploratory study of some potential environmental impacts of CO2 sequestration in unmineable coal seams  

SciTech Connect (OSTI)

An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production, using a CO2 injection process (CO2-ECBM). A high volatile bituminous coal, Pittsburgh No. 8, was reacted with synthetic produced water and gaseous carbon dioxide at 40°C and 50 bar to evaluate the potential for mobilisation of toxic metals during CO2-ECBM/sequestration. Microscopic and X-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction and chemical analysis of the synthetic produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilising toxic trace elements from coal beds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

Hedges, S.W.; Soong, Y.; Jones, R.J.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; White, C.M.

2007-01-01T23:59:59.000Z

270

An experimental study of heat transfer in reciprocating square duct fitted with ribs skewed to the flow  

SciTech Connect (OSTI)

The fuel economy plays the most important requirement for a marine propulsion plant as it has the decisive influence on the operating cost of a ship. In general the improvements of the propulsive and engine efficiencies could reduce the fuel consumption. Therefore, for a marine main diesel engine, the substantial increase of stroke/bore ratio, so that the engine speed can be significantly reduced in order to increase the propulsive efficiency, is observed as a common trend of development in the industry of marine engineering. Along with the efforts in reducing the speed of a propulsive engine, the continuous increases of maximum cycle pressure and temperature of the engine in order to increase the engine efficiency has proceeded in the last decade. As a result, one of the main assemblies of a combustion chamber, the piston, experiences a more difficult working environment. To compensate for the increasing thermal and mechanical loads experienced by a piston, the designs of the piston crown and its cooling system have to be modified. However, due to the reciprocating nature of the piston, the coolant flow circulating within these cooling passages is subjected to an additional time-varied periodical body force induced by reciprocation. Therefore the influences of reciprocating force on the flow field and its cooling performance cannot be ignored if the optimum design of such a cooling system is to be achieved. This study investigated the cooling performance of skewed ribs in the reciprocating duct.

Chang, S.W.; Su, L.M. [National Kaosiung Inst. of Marine Technology (Taiwan, Province of China). Dept. of Marine Engineering; Yang, T.L.; Hwang, C.C. [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Naval Architecture and Marine Engineering

1999-02-01T23:59:59.000Z

271

Study of Low Speed Flow Cytometry for Diffraction Imaging with Different Chamber  

E-Print Network [OSTI]

for optimization of the chamber design and improvement of the cell positioning accuracy for study of slow moving utilize a sheath nozzle with a conical end or orifice for hydrodynamic focusing the fluid injected

272

A STUDY OF ATES THERMAL BEHAVIOR USING A STEADY FLOW MODEL  

E-Print Network [OSTI]

and Warman, J.c. , "Thermal energy storage in a confinedProceedings of Thermal Energy Storage in Aquifers Workshop,c.F. , ~Aquifer thermal energy storage- parameter study,~

Doughty, Christine

2013-01-01T23:59:59.000Z

273

Continuous-flow study and scale-up of conventionally difficult chemical processes  

E-Print Network [OSTI]

Microfluidic systems provide valuable tools for exploring, studying, and optimizing organic syntheses. The small scales and fast transport rates allow for faster experiments and lower amounts of chemicals to be used, ...

Zaborenko, Nikolay

2010-01-01T23:59:59.000Z

274

Generalized multi-commodity network flows : case studies in space logistics and complex infrastructure systems  

E-Print Network [OSTI]

In transition to a new era of human space exploration, the question is what the next-generation space logistics paradigm should be. The past studies on space logistics have been mainly focused on a "vehicle" perspective ...

Ishimatsu, Takuto

2013-01-01T23:59:59.000Z

275

Surface chemistry of bulk nanocrystalline pure iron and electrochemistry study in gas-flow physiological saline  

E-Print Network [OSTI]

,9 was about an early failure owing to insufficient strength caused by hydrogen embrittlement or agingSurface chemistry of bulk nanocrystalline pure iron and electrochemistry study in gas. The contact angle test with water and glycerol droplets shows a smaller angle (though >90 ) of NC-Fe than

Zheng, Yufeng

276

Analytical and Numerical Study of Joule Heating Effects on Electrokinetically Pumped Continuous Flow PCR Chips  

E-Print Network [OSTI]

Analytical and Numerical Study of Joule Heating Effects on Electrokinetically Pumped Continuous, and the potential for integration.1-3 Joule heating is inevitable when electrokinetic pumping is used Form: December 8, 2007 Joule heating is an inevitable phenomenon for microfluidic chips involving

Le Roy, Robert J.

277

The impact of delirium on cognitive outcomes in population-based studies  

E-Print Network [OSTI]

Canadian Study of Health and Ageing DIS Diagnostic Interview Schedule DSM Diagnostic and Statistical Manual EClipSE Epidemiological Clinico-pathological Studies in Europe EWS Early Warning Scores FHSA Family Health Services Authority xiv GERDA... Manual, DSM). Lastly, research into delirium pathophysiology will be reviewed, examining the literature from experimental animal models and clinical studies. Chapter outline ? Overview of concepts ? Case study ? Delirium phenomenology ? Delirium...

Davis, Daniel Harvey Jonathan

2014-07-01T23:59:59.000Z

278

On-Site Pilot Study - Removal of Uranium, Radium-226 and Arsenic from Impacted Leachate by Reverse Osmosis - 13155  

SciTech Connect (OSTI)

Conestoga-Rovers and Associates (CRA-LTD) performed an on-site pilot study at the Welcome Waste Management Facility in Port Hope, Ontario, Canada, to evaluate the effectiveness of a unique leachate treatment process for the removal of radioactive contaminants from leachate impacted by low-level radioactive waste. Results from the study also provided the parameters needed for the design of the CRA-LTD full scale leachate treatment process design. The final effluent water quality discharged from the process to meet the local surface water discharge criteria. A statistical software package was utilized to obtain the analysis of variance (ANOVA) for the results from design of experiment applied to determine the effect of the evaluated factors on the measured responses. The factors considered in the study were: percent of reverse osmosis permeate water recovery, influent coagulant dosage, and influent total dissolved solids (TDS) dosage. The measured responses evaluated were: operating time, average specific flux, and rejection of radioactive contaminants along with other elements. The ANOVA for the design of experiment results revealed that the operating time is affected by the percent water recovery to be achieved and the flocculant dosage over the range studied. The average specific flux and rejection for the radioactive contaminants were not affected by the factors evaluated over the range studied. The 3 month long on-site pilot testing on the impacted leachate revealed that the CRA-LTD leachate treatment process was robust and produced an effluent water quality that met the surface water discharge criteria mandated by the Canadian Nuclear Safety Commission and the local municipality. (authors)

McMurray, Allan; Everest, Chris; Rilling, Ken [Conestoga-Rovers and Associates, 651 Colby Dr, Waterloo, ON (Canada)] [Conestoga-Rovers and Associates, 651 Colby Dr, Waterloo, ON (Canada); Vandergaast, Gary [Atomic Energy of Canada Ltd, 115 Toronto Road, Port Hope, ON (Canada)] [Atomic Energy of Canada Ltd, 115 Toronto Road, Port Hope, ON (Canada); LaMonica, David [RoChem Membrane Systems Inc., 430 30th Street, Hermosa Beach, CA (United States)] [RoChem Membrane Systems Inc., 430 30th Street, Hermosa Beach, CA (United States)

2013-07-01T23:59:59.000Z

279

TAO: Impact  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact Impact Home Download Documentation Publications Referencing TAO Impact Who We Are Acknowledgements License Contact Us Research and Publications that make use of TAO Dressed TDDFT study of low-lying electronic excited states in selected linear polyenes and diphenylopolyenes, Mazur, G., Makowski, M., Włodarczyk, R., and Aoki, Y., International Journal of Quantum Chemistry, 111, 4, 819--825, 2011. BibTeX Secondary thermal cracks in EGS: a variational approach, Bourdin, B., Knepley, M., and Maurini, C., Proceedings of the 34th annual meeting of the Geothermal resources council, 2010. BibTeX Adaptive Real-Time Bioheat Transfer Models for Computer Driven MR-guided Laser Induced Thermal Therapy, Fuentes, D., Feng, Y., Elliott, A., Shetty, A., McNichols, R. J., Oden, J. T., and Stafford, R. J., IEEE Trans. Biomed. Eng., 5, 1024--1030, 2010. BibTeX

280

Adapting to health impacts of climate change: a study of UNFCCC Annex I  

Science Journals Connector (OSTI)

Adapting to the health effects of climate change is one of the key challenges facing public health this century. Our knowledge of progress on adaptation, however, remains in its infancy. Using the Fifth National Communications of Annex I parties to the UNFCCC, 1912 initiatives are systematically identified and analyzed. 80% of the actions identified consist of groundwork (i.e. preparatory) action, with only 20% constituting tangible adaptations. No health vulnerability was recognized by all 38 Annex I countries. Furthermore, while all initiatives affect at least one health vulnerability, only 15% had an explicit human health component. Consideration for the special needs of vulnerable groups is uneven and underdeveloped. Climate change is directly motivating 71% of groundwork actions, and 61% of adaptation initiatives are being mainstreamed into existing institutions or programs. We conclude that the adaptation responses to the health risks of climate change remain piecemeal. Policymakers in the health sector must engage with stakeholders to implement adaptation that considers how climate change will impact the health of each segment of the population, particularly within those groups already considered most vulnerable to poor health outcomes.

A C Lesnikowski; J D Ford; L Berrang-Ford; J A Paterson; M Barrera; S J Heymann

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

3-D laser Doppler velocimetry study of incompressible flow through an orifice plate  

E-Print Network [OSTI]

of Advisory Committee: Dr. Gerald Morrison Orifice meters are used extensively in the U. S. for the measurement of natural gas. Uncertainty of metering accuracy has resulted in an estimated 250 million dollars annually in mis-charges. This has led... to the need for basic research on orifice meters in an attempt to improve the accuracy of existing metering facilities. The objective of this present study was to use a 3-D LDV (laser Doppler velocimeter) to obtain detailed velocity and turbulence...

Panak, David Leo

2012-06-07T23:59:59.000Z

282

Study of the effect of inhomogeneities in oil reservoirs on transient flow performance  

E-Print Network [OSTI]

occurred at this dimensionless time for every ratio of the thickness of rubber to that of copper studied. How- ever, at a dimensionless time of 0. 782, the increase in production amounted to approximately 50 percent of the initial rubber capacity..., except for the thickness ratio of 2. 240. The production increase at this thickness amounts to approximately 40 percent of the initial rubber capacity although the absolute value of the increase in pro- duction was greater than for the smaller...

Cotman, Nathan T

2012-06-07T23:59:59.000Z

283

An experimental study of microvascular blood flow response to capillary occlusion  

E-Print Network [OSTI]

to Pressure. . . . 28 LIST OF FIGURES FIGURE Pressure Time Relat1onships Noted 1n 62 Experiments on 16 Dogs. Dimensions and Deta1ls of Hamster Cheek Pouch Platform. . . 13 Plexiglass Muscle Compression Platform. 19 Res1dual Pressure Effects (means w1th... are used to stretch the pouch over the viewing window of a soecially designed m1croscope stage. This study used a stage made from 0. 25 inch thick aluminum (Figure 2). A sect1on of the platform was milled out and f1lled with cork to provide a substrate...

Levitan, Barry Miles

2012-06-07T23:59:59.000Z

284

Cerro Grande Fire Impact to Water Quality and Stream Flow near Los Alamos National Laboratory: Results of Four Years of Monitoring  

SciTech Connect (OSTI)

In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and a general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.

B.M. Gallaher; R.J. Koch

2004-09-15T23:59:59.000Z

285

The Impact of Tax Shocks and Oil Price Volatility on Risk - A Study of North Sea Oilfield Projects   

E-Print Network [OSTI]

We examine the impact of market volatility and increased fiscal take on risk in strategic natural resource projects. An increase in 2006 UK oilfield taxation is used as a natural experiment for assessing the impact of a ...

Kretzschmar, Gavin Lee; Moles, Peter

2006-01-01T23:59:59.000Z

286

Numerical study of primary steam superheating effects on steam ejector flow and its pumping performance  

Science Journals Connector (OSTI)

Abstract The effects of primary steam superheating on steam condensation in nozzle and the performance of steam ejector were investigated using CFD (computational fluid dynamics) method. Using a wet steam model being proposed in our previous study, simulations based on the primary steam with five superheated levels were performed, and the results demonstrate the superheating operation of the primary steam weakens the spontaneous condensation intensity and postpones its occurrence within the nozzle vicinity. Due to the droplets nucleation refinement for the condensation of superheated steam, the mixing process between the primary and the secondary fluids is improved. Consequently, a higher entrainment ratio is achieved. However, the superheating operation may not exceed 20 K, as its contribution on entrainment ratio improvement is not as significant as 0 K–20 K superheating, and too much superheating will requires more energy as input, which is not a practical solution to further improve the steam ejector pumping performance.

Xiaodong Wang; Jingliang Dong; Ao Li; Hongjian Lei; Jiyuan Tu

2014-01-01T23:59:59.000Z

287

Thomson, H. and Kearns, A. and Petticrew, M. (2003) Assessing the health impact of local amenities: a qualitative study of contrasting  

E-Print Network [OSTI]

: a qualitative study of contrasting experiences of local swimming pool and leisure provision in two areas amenities: a qualitative study of contrasting experiences of local swimming pool and leisure provision: Study objective: To assess the health impacts of local public swimming pool and leisure provision

Glasgow, University of

288

Noise impact assessment by utilizing noise map and GIS: A case study in the city of Chungju, Republic of Korea  

Science Journals Connector (OSTI)

In this study, a scheme to develop a noise map and noise impact assessment method using GIS has been suggested. After developing a road-traffic noise map for the city of Chungju, Republic of Korea, noise impact assessment was performed through analyzing the map. A 3-dimensional terrain model was generated using digital maps and building models were prepared using the information from draft and digital maps. To develop a noise evaluation model, a noise-source map for each road was generated. The noise levels at 25 locations close to roads were measured and compared with the expected noise levels to verify the developed noise map. An excess noise map was generated by comparing the road-traffic noise map with a noise-standard map. Using the excess noise map, the areas exceeding environmental noise standards were effectively evaluated through a GIS space analysis. The 3-dimensional facade noise map was generated to calculate the number of people exposed to a certain noise level.

Joon Hee Ko; Seo Il Chang; Byung Chan Lee

2011-01-01T23:59:59.000Z

289

CFD study of mixing and segregation in CFB risers: Extension of EMMS drag model to binary gas–solid flow  

Science Journals Connector (OSTI)

Abstract The Energy Minimization Multi-Scale (EMMS) drag model, using Sauter mean particle diameter to represent real particle size distribution, has proven to be effective in improving the accuracy of continuum modeling of gas–solid flow. Nevertheless, mixing and segregation characteristics in circulating fluidized bed (CFB) risers are very important in many situations, which necessitates the explicit consideration of the effects of particle size distribution on the bed hydrodynamics. To this end, an attempt is made to extend the EMMS drag model to binary gas–solid system, where four input parameters that can be obtained from computational fluid dynamics (CFD) simulation, including two slip velocities between gas and each particle phase and two particle concentrations of each phase, are used to solve the proposed EMMS drag model. Heterogeneous indexes, which are used to modify the drag correlation obtained from homogeneous fluidization, are then predicted and fed into multifluid model (MFM) to predict the dynamical behavior of mixing and segregation of binary gas–solid flow in a CFB riser. The effects of different drag force models, kinetic theories and particle–particle drag force models are also systematically evaluated. It was shown that (i) MFM with the proposed EMMS drag model and the kinetic theory developed by Chao et al. (Chemical Engineering Science 2011, 66: 3605–3616) is able to correctly predict the mixing and segregation pattern in the studied riser, while MFM with homogenous drag forces and the simplified kinetic theory available in commercial software FLUENT completely fails; and (ii) with or without particle–particle drag force has a substantial influence upon the particle behavior.

Quan Zhou; Junwu Wang

2015-01-01T23:59:59.000Z

290

Study of Climate Change Impact on Flood Frequencies: A Combined Weather Generator and Hydrological Modeling Approach  

Science Journals Connector (OSTI)

Climate change is expected to lead to more frequent and intensive flooding problems for watersheds in the south part of China. This study presented a coupled Long Ashton Research Station Weather Generator (LARS-WG) and Semidistributed Land Use–...

X. S. Qin; Y. Lu

2014-06-01T23:59:59.000Z

291

Indoor Conditions Study and Impact on the Energy Consumption for a Large Commercial Building  

E-Print Network [OSTI]

that were studied using dynamic simulations. The article provides interesting insights of the building indoor conditions (summer/winter comfort), humidity, air temperature, mean operative temperature and energy consumption using hourly climate data. A...

Catalina, T.

2011-01-01T23:59:59.000Z

292

Idaho Water Rental Pilot Project Probability/Coordination Study Resident Fish and Wildlife Impacts Phase III, 1996 Annual Report.  

SciTech Connect (OSTI)

Phase 3 began in 1995 with the overall goal of quantifying changes in resident fish habitat in the Snake River Basin upstream of Brownlee Reservoir resulting from the release of salmon flow augmentation water. Existing data, in the form of weighted usable area versus flow relationships, were used to estimate habitat changes for white sturgeon (Acipenser transinontanus) and rainbow trout (Oncorhynchus mykiss) in the Snake River between C.J. Strike Dam and Brownlee pool. The increased flows resulted in increased habitat for adult and juvenile white sturgeon and adult rainbow trout. But, the flows have failed to meet mean monthly flow recommendations for the past three years despite the addition of the flow augmentation releases. It is unlikely that the flow augmentation releases have had any significant long-term benefit for sturgeon and rainbow trout in the Snake River. Flow augmentation releases from the Boise and Payette rivers have in some years helped to meet or exceed minimum flow recommendations in these tributaries. The minimum flows would not have been reached without the flow augmentation releases. But, in some instances, the timing of the releases need to be adjusted in order to maximize benefits to resident fishes in the Boise and Payette rivers.

