Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal...
heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on...
MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER
Lahey, Richard T.
MODERN DEVELOPMENTS IN MULTIPHASE FLOW & HEAT TRANSFER "ENGINEERING APPLICATIONS OF FRACTAL AND CHAOS THEORY" RICHARD T. LAHEY, JR. Center for Multiphase Research Rensselaer Polytechnic Institute Troy and multiphase flow & heat transfer will be stressed. This paper will begin by reviewing some important concepts
Heat Transfer Characteristics of a Generalized Divided Flow Heat Exchanger
Singh, K. P.
1979-01-01T23:59:59.000Z
The concept of a "Divided-flow" heat exchanger is generalized by locating the shell inlet (or outlet) nozzle off-center such that the two shell sub-streams are unequal and traverse unequal flow paths. The governing equations for heat transfer...
Hydrodynamics, heat transfer and flow boiling instabilities in microchannels
Barber, Jacqueline Claire
2010-01-01T23:59:59.000Z
Boiling in microchannels is a very efficient mode of heat transfer with high heat and mass transfer coefficients achieved. Less pumping power is required for two-phase flows than for single-phase liquid flows to achieve ...
DEVELOPING FLOW AND HEAT TRANSFER IN STRONGLY CURVED DUCTS OF RECTANGULAR CROSS-SECTION
Yee, G.
2010-01-01T23:59:59.000Z
DEVELOpiNG FLOW AND HEAT TRANSFER IN STRONGLY CURVED DUCTS9092 Developing Flow and Heat Transfer in Strongly CurvedForced Convection Heat Transfer in Curved Rectangular
Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel
Aussillous, Pascale
Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel July 2008 Keywords: Boiling Microchannels Visualisation Flow boiling instabilities Heat transfer a b intensification heat removal. Flow boiling heat transfer in microchannel geometry and the associated flow
Heat transfer and pressure drop in tape generated swirl flow
Lopina, Robert F.
1967-01-01T23:59:59.000Z
The heat transfer and pressure drop characteristics of water in tape generated swirl flow were investigated. The test sections were electrically heated small diameter nickel tubes with tight fitting full length Inconel ...
FLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS
Sen, Mihir
= heat, f = LO-mode, g = LO, h = LA-mode, i = negligible, j = remote heat sink 7/ 70 #12;Heat conductionFLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS Mihir Sen Department Â· Shallow water analogy Â· Vorticity dynamics Â· Linear stability analysis Â· Numerical simulations of heat
Numerical Study of Flow and Heat Transfer in Rotating Microchannels
Roy, Pratanu
2014-10-07T23:59:59.000Z
Investigation of fluid flow and heat transfer in rotating microchannels is important for centrifugal microfluidics, which has emerged as an advanced technique in biomedical applications and chemical separations. The centrifugal force...
16 Heat Transfer and Air Flow in a Domestic Refrigerator
Paris-Sud XI, Université de
445 16 Heat Transfer and Air Flow in a Domestic Refrigerator Onrawee Laguerre UMR Génie Industriel...............................................447 16.2.1 Studies in Domestic Refrigerators...................................................................................... 451 16.3 Cold Production System in Domestic Refrigerators
Heat transfer to impacting drops and post critical heat flux dispersed flow
Kendall, Gail E.
1978-01-01T23:59:59.000Z
Heat transfer to drops impacting on a hot surface is examined in context of dispersions of flowing, boiling fluids. The liquid contribution to heat transfer from a hot tube to a two-phase dispersion is formulated in terms ...
Enhanced two phase flow in heat transfer systems
Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D
2013-12-03T23:59:59.000Z
A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.
A visualization comparison of convective flow boiling heat transfer augmentation devices
Lundy, Brian Franklin
1998-01-01T23:59:59.000Z
The qualitative effects of inset-table heat transfer phics. augmentation devices on vertical in-tube convective flow boiling flow regimes, transition mechanisms, and heat transfer are presented in this study. Three twisted tapes with twist ratios...
FLIHY EXPERIMENTAL FACILITIES FOR STUDYING OPEN CHANNEL TURBULENT FLOWS AND HEAT TRANSFER
California at Los Angeles, University of
1 FLIHY EXPERIMENTAL FACILITIES FOR STUDYING OPEN CHANNEL TURBULENT FLOWS AND HEAT TRANSFER B was constructed at UCLA to study open channel turbulent flow and heat transfer of low-thermal and low supercritical flow regimes (Fr>1), in which the surface waves are amplified and heat transfer is enhanced due
Numeric Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based
Le Roy, Robert J.
Numeric Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based Continuous is dedicated to under- standing the fluid flow and heat transfer mechanisms occurring in continuous flow PCR are discussed in detail. The importance of each heat transfer mechanism for different situations is also
FliHy experimental facilities for studying open channel turbulent flows and heat transfer
Abdou, Mohamed
FliHy experimental facilities for studying open channel turbulent flows and heat transfer B. Freeze) facility was constructed at UCLA to study open channel turbulent flow and heat transfer of low supercritical flow regimes (Fr /1), in which the surface waves are amplified and heat transfer is enhanced due
Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with
Paris-Sud XI, Université de
Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial-Newtonian boundary layer flow and heat transfer over an exponentially stretch- ing sheet with partial slip boundary. The heat transfer analysis has been carried out for two heating processes, namely (i) with prescribed sur
Couette flow regimes with heat transfer in rarefied gas
Abramov, A. A., E-mail: alabr54@mail.ru; Butkovskii, A. V., E-mail: albutkov@mail.ru [Zhukovski Central Aerohydrodynamics Institute (Russian Federation)
2013-06-15T23:59:59.000Z
Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.
Flow Boiling Heat Transfer Coefficient In Minichannels Correlation and Trends Satish G. Kandlikar
Kandlikar, Satish
Flow Boiling Heat Transfer Coefficient In Minichannels Correlation and Trends Satish G. Kandlikar York 14623, USA The flow boiling heat transfer in small diameter passages is being applied in many boiling heat transfer coefficient with the correlations developed for conventional channels. It is found
Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law
Boyer, Edmond
Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law F transfer in a magnetic fluid flow under the action of an applied magnetic field. Instead of the usual heat-Cattaneo law, heat transfer, magnetic field, magnetization AMS subject classifications: 76N10, 35Q35. 1
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow
Boyer, Edmond
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S modeling of the turbulent flow in a rotor-stator cavity subjected to a superimposed throughflow with heat the dynamical effects from the heat transfer process. The fluid flow in an enclosed disk system with axial
FLOW AND HEAT TRANSFER IN MICROFLUIDIC DEVICES WITH APPLICATION TO OPTOTHERMAL
Bahrami, Majid
FLOW AND HEAT TRANSFER IN MICROFLUIDIC DEVICES WITH APPLICATION TO OPTOTHERMAL ANALYTE transfer in microfluidic devices with applica- tion to optothermal analyte preconcentration and manipula the local fluid temperature in microfluidics. Thermal characteristics of the heating system have been
Fluid flow and heat transfer modeling for castings
Domanus, H.M.; Liu, Y.Y.; Sha, W.T.
1986-01-01T23:59:59.000Z
Casting is fundamental to manufacturing of many types of equipment and products. Although casting is a very old technology that has been in existence for hundreds of years, it remains a highly empirical technology, and production of new castings requires an expensive and time-consuming trial-and-error approach. In recent years, mathematical modeling of casting has received increasing attention; however, a majority of the modeling work has been in the area of heat transfer and solidification. Very little work has been done in modeling fluid flow of the liquid melt. This paper presents a model of fluid flow coupled with heat transfer of a liquid melt for casting processes. The model to be described in this paper is an extension of the COMMIX code and is capable of handling castings with any shape, size, and material. A feature of this model is the ability to track the liquid/gas interface and liquid/solid interface. The flow of liquid melt through the sprue and runners and into the mold cavity is calculated as well as three-dimensional temperature and velocity distributions of the liquid melt throughout the casting process. 14 refs., 13 figs.
Kandlikar, Satish
. (2004) developed three- zone flow boiling heat transfer model to describe evaporation of elongated
Heat transfer in katabatic flow Measurements on the Morteratsch glacier, Switzerland
Graaf, Martin de
Heat transfer in katabatic flow Measurements on the Morteratsch glacier, Switzerland M. de Graaf #12;Heat transfer in katabatic flow Measurements on the Morteratsch glacier, Switzerland Martin de is used to calculate surface heat fluxes over glaciers. As determination of surface fluxes still
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow
Boyer, Edmond
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S in a rotor-stator cavity subjected to a superimposed throughflow with heat transfer. Nu- merical predictions field from the heat transfer process. The turbulent flux is approximated by a gradient hypothesis
Heat transfer and friction characteristics of air flow in microtubes Chien-Yuh Yang a,
Kandlikar, Satish
Heat transfer and friction characteristics of air flow in microtubes Chien-Yuh Yang a, , Chia September 2011 Keywords: Microtube Heat transfer Liquid Crystal Thermography a b s t r a c t Several researches dealing with the single-phase forced convection heat transfer inside microchannels have been
Thole, Karen A.
Elsevier Inc. All rights reserved. Keywords: Duct flow; Ribbed channels; LES 1. Introduction In an effortExperimental validation of large eddy simulations of flow and heat transfer in a stationary ribbed Abstract Accurate prediction of ribbed duct flow and heat transfer is of importance to the gas turbine
2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 Molecular dynamics methods in
Maruyama, Shigeo
2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 2.13.7 Molecular dynamics methods in microscale heat transfer Shigeo Maruyama A. Introduction In normal heat transfer and fluid flow calculations of molecules. This situation is approached in microscale heat transfer and fluid flow. Molecular level
Friction and Heat Transfer Characteristics of Silica and CNT Nanofluids in a Tube Flow
Kostic, Milivoje M.
Friction and Heat Transfer Characteristics of Silica and CNT Nanofluids in a Tube Flow MILIVOJE M of nanofluids in tube flow has been developed, instrumented and computerized. It has been calibrated using) nanofluids show peculiar results with substantial friction drag reduction and heat transfer enhancement
Lopez, Jose M; Avila, Marc
2015-01-01T23:59:59.000Z
The flow of fluid confined between a heated rotating cylinder and a cooled stationary cylinder is a canonical experiment for the study of heat transfer in engineering. The theoretical treatment of this system is greatly simplified if the cylinders are assumed to be of infinite length or periodic in the axial direction, in which cases heat transfer occurs only through conduction as in a solid. We here investigate numerically heat transfer and the onset of turbulence in such flows by using both periodic and no-slip boundary conditions in the axial direction. We obtain a simple linear criterion that determines whether the infinite-cylinder assumption can be employed. The curvature of the cylinders enters this linear relationship through the slope and additive constant. For a given length-to-gap aspect ratio there is a critical Rayleigh number beyond which the laminar flow in the finite system is convective and so the behaviour is entirely different from the periodic case. The criterion does not depend on the Pra...
Flow-Induced Deformation of a Flexible Thin Structure as Manifestation of Heat Transfer Enhancement
Soti, Atul Kumar; Sheridan, John
2015-01-01T23:59:59.000Z
Flow-induced deformation of thin structures coupled with convective heat transfer has potential applications in energy harvesting and is important for understanding functioning of several biological systems. We numerically demonstrate large-scale flow-induced deformation as an effective passive heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. In the present work, we validate convective heat transfer module of the in-house FSI solver against several benchmark examples of conduction and convective heat transfer including moving structure boundaries. The thermal augmentation is investigated as well as quantified for the flow-induced deformation of an elastic thin plate attached to lee side of a rigid cylinder in a heated channel laminar flow. We show that the wake vortices past the plate sweep higher sources of vorticity...
Experimental Study of Heat Transfer and Flow Characteristics for a New Type of Air Heater
Zheng, H.; Fan, X.; Li, A.
2006-01-01T23:59:59.000Z
. It is found that the integrated characteristics of heat transfer and flow friction increase with the hole's diameter at the same hole density (which is equal to the ratio of the hole's total area to the baffle's area), and the heat transfer rate increases...
Experimental Study of Heat Transfer and Flow Characteristics for a New Type of Air Heater
Zheng, H.; Fan, X.; Li, A.
2006-01-01T23:59:59.000Z
. It is found that the integrated characteristics of heat transfer and flow friction increase with the hole's diameter at the same hole density (which is equal to the ratio of the hole's total area to the baffle's area), and the heat transfer rate increases...
Heat transfer and pressure drop for air flow through enhanced passages
Obot, N.T.; Esen, E.B.
1992-06-01T23:59:59.000Z
An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.
Heat transfer and pressure drop for air flow through enhanced passages. Final report
Obot, N.T.; Esen, E.B.
1992-06-01T23:59:59.000Z
An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.
Numerical method for fluid flow and heat transfer in magnetohydrodynamic flow
Kim, C.N.; Abdou, M.A.
1989-03-01T23:59:59.000Z
A new numerical algorithm was developed to provide a fully detailed flow field in liquid metal MHD flow with a relatively large Hartmann number and interaction parameter. The algorithm includes the effects of advection and diffusion, and is capable of predicting momentum and heat transfer in MHD flows. Using this algorithm, an incompressible, viscous, three-dimensional MHD flow in a square duct is investigated at a low magnetic Reynolds number by means of the finite volume method. The velocity and temperature profiles are obtained in the developing region for constant wall temperature. The result shows that large velocities are obtained near the insulating walls parallel to the magnetic field. Also, near the perfectly conducting walls perpendicular to the field, a velocity profile like a Hartmann layer is obtained. In association with the velocity profiles, Nusselt number at the insulating walls (with side layer) is seen to be larger than that at the perfectly conducting walls (with Hartmann layer).
Achanta, Vamsee Satish
2004-09-30T23:59:59.000Z
In this work, we study the enhanced endwall heat transfer for flow past non conducting pin fin arrays. The aim is to resolve the controversy over the heat transfer that is taking place from the endwall and the pin ...
New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes
Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, 35, Beijing, 100190 (China); Wang, S. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, 35, Beijing, 100190 (China); University of Chinese Academy of Science, No. 19 YuQuan Road, Beijing, 100049 (China)
2014-01-29T23:59:59.000Z
Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction.
Boiling heat transfer in a vertical microchannel: Local estimation during flow boiling with a non the results of experimental and numerical studies concerning boiling heat transfer inside vertical in minichannels for several gravity levels (µg, 1g, 2g). To fully understand the high heat transfer potential
Dini, S.; Kmelius, D. [Western New England College, Springfield, MA (United States); Saniei, N. [Southern Illinois Univ., Edwardsville, IL (United States)
1995-09-01T23:59:59.000Z
Experiments have been performed to measure local heat transfer coefficients and pressure drop in a wavy channel for Reynolds numbers of 2,900 and 7,000. Additionally, the effect of flow disturbers mounted on the first two peaks on one surface was investigated. The transient method and liquid crystals were used for the local heat transfer measurements. Initial experimental results indicate that addition of ribs into the passage stimulates flow instabilities which enhance the heat transfer performance with moderate effect on pressure drop. Measurements were conducted on a 6 in x 3/8 in x 12 in wavy channel with a wave length of one inch. The highest local heat transfer was detected on the second, followed by the third and fourth peaks at Re = 7000; wheras for Re = 2900 the highest heat transfer was along the next peak detected immediately after the disturbers. The experimental results observed in this study suggest that ribbed passages would yield higher heat transfer with moderate change in pressure drop compared with non-ribbed channels.
DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2
Not Available
1992-06-01T23:59:59.000Z
The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.
DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 1
Not Available
1992-06-01T23:59:59.000Z
The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.
DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3
Not Available
1992-06-01T23:59:59.000Z
The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.
Winters, W.S.
1984-01-01T23:59:59.000Z
An overview of the computer code TOPAZ (Transient-One-Dimensional Pipe Flow Analyzer) is presented. TOPAZ models the flow of compressible and incompressible fluids through complex and arbitrary arrangements of pipes, valves, flow branches and vessels. Heat transfer to and from the fluid containment structures (i.e. vessel and pipe walls) can also be modeled. This document includes discussions of the fluid flow equations and containment heat conduction equations. The modeling philosophy, numerical integration technique, code architecture, and methods for generating the computational mesh are also discussed.
Camci, Cengiz
of an Axial Flow Turbine B. Gumusel 2 and C. Camci 1 Turbomachinery Aero-Heat Transfer Laboratory Department on the casing of an axial flow turbine. The goal is to develop an accurate steady-state heat transfer method for the comparison of various casing surface and tip designs used for turbine performance improvements. The free
Yu, W.; France, D. M.; Timofeeva, E. V.; Singh, D.; Routbort, J. L. (Energy Systems); ( NE)
2010-01-01T23:59:59.000Z
Heat transfer enhancement criteria for nanofluids over their base fluids are presented based on three separate considerations: Reynolds number, flow velocity, and pumping power. Analyses presented show that, among the three comparisons, the constant pumping power comparison is the most unambiguous; the constant flow velocity comparison can be quite reasonable under certain conditions but the constant Reynolds number comparison (the most commonly used in the engineering literature for nanofluids) distorts the physical situation, and therefore, should not be used
Ganapathy, V.
1982-01-01T23:59:59.000Z
Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)
Urban Sewage Delivery Heat Transfer System (2): Heat Transfer
Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.
2006-01-01T23:59:59.000Z
The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...
Urban Sewage Delivery Heat Transfer System (2): Heat Transfer
Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.
2006-01-01T23:59:59.000Z
The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...
Jia, S.; Chung, B.T.F. [Univ. of Akron, OH (United States). Dept. of Mechanical Engineering
1996-12-31T23:59:59.000Z
Based on a previously proposed non-linear turbulence model, a turbulent heat transfer model is formulated in the present study using the concept of Generalized Gradient Diffusion (GGD) hypothesis. Under this hypothesis, an anisotropic thermal diffusivity can be obtained through the proposed non-linear turbulent model which is applied to the turbulent flow and heat transfer in a sudden expansion pipe with a constant heat flux through the pipe wall. The numerical results are compared with the available experimental data for both turbulent and thermal quantities, with an emphasis on the non-linear heat transfer predictions. The improved results are obtained for the bulk temperature distribution showing that the present non-linear heat transfer model is capable of predicting the anisotropic turbulent heat transfer for the pipe expansion flow. Some limits of the proposed model are also identified and discussed.
Carlson, M. [Univ. of Wisconsin - Madison, 839 Engineering Research Building, 1500 Engineering Drive, Madison, WI 53706 (United States); Kruizenga, A. [Sandia National Laboratory (United States); Anderson, M.; Corradini, M. [Univ. of Wisconsin - Madison, 839 Engineering Research Building, 1500 Engineering Drive, Madison, WI 53706 (United States)
2012-07-01T23:59:59.000Z
Closed-loop Brayton cycles using supercritical carbon dioxide (SCO{sub 2}) show potential for use in high-temperature power generation applications including High Temperature Gas Reactors (HTGR) and Sodium-Cooled Fast Reactors (SFR). Compared to Rankine cycles SCO{sub 2} Brayton cycles offer similar or improved efficiency and the potential for decreased capital costs due to a reduction in equipment size and complexity. Compact printed-circuit heat exchangers (PCHE) are being considered as part of several SCO{sub 2} Brayton designs to further reduce equipment size with increased energy density. Several designs plan to use a gas cooler operating near the pseudo-critical point of carbon dioxide to benefit from large variations in thermophysical properties, but further work is needed to validate correlations for heat transfer and pressure-drop characteristics of SCO{sub 2} flows in candidate PCHE channel designs for a variety of operating conditions. This paper presents work on experimental measurements of the heat transfer and pressure drop behavior of miniature channels using carbon dioxide at supercritical pressure. Results from several plate geometries tested in horizontal cooling-mode flow are presented, including a straight semi-circular channel, zigzag channel with a bend angle of 80 degrees, and a channel with a staggered array of extruded airfoil pillars modeled after a NACA 0020 airfoil with an 8.1 mm chord length facing into the flow. Heat transfer coefficients and bulk temperatures are calculated from measured local wall temperatures and local heat fluxes. The experimental results are compared to several methods for estimating the friction factor and Nusselt number of cooling-mode flows at supercritical pressures in millimeter-scale channels. (authors)
Prakash, C.; Zerkle, R. [General Electric Co., Cincinnati, OH (United States)
1995-04-01T23:59:59.000Z
The present study deals with the numerical prediction of turbulent flow and heat transfer in a 2:1 aspect ratio rectangular duct with ribs don the two shorter sides. The ribs are of square cross section, staggered and aligned normal (90 deg) to the main flow direction. The ratio of rib height to duct hydraulic diameter equals 0.063, and the ratio of rib spacing to rib height equals 10. The duct may be stationary or rotating. The axis of rotation is normal to the axis of the duct and parallel to the ribbed walls (i.e., the ribbed walls form the leading and the trailing faces). The problem is three dimensional and fully elliptic; hence, for computational economy, the present analysis deals only with a periodically fully developed situation where the calculation domain is limited to the region between two adjacent ribs. Turbulence is modeled with the {kappa}-{epsilon} model in conjunction with wall functions. However, since the rib height is small, use of wall functions necessitates that the Reynolds number be kept high. (Attempts to use a two-layer model that permits integration to the wall did not yield satisfactory results and such modeling issues are discussed at length.) Computations are made here for Reynolds number in the range 30,000--100,000 and for Rotation number = 0 (stationary), 0.06, and 0.12. For the stationary case, the predicted heat transfer agrees well with the experimental correlations. Due to the Coriolis-induced secondary flow, rotation is found to enhance heat transfer from the trailing and the side walls, while decreasing heat transfer from the leading face. Relative to the corresponding stationary case, the effect of rotation is found to be less for a ribbed channel as compared to a smooth channel.
Simulation of FCC riser flow with multiphase heat transfer and cracking reactions.
Chang, S. L.; Zhou, C. Q.; Energy Systems
2003-08-01T23:59:59.000Z
A validated Computational Fluid Dynamics (CFD) code ICRKFLO was developed for simulations of three-dimensional three-phase reacting flows in Fluid Catalytic Cracking (FCC) riser reactors. It calculates the product yields based on local flow properties by solving the fundamental conservation principles of mass, momentum, and energy for the flow properties associated with the gas, liquid, and solid phases. Unique phenomenological models and numerical techniques were developed specifically for the FCC flow simulation. The models include a spray vaporization model, a particle-solid interaction model, and an interfacial heat transfer model. The numerical techniques include a time-integral approach to overcome numerical stiffness problems in chemical kinetics rate calculations and a hybrid hydrodynamic-kinetic treatment to facilitate detailed kinetics calculations of cracking reactions. ICRKFLO has been validated with extensive test data from two pilot and one commercial FCC units. It is proven to be useful for advanced development of FCC riser reactors.
Greendyke, Robert Brian
1988-01-01T23:59:59.000Z
A PARAMETRIC STUDY OF SHOCK JUMP CHEMISTRY, ELECTRON TEMPERATURE, AND RADIATIVE HEAT TRANSFER MODELS IN HYPERSONIC FLOWS A Thesis by ROBERT BRIAN GREENDYKE Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Aerospace Engineering A PARAMETRIC STUDY OF SHOCK JUMP CHEMISTRY, ELECTRON TEMPERATURE, AND RADIATIVE HEAT TRANSFER MODELS IN HYPERSONIC FLOWS A Thesis by ROBERT BRIAN...
Heat transfer and material flow during laser assisted multi-layer additive manufacturing
Manvatkar, V.; De, A.; DebRoy, T. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)
2014-09-28T23:59:59.000Z
A three-dimensional, transient, heat transfer, and fluid flow model is developed for the laser assisted multilayer additive manufacturing process with coaxially fed austenitic stainless steel powder. Heat transfer between the laser beam and the powder particles is considered both during their flight between the nozzle and the growth surface and after they deposit on the surface. The geometry of the build layer obtained from independent experiments is compared with that obtained from the model. The spatial variation of melt geometry, cooling rate, and peak temperatures is examined in various layers. The computed cooling rates and solidification parameters are used to estimate the cell spacings and hardness in various layers of the structure. Good agreement is achieved between the computed geometry, cell spacings, and hardness with the corresponding independent experimental results.
Achanta, Vamsee Satish
2004-09-30T23:59:59.000Z
of Technology, Madras, India Chair of Advisory Committee: Sai C. Lau In this work, we analyzed the enhanced heat transfer from the endwall for flow past pin fin arrays. The aim is to resolve the controversy over the heat transfer that is taking place from... AN EXPERIMENTAL STUDY OF ENDWALL HEAT TRANSFER ENHANCEMENT FOR FLOW PAST STAGGERED NON-CONDUCTING PIN FIN ARRAYS A Thesis by VAMSEE SATISH ACHANTA Submitted to the Office of Graduate Studies of Texas A&M University in partial...
The flow and heat transfer in a viscous fluid over an unsteady stretching surface
Ene, Remus-Daniel; Marinca, Bogdan
2015-01-01T23:59:59.000Z
In this paper we have studied the flow and heat transfer in a viscous fluid by a horizontal sheet. The stretching rate and temperature of the sheet vary with time. The governing equations for momentum and thermal energy are reduced to ordinary differential equations by means of similarity transformation. These equations are solved approximately by means of the Optimal Homotopy Asymptotic Method (OHAM) which provides us with a convenient way to control the convergence of approximation solutions and adjust convergence rigorous when necessary. Some examples are given and the results obtained reveal that the proposed method is effective and easy to use.
Greendyke, Robert Brian
1988-01-01T23:59:59.000Z
will examine the radiance model and various step models in order to determine their appropriateness to the flight regime of the AOTV. The final area to be investigated will be the effect of nonequilibrium corrections on the radiative heat transfer models... of T and e T will be valid as long as there is a reasonable amount vNs of nitrogen molecules in the flow. Radiative Heat Transfer Models For this study, four radiative heat transfer models were examined. One of these models is an optically thin radiance...
Marinca, Vasile
2015-01-01T23:59:59.000Z
In this paper, Optimal Homotopy Perturbation Method (OHPM) is employed to determine an analytic approximate solutions for nonlinear MHD Jeffery-Hamel flow and heat transfer problem. The Navier-Stokes equations, taking into account Maxwell's electromagnetism and heat transfer lead to two nonlinear ordinary differential equations. The obtained results by means of OHPM show a very good agreement in comparison with the numerical results and with Homotopy Perturbation Method (HPM).
Heat transfer characteristics of R410A-oil mixture flow boiling inside a 7 mm straight smooth tube
Hu, Haitao; Ding, Guoliang; Wei, Wenjian; Wang, Zhence [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Wang, Kaijian [Fujitsu General Institute of Air-Conditioning Technology Limited, Kawasaki 213-8502 (Japan)
2008-01-15T23:59:59.000Z
Two-phase flow patterns and heat transfer characteristics of R410A-oil mixture flow boiling inside a straight smooth tube with the outside diameter of 7.0 mm were investigated experimentally. The experimental conditions include the evaporation temperature of 5 C, the mass flux from 200 to 400 kg m{sup -2} s{sup -1}, the heat flux from 7.56 to 15.12 kW m{sup -2}, the inlet vapor quality from 0.2 to 0.7, nominal oil concentration from 0% to 5%. The test results show that the heat transfer coefficient of R410A-oil mixture increases with mass flux of refrigerant-oil mixture; the presence of oil enhances the heat transfer at the range of low and intermediate vapor qualities; there is a peak of local heat transfer coefficient at about 2-4% nominal oil concentration at higher vapor qualities, and the peak shifts to lower nominal oil concentration with the increasing of vapor qualities; higher nominal oil concentration gives more detrimental effect at high vapor qualities. The flow pattern map of R410A-oil mixture was developed based on refrigerant-oil mixture properties, and the observed flow patterns match well with the flow pattern map. New correlation to predict the local heat transfer of R410A-oil mixture flow boiling inside the straight smooth tube was developed based on flow patterns and local properties of refrigerant-oil mixture, and it agrees with 90% of the experiment data within the deviation of {+-}25%. (author)
MINET: transient analysis of fluid-flow and heat-transfer networks
Van Tuyle, G.J.; Guppy, J.G.; Nepsee, T.C.
1983-01-01T23:59:59.000Z
MINET, a computer code developed for the steady-state and transient analysis of fluid-flow and heat-transfer networks, is described. The code is based on a momentum integral network method, which offers significant computational advantages in the analysis of large systems, such as the balance of plant in a power-generating facility. An application is discussed in which MINET is coupled to the Super System Code (SSC), an advanced generic code for the transient analysis of loop- or pool-type LMFBR systems. In this application, the ability of the Clinch River Breeder Reactor Plant to operate in a natural circulation mode following an assumed loss of all electric power, was assessed. Results from the MINET portion of the calculations are compared against those generated independently by the Clinch River Project, using the DEMO code.
