National Library of Energy BETA

Sample records for flow conditions cxs

  1. Inhibition of slug front corrosion in multiphase flow conditions

    SciTech Connect (OSTI)

    Chen, H.J.; Jepson, W.P.

    1998-12-31

    Corrosion at the slug front at the bottom of a pipeline is identified as one of the worst cases of corrosion occurring in the pipeline which carries unprocessed multiphase production with a high level of CO{sub 2} gas. One objective of the study in recommending a subsea completion to shore was to determine if commercial corrosion inhibitors can control this type of corrosion using carbon steel pipeline. Thus, inhibitors which showed excellent performance in the lab using the Rotating Cylinder Electrode system (RCE) were further evaluated to confirm their performance in a flow loop simulating the test conditions predicted from the flow modeling for the proposed pipeline. The performance profile of two commercial inhibitors were determined in a 4 in. flow loop at 7O C, 100 psig CO{sub 2} partial pressure in corrosive brines with or without ethylene glycol and/or light hydrocarbon. Results showed that the carbon steel pipeline could be adequately protected at low temperature using a commercial corrosion inhibitor to meet the designed life of the pipeline. Ethylene glycol, which is used in the pipeline to prevent hydrate formation, reduces the corrosivity of the brine and gives no effect on inhibitor performance under the slug flow conditions. A good agreement in inhibitor performance was observed between the flow loop and the RCE testing. The uninhibited corrosion rate of the test brine in this study is in good agreement with the predicted value using deWaard and Williams correlation for CO{sub 2} corrosion.

  2. A Conductivity Relationship for Steady-state Unsaturated Flow Processes under Optimal Flow Conditions

    SciTech Connect (OSTI)

    Liu, H. H.

    2010-09-15

    Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.

  3. Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions

    DOE Patents [OSTI]

    McGrail, Bernard P.; Martin, Paul F.; Lindenmeier, Clark W.

    1999-01-01

    The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

  4. Smolt Responses to Hydrodynamic Conditions in Forebay Flow Nets of Surface Flow Outlets, 2007

    SciTech Connect (OSTI)

    Johnson, Gary E.; Richmond, Marshall C.; Hedgepeth, J. B.; Ploskey, Gene R.; Anderson, Michael G.; Deng, Zhiqun; Khan, Fenton; Mueller, Robert P.; Rakowski, Cynthia L.; Sather, Nichole K.; Serkowski, John A.; Steinbeck, John R.

    2009-04-01

    This study provides information on juvenile salmonid behaviors at McNary and The Dalles dams that can be used by the USACE, fisheries resource managers, and others to support decisions on long-term measures to enhance fish passage. We researched smolt movements and ambient hydrodynamic conditions using a new approach combining simultaneous acoustic Doppler current profiler (ADCP) and acoustic imaging device (AID) measurements at surface flow outlets (SFO) at McNary and The Dalles dams on the Columbia River during spring and summer 2007. Because swimming effort vectors could be computed from the simultaneous fish and flow data, fish behavior could be categorized as passive, swimming against the flow (positively rheotactic), and swimming with the flow (negatively rheotactic). We present bivariate relationships to provide insight into fish responses to particular hydraulic variables that engineers might consider during SFO design. The data indicate potential for this empirical approach of simultaneous water/fish measurements to lead to SFO design guidelines in the future.

  5. Prefabricated vertical drains flow resistance under vacuum conditions

    SciTech Connect (OSTI)

    Quaranta, J.D.; Gabr, M.A.

    2000-01-01

    The results of experimental research are presented and discussed with focus on the internal well resistance of prefabricated vertical drains (PVD) under vacuum-induced water flow. Measured results included fluid flow rates for two different cross-sectional hydraulic profiles (Types 1 and 2 PVDs). Experimental results indicated linear relationship, independent of the PVD widths, between extracted fluid velocity and the applied hydraulic gradient. Data showed a laminar flow regime to predominate for test velocities corresponding to hydraulic gradients {lt}0.5. The larger nominal hydraulic radius of the Type 2 PVD is credited with providing a flow rate equal to approximately 3.2 times that of the Type 1 PVD at approximately the same operating total head. There was no apparent dependency of the transmissivity {theta} on the width or lengths (3, 4, and 5 m) of the PVDs tested. In the case of the 100-mm-wide Type 1 PVD, {theta} = 618 mm{sup 2}/s was estimated from the measured data versus {theta} = 1,996 mm{sup 2}/s for Type 2 PVD with the same dimensions.

  6. The source of elliptic flow and initial conditions for hydrodynamical calculations

    SciTech Connect (OSTI)

    Strottman, D.; Csernai, L.; Magas, V.

    2000-08-01

    A model for energy, pressure and flow velocity distributions at the beginning of relativistic heavy ion collisions is presented, which can be used as initial condition for hydrodynamical calculations. The results show that QGP forms a tilted disk, such that the direction of the largest pressure gradient stays in the reaction plane, but deviates from both the beam and the usual transverse flow directions. Such initial condition may lead to the creation of antiflow or third flow component.

  7. On fluid flow in a heterogeneous medium under nonisothermal conditions

    SciTech Connect (OSTI)

    D.W., Vasco

    2010-11-01

    An asymptotic technique, valid in the presence of smoothly-varying heterogeneity, provides explicit expressions for the velocity of a propagating pressure and temperature disturbance. The governing equations contain nonlinear terms due to the presence of temperature-dependent coefficients and due to the advection of fluids with differing temperatures. Two cases give well-defined expressions in terms of the parameters of the porous medium: the uncoupled propagation of a pressure disturbance and the propagation of a fully coupled temperature and pressure disturbance. The velocity of the coupled disturbance or front, depends upon the medium parameters and upon the change in temperature and pressure across the front. For uncoupled flow, the semi-analytic expression for the front velocity reduces to that associated with a linear diffusion equation. A comparison of the asymptotic travel time estimates with calculations from a numerical simulator indicates reasonably good agreement for both uncoupled and coupled disturbances.

  8. Influence of heat and mass flux conditions in hydromagnetic flow of Jeffrey nanofluid

    SciTech Connect (OSTI)

    Abbasi, F. M.; Shehzad, S. A.; Hayat, T.; Alsaedi, A.; Obid, Mustafa A.

    2015-03-15

    This article explores the hydromagnetic steady flow of Jeffrey fluid in the presence of thermal radiation. The chosen nanofluid model takes into account the Brownian motion and thermophoresis effects. Flow and heat transfer characteristics are determined by a stretching surface with flux conditions. The nonlinear boundary layer flow through partial differential systems is converted into the ordinary differential systems. The resulting reduced systems are computed for the convergent solutions of velocity, temperature and nanoparticle concentration. Graphs of dimensionless temperature and nanoparticle concentration profiles are presented for different values of emerging parameters. Skin-friction coefficient are computed and analyzed in both hydrodynamic and hydromagnetic flow situations.

  9. Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review

    SciTech Connect (OSTI)

    Wang,Ping; Massoudi, Mehrdad

    2011-01-01

    Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and

  10. Sampling Point Compliance Tests for 325 Building at Set-Back Flow Conditions

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Glissmeyer, John A.; Barnett, J. M.; Recknagle, Kurtis P.; Yokuda, Satoru T.

    2011-05-31

    The stack sampling system at the 325 Building (Radiochemical Processing Laboratory [RPL]) was constructed to comply with the American National Standards Institute’s (ANSI’s) Guide to Sampling Airborne Radioactive Materials in Nuclear Facilities (ANSI N13.1-1969). This standard provided prescriptive criteria for the location of radionuclide air-sampling systems. In 1999, the standard was revised (Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities [ANSI/Health Physics Society [HPS] 13.1-1999]) to provide performance-based criteria for the location of sampling systems. Testing was conducted for the 325 Building stack to determine whether the sampling system would meet the updated criteria for uniform air velocity and contaminant concentration in the revised ANSI/HPS 13.1-1999 standard under normal operating conditions (Smith et al. 2010). Measurement results were within criteria for all tests. Additional testing and modeling was performed to determine whether the sampling system would meet criteria under set-back flow conditions. This included measurements taken from a scale model with one-third of the exhaust flow and computer modeling of the system with two-thirds of the exhaust flow. This report documents the results of the set-back flow condition measurements and modeling. Tests performed included flow angularity, uniformity of velocity, gas concentration, and particle concentration across the duct at the sampling location. Results are within ANSI/HPS 13.1-1999 criteria for all tests. These tests are applicable for the 325 Building stack under set-back exhaust flow operating conditions (980 - 45,400 cubic feet per minute [cfm]) with one fan running. The modeling results show that criteria are met for all tests using a two-fan configuration exhaust (flow modeled at 104,000 cfm). Combined with the results from the earlier normal operating conditions, the ANSI/HPS 13.1-1999 criteria for all tests

  11. Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots

    SciTech Connect (OSTI)

    Midgett, Aaron G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States); Hillhouse, Hugh W. [Univ. of Washington, Seattle, WA (United States); Hughes, Barbara K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States); Nozik, Arthur J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States); Beard, Matthew C. [Univ. of Colorado, Boulder, CO (United States)

    2010-09-22

    Recent reports question the validity of pulsed fs-laser experiments for measuring the photon-to-exciton quantum yields (QYs) that result from multiple exciton generation (MEG). The repetitive nature of these experiments opens up an alternative relaxation pathway that may produce artificially high results. We present transient-absorption (TA) data for 4.6 and 6.6 nm diameter PbSe quantum dots (QDs) at a variety of pump photon energies. The data are collected under laminar flow conditions with volumetric flow rates ranging from 0 to 150 mL/min (resulting in Reynolds numbers up to 460). The results are modeled with a spatially resolved population balance of generation, recombination, convective replacement, and accumulation of long-lived excited QDs. By comparing the simulations and experiments, the steady-state population of the long-lived QD-excited states and their kinetics are determined for different experimental conditions. We also improve upon reported photon-to-exciton QYs for PbSe QDs. We find differences in the observed TA dynamics between flowing and static conditions that depend upon photon fluence, pump photon energy, and quality of the QD surfaces. For excitation energies below 2 Eg, independent of QD size or photon fluence, we observe no flow rate dependence in the TA dynamics. At excitation energies of h? > 3 Eg, we observe differences between static and flowing conditions that are most pronounced for high photon fluences. At 3.7 Eg and for 4.6 nm PbSe QDs we find a QY of 1.2 0.1 and at 4.5 Eg the QY is 1.55 0.05. With 6.6 nm QDs excited at 4.7 Eg we observe no difference between static and flowing conditions and find a QY of 1.61 0.05. We also find that by treating the surface of QDs, we can decrease the charging probability (Pg ? 5 10-5) by a factor of 3-4. The observed variations suggest that different QD samples vary regarding their susceptibility to the creation

  12. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications Eric Kozubal, Lesley Herrmann, and Michael Deru National Renewable Energy Laboratory Jordan Clark University of Texas, Austin Andy Lowenstein AIL Research Technical Report NREL/TP-5500-60695 September 2014 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory

  13. COMPUTATIONAL FLUID DYNAMICS BASED INVESTIGATION OF SENSITIVITY OF FURNACE OPERATIONAL CONDITIONS TO BURNER FLOW CONTROLS

    SciTech Connect (OSTI)

    Marc Cremer; Zumao Chen; Dave Wang; Paul Wolff

    2004-06-01

    This is the extended second Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts.

  14. Attenuation of hydrogen radicals traveling under flowing gas conditions through tubes of different materials

    SciTech Connect (OSTI)

    Grubbs, R.K.; George, S.M.

    2006-05-15

    Hydrogen radical concentrations traveling under flowing gas conditions through tubes of different materials were measured using a dual thermocouple probe. The source of the hydrogen radicals was a toroidal radio frequency plasma source operating at 2.0 and 3.3 kW for H{sub 2} pressures of 250 and 500 mTorr, respectively. The dual thermocouple probe was comprised of exposed and covered Pt/Pt13%Rh thermocouples. Hydrogen radicals recombined efficiently on the exposed thermocouple and the energy of formation of H{sub 2} heated the thermocouple. The second thermocouple was covered by glass and was heated primarily by the ambient gas. The dual thermocouple probe was translated and measured temperatures at different distances from the hydrogen radical source. These temperature measurements were conducted at H{sub 2} flow rates of 35 and 75 SCCM (SCCM denotes cubic centimeter per minute at STP) inside cylindrical tubes made of stainless steel, aluminum, quartz, and Pyrex. The hydrogen radical concentrations were obtained from the temperatures of the exposed and covered thermocouples. The hydrogen concentration decreased versus distance from the plasma source. After correcting for the H{sub 2} gas flow using a reference frame transformation, the hydrogen radical concentration profiles yielded the atomic hydrogen recombination coefficient, {gamma}, for the four materials. The methodology of measuring the hydrogen radical concentrations, the analysis of the results under flowing gas conditions, and the determination of the atomic hydrogen recombination coefficients for various materials will help facilitate the use of hydrogen radicals for thin film growth processes.

  15. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  16. Chromium Isotope Fractionation During Reduction of Cr(VI) Under Saturated Flow Conditions

    SciTech Connect (OSTI)

    Jamieson-Hanes, Julia H.; Gibson, Blair D.; Lindsay, Matthew B.J.; Kim, Yeongkyoo; Ptacek, Carol J.; Blowes, David W.

    2012-10-25

    Chromium isotopes are potentially useful indicators of Cr(VI) reduction reactions in groundwater flow systems; however, the influence of transport on Cr isotope fractionation has not been fully examined. Laboratory batch and column experiments were conducted to evaluate isotopic fractionation of Cr during Cr(VI) reduction under both static and controlled flow conditions. Organic carbon was used to reduce Cr(VI) in simulated groundwater containing 20 mg L{sup -1} Cr(VI) in both batch and column experiments. Isotope measurements were performed on dissolved Cr on samples from the batch experiments, and on effluent and profile samples from the column experiment. Analysis of the residual solid-phase materials by scanning electron microscopy (SEM) and by X-ray absorption near edge structure (XANES) spectroscopy confirmed association of Cr(III) with organic carbon in the column solids. Decreases in dissolved Cr(VI) concentrations were coupled with increases in {delta}{sup 53}Cr, indicating that Cr isotope enrichment occurred during reduction of Cr(VI). The {delta}{sup 53}Cr data from the column experiment was fit by linear regression yielding a fractionation factor ({alpha}) of 0.9979, whereas the batch experiments exhibited Rayleigh-type isotope fractionation ({alpha} = 0.9965). The linear characteristic of the column {delta}{sup 53}Cr data may reflect the contribution of transport on Cr isotope fractionation.

  17. Flow and morphological conditions associated with the directional solidification of aqueous ammonium chloride

    SciTech Connect (OSTI)

    Magirl, C.S.; Incropera, F.P.

    1993-01-01

    Using 27% aq. NH[sub 4]Cl solutions as transparent analog, shadowgraphy and dye injection were used to observe flow and morphology in unidirectional solidification (UDS) from below. Dendritic crystals that form at the cold surface reject lighter, solute-deficient fluid, and instability is shown by finger-type double-diffusive convection. As the mushy two-phase region grows, perturbations at the liquidus interface cause localized remelting and downward development of channels. Solsutal plumes emanate from the channels, and in time, double-diffusive convection layers also form in the melt. When the solution is chilled at the sides as well as at the bottom, conditions are influenced by detachment and settling of crystals from the sidewall and by plumes from slanted channels. When a slow, oscillatory rocking motion is imposed on UDS, the freckle-type segregates in the final cast is suppressed. Within the melt, plumes and double-diffusive convection are eliminated. Inertially induced convection mixes the melt and produces a dense slurry. Although channels are eliminated from the bottom mushy region, overall heat transfer and macrosegregation in the cavity are unaffected by the slow rocking. Numerical simulations qualitatively predict trends in the field variables and provide insights on interdendritic flows and macrosegregation (freckle-, A-type segregates), although its quantitative predictions are hampered by simplifying assumptions.

  18. Flow and morphological conditions associated with the directional solidification of aqueous ammonium chloride. Annual performance report

    SciTech Connect (OSTI)

    Magirl, C.S.; Incropera, F.P.

    1993-01-01

    Using 27% aq. NH{sub 4}Cl solutions as transparent analog, shadowgraphy and dye injection were used to observe flow and morphology in unidirectional solidification (UDS) from below. Dendritic crystals that form at the cold surface reject lighter, solute-deficient fluid, and instability is shown by finger-type double-diffusive convection. As the mushy two-phase region grows, perturbations at the liquidus interface cause localized remelting and downward development of channels. Solsutal plumes emanate from the channels, and in time, double-diffusive convection layers also form in the melt. When the solution is chilled at the sides as well as at the bottom, conditions are influenced by detachment and settling of crystals from the sidewall and by plumes from slanted channels. When a slow, oscillatory rocking motion is imposed on UDS, the freckle-type segregates in the final cast is suppressed. Within the melt, plumes and double-diffusive convection are eliminated. Inertially induced convection mixes the melt and produces a dense slurry. Although channels are eliminated from the bottom mushy region, overall heat transfer and macrosegregation in the cavity are unaffected by the slow rocking. Numerical simulations qualitatively predict trends in the field variables and provide insights on interdendritic flows and macrosegregation (freckle-, A-type segregates), although its quantitative predictions are hampered by simplifying assumptions.

  19. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    SciTech Connect (OSTI)

    Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff

    2005-07-01

    This is the Final Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project was to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. The focus of this project was to quantify the potential impacts of ''fine level'' controls rather than that of ''coarse level'' controls (i.e. combustion tuning). Although it is well accepted that combustion tuning will generally improve efficiency and emissions of an ''out of tune'' boiler, it is not as well understood what benefits can be derived through active multiburner measurement and control systems in boiler that has coarse level controls. The approach used here was to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner air and fuel flow rates. The Electric Power Research Institute (EPRI) provided co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center have been active participants in this project. CFD simulations were completed for five coal fired boilers as planned: (1) 150 MW wall fired, (2) 500 MW opposed wall fired, (3) 600 MW T-Fired, (4) 330 MW cyclone-fired, and (5) 200 MW T-Fired Twin Furnace. In all cases, the unit selections were made in order to represent units that were descriptive of the utility industry as a whole. For each unit, between 25 and 44 furnace simulations were completed in order to evaluate impacts of burner to burner variations in: (1) coal and primary air flow rate, and (2) secondary air flow rate. The parametric matrices of cases that were completed were

  20. Assessment of Controlling Processes for Field-Scale Uranium Reactive Transport under Highly Transient Flow Conditions

    SciTech Connect (OSTI)

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.

    2014-02-13

    This paper presents the results of a comprehensive model-based analysis of a uranium tracer test conducted at the U.S Department of Energy Hanford 300 Area (300A) IFRC site. A three-dimensional multi-component reactive transport model was employed to assess the key factors and processes that control the field-scale uranium reactive transport. Taking into consideration of relevant physical and chemical processes, the selected conceptual/numerical model replicates the spatial and temporal variations of the observed U(VI) concentrations reasonably well in spite of the highly complex field conditions. A sensitivity analysis was performed to interrogate the relative importance of various processes and factors for reactive transport of U(VI) at the field-scale. The results indicate that multi-rate U(VI) sorption/desorption, U(VI) surface complexation reactions, and initial U(VI) concentrations were the most important processes and factors controlling U(VI) migration. On the other hand, cation exchange reactions, the choice of the surface complexation model, and dual-domain mass transfer processes, which were previously identified to be important in laboratory experiments, played less important roles under the field-scale experimental condition at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore presumably not dynamic enough to appropriately assess the effects of ion exchange reaction and the choice of surface complexation models on U(VI) sorption and desorption. Furthermore, it also showed that the field experimental duration (16 days) was not sufficiently long to precisely assess the role of a majority of the sorption sites that were accessed by slow kinetic processes within the dual domain model. The sensitivity analysis revealed the crucial role of the intraborehole flow that occurred within the long-screened monitoring wells and thus significantly

  1. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    SciTech Connect (OSTI)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-21

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m{sup 3}/hr.

  2. Inflow/outflow boundary conditions for particle-based blood flow simulations: Application to arterial bifurcations and trees

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lykov, Kirill; Li, Xuejin; Lei, Huan; Pivkin, Igor V.; Karniadakis, George Em; Feng, James

    2015-08-28

    When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and R- BCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain themore » flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon valida- tion of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the \\all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Lastly, we demonstrated the new methodology for simulating blood flow in ves- sels with multiple inlets and outlets, constructed using an angiogenesis model.« less

  3. Use of an Accurate DNS Particulate Flow Method to Supply and Validate Boundary Conditions for the MFIX Code

    SciTech Connect (OSTI)

    Zhi-Gang Feng

    2012-05-31

    The simulation of particulate flows for industrial applications often requires the use of two-fluid models, where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of the two-fluid models in multiphase computations comes from the boundary condition of the solid phase. Typically, the gas or liquid fluid boundary condition at a solid wall is the so called no-slip condition, which has been widely accepted to be valid for single-phase fluid dynamics provided that the Knudsen number is low. However, the boundary condition for the solid phase is not well understood. The no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. Experimental or numerical simulation data are needed in order to determinate the slip boundary condition that is applicable to a two-fluid model. The goal of this project is to improve the performance and accuracy of the boundary conditions used in two-fluid models such as the MFIX code, which is frequently used in multiphase flow simulations. The specific objectives of the project are to use first principles embedded in a validated Direct Numerical Simulation particulate flow numerical program, which uses the Immersed Boundary method (DNS-IB) and the Direct Forcing scheme in order to establish, modify and validate needed energy and momentum boundary conditions for the MFIX code. To achieve these objectives, we have developed a highly efficient DNS code and conducted numerical simulations to investigate the particle-wall and particle-particle interactions in particulate flows. Most of our research findings have been reported in major conferences and archived journals, which are listed in Section 7 of this report. In this report, we will present a

  4. Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic flow conditions

    SciTech Connect (OSTI)

    Yang, L.; Steefel, C.I.; Marcus, M.A.; Bargar, J.R.

    2010-04-01

    The readsorption of ferrous ions produced by the abiotic and microbially-mediated reductive dissolution of iron oxy-hydroxides drives a series of transformations of the host minerals. To further understand the mechanisms by which these transformations occur and their kinetics within a microporous flow environment, flow-through experiments were conducted in which capillary tubes packed with ferrihydrite-coated glass spheres were injected with inorganic Fe(II) solutions under circumneutral pH conditions at 25 C. Synchrotron X-ray diffraction was used to identify the secondary phase(s) formed and to provide data for quantitative kinetic analysis. At concentrations at and above 1.8 mM Fe(II) in the injection solution, magnetite was the only secondary phase formed (no intermediates were detected), with complete transformation following a nonlinear rate law requiring 28 hours and 150 hours of reaction at 18 and 1.8 mM Fe(II), respectively. However, when the injection solution consisted of 0.36 mM Fe(II), goethite was the predominant reaction product and formed much more slowly according to a linear rate law, while only minor magnetite was formed. When the rates are normalized based on the time to react half of the ferrihydrite on a reduced time plot, it is apparent that the 1.8 mM and 18 mM input Fe(II) experiments can be described by the same reaction mechanism, while the 0.36 input Fe(II) experiment is distinct. The analysis of the transformation kinetics suggest that the transformations involved an electron transfer reaction between the aqueous as well as sorbed Fe(II) and ferrihydrite acting as a semiconductor, rather than a simple dissolution and recrystallization mechanism. A transformation mechanism involving sorbed inner sphere Fe(II) alone is not supported, since the essentially equal coverage of sorption sites in the 18 mM and 1.8 mM Fe(II) injections cannot explain the difference in the transformation rates observed.