Leitzinger, Eric J. [Idaho Dept. of Fish and Game, Boise, ID (United States)

1997-12-01T23:59:59.000Z

293

Characterization of groundwater flow and transport in the General Separations Areas, Savannah River Plant: Flow model refinement and particle-tracking analysis report  

SciTech Connect (OSTI)

The Department of Energy (DOE) is preparing the necessary NEPA documentation for an Environmental Impact Statement (EIS) to address the waste disposal activities for groundwater protection at the Savannah River Plant (SRP). For purposes of this EIA, the areas within the plant have been separated into 26 functional groups based primarily on hydrogeologic setting and types of disposed waste materials. The overall objective is to provide an appropriate quantitative assessment of the environmental impacts from past and future operations within each functional group. The analysis from each functional group will be integrated to assess the impacts of plant-wide operations. A flexible approach to quantifying the impacts using several methods of quantitative analysis is being employed. Numerical flow and transport modeling is one method being applied to several functional groups. The scope of work can be divided into four broad categories: (1) Data Review and Conceptual Model Development, (2) Groundwater Flow Model Construction and Refinement, (3) Solute Transport Model Construction, and (4) Remedial Alternative Simulations. The major topics covered in this report are: (1) summary of the hydrogeologic conditions of the area, (2) observed flow velocities at the study site, (3) a summary of results from the preliminary flow modeling effort, (4) flow model refinement and results, and (5) particle tracking analyses based on the refined flow model.

Duffield, G.M.; Buss, D.R.; Root, R.W. Jr.; Hughes, S.S.; Mercer, J.W. [GeoTrans, Inc., Sterling, VA (United States)

1986-03-01T23:59:59.000Z

294

Experimental study of free and mixed convective flow of air in a heated cavity  

SciTech Connect (OSTI)

Free and mixed convection in a strongly-heated rectangular open cavity have been investigated experimentally, to observe the effects of cavity shape and inclination, and of ambient wind, on the velocity and temperature distribution were observed. The long edges of the cavity were horizontal, and parallel to an axis around which the cavity could be rotated. The aperture plane was either vertical (..cap alpha.. = 0/sup 0/), or inclined downward at ..cap alpha.. - 20/sup 0/ or ..cap alpha.. = 45/sup 0/. The height of the aperture, b, was always 0.0947 m, while the depth of the cavity, a, was set so that a/b = 0.5, 1.0, or 1.46. The bottom and back walls were electrically heated - the top wall was indirectly heated by conduction, radiation and convection. The average wall temperature and the ambient temperature were used to define the dimensionless overheat and Grashof numbers. The Prandtl number was that of air. In the studies of mixed convection, the axis of rotation was horizontal and normal to the ambient wind. The Reynolds number was varied from Re = 120 - 1100 to Re = 2000 - 8740. For both free and mixed convection, wall and gas temperature were measured with thermocouples, and shadowgraph pictures were taken. For pure free convection, three time-averaged velocity components, the corresponding normal Reynolds stress components, and one off-diagonal Reynolds stress component were measured with a two-color laser-Doppler velocimeter. A PDP-11/34 minicomputer controlled the sequence of automatic data acquisition, the statistical data reduction and its storage. Statistical results are presented numerically and graphically for two averaging procedures. The principal quantitative result for free convection is that the rate of convective heat loss across the cavity aperture plane is reduced both by increasing a/b and by increasing ..cap alpha... Qualitative observations are recorded and discussed. The most striking observation was the appearance of a periodic oscillation of frequency 2 to 5.5 Hz.

Humphrey, J.A.C.; Sherman, F.S.

1985-04-01T23:59:59.000Z

295

Feasibility study on preparation of coatings on Ti–6Al–4V by combined ultrasonic impact treatment and electrospark deposition  

Science Journals Connector (OSTI)

Abstract A novel method combining ultrasonic impact treatment (UIT) with electrospark deposition was developed to prepare coatings on Ti–6Al–4V substrates. The microstructure, phase composition, residual stress, microhardness, and wear performance of the coating were studied, and new amorphous and nanocrystalline phases (titanium carbide nitride and iron titanium oxide) were found. In addition, the residual stress in the coating and in the substrate near the coating is compressive stress. The maximum compressive residual stress is about ?717 MPa, and its depth is about 470 ?m. Because of contributions from multiple factors, the wear volume loss of the sample subjected to combined UIT and electrospark processing was reduced by four orders of magnitude compared with that of the base material.

Yang Liu; Dongpo Wang; Caiyan Deng; Lixing Huo; Lijun Wang; Shu Cao

2014-01-01T23:59:59.000Z

296

Cusp-shape studies with He+ ions at 1.41- and 2.41-a.u. impact velocities  

Science Journals Connector (OSTI)

The electron loss to the continuum (ELC) process was investigated in He+-(He,Ar) collisions at 1.41- and 2.41-a.u. impact velocities. The cusp-shaped energy distributions of electrons ejected into the forward direction were measured in coincidence with the scattered He2+ projectile ions. The shape of these cusps was studied by fitting the multipole series expansion [Meckbach, Nemirovsky, and Garibotti, Phys. Rev. A 24, 1793 (1981)] of the measured spectra using Bnj, the nth-order expansion coefficients of the jth-order Legendre polynomials, as fitting parameters. The observed skewness of the spectra (nonzero ?1=B01/B00 values) indicates the importance of the higher-order theories in the description of the distribution of ELC electrons. A dip at the top of the peak (‘‘cusp inversion’’), reflected by a positive ?2=B02/B00 value, was observed in the 1.41-a.u. He+-He collision.

L. Gulyás; L. Sarkadi; J. Pálinkás; Á. Kövér; T. Vajnai; Gy. Szabó; J. Végh; D. Berényi; S. B. Elston

1992-04-01T23:59:59.000Z

297

Flow Visualization Studies in the Novacor Left Ventricular Assist System CRADA PC91-002, Final Report  

SciTech Connect (OSTI)

This paper discusses a series of experiments to visualize and measure flow fields in the Novacor left ventricular assist system (LVAS). The experiments utilize a multiple exposure, optical imaging technique called fluorescent image tracking velocimetry (FITV) to hack the motion of small, neutrally-buoyant particles in a flowing fluid.

Borovetz, H.S.; Shaffer, F.; Schaub, R.; Lund, L.; Woodard, J.

1999-01-01T23:59:59.000Z

298

Figure 1. Photolithography techniques are used to create microfluidic flow cells where biofouling can be studied for  

E-Print Network [OSTI]

Figure 1. Photolithography techniques are used to create microfluidic flow cells where biofouling and construct microfluidic flow cells for real-time observation of bacterial attachment and biofouling. He microfluidic devices, and computer multiphysics simulation with COMSOL. The student will also learn to work

Shor, Leslie McCabe

299

Proc. IEEE PowerTech, Bucharest, June 2009. 1 Abstract-Power flow studies are typically used to determine  

E-Print Network [OSTI]

to determine the steady state or operating conditions of power systems for specified sets of load, and hence reliable solution algorithms that incorporate the effect of data uncertainty into the power flow that incorporate the effect of data uncertainties into the power flow This work was partially supported by NSERC

Cañizares, Claudio A.

300

An Experimental Study into the Impact of Local Accident Information on Driver's Route Planning Behaviour  

E-Print Network [OSTI]

of previous accidents just as existing GPS tools provide data about average delays and fuel consumption behaviour. Experimental studies have shown the effects of attribution error, it is easy to believe into the effects that local accident information has on drivers' route planning tasks. Our results show

Johnson, Chris

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

An Integrated Study of Avian Influenza Impacts and Associated Climate Change Issues  

E-Print Network [OSTI]

. The climate change and spread of AI outbreaks study finds that the probability and expected number of AI outbreaks increases as climate change proceeds. Particularly, past climate change has contributed to the current spread of AI disease by 11% and the future...

Mu, Jianhong

2012-07-16T23:59:59.000Z

302

IMPACT OF THE URBAN POLLUTION ON THE INDOOR ENVIRONMENT -EXPERIMENTAL STUDY ON A MECHANICAL  

E-Print Network [OSTI]

Bâtiment (CSTB), Nantes, France ABSTRACT This study aims to assess the transfer of outdoor air pollution and the relationships between outdoor and indoor urban air pollutant concentrations are more and more a subject indoor pollutant sources. At the initial state, the dwelling was naturally ventilated. Air renewal

Boyer, Edmond

303

Study on the Portable and Integrated Type Pore Plate Flow Measureing Device for Condensate Water of 300MW Steam Turbine  

Science Journals Connector (OSTI)

In order to insure the accuracy of steam turbine thermal test in power plant, the flowrate measurement accuracy of condensate water should be insured. In this paper, the portable and integrated type flow measuring device for condensate water of 300MW steam turbine flow is designed, which is based on the condensate water parameters and the specific pipeline conditions at the exit of the No. 5 low pressure heater for 300MW unit. A integration of non standard differential pressure orifice flow meter is designed in this paper Through calibration in standard experimental system, the reason of the large error is that the flow field is disturbed by the origin plate type downward welding connecting flanges. Then the welding neck flanges is designed for the connecting flanges. The distribution of connecting flanges of flow field is weaken, and the measurement accuracy can meet the demand of steam turbine thermal test.

Yong Li; Jia-yong Wang

2012-01-01T23:59:59.000Z

304

Design Principles and Case Study Analysis for Low Impact Development Practices - Green Roofs, Rainwater Harvesting and Vegetated Swales.  

E-Print Network [OSTI]

??This thesis on Low Impact Development (LID) Practices provides design guidelines and principles for three important LID practices: green roofs, rainwater harvesting and bioswales. The… (more)

Ramesh, Shalini

2011-01-01T23:59:59.000Z

305

Investigating the impact of wave energy in the electric power system - A case study of southern Sweden.  

E-Print Network [OSTI]

??The aim of this thesis has been to investigate the impact of wave energy in the electric power system of southern Sweden. How does wave… (more)

von Sydow, Tyra

2014-01-01T23:59:59.000Z

306

Two phase flow in capillary tubes  

E-Print Network [OSTI]

The flow of two phases, gas and liquid, has been studied in horizontal tubes of capillary diameter. The flow has been primarily studied in the regime where the gas flows as long bubbles separated from the wall of the tube ...

Suo, Mikio

1963-01-01T23:59:59.000Z

307

Experimental and Modeling Studies of Two-Phase Flow in Porous Media and Its Effects on the Performance of a PEM Fuel Cell  

E-Print Network [OSTI]

An experimental investigation was conducted to study the two-phase flow properties of porous media used in proton exchange membrane (PEM) fuel cells. The liquid and gas phase relative permeability of porous media used in PEM fuel cells was measured...

Wang, Xuhai

2010-01-01T23:59:59.000Z

308

Studies into the Initial Conditions, Flow Rate, and Containment System of Oil Field Leaks in Deep Water  

E-Print Network [OSTI]

height measurements to determine flow rate using an integral model. Plume width and temperature were determined to have little sensitivity. Separately, a containment dome was tested in the laboratory to determine if a full scale dome can be used...

Holder, Rachel

2013-07-22T23:59:59.000Z

309

Experimental studies of a flow field around a forward swept wing at high angles of attack and low speeds  

E-Print Network [OSTI]

of the wing. Particular attention was pa1d to the characteristic leading edge vortex system and the adverse wing root stall associated with the lead1ng edge vortex. These flow characteristics of the wing are presented and discussed in detail. DEDICATION... the forward and aft swept wing flow characteristics, and investigated in detail, the problem of wing root stall associated with the leading edge vortex. The latter is an important characteristic of forward swept wings. In addition, this test was designed...

Goss, Robert Bruce

2012-06-07T23:59:59.000Z

310

HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS  

SciTech Connect (OSTI)

This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

Liu, Xiaobing [ORNL] [ORNL

2011-01-01T23:59:59.000Z

311

Pouring flows  

Science Journals Connector (OSTI)

Free surface flows of a liquid poured from a container are calculated numerically for various configurations of the lip. The flow is assumed to be steady two dimensional and irrotational; the liquid is treated as inviscid and incompressible; and gravity is taken into account. It is shown that there are jetlike flows with two free surfaces and other flows with one free surface which follow along the underside of the lip or spout. The latter flows occur in the well?known ‘‘teapot effect ’’ which was treated previously without including gravity. Some of the results are applicable also to flows over weirs and spillways.

Jean?Marc Vanden?Broeck; Joseph B. Keller

1986-01-01T23:59:59.000Z

312

Comprehensive Study of the Impact of Steam on Polyethyleneimine on Silica for CO{sub 2} Capture  

SciTech Connect (OSTI)

An amine sorbent, prepared by impregnation of polyethyleneimine on silica, was tested for steam stability. The stability of the sorbent was investigated in a fixed bed reactor using multiple steam cycles of 90 vol.% H{sub 2}O/He at 105 {degrees}?C and the gas effluent was monitored with a mass spectrometer. CO{sub 2} uptake of sorbent was found to decrease with repeated exposure to steam. Characterization of the spent sorbent using N{sub 2} physisorption, SEM, and thermogravimetric analysis (TGA), showed that the decrease in CO{sub 2} loading can possibly be attributed to a reagglomeration of the amine in the pores of the silica. No support effect was found in this study. The commercial SiO{sub 2} used, Cariact G10, was found to be stable under the conditions used. While it was found that subjecting the sorbent to several steam cycles decreased its CO{sub 2} uptake, a continuous exposure of the sorbent to steam did not have a significant performance impact. A silanated sorbent, consisting of a mixture of PEI and aminopropyl-triethoxysilane on SiO{sub 2} support, was also investigated for steam stability. Similarly to the non-silanated sorbent, the CO{sub 2} loading of this sorbent decreased upon steam exposure, although a mechanism for this change has not been postulated at this time.

Hammache, Sonia; Hoffman, James S.; Gray, McMahan L.; Fauth, Daniel J; Howard, Bret H.; Pennline, Henry W.

2013-11-01T23:59:59.000Z

313

Study of anticipated impact on DOE programs from proposed reductions to the external occupational radiation exposure limit  

SciTech Connect (OSTI)

A study of the impact of reducing the occupational radiation exposure limit from 5 rem/yr to 2.5, 1.0 and 0.5 rem/yr, respectively produced the following conclusions: reduction of the occupational exposure limit would result in significant increase in total accumulated exposure to the current radiation worker population and could require an increase in the work force; important programs would have to be abandoned at a planned exposure limit of 0.5 rem/yr; some engineering technology is not sufficiently developed to design or operate at the 0.5 rem/yr limit; even a factor of 2 reduction (2.5 rem/yr) would significantly increase costs and would result in an increase in total exposure to the work force; in addition to a significant one-time initial capital cost resulting from a 0.5 rem/yr limit, there would be a significant increase in annual costs; the major emphasis in controlling occupational exposure should be on further reduction of total man-rem; and current standards are used only as a limit. For example, 97% of the employees receive less than 0.5 rem/yr.

None

1981-02-01T23:59:59.000Z

314

Thermodynamic Characteristic Study of a High-temperature Flow-rate Control Valve for Fuel Supply of Scramjet Engines  

Science Journals Connector (OSTI)

Thermodynamic characteristics are of great importance for the performance of a high-temperature flow-rate control valve, as high-temperature environment may bring problems, such as blocking of spool and increasing of leakage, to the valve. In this paper, a high-temperature flow-rate control valve, pilot-controlled by a pneumatic servo system is developed to control the fuel supply for scramjet engines. After introducing the construction and working principle, the thermodynamic mathematical models of the valve are built based on the heat transfer methods inside the valve. By using different boundary conditions, different methods of simulations are carried out and compared. The steady-state and transient temperature field distribution inside the valve body are predicted and temperatures at five interested points are measured. By comparing the simulation and experimental results, a reasonable 3D finite element analysis method is suggested to predict the thermodynamic characteristics of the high-temperature flow-rate control valve.

Wen ZENG; Zhizhong TONG; Songjing LI; Hongzhou LI; Liang ZHANG

2012-01-01T23:59:59.000Z

315

A soil microscale study to reveal the heterogeneity of Hg(II) impact on indigenous bacteria by quantication of adapted phenotypes and  

E-Print Network [OSTI]

toxicants. Heavy metals in soil are known to have a deleterious e¡ect on the num- bers of bacteria; RISA; Indirect enumeration 1. Introduction Bacterial response to heavy metal contamination in soil,2]). Several studies reported an impact of heavy metals at the community level using phenotypic or genetic

Thioulouse, Jean

316

Accounting for global-mean warming and scaling uncertainties in climate change impact studies Hydrol. Earth Syst. Sci., 11(3), 12071226, 2007  

E-Print Network [OSTI]

Accounting for global-mean warming and scaling uncertainties in climate change impact studies 1207(s) 2007. This work is licensed under a Creative Commons License. Accounting for global-mean warming from a few regional climate model runs are scaled, based on different global-mean warming projections

Paris-Sud XI, Université de

317

The Impact of Farmer-Field-Schools on Knowledge and Productivity: A Study of Potato Farmers in the Peruvian Andes1  

E-Print Network [OSTI]

1 The Impact of Farmer-Field-Schools on Knowledge and Productivity: A Study of Potato Farmers-school (FFS) program on farmers' knowledge of integrated pest management (IPM) practices related to potato practices has the potential to significantly improve productivity in potato production. U.S. General

Sadoulet, Elisabeth

318

he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study  

SciTech Connect (OSTI)

This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistryâ??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earthâ??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

Keene, William C. [University of Virginia] [University of Virginia; Long, Michael S. [University of Virginia] [University of Virginia

2013-05-20T23:59:59.000Z

319

Idaho Water Rental Pilot Project Probability/Coordination Study Resident Fish and Wildlife Impacts Phase III, 1997 Annual Report.  

SciTech Connect (OSTI)

Phase III began in 1995 with the overall goal of quantifying changes in resident fish habitat in the Snake River Basin upstream of Brownlee Reservoir resulting from the release of salmon flow augmentation water.

Leitzinger, Eric J. (Idaho Department of Fish and Game, Boise, ID)

1998-10-01T23:59:59.000Z

320

The lattice Boltzmann method for complex flows.  