In, Wang-Kee; Chun, Tae-Hyun; Shin, Chang-Hwan; Oh, Dong-Seok [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-Gu, Daejeon, Korea 305-353 (Korea, Republic of)
2007-07-01T23:59:59.000Z
A computational fluid dynamics (CFD) analysis has been performed to investigate a flow-mixing and heat-transfer enhancement caused by a mixing-vane spacer in a LWR fuel assembly which is a rod bundle. This paper presents the CFD simulations of a flow mixing and heat transfer in a fully heated 5x5 array of a rod bundle with a split-vane and hybrid-vane spacer. The CFD prediction at a low Reynolds number of 42,000 showed a reasonably good agreement of the initial heat transfer enhancement with the measured one for a partially heated experiment using a similar spacer structure. The CFD simulation also predicted the decay rate of a normalized Nusselt number downstream of the split-vane spacer which agrees fairly well with those of the experiment and the correlation. The CFD calculations for the split vane and hybrid vane at the LWR operating conditions(Re = 500,000) predicted hot fuel spots in a streaky structure downstream of the spacer, which occurs due to the secondary flow occurring in an opposite direction near the fuel rod. However, the split-vane and hybrid-vane spacers are predicted to significantly enhance the overall heat transfer of a LWR nuclear fuel assembly. (authors)
HEAT TRANSFER IN STEADY-PERIODIC FLOWS OVER HEATED S. Yesilyurt, M. Ozcan, G. Goktug
Yanikoglu, Berrin
; these two eddies are the well-known Karman vortex streets and as Re increases further they are very much) and Laake and Eckelmann (1989); similarly a group of authors studied vortex formation in flow around
Lenert, Andrej
2012-01-01T23:59:59.000Z
The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...
Kandlikar, Satish
Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer
Urban Sewage Delivery Heat Transfer System (1): Flow Resistance and Energy Analysis
Zhang, C.; Wu, R.; Li, G.; Li, X.; Huang, L.; Sun, D.
2006-01-01T23:59:59.000Z
The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Given the schematic diagram of TDHT system, introducing the definition of equivalent fouling roughness height, and using the Niklaus...
New tube bundle heat transfer correlations and flow regime maps for a Once Through Steam Generator
Blanchat, Thomas Kevin
1988-01-01T23:59:59.000Z
completed which allow the user to input the pitch and tube o. d. for the system. Predicted RELAP5/MOD2 heat transfer coefficients from correlations have been reviewed for single phase liquid convection, subcooled, and saturated nu- cleate boiling... of the OTSG model to determine the "model efFects" prior to changing any thermal ? hydraulic correlations. These studies inves- tigated the effects of hydraulic diameter, tube bundle surface heat transfer area, snd inlet feedwater subcooling, in addition...
Aguilar, Guillermo
5th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xian, such as hemangiomas and port wine stain (PWS) birthmarks, are congenital and pro- gressive vascular malformations of the dermis. To remove them, laser energy is irradiated at appropriate wavelengths inducing permanent thermal
Study of Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid
Ravi, Gurunarayana
2010-01-14T23:59:59.000Z
with constant peripheral temperature and uniform axial and peripheral temperature, were considered in the case of circular tubes. An effective specific heat technique was used to model the phase change process assuming a hydrodynamically fully-developed flow...
Heat transfer and flow characteristics of cooling channels in turbine blades
Saxena, Amit
1988-01-01T23:59:59.000Z
/mass transfer distributions were determined for straight flow' through a pin fin channel (H/D = 1, S/D = X/D = 2. 5) and a flow through the pin fin channel with trailing edge flow ejection. The overall friction factor and local pressure drop results were... obtained for various configurations and lengths (L/d = 2 and 20) of the trailing edge ejection holes, From the pressure drop data, the radial mass flow rate and the mass flow rates through trailing edge ejection holes were calculated. The results show...
Analytical modeling for the heat transfer in sheared flows of nanofluids
Ferrari, Claudio; L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii; Boonkkamp, J H M ten Thije; Toschi, Federico
2012-01-01T23:59:59.000Z
We developed a model for the enhancement of the heat flux by spherical and elongated nano- particles in sheared laminar flows of nano-fluids. Besides the heat flux carried by the nanoparticles the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect, it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnet limit for the spherical nanoparticles. The road ahead which should lead towards robust predictive models of heat flux enhancement is discussed.
Analytical modeling for the heat transfer in sheared flows of nanofluids
Claudio Ferrari; Badr Kaoui; Victor S. L'vov; Itamar Procaccia; Oleksii Rudenko; J. H. M. ten Thije Boonkkamp; Federico Toschi
2012-04-12T23:59:59.000Z
We developed a model for the enhancement of the heat flux by spherical and elongated nano- particles in sheared laminar flows of nano-fluids. Besides the heat flux carried by the nanoparticles the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect, it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnet limit for the spherical nanoparticles. The road ahead which should lead towards robust predictive models of heat flux enhancement is discussed.
Numerical study of flow and heat transfer in 3D serpentine channels using colocated grids
Chintada, Sailesh Raju
1998-01-01T23:59:59.000Z
the walls is held constant at a value of 40. 0 W/ms. The specification of this value is arbitrary and it does not change the Nusselt number (Nu), though the temperature field is dependent on it. However, in case of PDF heat transfer, the solution...
Kasagi, Nobuhide
circulation is dominant at high PeT number. A heat transfer model is proposed to analyze and predict the heat
Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD
Karmare, S.V. [Department of Mechanical Engineering, Government College Engineering, Karad 415 124, Maharashtra (India); Shivaji University, Kolhapur, Maharashtra (India); Tikekar, A.N. [Department of Mechanical Engineering, Walchand College of Engineering, Sangli (India); Shivaji University, Kolhapur, Maharashtra (India)
2010-03-15T23:59:59.000Z
This paper presents the study of fluid flow and heat transfer in a solar air heater by using Computational Fluid Dynamics (CFD) which reduces time and cost. Lower side of collector plate is made rough with metal ribs of circular, square and triangular cross-section, having 60 inclinations to the air flow. The grit rib elements are fixed on the surface in staggered manner to form defined grid. The system and operating parameters studied are: e/D{sub h} = 0.044, p/e = 17.5 and l/s = 1.72, for the Reynolds number range 3600-17,000. To validate CFD results, experimental investigations were carried out in the laboratory. It is found that experimental and CFD analysis results give the good agreement. The optimization of rib geometry and its angle of attack is also done. The square cross-section ribs with 58 angle of attack give maximum heat transfer. The percentage enhancement in the heat transfer for square plate over smooth surface is 30%. (author)
Heat-transfer coefficients in agitated vessels. Latent heat models
Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States)] [Ashland Chemical Co., Columbus, OH (United States)
1996-03-01T23:59:59.000Z
Latent heat models were developed to calculate heat-transfer coefficients in agitated vessels for two cases: (1) heating with a condensable fluid flowing through coils and jackets; (2) vacuum reflux cooling with an overhead condenser. In either case the mathematical treatment, based on macroscopic balances, requires no iterative schemes. In addition to providing heat-transfer coefficients, the models predict flow rates of service fluid through the coils and jackets, estimate the percentage of heat transfer due to latent heat, and compute reflux rates.
On the role of the Knudsen number with respect to heat transfer in micro-scale flows
Baker, J.; Calvert, M.E.; Power, D.J.; Chen, E.T. [Univ. of Alabama, Birmingham, AL (United States). Dept. of Materials and Mechanical Engineering; Ramalingam, M.L. [Universal Energy Systems, Inc., Dayton, OH (United States); Lamp, T.R. [Wright Lab., Wright-Patterson AFB, OH (United States)
1996-12-31T23:59:59.000Z
Advances in microelectronics and in microelectromechanical systems have resulted in devices with characteristic lengths approaching that of the molecular mean free path of gases. In certain applications, it has been proposed that gaseous flows be used to cool such devices. Prior research has revealed a fundamental lack of knowledge regarding the behavior of such micro-flows. The primary dimensionless parameter associated with gaseous micro-scale transport is the Knudsen number. A critical examination of the effects of an increasing Knudsen number on heat and momentum transfer characteristics of gaseous micro-flows is presented. The importance of thermal radiation, accurate thermophysical property models, and the introduction of higher order constitutive relations, i.e., the Burnett relations, are also discussed in relation to micro-flows. Conclusions are drawn regarding the relative importance of each of the above topics.
Pardivala, Darayus Noshir
1991-01-01T23:59:59.000Z
ESTABLISHMENT OF A RESEARCH FACILITY FOR INVESTIGATING THE EFFECTS OF UNSTEADY INLET FLOW) PRESSURE GRADIENT AND CURVATURE ON BOUNDARY LAYER DEVELOPMENT) %'AKE DEVELOPMENT AND HEAT TRANSFER A Thesis by DARAYUS NOSHIR PARDIVALA Submitted... THE EFFECTS OF UNSTEADY INLET FLOW, PRESSURE GRADIENT AND CURVATURE ON BOUNDARY LAYER DEVELOPMENT, WAKE DEVELOPMENT AND HEAT TRANSFER A Thesis by DARAYUS NOSHIR PARDIVALA Approved as to style and content by: Taher Schobeiri (Chair of Committee) Gerald...
New tube bundle heat transfer correlations and flow regime maps for a Once Through Steam Generator
Blanchat, Thomas Kevin
1988-01-01T23:59:59.000Z
Support Group for their many helpful discussions and comments throughout this project. I would like to thank Mr. Richard Wagner at EGgrG, Idaho, for his patient explanations of the mechanics of the RELAP5/MOD2 code which enabled me to perform the code... completed which allow the user to input the pitch and tube o. d. for the system. Predicted RELAP5/MOD2 heat transfer coefficients from correlations have been reviewed for single phase liquid convection, subcooled, and saturated nu- cleate boiling...
Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)
Not Available
2010-08-01T23:59:59.000Z
Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.
MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK
Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson
2006-02-28T23:59:59.000Z
A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load.
Valenzuela, Javier (Hanover, NH)
2001-01-01T23:59:59.000Z
A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.
HEAT AND MOISTURE TRANSFER THROUGH CLOTHING
Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie
2009-01-01T23:59:59.000Z
R. C. Eberhart (ed), Heat transfer in medicine and biology.between convective heat transfer and mass transferConvective and radiative heat transfer coefficients for
Heat and moisture transfer through clothing
Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie
2009-01-01T23:59:59.000Z
R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forbetween convective heat transfer and mass transfer
of phase change material (PCM). This correlation was built for the simulation of heat storage units: Convective heat transfer coefficient, correlation, phase change material, heat storage system, transient is the use of phase change materials (PCM). The latent heat which is needed for the material melting
Heat transfer 1990. Proceedings of the ninth international heat transfer conference
Hetsroni, G.
1990-01-01T23:59:59.000Z
This book contains the proceedings of the Ninth International Heat Transfer Conference. Included in Volume 6 are the following chapters: Local void fraction measurements in finned tube bundles, Unsteady heat and mass transfer in low two-phase flows and The effect of physical properties on drop size in annular flow.
Finite element analysis of conjugate heat transfer in axisymmetric pipe flows
Fithen, Robert Miller
1987-01-01T23:59:59.000Z
with no axial fluid conduction, such as liquid water at a moderate to high Reynolds number. Detailed fluid ? solid interface heat flux, Nusselt number, wall, and bulk temperatures for each case are presented. The results indicate axial wall conduction is very... model for a circular tube Comparison for constant heat flux case Comparison for constant temperature case Heat flux for Pe=5, constant heat flux case Heat flux for Pe=50, constant heat flux case Heat flux for Pe=200, constant heat flux case Heat...
Huh, Michael
2010-01-16T23:59:59.000Z
on the first pass trailing surface of both aspect ratio channels. The leading surface in ribbed channels has shown a dramatic decrease in heat transfer with rotation in the first pass. Reductions in heat transfer by as much as 50% were observed. In the second...
Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)
2011-01-19T23:59:59.000Z
Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.
McHugh, P.R.; Ramshaw, J.D.
1991-11-01T23:59:59.000Z
MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.
Faculty Positions Heat Transfer and
Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences
New flow boiling heat transfer correlation for CFC-114 and C{sub 4}F{sub 10}
Szady, A.J. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.
1995-08-01T23:59:59.000Z
The flow boiling tests being conducted at Cudo Technologies, Ltd. in Lexington, Kentucky are a part of The GDP Coolant Replacement Project. The tests are to be done with two alternates, C{sub 4}F{sub 10} and C{sub 4}F{sub 8}, as well as CFC-114. So far, tests were conducted with CFC-114 and C{sub 4}F{sub 10}. The CFC-114 data by Cudo shows better heat transfer performance than that predicted by the codes used in the numerical model which were based on a superposition model. The data was applied to an asymptotic model developed by Steiner and Taborek. The new correlation developed seems to fit better with the Cudo data as well as the Paducah cell test data. The model will be further investigated when C{sub 4}F{sub 8} data is available.
CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER
Kandlikar, Satish
1 CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER for evaporation heat transfer coefficient of refrigerant R-134a flowing in a plate heat exchanger. Correlation schemes proposed by Yan and Lin (1999b) for modeling the heat transfer coefficient in both a single- phase
Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio.
Paris-Sud XI, Université de
Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio. M-la-Vall´ee cedex 2, France (Dated: October 23, 2008) Abstract Fully developed turbulent flow and heat transfer square (rms) of temperature fluctuations, turbulent heat fluxes, heat transfer, ...). To validate
Geb, David; Zhou, Feng; Catton, Ivan
2012-01-01T23:59:59.000Z
the Hydraulic Drag and Heat Transfer Coefficients in Porous5] Locke, G. L. , 1950, “Heat Transfer and Flow FrictionA. P. , 1993, “Heat Transfer and Hydraulic Resistance in
Finite element analysis of conjugate heat transfer in axisymmetric pipe flows
Fithen, Robert Miller
1987-01-01T23:59:59.000Z
Temperature Page 43 se NOMENCLATURE specific heat of fluid at constant pressure variational operator test function dimensionless pipe thickness (t/R) non ? dimensional axial coordinate surface traction matrix Ky M?. nr Pe Sue!i wall...
Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology
2009-01-01T23:59:59.000Z
A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In this ...
Nuclear reactor safety heat transfer
Jones, O.C.
1982-07-01T23:59:59.000Z
Reviewed is a book which has 5 parts: Overview, Fundamental Concepts, Design Basis Accident-Light Water Reactors (LWRs), Design Basis Accident-Liquid-Metal Fast Breeder Reactors (LMFBRs), and Special Topics. It combines a historical overview, textbook material, handbook information, and the editor's personal philosophy on safety of nuclear power plants. Topics include thermal-hydraulic considerations; transient response of LWRs and LMFBRs following initiating events; various accident scenarios; single- and two-phase flow; single- and two-phase heat transfer; nuclear systems safety modeling; startup and shutdown; transient response during normal and upset conditions; vapor explosions, natural convection cooling; blockages in LMFBR subassemblies; sodium boiling; and Three Mile Island.
Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff
2006-10-10T23:59:59.000Z
Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.
Review of fluid flow and convective heat transfer within rotating disk cavities
Boyer, Edmond
-00975626,version1-8Apr2014 Author manuscript, published in "International Journal of Thermal Sciences 67 based on and r. Rej Jet Reynolds number based on W and D. ReU Cross-flow Reynolds number Ro Rossby
Bonhoff, B.; Leusch, J.; Johnson, B.V.
1999-07-01T23:59:59.000Z
A numerical study was conducted to determine the effects of turning vanes on the flow characteristics, the pressure drop and the heat transfer distribution in the turn region of two-legged, coolant passages for application to cooling gas turbine blades. The channels consisted of two straight, square-sectioned legs connected by a 180-deg. turn, with an inner radius of 0.15 hydraulic diameters. The ribs were square-sectioned with a height of 0.1 D{sub h}, staggered between leading and trailing side and at an angle of 45-deg. to the flow. Three different configurations of the coolant channel were investigated: with smooth walls, with ribs on two walls and no vane and with ribs on two walls and a 180-deg guide vane in the turn. For all calculations, the Reynolds number at the inlet was Re{sub D} = 100,000, the fluid was water and buoyancy effects were neglected. The simulations were made for rotation numbers, Ro = 0.0 and 0.15. The flow and heat transfer simulations were made with the FLUENT structured code. Based on the results of several previous studies, the differential-Reynolds-Stress turbulence model with wall functions was used. The highest heat transfer in the turn was obtained for both the rotating and non-rotating cases with the ribbed channel without the guide vane. The pressure loss was also higher without the vane. Due to the staggering of the ribs, secondary flow and heat transfer in the turn was higher on the side of the channel where the last rib at the entrance reaches further into the turn. With increasing rotation number, the secondary flow and heat transfer increased on the leading side of the turn. For the configuration with a 180-deg. vane, the mass flux at the outer side of the vane increased with increasing rotation number.
Fullerton, Tracy
2012-02-14T23:59:59.000Z
characterized by cyclic variations of flow parameters such as stream-wise or cross-stream velocity. A computer code was developed to perform the numerical simulations. Spatial discretization was based upon a Control Volume Finite Element Method (CVFEM...
Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael
2012-01-30T23:59:59.000Z
The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850Ã?Â?Ã?Â?Ã?Â?Ã?Â?C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloysÃ?Â?Ã?Â¢Ã?Â?Ã?Â?Ã?Â?Ã?Â? weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in t
Cervantes, Joel
2002-01-01T23:59:59.000Z
) transfer on the channel wall by 4.7 to 6.3 times, and increased the pressure drop along the test channel by up to almost 490 times that for fully developed turbulent flow through a smooth channel at the same mass flow rates. The blockages with round holes...
Dt2boool2> Nora Heat Transfer Correlations
Dt2boool2> Nora Heat Transfer Correlations in Nuclear Reactor Safety Calculations VW ÉAiiattÉaii #12;fcflison cufiMiMltt lor yhdyiifci aomicantfgy RIS0-M-25O4 6«.*). HEAT TRANSFER of work 26 3. PRESENT KNOWLEDGE 27 3.1. General considerations 27 3.2. Heat transfer in different flow
Proceedings of NHTC'00: 34 th National Heat Transfer Conference
Kandlikar, Satish
Proceedings of NHTC'00: 34 th National Heat Transfer Conference Pittsburgh, Pennsylvania, August 20 ON SINGLE- AND TWO-PHASE HEAT TRANSFER CHARACTERISTICS IN A MICROCHANNEL Michael S June Graduate Student study investigates the heat transfer characteristics of single and two-phase flows in a 200 m wide
Tracer Testing for Estimating Heat Transfer Area in Fractured Reservoirs
Pruess, Karsten; van Heel, Ton; Shan, Chao
2004-01-01T23:59:59.000Z
Heat Flow in Fractured Reservoirs, SPE Advanced TechnologyTransfer Area in Fractured Reservoirs Karsten Pruess 1 , Tonbehavior arises in fractured reservoirs. As cold injected
Stone, Porter Walwyn
1960-01-01T23:59:59.000Z
concentrations of hydrogen sulfide, using water as a basis of comparison. For identical tube sizes and the same fluid velocity, both pure and dilute sulfur were found to have a film conductance ~- I less than ten percent that of water over most... the v x d curves for each concentration of diluent. Sulfur is diluted with H2S, added as persulfide Sulfur is diluted with H S, added as liquid 34 35 10. A Ratio of film conductance of pure sulfur to that of water versus temperature. The flow...
Sienicki, J.J.; Spencer, B.W.
1985-01-01T23:59:59.000Z
An analysis is presented of the crust stability and heat transfer behavior in the CSTI-1, CSTI-3, and CWTI-11 reactor material experiments in which a jet of molten oxide fuel at approx. 160/sup 0/K above its freezing temperature was impinged normally upon stainless steel plates initially at 300 and 385 K. The major issue is the existence of nonexistence of a stable solidified layer of fuel, or crust, interstitial to the flowing hot fuel and the steel substrate, tending to insulate the steel from the hot molten fuel. A computer model was developed to predict the heatup of thermocouples imbedded immediately beneath the surface of the plate for both of the cases in which a stable crust is assumed to be either present or absent during the impingement phase. Comparison of the model calculations with the measured thermocouple temperatures indicates that a protective crust was present over nearly all of the plate surface area throughout the impingement process precluding major melting of the plate steel. However, the experiments also show evidence for very localized and isolated steel melting as revealed by localized and isolated pitting of the steel surface and the response of thermocouples located within the pitted region.
Impingement cooling and heat transfer measurement using transient liquid crystal technique
Huang, Yizhe
1996-01-01T23:59:59.000Z
is used in this study to obtain the detailed heat transfer coefficient. Results show that a higher Reynolds number increases heat transfer over the entire impingement target surface. The flow exit orientation with crossflow affects the heat transfer...
Lee, K.H.; Lee, J.S.; Choi, M. [Seoul National Univ. (Korea, Republic of). Dept. of Mechanical Engineering
1996-02-09T23:59:59.000Z
In the outside vapor deposition (OVD) process, silica particles are deposited by thermophoretic force on the surface of a cylinder. This process is associated with complex physical phenomena such as heat transfer between a torch and a cylinder, chemical reaction for silica particle formation, and particle deposition. Since the OVD process is carried out in a very high temperature environment, radiative heat transfer should be taken into consideration. Here, the radiative-convective heat transfer around a circular cylinder in a cross flow of a radiating gas has been numerically analyzed using the finite volume radiation solution method in a nonorthogonal coordinate system. The cross-flow Reynolds number based on the cylinder diameter is 40, and the fluid Prandtl number is assumed to be 0.7. The radiative heat transfer coupled with convection is reasonably predicted by the finite volume radiation solution method. Distributions of the local Nusselt number are investigated according to the variation of radiation parameters such as conduction-to-radiation parameter, optical thickness, scattering albedo, and cylinder wall emissivity.
Bae, Yoon-Yeong; Kim, Hwan-Yeol [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea)
2009-01-15T23:59:59.000Z
The Super-Critical Water-Cooled Reactor (SCWR) has been chosen by the Generation IV International Forum as one of the candidates for the next generation nuclear reactors. Heat transfer to water from a fuel assembly may deteriorate at certain supercritical pressure flow conditions and its estimation at degraded conditions as well as in normal conditions is very important to the design of a safe and reliable reactor core. Extensive experiments on a heat transfer to a vertically upward flowing CO{sub 2} at a supercritical pressure in tubes and an annular channel have been performed. The geometries of the test sections include tubes of an internal diameter (ID) of 4.4 and 9.0 mm and an annular channel (8 x 10 mm). The heat transfer coefficient (HTC) and Nusselt numbers were derived from the inner wall temperature converted by using the outer wall temperature measured by adhesive K-type thermocouples and a direct (tube) or indirect (annular channel) electric heating power. From the test results, a correlation, which covers both a deteriorated and a normal heat transfer regime, was developed. The developed correlation takes different forms in each interval divided by the value of parameter Bu. The parameter Bu (referred to as Bu hereafter), a function of the Grashof number, the Reynolds number and the Prandtl number, was introduced since it is known to be a controlling factor for the occurrence of a heat transfer deterioration due to a buoyancy effect. The developed correlation predicted the HTCs for water and HCFC-22 fairly well. (author)
Cooling Flows or Heating Flows?
James Binney
2003-10-08T23:59:59.000Z
It is now clear that AGN heat cooling flows, largely by driving winds. The winds may contain a relativistic component that generates powerful synchrotron radiation, but it is not clear that all winds do so. The spatial and temporal stability of the AGN/cooling flow interaction are discussed. Collimation of the winds probably provides spatial stability. Temporal stability may be possible only for black holes with masses above a critical value. Both the failure of cooling flows to have adiabatic cores and the existence of X-ray cavities confirm the importance of collimated outflows. I quantify the scale of the convective flow that the AGN Hydra would need to drive if it balanced radiative inward flow by outward flow parallel to the jets. At least in Virgo any such flow must be confined to r<~20 kpc. Hydrodynamical simulations suggest that AGN outbursts cannot last longer than ~25 Myr. Data for four clusters with well studied X-ray cavities suggests that heating associated with cavity formation approximately balances radiative cooling. The role of cosmic infall and the mechanism of filament formation are briefly touched on.
Thole, Karen A.
1 Abstract Turbine vanes experience high convective surface heat transfer as a consequence region of the passage reacts as it passes between two adjacent turbine vanes. In this study, a scaled-up turbine vane geometry was used in a low-speed wind tunnel simulation. The test section included a cen
Virginia Tech
Spring 2014 Heat Transfer - 2 A thin electronic chip is in the shape of a square wafer, b = 1 cm surface of the chip with a heat transfer coefficient of h = 100 W/m2 -K. Assume the chip has a uniform per side with a mass of m = 0.3 grams and specific heat of C = 103 J/kg-K. The chip is mounted
Heat Transfer Study of Polymer Solutions with Different Rigidities
Huang, Yao
2014-05-08T23:59:59.000Z
The heat transfer behaviors of non-Newtonian fluids under laminar flow conditions in circular tubes are presented in this study. The constant wall heat flux is considered as a boundary condition for dilute polymer solutions with different polymer...
Measurement and analysis of gas turbine blade endwall heat transfer
Lee, Joon Ho
2001-01-01T23:59:59.000Z
the aerodynamic flow and external heat transfer distribution around the airfoils and end-wall surfaces. A stationary 5 vane linear cascade is designed and developed to investigate gas turbine blade endwall heat transfer and flow. The test cascade is instrumented...
Convective heat transfer in rotating, circular channels
Hogan, Brenna Elizabeth
2012-01-01T23:59:59.000Z
Nusselt number values for flow in a rotating reference frame are obtained through computational fluid dynamic (CFD) analysis for Rossby numbers Ro ~1-4 and Reynolds numbers Re ~1,000-2,000. The heat-transfer model is first ...
Westerberg, K.W. [Aspen Technology, Inc., Cambridge, MA (United States); McClelland, M.A. [Lawrence Livermore National Lab., CA (United States); Finlayson, B.A. [Univ. of Washington, Seattle, WA (United States)
1994-11-01T23:59:59.000Z
A numerical analysis is made of the liquid flow and energy transport in a system to vaporize metals. The energy from an electron beam heats metal confined in a water-cooled crucible. Metal vaporizes from a hot pool of circulating liquid which is surrounded by a shell of its own solid. Flow in the pool is strongly driven by temperature-induced buoyancy and capillary forces and is located in the transition region between laminar and turbulent flow. At high vaporization rates, the thrust of the departing vapor forms a trench at the beam impact site. A modified finite element method is used to calculate the flow and temperature fields coupled with the interface locations. The mesh is structured with spines that stretch and pivot as the interfaces move. The discretized equations are arranged in an {open_quotes}arrow{close_quotes} matrix and solved using the Newton-Raphson method. The electron-beam power and width are varied for cases involving the high-rate vaporization of aluminum. Attention is focused on the interaction of vaporization, liquid flow, and heat transport in the trench area.
Takase, Kazuyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)
1997-05-01T23:59:59.000Z
Thermal-hydraulic characteristics in a spacer-ribbed annular fuel channel for high-temperature gas-cooled reactors were analyzed numerically by three-dimensional computations under a fully developed turbulent flow. The two-equation {kappa}-{epsilon} turbulence model was applied in the present turbulent analysis, and the turbulence model constants for eddy viscosity and the turbulent Prandtl number were improved from the previous standard values to increase the accuracy of numerical simulations. Consequently, heat transfer coefficients and friction factors in the spacer-ribbed fuel channel were predicted with sufficient accuracy in the range of Reynolds number >3,000. It was clarified quantitatively that the main mechanism for heat transfer augmentation in the spacer-ribbed fuel channel was a combined effect of the turbulence promoter effect by the spacer rib and the velocity acceleration effect by a reduction in the channel cross section.
Impingement cooling and heat transfer measurement using transient liquid crystal technique
Huang, Yizhe
1996-01-01T23:59:59.000Z
A heat transfer study on jet impingement cooling is presented. The study focuses on the effect of impingement jet flow rate, jet angle, and flow exit direction on various target surface heat transfer distributions. A two-channel test section...
Study on the heat transfer of heat exchangers for the Stirling Engine
Kanzaka, M. (Nagasaki Research and Development Center (JP)); Iwabuchi, M. (Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd. (JP))
1991-01-01T23:59:59.000Z
This paper reports that heat-transfer characteristics in heated tubes under periodically reversing flow conditions have been investigated experimentally using a test apparatus that simulates the heat exchangers for the actual Sterling engine. It was shown that the heat-transfer characteristics under these conditions were greatly affected by the piston phase-angle difference that generates the reversing flow of the working gas, and this phenomenon was proper to the heat transfer under the periodically reversing flow and was different from conventional heat transfer in steady flow. The experimental correlation considering the influence of the piston phase-angle difference for the heat-transfer coefficient has been induced by the use of the working gas velocity evaluated from the Schmidt cycle model which is one of the ideal Sterling cycles.
Dunn, J.C.; Hardee, H.C.; Striker, R.P.
1984-01-09T23:59:59.000Z
A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.
Enhanced heat transfer using nanofluids
Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)
2001-01-01T23:59:59.000Z
This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.
Nanoscale heat transfer - from computation to experiment
Luo, Tengfei
2013-04-09T23:59:59.000Z
Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in
HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN
Chan, T.
2010-01-01T23:59:59.000Z
Session on Heat Transfer in Nuclear Waste Disposal, C'.heat transfer processes associated with underground nuclear wasteheat transfer and related processes in an un derground environment similar to that expected in a mined nuclear waste
Heat Transfer in Complex Fluids
Mehrdad Massoudi
2012-01-01T23:59:59.000Z
Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra
Nottrott, A.; Onomura, S.; Inagaki, A.; Kanda, M.; Kleissl, J.
2011-01-01T23:59:59.000Z
Vortex structure and heat transfer in turbulent flow over asurface, Proc. 5 th Int. Heat Transfer Conf. 3 (1974) 129-a vertical plate, J. Heat Transfer 109(1) [13] K. Patel,
Lefevre, M. R.