  5. Inflow/outflow boundary conditions for particle-based blood flow simulations: Application to arterial bifurcations and trees

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lykov, Kirill; Li, Xuejin; Lei, Huan; Pivkin, Igor V.; Karniadakis, George Em; Feng, James

    2015-08-28

    When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and RBCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain the flowmorerate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon validation of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the all-or-nothing phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Finally, we demonstrated the effectiveness of the new methodology in simulations of blood flow in vessels with multiple inlets and outlets, constructed using an angiogenesis modeless

  6. Second law analysis of water flow through smooth microtubes under adiabatic conditions

    SciTech Connect (OSTI)

    Parlak, Nezaket; Guer, Mesut; Ari, Vedat; Kuecuek, Hasan; Engin, Tahsin [The University of Sakarya, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, 54187 Sakarya (Turkey)

    2011-01-15

    In the study, a second law analysis for a steady-laminar flow of water in adiabatic microtubes has been conducted. Smooth microtubes with the diameters between 50 and 150 {mu}m made of fused silica were used in the experiments. Considerable temperature rises due to viscous dissipation and relatively high pressure losses of flow were observed in experiments. To identify irreversibility of flow, rate of entropy generation from the experiments have been determined in the laminar flow range of Re = 20-2200. The second law of thermodynamics was applied to predict the entropy generation. The results of model taken from the literature, proposed to predict the temperature rise caused by viscous heating, correspond well with the experimental data. The second law analysis results showed that the flow characteristics in the smooth microtubes distinguish substantially from the conventional theory for flow in the larger tubes with respect to viscous heating/dissipation (temperature rise of flow) total entropy generation rate and lost work. (author)

  7. Fractal dimension of cohesive sediment flocs at steady state under seven shear flow conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Zhongfan; Yu, Jingshan; Wang, Hongrui; Dou, Jie; Wang, Cheng

    2015-08-12

    The morphological properties of kaolin flocs were investigated in a Couette-flow experiment at the steady state under seven shear flow conditions (shear rates of 5.36, 9.17, 14, 24, 31, 41 and 53 s-1). These properties include a one-dimensional (1-D) fractal dimension (D1), a two-dimensional (2-D) fractal dimension (D2), a perimeter-based fractal dimension (Dpf) and an aspect ratio (AR). They were calculated based on the projected area (A), equivalent size, perimeter (P) and length (L) of the major axis of the floc determined through sample observation and an image analysis system. The parameter D2, which characterizes the relationship between the projectedmore » area and the length of the major axis using a power function, A ∝ LD2, increased from 1.73 ± 0.03, 1.72 ± 0.03, and 1.75 ± 0.04 in the low shear rate group (G = 5.36, 9.17, and 14 s-1) to 1.92 ± 0.03, 1.82 ± 0.02, 1.85 ± 0.02, and 1.81 ± 0.02 in the high shear rate group (24, 31, 41 and 53 s-1), respectively. The parameter D1 characterizes the relationship between the perimeter and length of the major axis by the function P ∝ LD1 and decreased from 1.52 ± 0.02, 1.48 ± 0.02, 1.55 ± 0.02, and 1.63 ± 0.02 in the low shear group (5.36, 9.17, 14 and 24 s-1) to 1.45 ± 0.02, 1.39 ± 0.02, and 1.39 ± 0.02 in the high shear group (31, 41 and 53 s-1), respectively. The results indicate that with increasing shear rates, the flocs become less elongated and that their boundary lines become tighter and more regular, caused by more breakages and possible restructurings of the flocs. The parameter Dpf, which is related to the perimeter and the projected area through the function , decreased as the shear rate increased almost linearly. The parameter AR, which is the ratio of the length of the major axis and equivalent diameter, decreased from 1.56, 1.59, 1.53 and 1.51 in the low shear rate group to 1.43, 1.47 and 1.48 in the high shear rate group. These changes in Dpf and AR show that the flocs become

  8. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    SciTech Connect (OSTI)

    Murray, Nathan E.

    2012-03-12

    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives

  9. Sensor Fish Characterization of Fish Passage Conditions through John Day Dam Spillbay 20 with a Modified Flow Deflector

    SciTech Connect (OSTI)

    Duncan, Joanne P.

    2011-04-29

    Fish passage conditions over a modified deflector in Spillbay 20 at John Day Dam were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objectives of the study were to describe and compare passage exposure conditions at two spill discharges, 2.4 and 4.0 thousand cubic feet per second (kcfs), identifying potential fish injury regions within the routes, and to evaluate a low-tailwater condition at the 2.4-kcfs discharge. The study was performed in April 2010 concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimate 1) exposure conditions, particularly exposure to severe collision and shear events; 2) differences in passage conditions between treatments; and 3) relationships to live-fish injury and mortality data estimates. Nearly all Sensor Fish significant events were classified as collisions; the most severe occurred at the gate, on the spillbay chute, or at the deflector transition. Collisions in the gate region were observed only during the 2.4-kcfs discharge, when the tainter gate was open 1.2 ft. One shear event was observed during the evaluation, occurring at the deflector transition during passage at the 2.4-kcfs discharge at low tailwater. Flow quality, computed using the Sensor Fish turbulence index, was best for passage at the low-flow low-tailwater condition as well. The worst flow quality was observed for the 4.0-kcfs test condition. Contrasting the passage exposure conditions, the 2.4-kcfs low-tailwater treatment would be most deleterious to fish survival and well-being.

  10. Effects of Contact Angle Hysteresis on Ice Adhesion and Growth over Superhydrophobic Surfaces under Dynamic Flow Conditions

    SciTech Connect (OSTI)

    Sarshar, Mohammad Amin; Swarctz, Christopher; Hunter, Scott Robert; Simpson, John T; Choi, Chang-Hwan

    2012-01-01

    In this paper, the iceophobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating the substrates of aluminum and steel plates with nano-structured hydrophobic particles. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20 F accompanying micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by high-resolution CCD cameras. Results show that the superhydrophobic coatings significantly delay the ice formation and accretion even under the dynamic flow condition of the highly energetic impingement of accelerated super-cooled water droplets. It is found that there is a time scale for this phenomenon (delay of the ice formation) which has a clear correlation with the contact angle hysteresis and the length scale of surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finer surface roughness. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis (dynamic property) and the non-wetting superhydrophobic state under the hydrodynamic pressure of impinging droplets, rather than to only have a high contact angle (static property), in order to result in efficient anti-icing properties under dynamic conditions such as forced flows.

  11. Free Flow Energy (TRL 1 2 3 Component)- Design and Development of a Cross-Platform Submersible Generator Optimized for the Conditions of Current Energy Conversion

    Broader source: Energy.gov [DOE]

    Free Flow Energy (TRL 1 2 3 Component) - Design and Development of a Cross-Platform Submersible Generator Optimized for the Conditions of Current Energy Conversion

  12. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    SciTech Connect (OSTI)

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-27

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  13. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  14. Supercritical carbon dioxide tubular flow under temporally varying thermal boundary condition

    SciTech Connect (OSTI)

    Son, H. M.; Halimi, B.; Suh, K. Y.

    2012-07-01

    During transient operation of fusion power plants the amount of thermal energy transferred from plasma to surrounding blanket modules will be varied over time, and will affect behavior of the working fluid inside the blanket and power conversion system where the coolant is in a supercritical state. Transient behavior of the power is in pulsed state in tokamak. The Optimized Supercritical Cycle Operation (OSCO) loop is constructed to investigate the thermohydraulic characteristics of the supercritical fluid under temporally varying thermal boundary condition. In this study the tube outer wall temperature data are measured for abrupt change in thermal power as a preliminary power transient test. The OSCO test conditions are selected to include the erratic behavior of the supercritical fluid under pseudo-critical condition during transient. In order to incorporate the delayed response of utilized thermocouples, a time constant is applied to adjust the obtained results. Along with the experimental study, computational fluid dynamic software is used to perform detailed analysis over the test section geometry. The preliminary test results are presented for comparison against the available correlations from the literature. (authors)

  15. Steam Gasification Rates of Three Bituminous Coal Chars in an Entrained-Flow Reactor at Pressurized Conditions

    SciTech Connect (OSTI)

    Lewis, Aaron D.; Holland, Troy M.; Marchant, Nathaniel R.; Fletcher, Emmett G.; Henley, Daniel J.; Fuller, Eric G.; Fletcher, Thomas H.

    2015-02-26

    Three bituminous coal chars (Illinois #6, Utah Skyline, and Pittsburgh #8) were gasified separately at total pressures of 10 and 15 atm in an entrained-flow reactor using gas temperatures up to 1830 K and particle residence times <240 ms. The experiments were performed at conditions where the majority of particle mass release was due to H2O gasification, although select experiments were performed at conditions where significant mass release was due to gasification by both H2O and CO2. The measured coal data we recorded were fit to three char gasification models including a simple first-order global model, as well as the CCKNand CCK models that stem from the CBK model. The optimal kinetic parameters for each of the three models are reported, and the steam reactivity of the coal chars at the studied conditions is as follows: Pittsburgh #8 > Utah Skyline > Illinois #6.

  16. Study on critical heat flux enhancement in flow boiling of SiC nano-fluids under low pressure and low flow conditions

    SciTech Connect (OSTI)

    Lee, S. W.; Park, S. D.; Kang, S.; Kim, S. M.; Seo, H.; Lee, D. W.; Bang, I. C.

    2012-07-01

    Critical heat flux (CHF) is the thermal limit of a phenomenon in which a phase change occurs during heating (such as bubbles forming on a metal surface used to heat water), which suddenly decreases the heat transfer efficiency, thus causing localized overheating of the heating surface. The enhancement of CHF can increase the safety margins and allow operation at higher heat fluxes; thus, it can increase the economy. A very interesting characteristics of nano-fluids is their ability to significantly enhance the CHF. nano-fluids are nano-technology-based colloidal dispersions engineered through stable suspending of nanoparticles. All experiments were performed in round tubes with an inner diameter of 0.01041 m and a length of 0.5 m under low pressure and low flow (LPLF) conditions at a fixed inlet temperature using water, 0.01 vol. % Al{sub 2}O{sub 3}/water and SiC/water nano-fluids. It was found that the CHF of the nano-fluids was enhanced and the CHF of the SiC/water nano-fluid was more enhanced than that of the Al{sub 2}O{sub 3}/water nano-fluid. (authors)

  17. Statistical evaluation of the effects of fall and winter flows on the spring condition of rainbow and brown trout in the green river downstream of Flaming Gorge Dam.

    SciTech Connect (OSTI)

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.; Environmental Science Division

    2009-01-09

    Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. In recent years, single peak releases each day or steady flows have been the operational pattern during the winter period. A double-peak pattern (two flow peaks each day) was implemented during the winter of 2006-2007 by Reclamation. Because there is no recent history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on the body condition of trout in the dam's tailwater are not known. A study plan was developed that identified research activities to evaluate potential effects from double-peaking operations during winter months. Along with other tasks, the study plan identified the need to conduct a statistical analysis of existing data on trout condition and macroinvertebrate abundance to evaluate potential effects of hydropower operations. This report presents the results of this analysis. We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam and (2) to evaluate the degree to which flow characteristics (i.e., flow volumes and flow variability) and benthic macroinvertebrate abundance affect the condition of trout in this area. This information, together with further analyses of size-stratified trout data, may also serve as baseline data to which the effects of potential future double-peaking flows can be compared. The condition (length, weight and/or relative weight) of rainbow trout (Oncorhynchus mykiss) at two sites in the Green River downstream of Flaming Gorge Dam (Tailrace and Little Hole) and weight of brown trout (Salmo trutta) at the Little Hole site has been decreasing since 1990 while the abundance of brown trout has been increasing at the two sites. At the

  18. ELECTRON HEATING BY THE ION CYCLOTRON INSTABILITY IN COLLISIONLESS ACCRETION FLOWS. II. ELECTRON HEATING EFFICIENCY AS A FUNCTION OF FLOW CONDITIONS

    SciTech Connect (OSTI)

    Sironi, Lorenzo

    2015-02-20

    In the innermost regions of low-luminosity accretion flows, including Sgr A* at the center of our Galaxy, the frequency of Coulomb collisions is so low that the plasma has two temperatures, with the ions substantially hotter than the electrons. This paradigm assumes that Coulomb collisions are the only channel for transferring the ion energy to the electrons. In this work, the second of a series, we assess the efficiency of electron heating by ion velocity-space instabilities in collisionless accretion flows. The instabilities are seeded by the pressure anisotropy induced by magnetic field amplification, coupled to the adiabatic invariance of the particle magnetic moments. Using two-dimensional particle-in-cell (PIC) simulations, we showed in Paper I that if the electron-to-ion temperature ratio is T {sub 0e}/T {sub 0i} ≲ 0.2, the ion cyclotron instability is the dominant mode for ion betas β{sub 0i} ∼ 5-30 (here, β{sub 0i} is the ratio of ion thermal pressure to magnetic pressure), as appropriate for the midplane of low-luminosity accretion flows. In this work, we employ analytical theory and one-dimensional PIC simulations (with the box aligned with the fastest-growing wave vector of the ion cyclotron mode) to fully characterize how the electron heating efficiency during the growth of the ion cyclotron instability depends on the electron-to-proton temperature ratio, the plasma beta, the Alfvén speed, the amplification rate of the mean field (in units of the ion Larmor frequency), and the proton-to-electron mass ratio. Our findings can be incorporated as a physically grounded subgrid model into global fluid simulations of low-luminosity accretion flows, thus helping to assess the validity of the two-temperature assumption.

  19. An experimental study on sub-cooled flow boiling CHF of R134a at low pressure condition with atmospheric pressure (AP) plasma assisted surface modification

    SciTech Connect (OSTI)

    Kim, Seung Jun; Zou, Ling; Jones, Barclay G.

    2015-02-01

    In this study, sub-cooled flow boiling critical heat flux tests at low pressure were conducted in a rectangular flow channel with one uniformly heated surface, using simulant fluid R-134a as coolant. The experiments were conducted under the following conditions: (1) inlet pressure (P) of 400-800 kPa, (2) mass flux (G) of 124-248 kg/m2s, (3) inlet sub-cooling enthalpy (ΔHi) of 12~ 26 kJ/kg. Parametric trends of macroscopic system parameters (G, P, Hi) were examined by changing inlet conditions. Those trends were found to be generally consistent with previous understandings of CHF behavior at low pressure condition (i.e. reduced pressure less than 0.2). A fluid-to-fluid scaling model was utilized to convert the test data obtained with the simulant fluid (R-134a) into the prototypical fluid (water). The comparison between the converted CHF of equivalent water and CHF look-up table with same operation conditions were conducted, which showed good agreement. Furthermore, the effect of surface wettability on CHF was also investigated by applying atmospheric pressure plasma (AP-Plasma) treatment to modify the surface characteristic. With AP-Plasma treatment, the change of microscopic surface characteristic was measured in terms of static contact angle. The static contact angle was reduced from 80° on original non-treated surface to 15° on treated surface. An enhancement of 18% on CHF values under flow boiling conditions were observed on AP-Plasma treated surfaces compared to those on non-treated heating surfaces.

  20. Particle image velocimetry measurements for opposing flow in a vertical channel with a differential and asymmetric heating condition

    SciTech Connect (OSTI)

    Martinez-Suastegui, L. [Graduate Student, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, C.U., Mexico 04510 D.F. (Mexico); Trevino, C. [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, C.U., Mexico 04510 D.F. (Mexico)

    2007-10-15

    Particle image velocimetry (PIV) measurements were carried out in an experimental investigation of laminar mixed convection in a vertical duct with a square cross-section. The main downward water-flow is driven by gravity while a portion of a lateral side is heated, and buoyancy forces produce non-stationary vortex structures close to the heated region. Various ranges of the Grashof number, Gr are studied in combination with the Reynolds number, Re varying from 300 to 700. The values of the generalized buoyancy parameter or Richardson number, Ri = Gr/Re{sup 2} parallel to the Grashof number are included in the results. The influence of these nondimensional parameters and how they affect the fluid flow structure and vortex sizes and locations are reported. The flow patterns are nonsymmetric, periodic, and exhibit increasing complexity and frequency for increasing buoyancy. For the averaged values of the resulting vortex dimensions, it was found that a better and more congruent representation occurs when employing the Grashof and Reynolds numbers as independent parameters. (author)

  1. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

    2002-11-22

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

  2. Mixed convection radiative flow of three dimensional Maxwell fluid over an inclined stretching sheet in presence of thermophoresis and convective condition

    SciTech Connect (OSTI)

    Ashraf, M. Bilal; Hayat, T.; Shehzad, S. A.; Alsaedi, A.

    2015-02-15

    Three dimensional radiative flow of Maxwell fluid over an inclined stretching surface with convective boundary condition is investigated. Heat and mass transfer analysis is taken into account with thermophoresis effects. Similarity transformations are utilized to reduce the partial differential equations into ordinary differential equations. Series solutions of velocity, temperature and concentration are developed. Influence of different parameters Biot number, therrmophoretic parameter, Deborah number, ratio parameter, inclined stretching angle, radiation parameter, mixed convection parameter and concentration buoyancy parameter on the non-dimensional velocity components, temperature and concentration are plotted and discussed in detail. Physical quantities of interests are tabulated and examined.

  3. Adding Complex Terrain and Stable Atmospheric Condition Capability to the OpenFOAM-based Flow Solver of the Simulator for On/Offshore Wind Farm Applications (SOWFA): Preprint

    SciTech Connect (OSTI)

    Churchfield, M. J.; Sang, L.; Moriarty, P. J.

    2013-09-01

    This paper describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver such that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with somepreliminary results calculations of a stable atmospheric boundary layer and flow over a simply set of hills.

  4. Low volume flow meter

    DOE Patents [OSTI]

    Meixler, Lewis D.

    1993-01-01

    The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

  5. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  6. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  7. Low pressure stagnation flow reactor with a flow barrier

    DOE Patents [OSTI]

    Vosen, Steven R.

    2001-01-01

    A flow barrier disposed at the periphery of a workpiece for achieving uniform reaction across the surface of the workpiece, such as a semiconductor wafer, in a stagnation flow reactor operating under the conditions of a low pressure or low flow rate. The flow barrier is preferably in the shape of annulus and can include within the annular structure passages or flow channels for directing a secondary flow of gas substantially at the surface of a semiconductor workpiece. The flow barrier can be constructed of any material which is chemically inert to reactive gases flowing over the surface of the semiconductor workpiece.

  8. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    SciTech Connect (OSTI)

    Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian; Mehta, Chaitanya; Collins, Price; Lish, Matthew; Cady, Brian; Lollar, Victor; de Wet, Dane; Bayram, Duygu

    2015-12-15

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. The following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on

  9. Hydrodynamics from Landau initial conditions

    SciTech Connect (OSTI)

    Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; Read jr, Kenneth F.; Wong, Cheuk-Yin

    2015-01-01

    We investigate ideal hydrodynamic evolution, with Landau initial conditions, both in a semi-analytical 1+1D approach and in a numerical code incorporating event-by-event variation with many events and transverse density inhomogeneities. The object of the calculation is to test how fast would a Landau initial condition transition to a commonly used boost-invariant expansion. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20 - 30%) expected at freezeout for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, 2+1 dimensional hydrodynamics is inadequate to extract transport coefficients of the quark-gluon plasma. Based on [1, 2

  10. Two-Phase Mass Flow Measurement Using Noise Analysis (Conference...

    Office of Scientific and Technical Information (OSTI)

    mass flow measurement sensor for two-phase flow conditions in geothermal applications. ... Resource Type: Conference Resource Relation: Conference: Geothermal Program Review ...

  11. Underground Flow Measurement and Particle Release Test | Department...

    Office of Environmental Management (EM)

    Underground Flow Measurement and Particle Release Test Underground Flow Measurement and Particle Release Test This document was used to determine facts and conditions during the ...

  12. Flow chamber

    DOE Patents [OSTI]

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  13. UZ Flow Models and Submodels

    SciTech Connect (OSTI)

    Y. Wu

    2004-11-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

  14. Security Conditions

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-08

    This Notice ensures that DOE uniformly meets the requirements of the Homeland Security Advisory System outlined in Homeland Security Presidential Directive-3, Threat Conditions and Associated Protective Measures, dated 3-11-02, and provides responses specified in Presidential Decision Directive 39, U.S. Policy on Counterterrorism (U), dated 6-21-95. It cancels DOE N 473.8, Security Conditions, dated 8-7-02. Extended until 7-7-06 by DOE N 251.64, dated 7-7-05 Cancels DOE N 473.8

  15. Flow battery

    DOE Patents [OSTI]

    Lipka, Stephen M.; Swartz, Christopher R.

    2016-02-23

    An electrolyte system for a flow battery has an anolyte including [Fe(CN).sub.6].sup.3- and [Fe(CN).sub.6].sup.4- and a catholyte including Fe.sup.2+ and Fe.sup.3+.

  16. Modeling shrouded stator cavity flows in axial-flow compressors

    SciTech Connect (OSTI)

    Wellborn, S.R.; Tolchinsky, I.; Okiishi, T.H.

    2000-01-01

    Experiments and computational analyses were completed to understand the nature of shrouded stator cavity flows. From this understanding, a one-dimensional model of the flow through shrouded stator cavities was developed. This model estimates the leakage mass flow, temperature rise, and angular momentum increase through the cavity, given geometry parameters and the flow conditions at the interface between the cavity and primary flow path. This cavity model consists of two components, one that estimates the flow characteristics through the labyrinth seals and the other that predicts the transfer of momentum due to windage. A description of the one-dimensional model is given. The incorporation and use of the one-dimensional model in a multistage compressor primary flow analysis tool is described. The combination of this model and the primary flow solver was used to reliably simulate the significant impact on performance of the increase of hub seal leakage in a twelve-stage axial-flow compressor. Observed higher temperatures of the hub region fluid, different stage matching, and lower overall efficiencies and core flow than expected could be correctly linked to increased hub seal clearance with this new technique. The importance of including these leakage flows in compressor simulations is shown.

  17. Flow instability and flow reversal in heated annular multichannels with initial downward flow

    SciTech Connect (OSTI)

    Guerrero, H.N.; Hart, C.M.

    1992-12-31

    Experimental and theoretical results are presented regarding the stability of initial downward flow of single phase water in parallel annular channels of the Savannah River Site (SRS) fuel assembly. The test was performed on an electrically heated prototypic mockup of a Mark-22 fuel assembly. The test conditions consisted of mass fluxes, from 98--294 kg/m{sup 2}-sec, and inlet water temperatures of 25{degrees}C and 40{degrees}C. With increased power to the heaters, flow instability was detected, characterized by flow fluctuations and flow redistribution among subchannels of the outer flow channel. With increased power, a condition was observed indicating local subchannel flow reversals where certain subchannel fluid temperatures were high at the inlet and low at the exit. With additional power increased, a critical heat flux condition was observed indicating local subchannel flow reversals where certain subchannel fluid temperatures were high at the inlet and low at the exit. With additional power increases, a critical heat flux condition was reached in the outer channel.

  18. Flow instability and flow reversal in heated annular multichannels with initial downward flow

    SciTech Connect (OSTI)

    Guerrero, H.N.; Hart, C.M.

    1992-01-01

    Experimental and theoretical results are presented regarding the stability of initial downward flow of single phase water in parallel annular channels of the Savannah River Site (SRS) fuel assembly. The test was performed on an electrically heated prototypic mockup of a Mark-22 fuel assembly. The test conditions consisted of mass fluxes, from 98--294 kg/m[sup 2]-sec, and inlet water temperatures of 25[degrees]C and 40[degrees]C. With increased power to the heaters, flow instability was detected, characterized by flow fluctuations and flow redistribution among subchannels of the outer flow channel. With increased power, a condition was observed indicating local subchannel flow reversals where certain subchannel fluid temperatures were high at the inlet and low at the exit. With additional power increased, a critical heat flux condition was observed indicating local subchannel flow reversals where certain subchannel fluid temperatures were high at the inlet and low at the exit. With additional power increases, a critical heat flux condition was reached in the outer channel.

  19. Flow cytometer

    DOE Patents [OSTI]

    van den Engh, Ger

    1995-01-01

    A Faraday cage enclosing the flow chamber of a cytometer and ground planes associated with each field deflection plate in concert therewith inhibit electric fields from varying the charge on designated events/droplets and further concentrates and increases forces applied to a charged event passing therethrough for accurate focus thereof while concomitantly inhibiting a potential shock hazard.

  20. Flow cytometer

    DOE Patents [OSTI]

    Van den Engh, G.

    1995-11-07

    A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

  1. Complex Flow Workshop Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complex Flow Workshop Report Complex Flow Workshop Report A discussion on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales. complex_flow_workshop_report.pdf (7.35 MB) More Documents & Publications Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow Offshore Resource Assessment and Design Conditions Public Meeting Summary Report

  2. Incompressible Flows Free Surfaces

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    NASA-VOF3D is a three-dimensional, transient, free surface, incompressible fluid dynamics program. It is specifically designed to calculate confined flows in a low gravity environment in which surface physics must be accurately treated. It allows multiple free surfaces with surface tension and wall adhesion and includes a partial cell treatment that allows curved boundaries and internal obstacles. Variable mesh spacing is permitted in all three coordinate directions. Boundary conditions available are rigid free-slip wall, rigid no-slipmore » wall, continuative, periodic, and specified pressure outflow boundary.« less

  3. Fluid Flow Phenomena during Welding

    SciTech Connect (OSTI)

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.

  4. Flow distribution channels to control flow in process channels...

    Office of Scientific and Technical Information (OSTI)

    Flow distribution channels to control flow in process channels Citation Details In-Document Search Title: Flow distribution channels to control flow in process channels The ...

  5. Flow distribution channels to control flow in process channels...

    Office of Scientific and Technical Information (OSTI)

    Flow distribution channels to control flow in process channels Citation Details In-Document Search Title: Flow distribution channels to control flow in process channels You are ...

  6. Complex Flow Workshop Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ETC.) ...... 20 1C IMPACT OF PHYSICS ON THE FLOW (RADIATION, MOISTURE, ETC.) ... shear across scales, global scale physics, flow forcing, coupling kilometer-scale ...