E-Print Network [OSTI]

??This thesis presents the extension of the lattice Boltzmann equation (LBE) to several well-known flows. First, the flow over a cylinder is studied using the… (more)

Reis, Tim

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Third International Conference on Multiphase Flow, ICMF'98 Lyon, France, June 8-12, 1998  

E-Print Network [OSTI]

HYDRODYNAMIC RESUSPENSION BY AN IMPACTING SPHERE I. Eames 1 & S.B. Dalziel 2 1 School of Mathematics for resuspending the dust. We present a study of the hydrodynamic resuspension mechanism by considering the flow, and consequently the range of influence of an effective mechanism of dust resuspension must be much larger than

Dalziel, Stuart

322

S. Wasterlain, D. Candusso, D. Hissel, F. Harel, P. Bergman, P. Menard, M. Anwar (fvrier 2010). Study of temperature, air dew point temperature and reactant flow effects on PEMFC  

E-Print Network [OSTI]

). Study of temperature, air dew point temperature and reactant flow effects on PEMFC performances using. Elsevier. Study of temperature, air dew point temperature and reactant flow effects on PEMFC performances A single PEMFC has been operated by varying the assembly temperature, the air dew point temperature

Boyer, Edmond

323

This study is focused on the detailed experimental investigation of jet boat-tail (JBT) passive flow control bluff  

E-Print Network [OSTI]

. The wind tunnel experimental results show a substantial reduction in the wake width and depth for the two in the turbulent fluctuation of the wake can be observed in addition to a decrease of the recirculation region measurements at the mid-plane location suggest their flow fields differ significantly due to the nature

Zha, Gecheng

324

Local Nusselt number enhancement during gaseliquid Taylor bubble flow in a square mini-channel: An experimental study  

E-Print Network [OSTI]

- scale mass transfer process, fuel cells, etc. The unique and complex flow characteristics require under, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India a r t i c l e i n f o Article history of the unit cell, i.e., the length of adjacent gas bubble and water plug. Ã? 2012 Elsevier Masson SAS. All

Khandekar, Sameer

325

Evaluation of flow hood measurements for residential register flows  

SciTech Connect (OSTI)

Flow measurement at residential registers using flow hoods is becoming more common. These measurements are used to determine if the HVAC system is providing adequate comfort, appropriate flow over heat exchangers and in estimates of system energy losses. These HVAC system performance metrics are determined by using register measurements to find out if individual rooms are getting the correct airflow, and in estimates of total air handler flow and duct air leakage. The work discussed in this paper shows that commercially available flow hoods are poor at measuring flows in residential systems. There is also evidence in this and other studies that flow hoods can have significant errors even when used on the non-residential systems they were originally developed for. The measurement uncertainties arise from poor calibrations and the sensitivity of exiting flow hoods to non-uniformity of flows entering the device. The errors are usually large--on the order of 20% of measured flow, which is unacceptably high for most applications. Active flow hoods that have flow measurement devices that are insensitive to the entering airflow pattern were found to be clearly superior to commercially available flow hoods. In addition, it is clear that current calibration procedures for flow hoods may not take into account any field application problems and a new flow hood measurement standard should be developed to address this issue.

Walker, I.S.; Wray, C.P.; Dickerhoff, D.J.; Sherman, M.H.

2001-09-01T23:59:59.000Z

326

Application of a high-power KrF laser for the study of supersonic gas flows and the development of hydrodynamic instabilities in layered media  

SciTech Connect (OSTI)

The design of a miniature laser shock tube for the study of a wide range of hydrodynamic phenomena in liquids at pressures greater than 10 kbar and in supersonic flows with large Mach numbers (greater than 10) is discussed. A substance filling a chamber of quadratic cross section, with a characteristic size of several centimetres, is compressed and accelerated due to local absorption of 100 ns, 100 J KrF laser pulses near the entrance window. It is proposed to focus a laser beam by a prism raster, which provides a uniform intensity distribution over the tube cross section. The system can be used to study the hypersonic flow past objects of complex shape and the development of hydrodynamic instabilities in the case of a passage of a shock wave or a compression wave through the interfaces between different media. (laser applications and other topics in quantum electronics)

Zvorykin, V D; Lebo, I G [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2000-06-30T23:59:59.000Z

327

Cash Flow Impacts of Industrial Steam Efficiency  

E-Print Network [OSTI]

Steam efficiency is a major opportunity for manufacturers to boost financial performance in an increasingly competitive environment. An immediate policy challenge is to raise manufacturers' awareness of these opportunities. A major barrier...

Russell, C.

328

A study of the gas-phase ozonolysis of terpenes: the impact of radicals formed during the reaction  

Science Journals Connector (OSTI)

The gas-phase ozonolysis of ?-pinene, ?3-carene and limonene was investigated at ppb levels and the impact of the ozone, relative air humidity (RH), and time was studied using experimental design. The amounts of terpene reacted varied in the different settings and were as high as 8.1% for ?-pinene, 10.9% for ?3-carene and 23.4% for limonene. The designs were able to describe almost all the variation in the experimental data and were also successful in predicting omitted values. The results described the effects of time and ozone and also showed that RH did not have a statistically significant effect on the ozonolysis. The results also showed that all three terpenes were affected by an additional oxidation of OH radicals and/or other reactive species. The results from the designs states that this additional oxidation was responsible for 40% of the total amount of ?-pinene reacted, 33% of the total amount of ?3-carene reacted and 41% of the total amount of limonene reacted at the settings 20 ppb terpene, 75 ppb ozone, 20% RH and a reaction time of 213 s. Additional experiments with 2-butanol as OH radical scavenger showed that the reaction with OH radicals was responsible for 37% of the total ?-pinene reacted and 39% of the total ?3-carene reacted at the same settings. The scavenger experiments also showed that there were no significant amounts of OH radicals formed during the ozonolysis of limonene. The results from the designs were also compared to a mathematical model in order to evaluate further the data.

Jerker Fick; Linda Pommer; Barbro Andersson; Calle Nilsson

2002-01-01T23:59:59.000Z

329

Study of the Ce3+/Ce4+ Redox Couple in Mixed-Acid Media (CH3SO3H and H2SO4) for Redox Flow Battery Application  

Science Journals Connector (OSTI)

Study of the Ce3+/Ce4+ Redox Couple in Mixed-Acid Media (CH3SO3H and H2SO4) for Redox Flow Battery Application ... The present paper first reports a kind of supporting electrolyte, mixed-acid media (CH3SO3H and H2SO4), used in redox flow battery (RFB) technology. ... Redox flow battery (RFB) technology(1, 2) has received wide attention in the application for renewable energy storage systems. ...

Zhipeng Xie; Fengjiao Xiong; Debi Zhou

2011-04-19T23:59:59.000Z

330

Idaho Water Rental Pilot Project probability/coordination study resident fish and wildlife impacts, Phase III. Annual report  

SciTech Connect (OSTI)

Phase III began in 1995 with the overall goal of quantifying changes in resident fish habitat in the Snake River basin upstream of Brownlee Reservoir resulting from the release of salmon flow augmentation water. Existing data, in the form of weighted usable area versus flow relationships, were used to estimate habitat changes for white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss)in the Snake River between C.J. Strike Dam and Brownlee pool. The increased flows resulted in increased white sturgeon habitat for most life stages. Rainbow trout adult and spawning habitat increased while juvenile and fry habitat generally decreased. Whether or not these short term increases in habitat result in long term benefits to the fish populations has yet to be determined.

Leitzinger, E.

1996-09-01T23:59:59.000Z

331

Idaho Water Rental Pilot Project Probability/Coordination Study Resident Fish and Wildlife Impact Phase III, 1995 Annual Report.  

SciTech Connect (OSTI)

Phase III began in 1995 with the overall goal of quantifying changes in resident fish habitat in the Snake River basin upstream of Brownlee Reservoir resulting from the release of salmon flow augmentation water. Existing data, in the form of weighted usable area versus flow relationships, were used to estimate habitat changes for white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) in the Snake River between C.J. Strike Dam and Brownlee pool. The increased flows resulted in increased white sturgeon habitat for most life stages. Rainbow trout adult and spawning habitat increased while juvenile and fry habitat generally decreased. Whether or not these short term increases in habitat result in long term benefits to the fish populations has yet to be determined.

Leitzinger, Eric J. (Idaho Department of Fish and Game, Boise, ID)

1996-09-01T23:59:59.000Z

332

Flow chamber  

DOE Patents [OSTI]

A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

Morozov, Victor (Manassas, VA)

2011-01-18T23:59:59.000Z

333

FBC feasibility Study, Task 3. Fuel and sorbent impacts for Termoelektrarna-Toplarna, Ljubljana. Export trade information  

SciTech Connect (OSTI)

Fuel properties significantly affect the operating and maintenance costs of thermal power plants, and are an integral factor in the design of power plants. It is possible to technically evaluate the effect of fuel properties to determine their impact on the capital, operating and maintenance costs of power plants. The combination of fuel impacts on operating and capital costs, and the fuel costs, permits an economic fuel choice and proper boiler design. The ultimate analysis of a coal and its heating value, together with the ash mineral analysis are the key properties of the coal, from which other properties may be derived. These characteristics have an impact on the design of the circulating fluidized bed (CFB) boiler installation.

Not Available

1992-01-01T23:59:59.000Z

334

Economic Impact Analysis for EGS  

Broader source: Energy.gov [DOE]

Project objective: To conduct an economic impact study for EGS and to develop a Geothermal Economics Calculator (GEC) tool to quantify (in economic terms) the potential job, energy and environmental impacts associated with electric power production from geothermal resources.

335

Using impact spherule layers to correlate sedimentary successions: a case study of the Neoarchean Jeerinah layer (Western Australia)  

Science Journals Connector (OSTI)

...product of the impact of an asteroid or comet into the ocean, as this appears to be the...eggshell diagenesisa of Wilkinson and Landing (1978). This a eggshella -type crushing is rare in the Wittenoom...249 pp. a µ Wilkinson, B.H. and Landing, E. (1978). a Eggshell diagenesisa...

Sarah Jones-Zimberlin; Bruce M. Simonson; David Kreiss-Tomkins; Daniel Garson

336

Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider  

Science Journals Connector (OSTI)

The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%–20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440 GeV while it has the same bunch structure as the LHC beam, except that it has only up to 288 bunches. Beam focal spot sizes of ?=0.1, 0.2, and 0.5 mm have been considered. The phenomenon of significant hydrodynamic tunneling due to the hydrodynamic effects is also expected for the experiments.

N. A. Tahir, J. Blanco Sancho, A. Shutov, R. Schmidt, and A. R. Piriz

2012-05-08T23:59:59.000Z

337

New Pilot Study on Sea Level Rise Offers Approach That Can Help Communities Assess Possible Impact of Sea Level Rise on Energy Assets  

Broader source: Energy.gov [DOE]

As part of our commitment to improve the resilience of our electric grid in the face of extreme weather events, OE has released findings of a pilot study that explores the feasibility of assessing the impacts of sea level rise on energy infrastructure. The goal of our study was to develop a method to identify energy facilities exposed to sea level rise (SLR) through 2100 that is flexible and scalable, uses existing and robust data sources, accounts for global and local sea level changes, and can incorporate results from regional studies.

338

Previous work conducted in the laboratory demonstrated optimal control of refrigerant flow and airflow for a breadboard CVSHP (Miller 1987a). This previous work was continued in the present study by investigation  

E-Print Network [OSTI]

, and relative humidity on the COP and capacity of the test unit. The refrigerant charge was held constant#12;Previous work conducted in the laboratory demonstrated optimal control of refrigerant flow optimal refrigerant flow and airflow control settings. Previous studies by Tanaka and Yamanaka (1982

Oak Ridge National Laboratory

339

Quantifying the Environmental Impact of an Integrated Human/Industrial-Natural System Using Life Cycle Assessment; A Case Study on a Forest and Wood Processing Chain  

Science Journals Connector (OSTI)

Quantifying the Environmental Impact of an Integrated Human/Industrial-Natural System Using Life Cycle Assessment; A Case Study on a Forest and Wood Processing Chain ... For example a forest provides wood but can also emit quantities of NO, CO2, and other compounds, requires solar energy, and occupies a piece of land. ... The net electricity generated is a product of the wood disposal through burning. ...

Thomas Schaubroeck; Rodrigo A. F. Alvarenga; Kris Verheyen; Bart Muys; Jo Dewulf

2013-11-06T23:59:59.000Z

340

Study on one-dimensional steady combustion of highly densified biomass briquette (bio-coke) in air flow  

Science Journals Connector (OSTI)

Abstract Combustion experiments on cylindrical bio-coke (BIC), a highly densified biomass briquette, have been conducted to observe whether quasi-one-dimensional steady combustion can be attained in room temperature air flow. In the experiments, the air flow velocity was the main test condition and the fuel consumption rate when the bottom surface of the BIC sample burned was evaluated as the regression rate of the combustion zone at the bottom surface. In addition, one-dimensional calculations based on an energy equation at the combustion zone were conducted to understand the mechanism that results in steady combustion and predict the effect of water and volatile matter content in BIC on the extinction limit. The results showed that steady combustion of the BIC sample could be attained in 4.67 m/s or more, and, in contrast, extinction was observed in 3.82 m/s or less. The critical regression rate explained by the combustion zone temperature was shown, and the reason combustion becomes unsteady could be explained by the energy balance at the combustion zone. Though the main reason for extinction was radiation heat loss, the heat loss by water and volatile matter was not negligible. Therefore, the effect of water and volatile matter content on steady combustion must be considered.

Takero Nakahara; Hui Yan; Hiroyuki Ito; Osamu Fujita

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dynamic Heat Flow Measurements to Study the Distribution of Phase-Change Material in an Insulation Matrix  

SciTech Connect (OSTI)

Phase change materials (PCMs) are used in building envelopes in many forms. The PCMs may be encased in discrete pouches or containers, or they may be distributed within another medium, such as in a board or within a loose fill product. In addition, most PCM products are blends containing fire retardants and chemical stabilizers. However, the current test method to measure the dynamic characteristics of PCMs, the differential scanning calorimeter (DSC), requires specimens that are relatively uniform and very small. Considering the limitations of DSC test results when applied to more complex PCM building envelope applications, we developed a combined experimental analytical protocol to determine the amount of phase-change energy actually available to provide thermal storage. This paper presents this new methodology for performing dynamic heat flow analysis of complex PCM-enhanced building materials. The experimental analytical protocol uses a conventional heat-flow apparatus and three-dimensional (3-D), finite-difference modeling. Based upon results from this methodology, ORNL researchers developed a simplified one-dimensional (1-D) model that can be easily used in whole-building simulations. This paper describes this methodology as applied to an insulation assembly containing a complex array of PCM pouches.

Kosny, Jan [ORNL] [ORNL; Stovall, Therese K [ORNL] [ORNL; Yarbrough, David W [ORNL] [ORNL

2010-01-01T23:59:59.000Z

342

A STUDY OF THE PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS AND REACTION TO SPARK, FRICTION AND IMPACT  

SciTech Connect (OSTI)

The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear heating rates, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Using differential scanning calorimetry, DSC, CP was decomposed at linear heating rates of 1, 3, and 7 C/min and the kinetic triplet calculated using the LLNL code Kinetics05. Values are also reported for spark, friction, and impact sensitivity.

Weese, R K; Burnham, A K; Fontes, A T

2005-03-30T23:59:59.000Z

343

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect (OSTI)

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

344

Study of full implicit petroleum engineering finite volume scheme for compressible two phase flow in porous media  

E-Print Network [OSTI]

An industrial scheme, to simulate the two compressible phase flow in porous media, consists in a finite volume method together with a phase-by-phase upstream scheme. The implicit finite volume scheme satisfies industrial constraints of robustness. We show that the proposed scheme satisfy the maximum principle for the saturation, a discrete energy estimate on the pressures and a function of the saturation that denote capillary terms. These stabilities results allow us to derive the convergence of a subsequence to a weak solution of the continuous equations as the size of the discretization tends to zero. The proof is given for the complete system when the density of the each phase depends on the own pressure.

Saad, Bilal

2012-01-01T23:59:59.000Z

345

The multi-scale character of air pollution: impact of local measures in relation to European and regional policies - a case study in Antwerp, Belgium  

Science Journals Connector (OSTI)

This paper describes a multi-scale modelling approach designed to assess the impact of policy plans at various decision making levels (European, regional and local). The modelling framework is applied for a case study in Antwerp, Belgium. Various tunnel options and traffic management plans for the Antwerp ring road are evaluated with respect to their impact on air quality in 2020 and 2025. The modelling approach takes into account those local action plans as well as regional and European policies for these time horizons. It has been shown that reduction of traffic intensity is one of the most important measures, without which it is unlikely that current European limit values will be attained in the near future at all locations near the Antwerp ring road.

Stijn Janssen; Wouter Lefebvre; Clemens Mensink; Bart Degraeuwe

2014-01-01T23:59:59.000Z

346

Slug flow  

E-Print Network [OSTI]

Introduction: When two phases flow concurrently in a pipe, they can distribute themselves in a number of different configurations. The gas could be uniformly dispersed throughout the liquid in the form of small bubbles. ...

Griffith, P.

1959-01-01T23:59:59.000Z

347

Numerical studies for flow and heat transfer of the Powell-Eyring fluid thin film over an unsteady stretching sheet with internal heat generation using the chebyshev finite difference method  

Science Journals Connector (OSTI)

An analysis is carried out to study the unsteady two-dimensional Powell-Eyring flow and heat transfer to a laminar liquid film from a ... horizontal stretching surface in the presence of internal heat generation....

M. M. Khader; A. M. Megahed

2013-05-01T23:59:59.000Z

348

Attractor Flows from Defect Lines  

E-Print Network [OSTI]

Deforming a two dimensional conformal field theory on one side of a trivial defect line gives rise to a defect separating the original theory from its deformation. The Casimir force between these defects and other defect lines or boundaries is used to construct flows on bulk moduli spaces of CFTs. It turns out, that these flows are constant reparametrizations of gradient flows of the g-functions of the chosen defect or boundary condition. The special flows associated to supersymmetric boundary conditions in N=(2,2) superconformal field theories agree with the attractor flows studied in the context of black holes in N=2 supergravity.