1984-01-01T23:59:59.000Z
crossflow and counterflow plume. 3) COMBINATION OF HET AND DRY TOWERS When there is not enough water available to provide the makeup for a conventional wet cooling tower, the only solution is to use "DRY" cooling to dissipate part of the heat load. a... 11. The water is cooled first in the DRY section because DRY cooling is much more expensive than WET cooling and this arrangement leads to the smallest DRY tower. It must also be kept in mind that the DRY tower has a physical cooling limit equal...
ECI International Conference on Boiling Heat Transfer Florianpolis-SC-Brazil, 3-7 May 2009
Yanikoglu, Berrin
. Recently the study of heat transfer in micro pin fin heat sinks has been extended to flow boiling by Koar and Peles (2006c), who studied boiling heat transfer in a hydrofoil-based micro pin fin heat sinkECI International Conference on Boiling Heat Transfer Florianópolis-SC-Brazil, 3-7 May 2009
Virginia Tech
Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df the fuel rod, and the volumetric generation rate is known to vary sinusoidally with distance along the rod to exist between the surface of the rod and the water. Axial conduction can be neglected in rod and fluid
Kihm, IconKenneth David
Journal of Heat Transfer1999 JHT Heat Transfer Gallery S. M. You Department of Mechanical 8 Transfer Visualization Committee organized two photo gallery sessions in 1998. The International Heat Transfer Photo Gallery was held at the l la' International Heat Transfer Conference (IHTC) in Kyongju
Heat Transfer Engineering, 29(9):793804, 2008 Copyright C Taylor and Francis Group, LLC
Ghajar, Afshin J.
for Laminar and Turbulent Flow Convection Heat Transfer in a Horizontal Tube Using Artificial Neural Network. INTRODUCTION Heat transfer inside horizontal tubes in the laminar, transi- tional, and turbulent flow regimes was used to develop empirical correlations for laminar and turbulent heat transfer in a horizontal tube
Heat Transfer Engineering, 28(6):525540, 2007 Copyright C Taylor and Francis Group, LLC
Ghajar, Afshin J.
Heat Transfer Engineering, 28(6):525540, 2007 Copyright C Taylor and Francis Group, LLC ISSN: 0145-7632 print / 1521-0537 online DOI: 10.1080/01457630701193906 Heat Transfer Measurements, Flow Pattern Maps, Stillwater, Oklahoma, USA Local heat transfer coefficients and flow parameters were measured for air
Heat Transfer and Cooling Techniques at Low Temperature
Baudouy, B
2014-01-01T23:59:59.000Z
The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.
Heat Transfer Calculations for a Fixed CST Bed Column
Lee, S.Y.
2001-03-28T23:59:59.000Z
In support of the crystalline silicotitanate (CST) ion exchange project of High-Level Waste (HLW) Process Engineering, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the CST column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. The modeling and calculations were performed using a computational heat transfer approach.
Lin, Y.T.; Choi, M.; Greif, R. (Univ. of California, Berkeley (USA))
1991-05-01T23:59:59.000Z
A study has been made of the heat transfer, flow, and particle deposition relative to the modified chemical vapor deposition (MCVD) process. The effects of variable properties, buoyancy, and tube rotation have been included in the study. The resulting three-dimensional temperature and velocity fields have been obtained for a range of conditions. The effects of buoyancy result in asymmetric temperature and axial velocity profiles with respect to the tube axis. Variable properties cause significant variations in the axial velocity along the tube and in the secondary flow in the region near the torch. Particle trajectories are shown to be strongly dependent on the tube rotation and are helices for large rotational speeds. The component of secondary flow in the radial direction is compared to the thermophoretic velocity, which is the primary cause of particle deposition in the MCVD process. Over the central portion of the tube the radial component of the secondary flow is most important in determining the motion of the particles.
Castro Gouveia, M. de; Reis Parise, J.A. dos; Nieckele, A.O. (Pontificia Univ. Catolica, Rio de Janeiro (Brazil))
1992-05-01T23:59:59.000Z
A numerical simulation of the scavenging process in a two-stroke flat-piston model engine has been developed. Air enters the cylinder circumferentially, inducting a three-dimensional turbulent swirling flow. The problem was modeled as a steady-state axisymmetric flow through a cylinder with uniform wall temperature. The steady-state regime was simulated by assuming the piston head fixed at the bottom dead center. The calculation was performed employing the {kappa}-{epsilon} model of turbulence. A comparison of the results obtained for the flow field with available experimental data showed very good agreement, and a comparison with an available numerical solution revealed superior results. The effects of the Reynolds number, inlet port angles, and engine geometry on the flow and in-cylinder heat transfer characteristics were investigated. The Nusselt number substantially increases with larger Reynolds numbers and a smaller bore-to-stroke ratio. It is shown that the positioning of the exhaust value(s) is the main parameter to control the scavenging process.
AN EXPERIMENTAL INVESTIGATION OF THE HEAT TRANSFER FROM A BUOYANT GAS PLUME TO A
Winfree, Erik
Temperature E. Heat Transfer Model 1. Determining the Ceiling Heat Transfer 2. Ceiling Heat Transfer
Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass
Kitamura, Rei; Pilon, Laurent
2009-01-01T23:59:59.000Z
Kaviany and B.P. Singh, “Radiative heat transfer in porousmedia”, Advances in Heat Transfer, vol. 23, no. 23, pp. 133–Thermal radiation heat transfer, Hemisphere Publishing Co. ,
Heat transfer via dropwise condensation on hydrophobic microstructured surfaces
Ruleman, Karlen E. (Karlen Elizabeth)
2009-01-01T23:59:59.000Z
Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were compared. Heat transfer ...
Heat transfer through a water spray curtain under the effect of a strong radiative source
Paris-Sud XI, Université de
Heat transfer through a water spray curtain under the effect of a strong radiative source P. Boulet - mail Pascal.Boulet@lemta.uhp-nancy.fr Keywords : heat transfer, radiative transfer, vaporization, convection, water spray Abstract Heat transfer inside a participating medium, made of droplets flowing in gas
Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies
Camci, Cengiz
AU TH O R PR O O F Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies in Rotating Research Facilities CENGIZ CAMCI Turbomachinery Aero-Heat Transfer Laboratory, Department The present paper deals with the experimental aero-heat transfer studies performed in rotating turbine
Acoustically Enhanced Boiling Heat Transfer
Z. W. Douglas; M. K. Smith; A. Glezer
2008-01-07T23:59:59.000Z
An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P
2013-12-10T23:59:59.000Z
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P. (San Ramon, CA)
2012-07-24T23:59:59.000Z
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat-Traced Fluid Transfer Lines
Schilling, R. E.
1984-01-01T23:59:59.000Z
HEAT-TRACED FLUID TRANSFER LINES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio This paper discusses basic considerations in designing a heat tracing system using either steam or electrical tracing. Four basic reasons to heat...
5. Heat transfer Ron Zevenhoven
Zevenhoven, Ron
) Heat conductance as Gheat =1/Rheat = Q/T (unit: W/K or W/°C) For a plane material with thickness L (m) and conductivity (W/mK): Gheat = ·A/L Rheat = L/(·A) . . . Åbo Akademi University | Thermal and Flow Engineering rate Q through a cross-sectional area A (m2). If is a constant: with thermal conductivity , unit: W
Kihm, IconKenneth David
transfer density. CONSTRUCTAL DESIGN: THE GENERATION OF MULTI-SCALE HEAT AND FLUID FLOW STRUCTURES-scale structures in natural convection with the objective of maximizing the heat transfer density, or the heat transfer rate per unit of volume§ . The flow volume is filled with vertical equidistant heated blades
Oh, Sung Hyuk
2009-05-15T23:59:59.000Z
Experiments and numerical predictions were conducted to study heat (mass) transfer characteristics in a two-pass trapezoidal channel simulating the cooling passage of a gas turbine blade. Three different rib configurations were tested for the air...
McMath, John Grady
1991-01-01T23:59:59.000Z
numbers or thicker plates produced larger zones of recirculation. An increase in plate thickness caused a, significant increase in pressure drop without an appreciable increase in heat transfer Pang et al. (1990) used a, rrays of plates which were...
Heat transfer model of above and underground insulated piping systems
Kwon, K.C.
1998-07-01T23:59:59.000Z
A simplified heat transfer model of above and underground insulated piping systems was developed to perform iterative calculations for fluid temperatures along the entire pipe length. It is applicable to gas, liquid, fluid flow with no phase change. Spreadsheet computer programs of the model have been developed and used extensively to perform the above calculations for thermal resistance, heat loss and core fluid temperature.
"Developing novel heat transfer diagnostics for nanosystems."
Acton, Scott
become an increasingly popular technology for waste heat recovery in the last few years. The efficiency"Developing novel heat transfer diagnostics for nanosystems." Patrick Hopkins Assistant Professor Young Investigator Award for heat transfer across solid/fluid interfaces · 2013 AFOSR Young Investigator
O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert
2002-08-01T23:59:59.000Z
A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.
Analysis of heat transfer in unlooped and looped pulsating
Zhang, Yuwen
, Tubing Abstract An advanced heat transfer model for both unlooped and looped Pulsating Heat Pipes (PHPs
Development of Micro/Nano-Scale Sensors for Investigation of Heat Transfer in Multi-Phase Flows
Jeon, Sae Il
2012-10-19T23:59:59.000Z
boiling experiments were conducted for three different substrates. Flow boiling experiments on bare silicon wafer surface were treated as the control experiment, and the results were compared with that of CNT (Carbon Nano-Tube) coated silicon wafer...
Heat Transfer Measurements for a Horizontal Micro-Tube Using Liquid Crystal Thermography
Ghajar, Afshin J.
62 TC02-007 Heat Transfer Measurements for a Horizontal Micro-Tube Using Liquid Crystal thermography (LCT) method was developed for surface temperature measurements on a horizontal 2000m macro-tube and 1000m micro-tube. In the single-phase heat transfer experiments, the fully-developed flow heat transfer
Int. Symp. on Heat Transfer in Gas Turbine Systems 9 14 August, 2009, Antalya, Turkey
Camci, Cengiz
for turbine aero heat transfer work performed under rotational conditions. A flow coefficient and a loading candidates to generate very realistic gas turbine heat transfer data, the initial investment made generate an accurately measurable amount of heat transfer from the gas side to turbine blades in a linear
SINGLE-PHASE LIQUID HEAT TRANSFER IN PLAIN AND ENHANCED MICROCHANNELS Mark E. Steinke
Kandlikar, Satish
SINGLE-PHASE LIQUID HEAT TRANSFER IN PLAIN AND ENHANCED MICROCHANNELS Mark E. Steinke Systems upon the understanding of the fundamental heat transfer processes that occur in these systems. There have been great advancements in our understanding of the heat transfer and fluid flow mechanisms
Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure
Guo, Zhixiong "James"
Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure Keywords: Supercritical pressure Aviation kerosene Convective heat transfer Numerical study a b s t r a c convective in kerosene pipe flow is complicated. Here the convective heat transfer characteristics of China
Enhanced heat transfer for thermionic power modules
Johnson, D.C.
1981-07-01T23:59:59.000Z
The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.
Ameri, A.A.; Bunker, R.S.
2000-04-01T23:59:59.000Z
A combined experimental and computational study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first-stage blade tip surface for a geometry typical of large power generation turbines (> 100 MW). This paper is concerned with the numerical prediction of the tip surface heat transfer. Good comparison with the experimental measured distribution was achieved through accurate modeling of the most important features of the blade passage and heating arrangement as well as the details of experimental rig likely to affect the tip heat transfer. A sharp edge and a radiused edge tip was considered. The results using the radiused edge tip agreed better with the experimental data. This improved agreement was attributed to the absence of edge separation on the tip of the radiused edge blade.
Natural convection heat transfer from two horizontal cylinders
Reymond, Olivier; Murray, Darina B. [Department of Mechanical and Manufacturing Engineering, Trinity College Dublin (Ireland); O'Donovan, Tadhg S. [School of Engineering and Physical Sciences, Heriot-Watt University, Nasmyth Building, Edinburgh EH14 4AS (United Kingdom)
2008-09-15T23:59:59.000Z
Natural convection heat transfer from a single horizontal cylinder and a pair of vertically aligned horizontal cylinders is investigated. Surface heat transfer distributions around the circumference of the cylinders are presented for Rayleigh numbers of 2 x 10{sup 6}, 4 x 10{sup 6} and 6 x 10{sup 6} and a range of cylinder spacings of 1.5, 2 and 3 diameters. With a cylinder pairing the lower cylinder is unaffected by the presence of the second cylinder; the same is true of the upper cylinder if the lower one is not heated. However, when both cylinders are heated it has been found that a plume rising from the heated lower cylinder interacts with the upper cylinder and significantly affects the surface heat transfer distribution. Spectral analysis of surface heat transfer signals has established the influence of the plume oscillations on the heat transfer. Thus, when the plume from the lower cylinder oscillates out of phase with the flow around the upper cylinder it increases the mixing and results in enhanced heat transfer. (author)
Heat Transfer Fluids Containing Nanoparticles | Argonne National...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Containing Nanoparticles Technology available for licensing: A stable, nonreactive nanofluid that exhibits enhanced heat transfer properties with only a minimal increase in...
Pontaza, Juan Pablo
2013-02-22T23:59:59.000Z
-Stokes equations and the energy equation in conjunction with a two-layer K-Epsilon isotropic eddy viscosity model and a near-wall Reynolds-Stress closure model. The fundamental cases of fully developed turbulent pipe flow and an axisymmetric jet impinging on a...
Chu, Hung-Chieh 1979-
2012-11-16T23:59:59.000Z
four-pass channel with two different inlet settings. The main flowing channel was rectangular channel (AR=2:1) with hydraulic diameter (Dh ) equals to 2/3 inch (16.9 mm). The first and fourth channel were set as different aspect ratio (AR=2:1; AR=1...
Kihm, IconKenneth David
-pass square channel with a smooth wall and a 90° rib-roughened wall. Detailed averaged velocity distributions enhancements for both smooth and ribbed wall two-pass square channels. The rib-induced flow turbulence distribution in two-pass square channels with smooth and 90° ribbed walls. Han and Zhang [3] studied the effect
Fusion Engineering and Design 81 (2006) 549553 Numerical analysis of MHD flow and heat transfer in a
Abdou, Mohamed
2006-01-01T23:59:59.000Z
. Zinkle, M. Youssef, Assessment of liquid breeder first wall and blanket options for the DEMO design, in channels. tural material. Helium cools the fist wall and blanket structure, and the self-cooled breeder, Pb in a poloidal channel of the DCLL blanket with a SiCf/SiC flow channel insert S. Smolentseva,, M. Abdoua, N
Bahrami, Majid
the properties of porous media e.g. permeability. This can be achieved by using Darcy's equation which assumes is empirical, convenient, and widely accepted. However, Darcy's equation holds when flow is in creeping regime [4]. To use Darcy's equation we need to know the permeability of the medium beforehand. Permeability
Radiative heat transfer in porous uranium dioxide
Hayes, S.L. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States)
1992-12-01T23:59:59.000Z
Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.
Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...
Cervantes, Joel
2002-01-01T23:59:59.000Z
. . . n1 DEDICATION. ACKNOWLEGDEMENTS . . . V1 TABLE OF CONTENTS . vn LIST OF FIGURES. NOMENCLATURE . . INTRODUCTION. LITERATURE SURVEY. EXPERIMENTAL APPARATUS . Xt EXPERIMENTAL PROCEDURE DATA REDUCTION. PRESENTATION & DISCUSSION OF RESULTS..., kg/(m s) Nun~ local Nusselt number //u pa average Nusselt number Nus reference Nusselt number for fully developed turbulent flow in smooth channel POIIII Pv, w atmospheric pressure, N/m 2 vapor pressure on naphthalene surface, N/m 2 P...
Boyer, Edmond
Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated has been developed based on periodic excitation by Joule effect and infrared thermography measurement. It has been applied to measure heat transfer coefficients of water flowing in a round tube
Heat transfer near spacer grids in rod bundles
Yoder, G.L.
1985-01-01T23:59:59.000Z
Heat transfer data from several sources have been assembled which show the effect of spacer grids on local heat transfer within a rod bundle. Both single phase (air and steam) data and two phase (steam/water) data show heat transfer augmentation in the grid region. Heat transfer improvement immediately beyond the grid ranges from a few percent to over fifty percent in these experiments, depending on flow conditions. The data are examined using several nondimensional parameters which relate the above effects to known quantities. The relative effect of the grid on local heat transfer is altered by both the Reynolds number and blockage ratio. Twenty to thirty hydraulic diameters are required before the local effect of the grid dissipates. Locally, both the single phase and two phase data show the same trends. Comparison of the single and two phase data also shown some differences. Some film boiling data indicate that an altered heat transfer regime may exist near the grid. High rod heat transfer coefficients at the grid locations indicate either a rewet of the rods or at least a change from film boiling to transition boiling near the spacer. The comparison also indicates that the film boiling data is affected on a global as well as local basis. This is due to the effect of the grid on the liquid distribution.
Development of a Heat Transfer Model for the Integrated Facade Heating
Gong, X.; Archer, D. H.; Claridge, D. E.
2007-01-01T23:59:59.000Z
the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...
Development of a Heat Transfer Model for the Integrated Facade Heating
Gong, X.; Archer, D. H.; Claridge, D. E.
2007-01-01T23:59:59.000Z
the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...
Roll Wave Effects on Annular Condensing Heat Transfer in Horizontal PCCS Condenser Tube
Masaya Kondo; Hideo Nakamura; Yoshinari Anoda [Japan Atomic Energy Research Institute, Tokai-mura 319-1195 (Japan); Sadanori Saishu; Hiroyuki Obata; Rumi Shimada [Japan Atomic Power Company (Japan); Shinichi Kawamura [Tokyo Electric Power Company, Incorporated, 1-3, Uchisaiwai-cho 1-chome, Chiyoda-ku, Tokyo, 1008560 (Japan)
2002-07-01T23:59:59.000Z
A horizontal in-tube condensation heat exchanger is under investigation to be used for a passive containment cooling system (PCCS) of a next generation-type BWR. The flow conditions in the horizontal condenser tube were observed both visually and by local void fraction fluctuation. The observed flow regimes at a rated condition were annular flow at the tube inlet, and turned gradually into wavy flow and smooth stratified flow along the length of the tube. It was found further that frequency of the roll waves that appear on the liquid film in the annular flow is closely related to the measured local condensation heat transfer coefficient. Based on the flow observation, the roll wave frequency and measured condensation heat transfer coefficient, a model is proposed which predicts the condensation heat transfer coefficient particularly for annular flows around the tube inlet region. The proposed heat transfer model predicts well the influences of pressure, local gas-phase velocity and film thickness. (authors)
Radiative heat transfer between dielectric bodies
Svend-Age Biehs
2011-03-16T23:59:59.000Z
The recent development of a scanning thermal microscope (SThM) has led to measurements of radiative heat transfer between a heated sensor and a cooled sample down to the nanometer range. This allows for comparision of the known theoretical description of radiative heat transfer, which is based on fluctuating electrodynamics, with experiment. The theory itself is a macroscopic theory, which can be expected to break down at distances much smaller than 10-8m. Against this background it seems to be reasonable to revisit the known macroscopic theory of fluctuating electrodynamics and of radiative heat transfer.
"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"
Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann
2008-06-12T23:59:59.000Z
ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers
Heat and mass transfer considerations in advanced heat pump systems
Panchal, C.B.; Bell, K.J.
1992-08-01T23:59:59.000Z
Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.
Heat and mass transfer considerations in advanced heat pump systems
Panchal, C.B.; Bell, K.J.
1992-01-01T23:59:59.000Z
Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.
Heat-transfer coefficients in agitated vessels. Sensible heat models
Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States). Research and Development Dept.
1995-12-01T23:59:59.000Z
Transient models for sensible heat were developed to assess the thermal performance of agitated vessels with coils and jackets. Performance is quantified with the computation of heat-transfer coefficients by introducing vessel heating and cooling data into model equations. Of the two model categories studied, differential and macroscopic, the latter is preferred due to mathematical simplicity and lower sensitivity to experimental data variability.
Heat Transfer Derivation of differential equations for heat transfer conduction
Veress, Alexander
) or kW *h or Btu. U is the change in stored energy, in units of kW *h (kWh) or Btu. qx is the heat conducted (heat flux) into the control volume at surface edge x, in units of kW/m2 or Btu/(h-ft2). qx volume is positive), in kW/m3 or Btu/(h-ft3) (a heat sink, heat drawn out of the volume, is negative
Dynamics of heat transfer between nano systems
Svend-Age Biehs; Girish S. Agarwal
2012-10-18T23:59:59.000Z
We develop a dynamical theory of heat transfer between two nano systems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localized plasmons in the nanoparticles. We study the dynamics towards the steady state and establish connection with the standard theory of heat transfer in steady state. For strongly coupled nano particles we predict Rabi oscillations in the mean occupation number of surface plasmons in each nano particle.
Heat transfer pathways in underfloor air distribution (UFAD) systems
Bauman, F.; Jin, H.; Webster, T.
2006-01-01T23:59:59.000Z
is little radiative heat transfer and little impact on thereturn air extrac- tion and heat transfer to the plenum. ItUFAD is often used and heat transfer out of the room through
Kandlikar, Satish
refrigerant channels with large aspect ratio were brazed in small cross-ribbed sections to provide a better transfer, especially in parallel multi-channel configuration. The pressure drop oscillations often with some results obtained by the author for water evaporating in 1-mm hydraulic diameter multi-channel
HEAT TRANSFER DURING THE SHOCK-INDUCED IGNITION OF AN EXPOLSIVE GAS
Heperkan, H.
2013-01-01T23:59:59.000Z
Proceedings of the 1963 Heat Transfer and Fluid Mechanicsto the Journal of Heat Transfer HEAT TRANSFER DURING THETechniques for Heat Transfer and Force Measurements in a
Accepted Manuscript A wall heat transfer correlation for the baffled-rotary kilns with secondary air
Boyer, Edmond
Accepted Manuscript A wall heat transfer correlation for the baffled-rotary kilns with secondary Date: 22 January 2014 Please cite this article as: L.G. Lauredan, H. Florian, D. Jean, A wall heat;1 A wall heat transfer correlation for the baffled- rotary kilns with secondary air flow and recycled
About convective heat transfer in geothermal systems
Pashkevich, R.I. [Kamchatsky Complex Department of NIPIgeotherm Institute, Petropavlovsk-Kamchatsky (Russian Federation)
1996-12-31T23:59:59.000Z
The interphase fluid-rock heat exchange in convective beat transfer in geothermal systems is investigated Nonlinear model of interphase heat exchange is suggested. Calculation for one dimension case and comparison with known Anzelius-Schumann solution is presented Generalized type block heat transfer model is formulated. The model is adequate for case of geothermal systems and reservoir when a rock block size is comparable with filtration path length. Criterion equations for nonstationary coefficients of interphase heat exchange we presented these equations were obtained in laboratory experiments with diorites.
Modelling Heat Transfer of Carbon Nanotubes
Yang, Xin-She
2010-01-01T23:59:59.000Z
Modelling heat transfer of carbon nanotubes is important for the thermal management of nanotube-based composites and nanoelectronic device. By using a finite element method for three-dimensional anisotropic heat transfer, we have simulated the heat conduction and temperature variations of a single nanotube, a nanotube array and a part of nanotube-based composite surface with heat generation. The thermal conductivity used is obtained from the upscaled value from the molecular simulations or experiments. Simulations show that nanotube arrays have unique cooling characteristics due to its anisotropic thermal conductivity.
van der Poel, Erwin P; Verzicco, Roberto; Lohse, Detlef
2015-01-01T23:59:59.000Z
The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-B\\'enard convection. Combinations of no-slip, stress-free and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between $10^8$ and $10^{11}$ the heat transport is lower for $\\Gamma = 0.33$ than for $\\Gamma = 1$ in case of no-slip sidewalls. This is surprisingly opposite for stress-free sidewalls, where the heat transport increases for lower aspect-ratio. In wider cells the aspect-ratio dependence is observed to disappear for $\\text{Ra} \\ge 10^{10}$. Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and horizontal zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall s...
Analysis of Heat Transfer in Metal Hydride Based Hydrogen Separation
Fleming, W.H. Jr.
1999-10-20T23:59:59.000Z
This thesis presents a transient heat transfer analysis to model the heat transfer in the Pd/k packed column, and the impact of adding metallic foam.
Yutaka Abe; Yujiro Kawamoto [University of Tsukuba, Tsukuba, Ibaraki (Japan); Chikako Iwaki [Toshiba Corporation (Japan); Tadashi Narabayashi [Hokkaido University, Kita-ku, Sapporo (Japan); Michitsugu Mori; Shuichi Ohmori [Tokyo Electric Power Company (Japan)
2006-07-01T23:59:59.000Z
Next-generation nuclear reactor systems have been under development aiming at simplified system and improvement of safety and credibility. One of the innovative technologies is the supersonic steam injector, which has been investigated as one of the most important component of the next-generation nuclear reactor. The steam injector has functions of a passive pump without large motor or turbo-machinery and a high efficiency heat exchanger. The performances of the supersonic steam injector as a pump and a heat exchanger are dependent on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. In previous studies of the steam injector, there are studies about the operating characteristics of steam injector and about the direct contact condensation between static water pool and steam in atmosphere. However, there is a little study about the turbulent heat transfer and flow behavior under the great shear stress. In order to examine the heat transfer and flow behavior in supersonic steam injector, it is necessary to measure the spatial temperature distribution and velocity in detail. The present study, visible transparent supersonic steam injector is used to obtain the axial pressure distributions in the supersonic steam injector, as well as high speed visual observation of water jet and steam interface. The experiments are conducted with and without non-condensable gas. The experimental results of the interfacial flow behavior between steam and water jet are obtained. It is experimentally clarified that an entrainment exists on the water jet surface. It is also clarified that discharge pressure is depended on the steam supply pressure, the inlet water flow rate, the throat diameter and non-condensable flow rate. Finally a heat flux is estimated about 19 MW/m{sup 2} without non-condensable gas condition in steam. (authors)
ME 339 Heat Transfer ABET EC2000 syllabus
Ben-Yakar, Adela
ME 339 Heat Transfer Page 1 ABET EC2000 syllabus ME 339 Heat Transfer Spring 2010 Required convection; radiation; introduction to phase change heat transfer and to heat exchangers. Prerequisite(s): ME, Fundamentals of Heat and Mass Transfer, 6th ed., Wiley Other Required Material: NA Course Objectives
Rényi entropy flows from quantum heat engines
Mohammad H. Ansari; Yuli V. Nazarov
2015-03-20T23:59:59.000Z
We evaluate Renyi entropy flows from generic quantum heat engines (QHE) to a weakly-coupled probe environment kept in thermal equilibrium. We show that the flows are determined not only by heat flow but also by a quantum coherent flow that can be separately measured in experiment apart from the heat flow measurement. The same pertains to Shanon entropy flow. This appeals for a revision of the concept of entropy flows in quantum nonequlibrium thermodynamics.
Heat transfer enhancement in a channel with porous baffles
Ko, Kang-Hoon
2005-02-17T23:59:59.000Z
with staggered positioned porous baffles. A numerical procedure was implemented, in conjunction with a commercially available Navier-Stokes solver, to model the turbulent flow in porous media. The Brinkman-Forchheimer-Extended Darcy model was used for modeling... fluid flow through the porous baffles. Conventional, one- equation, and two-equation models were used for heat transfer modeling. The accuracy and characteristics of each model were investigated and discussed. The results were compared...
Clean Boiler Waterside Heat Transfer Surfaces
Not Available
2006-01-01T23:59:59.000Z
This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.
Nanoparticle enhanced ionic liquid heat transfer fluids
Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.
2014-08-12T23:59:59.000Z
A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.
Bunker, R.S.; Bailey, J.C.; Ameri, A.A.
2000-04-01T23:59:59.000Z
A combined experimental and computational study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first-stage blade tip surface for a geometry typical of large power generation turbines (> 100 MW). This paper is concerned with the design and execution of the experimental portion of the study, which represents the first reported investigation to obtain nearly full surface information on heat transfer coefficients within an environment that develops an appropriate pressure distribution about an airfoil blade tip and shroud model. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high-pressure turbine blade with inlet Mach number of 0.30, exit Mach number of 0.75, pressure ratio of 1.45, exit Reynolds number based on axial chord of 2.57 x 10{sup 6}, and total turning of about 110 degrees. A hue detection based liquid crystal method is used to obtain the detailed heat transfer coefficient distribution on the blade tip surface for flat, smooth tip surfaces with both sharp and rounded edges. The cascade inlet turbulence intensity level took on values of either 5 or 9%. The cascade also models the casing recess in the shroud surface ahead of the blade. Experimental results are shown for the pressure distribution measurements on the airfoil near the tip gap, on the blade tip surface, and on the opposite shroud surface. Tip surface heat transfer coefficient distributions are shown for sharp edge and rounded edge tip geometries at each of the inlet turbulence intensity levels.
Examination of Liquid Fluoride Salt Heat Transfer
Yoder Jr, Graydon L [ORNL] [ORNL
2014-01-01T23:59:59.000Z
The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.