  7. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  8. EIN Cash Flow Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIN Cash Flow Model Energy Independence Now (EIN) Objectives Identify financial risks in early hydrogen infrastructure systems and illustrate hydrogen station cash flows under a ...

  9. Measurement of two-component flow using ultrasonic flowmeters

    SciTech Connect (OSTI)

    Whitehouse, J.C.; Eghbali, D.A.; Flitton, V.E.; Anderson, D.G.

    1991-12-31

    Calibration of transit-time and Doppler ultrasonic flowmeters under two-component flow conditions has been conducted on 400 mm (16-in.) pipe. Testing covered total flows of 0.19 to 1.89 m{sup 3}/s (3000 to 30,000 gpm) and void fractions up to 40%. Both flowmeter types of accurately measured total volumetric flow over a portion of their ranges. Pipe average void fraction, based on a three-beam gamma densitometer, was used to determine water component flow under stratified flow conditions, with similar results. 2 refs.

  10. Measurement of two-component flow using ultrasonic flowmeters

    SciTech Connect (OSTI)

    Whitehouse, J.C.; Eghbali, D.A. ); Flitton, V.E. ); Anderson, D.G. )

    1991-01-01

    Calibration of transit-time and Doppler ultrasonic flowmeters under two-component flow conditions has been conducted on 400 mm (16-in.) pipe. Testing covered total flows of 0.19 to 1.89 m{sup 3}/s (3000 to 30,000 gpm) and void fractions up to 40%. Both flowmeter types of accurately measured total volumetric flow over a portion of their ranges. Pipe average void fraction, based on a three-beam gamma densitometer, was used to determine water component flow under stratified flow conditions, with similar results. 2 refs.

  11. Two-phase flow instabilities in a vertical annular channel

    SciTech Connect (OSTI)

    Babelli, I.; Nair, S.; Ishii, M.

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  12. Subsurface Flow and Contaminant Transport

    Energy Science and Technology Software Center (OSTI)

    2000-09-19

    FACT is a transient three-dimensional, finite element code for simulating isothermal groundwater flow, moisture movement, and solute transport in variably and/or fully saturated subsurface porous media. Both single and dual-domain transport formulations are available. Transport mechanisms considered include advection, hydrodynamic dispersion, linear adsorption, mobile/immobile mass transfer and first-order degradation. A wide range of acquifier conditions and remediation systems commonly encountered in the field can be simulated. Notable boundary condition (BC) options include, a combined rechargemore » and drain BC for simulating recirculation wells, and a head dependent well BC that computes flow based on specified drawdown. The code is designed to handle highly heterogenous, multi-layer, acquifer systems in a numerically efficient manner. Subsurface structure is represented with vertically distorted rectangular brick elements in a Cartesian system. The groundwater flow equation is approximated using the Bubnov-Galerkin finite element method in conjunction with an efficient symmetric Preconditioned Conjugate Gradient (PCG) ICCG matrix solver. The solute transport equation is approximated using an upstream weighted residual finite element method designed to alleviate numerical oscillation. An efficient asymmetric PCG (ORTHOMIN) matrix solver is employed for transport. For both the flow and transport equations, element matrices are computed from either influence coefficient formulas for speed, or two point Gauss-Legendre quadrature for accuracy. Non-linear flow problems can be solved using either Newton-Ralphson linearization or Picard iteration, with under-relaxation formulas to further enhance convergence. Dynamic memory allocation is implemented using Fortran 90 constructs. FACT coding is clean and modular.« less

  13. STATIONARITY IN SOLAR WIND FLOWS

    SciTech Connect (OSTI)

    Perri, S.; Balogh, A. E-mail: a.balogh@imperial.ac.u

    2010-05-01

    By using single-point measurements in space physics it is possible to study a phenomenon only as a function of time. This means that we cannot have direct access to information about spatial variations of a measured quantity. However, the investigation of the properties of turbulence and of related phenomena in the solar wind widely makes use of an approximation frequently adopted in hydrodynamics under certain conditions, the so-called Taylor hypothesis; indeed, the solar wind flow has a bulk velocity along the radial direction which is much higher than the velocity of a single turbulent eddy embedded in the main flow. This implies that the time of evolution of the turbulent features is longer than the transit time of the flow through the spacecraft position, so that the turbulent field can be considered frozen into the solar wind flow. This assumption allows one to easily associate time variations with spatial variations and stationarity to homogeneity. We have investigated, applying criteria for weak stationarity to Ulysses magnetic field data in different solar wind regimes, at which timescale and under which conditions the hypothesis of stationarity, and then of homogeneity, of turbulence in the solar wind is well justified. We extend the conclusions of previous studies by Matthaeus and Goldstein to different parameter ranges in the solar wind. We conclude that the stationarity assumption in the inertial range of turbulence on timescales of 10 minutes to 1 day is reasonably satisfied in fast and uniform solar wind flows, but that in mixed, interacting fast, and slow solar wind streams the assumption is frequently only marginally valid.

  14. Non-axisymmetric Flows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to be different than the classical Sweet-Parker picture with symmetric inward flows. ... . 60 5 Reconnection Flow Patterns 64 5.1 Sweet-Parker and tearing reconnection . . . . . ...

  15. Ultrasonic flow metering system

    DOE Patents [OSTI]

    Gomm, Tyler J.; Kraft, Nancy C.; Mauseth, Jason A.; Phelps, Larry D.; Taylor, Steven C.

    2002-01-01

    A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

  16. Flow cytometer jet monitor system

    DOE Patents [OSTI]

    Van den Engh, Ger

    1997-01-01

    A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

  17. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  18. Lateral flow strip assay

    DOE Patents [OSTI]

    Miles, Robin R.; Benett, William J.; Coleman, Matthew A.; Pearson, Francesca S.; Nasarabadi, Shanavaz L.

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  19. Low flow fume hood

    DOE Patents [OSTI]

    Bell, Geoffrey C.; Feustel, Helmut E.; Dickerhoff, Darryl J.

    2002-01-01

    A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.

  20. CX-010826: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Evaluation of Flow and Heat Transfer Inside Lean Pre-Mixed Combustor Systems under Reacting Flow Conditions CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

  1. Flow Split Venturi, Axially-Rotated Valve

    DOE Patents [OSTI]

    Walrath, David E.; Lindberg, William R.; Burgess, Robert K.; LaBelle, James

    2000-02-22

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.

  2. Inhomogeneity of fluid flow in Stirling engine regenerators

    SciTech Connect (OSTI)

    Jones, J.D. )

    1989-10-01

    The literature relating to inhomogeneity of flow regenerators is briefly reviewed. It is noted that, in contrast to other applications of regenerators, relatively little attention has been paid to the consequences of flow inhomogeneity for thermal regeneration in Stirling cycle machines. The construction of regenerator capsules for a large stationary Stirling engine is described. A test rig is developed to measure the gas velocity profile across the face of the packed regenerator capsules under steady flow conditions. Measured flow profiles for a number of different matrix materials and construction techniques are presented, and it is noted that stacked-mesh regenerator matrices tend to display marked inhomogeneities of flow. The consequences of flow inhomogeneity for flow friction and regenerator effectiveness are analyzed theoretically, and approximate formulae deduced. One method for reducing flow inhomogeneity in stacked-screen matrice

  3. Site-Scale Saturated Zone Flow Model

    SciTech Connect (OSTI)

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being

  4. Polyoxometalate flow battery

    DOE Patents [OSTI]

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  5. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  6. Excess flow shutoff valve

    DOE Patents [OSTI]

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  7. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  8. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA); Esposito, Richard J. (Seattle, WA)

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  9. New Mexico Heat Flow

    SciTech Connect (OSTI)

    Shari Kelley

    2015-10-21

    This is an updated and simplified version of the New Mexico heat flow data already on the NGDS that was used for Play Fairway analysis.

  10. Bridge Condition Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Condition and Performance Assessment Background How bridges respond to extreme loading conditions, such as during high winds and severe storms, and to the effects of aging, such as corrosion- and fatigue-induced cracking, is a major concern for the Federal Highway Administration (FHWA). The FHWA is working to ensure that highway structures are safe and reliable under all service conditions, including potential structural, environmental, and human-generated threats. Role of High-Performance

  11. Enthalpy Diffusion in Multicomponent Flows

    SciTech Connect (OSTI)

    Cook, A W

    2008-11-12

    The enthalpy diffusion flux in the multicomponent energy equation is a well known yet frequently neglected term. It accounts for energy changes, associated with compositional changes, resulting from species diffusion. Enthalpy diffusion is important in flows where significant mixing occurs between species of dissimilar molecular weight. The term plays a critical role in preventing local violations of the entropy condition. In simulations of nonpremixed combustion, omission of the enthalpy flux can lead to anomalous temperature gradients, which may cause mixing regions to exceed ignition conditions. The term can also play a role in generating acoustic noise in turbulent mixing layers. Euler solvers that rely on numerical diffusion to mix fluids cannot accurately predict the temperature in mixed regions. On the other hand, Navier-Stokes solvers that incorporate enthalpy diffusion can provide much more accurate results.

  12. Method for identifying anomalous terrestrial heat flows

    DOE Patents [OSTI]

    Del Grande, Nancy Kerr

    1977-01-25

    A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.

  13. Cyclotron resonance in plasma flow

    SciTech Connect (OSTI)

    Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V. V.

    2013-12-15

    This paper is devoted to the mechanism of particle acceleration via resonant interaction with the electromagnetic circular wave propagating along the inhomogeneous background magnetic field in the presence of a plasma flow. We consider the system where the plasma flow velocity is large enough to change the direction of wave propagation in the rest frame. This system mimics a magnetic field configuration typical for inner structure of a quasi-parallel shock wave. We consider conditions of gyroresonant interaction when the force corresponding to an inhomogeneity of the background magnetic field is compensated by the Lorentz force of the wave-magnetic field. The wave-amplitude is assumed to be about 10% of the background magnetic field. We show that particles can gain energy if kv{sub sw}>?>kv{sub sw}??{sub c} where k is the wave number, v{sub sw} is a plasma flow velocity, and ? and ?{sub c} are the wave frequency and the particle gyrofrequency, respectively. This mechanism of acceleration resembles the gyrosurfing mechanism, but the effect of the electrostatic field is replaced by the effect of the magnetic field inhomogeneity.

  14. Laminar Entrained Flow Reactor (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  15. Bypass flow computations on the LOFA transient in a VHTR

    SciTech Connect (OSTI)

    Tung, Yu-Hsin; Johnson, Richard W.; Ferng, Yuh-Ming; Chieng, Ching-Chang

    2014-01-01

    Bypass flow in the prismatic gas-cooled very high temperature reactor (VHTR) is not intentionally designed to occur, but is present in the gaps between graphite blocks. Previous studies of the bypass flow in the core indicated that the cooling provided by flow in the bypass gaps had a significant effect on temperature and flow distributions for normal operating conditions. However, the flow and heat transports in the core are changed significantly after a Loss of Flow Accident (LOFA). This study aims to study the effect and role of the bypass flow after a LOFA in terms of the temperature and flow distributions and for the heat transport out of the core by natural convection of the coolant for a 1/12 symmetric section of the active core which is composed of images and mirror images of two sub-region models. The two sub-region models, 9 x 1/12 and 15 x 1/12 symmetric sectors of the active core, are employed as the CFD flow models using computational grid systems of 70.2 million and 117 million nodes, respectively. It is concluded that the effect of bypass flow is significant for the initial conditions and the beginning of LOFA, but the bypass flow has little effect after a long period of time in the transient computation of natural circulation.

  16. Slurry fired heater cold-flow modelling

    SciTech Connect (OSTI)

    Moujaes, S.F.

    1983-07-01

    This report summarizes the experimental and theoretical work leading to the scale-up of the SRC-I Demonstration Plant slurry fired heater. The scale-up involved a theoretical model using empirical relations in the derivation, and employed variables such as flow conditions, liquid viscosity, and slug frequency. Such variables have been shown to affect the heat transfer characteristics ofthe system. The model assumes that, if all other variables remain constant, the heat transfer coefficient can be scaled up proportional to D/sup -2/3/ (D = inside diameter of the fired heater tube). All flow conditions, liquid viscosities, and pipe inclinations relevant to the demonstration plant have indicated a slug flow regime in the slurry fired heater. The annular and stratified flow regimes should be avoided to minimize the potential for excessive pipe erosion and to decrease temperature gradients along the pipe cross section leading to coking and thermal stresses, respectively. Cold-flow studies in 3- and 6.75-in.-inside-diameter (ID) pipes were conducted to determine the effect of scale-up on flow regime, slug frequency, and slug dimensions. The developed model assumes that conduction heat transfer occurs through the liquid film surrounding the gas slug and laminar convective heat transfer to the liquid slug. A weighted average of these two heat transfer mechanisms gives a value for the average pipe heat transfer coefficient. The cold-flow work showed a decrease in the observed slug frequency between the 3- and 6.75-ID pipes. Data on the ratio of gas to liquid slug length in the 6.75-in. pipe are not yet complete, but are expected to yield generally lower values than those obtained in the 3-in. pipe; this will probably affect the scale-up to demonstration plant conditions. 5 references, 15 figures, 7 tables.

  17. Condition Assessment Information System

    Energy Science and Technology Software Center (OSTI)

    2002-09-16

    CAIS2000 records, tracks and cost maintenance deficiencies associated with condition assessments of real property assets. Cost information is available for 39,000 items in the currenht RS Means, Facilities Construction Manual. These costs can, in turn, be rolled by by asset to produce the summary condition of an asset or site.

  18. Microelectromechanical flow control apparatus

    DOE Patents [OSTI]

    Okandan, Murat

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  19. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  20. Cardiovascular Flow Simulations at Extreme Scale | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Cardiovascular Flow Simulations at Extreme Scale Authors: Zhou, M., Sahni, O., Kim, H.J., Figueroa, C.A., Taylor, C.A., Shephard, M.S., Jansen, K.E. As cardiovascular models grow more sophisticated in terms of the geometry considered, and more physiologically realistic boundary conditions are applied, and fluid flow is coupled to structural models, the computational complexity grows. Massively parallel adaptivity and flow solvers with extreme scalability enable

  1. CONDITIONS OF PURCHASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 2 GE Global Research CONDITIONS OF PURCHASE - SHORT FORM (May 2013) 1. ACCEPTANCE AND TERMS AND CONDITIONS: This purchase is subject to all of the terms and conditions set forth herein. This Order does not constitute an acceptance by GE of any offer to sell, quotation, or proposal. Any variation of the terms of this Order is not binding upon GE unless specifically accepted by GE in writing, and GE hereby rejects such proposed modifications. This Order is intended by the parties as a final,

  2. Flow Partitioning in Fully Saturated Soil Aggregates

    SciTech Connect (OSTI)

    Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.; Perkins, William A.; Resat, Haluk

    2014-03-30

    Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flow among the inter-aggregate and intra-aggregate pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the aggregates was larger

  3. Buoyancy-driven flow excursions in fuel assemblies

    SciTech Connect (OSTI)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-09-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating heavy water moderator downward through channels in cylindrical fuel tubes. Powers were limited to safeguard against a flow excursion in one of more of these parallel channels. During-full-power operation, limits safeguarded against a boiling flow excursion. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increased beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of the limiting power for previous long-term reactor operations.

  4. Tank depletion flow controller

    DOE Patents [OSTI]

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  5. Shroud leakage flow discouragers

    DOE Patents [OSTI]

    Bailey, Jeremy Clyde; Bunker, Ronald Scott

    2002-01-01

    A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

  6. ARM - Measurement - Surface condition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    condition ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface condition State of the surface, including vegetation, land use, surface type, roughness, and such; often provided in model output. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  7. Terms and Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Terms and Conditions Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds 100G SDN Testbed Testbed Description Proposal Process Terms and Conditions Dark Fiber Testbed Test Circuit Service Testbed Results Current Testbed Research Previous Testbed Research Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600

  8. CONDITIONS OF PURCHASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GEGR-N Goods PO 1 of 8 GE Global Research CONDITIONS OF PURCHASE (May 2013) INTEGRITY STATEMENT: If you as a Supplier become aware of any situation that appears to be inconsistent with GE's Policy to maintain lawful and fair practices in its supplier relationships, you may write to our GEGR Ombudsman at: Global Research, One Research Circle, Niskayuna, NY 12309. 1. ACCEPTANCE AND TERMS AND CONDITIONS: (a) Seller accepts this Order and any amendments thereto by signing the acceptance copy and

  9. Conditional data watchpoint management

    DOE Patents [OSTI]

    Burdick, Dean Joseph; Vaidyanathan, Basu

    2010-08-24

    A method, system and computer program product for managing a conditional data watchpoint in a set of instructions being traced is shown in accordance with illustrative embodiments. In one particular embodiment, the method comprises initializing a conditional data watchpoint and determining the watchpoint has been encountered. Upon that determination, examining a current instruction context associated with the encountered watchpoint prior to completion of the current instruction execution, further determining a first action responsive to a positive context examination; otherwise, determining a second action.

  10. Pressure and flow characteristics of restrictive flow orifice...

    Office of Scientific and Technical Information (OSTI)

    an RFO to limit the maximum system flow to acceptable limits within the flow capacity of the relief valve, thereby enhancing the overpressure protection of laboratory equipment. ...

  11. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  12. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  13. Complex Flow Workshop Report

    SciTech Connect (OSTI)

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  14. Dielectrophoretic concentration of particles under electrokinetic flow

    DOE Patents [OSTI]

    Miles, Robin R.; Bettencourt, Kerry A.; Fuller, Christopher K.

    2004-09-07

    The use of dielectrophoresis to collect particles under the conditions of electrokinetically-driven flow. Dielectrophortic concentration of particles under electrokinetic flow is accomplished by interdigitated electrodes patterned on an inner surface of a microfluid channel, a DC voltage is applied across the ends to the channel, and an AC voltage is applied across the electrodes, and particles swept down the channel electrokinetically are trapped within the field established by the electrodes. The particles can be released when the voltage to the electrodes is released.

  15. Electrochemical flow capacitors

    SciTech Connect (OSTI)

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    2015-10-27

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  16. Electrochemical flow capacitors

    DOE Patents [OSTI]

    Gogotsi, Yury; Presser, Volker; Kumbar, Emin Caglan

    2015-11-05

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  17. Flow reversal power limit for the HFBR (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and ...

  18. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  19. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  20. Standard Terms and Conditions | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standard Terms and Conditions Documents related to NREL's standard terms and conditions for subcontracts or purchase orders are available below. Standard Terms and Conditions - ...

  1. Scaled Experimental Modeling of VHTR Plenum Flows

    SciTech Connect (OSTI)

    ICONE 15

    2007-04-01

    Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (thermal striping) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.

  2. Method for use of hydraulically or electrically controlled solenoids under failed on conditions

    DOE Patents [OSTI]

    Bolenbaugh, Jonathan M.; Naqi, Syed

    2014-07-08

    A method to operate a clutch device in an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and at least one electric machine includes, in response to a failure condition detected within a flow control device configured to facilitate flow of hydraulic fluid for operating the clutch device, selectively preventing the flow of hydraulic fluid from entering the flow control device and feeding the clutch device. Synchronization of the clutch device is initiated when the clutch device is intended for activation, and only if the clutch device is synchronized, the flow of hydraulic fluid is selectively permitted to enter the flow control device to activate the clutch device.

  3. History of Air Conditioning

    Broader source: Energy.gov [DOE]

    We take it for granted but what would life be like without the air conditioner? Once considered a luxury, this invention is now an essential, allowing us to cool everything from homes, businesses, businesses, data centers, laboratories and other buildings vital to our daily lives. Explore this timeline to learn some of the key dates in the history of air conditioning.

  4. General Transient Fluid Flow Algorithm

    Energy Science and Technology Software Center (OSTI)

    1992-03-12

    SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude resultsmore » from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.« less

  5. Piezoelectric axial flow microvalve

    DOE Patents [OSTI]

    Gemmen, Randall; Thornton, Jimmy; Vipperman, Jeffrey S.; Clark, William W.

    2007-01-09

    This invention is directed to a fuel cell operable with a quantity of fuel and a quantity of an oxidizer to produce electrical power, the fuel cell including a fuel cell body including a labyrinth system structured to permit the fuel and the oxidizer to flow therethrough; at least a first catalyst in fluid communication with the labyrinth; and at least a first microvalve operably disposed within at least a portion of the labyrinth. The microvalve utilizes a deflectable member operable upon the application of a voltage from a voltage source. The microvalve includes an elongated flow channel formed therein and extending substantially longitudinally between the first and second ends to permit substantially longitudinal flow of the fluid therethrough and between the first and second ends; and the deflectable member disposed on the valve body, the deflectable member including at least a first piezoelectric portion that is piezoelectrically operable to deflect the deflectable member between an open position and a closed position upon the application of a voltage, the deflectable member in the closed position being operable to resist the flow of the fluid through the flow channel.

  6. Air conditioning system

    DOE Patents [OSTI]

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  7. Electrocapturing flow cell

    DOE Patents [OSTI]

    Morozov, Victor

    2011-04-05

    A flow cell for electrophoretically-assisted capturing analytes from a flow. The flow cell includes a specimen chamber, a first membrane, a second membrane, a first electrode chamber, and a second electrode chamber. The specimen chamber may have a sample inlet and a sample outlet. A first portion of the first membrane may be coupled to a first portion of the specimen chamber. A first portion of the second membrane may be coupled to a second portion of the specimen chamber. The first electrode chamber may be configured to accept a charge. A portion of the first electrode chamber may be coupled to a second portion of the first membrane. A second electrode chamber may be configured to accept an opposite charge. A portion of the second electrode chamber may be coupled to a second portion of the second membrane.

  8. Microwave fluid flow meter

    DOE Patents [OSTI]

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  9. Flow line sampler

    DOE Patents [OSTI]

    Nicholls, Colin I.

    1992-07-14

    An on-line product sampling apparatus and method for measuring product samples from a product stream (12) in a flow line (14) having a sampling aperture (11), includes a sampling tube (18) for containing product samples removed from flow line (14). A piston (22) removes product samples from the product stream (12) through the sampling aperture (11) and returns samples to product stream (12). A sensor (20) communicates with sample tube (18), and senses physical properties of samples while the samples are within sample tube (18). In one embodiment, sensor (20) comprises a hydrogen transient nuclear magnetic resonance sensor for measuring physical properties of hydrogen molecules.

  10. Extreme Conditions Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conditions Modeling - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  11. Membrane Based Air Conditioning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membrane Based Air Conditioning 2016 Building Technologies Office Peer Review Brian Johnson, brian.johnson@daisanalytic.com Dais Analytic Corporation INSERT PROJECT SPECIFIC PHOTO (replacing this shape) 2 Project Summary Timeline: Start date: October 1, 2015 NEW PROJECT Planned end date: September 30, 2017 Key Milestones 1. System Design Review; March 2016 2. Compressor testing review; September 2016 3. Go/No-Go based on bench testing; September 2016 4. Experimental evaluation of V1 prototype;

  12. Air conditioning apparatus

    SciTech Connect (OSTI)

    Ouchi, Y.; Otoshi, Sh.

    1985-04-09

    The air conditioning apparatus according to the invention comprises an absorption type heat pump comprising a system including an absorber, a regenerator, a condenser and an evaporator. A mixture of lithium bromide and zinc chloride is used as an absorbent which is dissolved to form an absorbent solution into a mixed solvent having a ratio by weight of methanol to water, the ratio falling in a range between 0.1 and 0.3. Said solution is circulated through the system.

  13. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  14. High voltage pulse conditioning

    DOE Patents [OSTI]

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  15. Flume simulation of sedimentation in recirculating flow

    SciTech Connect (OSTI)

    Schmidt, J.C. (Middlebury College, VT (USA)); Rubin, D.M. (Geological Survey, Menlo Park, CA (USA)); Ikeda, H. (Univ. of Tsukuba (Japan))

    1990-05-01

    A 4-m-wide flume at the University of Tsukuba Environmental Research Center was used to simulate flow conditions near debris fans in bedrock gorges. Flow was constricted to 2 m by a semicircular obstruction. During the authors experiments (discharge = 600 L/sec; Froude number of constricted flow = 1) a zone of recirculating current extended 25-30 m downstream from the separation point at the constriction. The pattern and velocity of surface flow was determined using time-lapse photography; subsurface velocity was measured with a two-dimensional electromagnetic current meter. During 32-hr of run time, a fine, very coarse sand mixture was fed into the flow at a rate between 0.5-1 kg/sec. Oscillation ripples developed beneath the separation surface that bounds the recirculation zone, and upstream-migrating dunes and ripples developed within the recirculation zone upstream from the reattachment point. A mid-channel expansion bar was deposited downstream from the reattachment point. Sedimentation within the recirculation zone continued by vertical aggradation and by upstream migration of dunes and ripples. Sediments within the recirculation zone were areally sorted with the finest sediment deposited near the separation point. These patterns are consistent with field observations of bars along the Colorado River in the Grand Canyon.