Ilka Brunner; Daniel Roggenkamp

2010-02-12T23:59:59.000Z

349

Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts  

SciTech Connect (OSTI)

Increased interest by state (and federal) policymakers and regulatory agencies in pursuing aggressive energy efficiency efforts could deliver significant utility bill savings for customers while having long-term implications for ratepayers (e.g. potential rate impacts). Equity and distributional concerns associated with the authorized recovery of energy efficiency program costs may necessitate the pursuit of alternative program funding approaches. In 2008, Massachusetts passed the Green Communities Act which directed its energy efficiency (EE) program administrators to obtain all cost-effective EE resources. This goal has translated into achieving annual electric energy savings equivalent to a 2.4% reduction in retail sales from energy efficiency programs in 2012. Representatives of electricity consumer groups supported the new portfolio of EE programs (and the projected bill savings) but raised concerns about the potential rate impacts associated with achieving such aggressive EE goals, leading policymakers to seek out alternative funding sources which can potentially mitigate these effects. Utility administrators have also raised concerns about under-recovery of fixed costs when aggressive energy efficiency programs are pursued and have proposed ratemaking policies (e.g. decoupling) and business models that better align the utility's financial interests with the state's energy efficiency public policy goals. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other states looking to significantly increase savings targets that can be achieved from their own ratepayer-funded energy efficiency programs. We use a pro-forma utility financial model to quantify the bill and rate impacts on electricity customers when very aggressive annual energy efficiency savings goals ({approx}2.4%) are achieved over the long-term and also assess the impact of different cost recovery approaches that integrate alternative revenue sources. We also analyze alternative lost fixed cost recovery approaches to better understand how to mitigate the erosion of utility shareholder returns in states that have adopted (and achieved) very aggressive savings targets.

Cappers, Peter; Satchwell, Andrew; Goldman, Charles; Schlegel, Jeff

2010-08-06T23:59:59.000Z

350

Stochastic models for turbulent reacting flows  

SciTech Connect (OSTI)

The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

351

Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network [OSTI]

.3 Desorption parameters for the Billi coalbed methane reservoir correspond to within an acceptable range with those of the Barnett shale. For the initial reservoir pressure used in this study these values correspond to an initial methane storage of 344 scf... media has been studied extensively in coalbed methane reservoirs , where adsorption can be the primary mode of gas storage. Many analytic and semi-analytic models have been developed from the study of gas desorption from coalbed methane reservoirs...

Freeman, Craig M.

2010-07-14T23:59:59.000Z

352

A STUDY OF THE STRUCTURAL CONTROL OF FLUID FLOW WITHIN THE CERRO PRIETO GEOTHERMAL FIELD, BAJA CALIFORNIA, MEXICO  

E-Print Network [OSTI]

Federal de Electricidad's (CFE) systema- ial Valley, andapproxi- established between CFE and the Lawrence Berkeleyand the United States. Both CFE and LBL hope that the study

Noble, John E.

2011-01-01T23:59:59.000Z

353

Numerical Studies of Fluid Leakage from a Geologic Disposal Reservoir for CO2 Show Self-Limiting Feedback between Fluid Flow and Heat Transfer  

E-Print Network [OSTI]

Feedback between Fluid Flow and Heat Transfer Karsten Pruessfeedback between fluid flow and heat transfer tends to limitfluid mobility (viscosity and relative permeability effects), are countered by effects arising from limitations in the rate of conductive heat transfer.

Pruess, Karsten

2005-01-01T23:59:59.000Z

354

ESS 2012 Peer Review - Impact Study of Value-Added Functionality on Inverters in ESS - Eric Green & Vivek Ramachandran, NC State  

Broader source: Energy.gov (indexed) [DOE]

Results (Model Validation) Results (Model Validation) Figure 6: Real and Reactive Power Reference vs. Output Figure 7: IGBT and Diode Loss from Manufacturer (Fuji) Figure 8: IGBT and Diode Loss from Simulation Impact Study of Value-Added Functionality on Inverters in Energy Storage Systems Motivation Power conversion systems (PCS) developers are incorporating value-added functions; little is known about the on overall PCS reliability. Objective Develop electrical models to gain an understanding of the degradation of a PCS and its internal components due to value- added functionality; primarily VAR generation. Investigation and modeling of frequency support applications may be considered as a secondary objective.

355

Generating Economic Development from a Wind Power Plant in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts  

Wind Powering America (EERE)

Generating Economic Development from a Wind Power Generating Economic Development from a Wind Power Project in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts Sandra Reategui Edwin R. Stafford, Ph.D. Cathy L. Hartman, Ph.D. Center for the Market Diffusion of Renewable Energy and Clean Technology Jon M. Huntsman School of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 January 2009 DOE/GO-102009-2760 Acknowledgements ....................................................................................................................... 1 Introduction ................................................................................................................................... 2 Report Overview ......................................................................................................................... 2

356

Physics of the Earth and Planetary Interiors 133 (2002) 127146 Palaeomagnetic study of Oligocene (2430 Ma) lava flows from  

E-Print Network [OSTI]

Physics of the Earth and Planetary Interiors 133 (2002) 127­146 Palaeomagnetic study of Oligocene previously obtained radiometric dates to correlate the sections [J. Petrol. 39 (4) (1998) 711; Earth Planet the composi- tion and dynamics of the Earth's core directly, one indirect method is to study the Earth

Demouchy, Sylvie

357

Influence of Electron-Impact Multiple Ionization on Equilibrium and Dynamic Charge State Distributions: A Case Study Using Iron  

E-Print Network [OSTI]

We describe the influence of electron-impact multiple ionization (EIMI) on the ionization balance of collisionally ionized plasmas. We are unaware of any previous ionization balance calculations that have included EIMI, which is usually assumed to be unimportant. Here, we incorporate EIMI cross-section data into calculations of both equilibrium and non-equilibrium charge-state distributions (CSDs). For equilibrium CSDs, we find that EIMI has only a small effect and can usually be ignored. However, for non-equilibrium plasmas the influence of EIMI can be important. In particular, we find that for plasmas in which the temperature oscillates there are significant differences in the CSD when including versus neglecting EIMI. These results have implications for modeling and spectroscopy of impulsively heated plasmas, such as nanoflare heating of the solar corona.

Hahn, Michael

2014-01-01T23:59:59.000Z

358

Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape  

Science Journals Connector (OSTI)

Abstract A commercial swirl burner for industrial gas turbine combustors was equipped with an optically accessible combustion chamber and installed in a high-pressure test-rig. Several premixed natural gas/air flames at pressures between 3 and 6 bar and thermal powers of up to 1 MW were studied by using a variety of measurement techniques. These include particle image velocimetry (PIV) for the investigation of the flow field, one-dimensional laser Raman scattering for the determination of the joint probability density functions of major species concentrations, mixture fraction and temperature, planar laser induced fluorescence (PLIF) of OH for the visualization of the flame front, chemiluminescence measurements of OH* for determining the lift-off height and size of the flame and acoustic recordings. The results give insights into important flame properties like the flow field structure, the premixing quality and the turbulence–flame interaction as well as their dependency on operating parameters like pressure, inflow velocity and equivalence ratio. The 1D Raman measurements yielded information about the gradients and variation of the mixture fraction and the quality of the fuel/air mixing, as well as the reaction progress. The OH PLIF images showed that the flame was located between the inflow of fresh gas and the recirculated combustion products. The flame front structures varied significantly with Reynolds number from wrinkled flame fronts to fragmented and strongly corrugated flame fronts. All results are combined in one database that can be used for the validation of numerical simulations.

Ulrich Stopper; Wolfgang Meier; Rajesh Sadanandan; Michael Stöhr; Manfred Aigner; Ghenadie Bulat

2013-01-01T23:59:59.000Z

359

A STUDY OF THE STRUCTURAL CONTROL OF FLUID FLOW WITHIN THE CERRO PRIETO GEOTHERMAL FIELD, BAJA CALIFORNIA, MEXICO  

E-Print Network [OSTI]

Jr. : "Geology of the Imperial Valley region, California",of the potential of the Imperial Valley, 3f 400 Mwe has beenmap showing Imperial and Mexicali Valleys. 8 A Study of the

Noble, John E.

2011-01-01T23:59:59.000Z

360

Spatial Averaging of van Genuchten Hydraulic Parameters for Steady-State Flow in Heterogeneous Soils: A Numerical Study  

E-Print Network [OSTI]

Soils: A Numerical Study Jianting Zhu and Binayak P. Mohanty* ABSTRACT factors. Kim and Stricker (1996 al., 1988; Kim and Stricker, 1996; Kim et al., 1997; Sharma been recognized for years. Because

Mohanty, Binayak P.

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

THE IMPACT OF A TANK 40H DECANT ON THE PROJECTED OPERATING WINDOWS FOR SB4 AND GLASS SELECTION STRATEGY IN SUPPORT OF THE VARIABILITY STUDY  

SciTech Connect (OSTI)

The Liquid Waste Organization (LWO) has requested that the Savannah River National Laboratory (SRNL) to assess the impact of a 100K gallon decant volume from Tank 40H on the existing sludge-only Sludge Batch 4 (SB4)-Frit 510 flowsheet and the coupled operations flowsheet (SB4 with the Actinide Removal Process (ARP)). Another potential SB4 flowsheet modification of interest includes the addition of 3 wt% sodium (on a calcined oxide basis) to a decanted sludge-only or coupled operations flowsheet. These potential SB4 flowsheet modifications could result in significant compositional shifts to the SB4 system. This paper study provides an assessment of the impact of these compositional changes to the projected glass operating windows and to the variability study for the Frit 510-SB4 system. The influence of the compositional changes on melt rate was not assessed in this study nor was it requested. Nominal Stage paper study assessments were completed using the projected compositions for the various flowsheet options coupled with Frit 510 (i.e., variation was not applied to the sludge and frit compositions). In order to gain insight into the impacts of sludge variation and/or frit variation (due to the procurement specifications) on the projected operating windows, three versions of the Variation Stage assessment were performed: (1) the traditional Variation Stage assessment in which the nominal Frit 510 composition was coupled with the extreme vertices (EVs) of each sludge, (2) an assessment of the impact of possible frit variation (within the accepted frit specification tolerances) on each nominal SB4 option, and (3) an assessment of the impact of possible variation in the Frit 510 composition due to the vendor's acceptance specifications coupled with the EVs of each sludge case. The results of the Nominal Stage assessment indicate very little difference among the various flowsheet options. All of the flowsheets provide DWPF with the possibility of targeting waste loadings (WLs) from the low 30s to the low 40s with Frit 510. In general, the Tank 40H decant has a slight negative impact on the operating window, but DWPF still has the ability to target current WLs (34%) and higher WLs if needed. While the decant does not affect practical WL targets in DWPF, melt rate could be reduced due to the lower Na{sub 2}O content. If true, the addition of 3 wt% Na{sub 2}O to the glass system may regain melt rate, assuming that the source of alkali is independent of the impact on melt rate. Coupled operations with Frit 510 via the addition of ARP to the decanted SB4 flowsheet also appears to be viable based on the projected operating windows. The addition of both ARP and 3 wt% Na{sub 2}O to a decanted Tank 40H sludge may be problematic using Frit 510. Although the Nominal Stage assessments provide reasonable operating windows for the SB4 flowsheets being considered with Frit 510, introduction of potential sludge and/or frit compositional variation does have a negative impact. The magnitude of the impact on the projected operating windows is dependent on the specific flowsheet options as well as the applied variation. The results of the traditional Variation Stage assessments indicate that the three proposed Tank 40H decanted flowsheet options (Case No.2--100K gallon decant, Case No.3--100K gallon decant and 3 wt% Na{sub 2}O addition and Case No.4--100K gallon decant and ARP) demonstrate a relatively high degree of robustness to possible sludge variation over WLs of interest with Frit 510. However, the case where the addition of both ARP and 3 wt% Na{sub 2}O is considered was problematic during the traditional Variation Stage assessment. The impact of coupling the frit specifications with the nominal SB4 flowsheet options on the projected operating windows is highly dependent on whether the upper WLs are low viscosity or liquidus temperature limited in the Nominal Stage assessments. Systems that are liquidus temperature limited exhibit a high degree of robustness to the applied frit and sludge variation, while those that are low viscosity li

Raszewski, F; Tommy Edwards, T; David Peeler, D

2008-02-07T23:59:59.000Z

362

A real two-phase submarine debris flow and tsunami  

SciTech Connect (OSTI)

The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the submarine debris speed can be faster than the tsunami speed. This information can be useful for early warning strategies in the coastal regions. These findings substantially increase our understanding of complex multi-phase systems and multi-physics and flows, and allows for the proper modeling of landslide and debris induced tsunami, the dynamics of turbidity currents and sediment transport, and the associated applications to hazard mitigation, geomorphology and sedimentology.

Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)

2012-09-26T23:59:59.000Z

363

How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study  

SciTech Connect (OSTI)

This paper is a brief introduction to the scope of the Western Wind and Solar Integration Study (WWSIS), inputs and scenario development, and the key findings of the study.

Lew, D.; Piwko, D.; Miller, N.; Jordan, G.; Clark, K.; Freeman, L.

2010-12-01T23:59:59.000Z

364

The impact of an unconditional tax credit for families on self-rated health in adults: Further evidence from the cohort study of 6900 New Zealanders  

Science Journals Connector (OSTI)

Abstract It is hypothesized that unconditional (given without obligation) publicly funded financial credits more effectively improve health than conditional financial credits in high-income countries. We previously reported no discernible short-term impact of an employment-conditional tax credit for families on self-rated health (SRH) in adults in New Zealand. This study estimates the effect of an unconditional tax credit for families, called Family Tax Credit (FTC), on SRH in the same study population and setting. A balanced panel of 6900 adults in families was extracted from seven waves (2002–2009) of the Survey of Family, Income and Employment. The exposures, eligibility for and amount of FTC, were derived by applying government eligibility and entitlement criteria. The outcome, SRH, was collected annually. Fixed effects regression analyses eliminated all time-invariant confounding and adjusted for measured time-varying confounders. Becoming eligible for FTC was associated with a small and statistically insignificant change in SRH over the past year [effect estimate: 0.013; 95% confidence interval (CI) ?0.011 to 0.037], as was an increase in the estimated amount of FTC by $1000 (effect estimate: ?0.001; 95% CI ?0.006 to 0.004). The unconditional tax credit for families had no discernible short-term impact on SRH in adults in New Zealand. It did not more effectively improve health status than an employment-conditional tax credit for families.

Frank Pega; Kristie Carter; Ichiro Kawachi; Peter Davis; Tony Blakely

2014-01-01T23:59:59.000Z

365

A study of recent changes in Southwest Power Pool and Electric Reliability Council of Texas and its impact on the U.S. wind industry  

Science Journals Connector (OSTI)

Abstract Due to the increased penetration of renewable energy resources, there has been a lot of activity in the regional transmission organizations such as development of new standards, protocol revisions, new study requirements, changes to modeling procedures etc., in the last five years with a special focus given to wind energy. The key objective of this paper is to identify the impacts and the immediate technological and market related improvements required by the wind industry as a result of such changes in Southwest Power Pool (SPP) and the Electric Reliability Council of Texas (ERCOT). The paper documents the most important activities by following the higher?priority committees, work groups and task forces in both companies along with some of the special projects or initiatives such as sub-synchronous control interaction study, primary frequency response, hub concept and other modeling improvements related to wind energy. The paper provides an analysis of the impact of each change resulting in technology upgrades to wind turbines, modeling improvements by turbine manufacturers and policy/market changes affecting wind farm developers. Finally the paper provides recommendations regarding the requirements and capabilities which the future wind farms and wind turbines need to possess.

Sandeep Nimmagadda; Atiqul Islam; Stephen B. Bayne; R.P. Walker; Lourdes Garcia Caballero; Albert Fisas Camanes

2014-01-01T23:59:59.000Z

366

Economic Impacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impacts Annual federal research budget 399.4 million American Recovery and Reinvestment stimulus an additional 8,000 Employees * Total 1,945 * Living in Fox Valley or western...

367

Numerical modeling of an all vanadium redox flow battery.  

SciTech Connect (OSTI)

We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

2014-01-01T23:59:59.000Z

368

Recent results of an experimental study on the impact of smoke on digital I and C equipment  

SciTech Connect (OSTI)

A program to assess the impact of smoke on digital Instrumentation and Control (I and C) safety systems began in 1994, funded by the US Nuclear Regulatory Commission Office of Research. Digital I and C safety systems are likely replacements for today`s analog systems. The nuclear industry has little experience in qualifying digital electronics for critical systems, part of which is understanding system performance during plant fires. The results of tests evaluating the performance of digital circuits and chip technologies exposed to the various smoke and humidity conditions representative of cable fires are discussed. Tests results show that low to moderate smoke densities can cause intermittent failures of digital systems. Smoke increases leakage currents between biased contacts, leading to shorts. Chips with faster switching times, and thus higher output drive currents, are less sensitive to leakage currents and thus to smoke. Contact corrosion from acidic gases in smoke and inductance of stray capacitance are less important contributors to system upset. Transmission line coupling was increased because the smoke acted as a conductive layer between the lines. Permanent circuit damage was not obvious in the 24 hrs of circuit monitoring. Test results also show that polyurethane, parylene, and acrylic conformal coatings are more effective in protecting against smoke than epoxy or silicone. Common-sense mitigation measures are discussed. Unfortunately industry is a long way from standard tests for smoke exposure that capture the variations in smoke exposure possible in an actual fire.

Tanaka, T.J. [Sandia National Labs., Albuquerque, NM (United States). Accident and Consequence Analysis Dept.; Antonescu, C. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

1997-10-01T23:59:59.000Z

369

North Carolina used motor oil re-refining program: site selection, permits, and environmental impact study. [Re-refinery  

SciTech Connect (OSTI)

The State of North Carolina has a used motor oil re-refining program that collects crankcase drainings from various sources, re-refines it in a plant purchased from the Phillips Petroleum Company, and distributes the product to State and other governmental garages. This report describes the steps between the initial decision to establish a used oil re-refining demonstration program and receipt of a final permit to operate a facility. The report covers in some detail those issues faced in obtaining approval to establish the program, select a site, gain permits for construction and operation, prepare an acceptable environmental impact statement, and start re-refining used motor oil. Many of the considerations made during this experience are germaine to other states and to private enterprise, although the details may vary. This is the first in what is expected to be a related series of reports; subsequent numbers will cover the economics of plant acquisition and start-up, technical considerations, and long term operations of the re-refinery.

Griffith, W.C.; Holland, G.M.; Taylor, A.; Taylor, S.