Effect of turbulent heat transfer on continuous ingot solidification
Shyy, W.; Chen, M.H. (Univ. of Florida, Gainesville, FL (United States). Dept. of Aerospace Engineering); Pang, Y.; Wei, D.Y. (GE Aircraft Engines, Engineering Materials Technology Labs., Lynn, MA (United States)); Hunter, G.B. (GE Aircraft Engines, Engineering Materials Technology Labs., Cincinnati, OH (United States))
1993-01-01T23:59:59.000Z
For many continuous ingot casting processes, turbulent heat transfer in the molten pool plays a critical role which, along with buoyancy and surface tension, is responsible for the quality of the end products. Based on a modified low Reynolds number K-[epsilon] two-equation closure, accounting for the phase change and mushy zone formation, the effect of turbulent heat transfer on the solidification characteristics during titanium alloy ingot casting in an electron beam melting process is investigated. The overall heat transfer rate is enhanced by turbulent transport via two sources, one through the correlated velocity and temperature fluctuations present for both single- and multi-phase flows, and the other through the correlated velocity and release of latent heat fluctuations which are unique to the flows with phase change. The roles played by both mechanisms are identified and assessed. The present turbulence model predicts that although the mushy zone defined by the mean temperature field is generally of substantial thickness as a result of the convection effect, the actual instantaneous zone thickness varies substantially due to turbulence effect. This finding is in contrast to the traditionally held viewpoint, based on the conduction analysis, of a generally thin mushy zone. The impact of turbulent heat transfer on local dendrite formation and remelting is illustrated and the issues involved in model development highlighted.
MHD Effects on Heat Transfer in a Molten Salt Blanket
Smolentsev, Sergey; Miraghaie, Reza; Abdou, Mohamed [University of California (United States)
2005-04-15T23:59:59.000Z
Heat transfer in closed channel flows of molten salts (MS)s, such as FLiBe or FLiNaBe, has been considered under specific reactor conditions. MHD effects have been accessed for two blanket concepts: self-cooled MS blanket, and dual-coolant MS blanket. The effect of heat transfer degradation due to turbulence reduction by a magnetic field in the First Wall channels of the self-cooled blanket was analyzed with the K-{epsilon} model of turbulence. In the dual-coolant blanket, the MS flow is laminar. A 2-D MHD code was used to calculate the laminar velocity profile first. Then, the temperature field was calculated using a 3-D temperature code. Reasonable interface temperatures below the material limit of 550 deg. C, and low heat escape from the breeder zone have been demonstrated. Model limitations and the ways of their improvement are also discussed.
Heat and mass transfer analysis of a desiccant dehumidifier matrix
Pesaran, A.A.
1986-07-01T23:59:59.000Z
This report documents the SERI Single-Blow Test Facility's design, fabrication, and testing for characterizing desiccant dehumidifiers for solar cooling applications. The first test article, a silica-gel parallel-plate dehumidifier with highly uniform passages, was designed and fabricated. Transient heat and mass transfer data and pressure drop data across the dehumidifier were obtained. Available heat and mass transfer models were extended to the parallel-place geometry, and the experimental data were compared with model predictions. Pressure drop measurements were also compared with model predictions of the fully developed laminar flow theory. The comparisons between the lumped-capacitance model and the experimental data were satisfactory. The pressure drop data compared satisfactorily with the theory (within 15%). A solid-side resistance model that is more detailed and does not assume symmetrical diffusion in particles was recommended for performance. This study has increased our understanding of the heat and mass transfer in silica gel parallel-plate dehumidifiers.
Heat transfer in gas tungsten arc welding
Smartt, H.B.; Stewart, J.A.; Einerson, C.J.
1986-05-01T23:59:59.000Z
The heat transferred from an electrode negative, argon gas tungsten arc to an anode has been measured for a wide range of conditions suitable for mechanized welding applications. The results are given as (1) the arc efficiency; and (2) the anode heat and current input distribution functional shapes and radii for various anode materials and groove shapes over a wide range of current and voltage, using different electrode geometries, as well as both He and Ar-He shielding gases. The nominal arc is Gaussian with a diameter of about 4 mm and a heat transfer efficiency to the anode of about 75%. Variations from these values are discussed in terms of current knowledge of the electrical and thermal energy transport mechanisms. A new method of measuring the heat transferred from the arc to the anode, using a boiling liquid nitrogen calorimeter, has been developed which gives rapid, accurate values.
James E. O'Brien; Piyush Sabharwall; SuJong Yoon
2001-09-01T23:59:59.000Z
A new high-temperature multi-fluid, multi-loop test facility for advanced nuclear applications is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Molten salts have been identified as excellent candidate heat transport fluids for primary or secondary coolant loops, supporting advanced high temperature and small modular reactors (SMRs). Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed. A preliminary design configuration will be presented, with the required characteristics of the various components. The loop will utilize advanced high-temperature compact printed-circuit heat exchangers (PCHEs) operating at prototypic intermediate heat exchanger (IHX) conditions. The initial configuration will include a high-temperature (750°C), high-pressure (7 MPa) helium loop thermally integrated with a molten fluoride salt (KF-ZrF4) flow loop operating at low pressure (0.2 MPa) at a temperature of ~450°C. Experiment design challenges include identification of suitable materials and components that will withstand the required loop operating conditions. Corrosion and high temperature creep behavior are major considerations. The facility will include a thermal energy storage capability designed to support scaled process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will also provide important data for code ve
Coupled Reactor Kinetics and Heat Transfer Model for Heat Pipe Cooled Reactors
WRIGHT,STEVEN A.; HOUTS,MICHAEL
2000-11-22T23:59:59.000Z
Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). The paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities.
Proceedings of HT2009 2009 ASME Summer Heat Transfer Conference
Guo, Zhixiong "James"
-dependent radiation and conduction bio-heat transfer model. Ultrashort pulsed radiation transport in the cylindrical a combined transient heat transfer and Pennes bio-heat transfer model is developed to simulate the heat transfer models; and concluded that the Pennes model is still the most practical for fast prediction
Indirect Heat Transfer Technology For Waste Heat Recovery Can Save You Money
Beyrau, J. A.; Bogel, N. G.; Seifert, W. F.; Wuelpern, L. E.
1984-01-01T23:59:59.000Z
constraints of an existing installation makes the conventional flue gas to air energy recovery technology impractical to employ. A successful alternative is the transfer of waste heat to an intermediate heat transfer fluid (i.e., DOWTHERM Heat Transfer Fluid...
Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference
Kandlikar, Satish
. The water flow rate, heater surface temperature and the speed of rotation are controlled to provide a stable surface and water, °C t time elapsed after the initial contact of water with the heater surface of Technology Rochester, NY 14623 ABSTRACT iwT , Water temperature at the inlet to the transient conduction
Geothermal Heat Flow and Existing Geothermal Plants | Department...
Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...
Yoder, G. L.; Morris, D. G.; Mullins, C. B.; Ott, L. J.; Reed, D. A.
1982-03-01T23:59:59.000Z
Assessment of six film boiling correlations and one single-phase vapor correlation has been made using data from 22 steady state upflow rod bundle tests (series 3.07.9). Bundle fluid conditions were calculated using energy and mass conservation considerations. Results of the steady state film boiling tests support the conclusions reached in the analysis of prior transient tests 3.03.6AR, 3.06.6B, and 3.08.6C. Comparisons between experimentally determined and correlation-predicted heat transfer coefficients, are presented.
Ammerman, C.N.; You, S.M.; Hong, Y.S. [Univ. of Texas, Arlington, TX (United States). Dept. of Mechanical and Aerospace Engineering
1995-12-31T23:59:59.000Z
A recently developed photographic method is used to quantify vapor volumetric flow rate above a boiling wire. The volumetric flow rate is combined with additional analyses to determine the overall contributions to the total heat flux from four nucleate boiling heat transfer mechanisms (latent heat, natural convection, Marangoni flow, and micro-convection). This technique is used to quantify the boiling heat transfer mechanisms versus heat flux for a 510-{micro}m wire immersed in saturated water and in water with a small amount of liquid soap added. These data are compared with similar data taken for a 75-{micro}m wire boiling in saturated FC-72. For all cases, latent heat is the dominant heat transfer mechanism in the fully developed nucleate boiling regime. In addition, the latent heat component is significantly increased by the addition of small amounts of soap (surfactant).
Numerical methods in heat transfer
Emery, A.F.; Douglass, R.W.
1988-01-01T23:59:59.000Z
This book contains nine papers. Some of the titles are: Numerical calculation of bubble growth in nucleate boiling from inception through departure; An evaluation of a translator for finite element data to resistor/capacitor data for the heat diffusion; Thermophoretic deposition due to jet impingement on an inclined plane; and A three-dimensional boundary-fitted coordinate system.
Shape factors in conductive heat transfer
Faulkner, Richard Campbell
1954-01-01T23:59:59.000Z
flow bg gonduotion 'between flat parallel plates with insulated edges and a uniform oxoes-seotional area for heat flow. )see Pig. IX) Kx. steady state, -- 0 Shen ? X :, . x a eg Sub st ' tut ills boundary cordi'tionel el (0) e e@ to + ((t...
Radiative Heat Transfer between Neighboring Particles
Alejandro Manjavacas; F. Javier Garcia de Abajo
2012-01-26T23:59:59.000Z
The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.
Virginia Tech
Heat Transfer - 1 You are given the following information for a fluid with thermal conductivity the flow is laminar near the wall. a) (30 points) Determine the corresponding heat transfer coefficient the heat transfer coefficient as a function of x. c) (25 points) Determine the average heat transfer
Chandrasekar, M.; Suresh, S. [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015 (India); Chandra Bose, A. [Nanomaterials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli 620015 (India)
2010-02-15T23:59:59.000Z
In this paper, fully developed laminar flow convective heat transfer and friction factor characteristics of Al{sub 2}O{sub 3}/water nanofluid flowing through a uniformly heated horizontal tube with and without wire coil inserts is presented. For this purpose, Al{sub 2}O{sub 3} nanoparticles of 43 nm size were synthesized, characterized and dispersed in distilled water to form stable suspension containing 0.1% volume concentration of nanoparticles. The Nusselt number in the fully developed region were measured and found to increase by 12.24% at Re = 2275 for plain tube with nanofluid compared to distilled water. Two wire coil inserts made of stainless steel with pitch ratios 2 and 3 were used which increased the Nusselt numbers by 15.91% and 21.53% respectively at Re = 2275 with nanofluid compared to distilled water. The better heat transfer performance of nanofluid with wire coil insert is attributed to the effects of dispersion or back-mixing which flattens the temperature distribution and make the temperature gradient between the fluid and wall steeper. The measured pressure loss with the use of nanofluids is almost equal to that of the distilled water. The empirical correlations developed for Nusselt number and friction factor in terms of Reynolds/Peclet number, pitch ratio and volume concentration fits with the experimental data within {+-}15%. (author)
Hamiltonian Thermostats Fail to Promote Heat Flow
Wm. G. Hoover; Carol G. Hoover
2013-07-16T23:59:59.000Z
Hamiltonian mechanics can be used to constrain temperature simultaneously with energy. We illustrate the interesting situations that develop when two different temperatures are imposed within a composite Hamiltonian system. The model systems we treat are "phi-4" chains, with quartic tethers and quadratic nearest-neighbor Hooke's-law interactions. This model is known to satisfy Fourier's law. Our prototypical problem sandwiches a Newtonian subsystem between hot and cold Hamiltonian reservoir regions. We have characterized four different Hamiltonian reservoir types. There is no tendency for any of these two-temperature Hamiltonian simulations to transfer heat from the hot to the cold degrees of freedom. Evidently steady heat flow simulations require energy sources and sinks, and are therefore incompatible with Hamiltonian mechanics.
Proceedings of HT2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference
Ghajar, Afshin J.
to a more complicated data set, forced and mixed convection developing laminar flow in a horizontal tube LAMINAR HEAT TRANSFER IN A HORIZONTAL TUBE USING ARTIFICIAL NEURAL NETWORK L. M. Tam (1) Department variables on our forced convective turbulent heat transfer data in a horizontal tube (Ghajar and Tam, 1994
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 19, No. 1, JanuaryMarch 2005
Al-Qahtani, Mohammad
developed turbulent nonrotating tube flow Dh, D = hydraulic diameter, m h = heat transfer coefficient, W/m2 Program, Department of Civil Engineer- ing. Senior Member AIAA. Professor, Turbine Heat Transfer thermal efficiency, gas-turbine stages are being de- signed to operate at increasingly high inlet
Abdou, Mohamed
MHD EFFECTS ON HEAT TRANSFER IN A MOLTEN SALT BLANKET Sergey Smolentsev, Reza Miraghaie, Mohamed-mail (Sergey Smolentsev): Sergey@fusion.ucla.edu Heat transfer in closed channel flows of molten salts (MS), a number of blanket design options with molten salt (FLiBe or FLiNaBe) as the tritium breeder/coolant have
Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads
Li, Nanxi 1986-
2012-12-05T23:59:59.000Z
cooling loads, it may lead to the laminar flow of the chilled water in the cooling coils. The main objective of this thesis is to explain the heat transfer performance of the cooling coils under low cooling loads. The water side and air side heat transfer...
Enhanced boiling heat transfer in horizontal test bundles
Trewin, R.R.; Jensen, M.K.; Bergles, A.E.
1994-08-01T23:59:59.000Z
Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.
Combined heat and mass transfer device for improving separation process
Tran, Thanh Nhon (Flossmoor, IL)
1999-01-01T23:59:59.000Z
A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.
Combined heat and mass transfer device for improving separation process
Tran, T.N.
1999-08-24T23:59:59.000Z
A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.
Cooperative heat transfer and ground coupled storage system
Metz, Philip D. (Rocky Point, NY)
1982-01-01T23:59:59.000Z
A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.
Investigation of flow maldistribution in a concentric-tube, counterflow, laminar heat exchanger
Ratts, E.B. [Univ. of Michigan, Dearborn, MI (United States). Dept. of Mechanical Engineering
1998-07-01T23:59:59.000Z
An analysis is made to quantify the effect of flow maldistribution on the performance of a laminar, counterflow, high-effectiveness heat exchanger. An investigation of the ability of thermally connected fins in one passage (screen mesh) to correct the uneven heat transfer distribution from the maldistributed mass flow in the other passage is made. A heat transfer model is developed for both passages. A parametric study presents the effect of adding thermal paths to correct the uneven heat transfer. A redefined fin efficiency is proposed to incorporate the fins` ability to correct uneven heat transfer. Data are compared to the model.
1 Copyright 2012 by ASME Proceedings of the ASME 2012 Summer Heat Transfer Conference
Ghajar, Afshin J.
Transfer in a Horizontal Internally Micro-Fin Tube with Three Different Inlet Configurations Hou Kuan Tam regions. INTRODUCTION Single-phase liquid flow in internally enhanced tubes is becoming more important. Basically, such kind of tube is widely used in high flow rate applications because the heat transfer
Self supporting heat transfer element
Story, Grosvenor Cook (Livermore, CA); Baldonado, Ray Orico (Livermore, CA)
2002-01-01T23:59:59.000Z
The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.
Zhao, Tianshou
dioxide in heated horizontal and vertical miniature tubes are reported in this paper. Stainless steel horizontal and upward flow was enhanced. The experimental results further indicate that in all the flow transfer to supercritical carbon dioxide in both horizontal and vertical miniature heated tubes. Ó 2002
Heat Transfer between Graphene and Amorphous SiO2
B. N. J. Persson; H. Ueba
2010-07-22T23:59:59.000Z
We study the heat transfer between graphene and amorphous SiO2. We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer result from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.
Boiling heat transfer in a hydrofoil-based micro pin fin heat sink
Peles, Yoav
transfer in a horizontal tube bundle and reported an increase in local heat transfer coefficient boiling heat transfer of water in small horizontal tube bundles at low velocities. How- ever, the dataBoiling heat transfer in a hydrofoil-based micro pin fin heat sink Ali Kosßar, Yoav Peles
Traviss, Donald P.
1971-01-01T23:59:59.000Z
The influence of return bends on the downstream pressure drop and heat transfer coefficient of condensing refrigerant R-12 was studied experimentally. Flow patterns in glass return bends of 1/2 to 1 in. radius and 0.315 ...
Convective Heat Transfer Enhancement in Nanofluids: Real Anomaly or Analysis Artifact?
Prabhat, Naveen
The nanofluid literature contains many claims of anomalous convective heat transfer enhancement in both turbulent and laminar flow. To put such claims to the test, we have performed a critical detailed analysis of the ...
Yu, Jiwon 1982-
2012-12-03T23:59:59.000Z
Experiments were performed to study forced convective heat transfer of de-ionized water (DI water) and aqueous nanofluids flowing in a microchannel. An array of temperature nanosensors, called “Thin Film Thermocouples (TFT)”, was utilized...
Hodges, James L. (3 Hilltop Ave., Vernon, CT 06066); Cerkanowicz, Anthony E. (8 Fieldstone Dr., Livingston, NJ 07039)
1983-01-01T23:59:59.000Z
In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.
Hodges, James L. (3 Hilltop Ave., Vernon, CT 06066); Cerkanowicz, Anthony E. (8 Fieldstone Dr., Livingston, NJ 07039)
1982-01-01T23:59:59.000Z
In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.
Heat Transfer Analysis for a Fixed CST Column
Lee, S.Y.
2004-02-19T23:59:59.000Z
In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the crystalline silicotitanate (CST) column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. A series of the modeling calculations has been performed using a computational heat transfer approach. Results for the baseline model indicate that transit times to reach 130 degrees Celsius maximum temperature of the CST-salt solution column are about 96 hours when the 20-in CST column with 300 Ci/liter heat generation source and 25 degrees Celsius initial column temperature is cooled by natural convection of external air as a primary heat transfer mechanism. The modeling results for the 28-in column equipped with water jacket systems on the external wall surface of the column and water coolant pipe at the center of the CST column demonstrate that the column loaded with 300 Ci/liter heat source can be maintained non-boiling indefinitely. Sensitivity calculations for several alternate column sizes, heat loads of the packed column, engineered cooling systems, and various ambient conditions at the exterior wall of the column have been performed under the reference conditions of the CST-salt solution to assess the impact of those parameters on the peak temperatures of the packed column for a given transient time. The results indicate that a water-coolant pipe at the center of the CST column filled with salt solution is the most effective one among the potential design parameters related to the thermal energy dissipation of decay heat load. It is noted that the cooling mechanism at the wall boundary of the column has significant impact on maximum and wall temperatures of the column. In addition, the results computed by the present model were verified by the theoretical results. The analysis results will provide quantitative information associated with the process heat control and management of the CST base design. For example, transient responses of the CST system under a loss-of-flow accident condition will provide safety design information for an emergency cooling system of the column.
The influence of multiple tubes on the tube-to-bed heat transfer in a fluidised bed L.M. Armstrong Keywords: CFD Heat transfer Fluidised bed Eulerian a b s t r a c t There have been few studies modelling both flow and heat transfer in fluidised beds. The kinetic theory of granular flow (KTGF) has been used
The influence of a magnetic field on turbulent heat transfer of a high Prandtl number fluid
Nakaharai, H. [Department of Advanced Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-kouen 6-1, Kasuga, Fukuoka 816-8580 (Japan); Takeuchi, J.; Morley, N.B.; Abdou, M.A. [Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095-1597 (United States); Yokomine, T. [Faculty of Energy Engineering Science, Kyushu University, Kasuga-kouen 6-1, Kasuga, Fukuoka 816-8580 (Japan); Kunugi, T. [Department of Nuclear Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501 (Japan); Satake, S. [Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)
2007-10-15T23:59:59.000Z
The influence of a transverse magnetic field on the local and average heat transfer of an electrically conducting, turbulent fluid flow with high Prandtl number was studied experimentally. The mechanism of heat transfer modification due to magnetic field is considered with aid of available numerical simulation data for turbulent flow field. The influence of the transverse magnetic field on the heat transfer was to suppress the temperature fluctuation and to steepen the mean temperature gradient in near-wall region in the direction parallel to the magnetic field. The mean temperature gradient is not influenced compared to the temperature fluctuation in the direction vertical to the magnetic field. (author)
A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS WITH
A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS WITH ATTACHED WALL JETS By WEIXIU KONGQuest Information and Learning Company. #12;II A CONVECTIVE HEAT TRANSFER MODEL FOR SIMULATION OF ROOMS
July 2008 Mold heat transfer in continuous casting
Thomas, Brian G.
with the 1-D heat transfer model, CON1D. To account for the multi- dimensional thermal behavior around speeds and new mold designs. COND Model Description The heat transfer model CON1D1 models sev- eral
Nanofluid heat transfer enhancement for nuclear reactor applications
Buongiorno, Jacopo
Colloidal dispersions of nanoparticles are known as `nanofluids'. Such engineered fluids offer the potential for enhancing heat transfer, particularly boiling heat transfer, while avoiding the drawbacks (i.e., erosion, ...
Experimental evaluation of heat transfer characteristics of silica nanofluid
Zhang, Zihao, S.B. Massachusetts Institute of Technology
2010-01-01T23:59:59.000Z
The laminar convective heat transfer characteristics were investigated for silica nanofluid. An experimental loop was built to obtain heat transfer coefficients for single-phase nanofluids in a circular conduit in laminar ...
Endley, Saurabh
1996-01-01T23:59:59.000Z
cross section. Attention is focused on the effect of the 180' turn on the local heat transfer distributions on the interior surfaces of the various walls at the turn, under turbulent flow conditions. Transient heat transfer experiments, using...
Gustavsen, Arild
2009-01-01T23:59:59.000Z
free convection. In: Heat Transfer and Turbulent Buoyantof convection heat transfer and develop correlations.and radiation heat transfer and develop correlations for
Heat transfer of finned tube bundles in crossflow
Stasiulevicius, J.; Skrinska, A.; Zukauskas, A.
1988-01-01T23:59:59.000Z
This volume correlates findings on heat transfer and hydraulic drag of bundles of finned tubes in crossflow at Reynolds numbers from 10/sup 4/ to 10/sup 6/. These studies illustrate fin, local, and mean heat transfer coefficients; effects of geometric parameters of the fins; effect of tube location within the bundle on heat transfer and hydraulic drag; and resistance of finned tube bundles.
Proceeding of the 1st International Forum on Heat Transfer
Maruyama, Shigeo
Proceeding of the 1st International Forum on Heat Transfer November 24-26, 2004, Kyoto, Japan Paper No. HEAT TRANSFER PROBLEMS RELATED WITH CARBON NANOTUBES BY MOLECULAR DYNAMICS-BASED SIMULATIONS Dynamics Simulation, Thermal Conductance ABSTRACT Several heat transfer problems related to single
RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS
RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS A. Kersch1 W. Moroko2 A. Schuster1 1Siemens of Quasi-Monte Carlo to this problem. 1.1 Radiative Heat Transfer Reactors In the manufacturing of the problems which can be solved by such a simulation is high accuracy modeling of the radiative heat transfer
High flux heat transfer in a target environment
McDonald, Kirk
High flux heat transfer in a target environment T. Davenne High Power Targets Group Rutherford Valid for: Consider turbulent heat transfer in a 1.5mm diameter pipe Dittus Boelter correlation Achenbach correlation for heat transfer in a packed bed of spheres Max power density for a sphere
Low-melting point heat transfer fluid
Cordaro, Joseph Gabriel (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)
2010-11-09T23:59:59.000Z
A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.
A Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow...
The Uk Geothermal Catalogue Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow...
Heat transfer in the trailing edge cooling channels of turbine blades
Kumaran, T. K.
1989-01-01T23:59:59.000Z
Foundation and from the funded research contract (RF5810) through Dr. Han. NOMENCLATURE A area of heat transfer in the pin fin channel AI, area of heat transfer in the long ejection segments Az cross-sectional area, of trailing edge ejection holes A..., ?minimum flow cross-sectional area in the pin fin channel C'~ discharge coefficient Cp specific heat of air 1 diameter of trailing edge ejection holes D diameter of pins f overall friction factor h?heat transfer coefficient in the n th segment...
Li, Zhiyong; Chen, Chao; Luo, Hailiang; Zhang, Ye; Xue, Yaning [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing (China)
2010-08-15T23:59:59.000Z
The aim of this paper is to establish the heat transfer model of all-glass vacuum tube collector used in forced-circulation solar water heating system. In this model, the simplified heat transfer of collector is composed of the natural convection in single glass tube and forced flow in manifold header. Thus the heat balance equation of water in single tube and the heat balance equation of water in manifold header have been established. The flow equation is also built by analyzing the friction and buoyancy in tube. Through solved these equations the relationship between the collector average temperature, the outlet temperature and natural convection flow rate have been obtained. From this relationship and energy balance equation of collector, the collector outlet temperature can be calculated. The validated experiments of this model were carried out in winter of Beijing. (author)
Heat Transfer Operators Associated with Quantum Operations
Ç. Aksak; S. Turgut
2011-04-14T23:59:59.000Z
Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this article is the investigation of the relation between the HTOs and the associated quantum operations. Since, any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This article is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.
Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger
Im, Kwan H. (Naperville, IL); Ahluwalia, Rajesh K. (Burr Ridge, IL)
1994-01-01T23:59:59.000Z
A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.
Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger
Im, K.H.; Ahluwalia, R.K.
1994-10-18T23:59:59.000Z
A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.
Paris-Sud XI, Université de
Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models N. Legrand1,a , N. Labbe1,b D. Weisz-Patrault2,c , A. Ehrlacher2,d , T. Luks3,e heat transfers during pilot hot steel strip rolling. Two types of temperature sensors (drilled and slot
Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers
Thole, Karen A.
Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers Paul A transfer along the tube wall of the compact heat exchanger through the use of winglets placed of attack, aspect ratio, direction, and shape, were all evaluated based on heat transfer augmentation
Journal of Enhanced Heat Transfer, 19 (5): 457476 (2012) EXPERIMENTAL INVESTIGATION OF HEAT
Ghajar, Afshin J.
2012-01-01T23:59:59.000Z
Journal of Enhanced Heat Transfer, 19 (5): 457476 (2012) EXPERIMENTAL INVESTIGATION OF HEAT microfin tubes, most of the heat transfer and friction factor studies were focused on the turbulent region. However, there is a lack of information about the heat transfer and friction factor behavior of microfin
Numerical study of high heat ux pool boiling heat transfer Ying He a,*, Masahiro Shoji b
Maruyama, Shigeo
Numerical study of high heat ¯ux pool boiling heat transfer Ying He a,*, Masahiro Shoji b , Shigeo simulation model of boiling heat transfer is proposed based on a numerical macrolayer model [S. Maruyama, M. Shoji, S. Shimizu, A numerical simulation of transition boiling heat transfer, in: Proceedings
Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.
2010-07-18T23:59:59.000Z
In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.
Ghajar, Afshin J.
; micro-fin tube I. INTRODUCTION Single-phase liquid flow in internally enhanced tubes is becoming more of tube is widely used in high flow rate applications because the heat transfer enhancement in high flow that the secondary flow inside the tube with longitudinal fins was insignificant in the laminar flow and the thermal
Wang, Yuan
2011-11-22T23:59:59.000Z
Heat management in high thermal-density systems such as CPU chips, nuclear reactors and compact heat exchangers is confronting rising challenges due to ever more miniaturized and intensified processes. While searching ...
Analysis of radial fin assembly heat transfer with dehumidification
Rosario, L.; Rahman, M.M. [Univ. of South Florida, Tampa, FL (United States). Dept. of Mechanical Engineering
1996-12-31T23:59:59.000Z
The aim of this paper is the analysis of heat transfer in a radial fin assembly during the process of dehumidification. An individual finned tube geometry is a reasonable representation of heat exchangers used in air conditioning. The condensation process involves both heat and mass transfer and the cooling takes place by the removal of sensible as well as latent heat. The ratio of sensible to total heat is an important quantity that defines the heat transfer process during a dehumidifier operation. A one-dimensional model for heat transfer in the fin and the heat exchanger block is developed to study the effects of condensation on the fin surface. The combined heat and mass transfer process is modeled by incorporating the ratio of sensible to total heat in the formulation. The augmentation of heat transfer due to fin was established by comparing heat transfer rate with and without fins under the same operating conditions. Numerical calculations were carried out to study the effects of relative humidity and dry bulb temperature of the incoming air, and cold fluid temperature inside the coil on the performance of the heat exchanger. Results were compared to those published for rectangular fin under humid condition showed excellent agreement when the present model was used to compute that limiting condition. It was found that the heat transfer rate increased with increment in both dry bulb temperature and relative humidity of the air. The augmentation factor, however, decreased with increment in relative humidity and the dry bulb temperature.