  16. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, Daniel

    1991-01-01

    An obstruction across the flow chamber creates a one dimensional convergence of a sheath fluid. A passageway in the construction directs flat cells near to the area of one dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates.

  17. US energy flow, 1991

    SciTech Connect (OSTI)

    Borg, I.Y.; Briggs, C.K.

    1992-06-01

    Trends in energy consumption and assessment of energy sources are discussed. Specific topics discussed include: energy flow charts; comparison of energy use with 1990 and earlier years; supply and demand of fossil fuels (oils, natural gas, coal); electrical supply and demand; and nuclear power.

  18. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, D.

    1987-11-30

    An obstruction across the flow chamber creates a one-dimensional convergence of a sheath fluid. A passageway in the obstruction directs flat cells near to the area of one-dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates. 6 figs.

  19. Measurement of fenestration performance under realistic conditions

    SciTech Connect (OSTI)

    Klems, J.H.

    1984-02-01

    The need for fenestration performance measurements under realistic conditions is noted, and the Mobile Window Thermal Test facility (MoWiTT), newly constructed at LBL to make these measurements, is described. A key feature of the MoWiTT is the direct measurement of instantaneous net energy flow in the presence of sunlight. Ongoing calibration to establish the accuracy of this facility is described, and calibration data so far obtained are presented. Estimates from these data indicate that the facility will have sufficient accuracy for most fenestration measurements of interest.

  20. Design and optimization of a back-flow limiter for the high performance light water reactor

    SciTech Connect (OSTI)

    Fischer, Kai; Laurien, Eckart; Claas, Andreas G.; Schulenberg, Thomas

    2007-07-01

    Design and Analysis of a back-flow limiter are presented, which is implemented as a safety device in the four inlet lines of the Reactor Pressure Vessel (RPV) of the High Performance Light Water Reactor (HPLWR). As a passive component, the back-flow limiter has no moving parts and belongs to the group of fluid diodes. It has low flow resistance for regular operation condition and a high flow resistance when the flow direction is reversed which is the case if a break of the feedwater line occurs. The increased flow resistance is due to a substantially increased swirl for reverse flow condition. The design is optimized employing 1D flow analyses in combination with 3D CFD analyses with respect to geometrical modifications, like the nozzle shape and swirler angles. (authors)

  1. Binary fish passage models for uniform and nonuniform flows

    SciTech Connect (OSTI)

    Neary, Vincent S

    2011-01-01

    Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow

  2. Conditional sterility in plants

    DOE Patents [OSTI]

    Meagher, Richard B.; McKinney, Elizabeth; Kim, Tehryung

    2010-02-23

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  3. Structural power flow measurement

    SciTech Connect (OSTI)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  4. Oahu Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.

  5. TEP process flow diagram

    SciTech Connect (OSTI)

    Wilms, R Scott; Carlson, Bryan; Coons, James; Kubic, William

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  6. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  7. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  8. Summary on the depressurization from supercritical pressure conditions

    SciTech Connect (OSTI)

    Anderson, M.; Chen, Y.; Ammirable, L.; Yamada, K.

    2012-07-01

    When a fluid discharges from a high pressure and temperature system, a 'choking' or critical condition occurs, and the flow rate becomes independent of the downstream pressure. During a postulated loss of coolant accident (LOCA) of a water reactor the break flow will be subject to this condition. An accurate estimation of the critical flow rate is important for the evaluation of the reactor safety, because this flow rate controls the loss of coolant inventory and energy from the system, and thus has a significant effect on the accident consequences[1]. In the design of safety systems for a super critical water reactor (SCWR), postulated LOCA transients are particularly important due to the lower coolant inventory compared to a typical PWR for the same power output. This lower coolant inventory would result in a faster transient response of the SCWR, and hence accurate prediction of the critical discharge is mandatory. Under potential two-phase conditions critical flow is dominated by the vapor content or quality of the vapor, which is closely related with the onset of vaporization and the interfacial interaction between phases [2]. This presents a major challenge for the estimation of the flow rate due to the lack of the knowledge of those processes, especially under the conditions of interest for the SCWR. According to the limited data of supercritical fluids, the critical flows at conditions above the pseudo-critical point seem to be fairly stable and consistent with the subcritical homogeneous equilibrium model (HEM) model predictions, while having a lower flow rate than those in the two-phase region. Thus the major difficulty in the prediction of the depressurization flow rates remains in the region where two phases co-exist at the top of the vapor dome. In this region, the flow rate is strongly affected by the nozzle geometry and tends to be unstable. Various models for this region have been developed with different assumptions, e.g. the HEM and Moody model [3

  9. Virtual Flow Simulator

    Energy Science and Technology Software Center (OSTI)

    2015-10-05

    Virtual Flow Simulator (VFS) is a state-of-the-art computational fluid mechanics (CFD) package that is capable of simulating multi-physics/multi-phase flows with the most advanced turbulence models (RANS, LES) over complex terrains. The flow solver is based on the Curvilinear Immersed Boundary (CURVIB) method to handle geometrically complex and moving domains. Different modules of the VFS package can provide different simulation capabilities for specific applications ranging from the fluid-structure interaction (FSI) of solid and deformable bodies, themore » two-phase free surface flow solver based on the level set method for ocean waves, sediment transport models in rivers and the large-scale models of wind farms based on actuator lines and surfaces. All numerical features of VFS package have been validated with known analytical and experimental data as reported in the related journal articles. VFS package is suitable for a broad range of engineering applications within different industries. VFS has been used in different projects with applications in wind and hydrokinetic energy, offshore and near-shore ocean studies, cardiovascular and biological flows, and natural streams and river morphodynamics. Over the last decade, the development of VFS has been supported and assisted with the help of various United States companies and federal agencies that are listed in the sponsor lists. In this version, VFS-Wind contains all the necessary modeling tools for wind energy applications, including land-based and offshore wind farms. VFS is highly scalable to run on either desktop computers or high performance clusters (up to 16,000 CPUs). This released version comes with a detailed user’s manual and a set of case studies designed to facilitate the learning of the various aspects of the code in a comprehensive manner. The included documentation and support material has been elaborated in a collaboration effort with Sandia National Labs under the contract DE-EE0005482

  10. Radial flow pulse jet mixer

    DOE Patents [OSTI]

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  11. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect (OSTI)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  12. SATURATED-SUBCOOLED STRATIFIED FLOW IN HORIZONTAL PIPES

    SciTech Connect (OSTI)

    Richard Schultz

    2010-08-01

    Advanced light water reactor systems are designed to use passive emergency core cooling systems with horizontal pipes that provide highly subcooled water from water storage tanks or passive heat exchangers to the reactor vessel core under accident conditions. Because passive systems are driven by density gradients, the horizontal pipes often do not flow full and thus have a free surface that is exposed to saturated steam and stratified flow is present.

  13. Radiotracers application to determine laminar flow at a pipe

    SciTech Connect (OSTI)

    Ramirez-Garcia, F.P.; Cortes-Islas, E. )

    1988-06-01

    To measure gas flow in a gas venting line in an Oil Refinery the method of two points and iodine-131 labelled methyl iodide molecule was used. Forty-four complete sets of data were obtained corresponding to measurements performed in the gas venting line. Conditions of laminar and semi-turbulent flow were found. In the case of laminar flow measurement it was necessary to construct an injection equipment, consisting of a tubing with five slits to simultaneously inject the tracer into the gas stream at different points. For the laminar flow is obtained the transversal distribution of fluid velocities. The mean flow of the gas transported by the line under study was determined, and its standard deviation was calculated.

  14. Flue gas conditioning today

    SciTech Connect (OSTI)

    Southam, B.J.; Coe, E.L. Jr.

    1995-12-01

    Many relatively small electrostatic precipitators (ESP`s) exist which collect fly ash at remarkably high efficiencies and have been tested consistently at correspondingly high migration velocities. But the majority of the world`s coal supplies produce ashes which are collected at much lower migration velocities for a given efficiency and therefore require correspondingly large specific collection areas to achieve acceptable results. Early trials of flue gas conditioning (FGC) showed benefits in maximizing ESP performance and minimizing expense which justified continued experimentation. Trials of several dozen ways of doing it wrong eventually developed a set of reliable rules for doing it right. One result is that the use of sulfur trioxide (SO{sub 3}) for adjustment of the resistivity of fly ash from low sulfur coal has been widely applied and has become an automatically accepted part of the option of burning low sulfur coal for compliance with the Clean Air Act of l990 in the U.S.A. Currently, over 100,000 MW of generating capacity is using FGC, and it is estimated that approximately 45,800 MW will utilize coal-switching with FGC for Clean Air Act emission compliance. Guarantees that this equipment will be available to operate at least 98 percent of the time it is called upon are routinely fulfilled.

  15. Experimental comparison of the rotating cylinder electrode and full pipe flow for evaluating flow induced CO{sub 2} corrosion

    SciTech Connect (OSTI)

    McMahon, A.J.; Webster, S.; Paisley, D.; Moros, T.; Harrop, D.

    1995-10-01

    Corrosion of oil and gas pipelines by the internal fluids is complex and difficult to simulate in the laboratory. Here, the rotating cylinder electrode and full pipe flow in a recirculating flow loop give different results for nominally equivalent conditions. Pipe flow produces a higher mass transfer rate for the same nominal wall shear stress. Pipe flow also produces a higher CO{sub 2} corrosion rate for inhibited and uninhibited conditions at either the same shear stress or at the same mass transfer rate. Crucially, the rotating cylinder overestimates the performance of corrosion inhibitors. Therefore, while the cylinder is suitable for preliminary inhibitor screening it is not recommended for final selection of products.

  16. Flowing effects in gas lasers

    SciTech Connect (OSTI)

    Zhi, G.

    1984-05-01

    Currently accepted theory states that saturation intensity and gain (or optical power density) increase without limit with the increase of the flow speed. These conclusions are not true. It is shown instead that they tend to be limiting values with the increase of flow speed. The variations of the parameters mentioned above with flow speed are presented.

  17. Gas flow meter and method for measuring gas flow rate

    DOE Patents [OSTI]

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  18. Plug Flow Reactor Simulator

    Energy Science and Technology Software Center (OSTI)

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position,more » and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.« less

  19. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  20. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  1. Annular flow diverter valve

    DOE Patents [OSTI]

    Rider, Robert L.

    1980-01-01

    A valve for diverting flow from the center of two concentric tubes to the annulus between the tubes or, operating in the reverse direction, for mixing fluids from concentric tubes into a common tube and for controlling the volume ratio of said flow consists of a toroidal baffle disposed in sliding engagement with the interior of the inner tube downstream of a plurality of ports in the inner tube, a plurality of gates in sliding engagement with the interior of the inner tube attached to the baffle for movement therewith, a servomotor having a bullet-shaped plug on the downstream end thereof, and drive rods connecting the servomotor to the toroidal baffle, the servomotor thereby being adapted to move the baffle into mating engagement with the bullet-shaped plug and simultaneously move the gates away from the ports in the inner tube and to move the baffle away from the bullet-shaped plug and simultaneously move the gates to cover the ports in the inner tube.

  2. Radial flow heat exchanger

    DOE Patents [OSTI]

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  3. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel

    1993-01-01

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  4. Flow and evaporation in single micrometer and nanometer scale pipes

    SciTech Connect (OSTI)

    Velasco, A. E.; Yang, C.; Siwy, Z. S.; Taborek, P.; Toimil-Molares, M. E.

    2014-07-21

    We report measurements of pressure driven flow of fluids entering vacuum through a single pipe of micrometer or nanometer scale diameter. Nanopores were fabricated by etching a single ion track in polymer or mica foils. A calibrated mass spectrometer was used to measure the flow rates of nitrogen and helium through pipes with diameter ranging from 10??m to 31?nm. The flow of gaseous and liquid nitrogen was studied near 77?K, while the flow of helium was studied from the lambda point (2.18?K) to above the critical point (5.2?K). Flow rates were controlled by changing the pressure drop across the pipe in the range 031 atm. When the pressure in the pipe reached the saturated vapor pressure, an abrupt flow transition was observed. A simple viscous flow model is used to determine the position of the liquid/vapor interface in the pipe. The observed mass flow rates are consistent with no slip boundary conditions.

  5. Magnetic Nanoparticle Capilary Flow as a Replacement for Lateral Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chromatography - Energy Innovation Portal Magnetic Nanoparticle Capilary Flow as a Replacement for Lateral Flow Chromatography Colorado School of Mines Contact CSM About This Technology Technology Marketing SummaryThis invention looks at method to detect targeted analytes. DescriptionThe method most often used now is Lateral Flow Chromatography (LFC) which has many drawbacks including: the need for extensive optimization, sensitivity, specificity, lack of quantitative data and extensive

  6. A study of grout flow pattern analysis

    SciTech Connect (OSTI)

    Lee, S. Y. [Savannah River National Lab., Aiken, SC (United States); Hyun, S. [Mercer Univ., Macon, GA (United States)

    2013-01-10

    A new disposal unit, designated as Salt Disposal Unit no. 6 (SDU6), is being designed for support of site accelerated closure goals and salt nuclear waste projections identified in the new Liquid Waste System plan. The unit is cylindrical disposal vault of 380 ft diameter and 43 ft in height, and it has about 30 million gallons of capacity. Primary objective was to develop the computational model and to perform the evaluations for the flow patterns of grout material in SDU6 as function of elevation of grout discharge port, and slurry rheology. A Bingham plastic model was basically used to represent the grout flow behavior. A two-phase modeling approach was taken to achieve the objective. This approach assumes that the air-grout interface determines the shape of the accumulation mound. The results of this study were used to develop the design guidelines for the discharge ports of the Saltstone feed materials in the SDU6 facility. The focusing areas of the modeling study are to estimate the domain size of the grout materials radially spread on the facility floor under the baseline modeling conditions, to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation of discharge port, discharge pipe diameter, and grout properties, and to determine the changes in grout density as it is related to grout drop height. An axi-symmetric two-phase modeling method was used for computational efficiency. Based on the nominal design and operating conditions, a transient computational approach was taken to compute flow fields mainly driven by pumping inertia and natural gravity. Detailed solution methodology and analysis results are discussed here.

  7. Two-phase flow modeling with discrete particles

    SciTech Connect (OSTI)

    Mortensen, G.A.; Trapp, J.A. |

    1992-03-23

    The design of efficient heat exchangers in which the working fluid changes phase requires accurate modeling of two-phase fluid flow. The local Navier-Stokes equations form the basic continuum equations for this flow situation. However, the local instantaneous model using these equations is intractable for afl but the simplest problems. AH the practical models for two-phase flow analysis are based on equations that have been averaged over control volumes. These models average out the detailed description within the control volumes and rely on flow regime maps to determine the distribution of the two phases within a control volume. Flow regime maps depend on steady state models and probably are not correct for dynamic models. Numerical simulations of the averaged two-phase flow models are usually performed using a two-fluid Eulerian description for the two phases. Eulerian descriptions have the advantage of having simple boundary conditions, but the disadvantage of introducing numerical diffusion, i.e., sharp interfaces are not maintained as the flow develops, but are diffused. Lagrangian descriptions have the advantage of being able to track sharp interfaces without diffusion, but they have the disadvantage of requiring more complicated boundary conditions. This paper describes a numerical scheme and attendant computer program, DISCON2, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between the intractable local instantaneous and the averaged two-fluid model. This new model uses a combination of an Eulerian and a Lagrangian representation of the two phases. The dispersed particles (bubbles or drops) are modeled individually using a large representative number of particles, each with their own Lagrangian description. The continuous phases (liquid or gas) use an Eulerian description.

  8. Category:Flow Test | Open Energy Information

    Open Energy Info (EERE)

    Flow Test Jump to: navigation, search Geothermalpower.jpg Looking for the Flow Test page? For detailed information on Flow Test, click here. Category:Flow Test Add.png Add a new...

  9. Kauai Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  10. Kauai Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report Volume IV Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  11. Uranyl Nitrate Flow Loop

    SciTech Connect (OSTI)

    Ladd-Lively, Jennifer L

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study

  12. Fission product release from irradiated LWR fuel under accident conditions

    SciTech Connect (OSTI)

    Strain, R.V.; Sanecki, J.E.; Osborne, M.F.

    1984-01-01

    Fission product release from irradiated LWR fuel is being studied by heating fuel rod segments in flowing steam and an inert carrier gas to simulate accident conditions. Fuels with a range of irradiation histories are being subjected to several steam flow rates over a wide range of temperatures. Fission product release during each test is measured by gamma spectroscopy and by detailed examination of the collection apparatus after the test has been completed. These release results are complemented by a detailed posttest examination of samples of the fuel rod segment. Results of release measurements and fuel rod characterizations for tests at 1400 through 2000/sup 0/C are presented in this paper.

  13. A Holistic Framework for Environmental Flows Determination in Hydropower Contexts

    SciTech Connect (OSTI)

    McManamay, Ryan A; Bevelhimer, Mark S

    2013-05-01

    Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitude of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a

  14. Active combustion flow modulation valve

    DOE Patents [OSTI]

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

    2013-09-24

    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  15. GrndWaterFlow.book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section 8.0 Groundwater Flow Model of CAUs 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada 8-10 8.3 Flow Model Sensitivity to Steady-State Temperature Distribution 8.3.1 Introduction The Pahute Mesa CAU flow model spans an area 50 by 53 km with elevations between 3.5 km bmsl to 1.5 km amsl. Within the domain, there are three volcanic caldera complexes and extensive extra-caldera zones as well. Temperatures are not the same everywhere in this model domain. In the flow model,

  16. Flow Test | Open Energy Information

    Open Energy Info (EERE)

    borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Flow Test At Raft River Geothermal Area (2004) Raft River Geothermal Area...

  17. Financing Program Implementation Process Flow

    Broader source: Energy.gov [DOE]

    The implementation process flow for financing with two models: a generic option for primary markets and a conceptual option for secondary markets.

  18. Module bay with directed flow

    DOE Patents [OSTI]

    Torczynski, John R.

    2001-02-27

    A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

  19. Flow Batteries: A Historical Perspective

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Robert Savinell, Case Western Reserve University, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC.

  20. Plasma flow in the DIII-D divertor

    SciTech Connect (OSTI)

    Boedo, J.A.; Porter, G.D.; Schaffer, M.J.

    1998-07-01

    Indications that flows in the divertor can exhibit complex behavior have been obtained from 2-D modeling but so far remain mostly unconfirmed by experiment. An important feature of flow physics is that of flow reversal. Flow reversal has been predicted analytically and it is expected when the ionization source arising from neutral or impurity ionization in the divertor region is large, creating a high pressure zone. Plasma flows arise to equilibrate the pressure. A radiative divertor regime has been proposed in order to reduce the heat and particle fluxes to the divertor target plates. In this regime, the energy and momentum of the plasma are dissipated into neutral gas introduced in the divertor region, cooling the plasma by collisional, radiative and other atomic processes so that the plasma becomes detached from the target plates. These regimes have been the subject of extensive studies in DIII-D to evaluate their energy and particle transport properties, but only recently it has been proposed that the energy transport over large regions of the divertor must be dominated by convection instead of conduction. It is therefore important to understand the role of the plasma conditions and geometry on determining the region of convection-dominated plasma in order to properly control the heat and particle fluxes to the target plates and hence, divertor performance. The authors have observed complex structures in the deuterium ion flows in the DIII-D divertor. Features observed include reverse flow, convective flow over a large volume of the divertor and stagnant flow. They have measured large gradients in the plasma potential across the separatrix in the divertor and determined that these gradients induce poloidal flows that can potentially affect the particle balance in the divertor.

  1. Multiphase Flow with Interphase eXchanges

    Energy Science and Technology Software Center (OSTI)

    1995-03-01

    MFIX is a general-purpose hydrodynamic model that describes chemical reactions and heat transfer in dense or dilute fluid-solids flows, flows typically occurring in energy conversion and chemical processing reactors. With such information, the engineer can visualize the conditions in the reactor, conduct parametric studies and what-if experiments, and, thereby, assist in the design process. MFIX has the following modeling capabilities: mass and momentum balance equations for gas and multiple solids phases; a gas phase andmore » two solids phase energy equation; an arbitrary number of species balance equations for each of the phases; granular stress equations based on kinetic theory and frictional flow theory; a user-defined chemistry subroutine; three-dimensional Cartesin or cylindrical coordinate systems; nonuniform mesh size; impermeable and semi-permeable internal surfaces; user-friendly input data file; multiple, single-precision, binary direct-access output files that minimize disk storage and accelerate data retrieval; extensive error reporting; post-processors for creating animations and for extracting and manipulating output data.« less

  2. Report on Hydrologic Flow in Low-Permeability Media

    SciTech Connect (OSTI)

    Liu, Hui-Hai; Birkholzer, Jens

    2013-11-13

    We demonstrate that under normal conditions (under which there are no intersections between tunnels/drifts and conductive geological structures, such as faults), the water flow velocity in the damage zone, as a result of non-Darcian flow behavior, is extremely small such that solute transport is dominated by diffusion, rather than advection. We show that unless non-Darcian flow behavior is considered, significant errors can occur in the “measured” relative-permeability values. We propose a hypothesis to consider the temperature impact based on limited test results from the petroleum literature. To consider the bedding effects, we present an empirical relationship between water flux and hydraulic gradient for non-Darcian water flow in anisotropic cases.

  3. Split-flow regeneration in absorptive air separation

    DOE Patents [OSTI]

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  4. Split-flow regeneration in absorptive air separation

    DOE Patents [OSTI]

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  5. Pipeline failure: The roles played by corrosion, flow and metallurgy

    SciTech Connect (OSTI)

    Paisley, D.; Barrett, N.; Wilson, O.

    1999-11-01

    Carbon dioxide corrosion has been widely studied in the field and laboratory. It is recognized that flow regime and metallurgy are important factors that influence in-situ corrosion rates but there are relatively few documented case studies that are able to separate the individual contributions of corrosion, flow regime and metallurgy on the observed corrosion damage. This paper deals with failure of a pipeline where high quality inspection data together with comprehensive as-built records and stable production conditions allowed the separate influences of flow and metallurgy on corrosion to be studied. The flow regimes in the pipeline ranged from low velocity, stratified flow to high velocity, slug flow. The inspection data showed that the affect of turbulent flow was to increase the frequency of corrosion pits and, in the case of weld corrosion, the mean corrosion rate. The pipeline was constructed from two grades of steel and welded using two types of welding consumable. One grade of pipeline steel corroded at a significantly higher rate and with a higher frequency of corrosion pits than another, apparently similar steel. However, no significant relationship was found between weld metallurgy and corrosion rate or frequency.

  6. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    SciTech Connect (OSTI)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  7. Apparatus for measuring fluid flow

    DOE Patents [OSTI]

    Smith, Jack E.; Thomas, David G.

    1984-01-01

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  8. Direct flow crystal growth system

    DOE Patents [OSTI]

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  9. Redox Flow Batteries, a Review

    SciTech Connect (OSTI)

    U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  10. Apparatus for measuring fluid flow

    DOE Patents [OSTI]

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  11. FPC conditioning cart at BNL

    SciTech Connect (OSTI)

    Xu, W.; Ben-Zvi, I.; Altinbas, F.Z.; Belomestnykh, S.; Burrill, A.; Cole, M.; Deonarine, J.; Jamilkowski, J.; Kayran, D.; Laloudakis, N.; Masi Jr, L.; McIntyre, G.; Pate, D.; Philips, D.; Seda, T.; Steszyn, A.; Tallerico, T.; Todd, R.; Weiss, D.; White, G.; Zaltsman, A.

    2011-03-28

    The 703 MHz superconducting gun for the BNL Energy Recovery Linac (ERL) prototype has two fundamental power couplers (FPCs), and each of them will deliver up to 500 kW of CW RF power. In order to prepare the couplers for high power RF service and process multipacting, the FPCs should be conditioned prior to installation into the gun cryomodule. A conditioning cart based test stand, which includes a vacuum pumping system, controllable bake-out system, diagnostics, interlocks and data log system has been designed, constructed and commissioned by collaboration of BNL and AES. This paper presents FPC conditioning cart systems and the conditioning process.

  12. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, Kevin L.; Hannum, David W.; Conrad, Frank James

    1999-01-01

    A portal apparatus for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow.

  13. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, K.L.; Hannum, D.W.; Conrad, F.J.

    1999-06-22

    A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

  14. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    SciTech Connect (OSTI)

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-12-09

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.

  15. Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow

    SciTech Connect (OSTI)

    Lucas, Dan Kerswell, Rich R.