1981-12-01T23:59:59.000Z

370

Impacts of Market and Technical Characteristics for Developments of Photovoltaic Industry- A Study of Japanese Photovoltaic Industry.  

E-Print Network [OSTI]

??The thesis discusses the restrictions of photovoltaic industrial market and technical characteristics, and the reactions of Japanese government and photovoltaic industry. Furthermore, this thesis studies… (more)

Hu, Jung-Yu

2012-01-01T23:59:59.000Z

371

Cell Phone Cyberbullying's Impact on Victims' Attendance, Academics, and Social and Personal Life in School: A Phenomenological Qualitative Study.  

E-Print Network [OSTI]

??The purpose of this qualitative phenomenological study is to describe and understand the shared experiences of five students in a medium-sized public high school in… (more)

Heltzel, Nathan

2014-01-01T23:59:59.000Z

372

Do Web 2.0 social media impact transnational social advocacy? : a study of South African civil society and Greenpeace.  

E-Print Network [OSTI]

??This study focuses on how civil society organisations deploy Web 2.0 technologies for transnational social advocacy, the context of this technology use, and the effect… (more)

Pillay, Kirubagaran Jagathesan.

2015-01-01T23:59:59.000Z

373

Impact of SYT-SSX Fusion Type on the Clinical Behavior of Synovial Sarcoma: A Multi-Institutional Retrospective Study of 243 Patients  

Science Journals Connector (OSTI)

...Investigations Impact of SYT-SSX Fusion Type on the Clinical Behavior of Synovial...we collected data on SYT-SSX fusion type, pathology, and clinical course...overall survival. The impact of fusion type on survival remained significant...

Marc Ladanyi; Cristina R. Antonescu; Denis H. Leung; James M. Woodruff; Akira Kawai; John H. Healey; Murray F. Brennan; Julia A. Bridge; James R. Neff; Frederic G. Barr; Jeffrey D. Goldsmith; John S. J. Brooks; John R. Goldblum; Syed Z. Ali; Janet Shipley; Colin S. Cooper; Cyril Fisher; Björn Skytting; and Olle Larsson

2002-01-01T23:59:59.000Z

374

The Impact of Retail Rate Structures on the Economics of Customer-Sited PV: A Study of Commercial Installations in California  

E-Print Network [OSTI]

Barbose. 2007. “The Impact of Retail Rate Structures on thein establishing or revising retail rates can have a profoundTHE IMPACT OF RETAIL RATE STRUCTURES ON THE ECONOMICS OF

Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

2008-01-01T23:59:59.000Z

375

An experimental and computational study of moderately underexpanded rocket exhaust plumes in a co-flowing hypersonic free stream  

SciTech Connect (OSTI)

Rocket plume exhaust structures are aerodynamically and thermochemically very complex and the prediction of plume properties such as temperature, velocity, pressure, chemical species concentrations and turbulence properties is a formidable task as there are no definitive models for viscous and chemical effects. Contemporary computational techniques are still in their infancy and cannot yet reliably predict plume properties. Only through validation of computer codes using experimental data, can computational models be developed to the point where they can be confidently used as design and predictive tools. The motivation for this study was to acquire well defined data for rocket plumes at low altitude hypersonic flight conditions so that the above issues could be investigated.

Morris, N.; Buttsworth, D.; Jones, T.; Brescianini, C. [Univ. of Oxford (United Kingdom)]|[Macquarie Univ., Sydney (Australia)

1995-09-01T23:59:59.000Z

376

SFTEL: Flow Cell | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flow Cell EMSL's Subsurface Flow and Transport Experimental Laboratory offers several meter-scale flow cells and columns for research in saturated and unsaturated porous media....

377

Use of Lasers to Study the Impact of Fractionation and Condensation on the Toxicity of Nuclear Weapon Fallout  

SciTech Connect (OSTI)

An experimental concept has been developed to collect data to aid in the refinement of simulation programs designed to predict the fallout effects arising from surface and shallowly buried nuclear weapon detonations. These experiments, called the Condensation Debris Experiments (CDE), are intended to study the condensation/fractionation of material that is liberated following an initial deposition of laser energy onto a small, characterized target. The CDE effort also encompasses target development and material studies as well as supporting computational efforts studying radiation hydrodynamics, computational fluid dynamics, and relevant neutron activation processes (not discussed here).

Vidnovic III, T; Bradley, K S; Debonnel, C S; Dipeso, G; Fournier, K; Karpenko, V P; Tobin, M

2005-04-01T23:59:59.000Z

378

Erosion and Sediment Damages and Economic Impacts of Potential 208 Controls: A Summary of Five Watershed Studies in Texas  

E-Print Network [OSTI]

This report summarizes results of economic analyses of erosion and sedimentation in five agricultural watersheds in Texas (see fig. 1). Economic analyses of the study areas considered both the on-farm economics of soil conservation and the economic...

Taylor, C. R.; Reneau, D. R.; Harris, B. L.

379

Flow in Computer Hacking: A Model  

Science Journals Connector (OSTI)

In this study hackers’ motivation is investigated, using the flow paradigm. It was hypothesized that flow increases with the increase of hackers’ competence in the IT use. An on-line research was administered wit...

Alexander E. Voiskounsky; Olga V. Smyslova

2003-01-01T23:59:59.000Z

380

On the impact of second generation mating and offspring in multi-generation reproductive toxicity studies on classification and labelling of substances in Europe  

Science Journals Connector (OSTI)

The possible impact on classification and labelling decisions of effects observed in second generation parental (P1) and offspring (F2) parameters in multi-generation studies was investigated. This was done for 50 substances classified as reproductive toxicants in Europe, for which a multi-generation study was available. The P1 and F2 effects were compared to parental (P0) and first generation offspring (F1) effects with regard to type of effect as well as incidence, magnitude and severity (IMS), at any dose level. For every study with unique P1/F2 effects, or differences in IMS, the influence of the P1/F2 findings on the classification decision was investigated. Unique P1/F2 generation findings did not play a crucial role in the classification decision of any of the 50 classified substances, except for fenarimol. This substance however provided abundant alerts on the basis of its endocrine activity and developmental neurotoxicity and would therefore also be expected to be identified as a developmental neurotoxicant in an Extended One Generation Reproductive Toxicity Study (EOGRTS). These findings, in addition to the increased number of parameters analysed, increased statistical power and reduced animal use, provide strong further support for replacement of the classical two-generation reproductive toxicity study by the EOGRTS in regulatory reproductive toxicity assessment.

Emiel Rorije; André Muller; Manon E.W. Beekhuijzen; Ulla Hass; Barbara Heinrich-Hirsch; Martin Paparella; Erna Schenk; Beate Ulbrich; Betty C. Hakkert; Aldert H. Piersma

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor  

SciTech Connect (OSTI)

This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150oC. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150?C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and intraparticle diffusion. The Freundlich isotherm more accurately described in-flight mercury capture. Using these parameters, very little intraparticle diffusion was evident. Consistent with other data, smaller particles resulted in higher mercury uptake due to available surface area. Therefore, it is important to capture the particle size distribution in the model. At typical full-scale sorbent feed rates, the calculations underpredicted adsorption, suggesting that wall effects can account for as much as 50 percent of the removal, making it an important factor in entrained-mercury adsorption models.

Buitrago, Paula A; Morrill, Mike; Lighty, JoAnn S; Silcox, Geoffrey D

2014-08-20T23:59:59.000Z

382

Numerical modelling of ground water flow using MODFLOW, Indian Journal of Science, 2013, 2(4), 86-92, www.discovery.org.in  

E-Print Network [OSTI]

management approaches. However, there should be no expectation of a single `true' model, and model outputsRESEARCH Kumar, Numerical modelling of ground water flow using MODFLOW, Indian Journal of Science management or impact of new development scenarios. However, if the modelling studies are not well designed

Kumar, C.P.

383

Complete flow field computation around an ACV (air-cushion vehicle) using 3D VOF with Lagrangian propagation in computational domain  

Science Journals Connector (OSTI)

In this study an algorithm and a 3D solver is developed to solve the flow field around air-cushion vehicles (ACV) in vicinity of free surface. A single set of dimensionless equations is derived to handle both liquid and air phases in viscous 3D incompressible ... Keywords: 3D, ACV, Fr. number, Impact, VOF, Wave-drag

A. H. Nikseresht; M. M. Alishahi; H. Emdad

2008-04-01T23:59:59.000Z

384

Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control: Preprint  

SciTech Connect (OSTI)

This paper describes wind turbine flow fields that can cause adverse aerodynamic loading and can impact active aerodynamic control methodologies currently contemplated for wind turbine applications.

Schreck, S.; Robinson, M.

2007-08-01T23:59:59.000Z

385

Insight into threshold dynamics of two-electron escape from electron-impact ionization spin-asymmetry studies of valence-one atoms  

SciTech Connect (OSTI)

The conventional description of the behavior of two-electron escape near threshold is usually summarized by the Wannier power law, {sigma}=aE{sup {eta}}+bE{sup 2{eta}}, for the ionization cross section, {sigma}, as a function of the total escape energy, E, where a and b are constants and {eta}=1.127 for a residual ionic core of unit charge. It is known that departures from this simple formalism occur as a result of dynamical influences on the inside part of the two-electron wave function and that these departures can be observed through spin-dependent ionization measurements. Comparative studies of impact ionization asymmetries for H, He, Li, Na, K, and Cs now reveal the striking influence of the ionic core on the double-escape process.

Lubell, M.S.

1993-05-01T23:59:59.000Z

386

Environmental Decision-Making Using Life Cycle Impact Assessment and Stochastic Multiattribute Decision Analysis: A Case Study on Alternative Transportation Fuels  

Science Journals Connector (OSTI)

Ecological Science and Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, and Golisano Institute of Sustainability, Rochester Institute of Technology, 111 Lomb Memorial Drive, Rochester, New York 14623 ... For example, the Energy Policy Acts of 1992 and 2005 and Executive Order 13423 require state and federal fleets to have vehicles capable of using alternative fuels—although there are few guidelines for assessing the systemic environmental impact of alternative fuel technologies (26, 27). ... This case study is limited to life cycle air emissions for the fuel alternatives: gasoline (GAS), low-sulfur diesel (LSD), 100% soy-biodiesel (BD100), electric vehicle (EV), and 85% corn-based ethanol (EtOH). ...

Kristin Rogers; Thomas P. Seager

2009-02-06T23:59:59.000Z

387

Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study  

SciTech Connect (OSTI)

Scenarios for a Clean Energy Future (CEF) studied the role that efficient clean energy technologies can play in meeting the economic and environmental challenges for our future energy supply. The study describes a portfolio of policies that would motivate energy users and businesses to invest in innovative energy efficient technologies. On the basis of the portfolios, two policy scenarios have been developed, i.e. a moderate scenario and an advanced scenario. We focus on the industrial part of the CEF-study. The studied policies include a wide scope of activities, which are organized under the umbrella of voluntary industrial sector agreements. The policies for the policy scenarios have been modeled using the National Energy Modeling System (CEF-NEMS). Under the reference scenario industrial energy use would grow to 41 Quads in 2020, compared to 34.8 Quads in 1997, with an average improvement of the energy intensity by 1.1% per year. In the Moderate scenario the annual improvement is a bout 1.5%/year, leading to primary energy use of 37.8 Quads in 2020, resulting in 10% lower CO2 emissions by 2020 compared to the reference scenario. In the Advanced scenario the annual improvement increases to 1.8% per year, leading to primary energy use of 34.3 Quads in 2020, and 29% lower CO2 emissions. We report on the policies, assumptions and results for industry.

Worrell, Ernst; Price, Lynn

2001-07-24T23:59:59.000Z

388

Measurement of flow maldistribution in parallel channels and its application to ex-situ and in-situ experiments in PEMFC water management studies  

E-Print Network [OSTI]

to sig- nificant reduction in effectiveness for high NTU heat exchangers [1], about 7% for condensers in the effective operation of a proton exchange membrane fuel cell (PEMFC). Presently there are a few theoretically effects, two-phase separation and resultant flow non-uniformity. (b) Uneven flow resistances

Kandlikar, Satish

389

The transition from two phase bubble flow to slug flow  

E-Print Network [OSTI]

The process of transition from bubble to slug flow in a vertical pipe has been studied analytically and experimentally. An equation is presented which gives the agglomeration time as a function of void fraction, channel ...

Radovcich, Nick A.

1962-01-01T23:59:59.000Z

390

Fluid Flow Modeling in Fractures  

E-Print Network [OSTI]

In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

Sarkar, Sudipta

2004-01-01T23:59:59.000Z

391

Energy from Forest Biomass: Potential Economic Impacts  

E-Print Network [OSTI]

Energy from Forest Biomass: Potential Economic Impacts in Massachusetts Prepared for: Massachusetts Bioenergy Initiative, a multifaceted study of biomass energy potential in Massachusetts. The economic impact study looks specifically at impacts in the 5 western counties of the Commonwealth, where biomass energy

Schweik, Charles M.

392

A SPURRITE-, MERWINITE- AND SREBRODOLSKITE-BEARING SKARN ASSEMBLAGE, WEST CLEARWATER LAKE IMPACT CRATER, NORTHERN QUEBEC  

Science Journals Connector (OSTI)

...Impact craters are the result of the hypervelocity impact of a comet or an asteroid with a planetary surface. Impact cratering is...become embedded in the sheet of impact-generated melt either by landing on it after a short flight, or by becoming engulfed in flowing...

Daniel F. Rosa; Robert F. Martin

393

Evaluating the impact of R&D tax credits on innovation: A microeconometric study on Canadian firms  

Science Journals Connector (OSTI)

This study examines the effect of R&D tax credits on innovation activities of Canadian manufacturing firms. Over the 1997–1999 period the Federal and Provincial R&D tax credit programs were used by more than one third of all manufacturing firms and by close to two thirds of firms in high-technology sectors. We investigate the average effect of R&D tax credits on a series of innovation indicators such as: number of new products, sales with new products, originality of innovation, etc. using a non-parametric matching approach. Compared to a hypothetical situation in the absence of R&D tax credits, recipients of tax credits show significantly better scores on most but not all performance indicators. We therefore conclude that tax credits lead to additional innovation output.

Dirk Czarnitzki; Petr Hanel; Julio Miguel Rosa

2011-01-01T23:59:59.000Z

394

A mesoscopic view of speed, flow, density, and distance relationships  

E-Print Network [OSTI]

indicates the fact that the model considers the microscopic characteristics of the traffic stream while analyzing the macroscopic impact of these characteristics. The model consists of three distinct regimes. The first regime describes uncongested flow...

Vaughn, Kenneth Lee

2012-06-07T23:59:59.000Z

395

Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows  

SciTech Connect (OSTI)

Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)

Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I. [Universidade Federal de Itajuba (UNIFEI), Itajuba (Brazil); Neves, F. Jr. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba (Brazil); Franca, F.A. [Universidade Estadual de Campinas (UNICAMP), Campinas (Brazil)

2009-10-15T23:59:59.000Z

396

Wildland fire management and air quality in the southern Sierra Nevada: Using the Lion Fire as a case study with a multi-year perspective on PM2.5 impacts and fire policy  

Science Journals Connector (OSTI)

Abstract Management of fire is an important and controversial policy issue. Active fire suppression has led to a backlog of fuels, limited the ecological benefits of fire, and reduced short-term smoke impacts likely delaying these emissions to future generations over a larger spatial extent. Smoke impacts can be expected to increase as fire size and intensity increase and the fuel backlog is consumed; whether through reintroduction of fire under desirable conditions or through stand replacing fire. Land Management Agencies would like to increase the use of naturally ignited fires to burn during favorable conditions as a way to reduce catastrophic fires. This study provides information about the levels of air quality impacts expected from these types of fires and discusses some of the policy controversies of managed fire that propagate inconsistencies between agencies and enter the public discourse. The Lion Fire, a primarily low intensity 8,370 ha fire that was extensively monitored for Particulate Matter less than 2.5 microns (PM2.5), is used to quantify impacts to air quality. PM2.5 monitoring sites are used to assess exposure, public health impacts, and subsequently quantify annual air quality during a year with a fire that is within the historic normal fire size and intensity for this area. Ground level PM2.5 impacts were found to be localized with 99% of the hourly Air Quality Index readings in the moderate or good category for the sites impacted by the fire. PM2.5 concentrations at sites nearest the fire were below annual federal air quality standards for PM2.5 with annual 98th percentile at the most impacted sites (Johnsondale, Kernville, and Camp Nelson) of 35.0, 34.0, and 28.0 ?g m–3 respectively. Smoke impacts to PM2.5 concentrations were not found to reach the populated Central Valley. The findings suggest that this type of fire can be implemented with minimal public health impacts thus allowing an opportunity for air and fire managers to alter policy to allow additional burning in an area with severe anthropogenic air pollution and where frequent widespread fire is both beneficial and inevitable. The more extensive air quality impacts documented with large high intensity fire may be averted by embracing the use of fire to prevent unwanted high intensity burns. A widespread increase in the use of fire for ecological benefit may provide the resiliency needed in Sierra Nevada forests as well as be the most beneficial to public health through the reduction of single dose exposure to smoke and limiting impacts spatially.

Don Schweizer; Ricardo Cisneros

2014-01-01T23:59:59.000Z

397

Emission Regulations Reduced Impact of Climate Change in CA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emission Regulations Reduced Impact of Climate Change in CA Emission Regulations Reduced Impact of Climate Change in CA Study shows clean diesel programs slashed black carbon, a...

398

The FreedomCAR & Vehicle Technologies Health Impacts Program...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project The FreedomCAR & Vehicle Technologies Health Impacts...