Simulation of Strongly Heated Internal Gas Flows Using a Near-Wall Two-Equation Heat Flux Model
Richards, Adam H.; Spall, Robert E. [Utah State University, 1400 Old Main Hill Logan, Utah 84322-1400 (United States)
2006-07-01T23:59:59.000Z
A two-equation k-{omega} model is used to model a strongly heated, low-Mach number gas flowing upward in a vertical tube. Heating causes significant property variation and thickening of the viscous sublayer, consequently a fully developed flow does not evolve. Two-equation turbulence models generally perform poorly under such conditions. Consequently, in the present work, a near-wall two-equation heat transfer model is utilized in conjunction with the k-{omega} model to improve heat transfer predictions. (authors)
Martin, Timothy
Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor of transpiration). The boundary layer conductance to heat transfer is small enough that leaf temperature can become diffusion, the boundary layer around a leaf also provides resistance to the transfer of heat between a leaf
An experimental, theoretical and numerical investigation of corona wind heat transfer enhancement
Owsenek, Brian Leonard
1993-01-01T23:59:59.000Z
Corona wind heat transfer enhancement is a non-mechanical means of augmenting transfer coefficients in free and low-velocity convection flow fields. Ions formed near the surface of a high-voltage electrode are forced along the electric field lines...
Thermal conductivity and heat transfer in superlattices
Chen, G.; Neagu, M.; Borca-Tasciuc, T.
1997-07-01T23:59:59.000Z
Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.
Outside heat transfer coefficients for atmospheric coolers
George, David Mark
1950-01-01T23:59:59.000Z
for the same conditions of operation is given by Robinson ()i. 9). TABLE I Comparison of various authors' values of outside heat transfer coefficients Btugour x square foot x F ~ ) Adams (1 ) 1001 1041 915 74, 6 1021 981 910 Clarke 945 997 841... ozeventing any recycling of the wet air. "M~4~ 1 f jc, : 1 C. X L, w 38 Cooled water fro~ the tower is centrifugally pmnoed through a 2 inch pipe to a rotameter and a I and operated control valve, Figure 8, before entering a 1 1/g inch by 5 foot...
Convective heat-transfer predictions and experiments in an IC engine
Yang, J.
1988-01-01T23:59:59.000Z
Knowledge of heat transfer in engines is critical to engine efficiency, hydrocarbon and particulate emissions, engine-component thermal stress analysis, as well as engine cycle simulation accuracy. However, the relationship between pressure, heat-release rate, turbulent flow, and the heat transfer is not known. Previous engine heat-transfer models, including the law-of-the-wall used for multi-dimensional calculations, are based on a steady-state incompressible flow which is not the case in engines. A new heat-transfer model was developed which is based on an approximate solution of the linearized and normalized one-dimensional energy equation. An empirical turbulent viscosity relation has been used to include the effects of turbulence. The response of this equation to a unit step function was acquired by multi-parameter fit to the numerical solution. The effects of initial thermal boundary layer formed before compression were also considered. The proposed heat-transfer model was extended to include the effects of combustion. Thus, the relationship between pressure variation, spatially-resolved heat-release rate, local flow condition, initial thermal boundary layer, and the surface heat flux and temperature profile was developed.
Jet impingement heat transfer in two-pass rotating rectangular channels
Zhang, Yuming
1996-01-01T23:59:59.000Z
compared with previously reported correlations. The pressure distributions show that the major effect on heat transfer is the jet impingement in the beginning of the channel and the cross flow at the end of the channel. The results also show that heat...
Heat transfer assembly for a fluorescent lamp and fixture
Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.
1992-12-29T23:59:59.000Z
In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.
On the design of heat-transfer probes
Brich, M.A.; Ganzha, V.L.; Saxena, S.C. [Univ. of Illinois, Chicago, IL (United States)] [Univ. of Illinois, Chicago, IL (United States)
1997-03-01T23:59:59.000Z
Saxena and coworkers have reported heat-transfer coefficient values for magnetofluidized beds using electrically heated heat-transfer probes. Here, a two-dimensional heat-transfer model is employed to investigate the influence of significant design features on measured parameters. Numerical calculations reveal that the thermal conductivity of the probe material has an insignificant contribution but the material of end caps and relative sizes and locations of the probe and heater appreciably influence the heat-transfer rates through end-conduction.
Heat transfer assembly for a fluorescent lamp and fixture
Siminovitch, Michael J. (Richmond, CA); Rubenstein, Francis M. (Berkeley, CA); Whitman, Richard E. (Richmond, CA)
1992-01-01T23:59:59.000Z
In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.
RADIATIVE HEAT TRANSFER WITH QUASIMONTE CARLO METHODS \\Lambda
RADIATIVE HEAT TRANSFER WITH QUASIMONTE CARLO METHODS \\Lambda A. Kersch 1 W. Morokoff 2 A accuracy modeling of the radiative heat transfer from the heater to the wafer. Figure 1 shows the draft Carlo simulation is often used to solve radiative transfer problems where complex physical phenomena
CONDUCTION HEAT TRANSFER Dr. Ruhul Amin Fall 2011
Dyer, Bill
ME 525 CONDUCTION HEAT TRANSFER Dr. Ruhul Amin Fall 2011 Office: 201C Roberts Hall Lecture Room of conduction heat transfer. Important results which are useful for engineering application will also: 121 Roberts Hall Phone: 994-6295 Lecture Periods: 12:45- 2:00, TR TEXT: Heat Conduction, M. N. Ozisik
A PC simulation of heat transfer and temperature distribution in a circulating wellbore
Pierce, Robert Duane
1987-01-01T23:59:59.000Z
for Varying Drill Pipe 59 Outer Diameter TABLE 4 - Well Data Summary For Varying Mud Flow Rate TABLE 5 ? Mell Data Summary For Varying Heat Transfer 60 62 Coefficient (Pipe) 65 TABLE 6 ? Well Data Summary For Varying Heat Transfer Coefficient (Annulus.... 2 - Introductory menu of program Fig. 3 - Program master menu Fig. 4 ? Change/view parameters menu Fig. 5 ? Drilling fluid parameters menu Fig. 6 ? Drill pipe parameters menu Fig. 7 ? Mellbore/formation parameters menu Fig. 8 - Casing...
A PC simulation of heat transfer and temperature distribution in a circulating wellbore
Pierce, Robert Duane
1987-01-01T23:59:59.000Z
for Varying Drill Pipe 59 Outer Diameter TABLE 4 - Well Data Summary For Varying Mud Flow Rate TABLE 5 ? Mell Data Summary For Varying Heat Transfer 60 62 Coefficient (Pipe) 65 TABLE 6 ? Well Data Summary For Varying Heat Transfer Coefficient (Annulus.... 2 - Introductory menu of program Fig. 3 - Program master menu Fig. 4 ? Change/view parameters menu Fig. 5 ? Drilling fluid parameters menu Fig. 6 ? Drill pipe parameters menu Fig. 7 ? Mellbore/formation parameters menu Fig. 8 - Casing...
A Study of Heat Transfer in a Composite Wall Collector System with Porous Absorber
Chen, W.
2006-01-01T23:59:59.000Z
In this paper, heat transfer and flow in a composite solar wall with porous absorber has been studied. The unsteady numerical simulation is employed to analyze the performance of the flow and temperature field in the composite solar wall. The excess...
A Study of Heat Transfer in a Composite Wall Collector System with Porous Absorber
Chen, W.
2006-01-01T23:59:59.000Z
In this paper, heat transfer and flow in a composite solar wall with porous absorber has been studied. The unsteady numerical simulation is employed to analyze the performance of the flow and temperature field in the composite solar wall. The excess...
CORQUENCH: A model for gas sparging-enhanced, melt-water, film-boiling heat transfer
Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.
1990-01-01T23:59:59.000Z
In evaluation of severe-accident sequences for water-cooled nuclear reactors, molten core materials may be postulated to be released into the containment and accumulate on concrete. The heatup and decomposition of concrete is accompanied by the release of water vapor and carbon dioxide gases. Gases flowing through the melt upper surface can influence the rates of heat transfer to water overlying the melt. In particular, the gas flow through the interface can be envisioned to enhance the heat removal from the melt. A mechanistic model (CORQUENCH) has been developed to describe film-boiling heat transfer between a molten pool and an overlying coolant layer in the presence of sparging gas. The model favorably predicts the lead-Feron 11 data of Greene and Greene et al. for which the calculations indicate that area enhancement in the conduction heat transfer across the film is the predominant mechanism leading to augmentation in the heat flux as the gas velocity increases. Predictions for oxidic corium indicate a rapid increase in film-boiling heat flux as the gas velocity rises. The predominant mode of heat transfer for this case is radiation, and the increase in heat flux with gas velocity is primarily a result of interfacial area enhancement of the radiation component of the overall heat transfer coefficient. The CORQUENCH model has been incorporated into the MELTSPREAD-1 computer code{sup 6} for the analysis of transient spreading in containments.
Heat Flow Database Expansion for NGDS Data Development, Collection...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance (SMU) Heat Flow Database Expansion for NGDS Data Development, Collection and Maintenance (SMU)...
Dependency of Heat Transfer Rate on the Brinkman Number in Microchannels
H. S. Park
2008-01-07T23:59:59.000Z
Heat generation from electronics increases with the advent of high-density integrated circuit technology. To come up with the heat generation, microscale cooling has been thought as a promising technology. Prediction of heat transfer rate is crucial in design of microscale cooling device but is not clearly understood yet. This work proposes a new correlation between heat transfer rate and Brinkman number which is nondimensional number of viscosity, flow velocity and temperature. It is expected that the equation proposed by this work can be useful to design microchannel cooling device.
art heat transfer: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Transfer Texas A&M University - TxSpace Summary: ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-8-5 Urban Sewage Delivery Heat Transfer System...
accident heat transfer: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Transfer Texas A&M University - TxSpace Summary: ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-8-5 Urban Sewage Delivery Heat Transfer System...
accurate heat transfer: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Transfer Texas A&M University - TxSpace Summary: ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-8-5 Urban Sewage Delivery Heat Transfer System...
Heat transfer enhancement resulting from induction electrohydrodynamic pumping
Margo, Bryan David
1992-01-01T23:59:59.000Z
pump operated at various tilt angles with two working fluids. The main difference between this study and other work in EHD heat transfer enhancement is that the induction EHD pump is the only source of pumping as well as the basis for heat transfer... HEAT TRANSFER ENHANCEMENT RESULTING FROM INDUCTION ELECTROHYDRODYNAMIC PUMPING A Thesis by BRYAN DAVID MARGO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...
Sensitivity Analysis of the Gap Heat Transfer Model in BISON.
Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard (INL); Perez, Danielle (INL)
2014-10-01T23:59:59.000Z
This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.
Heat transfer in bundles of finned tubes in crossflow
Stasiulevicius, J.; Skrinska, A.; Zukauskas, A.; Hewitt, G.F.
1986-01-01T23:59:59.000Z
This book provides correlations of heat transfer and hydraulic data for bundles of finned tubes in crossflow at high Reynolds numbers. Results of studies of the effectiveness of the fin, local, and mean heat transfer coefficients are presented. The effect of geometric parameters of the fins and of the location of tubes in the bundle on heat transfer and hydraulic drag are described. The resistance of the finned tube bundles under study and other factors are examined.
Heat transfer analysis capabilities of the scale computational system
Parks, C.V.; Giles, G.E.; Childs, K.W.; Bryan, C.B.
1986-01-01T23:59:59.000Z
The heat transfer capabilities within the modular SCALE computational system are centered about the HEATING6 functional module. This paper reviews the features and modeling capabilities of HEATING6, discusses the supportive plotting capabilities of REGPLOT6 and HEATPLOT-S, and finally provides a general description of the Heat Transfer Analysis Sequence No.1 (HTASI) available in SCALE for performing thermal analyses of transport casks via HEATING6. The HTASI control module is an easy-to-use tool that allows an inexperienced HEATING6 user to obtain reliable thermal analysis results. A summary of the recent verification efforts undertaken for HEATING6 is also provided. 16 refs., 14 figs.
2.51 Intermediate Heat and Mass Transfer, Fall 2001
Lienhard, John H., 1961-
Analysis, modeling, and design of heat and mass transfer processes with application to common technologies. Unsteady heat conduction in one or more dimensions, steady conduction in multidimensional configurations, numerical ...
Heat Transfer Interface for Thermo-Solar Energy - Energy Innovation...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Thermal Solar Thermal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Heat Transfer Interface for Thermo-Solar Energy Lawrence Berkeley...
Characterization and Development of Advanced Heat Transfer Technologie...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
May 18-22, 2009 -- Washington D.C. ape11kelly.pdf More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies Advanced Power Electronics...
asme heat transfer: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of...
Effects of solar photovoltaic panels on roof heat transfer
Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C
2011-01-01T23:59:59.000Z
the energy performance of photovoltaic roofs, ASHRAE Trans A thermal model for photovoltaic systems, Solar Energy, Effects of Solar Photovoltaic Panels on Roof Heat Transfer
advanced heat transfer: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires...
Theoretical Design of Thermosyphon for Process Heat Transfer from NGNP to Hydrogen Plant
Piyush Sabharwall; Mike Patterson; Fred Gunnerson
2008-09-01T23:59:59.000Z
The Next Generation Nuclear Plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ~ 1300K) and industrial scale power transport (=50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization / condensing process. The condensate is further returned to the hot source by gravity, i.e. without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) or vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.
Proceedings of HT'03 2003 Summer Heat Transfer Conference
Walker, D. Greg
Proceedings of HT'03 2003 Summer Heat Transfer Conference July 2123, 2003, Las Vegas, Nevada, USA HT2003-47016 A NEW TECHNIQUE FOR HEAT FLUX DETERMINATION D.G. Walker Department of Mechanical@vt.edu ABSTRACT A new method for estimating heat fluxes from heating rate measurements and an approach to measure
Nanofluids for heat transfer : an engineering approach.
Timofeeva, E. V.; Yu, W.; France, D. M.; Singh, D.; Routbort, J. L. (Energy Systems); ( NE); (Univ. of Illinois at Chicago)
2011-02-28T23:59:59.000Z
An overview of systematic studies that address the complexity of nanofluid systems and advance the understanding of nanoscale contributions to viscosity, thermal conductivity, and cooling efficiency of nanofluids is presented. A nanoparticle suspension is considered as a three-phase system including the solid phase (nanoparticles), the liquid phase (fluid media), and the interfacial phase, which contributes significantly to the system properties because of its extremely high surface-to-volume ratio in nanofluids. The systems engineering approach was applied to nanofluid design resulting in a detailed assessment of various parameters in the multivariable nanofluid systems. The relative importance of nanofluid parameters for heat transfer evaluated in this article allows engineering nanofluids with desired set of properties.
Low-melting point heat transfer fluid
Cordaro, Joseph G. (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)
2011-04-12T23:59:59.000Z
A low-melting point, heat transfer fluid comprising a mixture of LiNO.sub.3, NaNO.sub.3, KNO.sub.3, NaNO.sub.2 and KNO.sub.2 salts where the Li, Na and K cations are present in amounts of about 20-33.5 mol % Li, about 18.6-40 mol % Na, and about 40-50.3 mol % K and where the nitrate and nitrite anions are present in amounts of about 36-50 mol % NO.sub.3, and about 50-62.5 mol % NO.sub.2. These compositions can have liquidus temperatures between 70.degree. C. and 80.degree. C. for some compositions.
Submersible pumping system with heat transfer mechanism
Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew
2014-04-15T23:59:59.000Z
A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.
Neutron behavior, reactor control, and reactor heat transfer. Volume four
Not Available
1986-01-01T23:59:59.000Z
Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).
Transient PVT measurements and model predictions for vessel heat transfer. Part II.
Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.; Evans, Gregory Herbert; Rice, Steven F.
2010-07-01T23:59:59.000Z
Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models in which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.
Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)
1996-12-03T23:59:59.000Z
Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.
Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI); Marsala, Joseph (Glen Ellyn, IL)
1994-11-29T23:59:59.000Z
Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.
Ekkad, S.V.; Huang, Y.; Han, J.C. [Texas A and M Univ., College Station, TX (United States)
1996-12-31T23:59:59.000Z
Modern gas turbine blades have internal serpentine passage for providing effective cooling. Rib turbulators are added periodically on the cooling passage surface to enhance heat transfer. Some of the cooling air is ejected out through bleed (or film) holes for external blade film cooling. The presence of periodic rib turbulators and bleed holes creates strong axial and spanwise variations in the heat transfer distributions on the passage surface. Detailed heat transfer coefficient distributions are presented in this study for a two-pass square channel with a 180{degree} turn. One wall of the channel has periodically placed bleed holes. Four different configurations of 90{degree} parallel, 60{degree} parallel, 60{degree} V ribs, and 60{degree} inverted V ribs are studied in conjunction with the effect of bleed holes on the same wall. The surface is coated with a thin layer of thermochromic liquid crystals and a transient test is run to obtain the detailed heat transfer distributions. The 60{degree} parallel, 60{degree} V, and 60{degree} inverted ribbed channels produce similar levels of heat transfer enhancement in the first pass. However, the 60{degree} inverted V ribbed channel produces higher enhancement in the second pass. Regional averaged heat transfer results indicate that a test surface with bleed holes provides similar heat transfer enhancement as that for a test surface without bleed holes although 20--25% of the inlet mass flow exits through the bleed holes.
Microcomputer analysis of regenerative heat exchangers for oscillating flow
Hutchinson, R.A.; Lyke, S.E.
1987-03-01T23:59:59.000Z
Regenerative heat exchangers for use in oscillating flows such as those occurring in Stirling engines present considerable analytical problems to the thermal engineer. A simplified finite element analysis has been implemented in a spreadsheet, providing improved access to analytical assumptions and allowing parametric analysis of current heat transfer data. In addition, an irreversibility analysis has been implemented using the thermal and friction results in the spreadsheet. It is suited for evaluation and insights into loss tradeoffs inside operating regenerators, to suggest new regenerator design concepts, and to focus experimental work. 22 refs., 13 figs.
Modeling Granular Materials as Compressible Non-Linear Fluids: Heat Transfer Boundary Value Problems
Massoudi, M.C.; Tran, P.X.
2006-01-01T23:59:59.000Z
We discuss three boundary value problems in the flow and heat transfer analysis in flowing granular materials: (i) the flow down an inclined plane with radiation effects at the free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing motion between two horizontal flat plates with heat conduction. It is assumed that the material behaves like a continuum, similar to a compressible nonlinear fluid where the effects of density gradients are incorporated in the stress tensor. For a fully developed flow the equations are simplified to a system of three nonlinear ordinary differential equations. The equations are made dimensionless and a parametric study is performed where the effects of various dimensionless numbers representing the effects of heat conduction, viscous dissipation, radiation, and so forth are presented.
Al Hanbali, Ahmad
in pipeline transportation, where it is important to identify and control bottlenecks influence on production be viewed as the hydrodynamic equivalent of the Mach number for gas flows. Simplified hydraulic theories or impossible to measure in experiments like the stress distribution in the #12;6th International Symposium
Heat transfer and pressure drop in an annular channel with downflow
Dolan, F.X.; Crowley, C.J. (Creare, Inc., Hanover, NH (United States)); Qureshi, Z.H. (Westinghouse Savannah River Co., Aiken, SC (United States))
1992-01-01T23:59:59.000Z
The onset of a flow instability (OFI) determines the minimum flow rate for cooling in the flow channels of a nuclear fuel assembly. A test facility was constructed with full-scale models (length and diameter) of annular flow channels incorporating many instruments to measure heat transfer and pressure drop with downflow in the annulus. Tests were performed both with and without axial centering ribs at prototypical values of pressure, flow rate and uniform wall heat flux. The axial ribs have the effect of subdividing the annulus into quadrants, so the problem becomes one of parallel channel flow, unlike previous experiments in tubes (upflow and downflow). Other tests were performed to determine the effects if any of asymmetric and non-uniform circumferential wall heating, operating pressure level and dissolved gas concentration. Data from the tests are compared with models for channel heat transfer and pressure drop profiles in several regimes of wall heating from single-phase forced convection through partially and fully developed nucleate boiling. Minimum stable flow rates were experimentally determined as a function of wall heat flux and heat distribution and compared with the model for the transition to fully developed boiling which is a key criterion in determining the OFI condition in the channel. The heat transfer results in the channel without ribs are in excellent agreement with predictions from a computer model of the flow in the annulus and with empirical correlations developed from similar tests. The test results with centering ribs show that geometrical variations between the channels can lead to differences in subchannel behavior which can make the effect of the ribs and the geometry an important factor when assessing the power level at which the fuel assembly (and the reactor) can be operated to prevent overheating in the event of a loss-of-coolant-accident (LOCA).
Heat transfer and pressure drop in an annular channel with downflow
Dolan, F.X.; Crowley, C.J. [Creare, Inc., Hanover, NH (United States); Qureshi, Z.H. [Westinghouse Savannah River Co., Aiken, SC (United States)
1992-06-01T23:59:59.000Z
The onset of a flow instability (OFI) determines the minimum flow rate for cooling in the flow channels of a nuclear fuel assembly. A test facility was constructed with full-scale models (length and diameter) of annular flow channels incorporating many instruments to measure heat transfer and pressure drop with downflow in the annulus. Tests were performed both with and without axial centering ribs at prototypical values of pressure, flow rate and uniform wall heat flux. The axial ribs have the effect of subdividing the annulus into quadrants, so the problem becomes one of parallel channel flow, unlike previous experiments in tubes (upflow and downflow). Other tests were performed to determine the effects if any of asymmetric and non-uniform circumferential wall heating, operating pressure level and dissolved gas concentration. Data from the tests are compared with models for channel heat transfer and pressure drop profiles in several regimes of wall heating from single-phase forced convection through partially and fully developed nucleate boiling. Minimum stable flow rates were experimentally determined as a function of wall heat flux and heat distribution and compared with the model for the transition to fully developed boiling which is a key criterion in determining the OFI condition in the channel. The heat transfer results in the channel without ribs are in excellent agreement with predictions from a computer model of the flow in the annulus and with empirical correlations developed from similar tests. The test results with centering ribs show that geometrical variations between the channels can lead to differences in subchannel behavior which can make the effect of the ribs and the geometry an important factor when assessing the power level at which the fuel assembly (and the reactor) can be operated to prevent overheating in the event of a loss-of-coolant-accident (LOCA).
Mechanical Engineering Laboratory of Heat and Mass Transfer
Diggavi, Suhas
the prediction methods. The local condensation heat transfer behavior of two new refrigerants(R236fa and R1234ze refrigerants. Effect of different parameters was investigated for present database. Koyama method was modified. Jung E. Park Comparing refrigerant performance, the higher heat transfer coefficients (about 15
Heat transfer in proteinwater interfaces Anders Lervik,ab
Kjelstrup, Signe
Heat transfer in proteinwater interfaces Anders Lervik,ab Fernando Bresme,*ac Signe Kjelstrup of the heat diffusion equation we compute the thermal conductivity and thermal diffusivity of the proteins by about 4 nm.4 It is expected that the energy transfer between these sites may involve the concerted
Enhanced radiative heat transfer between nanostructured gold plates
R. Guérout; J. Lussange; F. S. S. Rosa; J. -P. Hugonin; D. A. R. Dalvit; J. -J. Greffet; A. Lambrecht; S. Reynaud
2012-03-07T23:59:59.000Z
We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.
McHugh, P.R.
1995-10-01T23:59:59.000Z
Fully coupled, Newton-Krylov algorithms are investigated for solving strongly coupled, nonlinear systems of partial differential equations arising in the field of computational fluid dynamics. Primitive variable forms of the steady incompressible and compressible Navier-Stokes and energy equations that describe the flow of a laminar Newtonian fluid in two-dimensions are specifically considered. Numerical solutions are obtained by first integrating over discrete finite volumes that compose the computational mesh. The resulting system of nonlinear algebraic equations are linearized using Newton`s method. Preconditioned Krylov subspace based iterative algorithms then solve these linear systems on each Newton iteration. Selected Krylov algorithms include the Arnoldi-based Generalized Minimal RESidual (GMRES) algorithm, and the Lanczos-based Conjugate Gradients Squared (CGS), Bi-CGSTAB, and Transpose-Free Quasi-Minimal Residual (TFQMR) algorithms. Both Incomplete Lower-Upper (ILU) factorization and domain-based additive and multiplicative Schwarz preconditioning strategies are studied. Numerical techniques such as mesh sequencing, adaptive damping, pseudo-transient relaxation, and parameter continuation are used to improve the solution efficiency, while algorithm implementation is simplified using a numerical Jacobian evaluation. The capabilities of standard Newton-Krylov algorithms are demonstrated via solutions to both incompressible and compressible flow problems. Incompressible flow problems include natural convection in an enclosed cavity, and mixed/forced convection past a backward facing step.
An upgraded heat transfer fluid eliminates odors and leaks
NONE
1995-10-01T23:59:59.000Z
At Morton, persistent leakage of an aromatics-based heat transfer fluid left its mark--a black, oxidized residue at flange and valve locations. By switching to a high-purity fluid from a paraffinic hydrocarbon base stock, the firm eliminated odors and sticky residue, and improved heat transfer. After four years of operation with the paraffinic heat transfer fluid, Morton continues to have no odor problems and virtually no flange or packing leakage. As an added bonus, the heat transfer coefficient of the new fluid allows Morton to operate the systems 10--15 F cooler than when the company used the traditional, aromatic fluid. This has cut fuel use and reduced the potential for thermal damage to the heat transfer fluid, process fluid and process equipment.
Heat transfer between elastic solids with randomly rough surfaces
B. N. J. Persson; B. Lorenz; A. I. Volokitin
2009-08-27T23:59:59.000Z
We study the heat transfer between elastic solids with randomly rough surfaces. We include both the heat transfer from the area of real contact, and the heat transfer between the surfaces in the noncontact regions. We apply a recently developed contact mechanics theory, which accounts for the hierarchical nature of the contact between solids with roughness on many different length scales. For elastic contact, at the highest (atomic) resolution the area of real contact typically consists of atomic (nanometer) sized regions, and we discuss the implications of this for the heat transfer. For solids with very smooth surfaces, as is typical in many modern engineering applications, the interfacial separation in the non-contact regions will be very small, and for this case we show the importance of the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies.
Gas heat transfer in a heated vertical channel under deteriorated turbulent heat transfer regime
Lee, Jeongik
2007-01-01T23:59:59.000Z
Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...
Gas Heat Transfer in a Heated Vertical Channel under Deteriorated Turbulent Heat Transfer Regime
Lee, Jeongik
Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...
Research on Convective Heat Transfer and Mass Transfer of the Evaporator in Micro/Mini-Channel
Su, J.; Li, J.
2006-01-01T23:59:59.000Z
With the development of science and technology, various heating and cooling equipment have a development trend of micromation. Micro-fabrication processes make it possible to conduct research on condensation heat transfer ...
Ozturk, Burak
2009-05-15T23:59:59.000Z
.18 (S R =80 mm)........................................103 Figure 11.1. Static pressure distributions at Re=110,000 and reduced frequencies S=0, 1.59, 3.18 (no rod, 160 mm, 80 mm), SS=Separation start, SE= Separation end...................................................110 Figure 11.2. Time-averaged hot-film distributions at Re=110,000 and reduced frequencies S=0, 1.59, 3.18 (no rod, 160 mm, 80 mm)...........................112 Figure 11.3. Ensemble averaged velocity as a function for (a) steady flow case S=0 (S R...
Heat transfer and film cooling with steam injection
Conklin, Gary Eugene
1982-01-01T23:59:59.000Z
HEAT TRANSFER AND FILM COOLING WITH STEAM INJECTION A Thesis by GARY EUGENE CONKLIN Submitted to the Graduate College of Texas AIM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1982 Major... Subject: Mechanical Engineering HEAT TRANSFER AND FILM COOLING WITH STEAM INJECTION A Thesis by GARY EUGENE CONKLIN Approved as to style and content by: (Chairm of Committee) (Member) (Memb e r) (Me r (Head Departme ) May 1982 ABSTRACT Heat...
Garg, Paritosh
2009-05-15T23:59:59.000Z
transfer. The impact of ultrasonication energy on CNT nanofluids processing, and the corresponding effects on flow and thermal properties were studied in detail. The properties measured were viscosity, thermal conductivity and the convective heat transfer...
Colorado Heat Flow Data from IHFC
Zehner, Richard E.
2012-02-01T23:59:59.000Z
Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: The International Heat Flow Commission (IHFC) Publication Date: 2012 Title: Colorado IHFC Data Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: Abstract: This layer contains the heat flow sites and data of the State of Colorado compiled from the International Heat Flow Commission (IHFC) of the International Association of Seismology and Physics of the Earth's Interior (IASPEI) global heat flow database (www.heatflow.und.edu/index2.html). The data include different items: Item number, descriptive code, name of site, latitude and longitude, elevation, depth interval, number of temperature data, temperature gradient, number of conductivity measurement, average conductivity, number of heat generation measurements, average heat production, heat flow, number of individual sites, references, and date of publication. Spatial Domain: Extent: Top: 4522121.800672 m Left: 165356.134075 m Right: 621836.776246 m Bottom: 4097833.419676 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude Of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file
Dual circuit embossed sheet heat transfer panel
Morgan, G.D.
1984-02-21T23:59:59.000Z
A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.
Hauser, S.G.; Kreid, D.K.; Johnson, B.M.
1981-04-01T23:59:59.000Z
This second part of a two-part paper summarizes the experimental evaluation of a plate finned heat exchanger both with and without the surface wetted by a flowing film of water. The results indicate an increase in heat transfer during wet operation of two to five times over that of dry operation for the same meteorological conditions. The deluge model is shown to accurately predict the wet performance using an experimentally determined deluge film coefficient and the dry performance characteristics.
The deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes
Shiralkar, B. S.