    2015-04-15

    Motivated by recent success in the dynamical systems approach to transitional flow, we study the efficiency and effectiveness of extracting simple invariant sets (recurrent flows) directly from chaotic/turbulent flows and the potential of these sets for providing predictions of certain statistics of the flow. Two-dimensional Kolmogorov flow (the 2D Navier-Stokes equations with a sinusoidal body force) is studied both over a square [0, 2?]{sup 2} torus and a rectangular torus extended in the forcing direction. In the former case, an order of magnitude more recurrent flows are found than previously [G. J. Chandler and R. R. Kerswell, Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow, J. Fluid Mech. 722, 554595 (2013)] and shown to give improved predictions for the dissipation and energy pdfs of the chaos via periodic orbit theory. Analysis of the recurrent flows shows that the energy is largely trapped in the smallest wavenumbers through a combination of the inverse cascade process and a feature of the advective nonlinearity in 2D. Over the extended torus at low forcing amplitudes, some extracted states mimic the statistics of the spatially localised chaos present surprisingly well recalling the findings of Kawahara and Kida [Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst, J. Fluid Mech. 449, 291 (2001)] in low-Reynolds-number plane Couette flow. At higher forcing amplitudes, however, success is limited highlighting the increased dimensionality of the chaos and the need for larger data sets. Algorithmic developments to improve the extraction procedure are discussed.

  16. SFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 29 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  17. LFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 31 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  18. LFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 19 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  19. LFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 3/6/15) Exhibit A General Conditions Page 1 of 22 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2014) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  20. Materials for Harsh Service Conditions:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for Harsh Service Conditions: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 1 4 1.1 Overview of Materials for Harsh Service Conditions .................................................................... 1 5 1.2 Challenges and Opportunities ....................................................................................................... 2 6 1.3 Public

  1. EFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 39 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2 AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Apr 2013) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  2. CPFFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 33 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  3. CPFFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 20 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  4. CPFFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 3/6/15) Exhibit A General Conditions Page 1 of 29 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2014) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  5. CPFFS Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 9/26/14) Exhibit A General Conditions Page 1 of 29 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2014) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  6. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 31 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  7. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 6/14/13) Exhibit A General Conditions Page 1 of 18 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  8. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 6 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1C DEFINITIONS (Jun 2010) ........................................................................................................... 2 GC-6C ORDER OF PRECEDENCE (Mar 2012) .................................................................................... 2 GC-8B COMPLIANCE WITH LAWS, RULES, REGULATIONS AND STANDARDS (Jun 2010) .......... 2 GC-11 NEW MEXICO GROSS

  9. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 3/6/15) Exhibit A General Conditions Page 1 of 21 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  10. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 12/15/14) Exhibit A General Conditions Page 1 of 20 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  11. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 11/9/15) Exhibit A General Conditions Page 1 of 9 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1C DEFINITIONS (Jun 2010) ...................................................................................................... 2 GC-6C ORDER OF PRECEDENCE (Mar 2012) ................................................................................ 2 GC-8B COMPLIANCE WITH LAWS, RULES, REGULATIONS AND STANDARDS (Jun 2010)

  12. AES Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 3/6/15) Exhibit A General Conditions Page 1 of 8 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1C DEFINITIONS (Jun 2010) ........................................................................................................... 2 GC-6C ORDER OF PRECEDENCE (Mar 2012) .................................................................................... 2 GC-8B COMPLIANCE WITH LAWS, RULES, REGULATIONS AND STANDARDS (Jun 2010) .......... 2 GC-11 NEW MEXICO GROSS

  13. Transport and Retention of Engineered Nanoporous Particles in Porous Media: Effects of Concentration and Flow Dynamics

    SciTech Connect (OSTI)

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming

    2013-01-20

    Engineered nanoporous particles are an important class of nano-structured materials that can be functionalized in their internal surfaces for various applications including groundwater contaminant sequestration. This paper reported a study of transport and retention of engineered nanoporous silicate particles (ENSPs) that are designed for treatment and remediation of contaminants such as uranium in groundwater and sediments. The transport and retention of ENSPs were investigated under variable particle concentrations and dynamic flow conditions in a synthetic groundwater that mimics field groundwater chemical composition. The dynamic flow condition was achieved using a flow-interruption (stop-flow) approach with variable stop-flow durations to explore particle retention and release kinetics. The results showed that the ENSPs transport was strongly affected by the particle concentrations and dynamic flow conditions. A lower injected ENSPs concentration and longer stop-flow duration led to a more particle retention. The experimental data were used to evaluate the applicability of various kinetic models that were developed for colloidal particle retention and release in describing ENSPs transport. Model fits suggested that the transport and retention of ENSPs were subjected to a complex coupling of reversible attachment/detachment and straining/liberation processes. Both experimental and modeling results indicated that dynamic groundwater flow condition is an important parameter to be considered in exploring and modeling engineered particle transport in subsurface porous media.

  14. Effect of reactor conditions on MSIV-ATWS power level

    SciTech Connect (OSTI)

    Diamond, D.J.

    1987-01-01

    In a boiling water reactor (BWR) when there is closure of the main steam isolation valves (MSIVs), the energy generated in the core will be transferred to the pressure suppression pool (PSP) via steam that flows out of the relief valves. The pool has limited capacity as a heat sink and hence, if there is no reactor trip (an anticipated transient without scram (ATWS) event), there is the possibility that the pool temperature may rise beyond acceptable limits. The present study was undertaken to determine how the initial reactor conditions affect the power level during an MSIV-ATWS event. The time of interest is the 20- to 30-min period when it is assumed that the reactor is in a quasi equilibrium condition with the water level and pressure fixed, natural circulation conditions and no control rod movement or significant boron in the core. The initial conditions of interest are the time of the cycle and the operating state.

  15. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect (OSTI)

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  16. Turbine blade tip flow discouragers

    DOE Patents [OSTI]

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  17. Flow distribution channels to control flow in process channels

    DOE Patents [OSTI]

    Tonkovich, Anna Lee; Arora, Ravi; Kilanowski, David

    2014-10-28

    The invention describes features that can be used to control flow to an array of microchannels. The invention also describes methods in which a process stream is distributed to plural microchannels.

  18. Simulation of water flow in terrestrial systems

    Energy Science and Technology Software Center (OSTI)

    2008-12-18

    ParFlow is a parallel, variabley saturated groundwater flow code that is especially suitable for large scale problem. ParFlow simulates the three-dimensional saturated and variably saturated subsurface flow in heterogeneous porous media in three spatial dimensions. ParFlow's developemt and appkication has been on-ging for more than 10 uear. ParFlow has recently been extended to coupled surface-subsurface flow to enabel the simulation of hillslope runoff and channel routing in a truly integrated fashion. ParFlow simulates the three-dimensionalmore » varably saturated subsurface flow in strongly heterogeneous porous media in three spatial dimension.« less

  19. Wavy flow cooling concept for turbine airfoils

    DOE Patents [OSTI]

    Liang, George

    2010-08-31

    An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

  20. Economizer control assembly for regulating the volume flow of outdoor ambient air

    SciTech Connect (OSTI)

    Michaels, D.D. Jr.

    1984-10-23

    An economizer assembly is disclosed wherein a sliding door is utilized for covering an outdoor ambient air opening allowing outdoor ambient air flow into a space to be conditioned. A motor shaft arrangement connected via a rotating drive rod is utilized to slidably displace the door to any position necessary to effectively regulate air flow. The utilization of this economizer control arrangement with a rooftop type air conditioning unit is further disclosed.

  1. GrndWaterFlow.book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Flow Model of CAUs 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada Appendix A A-59 Table A.11-3 CPU Times in Minutes for FEHM Test Problem Simulations Model Faults Radionuclides Source Location Matrix Diffusion Simulation Time (Yrs) CPU Time (min) Flow No - - - - 19 Flow Yes - - - - 15 F-E Transport No Tritium SCOTCH/SERENA* No 200 71 F-E Transport No Tritium SCOTCH CHVTA** No 200 82 F-E Transport Yes Tritium SCOTCH/SERENA No 200 77 F-E Transport Yes Tritium SCOTCH

  2. Droplet sizes, dynamics and deposition in vertical annular flow

    SciTech Connect (OSTI)

    Lopes, J C.B.; Dukler, A E

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data.

  3. Influence of internal flow on film cooling effectiveness

    SciTech Connect (OSTI)

    Wilfert, G.; Wolff, S.

    2000-04-01

    Film cooling experiments were conducted to investigate the effects of internal flow conditions and plenum geometry on the film cooling effectiveness. The film cooling measurements show a strong influence of the coolant inlet conditions on film cooling performance. The present experiments were carried out on a flat plate with a row of cylindrical holes oriented at 30 degrees with respect to a constant-velocity external flow, systematically varying the plenum geometry and blowing rates (0.5 {le} M {le} 1.25). Adiabatic film cooling measurements using the multiple narrow-banded thermochromic liquid crystal technique (TLC) were carried out, simulating a flow parallel to the mainstream flow with and without crossflow at the coolant hole entry compared with a standard plenum configuration. An impingement in front of the cooling hole entry with and without crossflow was also investigated. For all parallel flow configurations, ribs were installed at the top and bottom coolant channel wall. As the hole length-to-diameter ratio has an influence on the film cooling effectiveness, the wall thickness has also been varied. In order to optimize the benefit of the geometry effects with ribs, a vortex generator was designed and tested. Results from these experiments show in a region 5 {le} X/D {le} 80 downstream of the coolant injection location differences in adiabatic film cooling effectiveness between +5% and +65% compared with a standard plenum configuration.

  4. Ground water flow velocity in the bank of the Columbia River, Hanford, Washington

    SciTech Connect (OSTI)

    Ballard, S.

    1995-12-01

    To properly characterize the transport of contaminants from the sediments beneath the Hanford Site into the Columbia River, a suite of In Situ Permeable Flow Sensors was deployed to accurately characterize the hydrologic regime in the banks of the river. The three dimensional flow velocity was recorded on an hourly basis from mid May to mid July, 1994 and for one week in September. The first data collection interval coincided with the seasonal high water level in the river while the second interval reflected conditions during relatively low seasonal river stage. Two flow sensors located approximately 50 feet from the river recorded flow directions which correlated very well with river stage, both on seasonal and diurnal time scales. During time intervals characterized by falling river stage, the flow sensors recorded flow toward the river while flow away from the river was recorded during times of rising river stage. The flow sensor near the river in the Hanford Formation recorded a component of flow oriented vertically downward, probably reflecting the details of the hydrostratigraphy in close proximity to the probe. The flow sensor near the river in the Ringold Formation recorded an upward component of flow which dominated the horizontal components most of the time. The upward flow in the Ringold probably reflects regional groundwater flow into the river. The magnitudes of the flow velocities recorded by the flow sensors were lower than expected, probably as a result of drilling induced disturbance of the hydraulic properties of the sediments around the probes. The probes were installed with resonant sonic drilling which may have compacted the sediments immediately surrounding the probes, thereby reducing the hydraulic conductivity adjacent to the probes and diverting the groundwater flow away from the sensors.

  5. 2007 Estimated International Energy Flows

    SciTech Connect (OSTI)

    Smith, C A; Belles, R D; Simon, A J

    2011-03-10

    An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

  6. Flow Batteries: A Historical Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    articles- documented progress *Early NASA Work- some learning *Fuel Cell and Flow ... Soc., 41, 1137-1164 (2011) 5 Early NASA RFB Program FeTi System *1975 Cost estimates ...

  7. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, James A.

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  8. Miniaturized flow injection analysis system

    DOE Patents [OSTI]

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  9. Energy Exchange Terms and Conditions

    Office of Energy Efficiency and Renewable Energy (EERE)

    We will be requesting that participants acknowledge that they have read these terms and conditions at the time of registration (also included in the online registration form) and at the time of printing their badges on-site.

  10. LED Performance Under Tough Conditions

    Broader source: Energy.gov [DOE]

    December 2015 LD+A magazine article entitled "LED Performance Under Tough Conditions" discussing three Dept of Energy GATEWAY applications that show how LED luminaires respond to rigorous outdoor environments.

  11. Conditioning biomass for microbial growth

    DOE Patents [OSTI]

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  12. Laboratory and numerical evaluation of borehole methods for subsurface horizontal flow characterization.

    SciTech Connect (OSTI)

    Pedler, William H. (Radon Abatement Systems, Inc., Golden, CO); Jepsen, Richard Alan (Sandia National Laboratories, Carlsbad, NM)

    2003-08-01

    The requirement to accurately measure subsurface groundwater flow at contaminated sites, as part of a time and cost effective remediation program, has spawned a variety of flow evaluation technologies. Validation of the accuracy and knowledge regarding the limitations of these technologies are critical for data quality and application confidence. Leading the way in the effort to validate and better understand these methodologies, the US Army Environmental Center has funded a multi-year program to compare and evaluate all viable horizontal flow measurement technologies. This multi-year program has included a field comparison phase, an application of selected methods as part of an integrated site characterization program phase, and most recently, a laboratory and numerical simulator phase. As part of this most recent phase, numerical modeling predictions and laboratory measurements were made in a simulated fracture borehole set-up within a controlled flow simulator. The scanning colloidal borescope flowmeter (SCBFM) and advanced hydrophysical logging (NxHpL{trademark}) tool were used to measure velocities and flow rate in a simulated fractured borehole in the flow simulator. Particle tracking and mass flux measurements were observed and recorded under a range of flow conditions in the simulator. Numerical models were developed to aid in the design of the flow simulator and predict the flow conditions inside the borehole. Results demonstrated that the flow simulator allowed for predictable, easily controlled, and stable flow rates both inside and outside the well. The measurement tools agreed well with each other over a wide range of flow conditions. The model results demonstrate that the Scanning Colloidal Borescope did not interfere with the flow in the borehole in any of the tests. The model is capable of predicting flow conditions and agreed well with the measurements and observations in the flow simulator and borehole. Both laboratory and model results showed a

  13. GAP Flow Measurements During the Mesoscale Alpine Programme

    SciTech Connect (OSTI)

    Mayr, G.; Armi, L.; Arnold, S.; Banta, Robert M.; Darby, Lisa S.; Durran, D. D.; Flamant, C.; Gabersek, S.; Gohm, A.; Mayr, R.; Mobbs, S.; Nance, L. B.; Vergeiner, I.; Vergeiner, J.; Whiteman, Charles D.

    2004-04-30

    This article provides an overview of the Gap Flow sub-program of the Mesoscale Alpine Programme, a major international meteorological field experiment conducted in the European Alps. The article describes the initial results of an investigation of the wind flow through the Brenner Pass gap in the east-west oriented central section of the European Alps under conditions of south foehn. The overview describes the objectives of the experiments, the instrumentation used for the field investigation, and the mesoscale model simulations. Initial findings of the scientific program are provided.

  14. The magnetic flywheel flow meter: Theoretical and experimental contributions

    SciTech Connect (OSTI)

    Buchenau, D. Galindo, V.; Eckert, S.

    2014-06-02

    The development of contactless flow meters is an important issue for monitoring and controlling of processes in different application fields, like metallurgy, liquid metal casting, or cooling systems for nuclear reactors and transmutation machines. Shercliff described in his book “The Theory of Electromagnetic Flow Measurement, Cambridge University Press, 1962” a simple and robust device for contact-less measurements of liquid metal flow rates which is known as magnetic flywheel. The sensor consists of several permanent magnets attached on a rotatable soft iron plate. This arrangement will be placed closely to the liquid metal flow to be measured, so that the field of the permanent magnets penetrates into the fluid volume. The flywheel will be accelerated by a Lorentz force arising from the interaction between the magnetic field and the moving liquid. Steady rotation rates of the flywheel can be taken as a measure for the mean flow rate inside the fluid channel. The present paper provides a detailed theoretical description of the sensor in order to gain a better insight into the functional principle of the magnetic flywheel. Theoretical predictions are confirmed by corresponding laboratory experiments. For that purpose, a laboratory model of such a flow meter was built and tested on a GaInSn-loop under various test conditions.

  15. Modelling of multiphase flow in ironmaking blast furnace

    SciTech Connect (OSTI)

    Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P.

    2009-01-15

    A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

  16. Computerized tomographic analysis of fluid flow in fractured tuff

    SciTech Connect (OSTI)

    Felice, C.W.; Sharer, J.C.; Springer, E.P.

    1992-05-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  17. Computerized tomographic analysis of fluid flow in fractured tuff

    SciTech Connect (OSTI)

    Felice, C.W.; Sharer, J.C. ); Springer, E.P. )

    1992-01-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  18. Mutiscale Modeling of Segregation in Granular Flows

    SciTech Connect (OSTI)

    Jin Sun

    2007-08-03

    Modeling and simulation of segregation phenomena in granular flows are investigated. Computational models at different scales ranging from particle level (microscale) to continuum level (macroscale) are employed in order to determine the important microscale physics relevant to macroscale modeling. The capability of a multi-fluid model to capture segregation caused by density difference is demonstrated by simulating grain-chaff biomass flows in a laboratory-scale air column and in a combine harvester. The multi-fluid model treats gas and solid phases as interpenetrating continua in an Eulerian frame. This model is further improved by incorporating particle rotation using kinetic theory for rapid granular flow of slightly frictional spheres. A simplified model is implemented without changing the current kinetic theory framework by introducing an effective coefficient of restitution to account for additional energy dissipation due to frictional collisions. The accuracy of predicting segregation rate in a gas-fluidized bed is improved by the implementation. This result indicates that particle rotation is important microscopic physics to be incorporated into the hydrodynamic model. Segregation of a large particle in a dense granular bed of small particles under vertical. vibration is studied using molecular dynamics simulations. Wall friction is identified as a necessary condition for the segregation. Large-scale force networks bearing larger-than-average forces are found with the presence of wall friction. The role of force networks in assisting rising of the large particle is analyzed. Single-point force distribution and two-point spatial force correlation are computed. The results show the heterogeneity of forces and a short-range correlation. The short correlation length implies that even dense granular flows may admit local constitutive relations. A modified minimum spanning tree (MST) algorithm is developed to asymptotically recover the force statistics in the

  19. Method and apparatus for controlling the flow rate of mercury in a flow system

    DOE Patents [OSTI]

    Grossman, Mark W.; Speer, Richard

    1991-01-01

    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  20. Insertable fluid flow passage bridgepiece and method

    DOE Patents [OSTI]

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  1. Appendix F Stream Flow.xls

    Office of Legacy Management (LM)

    ... begins at T01-27. Noticably less flow than station Appendix F Stream Flow Measurement Results Since 2000 Collect Date Surface ID Calculated Flow (ft 3 sec) Comments 812001 ...

  2. Pressure and flow characteristics of restrictive flow orifice devices.

    SciTech Connect (OSTI)

    Shrouf, Roger D.

    2003-06-01

    A Restrictive Flow Orifice (RFO) can be used to enhance the safe design of a pressure system in several ways. Pressure systems frequently incorporate a regulator and relief valve to protect the downstream equipment from accidental overpressure caused by regulator failure. Analysis frequently shows that in cases of high-flow regulator failure, the downstream pressure may rise significantly above the set pressure of the relief valve. This is due to limited flow capacity of the relief valve. A different regulator or relief valve may need to be selected. A more economical solution to this problem is to use an RFO to limit the maximum system flow to acceptable limits within the flow capacity of the relief valve, thereby enhancing the overpressure protection of laboratory equipment. An RFO can also be used to limit the uncontrolled release of system fluid (gas or liquid) upon component or line failure. As an example, potential asphyxiation hazards resultant from the release of large volumes of inert gas from a 'house' nitrogen system can be controlled by the use of an RFO. This report describes a versatile new Sandia-designed RFO available from the Swagelok Company and specifies the gas flow characteristics of this device. Two sizes, 0.010 and 0.020 inch diameter RFOs are available. These sizes will allow enhanced safety for many common applications. This new RFO design are now commercially available and provide advantages over existing RFOs: a high pressure rating (6600 psig); flow through the RFO is equal for either forward or reverse directions; they minimize the potential for leakage by incorporating the highest quality threaded connections; and can enhance the safety of pressure systems.

  3. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make ...

  4. Enviro Hurdles: Instream Flow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enviro Hurdles: Instream Flow File 76enviornlbevelhimer4.pptx More Documents & Publications Instream Flow Project Development and Demonstration of Advanced Forecasting, Power ...

  5. Acoustic concentration of particles in fluid flow

    DOE Patents [OSTI]

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  6. Validation Data Plan Implementation: Subcooled Flow Boiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Data Plan Implementation: Subcooled Flow Boiling Case Study Anh Bui and Nam ... INLMIS-12-27303 September 2012 Validation Data Plan Implementation: Subcooled Flow ...

  7. Inflow/outflow boundary conditions for particle-based blood flow...

    Office of Scientific and Technical Information (OSTI)

    WA (United States) Univ. of Lugano, Lugano (Switzerland); Swiss Institute of Bioinformatics, Lausanne (Switzerland) Univ. of British Columbia, Vancouver, BC (Canada) ...

  8. Inflow/Outflow Boundary Conditions for Particle-Based Blood Flow...

    Office of Scientific and Technical Information (OSTI)

    (CM4). The funders had no role in study design, data ... Recent works have focused on the development of new methods ... Modeling of hemodynamics arising from malaria infection. ...

  9. Modeling the onset of flow instability for subcooled boiling in downflow

    SciTech Connect (OSTI)

    Qureshi, Z. ); Barry, J.J.; Crowley, C.J. )

    1990-01-01

    A postulated loss-of-coolant accident (LOCA) scenario for the Savannah River Plant (SRP) production reactors involves a double-ended break of a reactor primary coolant pipe. The flow of coolant (D{sub 2}O) in the reactor may decrease in such an event. As the flow into the reactor decreases, boiling may occur, followed by dryout and failure of the fuel due to overheating. A typical SRP fuel assembly consists of multiple concentric tubes containing the fuel and target materials. Coolant passes through the annular passages in the assembly in downflow. Under normal operating conditions, the flow rate is maintained high enough to suppress or minimize subcooled boiling, i.e. the flow remains essentially single phase throughout. At high coolant flow rates, the flow is single phase or partially developed subcooled boiling, and the pressure drop decreases with decreasing flow rate. Here friction dominates the pressure gradient, and the flow is stable. Below a certain flow rate, however, pressure drop may increase with decreasing flow rate. This occurs when significant voids are produced by boiling, resulting in a large acceleration component to the pressure drop. The negative slope of the curve leads to an instability because the pressure drop cannot adjust to compensate -- the flow is driven to a lower value. Overheating of the channel may result. 15 refs., 14 figs.

  10. Internal thermal coupling in direct-flow coaxial vacuum tube collectors

    SciTech Connect (OSTI)

    Glembin, J.; Rockendorf, G.; Scheuren, J.

    2010-07-15

    This investigation covers the impact of low flow rates on the efficiency of coaxial vacuum tube collectors. Measurements show an efficiency reduction of 10% if reducing the flow rate from 78 kg/m{sup 2} h to 31 kg/m{sup 2} h for a collector group with 60 parallel vacuum tubes with a coaxial flow conduit at one-sided connection. For a more profound understanding a model of the coaxial tube was developed which defines the main energy fluxes including the internal thermal coupling. The tube simulations show a non-linear temperature profile along the tube with the maximum temperature in the outer pipe. Due to heat transfer to the entering flow this maximum is not located at the fluid outlet. The non-linearity increases with decreasing flow rates. The experimentally determined flow distribution allows simulating the measured collector array. The simulation results confirm the efficiency decrease at low flow rates. The flow distribution has a further impact on efficiency reduction, but even at an ideal uniform flow, a considerable efficiency reduction at low flow rates is to be expected. As a consequence, low flow rates should be prevented for coaxial tube collectors, thus restricting the possible operation conditions. The effect of constructional modifications like diameter or material variations is presented. Finally the additional impact of a coaxial manifold design is discussed. (author)

  11. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    SciTech Connect (OSTI)

    Bhler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-08-15

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18?100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  12. Nuclear reactor flow control method and apparatus

    DOE Patents [OSTI]

    Church, J.P.

    1993-03-30

    Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.

  13. Nuclear reactor flow control method and apparatus

    DOE Patents [OSTI]

    Church, John P.

    1993-01-01

    Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.

  14. Flow topologies and turbulence scales in a jet-in-cross-flow

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensivemore » characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.« less

  15. Flow topologies and turbulence scales in a jet-in-cross-flow

    SciTech Connect (OSTI)

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensive characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.

  16. Spacetime averaged null energy condition

    SciTech Connect (OSTI)

    Urban, Douglas; Olum, Ken D.

    2010-06-15

    The averaged null energy condition has known violations for quantum fields in curved space, even when one considers only achronal geodesics. Many such examples involve rapid variation in the stress-energy tensor in the vicinity of the geodesic under consideration, giving rise to the possibility that averaging in additional dimensions would yield a principle universally obeyed by quantum fields. However, after discussing various procedures for additional averaging, including integrating over all dimensions of the manifold, we give here a class of examples that violate any such averaged condition.