399

Full-scale cold-flow modelling of the SRC-I slurry fired heater at Creare, Inc. mixing and 1/sup 0/ downslope studies  

SciTech Connect (OSTI)

One of the major pieces of equipment in the SRC-I Demonstration Plant is the slurry fired heater. Because of the absence of any plant data at comparable combinations of operating severity, a cold-flow modelling experimental program was initiated at Creare, Inc. The first phase of the test program confirmed the fired heater design and established reliable boundaries of flow rates for proper operation of the fired heater. An experimental setup was designed and built at Creare to duplicate the piping arrangement and flow conditions of the fired heater. The pipe dimensions, flow rates, and fluid properties were selected to minimize areas of scale-up and extrapolation. This follow-up test program was developed to resolve concerns raised from the observations made in the first phase. Tests were conducted to establish the extent of mixing between the liquid carpet and the fast-moving liquid slugs above it. The other segment of the test program was designed to develop the flow regime and pressure drop data in the 1/sup 0/ downslope configuration. The results demonstrated a significant amount of mixing between the liquid carpet and the liquid slugs for water and the 400-cP fluid at the design flow conditions. The extent of mixing improved with increasing liquid and gas velocities and decreasing liquid viscosities. Adequate mixing was observed at liquid flow rates as low as 50% of the design flow conditions. Slug flow was observed at design conditions in the 1/sup 0/ downslope configuration. Although adequate mixing is expected in heater pipes, different techniques should be investigated to improve the extent of mixing, especially near the transition boundary. 4 references, 5 figures, 8 tables.

Mehta, D.C.

1984-05-01T23:59:59.000Z

400

Mass Dependence of Directed Collective Flow  

SciTech Connect (OSTI)

Sidewards directed fragment flow has been extracted for {sup 84}Kr+{sup 197}Au collisions at {ital E}/{ital A}=200 MeV, using techniques that are free of reaction plane dispersion. The fragment flow per nucleon increases with mass, following a thermal or coalescencelike behavior, and attains roughly constant limiting values at 4{le}{ital A}{le}12. Comparisons of the impact parameter dependences of the measured coalescence-invariant proton flow to Boltzmann-Uehling-Uhlenbeck calculations clearly favor a momentum dependent nuclear mean field. {copyright} {ital 1996 The American Physical Society.}

Huang, M.J.; Lemmon, R.C.; Daffin, F.; Lynch, W.G.; Schwarz, C.; Tsang, M.B.; Williams, C.; Danielewicz, P.; Haglin, K.; Bauer, W.; Carlin, N.; Charity, R.J.; de Souza, R.T.; Gelbke, C.K.; Hsi, W.C.; Kunde, G.J.; Lemaire, M.; Lisa, M.A.; Lynen, U.; Peaslee, G.F.; Pochodzalla, J.; Sann, H.; Sobotka, L.G.; Souza, S.R.; Trautmann, W. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States)] [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); [Laboratoire National SATURNE, CEN Saclay, 91191 Gif-sur-Yvette Cedex (France); [Department of Chemistry, Washington University, St. Louis, Missouri 63130 (United States); [Gesellschaft fuer Schwerionenforschung, D-6100 Darmstadt 11 (Germany); [Indiana University Cyclotron Facility and Department of Chemistry, Indiana University, Bloomington, Indiana 47405 (United States); [Instituto de Fisica, Universidade de Sao Paulo, CEP 01498, Sao Paulo (Brazil)

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Utilizing CLASIC observations and multiscale models to study the impact of improved Land surface representation on modeling cloud- convection  

SciTech Connect (OSTI)

The CLASIC experiment was conducted over the US southern great plains (SGP) in June 2007 with an objective to lead an enhanced understanding of the cumulus convection particularly as it relates to land surface conditions. This project was design to help assist with understanding the overall improvement of land atmosphere convection initiation representation of which is important for global and regional models. The study helped address one of the critical documented deficiency in the models central to the ARM objectives for cumulus convection initiation and particularly under summer time conditions. This project was guided by the scientific question building on the CLASIC theme questions: What is the effect of improved land surface representation on the ability of coupled models to simulate cumulus and convection initiation? The focus was on the US Southern Great Plains region. Since the CLASIC period was anomalously wet the strategy has been to use other periods and domains to develop the comparative assessment for the CLASIC data period, and to understand the mechanisms of the anomalous wet conditions on the tropical systems and convection over land. The data periods include the IHOP 2002 field experiment that was over roughly same domain as the CLASIC in the SGP, and some of the DOE funded Ameriflux datasets.

Niyogi, Devdutta S. [Purdue

2013-06-07T23:59:59.000Z

402

Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loadings  

SciTech Connect (OSTI)

Large-eddy simulations of atmospheric boundary layers under various stability and surface roughness conditions are performed to investigate the turbulence impact on wind turbines. In particular, the aeroelastic responses of the turbines are studied to characterize the fatigue loading of the turbulence present in the boundary layer and in the wake of the turbines. Two utility-scale 5-MW turbines that are separated by seven rotor diameters are placed in a 3 km by 3 km by 1 km domain. They are subjected to atmospheric turbulent boundary layer flow and data is collected on the structural response of the turbine components. The surface roughness was found to increase the fatigue loads while the atmospheric instability had a small influence. Furthermore, the downstream turbines yielded higher fatigue loads indicating that the turbulent wakes generated from the upstream turbines have significant impact.

Lee, S.; Churchfield, M.; Moriarty, P.; Jonkman, J.; Michalakes, J.

2012-01-01T23:59:59.000Z

403

Numerical Simulation of Flow Field Inside a Squeeze Film Damper and the Study of the Effect of Cavitation on the Pressure Distribution  

E-Print Network [OSTI]

of SFDs can be expensive and time consuming. The current work simulates the flow field inside the dynamically deforming annular gap of a SFD using the commercial computational fluid dynamics (CFD) code Fluent and compares the results to the experimental...

Khandare, Milind Nandkumar

2012-02-14T23:59:59.000Z

404

Study of Heat Transfer in Non-boiling Two-phase Gas-liquid Flow in Pipes for Horizontal, Slightly Inclined, and Vertical Orientations.  

E-Print Network [OSTI]

??The main objective of this research is to establish a fundamental understanding of heat transfer in non-boiling two-phase pipe flow. The key processes that govern… (more)

Tang, Clement Chih-Wei

2011-01-01T23:59:59.000Z

405

Single crystal flow reactor for studying reactivities on metal oxide model catalysts at atmospheric pressure to bridge the pressure gap to the adsorption properties determined under UHV conditions  

Science Journals Connector (OSTI)

A flow reactor for the investigation of heterogeneous catalytic reactions on single crystalline metal oxide model catalysts has been designed. It is located in a high pressure cell attached to an UHV analysis cha...

C. Kuhrs; M. Swoboda; W. Weiss

2001-01-01T23:59:59.000Z

406

Seismic Absorption and Modulus Measurements in Porous Rocks Under Fluid and Gas Flow-Physical and Chemical Effects: a Laboratory Study  

SciTech Connect (OSTI)

This paper describes the culmination of a research project in which we investigated the complex modulus change in partially fluid saturated porous rocks. The investigation started with simple flow experiments over ''clean'' and ''contaminated'' surfaces, progressed to moduli measurements on partially filled single cracks, to measurements in ''clean'' and ''contaminated'' porous rocks and finally to a feasibility study in the field. For the experiments with the simple geometries we were able to measure fundamental physical properties such as contact angles of the meniscus and time dependent forces required to get the meniscus moving and to keep it moving at various velocities. From the data thus gathered we were able to interpret the complex elastic moduli data we measured in the partially saturated single cracks. While the geometry in real rocks is too complex to make precise calculations we determined that we had indeed identified the mechanisms responsible for the changes in the moduli we had measured. Thus encouraged by the laboratory studies we embarked on a field experiment in the desert of Arizona. The field site allowed for controlled irrigation. Instrumentation for fluid sampling and water penetration were already in place. The porous loosely consolidated rocks at the site were not ideal for finding the effects of the attenuation mechanism we had identified in the lab, but for logistic and cost constraint reasons we chose to field test the idea at that site. Tiltmeters and seismometers were installed and operated nearly continuously for almost 3 years. The field was irrigated with water in the fall of 2003 and with water containing a biosurfactant in the fall of 2004. We have indications that the biosurfactant irrigation has had a notable effect on the tilt data.

Harmut Spetzler

2005-11-28T23:59:59.000Z

407

Impact fracture behavior of model system modified polypropylene  

E-Print Network [OSTI]

The morphology and impact properties of polypropylene copolymer blends modified with talc and/or ethylene-propylene (EPR) or ethylene-octene (EOR) rubber were studied. Izod impact, instrumented Charpy impact, and high speed single...

Estrada, Albert Jesse

2012-06-07T23:59:59.000Z

408

Flow Imaging Using MRI: Quantification and Analysis  

E-Print Network [OSTI]

&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Jim Ji Committee Members, Andrew K. Chan Deepa Kundur Yoonsuck Choe Mary P. McDougall Head of Department, Costas N... Committee: Dr. Jim Ji A complex and challenging problem in flow study is to obtain quantitative flow information in opaque systems, for example, blood flow in biological systems and flow channels in chemical reactors. In this regard, MRI is superior...

Jiraraksopakun, Yuttapong

2010-07-14T23:59:59.000Z

409

Constraints on flow regimes in wide-aperture fractures  

SciTech Connect (OSTI)

In recent years, significant advances have been made in our understanding of the complex flow processes in individual fractures, aided by flow visualization experiments and conceptual modeling efforts. These advances have led to the recognition of several flow regimes in individual fractures subjected to different initial and boundary conditions. Of these, the most important regimes are film flow, rivulet flow, and sliding of droplets. The existence of such significantly dissimilar flow regimes has been a major hindrance in the development of self-consistent conceptual models of flow for single fractures that encompass all the flow regimes. The objective of this study is to delineate the existence of the different flow regimes in individual fractures. For steady-state flow conditions, we developed physical constraints on the different flow regimes that satisfy minimum energy configurations, which enabled us to segregate the wide range of fracture transmissivity (volumetric flow rate per fracture width) into several flow regimes. These are, in increasing order of flow rate, flow of adsorbed films, flow of sliding drops, rivulet flow, stable film flow, and unstable (turbulent) film flow. The scope of this study is limited to wide-aperture fractures with the flow on the opposing sides of fracture being independent.

Ghezzehei, Teamrat A.

2004-02-28T23:59:59.000Z

410

Low volume flow meter  

DOE Patents [OSTI]

The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

Meixler, Lewis D. (East Windsor, NJ)

1993-01-01T23:59:59.000Z

411

Economic Impact Reporting Framework  

E-Print Network [OSTI]

Economic Impact Reporting Framework 2007/08 November 2008 #12;#12;Economic Impact Reporting Framework 2007/08 #12;STFC Economic Impact Reporting Framework 2007/08 Contents: Introduction..............................................................................................................................................2 1: Overall Economic Impacts

412

Economic Impact Reporting Framework  

E-Print Network [OSTI]

Economic Impact Reporting Framework 2008/09 #12;#12;Economic Impact Reporting Framework 2008/09 #12;STFC Economic Impact Reporting Framework 2008/09 Contents: Introduction..............................................................................................................................................2 1: Overall Economic Impacts

413

Thermodynamic Investigation of Electrolytes of the Vanadium Redox Flow Battery (II): A Study on Low-Temperature Heat Capacities and Thermodynamic Properties of VOSO4·2.63H2O(s)  

Science Journals Connector (OSTI)

Thermodynamic Investigation of Electrolytes of the Vanadium Redox Flow Battery (II): A Study on Low-Temperature Heat Capacities and Thermodynamic Properties of VOSO4·2.63H2O(s) ... The low-temperature heat capacities of VOSO4·2.63H2O(s) which is a key component in the electrolyte of the vanadium redox flow battery were measured by adiabatic calorimetry in the temperature range of (78 to 388) K, and the experimental values of the molar heat capacities in the temperature regions of (78 to 372) K were fitted to a polynomial equation. ... The vanadium redox flow battery (VRB) was first proposed and investigated by Skyllas-Kazacos et al.,(1, 2) in which the V(II)/V(III) and V(IV)/V(V) redox couples were successfully employed as the negative and positive half-cell electrolytes. ...

Ye Qin; Jian-Guo Liu; You-Ying Di; Chuan-Wei Yan; Chao-Liu Zeng; Jia-Zhen Yang

2009-12-17T23:59:59.000Z

414

Elimination of Vortex Streets in Bluff-Body Flows  

E-Print Network [OSTI]

May 21, 2008 ... By bluff-body flow we mean flows past blunt objects, such as the wind blowing ... with a direct impact on many engineering applications. To this end ... is 3 D. We have performed extensive grid refinement tests .... energy input.

2008-05-16T23:59:59.000Z

415

Investigation on the Core Bypass Flow in a Very High Temperature Reactor  

SciTech Connect (OSTI)

Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racks of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the high side, the quantity of cooling flow through the core may be considerably less than the nominal design value, causing some regions of the core to operate at temperatures in excess of the design values. These effects are postulated to lead to localized hot regions in the core that must be considered when evaluating the VHTR operational and accident scenarios.

Hassan, Yassin

2013-10-22T23:59:59.000Z

416

Propeller Flow Meter  

E-Print Network [OSTI]

Propeller flow meters are commonly used to measure water flow rate. They can also be used to estimate irrigation water use. This publication explains how to select, install, read and maintain propeller flow meters....

Enciso, Juan; Santistevan, Dean; Hla, Aung K.

2007-10-01T23:59:59.000Z

417

Dispersed flow film boiling  

E-Print Network [OSTI]

Dispersed flow consists of small liquid droplets entrained in a flowing vapor. This flow regime can occur in cryogenic equipment, in steam generators, and during nuclear reactor loss of coolant accidents. A theoretical ...

Yoder, Graydon L.

1980-01-01T23:59:59.000Z

418

Bacteria in shear flow  

E-Print Network [OSTI]

Bacteria are ubiquitous and play a critical role in many contexts. Their environment is nearly always dynamic due to the prevalence of fluid flow: creeping flow in soil, highly sheared flow in bodily conduits, and turbulent ...

Marcos, Ph.D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

419

Preliminary simulations of planned experiments to study the impact of trace gases on the capacity of the Weyburn-Midale field to store carbon dioxide  

SciTech Connect (OSTI)

The CO{sub 2} stream injecting into the Weyburn-Midale field can be generally classified as a reducing stream with residual H{sub 2}S and low-molecular weight hydrocarbons. The composition of the CO{sub 2} gas stream from the Dakota Gasification Company is reported to be 95% CO{sub 2}, 4% hydrocarbons, and 1% H{sub 2}S by volume (Huxley 2006). In addition to the H{sub 2}S introduced at the injection wells, significant concentrations of H{sub 2}S are thought to have been produced in-situ by sulfate reducing bacteria from previous water floods for enhanced oil production. Produced gas compositions range in H{sub 2}S concentrations from 1 to 6 volume percent. The produced gas, including the trace impurities, is re-injected into the field. Although there is no evidence for inorganic reduction of SO{sub 4}{sup 2-} to H{sub 2}S at the Weyburn-Midale field, Sitchler and Kazuba (2009) suggest that SO{sub 4}{sup 2-} can be inorganically reduced to elemental sulfur in highly reducing environments based on a natural analog study of the Madison Formation in Wyoming. They propose that elevated concentrations of CO{sub 2} dissolve anhydrite to produce the sulfate that is then reduced. Oxidizing CO{sub 2} streams with residual O{sub 2} and SO{sub 2} typical of streams captured from oxyfuel and post combustion processes are not presently an issue at the Weyburn-Midale field. However it is possible that the oxidizing CO{sub 2} streams may be injected in the future in carbonate reservoirs similar to the Weyburn-Midale field. To date there are few modeling and experimental studies that have explored the impact of impurity gases in CO{sub 2} streams targeted for geologic storage (Gale 2009). Jacquemet et al (2009) reviewed select geochemical modeling studies that explored the impact of SO{sub 2} and H{sub 2}S impurities in the waste streams (Gunter et al., 2000, Knauss et al., 2005, Xu et al., 2007). These studies collectively show that SO{sub 2} significantly reduces the pH when oxidized to H{sub 2}SO{sub 4} causing enhanced dissolution of carbonate minerals and some sulfate mineral precipitation. Low pH results in higher mineral solubility and faster dissolution rates and is thought to enhance porosity and permeability near the injection well when trace amounts of SO{sub 2} is injected with CO{sub 2}. The impact of H{sub 2}S on storage reservoir performance appears to more subtle. Knauss et al (2005) report no significant impacts of injection of CO{sub 2} gas streams with and without H{sub 2}S (1 M Pascal H{sub 2}S + 8.4 M Pascal CO{sub 2}) in simulations of CO{sub 2} storage in the Frio sandstone formation. Geochemical reactions for H{sub 2}S impurities include enhance field alkalinity and reaction with iron bearing minerals that may delay breakthrough of H{sub 2}S relative to CO{sub 2}. Emberley et al. (2005) report that half of the alkalinity measured at monitoring wells at the Weyburn-Midale field is due to HS{sup -}. Schoonen and Xu (2004) report that H{sub 2}S can be sequestered as pyrite in sandstones and carbonates by dissolving iron hydroxides and iron-bearing clays. Similarly, Gunter et al (2000) propose the that siderite converts to iron sulfides when it is reacted with H{sub 2}S. The geochemical reactions between H{sub 2}S and iron bearing minerals together with the high solubility of H{sub 2}S relative to CO{sub 2} may contribute to the delayed break though of H{sub 2}S in experiments. A few core flood experiments have shown that the injection of supercritical CO{sub 2} into carbonate aquifers has the potential to significantly alter the porosity in the absence of trace gases such as SO{sub 2} and H{sub 2}S. Luquot and Gouze (2009) documented a 2% porosity increase in carbonate cores when rock-water interactions were transport limited and solution concentrations were closer to equilibrium and a 4% porosity increase when rock-water interactions were reaction limited and solution compositions were further from equilibrium. Similarly Le Guen et al (2007) used x-ray micro-tomography and geochemistry to show that porosity signific

Carroll, S; Hao, Y

2009-11-13T23:59:59.000Z

420

Agrochemicals in field margins – An experimental field study to assess the impacts of pesticides and fertilizers on a natural plant community  

Science Journals Connector (OSTI)

Abstract In agricultural areas, field margins are often the only remaining habitat for wild plant species. However, due to their proximity to agricultural fields, the vegetation of field margins may be affected by agrochemicals applied to the crop field. To investigate individual and combined effects of fertilizer, herbicide, and insecticide inputs on the plant community of field margins, a 3-year field study with a randomized block design was performed. The applied fertilizer rates (25% of the field rate) and pesticide rates (30% of the field rate) were consistent with their average input rates (drift + overspray) in the first meter of a field margin directly adjacent to the field. Fertilizer and herbicide applications resulted in significantly reduced frequencies of several plant species. The fertilizer promoted plants with a high nutrient uptake and decreased the frequencies of small and subordinate species. In addition to the disappearance of a few species, the herbicide caused predominantly sublethal effects, which gradually reduced the frequencies of certain species. Significant herbicide–fertilizer interaction effects were also observed and could not be extrapolated from individual effects. The impacts of both agrochemicals became stronger over time, led to shifts in plant community compositions, and caused significantly lower species diversities than in the control plots. The insecticide application significantly affected the frequencies of two plant species. The results suggest that a continuous annual application of agrochemicals would cause further plant community shifts. Hence, to preserve biodiversity of agricultural landscapes, it is recommended to protect the vegetation in field margins from agrochemical inputs.