1968-01-01T23:59:59.000Z
At slightly supercritical pressure and in the neighborhood of the pseudo-critical temperature (defined as the temperature corresponding to the peak in specific heat at the operating pressure), the heat transfer coefficient ...
Gaskill, Travis
2012-02-14T23:59:59.000Z
The present study has focused on the use of coil heat exchangers (CHEs) with microencapsulated phase change material (MPCM) slurries to understand if CHEs can yield greater rates of heat transfer. An experimental study was conducted using a...
Tetreault-Friend, Melanie
2014-01-01T23:59:59.000Z
Predicting the conditions of critical heat flux (CHF) is of considerable importance for safety and economic reasons in heat transfer units, such as in nuclear power plants. It is greatly advantageous to increase this thermal ...
Nano-engineering the boiling surface for optimal heat transfer rate and critical heat flux
Phillips, Bren Andrew
2011-01-01T23:59:59.000Z
The effects on pool boiling characteristics such as critical heat flux and the heat transfer coefficient of different surface characteristics such as surface wettability, roughness, morphology, and porosity are not well ...
Gaskill, Travis
2012-02-14T23:59:59.000Z
The present study has focused on the use of coil heat exchangers (CHEs) with microencapsulated phase change material (MPCM) slurries to understand if CHEs can yield greater rates of heat transfer. An experimental study was conducted using a...
Experimental and numerical study of laminar forced convection heat transfer for a dimpled heat sink
Park, Do Seo
2009-05-15T23:59:59.000Z
EXPERIMENTAL AND NUMERICAL STUDY OF LAMINAR FORCED CONVECTION HEAT TRANSFER FOR A DIMPLED HEAT SINK A Thesis by DO SEO PARK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 2007 Major Subject: Mechanical Engineering EXPERIMENTAL AND NUMERICAL STUDY OF LAMINAR FORCED CONVECTION HEAT TRANSFER FOR A DIMPLED HEAT SINK A Thesis by DO SEO PARK...
A Small Artery Heat Transfer Model for Self-Heated Thermistor Measurements of Perfusion in the
A Small Artery Heat Transfer Model for Self-Heated Thermistor Measurements of Perfusion model (SAM) for self-heated thermistor measurements of perfusion in the canine kidney is developed based clinical method to quantify perfusion for a majority of applications. Self-heated thermistor techniques
Peles, Yoav
across a bank of heated tube bundles, have shown that the local two-phase heat transfer coefficient across a tube bundle and determined the void fraction, the frictional pressure drop, and the local heatFlow boiling of water in a circular staggered micro-pin fin heat sink Santosh Krishnamurthy, Yoav
Investigating Mould Heat Transfer in Thin Slab Casting with CON1D Begoa Santillana
Thomas, Brian G.
. Heat transfer in the thin slab casting mould is being investigated with the 1-D heat transfer model MODEL DESCRIPTION The heat transfer model, CON1D1 , models several aspects of the continuous casting
Grossmann, Ignacio E.
Heat transfer model of large shipping containers 1Chemical Engineering Department - Carnegie Mellon to the inside air 3. Heat transfer at the cargo on the pallets I. The heat transfer model Outline: II. Case
Heat transfer rates in fixed bed catalytic reactors
Levelton, Bruce Harding
1951-01-01T23:59:59.000Z
HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS H EATTRNSFSAIX DB DNCLR YFNOAXa rRJRuSIX nSeR 1951i HssNIJFu FT SI TSBuR FXO LIXSRXS NRLIeeRXOROt HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS H EATTRNSFSAIX BSar DNCLR YFNOAXa r...RJRuSIX June 1951 HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS A Dissertation Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...
Paris-Sud XI, Université de
the temperature and pressure levels reached in the combustor, and therefore the engine efficiency. Numerical simulations of the thermal interaction between fluid flows and solids offer new design paths to diminish converge to steady thermal states. There are two basic approaches to solve Conjugate Heat Transfer (CHT
Heat Transfer Engineering, 30(9):751761, 2009 Copyright C Taylor and Francis Group, LLC
Khandekar, Sameer
. The working fluid employed was distilled, deionized, and degassed water. A three-dimensional (3D-7632 print / 1521-0537 online DOI: 10.1080/01457630802678573 Simultaneously Developing Flows Under Conjugated The need for economically viable, energy-efficient, compact heat transfer systems is increasing day by day
Heat transfer and film-cooling for the endwall of a first stage turbine vane
Thole, Karen A.
as the pressure side horseshoe vortex, develops as the flow is turned by the turbine vane or rotor bladeHeat transfer and film-cooling for the endwall of a first stage turbine vane Karen A. Thole of the airfoils. One means of preventing degradation in the turbine is to film-cool components whereby coolant
Modeling of Heat Transfer in Geothermal Heat Exchangers
Cui, P.; Man, Y.; Fang, Z.
2006-01-01T23:59:59.000Z
Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from...
Visual Simulation of Heat Shimmering and Mirage
Mueller, Klaus
and the surrounding air. We introduce a heat transfer model between the heat source objects and the ambient flow the heat sources to the ambient flow. Although heat transfer modeling has been used before in computer
Triaxial thermopile array geo-heat-flow sensor
Carrigan, C.R.; Hardee, H.C.; Reynolds, G.D.; Steinfort, T.D.
1990-01-01T23:59:59.000Z
A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings. 6 figs.
Triaxial thermopile array geo-heat-flow sensor
Carrigan, Charles R. (Tracy, CA); Hardee, Harry C. (Albuquerque, NM); Reynolds, Gerald D. (Tijeras, NM); Steinfort, Terry D. (Tijeras, NM)
1992-01-01T23:59:59.000Z
A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.
Fourier analysis of conductive heat transfer for glazed roofing materials
Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)
2014-07-10T23:59:59.000Z
For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.
Using Solid Particles as Heat Transfer Fluid for use in Concentrating...
Broader source: Energy.gov (indexed) [DOE]
Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power...
Modeling of Heat Transfer in Rooms in the Modelica Buildings Library
Wetter, Michael
2013-01-01T23:59:59.000Z
of the room heat transfer model in the free open-sourcea layer-by-layer heat transfer model that computes infrared
Small distance expansion for radiative heat transfer between curved objects
Golyk, Vladyslav A.
We develop a small distance expansion for the radiative heat transfer between gently curved objects, in terms of the ratio of distance to radius of curvature. A gradient expansion allows us to go beyond the lowest-order ...
Enhancement of Pool Boiling Heat Transfer in Confined Space
Hsu, Chia-Hsiang
2014-05-05T23:59:59.000Z
Pool boiling is an effective method used in many technical applications for a long time. Its highly efficient heat transfer performance results from not only the convection effect but also the phase change process in pool boiling. Pool boiling...
Influence of Infrared Radiation on Attic Heat Transfer
Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.
1985-01-01T23:59:59.000Z
An experimental study concerned with different modes of heal transfer in fibrous and cellulose insulating material is presented. A series of experiments were conducted using an attic simulator to determine the effects of ventilation on attic heat...
Wellbore Heat Transfer Model for Wax Deposition in Permafrost Region
Cui, Xiaoting
2012-05-31T23:59:59.000Z
Producing waxy oil in arctic area may cause wax deposited on the well wall. Since wax deposition is strongly thermal related, accurate heat transfer model is necessary in predicting and preventing wax depostion. A mathematical model was derived...
Non-intrusive characterization of heat transfer fluid aerosol formation
Krishna, Kiran
2001-01-01T23:59:59.000Z
Heat transfer fluids are widely used in the chemical process industry and are available in a wide range of properties. These fluids are flammable above their flash points and can cause explosions. Though the possibility of aerosol explosions has...
Survey and evaluation of techniques to augment convective heat transfer
Bergles A. E.
1965-01-01T23:59:59.000Z
This report presents a survey and evaluation of the numerous techniques which have been shown to augment convective heat transfer. These techniques are: surface promoters, including roughness and treatment; displaced ...
Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces
Attinger, Daniel
Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces Amy Rachel in revised form 30 October 2012 Accepted 31 October 2012 Keywords: Superhydrophobic Superhydrophilic Biphilic- and nanofabrication, superhydrophilic and superhydrophobic surfaces have been developed. The statics and dynamics
Morris, J. F.
1985-03-19T23:59:59.000Z
This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically nonconducting gap between the two heat pipes.
Heat transfer and oil displacement models for tar sands reservoirs
Ward, C.E.; Ward, G.D.
1984-09-01T23:59:59.000Z
A convective heat transfer model and one dimensional displacement model applicable to tar sands and heavy oils for use with a microcomputer are presented. The convective heat transfer model describes the temperature profiles in a thermal operation. The displacement model offers insight into the effect of process variables on the steam/oil or air/oil ratio of thermal operations. A method is presented for predicting the fuel burn in a fireflood.
Enhanced heat transfer in partially-saturated hydrothermal systems
Bixler, N.E.; Carrigan, C.R.
1986-01-01T23:59:59.000Z
The role of capillarity is potentially important for determining heat transfer in hydrothermal regions. Capillarity allows mixing of phases in liquid/vapor systems and results in enhanced two-phase convection. Comparisons involving a numerical model with capillarity and analytical models without indicate that heat transfer can be enhanced by about an order of magnitude. Whether capillarity can be important for a particular hydrothermal region will depend on the nature of mineral precipitation as well as pore and fracture size distributions.
Mpemba effect, Newton cooling law and heat transfer equation
Vladan Pankovic; Darko V. Kapor
2012-12-11T23:59:59.000Z
In this work we suggest a simple theoretical solution of the Mpemba effect in full agreement with known experimental data. This solution follows simply as an especial approximation (linearization) of the usual heat (transfer) equation, precisely linearization of the second derivation of the space part of the temperature function (as it is well-known Newton cooling law can be considered as the effective approximation of the heat (transfer) equation for constant space part of the temperature function).
Heat transfer enhancement resulting from induction electrohydrodynamic pumping
Margo, Bryan David
1992-01-01T23:59:59.000Z
HEAT TRANSFER ENHANCEMENT RESULTING FROM INDUCTION ELECTROHYDRODYNAMIC PUMPING A Thesis by BRYAN DAVID MARGO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1992 Major Subject: Mechanical Engineering HEAT TRANSFER ENHANCEMENT RESULTING FROM INDUCTION ELECTROHYDRODYNAMIC PUMPING A Thesis by BRYAN DAVID MARGO Approved as to style and content by: Jamal Seyed- Yagoobi (Chair...
Transient Heat Transfer in TCAP Coils
Steimke, J.L.
1999-03-09T23:59:59.000Z
The Thermal Cycling Absorption Process (TCAP) is used to separate isotopes of hydrogen. TCAP involves passing a stream of mixed hydrogen isotopes through palladium deposited on kieselguhr (Pd/k) while cycling the temperature of the Pd/k. Kieselguhr is a silica mineral also called diatomite. To aid in the design of a full scale facility, the Thermal Fluids Laboratory was used by the Chemical and Hydrogen Technology Section to compare the heat transfer properties of three different configurations of stainless steel coils containing kieselguhr and helium. Testing of coils containing Pd/k and hydrogen isotopes would have been more prototypical but would have been too expensive. Three stainless steel coils filled with kieselguhr were tested; one made from 2.0 inch diameter tubing, one made from 2.0 inch diameter tubing with foam copper embedded in the kieselguhr and one made from 1.25 inch diameter tubing. It was known prior to testing that increasing the tubing diameter from 1.25 inch to 2.0 inch would slow the rate of temperature change. The primary purpose of the testing was to measure to what extent the presence of copper foam in a 2.0" tubing coil would compensate for the effect of larger diameter. Each coil was connected to a pressure gage and the coil was evacuated and backfilled with helium gas. Helium was used instead of a mixture of hydrogen isotopes for reasons of safety. Each coil was quickly immersed in a stirred bath of ethylene glycol at a temperature of approximately 100 degrees Celsius. The coil pressure increased, reflecting the increase in average temperature of its contents. The pressure transient was recored as a function of time after immersion. Because of the actual process will use Pd/k instead of kieselguhr, additional tests were run to determine the differences in thermal properties between the two materials. The method was to position a thermocouple at the center of a hollow sphere and pack the sphere with Pd/k. The sphere was sealed, quickly submerged in a bath of boiling water and the temperature transient was recorded. There sphere was then opened, the Pd/k was replaced with kieselguhr and the transient was repeated. The response was a factor of 1.4 faster for Pd/k than for kieselguhr, implying a thermal diffusivity approximately 40 percent higher than for kieselguhr. Another implication is that the transient tests with the coils would have proceeded faster if the coils had been filled with Pd/k rather than kieselguhr.
Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs
Lai, C.H.; Bodvarsson, G.S.; Truesdell, A.H. (Lawrence Berkeley Lab., CA (United States). Earth Sciences Div.)
1994-02-01T23:59:59.000Z
Phase distribution as well as mass flow and heat transfer behavior in two-phase geothermal systems have been studied by numerical modeling. A two-dimensional porous-slab model was used with a non-uniform heat flux boundary conditions at the bottom. Steady-state solutions are obtained for the phase distribution and heat transfer behavior for cases with different mass of fluid (gas saturation) in place, permeabilities, and capillary pressures. The results obtained show very efficient heat transfer in the vapor-dominated zone due to the development of heat pipes and near-uniform saturations. The phase distribution below the vapor-dominated zone depends on permeability. For relatively high-permeability systems, single-phase liquid zones prevail, with convection providing the energy throughput. For lower permeability systems, a two-phase liquid-dominated zone develops, because single-phase liquid convection is not sufficient to dissipate heat released from the source. These results are consistent with observations from the field, where most high-temperature liquid-dominated two-phase systems have relatively low permeabilities e.g. Krafla, Iceland; Kenya; Baca, New Mexico. The numerical results obtained also show that for high heat flow a high-temperature single-phase vapor zone can develop below a typical (240 C) vapor-dominated zone, as has recently been found at the Geysers, California, and Larderello, Italy.
Literature survey of heat transfer enhancement techniques in refrigeration applications
Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics
1994-05-01T23:59:59.000Z
A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.
Scalability of mass transfer in liquid-liquid flow
Woitalka, A.
We address liquid–liquid mass transfer between immiscible liquids using the system 1-butanol and water, with succinic acid as the mass transfer component. Using this system we evaluate the influence of two-phase flow ...
Proceedings of HT2005 2005 ASME Summer Heat Transfer Conference
Aguilar, Guillermo
Proceedings of HT2005 2005 ASME Summer Heat Transfer Conference July 17-22, 2005, San Francisco absorption and increasing the thickness of the protected region. A 2D finite volume numerical code based interface location density (kg m-3 ) 1 Copyright © 2005 by ASME Proceedings of HT2005 2005 ASME Summer Heat
Heat transfer in the plate heat exchanger of an ammonia-synthesis column
Obolentsev, Y.G.; Chus', M.S.; Norobchanskii, O.A.; Teplitshi, Y.S.; Tovazhnyanskii, L.L.
1983-01-01T23:59:59.000Z
The planning and construction of high-capacity synthetic ammonia plants requires the development and fabrication of unique, high unit-power equipment with high technical and economic characteristics. In foreign and domestic practice, tubular heat exchangers with relatively low heat-transfer coefficients are used. Plate heat exchangers are a promising alternative. They are compact and have a high heat energy efficiency and a relatively small metal content. To make an experimental check of the operating capability of a plate heat exchanger under ammonia production conditions, a welded plate heat exchanger was designed for an ammonia synthesis column 800mm in diameter. On prolonged testing (four years), the device provided an autothermal operating mode in the column and the heat transfer coefficient was practically constant for fixed space velocities. Consequently, the heat exchange surface was not contaminated significantly with catalyst dust, confirmed by visual observation of the heat exchanger after disassembly.
Radio frequency (RF) heated supersonic flow laboratory
Wantuck, P.; Watanabe, H.
1990-01-01T23:59:59.000Z
A unique supersonic flow apparatus which employs an inductively-coupled, radio frequency (RF) torch to supply high enthalpy source gas to the nozzle inlet is described. The main features of this system are the plasma tube, a cooled nozzle assembly, and a combustion/expansion chamber with a heat exchanger. A description of these components with current test data is presented. In addition, a discussion of anticipated experiments utilizing this system is included.
Conjugate heat transfer and particle transport in outside vapor deposition process
Choi, M.; Song, Y.; Kang, S.H. [Seoul National Univ., Seoul (Korea, Republic of). Dept. of Mechanical Engineering
1995-07-01T23:59:59.000Z
A numerical study of conjugate heat transfer and particle transport has been carried out for the outside vapor deposition process. A buoyant jet flow impinging on a two-layered cylinder has been analyzed including heat conduction occurring through the two-layered cylinder, which consists of the original target rod and the deposited porous layers. Temperature and flow fields have been obtained by an iterative method, and thermophoretic particle deposition has been studied. Of particular interest are the effects of the thickness of deposited layers, the torch speed, the rotation speed of the cylinder, and the distance between the torch and the cylinder on the heat transfer and particle deposition. Effects of variable properties and tube rotation are also included.
INVESTIGATING THE EFFECT OF HEATING METHOD ON POOL BOILING HEAT TRANSFER
Kandlikar, Satish
INVESTIGATING THE EFFECT OF HEATING METHOD ON POOL BOILING HEAT TRANSFER Satish G. Kandlikar Department Rochester Institute of Technology Rochester, NY, USA Phone: (716) 475-6728; Fax: (716) 475-7710 E-mail: SGKEME@RIT.EDU ABSTRACT Pool boiling experiments are generally conducted with electrically heated
Error Analysis of Heat Transfer for Finned-Tube Heat-Exchanger Text-Board
Chen, Y.; Zhang, J.
2006-01-01T23:59:59.000Z
In order to reduce the measurement error of heat transfer in water and air side for finned-tube heat-exchanger as little as possible, and design a heat-exchanger test-board measurement system economically, based on the principle of test-board system...
Heat transfer to a silicon carbide/water nanofluid.
Yu, W.; France , D. M.; Smith, D. S.; Singh, D.; Timofeeva, E. V.; Routbort, J. L.; Univ. of Illinois at Chicago
2009-07-01T23:59:59.000Z
Heat transfer experiments were performed with a water-based nanofluid containing 170-nm silicon carbide particles at a 3.7% volume concentration and having potential commercial viability. Heat transfer coefficients for the nanofluid are presented for Reynolds numbers ranging from 3300 to 13,000 and are compared to the base fluid water on the bases of constant Reynolds number, constant velocity, and constant pumping power. Results were also compared to predictions from standard liquid correlations and a recently altered nanofluid correlation. The slip mechanisms of Brownian diffusion and thermophoresis postulated in the altered correlation were investigated in a series of heating and cooling experiments.
Thole, Karen A.
Measurements and Predictions of the Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Exchangers Abstract The dominant thermal resistance used to increase heat transfer by initiating new boundary layer growth and increasing surface area
OSCILLATORY FLOW FORCED CONVECTION IN MICRO HEAT SPREADERS
Beskok, Ali
transfer devices, micro heat pipes, based on capillary pumping of a multiphase ¯uid in microchannels, have-phase forced convection heat transfer and ¯ow characteristics of water in microchannels, both in the laminar) concept for ef cient transport of large, concentrated heat loads is introduced. The MHS is a single
Investigation of spectral radiation heat transfer and NO{sub x} emission in a glass furnace
Golchert, B.; Zhou, C. Q.; Chang, S. L.; Petrick, M.
2000-08-02T23:59:59.000Z
A comprehensive radiation heat transfer model and a reduced NOx kinetics model were coupled with a computational fluid dynamics (CFD) code and then used to investigate the radiation heat transfer, pollutant formation and flow characteristics in a glass furnace. The radiation model solves the spectral radiative transport equation in the combustion space of emitting and absorbing media, i.e., CO{sub 2}, H{sub 2}O, and soot and emission/reflection from the furnace crown. The advanced numerical scheme for calculating the radiation heat transfer is extremely effective in conserving energy between radiation emission and absorption. A parametric study was conducted to investigate the impact of operating conditions on the furnace performance with emphasis on the investigation into the formation of NOx.
Modeling of Heat Transfer in Geothermal Heat Exchangers
Cui, P.; Man, Y.; Fang, Z.
2006-01-01T23:59:59.000Z
, University of Lund, Sweden, [7] Fang, Z., Diao, N., and Cui, P., Discontinuous operation of geothermal heat exchangers [J], Tsinghua Science and Technology. , 2002, 7 194?197. [8] Hellstrom, G., Ground heat storage -- Thermal analysis of duct storage... systems [D], Department of Mathem Sweden, 1991. [9] Mei, V. C. and Baxter, V. D., Performance of a ground-coupled heat pump with multiple dissimilar U-tu Transactions, 1986, 92 Part 2, 22-25. [10] Yavuzturk, C., Spitler, J. D. and Rees, S. J., A...
Dutta, S. [Univ. of South Carolina, Columbia, SC (United States); Han, J.C. [Texas A& M Univ., College Station, TX (United States)
1996-08-01T23:59:59.000Z
This paper presents experimental heat transfer results in a two-pass square channel with smooth and ribbed surfaces. The ribs are placed in a staggered half-V fashion with the rotation orthogonal to the channel axis. The channel orientation varies with respect to the rotation plane. A change in the channel orientation about the rotating frame causes a change in the secondary flow structure and associated flow and turbulence distribution. Consequently, the heat transfer coefficient from the individual surfaces of the two-pass square channel changes. The effects of rotation number on local Nusselt number ratio distributions are presented. Heat transfer coefficients with ribbed surfaces show different characteristics in rotation number dependency from those with smooth surfaces. Results show that staggered half-V ribs mostly have higher heat transfer coefficients than those with 90 and 60 deg continuous ribs. 16 refs., 10 figs.
Temperature and Heat Transfer Measurements Cengiz Camci
Camci, Cengiz
mainly because of thermal reasons. Satel- lite thermal management systems, hot sections of propulsion systems, combustors, aerodynamic heating of supersonic/ hypersonicvehiclesurfaces is not meaningful, since there are no agitated particles in empty space. A body in which "thermal agitation
Pool boiling heat transfer characteristics of nanofluids
Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology
2007-01-01T23:59:59.000Z
Nanofluids are engineered colloidal suspensions of nanoparticles in water, and exhibit a very significant enhancement (up to 200%) of the boiling Critical Heat Flux (CHF) at modest nanoparticle concentrations (50.1% by ...
Standard Test Method for Measuring Heat Transfer Rate Using a Thin-Skin Calorimeter
American Society for Testing and Materials. Philadelphia
2005-01-01T23:59:59.000Z
1.1 This test method covers the design and use of a thin metallic calorimeter for measuring heat transfer rate (also called heat flux). Thermocouples are attached to the unexposed surface of the calorimeter. A one-dimensional heat flow analysis is used for calculating the heat transfer rate from the temperature measurements. Applications include aerodynamic heating, laser and radiation power measurements, and fire safety testing. 1.2 Advantages 1.2.1 Simplicity of ConstructionThe calorimeter may be constructed from a number of materials. The size and shape can often be made to match the actual application. Thermocouples may be attached to the metal by spot, electron beam, or laser welding. 1.2.2 Heat transfer rate distributions may be obtained if metals with low thermal conductivity, such as some stainless steels, are used. 1.2.3 The calorimeters can be fabricated with smooth surfaces, without insulators or plugs and the attendant temperature discontinuities, to provide more realistic flow conditions for ...
Active heat transfer enhancement in integrated fan heat sinks
Staats, Wayne Lawrence
2012-01-01T23:59:59.000Z
Modern computer processors require significant cooling to achieve their full performance. The "efficiency" of heat sinks is also becoming more important: cooling of electronics consumes 1% of worldwide electricity use by ...
Research on Convective Heat Transfer and Mass Transfer of the Evaporator in Micro/Mini-Channel
Su, J.; Li, J.
2006-01-01T23:59:59.000Z
on the reviewers on the present household air conditioners, the potential requirements for new heat transfer enhancement used for household air conditioners are discussed. Investigations on condensation and boiling of refrigerants in mini/micro channels have...
Int. Comm. Heat Mass Transfer, Vol. 27, No. 3, pp. 293-302, 2000 Copyright 2000 Elsevier Science Ltd
Zhao, Tianshou
condition were also measured. The results indicated that the porous material has a highly effective two-phase-pentane flowing through a rigid, mono-dispersed fiber's porous media with and without phase change-1933(00)00110-X AN EXPERIMENTAL STUDY OF TWO PHASE FLOW AND BOILING HEAT TRANSFER IN BI-DISPERSED POROUS CHANNELS
Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)
1998-07-21T23:59:59.000Z
Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration.
Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
Phillips, B.A.; Zawacki, T.S.
1998-07-21T23:59:59.000Z
Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.
Plasma actuated heat transfer Subrata Roya
Roy, Subrata
crossflow creating a three-dimensional flow field entraining some hot gas to bend toward the blade range of blowing ratio i.e., momentum ratio of injected air to crossflow . Note that with higher
Forced convective heat transfer in channels with internal longitudinal fins
Ong, Liang Eng
1987-01-01T23:59:59.000Z
and f in surface temperatures (g ? $b), and the local surface heat flux (q"/Q"). The relative amounts of heat transfer from the exposed channel wall, the surface of the fin along the fin axis, and the fin tip are also calculated individually... heat flux on the tip of the fin. 18 4. RESULTS AND DISCUSSION The results of the computational investigation are presented in this section. They consist of the d istr ibut ions of the d imens ionless temperature (4w ? gb), and the heat flux (q"/Q...
Heat transfer coefficients for atmospheric coolers
Robinson, Robert McCollum
1950-01-01T23:59:59.000Z
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 0 6 kppendixo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 110 li Heating System. . ~ ~ ~ ~ ~ . ~ . ? ~ ~ ~ ~ Page ~ . ~ 25 2. Cooling System. . . . . . . ~ ~ ~ ~ ~ 28 3. Outside F11m Coeffioient versus... per Minute. . . . 95 6i Outside Film Coeffioient versus Tube Row Depth; Shell Side Rata, 21 Gallons per Minuteo ~ ~ ~ ~ ~ ~ o ~ e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ Ii ~ ~ o ~ ~ ~ ~ 96 VS Outside F1lm Coeffioient vers1s Tube Row Depth...
A Cross-Flow Ceramic Heat Recuperator for Industrial Heat Recovery
Gonzalez, J. M.; Cleveland, J. J.; Kohnken, K. H.; Rebello, W. J.
1980-01-01T23:59:59.000Z
performance criteria and demonstrate a cross-flow ceramic heat recuperator for high temperature industrial heat recovery applications. The immediate goals of the ceramic recuperator project were to demonstrate a heat exchanger capable of handling high...
Preliminary Heat Transfer Studies for the Double Shell Tanks (DST) Transfer Piping
HECHT, S.L.
2000-02-15T23:59:59.000Z
Heat transfer studies were made to determine the thermal characteristics of double-shell tank transfer piping under both transient and steady-state conditions. A number of design and operation options were evaluated for this piping system which is in its early design phase.
Giant radiation heat transfer through the micron gaps
Nefedov, Igor
2011-01-01T23:59:59.000Z
Near-field heat transfer between two closely spaced radiating media can exceed in orders radiation through the interface of a single black body. This effect is caused by exponentially decaying (evanescent) waves which form the photon tunnel between two transparent boundaries. However, in the mid-infrared range it holds when the gap between two media is as small as few tens of nanometers. We propose a new paradigm of the radiation heat transfer which makes possible the strong photon tunneling for micron thick gaps. For it the air gap between two media should be modified, so that evanescent waves are transformed inside it into propagating ones. This modification is achievable using a metamaterial so that the direct thermal conductance through the metamaterial is practically absent and the photovoltaic conversion of the transferred heat is not altered by the metamaterial.
Nuclear reactor fuel element having improved heat transfer
Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.
1982-03-03T23:59:59.000Z
A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.
Modelling of heat transfer and crystallation kinetics in thermoplastic pultrusion
Carlsson, A.; Astroem, B.T. [Royal Institute of Technology, Stockholm (Sweden)
1996-12-31T23:59:59.000Z
While pultrusion with thermoset resins has been widely analyses, there is a scarcity of knowledge about pultrusion with thermoplastic resins. The objective of the present study is to develop a realistic heat transfer model for the entire thermoplastic pultrusion process, from room temperature prepreg, through preheater and dies, to room temperature composite. The aim is to determine dominating heat transfer mechanisms and to be able to predict residual stresses and crystallinity, which depend on the thermal history of the composite. A complete heat transfer model including crystallization kinetics is presented. Results show reasonably good agreement with experimental data and the model thus provides a tool for process simulations with a variety of processing parameters.