  17. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Two-thirds of all homes in the

  18. Extreme Conditions Modeling Workshop Report

    SciTech Connect (OSTI)

    Coe, R. G.; Neary, V. S.; Lawson, M. J.; Yu, Y.; Weber, J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

  19. Observations of flow patterns in a spray dryer

    SciTech Connect (OSTI)

    Southwell, D.B.; Langrish, T.A.G.

    2000-03-01

    Experiments have been performed on a pilot scale, cylinder-on-cone spray dryer fitted with a vaned-wheel atomizer to observe air flow patterns, with and without water spray. A combination of tufts, smoke streams and a laser light sheet, was used to provide information about regions of recirculation, flow stability, spray trajectories and wall deposition. While atomizer-induced swirl dominated the flow patterns under typical operating conditions, some instability was observed, although different in type, for situations with and without atomizer rotation. Clockwise eddies were observed to form and collapse between the wall and the strongly anti-clockwise swirling core created by anti-clockwise atomizer rotation. Without swirl, large portions of the recirculation zones at the walls were observed to have a weak tendency to change randomly between clockwise, anti-clockwise and chaotic behavior.

  20. Radionuclide Transport Models Under Ambient Conditions

    SciTech Connect (OSTI)

    G. Moridis; Q. Hu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  1. Valve for controlling solids flow

    DOE Patents [OSTI]

    Staiger, M.D.

    1982-09-29

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  2. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  3. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, Brian B.; Ballard, Sanford

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  4. Pressure compensated flow control valve

    DOE Patents [OSTI]

    Minteer, Daniel J.

    1999-01-01

    The invention is an air flow control valve which is capable of maintaining a constant flow at the outlet despite changes in the inlet or outlet pressure. The device consists of a shell assembly with an inlet chamber and outlet chamber separated by a separation plate. The chambers are connected by an orifice. Also located within the inlet chamber is a port controller assembly. The port controller assembly consists of a differential pressure plate and port cap affixed thereon. The cap is able to slide in and out of the orifice separating the inlet and outlet chambers. When the pressure differential is sufficient, the differential pressure plate rises or falls to maintain a constant air flow. Movement of the port controller assembly does not require the use of seals, diaphragms, tight tolerances, bushings, bearings, hinges, guides, or lubricants.

  5. Stream flow and analysis study

    SciTech Connect (OSTI)

    Jackson, D.G.

    1983-11-04

    Lockwood Greene Engineers, Inc. (LGE) was retained by E.I. duPont de Nemours and Co., Inc., Savannah River Plant, Aiken, South Carolina, to conduct on-site flow measurements and sampling of tributaries and outfalls flowing into a portion of Tim`s Branch Creek. Water samples were analyzed for chemical characteristics. This report presents the results of the flow and analytical data collected during the 24 hour monitoring period, October 5 and 6, 1983. Tim`s Branch Creek is a tributary of the Upper Three Runs Creek which in turn is a tributary of the Savannah River. A map outlining the drainage area within the Savannah River Plant is included in this report.

  6. Valve for controlling solids flow

    DOE Patents [OSTI]

    Staiger, M. Daniel (Idaho Falls, ID)

    1985-01-01

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  7. Stochastic models for turbulent reacting flows

    SciTech Connect (OSTI)

    Kerstein, A.

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  8. Capacitance densitometer for flow regime identification

    DOE Patents [OSTI]

    Shipp, Jr., Roy L.

    1978-01-01

    This invention relates to a capacitance densitometer for determining the flow regime of a two-phase flow system. A two-element capacitance densitometer is used in conjunction with a conventional single-beam gamma densitometer to unambiguously identify the prevailing flow regime and the average density of a flowing fluid.

  9. Nuclear reactor downcomer flow deflector

    DOE Patents [OSTI]

    Gilmore, Charles B.; Altman, David A.; Singleton, Norman R.

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  10. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  11. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  12. Space Conditioning Standing Technical Commitee Presentation ...

    Energy Savers [EERE]

    Space Conditioning Standing Technical Commitee Presentation Space Conditioning Standing Technical Commitee Presentation This presentation outlines the goals of the Space ...

  13. Space Conditioning Standing Technical Committee Strategic Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Committee Strategic Plan Space Conditioning Standing Technical Committee Strategic Plan ... identified by the Building America Space Conditioning Standing Technical Committee. ...

  14. Building America Webinar: Retrofitting Central Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Conditioning Strategies for Multifamily Buildings - Introduction This ... mproving the performance of central space conditioning systems in multifamily buildings. ...

  15. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2005-01-25

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal

  16. Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model

    SciTech Connect (OSTI)

    Pohlmann Karl,Ye Ming

    2012-03-01

    Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.

  17. Combustion Stability in Complex Engineering Flows | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Instantaneous contours of temperature from large eddy simulation Instantaneous contours of temperature from large eddy simulation of a hypersonic scramjet combustor at Mach 8 flight conditions. Ethylene fuel is introduced through injection ports at the upper left and mixes with air at supersonic speeds. Flow separation and recirculation in the open cavity encourages fuel/air mixing and stable combustion. To maintain hypersonic flight, the fuel must be mixed, ignited, and

  18. Continuous Flow Diffusion Chamber Measurements of IN Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow Diffusion Chamber (CFDC) Measurements of IN Concentration Concentrations of Ice-Nucleating Aerosol (IN) as a function of Temperature and %Supersaturation Sarah Brooks and Andrew Glen, Texas A&M University Archived CFDC Data Flights April 8 through end of ISDAC ... CFDC operating conditions vary Date Flight Num 20080331 Flight 08 20080401 Flight 09 & 10 20080404 Flight 11 & 12 20080405 Flight 13 & 14 20080408 Flight 15, 16 & 17 20080413 Flight 18 & 19 20080414 Flight

  19. Exact Convex Relaxation of Optimal Power Flow in Radial Networks

    SciTech Connect (OSTI)

    Gan, LW; Li, N; Topcu, U; Low, SH

    2015-01-01

    The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. It is nonconvex. We prove that a global optimum of OPF can be obtained by solving a second-order cone program, under a mild condition after shrinking the OPF feasible set slightly, for radial power networks. The condition can be checked a priori, and holds for the IEEE 13, 34, 37, 123-bus networks and two real-world networks.

  20. Solid phase microextraction fiber cleaning and conditioning apparatus and method

    DOE Patents [OSTI]

    Alcaraz, Armando; Wiefel, Michael H.

    2006-05-23

    A SPME-fiber cleaning and conditioning apparatus and method having an elongated heating chamber with first and second opposite ends. The first end is capable of insertably receiving a SPME fiber portion of a SPME device, and the second end is a fluid outlet. A heater is provided for heating the chamber and heat-treating an inserted SPME fiber. Contaminants and other particles are agitated, desorbed and purged from the inserted SPME fiber by flowing a fluid through the chamber from the first end to the second end, away from the SPME device. Additionally, turbulence may be produced in the flow at a location adjacent the first end, to enhance agitation, desorption, and purging. A holder may also be provided extending from the first end for supporting the SPME device in a substantially horizontal orientation when the SPME fiber is positioned in the chamber.

  1. Instream Flow Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instream Flow Project Instream Flow Project As a part of the Department of Energy's Water Power Program, the Instream Flow Project was carried out by Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Argonne National Laboratory to develop tools aimed at defining environmental flow needs for hydropower operations. Characterizing Sub-Daily Flow Regimes May 2014 (1.41 MB) Updating the U.S. Hydrologic Classification July 2013 (1.26 MB) A Holistic Framework for Environmental

  2. Mirrored serpentine flow channels for fuel cell

    DOE Patents [OSTI]

    Rock, Jeffrey Allan

    2000-08-08

    A PEM fuel cell having serpentine flow field channels wherein the input/inlet legs of each channel border the input/inlet legs of the next adjacent channels in the same flow field, and the output/exit legs of each channel border the output/exit legs of the next adjacent channels in the same flow field. The serpentine fuel flow channels may be longer, and may contain more medial legs, than the serpentine oxidant flow channels.

  3. AnalyzeHOLE: An Integrated Wellbore Flow Analysis Tool

    SciTech Connect (OSTI)

    Keith J. Halford

    2009-10-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically

  4. Macro-to-microchannel transition in two-phase flow: Part 1 - Two-phase flow patterns and film thickness measurements

    SciTech Connect (OSTI)

    Ong, C.L.; Thome, J.R. [Ecole Polytechnique Federale de Lausanne, EPFL-STI-IGM-LTCM, Station 9, CH-1015 Lausanne (Switzerland)

    2011-01-15

    The classification of macroscale, mesoscale and microscale channels with respect to two-phase processes is still an open question. The main objective of this study focuses on investigating the macro-to-microscale transition during flow boiling in small scale channels of three different sizes with three different refrigerants over a range of saturation conditions to investigate the effects of channel confinement on two-phase flow patterns and liquid film stratification in a single circular horizontal channel (Part 2 covers the flow boiling heat transfer and critical heat flux). This paper presents the experimental two-phase flow pattern transition data together with a top/bottom liquid film thickness comparison for refrigerants R134a, R236fa and R245fa during flow boiling in small channels of 1.03, 2.20 and 3.04 mm diameter. Based on this work, an improved flow pattern map has been proposed by determining the flow patterns transitions existing under different conditions including the transition to macroscale slug/plug flow at a confinement number of Co {approx} 0.3-0.4. From the top/bottom liquid film thickness comparison results, it was observed that the gravity forces are fully suppressed and overcome by the surface tension and shear forces when the confinement number approaches 1, Co {approx} 1. Thus, as a new approximate rule, the lower threshold of macroscale flow is Co = 0.3-0.4 while the upper threshold of symmetric microscale flow is Co {approx} 1 with a transition (or mesoscale) region in-between. (author)

  5. Condition assessment of nonlinear processes

    DOE Patents [OSTI]

    Hively, Lee M.; Gailey, Paul C.; Protopopescu, Vladimir A.

    2002-01-01

    There is presented a reliable technique for measuring condition change in nonlinear data such as brain waves. The nonlinear data is filtered and discretized into windowed data sets. The system dynamics within each data set is represented by a sequence of connected phase-space points, and for each data set a distribution function is derived. New metrics are introduced that evaluate the distance between distribution functions. The metrics are properly renormalized to provide robust and sensitive relative measures of condition change. As an example, these measures can be used on EEG data, to provide timely discrimination between normal, preseizure, seizure, and post-seizure states in epileptic patients. Apparatus utilizing hardware or software to perform the method and provide an indicative output is also disclosed.

  6. Rinse trough with improved flow

    DOE Patents [OSTI]

    O'Hern, Timothy J.; Grasser, Thomas W.

    1998-01-01

    Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects' surfaces to accomplish a more thorough rinse than prior art troughs.

  7. EFM units monitor gas flow

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This paper describes the radio-controlled pipeline monitoring system established by Transcontinental Gas Pipe Line Corp. which was designed to equip all its natural gas purchasing metering facilities with electronic flow measurement computers. The paper describes the actual radio equipment used and the features and reliability of the equipment.

  8. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  9. Rinse trough with improved flow

    DOE Patents [OSTI]

    O`Hern, T.J.; Grasser, T.W.

    1998-08-11

    Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects` surfaces to accomplish a more thorough rinse than prior art troughs. 5 figs.

  10. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  11. (Air flow patterns within buildings)

    SciTech Connect (OSTI)

    Harrje, D.T.

    1990-10-15

    As Annex 20 enters the final year, deliverables in the form of reports, guidelines, and data formats are nearing completion. The Reporting Guidelines for the Measurement of Air Flows and Related Factors in Buildings will be published by the AIVC next month and was presented to the research community at the 11th AIVC Conference. Measurement guidelines and state-of-the-art equipment descriptions are part of a comprehensive manual, Measurement Techniques Related to Air Flow Patterns Within Buildings -- An Application Guide, in the final stages of preparation in Part 2 of Annex 20, together with reports on how to estimate the effects of flow through large openings, as well as contaminant movements in buildings. The Measurement Manual will include the latest information from the AIVC. The next AIVC Conference, in Ottawa, September 1991, will feature more than 12 presentations of Annex 20 results, including the information from Part 1 which has focused on the detailed air flow patterns in a variety of single-room configurations. Both complex modelling (including CFD) and detailed measurements have been completed, and it is now desirable that added tests be made in the next months by the University of Illinois, BERL, representing the US in Part 1 for the first time.

  12. Cyclic Thermodynamics with Open Flow

    SciTech Connect (OSTI)

    Reid, R.S.; Ward, W.C.; Swift, G.W.

    1998-05-01

    Some general features of a new class of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process are discussed and experimentally demonstrated in the context of a thermoacoustic refrigerator. {copyright} {ital 1998} {ital The American Physical Society}

  13. Flow and fracture of aluminum alloys and of iron and steel within and outside the range of inhomogeneous flow

    SciTech Connect (OSTI)

    Pink, E.; Bernt, W.; Fellner, M. )

    1993-05-01

    It is well known that aluminum alloys exhibit shear fractures when they are deformed at conventional strain rates in tensile tests at room temperature. Most of the common aluminum alloys deform inhomogeneously under these testing conditions due to an effect arising from the substitutionally dissolved alloying atoms; their load-extension curves are serrated in constant-strain-rate tests. This coincidence of fracture by shear and serrated flow has supported the conception that both are interrelated. An investigation of materials with strong tendencies to serrated flow, obtained for temperature ranges exceeding those where serrations exist, sheds new light on this question. The materials tested were aluminum alloys with 5 wt.% zinc and 1 wt.% magnesium (AlZn5Mg1), and with 4.8 wt.% magnesium (AlMg5). AlMg5 exhibits shearing within part of the serrated-flow range. AlZn5Mg1 which is deformed at temperatures below and within the range of serrated flow breaks by shearing. During the deformation the cross section of the specimen becomes oval. At the highest test temperatures where serrated flow has ceased to occur, a tendency to normal' isotropic reduction of the cross section and cup-and-cone fractures were observed in both aluminium alloys. Armco iron and steel deform and break normally'.

  14. Estimating flow parameters using ground-penetrating radar and hydrological data during transient flow in the vadose zone

    SciTech Connect (OSTI)

    Kowalsky, Michael; Finsterle, Stefan; Rubin, Yoram

    2003-05-12

    Methods for determining the parameters necessary for modeling fluid flow and contaminant transport in the shallow subsurface are in great demand. Soil properties such as permeability, porosity, and water retention are typically estimated through the inversion of hydrological data (e.g., measurements of capillary pressure and water saturation). However, ill-posedness and non-uniqueness commonly arise in such inverse problems making their solutions elusive. Incorporating additional types of data, such as from geophysical methods, may greatly improve the success of inverse modeling. In particular, ground-penetrating radar (GPR) has proven sensitive to subsurface fluid flow processes. In the present work, an inverse technique is presented in which permeability distributions are generated conditional to time-lapsed GPR measurements and hydrological data collected during a transient flow experiment. Specifically, a modified pilot point framework has been implemented in iTOUGH2 allowing for the generation of permeability distributions that preserve point measurements and spatial correlation patterns while reproducing geophysical and hydrological measurements. Through a numerical example, we examine the performance of this method and the benefit of including synthetic GPR data while inverting for fluid flow parameters in the vadose zone. Our hypothesis is that within the inversion framework that we describe, our ability to predict flow across control planes greatly improves with the use of both transient hydrological measurements and geophysical measurements (GPR-derived estimates of water saturation, in particular).

  15. CX-008144: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Planned Repair of Flow Lines CX(s) Applied: B5.4 Date: 08/09/2011 Location(s): Wyoming Offices(s): RMOTC

  16. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  17. Fluid Flow Within Fractured Porous Media

    SciTech Connect (OSTI)

    Crandall, D.M.; Ahmadi, G.; Smith, D.H.; Bromhal, G.S.

    2006-10-01

    Fractures provide preferential flow paths to subterranean fluid flows. In reservoir scale modeling of geologic flows fractures must be approximated by fairly simple formulations. Often this is accomplished by assuming fractures are parallel plates subjected to an applied pressure gradient. This is known as the cubic law. An induced fracture in Berea sandstone has been digitized to perform numerical flow simulations. A commercially available computational fluid dynamics software package has been used to solve the flow through this model. Single phase flows have been compared to experimental works in the literature to evaluate the accuracy with which this model can be applied. Common methods of fracture geometry classification are also calculated and compared to experimentally obtained values. Flow through regions of the fracture where the upper and lower fracture walls meet (zero aperture) are shown to induce a strong channeling effect on the flow. This model is expanded to include a domain of surrounding porous media through which the flow can travel. The inclusion of a realistic permeability in this media shows that the regions of small and zero apertures contribute to the greatest pressure losses over the fracture length and flow through the porous media is most prevalent in these regions. The flow through the fracture is shown to be the largest contributor to the net flow through the media. From this work, a novel flow relationship is proposed for flow through fractured media.

  18. Flux Enhancement in Crossflow Membrane Filtration: Fouling and It's Minimization by Flow Reversal

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2005-08-04

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and

  19. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2004-06-14

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In our previous report, we reported our work on UF of BSA. In this report, we report our continuing application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using pectin in apple juice as feed show that under flow reversal conditions, the

  20. EFFECT OF CLIMATE CHANGE ON WATERSHED RUNOFF FLOW - UPPER COOSA RIVER BASIN UPSTREAM FROM PLANT HAMMOND

    SciTech Connect (OSTI)

    Chen, K.

    2011-10-24

    The ability of water managers to maintain adequate supplies in the coming decades depends on future weather conditions, as climate change has the potential to reduce stream flows from their current values due to potentially less precipitation and higher temperatures, and possibly rendering them unable to meet demand. The upper Coosa River basin, located in northwest Georgia, plays an important role in supplying water for industry and domestic use in northern Georgia, and has been involved in water disputes in recent times. The seven-day ten-year low flow (7Q10 flow) is the lowest average flow for seven consecutive days that has an average recurrence interval of 10 years. The 7Q10 flow is statistically derived from the observed historical flow data, and represents the low flow (drought) condition for a basin. The upper Coosa River basin also supplies cooling water for the 935MW coal-fired Hammond plant, which draws about 65% of the 7Q10 flow of the upper Coosa River to dissipate waste heat. The water is drawn through once and returned to the river directly from the generator (i.e., no cooling tower is used). Record low flows in 2007 led to use of portable cooling towers to meet temperature limits. Disruption of the Plant Hammond operation may trigger closure of area industrial facilities (e.g. paper mill). The population in Georgia is expected to double from 9 million to 18 million residents in the next 25 years, mostly in the metropolitan Atlanta area. Therefore, there will be an even greater demand for potable water and for waste assimilation. Climate change in the form of persistent droughts (causing low flows) and high ambient temperatures create regulatory compliance challenges for Plant Hammond operating with a once-through cooling system. Therefore, the Upper Coosa River basin was selected to study the effect of potential future weather change on the watershed runoff flow.

  1. Catalytic reaction in confined flow channel

    DOE Patents [OSTI]

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  2. Pressurized water reactor flow skirt apparatus

    DOE Patents [OSTI]

    Kielb, John F.; Schwirian, Richard E.; Lee, Naugab E.; Forsyth, David R.

    2016-04-05

    A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.

  3. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  4. Cascade redox flow battery systems

    DOE Patents [OSTI]

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  5. Flow duct for nuclear reactors

    DOE Patents [OSTI]

    Straalsund, Jerry L.

    1978-01-01

    Improved liquid sodium flow ducts for nuclear reactors are described wherein the improvement comprises varying the wall thickness of each of the walls of a polygonal tubular duct structure so that each of the walls is of reduced cross-section along the longitudinal center line and of a greater cross-section along wall junctions with the other walls to form the polygonal tubular configuration.

  6. Countercurrent flow absorber and desorber

    DOE Patents [OSTI]

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  7. Countercurrent flow absorber and desorber

    DOE Patents [OSTI]

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  8. Oblique solitons generated by the flow of a polariton condensate past an obstacle

    SciTech Connect (OSTI)

    Kamchatnov, A. M. Korneev, S. V.

    2012-10-15

    The formation of oblique solitons in a polariton condensate flowing past an obstacle is considered. Because of the finite lifetime of polaritons, the condensate flow is inhomogeneous, which leads to a significant modification of the conditions necessary for the generation of oblique solitons as compared to the conditions established earlier for the flow of an atomic condensate. In particular, it is established that oblique solitons in the polariton case can be generated by a subsonic flow of the condensate in agreement with the results of recent experiments [9]. The geometric shape and other parameters of oblique solitons are analytically calculated using a model based on the nonlinear Schroedinger equation with damping, and the analytical results are confirmed by numerical simulations.

  9. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect (OSTI)

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  10. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect (OSTI)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per [Royal Institute of Technology, Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Brinellvaegen 68, 10044 Stockholm (Sweden)

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  11. Near field flow structure of isothermal swirling flows and reacting non-premixed swirling flames

    SciTech Connect (OSTI)

    Olivani, Andrea; Solero, Giulio; Cozzi, Fabio; Coghe, Aldo

    2007-04-15

    Two confined lean non-premixed swirl-stabilized flame typologies were investigated in order to achieve detailed information on the thermal and aerodynamic field in the close vicinity of the burner throat and provide correlation with the exhaust emissions. Previous finding indicated the generation of a partially premixed flame with radial fuel injection and a purely diffusive flame with co-axial injection in a swirling co-flow. In the present work, the experimental study is reported which has been conducted on a straight exit laboratory burner with no quarl cone, fuelled by natural gas and air, and fired vertically upwards with the flame stabilized at the end of two concentric pipes with the annulus supplying swirled air and the central pipe delivering the fuel. Two fuel injection typologies, co-axial and radial (i.e., transverse), leading to different mixing mechanisms, have been characterized through different techniques: particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) for a comprehensive analysis of the velocity field, still photography for the detection of flame front and main visible features, and thermocouples for the temperature distribution. Isothermal flow conditions have been included in the experimental investigation to provide a basic picture of the flow field and to comprehend the modifications induced by the combustion process. The results indicated that, although the global mixing process and the main flame structure are governed by the swirl motion imparted to the air stream, the two different fuel injection methodologies play an important role on mixture formation and flame stabilization in the primary mixing zone. Particularly, it has been found that, in case of axial injection, the turbulent interaction between the central fuel jet and the backflow generated by the swirl can induce an intermittent fuel penetration in the recirculated hot products and the formation of a central sooting luminous plume, a phenomenon totally

  12. Apparatus for monitoring two-phase flow

    DOE Patents [OSTI]

    Sheppard, John D.; Tong, Long S.

    1977-03-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  13. Ocean Flow Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Ocean Flow Energy Place: United Kingdom Zip: NE29 6NL Product: Tidal energy device developer. References: Ocean Flow Energy1 This article...

  14. Radial flow pulse jet mixer (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Radial flow pulse jet mixer Title: Radial flow pulse jet mixer The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing ...

  15. Free Flow 69 | Open Energy Information

    Open Energy Info (EERE)

    Flow 69 Jump to: navigation, search Name: Free Flow 69 Address: Unit 9 Windmill Ind Est Windmill Place: Fowey Zip: PL23 1HB Region: United Kingdom Sector: Marine and Hydrokinetic...

  16. gtp_flow_power_estimator.xlsx

    Broader source: Energy.gov [DOE]

    This simple spreadsheet model estimates either the flow rate required to produce a specified level of power output, or the power output that can be produced from a specified flow rate.

  17. Building America Webinar: High Performance Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Design Options for Locating Ducts within Conditioned Space Building America Webinar: High Performance Space Conditioning Systems, Part II - Design Options for Locating Ducts ...

  18. Simplified Space Conditioning in Low Load Homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASHRAE Standard 55 "Thermal Environmental Conditions for Human Occupancy" Definition: * "comfort, thermal: that condition of mind which expresses satisfaction with the thermal ...

  19. Conditioning biomass for microbial growth (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Conditioning biomass for microbial growth Title: Conditioning biomass for microbial growth You are accessing a document from the Department of Energy's (DOE) DOE Patents. This ...

  20. Unvented, Conditioned Attics - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attics - Building America Top Innovation Unvented, Conditioned Attics - Building America Top Innovation This photo shows an attic that is conditioned (insulated) and showing ...

  1. ACHIEVING THE REQUIRED COOLANT FLOW DISTRIBUTION FOR THE ACCELERATOR PRODUCTION OF TRITIUM (APT) TUNGSTEN NEUTRON SOURCE

    SciTech Connect (OSTI)

    D. SIEBE; K. PASAMEHMETOGLU

    2000-11-01

    The Accelerator Production of Tritium neutron source consists of clad tungsten targets, which are concentric cylinders with a center rod. These targets are arranged in a matrix of tubes, producing a large number of parallel coolant paths. The coolant flow required to meet thermal-hydraulic design criteria varies with location. This paper describes the work performed to ensure an adequate coolant flow for each target for normal operation and residual heat-removal conditions.