Juliane Schmitz; Melanie Hahn; Carsten A. Brühl

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Equidistribution results for geodesic flows  

E-Print Network [OSTI]

Using the works of Ma\\~n\\'e \\cite{Ma} and Paternain \\cite{Pat} we study the distribution of geodesic arcs with respect to equilibrium states of the geodesic flow on a closed manifold, equipped with a $\\mathcal{C}^{\\infty}$ Riemannian metric. We prove large deviations lower and upper bounds and a contraction principle for the geodesic flow in the space of probability measures of the unit tangent bundle. We deduce a way of approximating equilibrium states for continuous potentials.

Abdelhamid Amroun

2011-09-15T23:59:59.000Z

422

Economic Impact of Medicaid on South Carolina  

E-Print Network [OSTI]

Economic Impact of Medicaid on South Carolina Developed for The SC Department of Health and Human 2002 #12;Medicaid Economic Impact, i Executive Summary This study analyzes the impact of Medicaid, the health care insurance program, on South Carolina's economic development. South Carolina is considering

Almor, Amit

423

Climate Change Impacts and Adaptation in Europe: The Case Study of European Capitals after the Heatwave of 2003. Vulnerability and Adaptation.   

E-Print Network [OSTI]

The heatwave of 2003 in Europe helped societies to understand the unexpected impacts of climate change and forced them to consider climate change adaptation in a more systematic and serious approach. Furthermore, severe events like this one showed...

Aivalioti, Sofia

2011-11-24T23:59:59.000Z

424

Climate change impacts on forest growth and tree mortality: a data-driven modeling study in the mixed-conifer forest of the Sierra Nevada, California  

Science Journals Connector (OSTI)

We evaluated the impacts of climate change on the productivity and health of a forest in the mixed-conifer region in California. We adapted an industry ... tool to forecast 30-years of growth for forest stands un...

John J. Battles; Timothy Robards; Adrian Das; Kristen Waring…

2008-03-01T23:59:59.000Z

425

Changing the spatial location of electricity generation to increase water availability in areas with drought: a feasibility study and quantification of air quality impacts in Texas  

E-Print Network [OSTI]

The feasibility, cost, and air quality impacts of using electrical grids to shift water use from drought-stricken regions to areas with more water availability were examined. Power plant cooling represents a large portion ...

Pacsi, Adam P

426

An impact analysis of landfill for waste disposal on climate change: Case study of ‘Sudokwon Landfill Site 2nd Landfill’ in Korea  

Science Journals Connector (OSTI)

The impact of waste landfill on climate change was analyzed by comparing...4 emission from landfill with the potential energy conversion. For this...4 were used against Sudokwon Landfill Site 2nd Landfill, which ...

Seung Kyu Chun; Young Shin Bae

2012-11-01T23:59:59.000Z

427

Flow Distances on Open Flow Networks  

E-Print Network [OSTI]

Open flow network is a weighted directed graph with a source and a sink, depicting flux distributions on networks in the steady state of an open flow system. Energetic food webs, economic input-output networks, and international trade networks, are open flow network models of energy flows between species, money or value flows between industrial sectors, and goods flows between countries, respectively. Flow distances (first-passage or total) between any given two nodes $i$ and $j$ are defined as the average number of transition steps of a random walker along the network from $i$ to $j$ under some conditions. They apparently deviate from the conventional random walk distance on a closed directed graph because they consider the openness of the flow network. Flow distances are explicitly expressed by underlying Markov matrix of a flow system in this paper. With this novel theoretical conception, we can visualize open flow networks, calculating centrality of each node, and clustering nodes into groups. We apply fl...

Guo, Liangzhu; Shi, Peiteng; Wang, Jun; Huang, Xiaohan; Zhang, Jiang

2015-01-01T23:59:59.000Z

428

Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California  

E-Print Network [OSTI]

impact statement for hydropower license. Upper Americanand permitted for hydropower generation and flood control.1):257–268 Hunter MA (1992) Hydropower flow fluctuations and

2010-01-01T23:59:59.000Z

429

Queueing in Traffic Flows This project studies the effects of vehicle routing on pollution levels. We aim to develop queueing theory  

E-Print Network [OSTI]

model to predict air pollution in a wider region. These predictions will be tested using remote sensing forecast can then predict how air pollution is affected by this emission. Rerouting Alternative routing can reduce traffic jams and air pollution. Numereous options are available to reroute traffic flows, e

Boucherie, Richard J.

430

General single phase wellbore flow model  

SciTech Connect (OSTI)

A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.

Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.

1997-02-05T23:59:59.000Z

431

Laser ignition of hypersonic air–hydrogen flow  

Science Journals Connector (OSTI)

An experimental investigation of the behaviour of laser-induced ignition in a hypersonic air–hydrogen flow is ... /s. This study is the first comprehensive laser spark study in a hypersonic flow and demonstrates ...

S. Brieschenk; H. Kleine; S. O’Byrne

2013-09-01T23:59:59.000Z

432

The effects between two slotted plate flow meter under single, two, three components flow condition  

E-Print Network [OSTI]

THE INTERACTION BETWEEN A TWO SLOTTED PLATE FLOW METER UNDER ONE, TWO, OR THREE COMPONENT FLOW CONDITIONS A Thesis by SANG HYUN PARK Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2004 Major Subject: Mechanical Engineering THE INTERACTION BETWEEN A TWO SLOTTED PLATE FLOW METER UNDER ONE, TWO, OR THREE COMPONENT FLOW...

Park, Sang Hyan

2005-02-17T23:59:59.000Z

433

Portable wastewater flow meter  

DOE Patents [OSTI]

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1999-02-02T23:59:59.000Z

434

Portable wastewater flow meter  

DOE Patents [OSTI]

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1990-01-01T23:59:59.000Z

435

Nepheline Formation Potential in Sludge Batch 4 (SB4) and Its Impact on Durability: Selecting Glasses for a Phase 2 Study  

SciTech Connect (OSTI)

The likelihood for the formation of nepheline in Sludge Batch 4 (SB4) glass systems and the potential impact of nepheline on the durability of these systems is part of the frit development efforts for SB4. The effect of crystallization on glass durability is complex and depends on several interrelated factors including the change in residual glass composition, the formation of internal stress or microcracks, and the preferential attack at the glass-crystal interface. Perhaps one of the most significant effects is the type and extent (or fraction) of crystallization and the change to the residual glass composition. A strong increase in glass dissolution (or decrease in durability) has been observed in previous studies in glasses that formed aluminum-containing crystals, such as NaAlSiO{sub 4} (nepheline) and LiAlSi{sub 2}O{sub 6}, and crystalline SiO{sub 2}. Although it is well known that the addition of Al{sub 2}O{sub 3} to borosilicate glasses enhances the durability of the waste form (through creation of network-forming tetrahedral Na{sup +}-[AlO{sub 4/2}]{sup -} pairs), the combination of high Al{sub 2}O{sub 3} and Na{sub 2}O can lead to the formation of nepheline (NaAlSiO{sub 4}). Given the projected high concentration of Al{sub 2}O{sub 3} in SB4 and the potential use of a high Na{sub 2}O based frit to improve melt rate and a high Na{sub 2}O sludge due to settling problems, the potential formation of nepheline in various SB4 systems continues to be assessed. The most recent compositional projections from the Closure Business Unit (CBU) for SB4 may be framed around three decision areas: the sodium molarity of the sludge (at values of 1M Na and 1.6M Na), the SB3 heel that will be included in the batch (expressed in inches of SB3 sludge with values of 0, 40, and 127''), and the introduction of an ARP stream into the sludge (which is represented by six options: no ARP, ARPa, ARPe, ARPk, ARPm, and ARPv). Candidate frits are being identified for these options via a paper study approach with the intent of downselecting to a set of key frits whose operating windows (i.e., waste loading intervals that meet Product Composition Control System (PCCS) Measurement Acceptability Region (MAR) criteria) are robust to and/or selectively optimal for these sludge options. The primary or key frits that appear attractive on paper (i.e., down selected via the paper study) will be transferred into SRNL's experimental studies supporting SB4; specifically, the melt-rate studies, chemical process cell flowsheet runs and, if needed, a glass variability study.

Peeler, D

2005-08-15T23:59:59.000Z

436

Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modeling study using WRF-Chem  

SciTech Connect (OSTI)

Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 Oct–Nov 16, 2008). The effects of oceanic aerosols on cloud properties, precipitation, and the shortwave forcing counteract those of anthropogenic aerosols. Despite the relatively small changes in Na concentrations (2-12%) from regional oceanic emissions, their net effect (direct and indirect) on the surface shortwave forcing is opposite and comparable or even larger in magnitude compared to those of regional anthropogenic emissions over the SEP. Two distinct regions are identified in the VOCALS-REx domain. The near-coast polluted region is characterized with strong droplet activation suppression of small particles by sea-salt particles, the more important role of the first than the second indirect effect, low surface precipitation rate, and low aerosol-cloud interaction strength associated with anthropogenic emissions. The relatively clean remote region is characterized with large contributions of Cloud Condensation Nuclei (CCN, number concentration denoted by NCCN) and droplet number concentrations (Nd) from non-local sources (lateral boundaries), a significant amount of surface precipitation, and high aerosol-cloud interactions under a scenario of five-fold increase in anthropogenic emissions. In the clean region, cloud properties have high sensitivity (e.g., 13% increase in cloud-top height and a 9% surface albedo increase) to the moderate increase in CCN concentration (?Nccn = 13 cm-3; 25%) produced by a five-fold increase in regional anthropogenic emissions. The increased anthropogenic aerosols reduce the precipitation amount over the relatively clean remote ocean. The reduction of precipitation (as a cloud water sink) more than doubles the wet scavenging timescale, resulting in an increased aerosol lifetime in the marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol. The positive feedback ultimately alters the cloud micro- and macro-properties, leading to strong aerosol-cloud-precipitation interactions. The higher sensitivity of clouds to anthropogenic aerosols over this region is also related to a 16% entrainment rate increase due to anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions are stronger at night over the clean marine region, while during the day, solar heating results in more frequent decoupling, thinner clouds, reduced precipitation, and reduced sensitivity to anthropogenic emissions. The simulated high sensitivity to the increased anthropogenic emissions over the clean region suggests that the perturbation of the clean marine environment with anthropogenic aerosols may have a larger effect on climate than that of already polluted marine environments.

Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Wang, Minghuai; Ghan, Steven J.; Berg, Larry K.; Leung, Lai-Yung R.; Morrison, H.

2012-09-28T23:59:59.000Z

437

Two-phase flow instability and dryout in parallel channels in natural circulation  

SciTech Connect (OSTI)

The unique feature of parallel channel flows is that the pressure drop or driving head for the flow is maintained constant across any given channel by the flow in all the others, or by having a large downcomer or bypass in a natural circulation loop. This boundary condition is common in all heat exchangers, reactor cores and boilers, it is well known that the two-phase flow in parallel channels can exhibit both so-called static and dynamic instability. This leads to the question of the separability of the flow and pressure drop boundary conditions in the study of stability and dryout. For the areas of practical interest, the flow can be considered as incompressible. The dynamic instability is characterized by density (kinematic) or continuity waves, and the static instability by inertial (pressure drop) or manometric escalations. The static has been considered to be the zero-frequency or lowest mode of the dynamic case. We briefly review the status of the existing literature on both parallel channel static and dynamic instability, and the latest developments in theory and experiment. The difference between the two derivations lies in the retention of the time-dependent terms in the conservation equations. The effects and impact of design options are also discussed. Since dryout in parallel systems follows instability, it has been traditional to determine the dryout power for a parallel channel by testing a single channel with a given (inlet) flow boundary condition without particular regard for the pressure drop. Thus all modern dryout correlations are based on constant or fixed flow tests, a so-called hard inlet, and subchannel and multiple bundle effects are corrected for separately. We review the thinking that lead to this approach, and suggest that for all multiple channel and natural circulation systems close attention should be paid to the actual (untested) pressure drop conditions. A conceptual formulation is suggested as a basis for discussion.

Duffey, R.B.; Rohatgi, U.S. [Brookhaven National Lab., Upton, NY (United States); Hughes, E.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1993-06-01T23:59:59.000Z

438

An empirical examination of trade flows in the SAARC region  

Science Journals Connector (OSTI)

South Asia combines a low level of regional integration and the presence of relatively high trade barriers. The proportion of trade originating in the region has increased in the last decade but still lags behind many similar regional arrangements. The present study employs an augmented gravity model to examine the impact of a set of macroeconomic and other policy factors on trade flows in the South Asian Association for Regional Cooperation (SAARC) region. The interesting finding is that export between two countries would increase by 152.2%, if there exists a bilateral trade agreement between countries compared to country-pairs without having bilateral trade ties. The empirical analysis reveals that reduction in tariff level is also a better measure to improve trade in the region. Further, the study supports specialisation in the region based on the relative factor endowments and cost advantage as well.

P.R. Madhusoodanan

2010-01-01T23:59:59.000Z

439

Inertial impaction air sampling device  

DOE Patents [OSTI]

An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

Dewhurst, K.H.

1987-12-10T23:59:59.000Z

440

Inertial impaction air sampling device  

DOE Patents [OSTI]

An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

Dewhurst, Katharine H. (13150 Wenonah SE. Apt. 727, Albuquerque, NM 87123)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Inertial impaction air sampling device  

DOE Patents [OSTI]

An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

Dewhurst, K.H.

1990-05-22T23:59:59.000Z

442

Prediction of vehicle impact forces  

E-Print Network [OSTI]

PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject...: Civil Engineering PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Approved as to style and content by: C. Eugene Buth (Chair of Committee) W. ynn Beason (Member) I? D n E. B ay (Member) es T. P. Yao (Departmen Head) May...

Kaderka, Darrell Laine

2012-06-07T23:59:59.000Z

443

Communication impacting financial markets  

E-Print Network [OSTI]

Behavioral finance has become an increasingly important subfield of finance. However the main parts of behavioral finance, prospect theory included, understand financial markets through individual investment behavior. Behavioral finance thereby ignores any interaction between participants. We introduce a socio-financial model that studies the impact of communication on the pricing in financial markets. Considering the simplest possible case where each market participant has either a positive (bullish) or negative (bearish) sentiment with respect to the market, we model the evolution of the sentiment in the population due to communication in subgroups of different sizes. Nonlinear feedback effects between the market performance and changes in sentiments are taking into account by assuming that the market performance is dependent on changes in sentiments (e.g. a large sudden positive change in bullishness would lead to more buying). The market performance in turn has an impact on the sentiment through the trans...

Andersen, Jorgen Vitting; Dellaportas, Petros; Galam, Serge

2014-01-01T23:59:59.000Z

444

INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE  

SciTech Connect (OSTI)

Mercury (Hg) has been identified as a 'persistent, bioaccumulative and toxic' pollutant with widespread impacts throughout North America and the world (EPA. 1997a, 1997b, 1998a, 1998b, 2000). Although most of the mercury in the environment is inorganic Hg, a small proportion of total Hg is transformed through the actions of aquatic microbes into methylmercury (MeHg). In contrast to virtually all other metals, MeHg biomagnifies or becomes increasingly concentrated as it is transferred through aquatic food chains so that the consumption of mercury contaminated fish is the primary route of this toxin to humans. For this reason, the ambient water quality criterion (AWQC) for mercury is based on a fish tissue endpoint rather than an aqueous Hg concentration, as the tissue concentration (e.g., < 0.3 {mu}g/g fillet) is considered to be a more consistent indicator of exposure and risk (EPA, 2001). Effective mercury remediation at point-source contaminated sites requires an understanding of the nature and magnitude of mercury inputs, and also knowledge of how these inputs must be controlled in order to achieve the desired reduction of mercury contamination in biota necessary for compliance with AWQC targets. One of the challenges to remediation is that mercury body burdens in fish are more closely linked to aqueous MeHg than to inorganic Hg concentrations (Sveinsdottir and Mason 2005), but MeHg production is not easily predicted or controlled. At point-source contaminated sites, mercury methylation is not only affected by the absolute mercury load, but also by the form of mercury loaded. In addition, once MeHg is formed, the hydrology, trophic structure, and water chemistry of a given system affect how it is transformed and transferred through the food chain to fish. Decreasing inorganic Hg concentrations and loading may often therefore be a more achievable remediation goal, but has led to mixed results in terms of responses in fish bioaccumulation. A number of source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in upper trophic level fish and other biota; this is a key environmental endpoint since reducing mercury concen

Looney, B.; Bryan, L.; Mathews, T.