Jackson, J. D. [Univ. of Manchester, Manchester (United Kingdom); Jiang, P. X.; Liu, B. [Tsinghua Univ., Thermal Engineering Dept., Beijing (China)
2012-07-01T23:59:59.000Z
This paper is concerned with buoyancy-influenced turbulent convective heat transfer in vertical tubes for conditions where the physical properties vary strongly with temperature as in fluids at supercritical pressure in the pseudocritical temperature region. An extended physically-based, semi-empirical model is described which has been developed to account for the extreme non-uniformity of properties which can be present in such fluids and lead to strong influences of buoyancy which cause the mean flow and turbulence fields to be modified in such a manner that has a very profound effect on heat transfer. Data for both upward and downward flow from experiments using carbon dioxide at supercritical pressure (8.80, MPa, p/pc=1.19) in a uniformly heated tube of internal diameter 2 mm and length 290 mm, obtained under conditions of strong non-uniformity of fluid properties, are being correlated and fitted using an approach based on the model. It provides a framework for describing the complex heat transfer behaviour which can be encountered in such experiments by means of an equation of simple form. Buoyancy-induced impairment and enhancement of heat transfer is successfully reproduced by the model. Similar studies are in progress using experimental data for both carbon dioxide and water from other sources. The aim is to obtain an in-depth understanding of the mechanisms by which deterioration of heat transfer might arise in sensitive applications involving supercritical pressure fluids, such as high pressure, water-cooled reactors operating above the critical pressure. (authors)
ME 519: THEORY OF HEAT TRANSFER Instructor
Lin, Xi
encountered engineering problems taken from manufacturing, electronics, consumer products, and energy systems series and chart solutions 4.5 (5.35.5) 10/2 2D and 3D unsteady conduction 4.3 (5.8) 6 10/7 Numerical: superposition 9 10/28 Laplace transforms, thermal waves Handout 10/30 Convection: Bulk flow modeling (7
Application of a transient heat transfer model for bundled, multiphase pipelines
Brown, T.S.; Clapham, J.; Danielson, T.J.; Harris, R.G.; Erickson, D.D.
1996-12-31T23:59:59.000Z
A computer model has been developed which accurately describes transient heat transfer in pipeline bundles. An arbitrary number of internal pipelines containing different fluids, flowing in either direction along with the input of heat to one or more of the fluids can be accommodated. The model is coupled to the transient, multiphase flow simulator OLGA. The lines containing the multiphase production fluids are modeled by OLGA, and the heat transfer between the internal lines, carrier pipe, and surroundings is handled by the bundle model. The model has been applied extensively to the design of a subsea, heated bundle system for the Britannia gas condensate field in the North Sea. The 15-km bundle system contains a 14{double_prime} production line, an 8{double_prime} test line, a 3{double_prime} methanol line, and a 12{double_prime} internal heating medium line within a 37.25{double_prime} carrier. The heating medium (water) flows in the internal heating medium line and in the annulus at 82,500 BPD. The primary purpose of the bundle system is to avoid the formation of hydrates. A secondary purpose is to avoid the deposition of paraffin. The bundle model was used to (1) compare the merits of two coaxial lines vs. a single bundle; (2) optimize the insulation levels on the carrier and internal lines; (3) determine the minimum time required to heat up the bundle; (4) determine heat input requirements to avoid hydrates throughout the field life, (5) determine temperature profiles along the lines for a range of production rates; (6) study ruptures of the production line into the bundle annulus; (7) determine minimum temperatures during depressurization; and (8) determine cool-down times. The results of these studies were used to size lines, select insulation levels, assess erosion potential, design for thermal expansion-induced stresses, and to select materials of construction.
Heat transfer education : Keeping it relevant and vibrant.
Khounsary, A. M.
1998-08-14T23:59:59.000Z
The motivation for a fresh look at heat transfer education, both in content and in methodology, is generated by a number of trends in engineering practice. These include the increasing demand for engineers with interdisciplinary skills, rapid integration of technology, emergence of computerized and interactive problem-solving tools, shortening time of concept-to-market, availability of new technologies, and an increasing number of new or redesigned products and processes in which heat transfer plays a part. Examination of heat transfer education in this context can be aided by considering the changes, both qualitatively and quantitatively, in the student, educator, and researcher populations, employment opportunities, in the needs of corporations, government, industry, and universities, and in the relevant technical problems and issues of the day. Such an overview provides the necessary background for charting a response to the difficult question of how to maintain excellence and continuity in heat transfer education in the face of rapid, widespread, and complex changes. The present paper addresses how to make heat transfer education more relevant and stimulating. This paper represents a written summary of a 1996 panel discussion at the 1996 International Mechanical Engineering Conference and Exhibition (IMECE) of the American Society of Mechanical Engineers (ASME) in Atlanta, Georgia, on ''Heat Transfer Education: Keeping it Relevant and Vibrant,'' with significant expansion and amplification by the authors and the panelists in the 1997-98 period. The consensus of the participants is that the steps necessary to ensure the desired outcome in heat transfer education should include: (1) a better understanding of the interaction between the student, course content, and market needs; (2) an appreciation of the need in multidisciplinary industrial environments for engineers trained with a broad background: (3) a revision of the introductory heat transfer course to incorporate illustrative and insightful industrial examples and case studies reducible to order-of-magnitude analyses; (4) a reinforcement of real-world problem-solving abilities in students by introducing them to examples that emphasize multidisciplinary issues in modern thermal management problems and finally (5) industrial collaboration that would provide the educator with meaningful thermal management case studies (and possible funding), the student with an appreciation of industrial practices, and the industrial sponsor with access to academia for assistance in problem solving. Also suggested is an effective regular review program to provide assessment, feedback, and suggestions for quality control to interested institutions on their teaching methodology and materials.
Radiative heat transfer in 2D Dirac materials
Pablo Rodriguez-Lopez; Wang-Kong Tse; Diego A. R. Dalvit
2015-02-02T23:59:59.000Z
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.
Development of a small-channel nucleate-boiling heat transfer correlation
Kasza, K.E.; Wambsganss, M.W.
1994-06-01T23:59:59.000Z
Development of an improved semimechanistic-based set of correlation parameters for nucleation-dominant flow-boiling heat transfer in small channels is described. Formulation of these parameters is on the basis of a recently published open-literature model for vapor bubble growth at a heated surface. This work is part of a program directed at obtaining an understanding of the physical mechanisms that influence boiling in compact heat exchangers through the use of high-speed video and microscope optics to characterize bubble nucleation, growth, and interaction with the confining walls of small heat transfer passages. The correlation parameters presented here represent the first step in the development of an improved boiling correlation for geometrically confined small-channel flows. In such flows, the nucleating bubbles can become nominally the same size as the channel cross section, thereby invalidating existing correlations that are based on large-channel data. Initial efforts to correlate small-channel-boiling data obtained at Argonne National Laboratory from nontransparent electrically heated metal tube tests appear promising.
A simplistic model of cyclic heat transfer phenomena in closed spaces
Lee, K.
1983-08-01T23:59:59.000Z
Cyclic heat transfer inside closed spaces is investigated analytically using a simple heat transfer model. The model consists of a gas layer exchanging heat with two bounding parallel walls that pulsate against each other in the transverse direction. Correlations for the magnitude and the phase lag of the heat transfer are obtained. Also, an expression for the power loss due to the cyclic heat transfer is presented. It is shown that the loss approaches zero as the heat transfer process approaches either isothermal or adiabatic conditions. The power loss is shown to be a strong function of the phase angle between the bulk gas temperature and the heat transfer.
Convective heat transfer inside passive solar buildings
Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.
1983-01-01T23:59:59.000Z
Natural convection between spaces in a building can play a major role in energy transfer. Two situations are investigated: convection through a single doorway into a remote room, and a convective loop in a two-story house with a south sunspace where a north stairway serves as the return path. A doorway-sizing equation is given for the single-door case. Detailed data are given from the monitoring of airflow in one two-story house and summary data are given for five others. Observations on the nature of the airflow and design guidelines are presented.
Convective heat transfer inside passive solar buildings
Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.
1983-11-01T23:59:59.000Z
Natural convection between spaces in a building which play a major role in energy transfer are discussed. Two situations are investigated: Convection through a single doorway into a remote room, and a convective loop in a two story house with a south sunspace where a north stairway serves as the return path. A doorway sizing equation is given for the single door case. Data from airflow monitoring in one two-story house and summary data for five others are presented. The nature of the airflow and design guidelines are presented.
Chiu, Rong-Shi Paul (Glenmont, NY); Hasz, Wayne Charles (Pownal, VT); Johnson, Robert Alan (Simpsonville, SC); Lee, Ching-Pang (Cincinnati, OH); Abuaf, Nesim (Lincoln City, OR)
2002-01-01T23:59:59.000Z
An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.
Direct numerical simulations of convective heat transfer
Pointel, G.; Acharya, S.; Sharma, C. [Louisiana State Univ., Baton Rouge, LA (United States). Mechanical Engineering Dept.
1996-11-01T23:59:59.000Z
This paper deals with the development of a direct numerical simulation (DNS) code for solving the incompressible Navier-Stokes equation using higher order finite difference schemes. The time dependent Navier Stokes equation has been discretized using semi-implicit second order time splitting scheme, which requires the solution of pressure Poisson equation. For this purpose a Galerkin Fourier transform in the spanwise direction and a matrix diagonalization technique is used. The convection terms are formulated in non-conservative form on a collocated grid. A fifth order upwind biased scheme is used for this purpose. Diffusion terms are differenced using a sixth order central difference scheme. The algorithm is implemented on the MasPar MP-1, a Single Instruction Multiple Data computer where efficient data parallelization is used to get DNS results. The code has been used to get results for smooth channel flow at Re{sub {tau}} = 180. Results are now being obtained for the energy equation and for flow in a periodic ribbed channel.
Evaporation and Condensation Heat Transfer Performance of Flammable Refrigerants in a
Oak Ridge National Laboratory
Evaporation and Condensation Heat Transfer Performance of Flammable Refrigerants in a Brazed Plate and Condensation Heat Transfer Performance of Flammable Refrigerants in a Brazed Plate Heat Exchanger Sheila C ........................................................... 8 3. Average relative difference (%) in calculated heat transfer rates for refrigerants and HTF
Radiative heat transfer in a hydrous mantle transition zone Sylvia-Monique Thomas a,n
Jacobsen, Steven D.
Radiative heat transfer in a hydrous mantle transition zone Sylvia-Monique Thomas a,n , Craig R contribute significantly to heat transfer in the mantle and demonstrate the importance of radiative heat, radiative heat transfer was considered relatively unimportant in the mantle. Earlier experimental work
EFFECT OF REACTOR HEAT TRANSFER LIMITATIONS ON CO PREFERENTIAL OXIDATION
Besser, Ronald S.
and conventional packed-bed lab reactors (m-PBR's). Strong evidence has suggested that the reverse water-gas transport limitations of conventional lab reactors [3,4,5,6]: the fast surface chemistry of the exothermic1 EFFECT OF REACTOR HEAT TRANSFER LIMITATIONS ON CO PREFERENTIAL OXIDATION X. Ouyang, R.S. Besser
Integration of Heat Transfer, Stress, and Particle Trajectory Simulation
Thuc Bui; Michael Read; Lawrence ives
2012-05-17T23:59:59.000Z
Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.
RECENT ADVANCES IN HEAT TRANSFER TO HELIUM 1
Paris-Sud XI, UniversitÃ© de
509 RECENT ADVANCES IN HEAT TRANSFER TO HELIUM 1 C. JOHANNES Service de Recherches AppliquÃ©es, L'hÃ©lium hypercritique. Abstract. - Conditions of thermal exchange in helium 1 are reviewed. Pool boiling thermosi- phon are given. Use of hypercritical helium. REVUE DE PHYSIQUE APPLIQUÃ?E TOME 6, DÃ?CEMBRE 1971, PAGE Introduction
Heat transfer in inertial confinement fusion reactor systems
Hovingh, J.
1980-04-23T23:59:59.000Z
The short time and deposition distance for the energy from inertial fusion products results in local peak power densities on the order of 10/sup 18/ watts/m/sup 3/. This paper presents an overview of the various inertial fusion reactor designs which attempt to reduce these peak power intensities and describes the heat transfer considerations for each design.
FINITE ELEMENT METHOD IN FLUID MECHANICS & HEAT TRANSFER
Camci, Cengiz
completed this course should be able to perform quick analysis of small problems using the finite element of Fluid Mechanics and Heat Transfer An Introduction to Finite Element Analysis Using "Galerkin Weak of Euler's Equation in Finite Element Analysis Generalized Form of Euler's Equation in Three Dimensional
Moeykens, S.A. [Trane Co., La Crosse, WI (United States); Newton, B.J. [Univ. of Wisconsin, Madison, WI (United States). Mechanical Engineering Dept.; Pate, M.B. [Iowa State Univ., Ames, IA (United States). Mechanical Engineering Dept.
1995-12-31T23:59:59.000Z
Testing was conducted with R-134a through an overfeed ratio range of 1.4 to 7.9 in order to evaluate the effects of Reynolds number on shell-side heat transfer performance in the spray evaporation environment. The overfeed ratio is defined as the ratio of the refrigerant flow rate supplied to the tube bundle to the refrigerant flow rate that vaporizes. Data were taken with a fixed refrigerant supply rate while varying the shell-side heat flux from 40 kW/m{sup 2} (12,688 Btu/[h{center_dot}ft{sup 2}]) to 19 kW/m{sup 2} (6,027 Btu/[h{center_dot}ft{sup 2}]). Both triangular and square-pitch tube bundles were tested to determine the effects of bundle geometry on heat transfer performance. Two enhanced condensation surfaces, one enhanced boiling surface, and one low-finned surface tube were used in this study. Plain-surface bundle testing was conducted in parallel with the enhanced surface testing to determine the degree of improvement obtained with the different surface enhancements relative to that of a smooth tube. In addition, the effect of bundle depth on heat transfer performance was evaluated. Refrigerant was introduced into the test section with wide-angle, solid-cone nozzles. To determine the amount of refrigerant contacting the tube bundle, collector testing was performed in parallel with the heat transfer analysis experiments. Using results form the collector tests, bundle overfeed ratios were calculated and are reported. Heat transfer performance showed dependence on film-feed supply rate (i.e., overfeed ratio) to varying degrees, depending on the type of surface enhancement. Those surfaces that limited axial flow of the liquid film yielded poor heat transfer performance in lower rows of the bundle. The spray evaporation heat transfer performance for one of the enhanced condensation surfaces was better than the flooded evaporator performance for the enhanced boiling surface.
Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants
Mathur, Anoop [Terrafore Inc.] [Terrafore Inc.
2013-08-14T23:59:59.000Z
A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.
Mass and heat transfer model of Tubular Solar Still
Ahsan, Amimul [University Putra Malaysia, Dept. Civil Engineering, Faculty of Engineering, 43400 UPM Serdang, Selangor (Malaysia); Fukuhara, Teruyuki [University of Fukui, Graduate School of Engineering, 3-9-1 Bunkyo, Fukui 910-8507 (Japan)
2010-07-15T23:59:59.000Z
In this paper, a new mass and heat transfer model of a Tubular Solar Still (TSS) was proposed incorporating various mass and heat transfer coefficients taking account of the humid air properties inside the still. The heat balance of the humid air and the mass balance of the water vapor in the humid air were formulized for the first time. As a result, the proposed model enabled to calculate the diurnal variations of the temperature, water vapor density and relative humidity of the humid air, and to predict the hourly condensation flux besides the temperatures of the water, cover and trough, and the hourly evaporation flux. The validity of the proposed model was verified using the field experimental results carried out in Fukui, Japan and Muscat, Oman in 2008. The diurnal variations of the calculated temperatures and water vapor densities had a good agreement with the observed ones. Furthermore, the proposed model can predict the daily and hourly production flux precisely. (author)
Near-field heat transfer between gold nanoparticle arrays
Phan, Anh D., E-mail: anhphan@mail.usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 10000 (Viet Nam); Phan, The-Long, E-mail: ptlong2512@yahoo.com [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Woods, Lilia M. [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)
2013-12-07T23:59:59.000Z
The radiative heat transfer between gold nanoparticle layers is presented using the coupled dipole method. Gold nanoparticles are modelled as effective electric and magnetic dipoles interacting via electromagnetic fluctuations. The effect of higher-order multipoles is implemented in the expression of electric polarizability to calculate the interactions at short distances. Our findings show that the near-field radiation reduces as the radius of the nanoparticles is increased. Also, the magnetic dipole contribution to the heat exchange becomes more important for larger particles. When one layer is displayed in parallel with respect to the other layer, the near-field heat transfer exhibits oscillatory-like features due to the influence of the individual nanostructures. Further details about the effect of the nanoparticles size are also discussed.
Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces
Betz, Amy Rachel; Kim, Chang-Jin 'CJ'; Attinger, Daniel
2012-01-01T23:59:59.000Z
With recent advances in micro- and nanofabrication, superhydrophilic and superhydrophobic surfaces have been developed. The statics and dynamics of fluids on these surfaces have been well characterized. However, few investigations have been made into the potential of these surfaces to control and enhance other transport phenomena. In this article, we characterize pool boiling on surfaces with wettabilities varied from superhydrophobic to superhydrophilic, and provide nucleation measurements. The most interesting result of our measurements is that the largest heat transfer coefficients are reached not on surfaces with spatially uniform wettability, but on biphilic surfaces, which juxtapose hydrophilic and hydrophobic regions. We develop an analytical model that describes how biphilic surfaces effectively manage the vapor and liquid transport, delaying critical heat flux and maximizing the heat transfer coefficient. Finally, we manufacture and test the first superbiphilic surfaces (juxtaposing superhydrophobic ...
Heat-flow reconnaissance of the Gulf Coastal Plain
Smith, D.L.; Shannon, S.S. Jr.
1982-04-01T23:59:59.000Z
Most of the 46 new values of heat flow determined for the Gulf Coastal Plain are in the low to normal range, but heat-flow values averaging 1.8 heat-flow unit (HFU) were obtained in Claiborne, Ouachita, and Union parishes, Louisiana. Moreover, a zone of relatively high heat-flow values and steep thermal gradients (35 to 46/sup 0/C/km) extends from northern Louisiana into southwestern Mississippi. Also near Pensacola, Florida, temperatures of 50/sup 0/C at 1-km depth have been extrapolated from thermal gradients. Future development of low-grade geothermal resources may be warranted in these areas.
Heat flow and microearthquake studies, Coso Geothermal Area,...
Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Heat flow and microearthquake studies, Coso Geothermal Area, China Lake, California....
Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids
Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert
2013-07-22T23:59:59.000Z
Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.
Heat transfer augmentation in a rectangular channel with slit rib-turbulators on two opposite walls
Hwang, J.J. [Chung-Hua Polytechnic Inst., Hsinchu (Taiwan, Province of China). Dept. of Mechanical Engineering; Liou, T.M. [National Tsing-Hua Univ., Hsinchu (Taiwan, Province of China). Dept. of Power Mechanical Engineering
1997-07-01T23:59:59.000Z
The effect of slit ribs on heat transfer and friction in a rectangular channel is investigated experimentally. The slit ribs are arranged in-line on two opposite walls of the channel. Three rib open-area ratios ({beta} = 24, 37, and 46%), three rib pitch-to-height ratios (Pi/H = 10, 20, and 30), and two rib height-to-channel hydraulic diameter ratios (H/De = 0.081, and 0.162) are examined. The Reynolds number ranges from 10,000 to 50,000. Laser holographic interferometry is employed to measure the local heat transfer coefficients of the ribbed wall quantitatively, and observe the flow over the ribbed wall qualitatively. The results show that the slit rib has an advantage of avoiding hot spots. In addition, the heat transfer performance of the slit-ribbed channel is much better than that of the solid-ribbed channel. Semi-empirical correlations for friction and heat transfer are developed to account for rib spacings and open-area ratios. These correlations may be used in the design of turbine blade cooling passages.
Zhang, Yuwen
transfer Non-equilibrium Dual-phase lag a b s t r a c t Based on a nonequilibrium heat transfer model
Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas-
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategyHayes CenterHearthStone HomesOregon,
Proceedings of NHTC'00 34th National Heat Transfer Conference
Wang, Chao-Yang
the stack to remove the excess heat (around 4% of the available electrical power). Theoretical calculations to the stack for reacting (around 16% of the available electrical power) and pumping coolant water through of the coolant relative to the anode flow direction are assessed in the context of the thermal management of PEM
Jet impingement heat transfer in two-pass rotating rectangular channels
Zhang, Yuming
1996-01-01T23:59:59.000Z
The combined effects of rotation and jet impingement on local heat transfer in a two-pass rotating rectangular channel is studied. The results of an experimental investigation on the surface heat transfer coefficients under a perforated plate...
Heat transfer during film condensation of potassium vapor on a horizontal plate
Meyrial, Paul M.
1968-01-01T23:59:59.000Z
The object of the investigation is to analyze the following two features of heat transfer during condensation of potassium vapor: a. Heat transfer during film condensation of a pure saturated potassium vapor on a horizontal ...
Remote administration and user experience evaluation of the iLab Heat Transfer Project site
Graham, Rodney K
2006-01-01T23:59:59.000Z
The iLab Heat Transfer Project provides a means for students to remotely execute, via a web interface, experiments related to the topic of heat transfer. The website associated with this project provides instructors with ...
Modeling of fuel-to-steel heat transfer in core disruptive accidents
Smith, Russell Charles
1980-01-01T23:59:59.000Z
A mathematical model for direct-contact boiling heat transfer between immiscible fluids was developed and tested experimentally. The model describes heat transfer from a hot fluid bath to an ensemble of droplets of a cooler ...
Measurements of Heat Transfer Coefficients to Cylinders in Shallow Bubble Columns
Tow, Emily W.
High heat transfer coefficients and large interfacial areas make bubble columns ideal for dehumidification. However, the effect of geometry on the heat transfer coefficients outside cooling coils in shallow bubble columns, ...
air-side heat transfer: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
space to satisfy the space cooling load (free cooling... Shami, U. F. 1996-01-01 12 HEAT TRANSFER ANALYSIS OF A PULSE DETONATION Engineering Websites Summary: HEAT TRANSFER...
Heat transfer rates for filmwise, dropwise, and superhydrophobic condensation on silicon substrates
Hery, Travis M
2011-01-01T23:59:59.000Z
Condensation, a two-phase heat transfer processes, is commonly utilized in industrial systems. Condensation heat transfer can be optimized by using surfaces in which dropwise condensation (DWC) occurs, and even further ...
Applications of the Strong Heat Transformation by Pulse Flow in the Shell and Tube Heat Exchanger
Chen, Y.; Zhao, J.
2006-01-01T23:59:59.000Z
This article deals with the heat exchange coefficient varied with pulse frequency in the pulsation tube with different flow forms. The findings show that heat can be exchanged coefficient with the pulse frequency, and it has an optimal frequency...
Applications of the Strong Heat Transformation by Pulse Flow in the Shell and Tube Heat Exchanger
Chen, Y.; Zhao, J.
2006-01-01T23:59:59.000Z
This article deals with the heat exchange coefficient varied with pulse frequency in the pulsation tube with different flow forms. The findings show that heat can be exchanged coefficient with the pulse frequency, and it has an optimal frequency...
McDowell, M.W.; Murray, K.A.
1984-05-09T23:59:59.000Z
A conceptual heat transfer loop and balance of plant design for the Pulse*Star Inertial Confinement Fusion Reactor has been investigated and results are presented. The Pulse*Star reaction vessel, a perforated steel bell jar approximately 11 m in diameter, is immersed in Li/sub 17/Pb/sub 83/ coolant which flows through the perforations and forms a 1.5 m thick plenum of droplets around an 8 m diameter inner chamber. The reactor and associated pumps, piping, and steam generators are contained within a 17 m diameter pool of Li/sub 17/Pb/sub 83/ coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops with flow rates of 5.5 m/sup 3//s each are necessary to transfer 3300 MWt of power. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. Power balance calculations based on an improved electrical conversion efficiency revealed a net electrical output of 1260 MWe to the bus bar and a resulting net efficiency of 39%. Suggested balance-of-plant layouts are also presented.
MODELING OF HEAT TRANSFER IN ROOMS IN THE MODELICA "BUILDINGS" LIBRARY
describes the implementation of the room heat transfer model in the free open-source Modelica "Buildings
A Numerical Study of a 3D Bioheat Transfer Problem with Different Spatial Heating \\Lambda
Zhang, Jun
, and thermal parameter estimation. 1 #12; 2 Heat Transfer Model Figure 1 reflects a typical cancer hyperthermia
Calculating Radiative Heat Transfer in an Axisymmetric Closed Chamber: An Application
New York at Stoney Brook, State University of
the parallelization of the radiative heat transfer model introduced by Naraghi and Nunes of Manhattan College [8
Heat transfer modeling of dry spent nuclear fuel storage facilities
Lee, S.Y.
1999-07-01T23:59:59.000Z
The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geologic codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geologic repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.
Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities
Lee, S.Y.
1999-01-13T23:59:59.000Z
The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.
Chen, Du; Bogy, David B.
2010-01-01T23:59:59.000Z
Bogy, D.B. : A heat transfer model for thermal ?uctuation inA phenomenological heat transfer model for the molecular gasA generalized heat transfer model for thin ?lm bearings at
HEAT TRANSFER ON A HYPERSONIC SPHERE WITH DIFFUSE RAREFIED-GAS INJECTION
Riabov, Vladimir V.
HEAT TRANSFER ON A HYPERSONIC SPHERE WITH DIFFUSE RAREFIED-GAS INJECTION Vladimir V. Riabov* Rivier numbers Re0,R.3-7 Mass injection can be considered as an effective way of the reduction of heat transfer in the case of small Reynolds numbers. Moss12 found that mass injection dramatically reduces heat transfer
Heat Transfer Engineering, 27(5):2338, 2006 Copyright C Taylor and Francis Group, LLC
Ghajar, Afshin J.
Heat Transfer Engineering, 27(5):2338, 2006 Copyright C Taylor and Francis Group, LLC ISSN: 0145-7632 print / 1521-0537 online DOI: 10.1080/01457630600559538 Transitional Heat Transfer in Plain Horizontal, Oklahoma, USA In this study, the heat transfer behavior in the transition region for plain horizontal tubes
Proceedings of HT2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference
Ghajar, Afshin J.
Proceedings of HT2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference July 8-12, 2007, Vancouver, British Columbia, CANADA HT2007-32219 VALIDATION OF A GENERAL HEAT TRANSFER, Stillwater, OK 74078, USA E-mail: ghajar@ceat.okstate.edu ABSTRACT A general heat transfer correlation
Scaling of Heat Transfer Coefficients Along Louvered Fins A. C. Lyman1
Thole, Karen A.
1 Scaling of Heat Transfer Coefficients Along Louvered Fins A. C. Lyman1 , R. A. Stephan2 , and K 23681-2199 #12;2 Abstract Louvered fins provide a method for improving the heat transfer performance for evaluating the spatially-resolved louver heat transfer coefficients using various reference temperatures
Assignment 6: Heat Transfer Page 1 of 8 600.112: Introduction to Programming
Fröhlich, Peter
Assignment 6: Heat Transfer Page 1 of 8 600.112: Introduction to Programming for Scientists and Engineers Assignment 6: Heat Transfer Peter H. Fr¨ohlich phf@cs.jhu.edu Joanne Selinski joanne to Programming for Scientists and Engineers is all about heat transfer and how to simulate it. There are three
Heat transfer in soft nanoscale interfaces: the influence of interface curvature
Kjelstrup, Signe
Heat transfer in soft nanoscale interfaces: the influence of interface curvature Anders Lervik transient non-equilibrium molecular-dynamics simulations, heat-transfer through nanometer-scale interfaces processes. We show that the modeling of heat transfer across a nanodroplet/fluid interface requires
A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer
Bennett, Albert F.
A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer Reprinted: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer A unique specimen of gopher snake of pulmocutaneous water loss and heat transfer, no difference was observed between the scale- less animal
Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth
Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth C, in particular, on its variation with the wavelength of convection. The heat transfer strongly depends in Earth's mantle can significantly reduce the efficiency of heat transfer. The likely variations
Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate Stphane Lefvre
Boyer, Edmond
Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate Stéphane Lefèvre Laboratoire d three heat transfer modes with experimental data and modeling. We conclude that the three modes in "International Journal of Heat and Mass Transfer 49, 1-2 (2006) 251-258" DOI : 10.1016/j.ijheatmasstransfer.2005
Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped Emmanuel Rousseau
Paris-Sud XI, Université de
Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped silicon the role of surface plasmons for nanoscale radiative heat transfer between doped silicon surfaces. We derive a new accurate and closed-form expression of the radiative near- field heat transfer. We also
Heat Transfer on a Hypersonic Sphere with Gas Injection Vladimir V. Riabov
Riabov, Vladimir V.
Heat Transfer on a Hypersonic Sphere with Gas Injection Vladimir V. Riabov Department be considered as an effective way of the reduction of heat transfer to the surface in this area [1 the viscous layer is blown completely off the surface, and heat transfer is zero. The effect of injecting
Âdifferential equations that model steadyÂstate combined conductiveÂradiative heat transfer. This system of equationsÂBrakhage algorithm. Key words. conductiveÂradiative heat transfer, multilevel algorithm, compact fixed point problems integroÂdifferential equations that model steadyÂstate combined conductiveÂradiative heat transfer
Nonaqueous purification of mixed nitrate heat transfer media
Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)
1983-12-20T23:59:59.000Z
A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.