  2. HELM(tm) Flow - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Find More Like This Return to Search HELM(tm) Flow Holomorphic Embedded Load flow Method Battelle Memorial Institute Contact BMI About This Technology Publications: PDF Document Publication HELM(tm) Flow Brochure (1,017 KB) PDF Document Publication US Patent 7519506B2 (159 KB) PDF Document Publication US Patent 7979239B (172 KB) Technology Marketing Summary HELM(tm) Flow is a simulation and analysis tool for transmission and distribution power systems. It provides

  3. Method and device for measuring fluid flow

    DOE Patents [OSTI]

    Atherton, Richard; Marinkovich, Phillip S.; Spadaro, Peter R.; Stout, J. Wilson

    1976-11-23

    This invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution.

  4. Interfacial wave behavior in oil-water channel flows: Prospects for a general understanding

    SciTech Connect (OSTI)

    McCready, M.J.; Uphold, D.D.; Gifford, K.A.

    1997-12-31

    Oil-water pressure driven channel flow is examined as a model for general two-layer flows where interfacial disturbances are important. The goal is to develop sufficient understanding of this system so that the utility and limitations of linear and nonlinear theories can be known a priori. Experiments show that sometimes linear stability is useful at predicting the steady or dominant evolving waves. However in other situations there is no agreement between the linearly fastest growing wave and the spectral peak. An interesting preliminary result is that the bifurcation to interfacial waves is supercritical for all conditions that were studied for an oil-water channel flow, gas-liquid channel flow and two-liquid Couette flow. However, three different mechanisms are dominant for each of these three situations.

  5. Collapse and backward motion of axisymmetric toroidal vortices in an accretion flow

    SciTech Connect (OSTI)

    Bannikova, E. Yu.; Kontorovich, V. M.; Poslavsky, S. A.

    2013-08-15

    The problem of the interaction of two coaxial, counter-rotating ring vortices in the presence of a convergent (accretion) flow with a sink at the center of symmetry has been solved. The vortices that would recede from each other in the absence of a flow (the problem inverse to the Helmholtz problem) are shown to be brought closer together by the flow and then ejected with acceleration along the axis of symmetry. The ejection velocity increases with sink strength. However, if the sink strength exceeds some critical value that depends on the initial conditions, then no ejection occurs and the vortices are captured by the flow and collapse. A similar capture and collapse are also possible during the motion of a single vortex in a flow. The difference from the planar case, where no collapse occurs, is significant. The detected phenomenon can be applied when studying nonlinear processes in atmospheric vortices as well as in active galactic nuclei and planetary atmospheres.

  6. Numerical studies on the performance of a flow distributor in tank

    SciTech Connect (OSTI)

    Shin, Soo Jai Kim, Young In; Ryu, Seungyeob; Bae, Youngmin; Kim, Keung Koo

    2015-03-10

    Flow distributors are generally observed in several nuclear power plants. During core make-up tank (CMT) injection into the reactor, the condensation and thermal stratification are observed in the CMT, and rapid condensation disturbs the injection operation. To reduce the condensation phenomena in the tank, CMT was equipped with a flow distributor. The optimal design of the flow distributor is very important to ensure the structural integrity the CMT and its safe operation during certain transient or accident conditions. In the present study, we numerically investigated the performance of a flow distributor in tank with different shape factors such as the total number of holes, pitch-to-hole diameter ratios, diameter of the hole, and the area ratios. These data will contribute to a design of the flow distributor.

  7. Computing an operating parameter of a unified power flow controller

    SciTech Connect (OSTI)

    Wilson, David G; Robinett, III, Rush D

    2015-01-06

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  8. Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control

    SciTech Connect (OSTI)

    Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y.

    2006-07-01

    The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

  9. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2002-03-14

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Bovine serum albumin (BSA) is a well-studied model solute in membrane filtration known for its fouling and concentration polarization capabilities. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using BSA solution as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure.

  10. Liquid cooled counter flow turbine bucket

    DOE Patents [OSTI]

    Dakin, James T.

    1982-09-21

    Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

  11. Electroactive-Zone Extension in Flow-Battery Stacks

    SciTech Connect (OSTI)

    Smith, KC; Brunini, VE; Dong, YJ; Chiang, YM; Carter, WC

    2014-11-20

    Flowable suspensions that conduct both electrons and ions can enable the use of energy-dense electroactive species in flow batteries [M. Duduta et al., Adv. Energy Mater., 1, 511 (2011); Z. Li et al., Phys. Chem. Chem. Phys., 15, 15,833 (2013); F. Fan et al., Nano Lett., 14, 2210 (2014)]. In comparison with conventional flow batteries where electrochemical reactions are confined to a fixed current-collector region, electronically conductive flow electrodes permit electrochemical reactions to extend outside of the physical confines of the stack. We have measured and modeled how mixed-conduction enables an electroactive zone (EAZ, in which electrochemical reactions occur) that is of greater spatial extent than current collectors, the extension being termed side zone, SZ. Electrochemical reactions in SZs can reduce coulombic and energetic efficiency. Here we show that for realistic suspension properties and operating conditions, the added inefficiency is small in practice, and can be further mitigated by using appropriate operating conditions and/or materials choices. For the specific example of a non-aqueous Li4Ti5O12 suspension, we show that EAZ extension contributes less than 1% additional efficiency loss at C/10 rates for current collectors greater than 20 mm long. (C) 2014 Elsevier Ltd. All rights reserved.

  12. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  13. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)

    SciTech Connect (OSTI)

    Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

    1996-09-01

    In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

  14. Studies on flow resistance of regenerator in Stirling engine

    SciTech Connect (OSTI)

    Sakano, Akira; Isshiki, Seita; Ushiyama, Izumi

    1995-12-31

    Studies on flow resistance of regenerator in Stirling engine are to be reported. The purpose of this study is to measure the flow resistance of regenerator in oscillating flow condition, compare with the results of previous studies and examine whether the friction factor changes between accelerating period and decelerating period of the oscillation cycle. New experimental apparatus for measurement of flow resistance of regenerator element was designed and built. Using semiconductor pressure transducer, instantaneous pressure drops during many oscillation cycle were measured. As regenerator elements, layer of usual mesh and packed mesh were used. It was clear that friction factor of usual mesh, obtained from maximum values of pressure drops in oscillation cycle, lay between two previous studies, while friction factor of packed mesh became higher than the previous studies. Also it became obvious that friction factor did not change between accelerating period and decelerating period of oscillation cycle under revolution speed of 100 rpm, while over 200 rpm, friction factor in decelerating period became higher than in accelerating period at same lower Reynolds number.

  15. Branch Flow Model: Relaxations and Convexification-Part II

    SciTech Connect (OSTI)

    Farivar, M; Low, SH

    2013-08-01

    We propose a branch flow model for the analysis and optimization of mesh as well as radial networks. The model leads to a new approach to solving optimal power flow (OPF) that consists of two relaxation steps. The first step eliminates the voltage and current angles and the second step approximates the resulting problem by a conic program that can be solved efficiently. For radial networks, we prove that both relaxation steps are always exact, provided there are no upper bounds on loads. For mesh networks, the conic relaxation is always exact but the angle relaxation may not be exact, and we provide a simple way to determine if a relaxed solution is globally optimal. We propose convexification of mesh networks using phase shifters so that OPF for the convexified network can always be solved efficiently for an optimal solution. We prove that convexification requires phase shifters only outside a spanning tree of the network and their placement depends only on network topology, not on power flows, generation, loads, or operating constraints. Part I introduces our branch flow model, explains the two relaxation steps, and proves the conditions for exact relaxation. Part II describes convexification of mesh networks, and presents simulation results.

  16. Branch Flow Model: Relaxations and Convexification-Part I

    SciTech Connect (OSTI)

    Farivar, M; Low, SH

    2013-08-01

    We propose a branch flow model for the analysis and optimization of mesh as well as radial networks. The model leads to a new approach to solving optimal power flow (OPF) that consists of two relaxation steps. The first step eliminates the voltage and current angles and the second step approximates the resulting problem by a conic program that can be solved efficiently. For radial networks, we prove that both relaxation steps are always exact, provided there are no upper bounds on loads. For mesh networks, the conic relaxation is always exact but the angle relaxation may not be exact, and we provide a simple way to determine if a relaxed solution is globally optimal. We propose convexification of mesh networks using phase shifters so that OPF for the convexified network can always be solved efficiently for an optimal solution. We prove that convexification requires phase shifters only outside a spanning tree of the network and their placement depends only on network topology, not on power flows, generation, loads, or operating constraints. Part I introduces our branch flow model, explains the two relaxation steps, and proves the conditions for exact relaxation. Part II describes convexification of mesh networks, and presents simulation results.

  17. Fluid flow structure around the mixer in a reactor with mechanical mixing

    SciTech Connect (OSTI)

    Lecheva, A.; Zheleva, I.

    2015-10-28

    Fluid flow structure around the mixer in a cylindrical reactor with mechanical mixing is studied and numerical results are presented in this article. The model area is complex because of the presence of convex corners of the mixer in the fluid flow. Proper boundary conditions for the vorticity calculated on the base of the stream function values near solid boundaries of the examined area are presented. The boundary value problem of motion of swirling incompressible viscous fluid in a vertical tank reactor with a mixer is solved numerically. The calculations are made by a computer code, written in MATLAB. The complex structure of the flow around the mixing disk is described and commented.

  18. Event-shape fluctuations and flow correlations in ultra-relativistic heavy-ion collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jia, Jiangyong

    2014-12-01

    I review recent measurements of a large set of flow observables associated with event-shape fluctuations and collective expansion in heavy ion collisions. First, these flow observables are classified and experiment methods are introduced. The experimental results for each type of observables are then presented and compared to theoretical calculations. A coherent picture of initial condition and collective flow based on linear and non-linear hydrodynamic responses is derived, which qualitatively describe most experimental results. I discuss new types of fluctuation measurements that can further our understanding of the event-shape fluctuations and collective expansion dynamics.

  19. CFD SIMULATION OF PROPOSED VALIDATION DATA FOR A FLOW PROBLEM RECONFIGURED TO ELIMINATE AN UNDESIRABLE FLOW INSTABILITY

    SciTech Connect (OSTI)

    Richard W. Johnson; Hugh M. McIlroy

    2010-08-01

    The U. S. Department of Energy (DOE) is supporting the development of a next generation nuclear plant (NGNP), which will be based on a very high temperature reactor (VHTR) design. The VHTR is a single-phase helium-cooled reactor wherein the helium will be heated initially to 750 °C and later to temperatures approaching 1000 °C. The high temperatures are desired to increase reactor efficiency and to provide a heat source for the manufacture of hydrogen and other applications. While computational fluid dynamics (CFD) has not been used in the past to design or license nuclear reactors in the U. S., it is expected that CFD will be used in the design and safety analysis of forthcoming designs. This is partly because of the maturity of CFD and partly because detailed information is desired of the flow and heat transfer inside the reactor to avoid hot spots and other conditions that might compromise reactor safety. Numerical computations of turbulent flow should be validated against experimental data for flow conditions that contain some or all of the physics expected in the thermal fluid machinery of interest. To this end, a scaled model of a narrow slice of the lower plenum of the prismatic VHTR was constructed and installed in the Idaho National Laboratory’s (INL) matched index of refraction (MIR) test facility and data were taken. The data were then studied and compared to CFD calculations to help determine their suitability for validation data. One of the main findings was that the inlet data, which were measured and controlled by calibrated mass flow rotameters and were also measured using detailed stereo particle image velocimetry (PIV) showed considerable discrepancies in mass flow rate between the two methods. The other finding was that a randomly unstable recirculation zone occurs in the flow. This instability has a very significant effect on the flow field in the vicinity of the inlet jets. Because its time scale is long and because it is apparently a

  20. The effect of the exit condition on the performance of intube condensers

    SciTech Connect (OSTI)

    Rabas, T.J.; Arman, B.

    1995-07-01

    Data collected from the open literature plus some new, unpublished data will be used to show that the exit condition can change the flow regimes, introduce certain types of instabilities, and alter flooding velocities with intube condensation. The major orientations will be considered: horizontal, vertical with vapor downflow, and vertical with vapor upflow (refluxing).

  1. Direct numerical simulation of turbulent reacting flows

    SciTech Connect (OSTI)

    Chen, J.H.

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  2. Transient Wellbore Fluid Flow Model

    Energy Science and Technology Software Center (OSTI)

    1982-04-06

    WELBORE is a code to solve transient, one-dimensional two-phase or single-phase non-isothermal fluid flow in a wellbore. The primary thermodynamic variables used in solving the equations are the pressure and specific energy. An equation of state subroutine provides the density, quality, and temperature. The heat loss out of the wellbore is calculated by solving a radial diffusion equation for the temperature changes outside the bore. The calculation is done at each node point in themore » wellbore.« less

  3. Continuous flow dielectrophoretic particle concentrator

    DOE Patents [OSTI]

    Cummings, Eric B.

    2007-04-17

    A continuous-flow filter/concentrator for separating and/or concentrating particles in a fluid is disclosed. The filter is a three-port device an inlet port, an filter port and a concentrate port. The filter separates particles into two streams by the ratio of their dielectrophoretic mobility to their electrokinetic, advective, or diffusive mobility if the dominant transport mechanism is electrokinesis, advection, or diffusion, respectively.Also disclosed is a device for separating and/or concentrating particles by dielectrophoretic trapping of the particles.

  4. Wind Turbine Drivetrain Condition Monitoring (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.

    2011-10-01

    This presentation details the Gearbox Reliability Collaborative Condition Monitoring program at NREL.

  5. Chemical preconcentrator with integral thermal flow sensor

    DOE Patents [OSTI]

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  6. Self-regulating flow control device

    DOE Patents [OSTI]

    Humphreys, Duane A.

    1984-01-01

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  7. Understanding the impact of flow rate and recycle on the conversion of a complex biorefinery stream using a flow-through microbial electrolysis cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Alex J.; Borole, Abhijeet P.

    2016-06-16

    We investigated the effect of flow rate and recycle on the conversion of a biomass-derived pyrolysis aqueous phase in amicrobial electrolysis cell (MEC) to demonstrate production of renewable hydrogen in biorefinery. A continuous MEC operation was investigated under one-pass and recycle conditions usingthe complex, biomass-derived, fermentable, mixed substrate feed at a constant concentration of 0.026 g/L,while testing flow rates ranging from 0.19 to 3.6 mL/min. This corresponds to an organic loading rate (OLR) of 0.54₋10 g/L-day. Mass transfer issues observed at low flow rates were alleviated using high flow rates.Increasing the flow rate to 3.6 mL/min (3.7 min HRT) duringmore » one-pass operation increased the hydrogen productivity 3-fold, but anode conversion efficiency (ACE) decreased from 57.9% to 9.9%. Recycle of the anode liquid helped to alleviate kinetic limitations and the ACE increased by 1.8-fold and the hydrogen productivity by 1.2-fold compared to the one-pass condition at the flow rate of 3.6 mL/min (10 g/L-d OLR). High COD removal was also achieved under recycle conditions, reaching 74.2 1.1%, with hydrogen production rate of 2.92 ± 0.51 L/L-day. This study demonstrates the advantages of combining faster flow rates with a recycle process to improve rate of hydrogen production from a switchgrass-derived stream in the biorefinery.« less

  8. Multiple sort flow cytometer (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Multiple sort flow cytometer Citation Details In-Document Search Title: Multiple sort flow cytometer A flow cytometer utilizes multiple lasers for excitation and respective ...

  9. Microfluidic devices and methods for integrated flow cytometry...

    Office of Scientific and Technical Information (OSTI)

    Microfluidic devices and methods for integrated flow cytometry Title: Microfluidic devices and methods for integrated flow cytometry Microfluidic devices and methods for flow ...

  10. Recent Developments and Trends in Redox Flow Batteries - Joint...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 1, 2015, Research Highlights Recent Developments and Trends in Redox Flow Batteries Different flow batteries schemes were investigated. The classic flow battery (top left, ...

  11. Multiple sort flow cytometer (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    each event is independently tagged upon separation from the flow by an electrical charge ... flow; event; independently; tagged; separation; flow; electrical; charge; 60; 120; ...

  12. Aerosol deposition in bends with turbulent flow

    SciTech Connect (OSTI)

    McFarland, A.R.; Gong, H.; Wente, W.B.

    1997-08-01

    The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.

  13. Field-flow fractionation of chromosomes

    SciTech Connect (OSTI)

    Giddings, J.C.

    1991-09-01

    The work done on this project is divided into two principal areas. The first involves the application of sedimentation/steric FFF to metaphase chromosomes in an attempt to fractionate the chromosomes according to their size. The preparation of chromosomes from a number of organisms was attempted; procedures were finally worked out in collaboration with Los Alamos National Laboratory for the preparation of metaphase chromosomes from Chinese hamster cells. After extensive experimental work was done to identify suitable operating conditions, the partial fractionation of the Chinese hamster chromosomes was achieved. In the second component of the project, flow FFF was applied to the separation of DNA fragments. Figures are provided that show considerable success in the separation of plasmid digests and in the separation of single from double stranded DNA under 10{sup 4} base pairs. Preliminary work was done on DNA fragments having a size greater than 10{sup 4} base pairs. This work has served to establish the inversion point for DNA.

  14. Subsurface Flow and Contaminant Transport Documentation and User's Guide

    SciTech Connect (OSTI)

    Aleman, S.E.

    1999-07-28

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media. The code is designed specifically to handle complex multi-layer and/or heterogeneous aquifer systems in an efficient manner and accommodates a wide range of boundary conditions. Additionally, 1-D and 2-D (in Cartesian coordinates) problems are handled in FACT by simply limiting the number of elements in a particular direction(s) to one. The governing equations in FACT are formulated only in Cartesian coordinates.

  15. Transient One-dimensional Pipe Flow Analyzer

    Energy Science and Technology Software Center (OSTI)

    1986-04-08

    TOPAZ-SNLL, the Transient One- dimensional Pipe flow AnalyZer code, is a user-friendly computer program for modeling the heat transfer, fluid mechanics, and thermodynamics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. Although the flow conservation equations are assumed to be one-dimensional and transient, multidimensional features of internal fluid flow and heat transfer may be accounted for using the available quasi-steady flow correlations (e.g., Moody friction factor correlation and variousmore » form loss and heat transfer correlations). Users may also model the effects of moving system boundaries such as pistons, diaphragms, and bladders. The features of fully compressible flow are modeled, including the propagation of shocks and rarefaction waves, as well as the establishment of multiple choke points along the flow path.« less

  16. DECORRELATION TIMES OF PHOTOSPHERIC FIELDS AND FLOWS

    SciTech Connect (OSTI)

    Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.

    2012-03-10

    We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier local correlation tracking (FLCT) to a sequence of high-resolution (0.''3), high-cadence ({approx_equal} 2 minute) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the narrowband filter imager of the Solar Optical Telescope aboard the Hinode satellite over 2006 December 12 and 13. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms' susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval {Delta}t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter {sigma} used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, {tau}. For {Delta}t > {tau}, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and {Delta}t.

  17. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  18. Organized Oscillations of Initially-Turbulent Flow Past a Cavity

    SciTech Connect (OSTI)

    J.C. Lin; D. Rockwell

    2002-09-17

    Flow past an open cavity is known to give rise to self-sustained oscillations in a wide variety of configurations, including slotted-wall, wind and water tunnels, slotted flumes, bellows-type pipe geometries, high-head gates and gate slots, aircraft components and internal piping systems. These cavity-type oscillations are the origin of coherent and broadband sources of noise and, if the structure is sufficiently flexible, flow-induced vibration as well. Moreover, depending upon the state of the cavity oscillation, substantial alterations of the mean drag may be induced. In the following, the state of knowledge of flow past cavities, based primarily on laminar inflow conditions, is described within a framework based on the flow physics. Then, the major unresolved issues for this class of flows will be delineated. Self-excited cavity oscillations have generic features, which are assessed in detail in the reviews of Rockwell and Naudascher, Rockwell, Howe and Rockwell. These features, which are illustrated in the schematic of Figure 1, are: (i) interaction of a vorticity concentration(s) with the downstream corner, (ii) upstream influence from this corner interaction to the sensitive region of the shear layer formed from the upstream corner of the cavity; (iii) conversion of the upstream influence arriving at this location to a fluctuation in the separating shear layer; and (iv) amplification of this fluctuation in the shear layer as it develops in the streamwise direction. In view of the fact that inflow shear-layer in the present investigation is fully turbulent, item (iv) is of particular interest. It is generally recognized, at least for laminar conditions at separation from the leading-corner of the cavity, that the disturbance growth in the shear layer can be described using concepts of linearized, inviscid stability theory, as shown by Rockwell, Sarohia, and Knisely and Rockwell. As demonstrated by Knisely and Rockwell, on the basis of experiments interpreted

  19. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    SciTech Connect (OSTI)

    John P. Selegue

    2011-11-17

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.

  20. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    SciTech Connect (OSTI)

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  1. Photovoltaic power conditioning subsystem: state of the art and development opportunities

    SciTech Connect (OSTI)

    Krauthamer, S.; Bahrami, K.; Das, R.; Macie, T.; Rippel, W.

    1984-01-15

    Photovoltaic sytems, the state of the art of power conditioning subsystem components, and the design and operational interaction between photovoltaic systems and hot utilities are detailed in this document. Major technical issues relating to the design and development of power conditioning systems for photovoltaic application are also considered, including: (1) standards, guidelines, and specifications; (2) cost-effective hardware design; (3) impact of advanced components on power conditioning development; (4) protection and safety; (5) quality of power; (6) system efficiency; and (7) system integration with the host utility. In addition, theories of harmonic distortion and reactive power flow are discussed, and information about power conditioner hardware and manufacturers is provided.

  2. A numerical study of short residence time FCC riser flows with a new flow/kinetics modeling technique.

    SciTech Connect (OSTI)

    Chang, S. L.

    1998-08-25

    Fluid Catalytic Cracking (FCC) technology is the most important process used by the refinery industry to convert crude oil to valuable lighter products such as gasoline. New and modified processes are constantly developed by refinery companies to improve their global competitiveness and meet more stringent environmental regulations. Short residence time FCC riser reactor is one of the advanced processes that the refining industry is actively pursuing because it can improve the yield selectivity and efficiency of an FCC unit. However, as the residence time becomes shorter, the impact of the mixing between catalyst and feed oil at the feed injection region on the product yield becomes more significant. Currently, most FCC computer models used by the refineries perform sophisticated kinetic calculations on simplified flow field and can not be used to evaluate the impact of fluid mixing on the performance of an FCC unit. Argonne National Laboratory (AFL) is developing a computational fluid dynamic (CFD) code ICRKFLO for FCC riser flow modeling. The code, employing hybrid hydrodynamic-chemical kinetic coupling techniques, is used to investigate the effect of operating and design conditions on the product yields of FCC riser reactors. Numerical calculations were made using the code to examine the impacts of the operating and design conditions on the product yields. The controlling parameters under investigation include the residence time, reaction temperature, and catalyst/oil ratio. This paper describes the CFD code, presents computation results, and discusses the effects of operating conditions on the performance of short residence time FCC riser reactors.

  3. The low temperature differential Stirling engine with working fluid operated on critical condition

    SciTech Connect (OSTI)

    Naso, V.; Dong, W.; Lucentini, M.; Capata, R.

    1998-07-01

    The research and development of low temperature differential Stirling engine has a great potential market since a lot of thermal energy at low temperature can supply it and the cost of this kind of engine is lower than general Stirling engine. The characteristics of low compression ratio and low differential temperature Stirling engine may be satisfied with working fluid compressed on critical conditions. By combining two phase heat transfer with forced convective flow in compression space and through the regenerator in the engine, a new heat transfer coefficient emerges capable of absorbing and releasing high heat fluxes without the corresponding low temperature increase. The current analysis focuses on the study of Stirling engines with working fluid compressed on critical conditions, thus at two-phase heat transfer in compression space and regenerator of the engine under forced convective flow conditions.

  4. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  5. Combustion synthesis continuous flow reactor

    DOE Patents [OSTI]

    Maupin, Gary D.; Chick, Lawrence A.; Kurosky, Randal P.

    1998-01-01

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  6. Engine combustion and flow diagnostics

    SciTech Connect (OSTI)

    1995-12-31

    This informative publication discusses the application of diagnostic techniques to internal combustion engines. The papers included fall into three broad categories: flow diagnostics, combustion diagnostics, and fuel spray diagnostics. Contents include: controlling combustion in a spark ignition engine by quantitative fuel distribution; a model for converting SI engine flame arrival signals into flame contours; in-cylinder diesel flame imaging compared with numerical computations; ignition and early soot formation in a DI diesel engine using multiple 2-D imaging diagnostics; investigation of diesel sprays using diffraction-based droplet sizing; fuel distribution effects on the combustion of a direct-injection stratified-charge engine; and 2-D measurements of the liquid phase temperature in fuel sprays.

  7. Phase-sensitive flow cytometer

    DOE Patents [OSTI]

    Steinkamp, J.A.

    1993-12-14

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts. 15 figures.

  8. East Maui Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for East Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.