2012-03-30T23:59:59.000Z

445

Direct and indirect impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)1 on adult mouse Leydig cells: an in vitro study.2  

E-Print Network [OSTI]

1 Direct and indirect impact of 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD)1 on adult mouse Leydig,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related substances are ubiquitous22 environmental pollutants that exert words: Dioxin; Leydig cell; in vitro; AhR; chemokine39 40 inserm-00816472,version1-22Apr2013 #12;3 1

Paris-Sud XI, Université de

446

Making the `MOST' out of RFID technology: a research agenda for the study of the adoption, usage and impact of RFID  

Science Journals Connector (OSTI)

Radio frequency identification (RFID) technology dramatically increases the ability of the organization to acquire a vast array of data about the location and properties of any entity that can be physically tagged ... Keywords: Business value, Diffusion of innovations, IT impacts, Information technology, RFID, Radio frequency identification, Technology adoption

John Curtin; Robert J. Kauffman; Frederick J. Riggins

2007-06-01T23:59:59.000Z

447

Heat flow on the southern Colorado Plateau  

Science Journals Connector (OSTI)

Heat-flow data from the study area in the southern Colorado Plateau indicate a pattern of local anomalies having relatively high heat flow superimposed on a regional, intermediate heat-flow setting. While many of the conventional heat-flow data are relatively shallow and may be perturbed by groundwater circulation, bottom-hole temperature data from two relatively deep petroleum exploration drill holes near the southern plateau periphery yield intermediate heat-flow estimates. The mean heat flow within the volcanically active Jemez zone does not appear to be significantly greater than the mean heat flow for the remainder of the study area. This is due to the presence of high heat-flow values outside the Jemez zone. Sites with relatively high heat flow located towards the plateau interior and away from recent volcanic activity of the Jemez zone may reflect magma intrusion and/or groundwater movement along crustal zones of weakness associated with Laramide deformation (monoclines). The heat-flow data are consistent with coal maturation data, which suggest that any regional post-Cretaceous thermal events that may be associated with the southern Plateau boundary have been initiated relatively recently, or are occurring at relatively great depths, or are occurring south of the Jemez lineament.

Jeffrie Minier; Marshall Reiter

1991-01-01T23:59:59.000Z

448

Direct ab initio molecular dynamics study on a SN2 reaction OH? + CH3Cl ? CH3OH + Cl?: Effect of non-zero impact parameter on the reaction dynamics  

Science Journals Connector (OSTI)

Direct ab initio molecular dynamics (MD) calculations have been applied to a SN2 reaction OH? + CH3Cl ? CH3OH + Cl?. The collision dynamics with non-zero impact parameters were treated in the present study, and the results are compared with the near collinear collision dynamics previously reported by us [H. Tachikawa, M. Igarashi, T. Ishibashi, J. Phys. Chem. A 106 (2002) 10977]. The collision energy was fixed to 25 kcal/mol. The product state distribution obtained for the non-zero impact parameter collision dynamics was slightly different from that of the collinear collision. The distribution of relative translational energy between products Cl? and CH3OH in the non-zero impact parameter collision dynamics was shifted to higher energy region from that of collinear collision. Also, it was found that the mean translational energy of the product has a maximum at non-zero impact parameter (b = 0.6–1.2 Å). The reaction mechanism is discussed on the basis of theoretical results.

Hiroto Tachikawa; Manabu Igarashi

2006-01-01T23:59:59.000Z

449

Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective  

Science Journals Connector (OSTI)

Abstract Glacial lake outburst floods (GLOFs) are highly mobile mixtures of water and sediment that occur suddenly and are capable of traveling tens to hundreds of kilometers with peak discharges and volumes several orders of magnitude larger than those of normal floods. They travel along existing river channels, in some instances into populated downstream regions, and thus pose a risk to people and infrastructure. Many recent events involve process chains, such as mass movements impacting glacial lakes and triggering dam breaches with subsequent outburst floods. A concern is that effects of climate change and associated increased instability of high mountain slopes may exacerbate such process chains and associated extreme flows. Modeling tools can be used to assess the hazard of potential future GLOFs, and process modeling can provide insights into complex processes that are difficult to observe in nature. A number of numerical models have been developed and applied to simulate different types of extreme flows, but such modeling faces challenges stemming from a lack of process understanding and difficulties in measuring extreme flows for calibration purposes. Here we review the state of knowledge of key aspects of modeling GLOFs, with a focus on process cascades. Analysis and simulation of the onset, propagation, and potential impact of \\{GLOFs\\} are based on illustrative case studies. Numerical models are presently available for simulating impact waves in lakes, dam failures, and flow propagation but have been used only to a limited extent for integrated simulations of process cascades. We present a spectrum of case studies from Patagonia, the European Alps, central Asia, and the Himalayas in which we simulate single processes and process chains of past and potential future events. We conclude that process understanding and process chain modeling need to be strengthened and that research efforts should focus on a more integrative treatment of processes in numerical models.

Raphael Worni; Christian Huggel; John J. Clague; Yvonne Schaub; Markus Stoffel

2014-01-01T23:59:59.000Z

450

From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact  

Science Journals Connector (OSTI)

...on climate impact. More information...surface wind speed (W...spatially (grid cell) or...analysis of the impact of aggregated...per 2.8 grid unit. As...by water, energy or both...parameterization of energy flow to smaller...representation of sub-grid scale processes...represent the impact on agricultural...

2005-01-01T23:59:59.000Z

451

Multiphase Flow in Geometrically Simple Fracture Intersections  

SciTech Connect (OSTI)

A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to Study gravity-driven flow in geometrically simple fracture intersections. simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-filin flow oil smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

Hakan Basagaoglu; Paul Meakin; Sauro Succi; Timothy R. Ginn

2006-03-01T23:59:59.000Z

452

Multiphase flow in geometrically simple fracture intersection  

SciTech Connect (OSTI)

A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phse flow through intersecting fractures, and thin-film flow on smooth and undulating solid surfaces. Qualititative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

H. Basagaoglu; P. Meakin; M. Mathew

2006-03-01T23:59:59.000Z

453

Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies  

Science Journals Connector (OSTI)

Abstract The present study focuses on the dynamic electro-thermal modeling for the all-vanadium redox flow battery (VRB) with forced cooling strategies. The Foster network is adopted to dynamically model the heat dissipation of VRB with heat exchangers. The parameters of Foster network are extracted by fitting the step response of it to the results of linearized CFD model. Then a complete electro-thermal model is proposed by coupling the heat generation model, Foster network and electrical model. Results show that the established model has nearly the same accuracy with the nonlinear CFD model in electrolyte temperature prediction but drastically improves the computational efficiency. The modeled terminal voltage is also benchmarked with the experimental data under different current densities. The electrolyte temperature is found to be significantly influenced by the flow rate of coolant. As compared, although the electrolyte flow rate has unremarkable impact on electrolyte temperature, its effect on system pressure drop and battery efficiency is significant. Increasing the electrolyte flow rate improves the coulombic efficiency, voltage efficiency and energy efficiency simultaneously but at the expense of higher pump power demanded. An optimal flow rate exists for each operating condition to maximize the system efficiency.

Zhongbao Wei; Jiyun Zhao; Binyu Xiong

2014-01-01T23:59:59.000Z

454

Technology's Impact on Production  

SciTech Connect (OSTI)

As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

Rachel Amann; Ellis Deweese; Deborah Shipman

2009-06-30T23:59:59.000Z

455

Plastic Flow in Glass  

Science Journals Connector (OSTI)

...1964 research-article Plastic Flow in Glass D. M. Marsh The classical brittle fracture...account for the mechanical properties of glasses, but the widespread evidence of plastic flow in all glass fracture phenomena even at room temperature...

1964-01-01T23:59:59.000Z

456

Preliminary Impact Evaluation BBNP  

Broader source: Energy.gov [DOE]

Preliminary Impact Evaluation of the U.S. Department of Energy's Better Buildings Neighborhood Program, 2013.

457

Original Impact Calculations  

Broader source: Energy.gov [DOE]

Original Impact Calculations, from the Tool Kit Framework: Small Town University Energy Program (STEP).

458

Ultrasonic flow metering system  

DOE Patents [OSTI]

A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Mauseth, Jason A. (Pocatello, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

459

Flow loop studies of the relationship between limiting currents and CO{sub 2}/H{sub 2}S corrosion of carbon steel  

SciTech Connect (OSTI)

Corrosion measurements on AISI 1010 carbon steel were performed in a glass/titanium flow loop, containing a single-phase test fluid of distilled water, 3% in NaCl saturated with CO{sub 2} or a CO{sub 2}/H{sub 2}S gas mixture. The tests were run at temperatures from 25 to 90 C and flow velocities ranged from 0.25 to 2.5 m/s. Corrosion rates were calculated from LPR and tafel extrapolations. Steady-state corrosion currents were compared to cathodic limiting diffusion currents obtained under corresponding conditions. The limiting currents were calculated from potentiodynamic sweeps carried out on platinum. Limiting current plateaus were easily seen at pH values below 5, but vanished with increasing pH. Results show a linear correlation between the measured corrosion rates and the limiting currents, both with and without H{sub 2}S present. With further research and development on this field, the limiting diffusion current technique can be used in predicting corrosivity of CO{sub 2}/H{sub 2}S-containing media and other aqueous environments, as well as for `in-situ` corrosion monitoring.

Kvarekvn, J. [MARINTEK, Sandefjord (Norway). Lab. for Materials Application

1998-12-31T23:59:59.000Z

460

Changing the spatial location of electricity generation to increase water availability in areas with drought: a feasibility study and quantification of air quality impacts in Texas  

Science Journals Connector (OSTI)

The feasibility, cost, and air quality impacts of using electrical grids to shift water use from drought-stricken regions to areas with more water availability were examined. Power plant cooling represents a large portion of freshwater withdrawals in the United States, and shifting where electricity generation occurs can allow the grid to act as a virtual water pipeline, increasing water availability in regions with drought by reducing water consumption and withdrawals for power generation. During a 2006 drought, shifting electricity generation out of the most impacted areas of South Texas (~10% of base case generation) to other parts of the grid would have been feasible using transmission and power generation available at the time, and some areas would experience changes in air quality. Although expensive, drought-based electricity dispatch is a potential parallel strategy that can be faster to implement than other infrastructure changes, such as air cooling or water pipelines.

Adam P Pacsi; Nawaf S Alhajeri; Mort D Webster; Michael E Webber; David T Allen

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow impact study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Effect of a co?flowing annular outer flow on the flow and acoustics in a porous tube.  

Science Journals Connector (OSTI)

One of the most important aspects of flow in a gas turbine combustor is the cooling airflow introduced through the combustor liner. The co?flowing annular cooling air affects the flow and the acoustic field of the main combustor. A generic study is in progress to study the effect of a co?flowing annular outer flow on the flow and acoustics in a porous tube. This work is an idealization of the actual gas turbine combustor flow. The results generated here will be used to validate the computational codes currently being used by the gas turbine industry to calculate these flow fields. In the present experimental work a 6?in.?diam tube made out of perforated sheet is located coaxially in an 8?in.?diam outer tube. Airflows in the inner perforated tube as well as in the annular space between the two tubes. Detailed measurements of the turbulence structure using hot wire anemometry and of the acoustic field using microphonetransducers are being made. Effects of parameters such as porosity of the tube relative areas of annular space and cross section of inner tube and flow Reynolds number on the turbulence quantities and the acoustic field will be reported.

Sundar Ramamoorthy; Fariborz Khodabakhsh; Sastry Munukutla

1992-01-01T23:59:59.000Z

462

Elbow mass flow meter  

DOE Patents [OSTI]

Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

1994-01-01T23:59:59.000Z

463

Interlaboratory study of the reproducibility of the single-pass flow-through test method : measuring the dissolution rate of LRM glass at 70 {sup {degree}}C and pH 10.  

SciTech Connect (OSTI)

An international interlaboratory study (ILS) was conducted to evaluate the precision with which single-pass flow-through (SPFT) tests can be conducted by following a method to be standardized by the American Society for Testing and Materials - International. Tests for the ILS were conducted with the low-activity reference material (LRM) glass developed previously for use as a glass test standard. Tests were conducted at 70 {+-} 2 C using a LiCl/LiOH solution as the leachant to impose an initial pH of about 10 (at 70 C). Participants were provided with LRM glass that had been crushed and sieved to isolate the -100 +200 mesh size fraction, and then washed to remove fines. Participants were asked to conduct a series of tests using different solution flow rate-to-sample mass ratios to generate a range of steady-state Si concentrations. The glass dissolution rate under each test condition was calculated using the steady-state Si concentration and solution flow rate that were measured in the test. The glass surface area was estimated from the mass of glass used in the test and the Si content of LRM glass was known. A linear relationship between the rate and the steady-state Si concentration (at Si concentrations less than 10 mg/L) was used to estimate the forward dissolution rate, which is the rate in the absence of dissolved Si. Participants were asked to sample the effluent solution at least five times after reaction times of between 3 and 14 days to measure the Si concentration and flow rate, and to verify that steady-state was achieved. Results were provided by seven participants and the data sets provided by five participants were sufficient to determine the forward rates independently.

Ebert, W. L.; Chemical Engineering

2006-02-28T23:59:59.000Z

464

Environmental Impacts of Repository  

Broader source: Energy.gov (indexed) [DOE]

~~"'"""""""""'l.. _ _ 4 Environmental Impacts of Repository Construction, Operation and Monitoring, and Closure 4-iii Environmental Impacts of Repository Construction, Operations, Monitoring, and Closure TABLE OF CONTENTS Section Page 4. Environmental Impacts of Repository Construction, Operations, Monitoring, and Closure ..............4-1 4.1 Preclosure Environmental Impacts of Construction, Operations, Monitoring, and Closure of a Repository ...............................................................................................................................4-3 4.1.1 Impacts to Land Use and Ownership .......................................................................................4-4

465

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Health and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel3 of HEALTH AND SAFETY IMPACTS OF FOSSIL-FUEL NUCLEAR,HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

466

Quantitative supersonic flow visualization by hydraulic analogy  

E-Print Network [OSTI]

The hydraulic analogy, which forms the basis for the phics. current investigation, can be used to study supersonic gas flows with great ease by means of a water table. As a result of the analogy, water heights in free surface water flow correspond...

Rani, Sarma Laxminarasimha

2012-06-07T23:59:59.000Z

467

Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions.  

SciTech Connect (OSTI)

Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) techniques. The major challenges facing commercialization of steam electrolysis technology are related to efficiency, cost, and durability of the SOECs. The goal of this effort is to guide the design and optimization of performance for high temperature electrolysis (HTE) systems. An SOEC module developed by FLUENT Inc. as part of their general CFD code was used for the SOEC analysis by INL. ANL has developed an independent SOEC model that combines the governing electrochemical mechanisms based on first principals to the heat transfer and fluid dynamics in the operation of SOECs. The ANL model was embedded into the commercial STAR-CD CFD software, and is being used for the analysis of SOECs by ANL. The FY06 analysis performed by ANL and reported here covered the influence of electrochemical properties, SOEC component resistances and their contributing factors, SOEC size and inlet flow conditions, and SOEC flow configurations on the efficiency and expected durability of these systems. Some of the important findings from the ANL analysis are: (1) Increasing the inlet mass flux while going to larger cells can be a compromise to overcome increasing thermal and current density gradients while increasing the cell size. This approach could be beneficial for the economics of the SOECs; (2) The presence of excess hydrogen at the SOEC inlet to avoid Ni degradation can result in a sizeable decrease in the process efficiency; (3) A parallel-flow geometry for SOEC operation (if such a thing be achieved without sealing problems) yields smaller temperature gradients and current density gradients across the cell, which is favorable for the durability of the cells; (4) Contact resistances can significantly influence the total cell resistance and cell temperatures over a large range of operating potentials. Thus it is important to identify and avoid SOEC stack conditions leading to such high resistances due to poor contacts.

Yildiz, B.; Smith, J.; Sofu, T.; Nuclear Engineering Division

2008-06-25T23:59:59.000Z

468

Salmon Creek Project Draft Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

AUGUST 2004 AUGUST 2004 SALMON CREEK PROJECT Draft Environmental Impact Statement DOE/EIS-0346 Lead Agency U.S. Dept of Energy, Bonneville Power Administration Cooperating Agencies U.S. Dept of Interior, Bureau of Reclamation Confederated Tribes of the Colville Reservation Okanogan Irrigation District Salmon Creek Project Draft Environmental Impact Statement (DOE/EIS-0346) Responsible Agency: Bonneville Power Administration (BPA), U.S. Department of Energy (DOE) Cooperating Agencies: U.S. Department of Interior, Bureau of Reclamation, Confederated Tribes of the Colville Reservation, Okanogan Irrigation District. County and State Involved: Okanogan County, Washington Abstract: BPA proposes to fund activities that would restore sufficient water flows to Salmon Creek and

469

Numerical Simulation of Two-Phase Flow in Severely Damaged Core Geometries  

SciTech Connect (OSTI)

In the event of a severe accident in a nuclear reactor, the oxidation, dissolution and collapse of fuel rods is likely to change dramatically the geometry of the core. A large part of the core would be damaged and would look like porous medium made of randomly distributed pellet fragments, broken claddings and relocated melts. Such a complex medium must be cooled in order to stop the accident progression. IRSN investigates the effectiveness of the water re-flooding mechanism in cooling this medium where complex two-phase flows are likely to exist. A macroscopic model for the prediction of the cooling sequence was developed for the ICARE/CATHARE code (IRSN mechanistic code for severe accidents). It still needs to be improved and assessed. It appears that a better understanding of the flow at the pore scale is necessary. As a result, a direct numerical simulation (DNS) code was developed to investigate the local features of a two-phase flow in complex geometries. In this paper, the Cahn-Hilliard model is used to simulate flows of two immiscible fluids in geometries representing a damaged core. These geometries are synthesized from experimental tomography images (PHEBUS-FP project) in order to study the effects of each degradation feature, such as displacement and fragmentation of the fuel rods and claddings, on the two-phase flow. For example, the presence of fragmented fuel claddings is likely to enhance the trapping of the residual phase (either steam or water) within the medium which leads to less flow fluctuations in the other phase. Such features are clearly shown by DNS calculations. From a series of calculations where the geometry of the porous medium is changed, conclusions are drawn for the impact of rods damage level on the characteristics of two-phase flow in the core. (authors)

Meekunnasombat, Phongsan; Fichot, Florian [Institute of Radioprotection and Nuclear Safety - IRSN, BP 17 - 92262 Fontenay-aux-Roses Cedex 31, avenue de la Division Leclerc 92260 Fontenay-aux-Roses (France); Quintard, Michel [Institut de Mecanique des Fluides de Toulouse, 1 Allee du Professeur Camille Soula, 31400 Toulouse (France)

2006-07-01T23:59:59.000Z

470

Heat transfer in channel flow of a micropolar fluid  

Science Journals Connector (OSTI)

The study of heat transfer in channel flow has been done by previous authors for Newtonian and elastico-viscous fluids. It is the aim of the present ... the temperature profile for flow of a micropolar fluid in a...

Renuka Rajagopalan; K. S. Bhatnagar

1969-10-01T23:59:59.000Z