Boiling heat transfer with three fluids in small circular and rectangular channels
Tran, T.N.; Wambsganss, M.W. [Argonne National Lab., IL (United States); France, D.M. [Illinois Univ., Chicago, IL (United States). Dept. of Mechanical Engineering
1995-01-01T23:59:59.000Z
Small circular and noncircular channels are representative of flow passages act evaporators and condensers. This report describes results of an ental study on heat transfer to the flow boiling of refrigerants (R-12) and refrigerant-134a (R-134a) in a small horizontal circular-cross-section tube. The tube diameter of 2.46 mm was chosen to approximate the hydraulic diameter of a 4.06 {times} 1.70 mm rectangular channel previously studied with R-12, and a 2.92-mm-diameter circular tube previously studied with R-113. The objective of this study was to assess the effects of channel geometry and fluid properties on the heat transfer coefficient and to obtain additional insights relative to the heat transfer mechanism(s). The current circular flow channel for the R-12 and R-134a tests was made of brass and had an overall length of 0.9 in. The channel wall was electrically heated, and thermocouples were installed on the channel wall and in the bulk fluid stream. Voltage taps were located at the same axial locations as the stream thermocouples to allow testing over an exit quality range to 0.94 and a large range of mass flux (58 to 832 kg/m{sup 2}s) and heat flux (3.6 to 59 kW/m{sup 2}). Saturation pressure was nearly constant, averaging 0.82 MPa for most of the testing, with some tests performed at a lower pressure of 0.4--0.5 MPa. Local heat transfer coefficients were determined experimentally as a function of quality along the length of the test section. Analysis of all data for three tubes and three fluids supported the conclusion that a nucleation mechanism dominates for flow boiling in small channels. Nevertheless, a convection-dominant region was obtained experimentally in this study at very low values of wall superheat (< {approx} 2.75{degrees}C). The circular and rectangular tube data for three fluids were successfully correlated in the nucleation-dominant region.
HEAT TRANSFER ANALYSIS FOR NUCLEAR WASTE SOLIDIFICATION CONTAINER
Lee, S.
2009-06-01T23:59:59.000Z
The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum. Detailed results and the cases considered in the calculations will be discussed here.
Heat transfer and friction characteristics in rectangular channels with rib turbulators
Han. J.C. (Texas A and M Univ., College Station (USA))
1988-05-01T23:59:59.000Z
The effect of the channel aspect ratio on the distribution of the local heat transfer coefficient in rectangular channels with two opposite ribbed walls (to simulate turbine airfoil cooling passages) was determined for a Reynolds number range of 10,000 to 60,000. The channel width-to-height ratios (W/H, ribs on side W) were 1/4, 1/2, 1, 2, and 4. The test channels were heated by passing current through thin, stainless steel foils instrumented with thermocouples. The local heat transfer coefficients on the ribbed side wall and on the smooth side wall of each test channel from the channel entrance to the fully developed regions were measured for two rib spacings (P/e = 10 and 20). The rib angle-of-attack was kept at 90 deg. The local data in the fully developed region were averaged and correlated, based on the heat transfer and friction similarity laws developed for ribbed channels, to cover the ranges of channel aspect ratio, rib spacing, rib height, and Reynolds number. The results compare well with the published data for flow in a square channel with two opposite ribbed walls. The correlations can be used in the design of turbine airfoil cooling passages.
Heat Transfer in Rectangular Channels (AR=2:1) of the Gas Turbine Blade at High Rotation Numbers
Lei, Jiang 1980-
2011-08-03T23:59:59.000Z
, the flow direction is radial inward. The hydraulic diameter (Dh) of the channel is 16.9 mm. Parallel square ribs with an attack angle (alpha) of 45 degrees are used on leading and trailing surfaces to enhance the heat transfer. The rib height...
Rajesh, Gopal
1994-01-01T23:59:59.000Z
Liquid crystal experiments have been conducted to study the turbulent heat transfer for fully developed flow of air in a two-pass square channel with two opposite walls roughened with parallel and cross arrays of full ribs and with V-shaped ribs...
Chiasson, A.D.; Rees, S.J.; Spitler, J.D.
2000-07-01T23:59:59.000Z
A preliminary study has been made of the effects of groundwater flow on the heat transfer characteristics of vertical closed-loop heat exchangers and the ability of current design and in-situ thermal conductivity measurement techniques to deal with these effects. It is shown that an initial assessment of the significance of groundwater flow can be made by examining the Peclet number of the flow. A finite-element numerical groundwater flow and heat transfer model has been used to simulate the effects of groundwater flow on a single closed-loop heat exchanger in various geologic materials. These simulations show that advection of heat by groundwater flow significantly enhances heat transfer in geologic materials with high hydraulic conductivity, such as sands, gravels, and rocks exhibiting fractures and solution channels. Simulation data were also used to derive effective thermal conductivities with an in-situ thermal conductivity estimation procedure. These data were used to design borehole fields of different depths for a small commercial building. The performance of these borehole field designs was investigated by simulating each borehole field using the pre-calculated building loads over a ten-year period. Results of these simulations, in terms of the minimum and peak loop temperatures, were used to examine the ability of current design methods to produce workable and efficient designs under a range of groundwater flow conditions.
Modeling of Heat and Mass Transfer in Fusion Welding
Zhang, Wei [ORNL
2011-01-01T23:59:59.000Z
In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.
Molten salt as a heat transfer fluid for heating a subsurface formation
Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)
2010-11-16T23:59:59.000Z
A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.
Choi, M.; Greif, R. (Univ. of California, Berkeley (United States)); Baum, H.R. (National Inst. of Standards and Technology, Gaithersburg, MD (United States))
1989-11-01T23:59:59.000Z
Heat transfer and particle motion relative to the modified chemical vapor deposition process have been studied for general values of the torch speed. Three-dimensional temperature fields have been obtained over the entire cross section of the tube and the effects of tube rotation and localized torch heating in the axial and circumferential directions have been studied. The particle trajectories have been calculated from a formulation that includes the contributions from forced flow, i.e., Poiseuille flow in the axial direction, rigid body rotation about the tube axis, and thermophoretic contributions in the axial, radial, and angular directions. The particle trajectories are helices and are shown to be strongly dependent on the tube rotation.
Coupled computational fluid dynamics and heat transfer analysis of the VHTR lower plenum.
El-Genk, Mohamed S. (University of New Mexico, Albuquerque, NM); Rodriguez, Salvador B.
2010-12-01T23:59:59.000Z
The very high temperature reactor (VHTR) concept is being developed by the US Department of Energy (DOE) and other groups around the world for the future generation of electricity at high thermal efficiency (> 48%) and co-generation of hydrogen and process heat. This Generation-IV reactor would operate at elevated exit temperatures of 1,000-1,273 K, and the fueled core would be cooled by forced convection helium gas. For the prismatic-core VHTR, which is the focus of this analysis, the velocity of the hot helium flow exiting the core into the lower plenum (LP) could be 35-70 m/s. The impingement of the resulting gas jets onto the adiabatic plate at the bottom of the LP could develop hot spots and thermal stratification and inadequate mixing of the gas exiting the vessel to the turbo-machinery for energy conversion. The complex flow field in the LP is further complicated by the presence of large cylindrical graphite posts that support the massive core and inner and outer graphite reflectors. Because there are approximately 276 channels in the VHTR core from which helium exits into the LP and a total of 155 support posts, the flow field in the LP includes cross flow, multiple jet flow interaction, flow stagnation zones, vortex interaction, vortex shedding, entrainment, large variation in Reynolds number (Re), recirculation, and mixing enhancement and suppression regions. For such a complex flow field, experimental results at operating conditions are not currently available. Instead, the objective of this paper is to numerically simulate the flow field in the LP of a prismatic core VHTR using the Sandia National Laboratories Fuego, which is a 3D, massively parallel generalized computational fluid dynamics (CFD) code with numerous turbulence and buoyancy models and simulation capabilities for complex gas flow fields, with and without thermal effects. The code predictions for simpler flow fields of single and swirling gas jets, with and without a cross flow, are validated using reported experimental data and theory. The key processes in the LP are identified using phenomena identification and ranking table (PIRT). It may be argued that a CFD code that accurately simulates simplified, single-effect flow fields with increasing complexity is likely to adequately model the complex flow field in the VHTR LP, subject to a future experimental validation. The PIRT process and spatial and temporal discretizations implemented in the present analysis using Fuego established confidence in the validation and verification (V and V) calculations and in the conclusions reached based on the simulation results. The performed calculations included the helicoid vortex swirl model, the dynamic Smagorinsky large eddy simulation (LES) turbulence model, participating media radiation (PMR), and 1D conjugate heat transfer (CHT). The full-scale, half-symmetry LP mesh used in the LP simulation included unstructured hexahedral elements and accounted for the graphite posts, the helium jets, the exterior walls, and the bottom plate with an adiabatic outer surface. Results indicated significant enhancements in heat transfer, flow mixing, and entrainment in the VHTR LP when using swirling inserts at the exit of the helium flow channels into the LP. The impact of using various swirl angles on the flow mixing and heat transfer in the LP is qualified, including the formation of the central recirculation zone (CRZ), and the effect of LP height. Results also showed that in addition to the enhanced mixing, the swirling inserts result in negligible additional pressure losses and are likely to eliminate the formation of hot spots.
Triplett, C.E.
1996-12-01T23:59:59.000Z
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.
Edwards, Bronwyn K
2009-01-01T23:59:59.000Z
An experimental study was performed to determine thermal performance and adhesion effects of a combined nanoparticle and polymeric dispersion coating. The critical heat flux (CHF) values and nucleate boiling heat transfer ...
Barr and Showman: Heat Transfer in Europa's Icy Shell 405 Heat Transfer in Europa's Icy Shell
Europa's ice shell controls the thermal evolution of its interior and provides a source of energy surface features with steady-state thermal convection is challeng- ing, even with tidal heating, because convects, can the ocean be thermodynamically stable? What role might compositional heterogeneity play
Shugo Yasuda; Ryoichi Yamamoto
2014-07-16T23:59:59.000Z
The synchronized molecular dynamics simulation via macroscopic heat and momentum transfer is proposed for the non-isothermal flow behaviors of complex fluids. In this method, the molecular dynamics simulations are assigned to small fluid elements to calculate the local stresses and temperatures and are synchronized at certain time intervals to satisfy the macroscopic heat- and momentum- transport equations. This method is applied to the lubrication of a polymeric liquid composed of short chains with ten beads between parallel plates. The rheological properties and conformation of polymer chains coupled with the local viscous heating are investigated with a non-dimensional parameter, i.e., the Nahme-Griffith number, which is defined by the ratio of the viscous heating to the thermal conduction at the characteristic temperature required to sufficiently change the viscosity. The present simulation demonstrates that strong shear thinning and transitional behavior of the conformation of the polymer chains occur with a rapid temperature rise when the Nahme-Griffith number exceeds unity. The results also clarify that the reentrant transition of the linear stress-optical relation occurs for large shear stresses due to the coupling of the conformation of polymer chains and heat generation under shear flows.
Experimental study on corrugated cross-flow air-cooled plate heat exchangers
Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang [Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea); Lim, Hyug [Research and Development Center, LHE Co., Ltd., Gimhae 621-874 (Korea)
2010-11-15T23:59:59.000Z
Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)
Grant L. Hawkes; James E. O'Brien; Greg Tao
2011-11-01T23:59:59.000Z
A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.
Study of local heat/mass transfer distributions in multipass channels for turbine blade cooling
Chandra, P.R.
1987-01-01T23:59:59.000Z
The heat transfer and friction characteristics of turbulent air flow in a two-pass square channel were experimentally investigated via the naphthalene sublimation technique. The test section, which consists of two straight square channels joined by a sharp 180/sup 0/ turn, simulates the internal cooling passages of gas-turbine airfoils. The top and bottom surfaces of the test channel were roughened by rib turbulators. The effects of Reynolds number (between 10,000 and 60,000), rib pitch-to-height ratio (P/e = 10 and 20), rib height-to-hydraulic diameter ratio (e/D = 0.063 and 0.094) and rib angle-of-attack (..cap alpha.. = 90/sup 0/, 60/sup 0/ and 45/sup 0/) were studied. The local heat transfer coefficients were measured both on the ribbed side walls and on the smooth side walls along the channel. The friction factors in the before-turn, in-turn, and after-turn regions were also calculated. Average Sherwood number ratios and average friction results were correlated and compared with the published heat transfer and pressure drop data.
Effect of permeable ribs on heat transfer and friction in a rectangular channel
Hwang, J.J. [Chung-Hua Polytechnic Inst., Hsinchu (Taiwan, Province of China). Dept. of Mechanical Engineering; Liou, T.M. [National Tsing Hua Univ., Hsinchu (Taiwan, Province of China). Dept. of Power Mechanical Engineering
1995-04-01T23:59:59.000Z
To increase specific thrust and to reduce specific fuel consumption (SFC), high turbine entry gas temperature (1,400--1,600 C) has become the trend in advanced aero-engine design. Such a high gas temperature is far above the allowable metal temperature; therefore, turbine blades must be cooled in order to operate in the high gas temperature environment. Heat transfer and friction characteristics in a rectangular channel with perforated ribs arranged in-line on two opposite walls are investigated experimentally. Five perforated rib open-area ratios (0, 10, 22, 38, and 44%) and three rib pitch-to-height ratios (10, 15, and 20) are examined. The Reynolds number ranges from 5,000 to 50,000. The rib height-to-channel hydraulic diameter ratio and the channel aspect ratio are 0.081 and 4, respectively. Laser holographic interferometry is employed not only to measure the heat transfer coefficients of the ribbed wall but also to determine the rib apparent permeability. It is found that ribs with appropriate high open-area ratio and high Reynolds number are permeable, and the critical Reynolds number for evidence of flow permeability decreases with increasing rib open-area ratio. Results of local heat transfer coefficients further show that the permeable ribs have an advantage of obviating hot spots. Moreover, the duct with permeable ribs gives a higher thermal performance than that with solid ribs.
Thermophoretic transport of particles that act as volumetric heat sources in natural convection flow
Conklin, J.C.; Krane, R.J. (Oak Ridge National Lab., TN (USA); Tennessee Univ., Knoxville, TN (USA). Dept. of Mechanical and Aerospace Engineering)
1989-01-01T23:59:59.000Z
The natural convection boundary layer with suspended heat generating aerosol particles adjacent to a cooled, isothermal, vertical wall was investigated for the following circumstances: laminar and turbulent flow, large temperature differences between the wall and the fluid, stable thermal stratification far from the wall, and fluid participation in thermal radiation heat transfer. The deposition of aerosol particles by thermophoresis was investigated. A scaling analysis showed the negligible effect inside the boundary layer of the particulate heat source strengths of practical interest. Only the temperature of the fluid far from the wall is affected appreciably by the heat sources. The scaled boundary layer differential equations are transformed to a nonsimilarity form for numerical solution using two different methods. An expression for the ratio of mass transfer to heat transfer coefficients was developed to simplify the computation of thermophoretic particle deposition at the wall for the case of constant temperature conditions far from the wall. Variable thermophysical property effect for the three gases of steam, air, and hydrogen were investigated. A dimensionless ratio of transfer coefficients for large temperature differences and turbulent flow was computed as a product of the laminar constant property results and a ratio of the known thermophysical properties at the wall and far from the wall. An approximation of the laminar constant property results for all three gases is developed in terms of the known wall and fluid temperatures, Prandtl number, and a thermophoretic constant. This allows particle deposition to be computed from a known heat transfer coefficient without explicitly solving the particle conservation equation. 120 refs., 29 figs., 21 tabs.
TOPAZ3D. 3-D Finite Element Heat Transfer
Shapiro, A.B. [Lawrence Livermore National Lab., CA (United States)
1992-02-24T23:59:59.000Z
TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.
Flexible profile approach to the conjugate heat transfer problem
M. -N. Sabry
2008-01-07T23:59:59.000Z
The flexible profile approach proposed earlier to create CTM (compact or reduced order thermal models) is extended to cover the area of conjugate heat transfer. The flexible profile approach is a methodology that allows building a highly boundary conditions independent CTM, with any desired degree of accuracy, that may adequately replace detailed 3D models for the whole spectrum of applications in which the modeled object may be used. The extension to conjugate problems radically solves the problem of interfacing two different domains. Each domain, fluid or solid, can be "compacted" independently creating two CTM that can be joined together to produce reliable results for any arbitrary set of external boundary conditions.
Low-melting point inorganic nitrate salt heat transfer fluid
Bradshaw, Robert W. (Livermore, CA); Brosseau, Douglas A. (Albuquerque, NM)
2009-09-15T23:59:59.000Z
A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.
Grid-independent Issue in Numerical Heat Transfer
Yao Wei; Wang Jian; Liao Guangxuan
2006-09-26T23:59:59.000Z
Grid independent is associated with the accuracy or even rationality of numerical results. This paper takes two-dimensional steady heat transfer for example to reveal the effect of grid resolution on numerical results. The law of grid dependence is obtained and a simple mathematical formula is presented. The production acquired here can be used as the guidance in choosing grid density in numerical simulation and get exact grid independent value without using infinite fine grid. Through analyzing grid independent, we can find the minimum number of grid cells that is needed to get grid-independent results. Such strategy can save computational resource while ensure a rational computational result.
Heat Transfer in GE Jet Engines | GE Global Research
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat Transfer in GE Jet Engines Click to
Enhanced convective and film boiling heat transfer by surface gas injection
Duignan, M.R.; Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Irvine, T.F., Jr. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering
1992-04-01T23:59:59.000Z
Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.
Enhanced convective and film boiling heat transfer by surface gas injection
Duignan, M.R.; Greene, G.A. (Brookhaven National Lab., Upton, NY (United States)); Irvine, T.F., Jr. (State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering)
1992-04-01T23:59:59.000Z
Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.
Temperatures, heat flow, and water chemistry from drill holes...
Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...
Ballistic vs. diffusive heat transfer across nanoscopic films of layered crystals
Shen, Meng; Keblinski, Pawel, E-mail: keblip@rpi.edu [Department of Materials Science and Engineering, and Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)
2014-04-14T23:59:59.000Z
We use non-equilibrium molecular dynamics to study the heat transfer mechanism across sandwich interfacial structures of Si/n-atomic-layers/Si, with 1???n???20 and atomic layers composed of WSe{sub 2} and/or graphene. In the case of WSe{sub 2} sheets, we observe that the thermal resistance of the sandwich structure is increasing almost linearly with the number of WSe{sub 2} sheets, n, indicating a diffusive phonon transport mechanism. By contrast in the case of n graphene layers, the interfacial thermal resistance is more or less independent on the number of layers for 1???n???10, and is associated with ballistic phonon transport mechanism. We attribute the diffusive heat transfer mechanism across WSe{sub 2} sheets to abundant low frequency and low group velocity optical modes that carry most of the heat across the interface. By contrast, in graphene, acoustic modes dominate the thermal transport across the interface and render a ballistic heat flow mechanism.
Rheology and Convective Heat Transfer of Colloidal Gas Aphrons in Horizontal Minichannels
Tseng, H.; Pilon, L.; Warrier, G.
2006-01-01T23:59:59.000Z
volumetric flow rates and heat input of 2.68×10 -6 m 3 /s attime for different heat input but identical pump setting.per channel, m 3 /s total heat input in the five channels, W
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 14, No. 4, OctoberDecember 2000
Guo, Zhixiong "James"
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER Vol. 14, No. 4, OctoberÂDecember 2000 Multidimensional are optical tomographyof tissue, remote sensing of oceansand atmospheres, laser material processing radiative heat transfer in participat- ing media in recent years. However, the analysis of radiative heat
HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME
Boyer, Edmond
1 HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME P. H and the sheet metal: This is ventilation by natural convection. The remaining conductive heat from the sheet or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers
Dash, Z.V.; Robinson, B.A.; Zyvoloski, G.A.
1997-07-01T23:59:59.000Z
The requirements, design, and verification and validation of the software used in the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multicomponent flow in porous media, are described. The test of the DOE Code Comparison Project, Problem Five, Case A, which verifies that FEHM has correctly implemented heat and mass transfer and phase partitioning, is also covered.
Heating Cooling Flows with Weak Shock Waves
W. G. Mathews; A. Faltenbacher; F. Brighenti
2005-11-05T23:59:59.000Z
The discovery of extended, approximately spherical weak shock waves in the hot intercluster gas in Perseus and Virgo has precipitated the notion that these waves may be the primary heating process that explains why so little gas cools to low temperatures. This type of heating has received additional support from recent gasdynamical models. We show here that outward propagating, dissipating waves deposit most of their energy near the center of the cluster atmosphere. Consequently, if the gas is heated by (intermittent) weak shocks for several Gyrs, the gas within 30-50 kpc is heated to temperatures that far exceed observed values. This heating can be avoided if dissipating shocks are sufficiently infrequent or weak so as not to be the primary source of global heating. Local PV and viscous heating associated with newly formed X-ray cavities are likely to be small, which is consistent with the low gas temperatures generally observed near the centers of groups and clusters where the cavities are located.
Polymer Effects on Heat Transport in Laminar Boundary Layer Flow
Roberto Benzi; Emily S. C. Ching; Vivien W. S. Chu
2011-04-27T23:59:59.000Z
We consider a laminar Blasius boundary-layer flow above a slightly heated horizontal plate and study the effect of polymer additives on the heat transport. We show that the action of the polymers can be understood as a space-dependent effective viscosity that first increases from the zero-shear value then decreases exponentially back to the zero-shear value as one moves away from the boundary. We find that with such an effective viscosity, both the horizontal and vertical velocities near the plate are decreased thus leading to an increase in the friction drag and a decrease in the heat transport in the flow.
Study of heat transfer in attics with a small scale simulator
Katipamula, Srinivas
1985-01-01T23:59:59.000Z
University Chairman of Advisory Committee: W. D. Turner An experimental study concerned with different modes of heat. transfer in fibrous and cellulose insulating material is presented. A series of experiments was conducted using an attic simulator... to deter- mine the effects of ventilation on attic heat transfer. and the effect of infrared radiation on the thcrn&al conductivity of th& insulation sys- tem and on attic heat transfer. All the tests were perl'ormed at, steady state conditions...
Heat and Mass Transfer manuscript No. (will be inserted by the editor)
Paris-Sud XI, Université de
Heat and Mass Transfer manuscript No. (will be inserted by the editor) On the modeling of aiding to the onset of recirculation cells in the entry re- gion while the heat transfer is slightly increased under acceleration [m s-2 ] GrH Grashof number based on H, GrH = g0TH3 /2 0 h heat transfer coefficient [W m-2 K-1
TRANSIENT HEAT TRANSFER MODEL FOR SRS WASTE TANK OPERATIONS
Lee, S; Richard Dimenna, R
2007-03-27T23:59:59.000Z
A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on waste temperature during the process of waste mixing and removal for the Type-I Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing long-shaft mixer pumps used during waste removal. The model will also be used to provide input to the operation planning. This planning will be used as input to pump run duration in order to maintain temperature requirements within the tank during SMP operation. The analysis model took a parametric approach. A series of the modeling analyses was performed to examine how submersible mixer pumps affect tank temperature during waste removal operation in the Type-I tank. The model domain included radioactive decay heat load, two SMP's, and one Submersible Transfer Pump (STP) as heat source terms. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%. Transient modeling calculations for two potential scenarios of sludge mixing and removal operations have been made to estimate transient waste temperatures within a Type-I waste tank. When two 200-HP submersible mixers and 12 active cooling coils are continuously operated in 100-in tank level and 40 C initial temperature for 40 days since the initiation of mixing operation, waste temperature rises about 9 C in 48 hours at a maximum. Sensitivity studies for the key operating variables were performed. The sensitivity results showed that the chromate cooling coil system provided the primary cooling mechanism to remove process heat from the tank during operation.
International Conference on Computational Heat and Mass Transfer Paper Number 135
Khandekar, Sameer
of heat transfer enhancement in sodium heat exchangers used in the fast breeder nuclear reactor [6 and liquid metals (Sodium, Potassium and Mercury) are utilized in the simulation. The critical sizes
Extensions and enhancements to the iLab heat transfer project site
Saylor, David P. (David Patrick)
2005-01-01T23:59:59.000Z
The iLab Heat Transfer Project website started four years ago to enable web access to experiments related to movement of heat through transport processes. This thesis details improvements made to the site which extend and ...
Buongiorno, Jacopo
In this opinion piece, we discuss recent advances in experimental methods for characterizing phase change heat transfer. We begin with a survey of techniques for high-resolution measurements of temperature and heat flux ...
Application Of A Spherical-Radial Heat Transfer Model To Calculate...
Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search OpenEI Reference LibraryAdd to library...
Natural convection heat transfer from a plate in a semicircular enclosure
Moore, G.A.; Hollands, K.G.T. (Univ. of Waterloo, Ontario (Canada))
1992-02-01T23:59:59.000Z
The present paper is about characterizing the two-dimensional convective transfer across the air-filled region between a flat plate and a semicircular cylindrical enclosure. In the subject geometry, a long thin plate at uniform temperature is contained coaxially and symmetrically in a long semicircular trough closed at the top and having a uniform but different temperature. Heat flows across the air-filled region between the two by both natural convection and gaseous conduction. The problem of characterizing the free convective component of this heat transfer - that is, the component caused by bulk fluid motion - is treated experimentally by using a heat balance technique, with the measurements being repeated at different pressures, in order to cover a wide Rayleigh number range, from Ra {approximately} 10 to Ra {approximately} 10{sup 8}. Nusselt number versus Rayleigh number plots are presented for each of several combinations of plate-to-trough spacing and tilt angle, and the plots are correlated by equations. The problem of characterizing the conductive component is treated by numerically solving the steady diffusion equation in the air-filled region, and the results are correlated as a function of the spacing and the plate thickness.
Miller, W.A.
1999-03-24T23:59:59.000Z
Experiments were conducted in a laboratory to investigate the absorption of water vapor into a falling-film of aqueous lithium bromide (LiBr). A mini-absorber test stand was used to test smooth tubes and a variety of advanced tube surfaces placed horizontally in a single-row bundle. The bundle had six copper tubes; each tube had an outside diameter of 15.9-mm and a length of 0.32-m. A unique feature of the stand is its ability to operate continuously and support testing of LiBr brine at mass fractions {ge} 0.62. The test stand can also support testing to study the effect of the failing film mass flow rate, the coolant mass flow rate, the coolant temperature, the absorber pressure and the tube spacing. Manufacturers of absorption chillers add small quantities of a heat and mass transfer additive to improve the performance of the absorbers. The additive causes surface stirring which enhances the transport of absorbate into the bulk of the film. Absorption may also be enhanced with advanced tube surfaces that mechanically induce secondary flows in the falling film without increasing the thickness of the film. Several tube geometry's were identified and tested with the intent of mixing the film and renewing the interface with fresh solution from the tube wall. Testing was completed on a smooth tube and several different externally enhanced tube surfaces. Experiments were conducted over the operating conditions of 6.5 mm Hg absorber pressure, coolant temperatures ranging from 20 to 35 C and LiBr mass fractions ranging from 0.60 through 0.62. Initially the effect of tube spacing was investigated for the smooth tube surface, tested with no heat and mass transfer additive. Test results showed the absorber load and the mass absorbed increased as the tube spacing increased because of the improved wetting of the tube bundle. However, tube spacing was not a critical factor if heat and mass transfer additive was active in the mini-absorber. The additive dramatically affected the hydrodynamics of the falling film and a droplet flow regime was evident for testing at all tube spacings. The mechanical mixing of the advanced surfaces increased the mass transfer to about 75% of that observed on a smooth tube bundle, tested with heat and mass transfer additive. Testing with heat and mass transfer additive and advanced surfaces demonstrated a synergistic effect which doubled the mass absorbed from that observed with only the advanced surface. The overall film-side heat transfer coefficient for the advanced tube bundles doubled with the addition of 500-wppm of 2-ethyl-1- hexanol.
Heat transfer through horizontal films of liquids evaporating under high vacuum
Stiles, Graham Bill
1961-01-01T23:59:59.000Z
). . . . . . . 17 6. 7 ~ 9. 10 ~ 12 ' 13 ' 14 ' Effect of Liquid Depth on the Heat Transfer Coefficient (Natural Convection') . . . . . . . . 27 Effect of Liquid Depth on the Heat Transfer Coefficient (Nucleate Boiling, 875 BTU/Hr. Ft... of boiling was first discussed by Nukiyama (22). Three main types exist. They are natural convection, nucleate boiling and fi. lm boiling (6, 17, 20). Natural convection occurs when the liquid heated at the heating surface is hotter than that above...
Heat Transfer Research 44(1), 130 (2013) ENTROPY GENERATION ANALYSIS
Zhang, Yuwen
Heat Transfer Research 44(1), 1Â30 (2013) ENTROPY GENERATION ANALYSIS FOR A PULSATING HEAT, m R gas constant of vapor, g gravity, m/s2 kJ/kgK h(hlsen, hlv) coefficient of convective heat Re, kg/m3 of left vapor plug, W p shear stress, N/m3 Qout,v1 condensation heat transfer rate Subscripts
Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass
Kitamura, Rei; Pilon, Laurent
2009-01-01T23:59:59.000Z
slabs. Moreover, the total heat input during furnace heatingperformed for the same heat input. The optical propertiesheating for the same total heat input. Similarly, Figure 7
Near field radiative heat transfer between two nonlocal dielectrics
Singer, F; Joulain, Karl
2015-01-01T23:59:59.000Z
We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...
FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES
FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES.............................................................................................................7 Composite Materials...................................................................................................7 Material Properties