  9. Hawaii Island Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Hawaii Island. Data is from the following sources: Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume II – Island of Hawaii Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008; and Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.

  10. West Maui Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.

  11. Phase-sensitive flow cytometer

    DOE Patents [OSTI]

    Steinkamp, John A.

    1993-01-01

    A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.

  12. Combustion synthesis continuous flow reactor

    DOE Patents [OSTI]

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  13. West Maui Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report Volume V Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.

  14. Flow visualization study of the MOD-2 wind turbine wake

    SciTech Connect (OSTI)

    Liu H.T.; Waite, J.W.; Hiester, T.R.; Tacheron, P.H.; Srnsky, R.A.

    1983-06-01

    The specific objectives of the study reported were: to determine the geometry of the MOD-2 wind turbine wake in terms of wake height and width as a function of downstream distance under two conditions of atmospheric stability; to estimate the mean velocity deficit at several downstream stations in the turbine wake; and to investigate the behavior of the rotor-generated vortices, particularly their configuration and persistence. The background of the wake problem is briefly examined, including a discussion of the critical issues that the flow visualization study addresses. Experimental techniques and data analysis methods are described in detail. (LEW)

  15. Zonal flow dynamics in the double tearing mode with antisymmetric shear flows

    SciTech Connect (OSTI)

    Mao, Aohua [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan)] [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Liu, Jinyuan, E-mail: jyliu@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Kishimoto, Yasuaki [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan) [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Institude of Advanced Energy, Kyoto University, Uji, Kyoto 6110011 (Japan)

    2014-05-15

    The generation dynamics and the structural characteristics of zonal flows are investigated in the double tearing mode (DTM) with antisymmetric shear flows. Two kinds of zonal flow oscillations are revealed based on reduced resistive magnetohydrodynamics simulations, which depend on the shear flow amplitudes corresponding to different DTM eigen mode states, elaborated by Mao et al. [Phys. Plasmas 20, 022114 (2013)]. For the weak shear flows below an amplitude threshold, v{sub c}, at which two DTM eigen states with antisymmetric or symmetric magnetic island structure are degenerated, the zonal flows grow oscillatorily in the Rutherford regime during the nonlinear evolution of the DTMs. It is identified that the oscillation mechanism results from the nonlinear interaction between the distorted islands and the zonal flows through the modification of shear flows. However, for the medium shear flows above v{sub c} but below the critical threshold of the Kelvin-Helmholtz instability, an oscillatory growing zonal flow occurs in the linear phase of the DTM evolution. It is demonstrated that the zonal flow oscillation originates from the three-wave mode coupling or a modulation instability pumped by two DTM eigen modes with the same frequency but opposite propagating direction. With the shear flows increasing, the amplitude of zonal flow oscillation increases first and then decreases, whilst the oscillation frequency as twice of the Doppler frequency shift increases. Furthermore, impacts of the oscillatory zonal flows on the nonlinear evolution of DTM islands and the global reconnection are also discussed briefly.

  16. Coherence imaging of scrape-off-layer and divertor impurity flows in the Mega Amp Spherical Tokamak (invited)

    SciTech Connect (OSTI)

    Silburn, S. A., E-mail: s.a.silburn@durham.ac.uk; Sharples, R. M. [Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Harrison, J. R.; Meyer, H.; Michael, C. A. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Howard, J. [Plasma Research Laboratory, Australian National University, Canberra, ACT 0200 (Australia); Gibson, K. J. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2014-11-15

    A new coherence imaging Doppler spectroscopy diagnostic has been deployed on the UKs Mega Amp Spherical Tokamak for scrape-off-layer and divertor impurity flow measurements. The system has successfully obtained 2D images of C III, C II, and He II line-of-sight flows, in both the lower divertor and main scrape-off-layer. Flow imaging has been obtained at frame rates up to 1 kHz, with flow resolution of around 1 km/s and spatial resolution better than 1 cm, over a 40 field of view. C III data have been tomographically inverted to obtain poloidal profiles of the parallel impurity flow in the divertor under various conditions. In this paper we present the details of the instrument design, operation, calibration, and data analysis as well as a selection of flow imaging results which demonstrate the diagnostic's capabilities.

  17. Methodology for extracting local constants from petroleum cracking flows

    DOE Patents [OSTI]

    Chang, Shen-Lin; Lottes, Steven A.; Zhou, Chenn Q.

    2000-01-01

    A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.

  18. CFD analysis of laminar oscillating flows

    SciTech Connect (OSTI)

    Booten, C. W. Charles W.); Konecni, S.; Smith, B. L.; Martin, R. A.

    2001-01-01

    This paper describes a numerical simulations of oscillating flow in a constricted duct and compares the results with experimental and theoretical data. The numerical simulations were performed using the computational fluid dynamics (CFD) code CFX4.2. The numerical model simulates an experimental oscillating flow facility that was designed to test the properties and characteristics of oscillating flow in tapered ducts, also known as jet pumps. Jet pumps are useful devices in thermoacoustic machinery because they produce a secondary pressure that can counteract an unwanted effect called streaming, and significantly enhance engine efficiency. The simulations revealed that CFX could accurately model velocity, shear stress and pressure variations in laminar oscillating flow. The numerical results were compared to experimental data and theoretical predictions with varying success. The least accurate numerical results were obtained when laminar flow approached transition to turbulent flow.

  19. Wind Turbine Drivetrain Condition Monitoring - An Overview

    SciTech Connect (OSTI)

    Sheng, S; Veers, P.

    2011-10-01

    This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

  20. Hanford Workers Compensation Flow - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Wide Programs Hanford Workers Compensation Hanford Workers Compensation Flow About Us Hanford Cultural Resources Hanford Workers Compensation PENSER Representatives Hanford Workers Compensation Flow Compensation Claim Process Presentations Related Information Vocational Rehabilitation Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Hanford Worker's Compensation Flow - Printable Version (PDF) WC_Flowchart Share on Last Updated 02/14/2016 4:51

  1. Space Conditioning Standing Technical Commitee Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership for Improved Residential Construction Florida Solar Energy Center ... Space Conditioning Standing Technical Committee Upcoming Activity Upcoming Activity Files, ...

  2. Space Conditioning Standing Technical Committee Strategic Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    This strategic plan document outlines the gaps, barriers, and opportunities identified by the Building America Space Conditioning Standing Technical Committee.

  3. Heating Ventilation and Air Conditioning Efficiency

    Broader source: Energy.gov [DOE]

    This presentation covers common pitfalls that lead to wasted energy in industrial heating ventilation and air conditioning (HVAC) systems.

  4. Application of a geocentrifuge and sterolithographically fabricated apertures to multiphase flow in complex fracture apertures.

    SciTech Connect (OSTI)

    Glenn E. McCreery; Robert D. Stedtfeld; Alan T. Stadler; Daphne L. Stoner; Paul Meakin

    2005-09-01

    A geotechnical centrifuge was used to investigate unsaturated multiphase fluid flow in synthetic fracture apertures under a variety of flow conditions. The geocentrifuge subjected the fluids to centrifugal forces allowing the Bond number to be systematically changed without adjusting the fracture aperture of the fluids. The fracture models were based on the concept that surfaces generated by the fracture of brittle geomaterials have a self-affine fractal geometry. The synthetic fracture surfaces were fabricated from a transparent epoxy photopolymer using sterolithography, and fluid flow through the transparent fracture models was monitored by an optical image acquisition system. Aperture widths were chosen to be representative of the wide range of geological fractures in the vesicular basalt that lies beneath the Idaho Nation Laboratory (INL). Transitions between different flow regimes were observed as the acceleration was changed under constant flow conditions. The experiments showed the transition between straight and meandering rivulets in smooth walled apertures (aperture width = 0.508 mm), the dependence of the rivulet width on acceleration in rough walled fracture apertures (average aperture width = 0.25 mm), unstable meandering flow in rough walled apertures at high acceleration (20g) and the narrowing of the wetted region with increasing acceleration during the penetration of water into an aperture filled with wetted particles (0.875 mm diameter glass spheres).

  5. Thermal/chemical degradation of ceramic cross-flow filter materials

    SciTech Connect (OSTI)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  6. PROBABILISTIC SIMULATION OF SUBSURFACE FLUID FLOW: A STUDY USING A NUMERICAL SCHEME

    SciTech Connect (OSTI)

    Buscheck, Timothy Eric

    1980-03-01

    There has been an increasing interest in probabilistic modeling of hydrogeologic systems. The classical approach to groundwater modeling has been deterministic in nature, where individual layers and formations are assumed to be uniformly homogeneous. Even in the case of complex heterogeneous systems, the heterogeneities describe the differences in parameter values between various layers, but not within any individual layer. In a deterministic model a single-number is assigned to each hydrogeologic parameter, given a particular scale of interest. However, physically there is no such entity as a truly uniform and homogeneous unit. Single-number representations or deterministic predictions are subject to uncertainties. The approach used in this work models such uncertainties with probabilistic parameters. The resulting statistical distributions of output variables are analyzed. A numerical algorithm, based on axiomatic principles of probability theory, performs arithmetic operations between probability distributions. Two subroutines are developed from the algorithm and incorporated into the computer program TERZAGI, which solves groundwater flow problems in saturated, multi-dimensional systems. The probabilistic computer program is given the name, PROGRES. The algorithm has been applied to study the following problems: one-dimensional flow through homogeneous media, steady-state and transient flow conditions, one-dimensional flow through heterogeneous media, steady-state and transient flow conditions, and two-dimensional steady-stte flow through heterogeneous media. The results are compared with those available in the literature.

  7. Numerical study of transition to supersonic flows in the edge plasma

    SciTech Connect (OSTI)

    Goswami, Rajiv, E-mail: rajiv@ipr.res.in; Artaud, Jean-Franois; Imbeaux, Frdric [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar382428 (India)

    2014-07-15

    The plasma scrape-off layer (SOL) in a tokamak is characterized by ion flow down a long narrow flux tube terminating on a solid surface. The ion flow velocity along a magnetic field line can be equal to or greater than sonic at the entrance of a Debye sheath or upstream in the presheath. This paper presents a numerical study of the transition between subsonic and supersonics flows. A quasineutral one-dimensional (1D) fluid code has been used for modeling of plasma transport in the SOL along magnetic field lines, both in steady state and under transient conditions. The model uses coupled equations for continuity, momentum, and energy balance with ionization, radiation, charge exchange, and recombination processes. The recycled neutrals are described in the diffusion approximation. Standard Bohm sheath criterion is used as boundary conditions at the material surface. Three conditions conducive for the generation of supersonic flows in SOL plasmas have been explored. It is found that in steady state high (attached) and low (detached) divertor temperatures cases, the role of particle, momentum, and energy loss is critical. For attached case, the appearance of shock waves in the divertor region if the incoming plasma flow is supersonic and its effect on impurity retention is presented. In the third case, plasma expansion along the magnetic field can yield time-dependent supersonic solutions in the quasineutral rarefaction wave. Such situations can arise in the parallel transport of intermittent structures such as blobs and edge localized mode filaments along field lines.

  8. Building America Webinar: Retrofitting Central Space Conditioning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for Multifamily Buildings | Department of Energy Retrofitting Central Space Conditioning Strategies for Multifamily Buildings Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings The webinar on July 16, 2014, focused on improving the performance of central space conditioning systems in multifamily buildings. Presenters discussed hydronic heating strategies and the evaluation of thermostatically controlled radiator valves (TRVs).

  9. Flow Science gifts back $50K award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    » Flow Science gifts back $50K award Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Flow Science gifts back $50K award Money goes to future Venture Acceleration Fund award winners. August 2, 2016 Flow Science, based in Santa Fe, is the second company to pay back a VAF award. Flow Science, based in Santa Fe, is the second company to pay back a VAF award; the first was Titan Aerospace,

  10. LLNL Energy Flow Charts | Open Energy Information

    Open Energy Info (EERE)

    Organization: Lawrence Livermore National Lab Sector: Energy Focus Area: Renewable Energy Topics: Pathways analysis References: LLNL Energy Flow Charts 1 Decision makers have...

  11. Microsphere estimates of blood flow: Methodological considerations

    SciTech Connect (OSTI)

    von Ritter, C.; Hinder, R.A.; Womack, W.; Bauerfeind, P.; Fimmel, C.J.; Kvietys, P.R.; Granger, D.N.; Blum, A.L. Louisianna State Univ. Medical Center, Shreveport Universitaire Vaudois )

    1988-02-01

    The microsphere technique is a standard method for measuring blood flow in experimental animals. Sporadic reports have appeared outlining the limitations of this method. In this study the authors have systematically assessed the effect of blood withdrawals for reference sampling, microsphere numbers, and anesthesia on blood flow estimates using radioactive microspheres in dogs. Experiments were performed on 18 conscious and 12 anesthetized dogs. Four blood flow estimates were performed over 120 min using 1 {times} 10{sup 6} microspheres each time. The effects of excessive numbers of microspheres pentobarbital sodium anesthesia, and replacement of volume loss for reference samples with dextran 70 were assessed. In both conscious and anesthetized dogs a progressive decrease in gastric mucosal blood flow and cardiac output was observed over 120 min. This was also observed in the pancreas in conscious dogs. The major factor responsible for these changes was the volume loss due to the reference sample withdrawals. Replacement of the withdrawn blood with dextran 70 led to stable blood flows to all organs. The injection of excessive numbers of microspheres did not modify hemodynamics to a greater extent than did the injection of 4 million microspheres. Anesthesia exerted no influence on blood flow other than raising coronary flow. The authors conclude that although blood flow to the gastric mucosa and the pancreas is sensitive to the minor hemodynamic changes associated with the microsphere technique, replacement of volume loss for reference samples ensures stable blood flow to all organs over a 120-min period.

  12. Flow visualisation in inclined louvered fins

    SciTech Connect (OSTI)

    T'Joen, C.; De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University-UGent, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); Jacobi, A. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States)

    2009-04-15

    In this study the flow within an interrupted fin design, the inclined louvered fin, is investigated experimentally through visualisation. The inclined louvered fin is a hybrid of the offset strip fin and standard louvered fin, aimed at improved performance at low Reynolds numbers for compact heat exchangers. The flow behaviour is studied in six geometrically different configurations over a range of Reynolds numbers and quantified using the concept of 'fin angle alignment factor'. The transition from steady laminar to unsteady flow was studied in detail. The fin geometry had a very large impact on the transitional flow behaviour, especially on vortex shedding. (author)

  13. Precision Flow Table | Open Energy Information

    Open Energy Info (EERE)

    Table Jump to: navigation, search Basic Specifications Facility Name Flow Table Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility...

  14. Rechargeable Nanoelectrofuels for Flow Batteries | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rechargeable Nanoelectrofuels for Flow Batteries Four-page general brochure describing a groundbreaking energy storage concept that may revolutionize the world of batteries PDF...

  15. Nanoelectrofuels for Flow Batteries | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoelectrofuels for Flow Batteries Four-page technical brochure about Argonne's high-density rechargeable liquid fuel PDF icon esnanoelectrofuels-broch-tech...

  16. Precision Flow Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Precision Flow Technologies Place: Saugerties, New York Zip: 12477 Product: New York-based, firm focused on the design and...

  17. RedFlow | Open Energy Information

    Open Energy Info (EERE)

    in order to 'commercialise the proprietary flowing electrolyte battery and the integrated energy storage systems'. Coordinates: -27.46888, 153.022827 Show Map Loading map......

  18. Coolant mass flow equalizer for nuclear fuel

    DOE Patents [OSTI]

    Betten, Paul R.

    1978-01-01

    The coolant mass flow distribution in a liquid metal cooled reactor is enhanced by restricting flow in sub-channels defined in part by the peripheral fuel elements of a fuel assembly. This flow restriction, which results in more coolant flow in interior sub-channels, is achieved through the use of a corrugated liner positioned between the bundle of fuel elements and the inner wall of the fuel assembly coolant duct. The corrugated liner is expandable to accommodate irradiation induced growth of fuel assembly components.

  19. Shock Desensitization Experiments and Reactive Flow Modeling...

    Office of Scientific and Technical Information (OSTI)

    Shock Desensitization Experiments and Reactive Flow Modeling on Self-Sustaining LX-17 Detonation Waves Citation Details In-Document Search Title: Shock Desensitization Experiments ...

  20. Free Flow Power Corporation | Open Energy Information

    Open Energy Info (EERE)

    Power Corporation Jump to: navigation, search Name: Free Flow Power Corporation Address: 239 Causeway St Suite 300 Place: Gloucester, Massachusetts Zip: 1930 Sector: Marine and...

  1. Approximate Model for Turbulent Stagnation Point Flow.

    SciTech Connect (OSTI)

    Dechant, Lawrence

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.

  2. Progress in Grid Scale Flow Batteries

    Broader source: Energy.gov [DOE]

    Presentation by Imre Gyuk, U.S. Department of Energy, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC.

  3. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    SciTech Connect (OSTI)

    Xia Wang; Xiaodong Sun; Benjamin Doup; Haihua Zhao

    2012-12-01

    In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.

  4. Conditional stochastic modeling of transport of contaminant in the vadose zone. Final project report

    SciTech Connect (OSTI)

    Yeh, T.C.J.; Harter, T.

    1995-06-01

    Spatial heterogeneity media leads to uncertainty in predicting both flow and transport in the vadose zone. In this work an efficient and flexible, combined analytical-numerical Monte Carlo approach is developed for the analysis of steady-state flow and transient transport processes in highly heterogeneous, variably saturated porous media. The approach is also used for the investigation of the validity of linear, first order analytical stochastic models. A combined analytical-numerical conditional simulation algorithm is developed to estimate the impact of in-situ soil hydraulic measurements on reducing the uncertainty of concentration and solute flux predictions.

  5. A new friction factor correlation for laminar, single-phase flows through rock fractures

    SciTech Connect (OSTI)

    Nazridoust, K. (Clarkson Univ., Potsdam, NY); Ahmadi, G. (Clarkson Univ., Potsdam, NY); Smith, D.H.

    2006-09-30

    Single-phase flow through fractured media occurs in various situations, such as transport of dissolved contaminants through geological strata, sequestration of carbon dioxide in depleted gas reservoirs, and in primary oil recovery. In the present study, fluid flows through a rock fracture were simulated. The fracture geometry was obtained from the CT scans of a rock fracture produced by the Brazilian method in a sandstone sample. A post-processing code using a CAD package was developed and used to generate the three-dimensional fracture from the CT scan data. Several sections along the fracture were considered and the GambitTM code was used to generate unstructured grids for flow simulations. FLUENTTM was used to analyze the flow conditions through the fracture section for different flow rates. Because of the small aperture of the fractures, the gravitational effects could be neglected. It was confirmed that the pressure drop was dominated by the smallest aperture passages of the fracture. The accuracy of parallel plate models for estimating the pressure drops through fractures was studied. It was shown that the parallel plate flow model with the use of an appropriate effective fracture aperture and inclusion of the tortuosity factor could provide reasonable estimates for pressure drops in the fracture. On the basis of the CFD simulation data, a new expression for the friction factor for flows through fractures was developed. The new model predictions were compared with the simulation results and favorable agreement was found. It was shown that when the length of the fracture and the mean and standard deviation of the fracture are known, the pressure loss as a function of the flow rate could be estimated. These findings may prove useful for design of lab experiments, computational studied of flows through real rock fractures, or inclusions in simulators for large-scale flows in highly fractured rocks.

  6. Study on mixed convective flow penetration into subassembly from reactor hot plenum in FBRs

    SciTech Connect (OSTI)

    Kobayashi, J.; Ohshima, H.; Kamide, H.; Ieda, Y.

    1995-09-01

    Fundamental experiments using water were carried out in order to reveal the phenomenon of mixed convective flow penetration into subassemblies from a reactor`s upper plenum of fast breeder reactors. This phenomenon appears under a certain natural circulation conditions during the operation of the direct reactor auxiliary cooling system for decay heat removal and might influence the natural circulation head which determines the core flow rate and therefore affects the core coolability. In the experiment, a simplified model which simulates an upper plenum and a subassembly was used and the ultrasonic velocity profile monitor as well as thermocouples were applied for the simultaneous measurement of velocity and temperature distributions in the subassembly. From the measured data, empirical equations related to the penetration flow onset condition and the penetration depth were obtained using relevant parameters which were derived from dimensional analysis.

  7. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  8. Effect of nonuniformity of subcooled boiling flow on the onset of thermoacoustic vibrations

    SciTech Connect (OSTI)

    Gerliga, V.A.; Skalozubov, V.I.; Lesin, V.Y. )

    1991-01-01

    This paper develops the hypothesis that the factor responsible for the onset of thermoacoustic vibrations in two-phase bubble flow is positive work by bubbles condensing in the flow core. It is shown that the predicted threshold of generation of these vibrations depends strongly on the accuracy of description of the steady-state distribution of parameters of bubbles and the liquid. The results predicted on the basis of a two-zone nonequilibrium polydisperse model are compared with those given by the uniform-flow model and an equation representing the condition of applicability of one-dimensional models for predicting the steady-state parameters of nonequilibrium boiling flows is derived.

  9. General single phase wellbore flow model

    SciTech Connect (OSTI)

    Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.

    1997-02-05

    A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.

  10. Experimental study of downflow critical heat flux in multiannular SRS fuel assembly channels at low air-water flows

    SciTech Connect (OSTI)

    Guerrero, H.N.

    1991-12-31

    The problem addressed in this experimental study is the measurement of critical or dryout heat flux in multi-annular fuel assembly flow passages with low downward flows of air-water mixtures. These thermal hydraulic conditions pertain to specific conditions predicted for Savannah River Site reactors during hypothetical large loss-of-coolant accidents. Experimental data obtained on a full scale prototypic simulation of the multi-annular fuel assembly is important in establishing the safety margin of the reactor operating power. The SRS reactors, like some research reactors, utilize downwards flow of coolant through narrow parallel flow channels during normal operation. These channels are formed by concentric heated tubes of high thermal conductivity uranium-aluminum metal that are cooled on both sides. Ribs on the tubes subdivide the flow channels into curved subchannels which may be considered somewhat similar to the flat rectangular channels of research reactors. However, gaps between the ribs and the adjoining tube allow cross flows between subchannels. For this accident, preliminary analysis predict that downward flow of emergency coolant would entrain large amounts of air through the fuel assembly. Due to the above special conditions, no data has been found to be fully applicable to the SRS reactor. An experimental study was thus required to obtain prototypical data and investigate physical mechanisms to aid the development of analytical models in the code FLOWTRAN-TF. Comparison of the data with analysis will be reported in the future after code benchmarking. 5 refs.

  11. Experimental study of downflow critical heat flux in multiannular SRS fuel assembly channels at low air-water flows

    SciTech Connect (OSTI)

    Guerrero, H.N.

    1991-01-01

    The problem addressed in this experimental study is the measurement of critical or dryout heat flux in multi-annular fuel assembly flow passages with low downward flows of air-water mixtures. These thermal hydraulic conditions pertain to specific conditions predicted for Savannah River Site reactors during hypothetical large loss-of-coolant accidents. Experimental data obtained on a full scale prototypic simulation of the multi-annular fuel assembly is important in establishing the safety margin of the reactor operating power. The SRS reactors, like some research reactors, utilize downwards flow of coolant through narrow parallel flow channels during normal operation. These channels are formed by concentric heated tubes of high thermal conductivity uranium-aluminum metal that are cooled on both sides. Ribs on the tubes subdivide the flow channels into curved subchannels which may be considered somewhat similar to the flat rectangular channels of research reactors. However, gaps between the ribs and the adjoining tube allow cross flows between subchannels. For this accident, preliminary analysis predict that downward flow of emergency coolant would entrain large amounts of air through the fuel assembly. Due to the above special conditions, no data has been found to be fully applicable to the SRS reactor. An experimental study was thus required to obtain prototypical data and investigate physical mechanisms to aid the development of analytical models in the code FLOWTRAN-TF. Comparison of the data with analysis will be reported in the future after code benchmarking. 5 refs.

  12. A Simple Heat-Flow Quality Function And Appraisal Of Heat-Flow...

    Open Energy Info (EERE)

    depths less than 2000 m and about 50% are Bottom Hole Temperatures (BHT). Heat-flow density distribution models can be expanded to include estimates of heat flow derived from...

  13. Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing

    Broader source: Energy.gov [DOE]

    Project objective: A New Geothermal Well Imaging Tool. 1.To develop a robust and easily deployable DTPS for monitoring in geothermal wells; and 2. Develop the associated analysis methodology for flow imaging; and„when possible by wellbore conditions„to determine in situthermal conductivity and basal heat flux.

  14. Some aspects of steam-water flow simulation in geothermal wells

    SciTech Connect (OSTI)

    Shulyupin, Alexander N.

    1996-01-24

    Actual aspects of steam-water simulation in geothermal wells are considered: necessary quality of a simulator, flow regimes, mass conservation equation, momentum conservation equation, energy conservation equation and condition equations. Shortcomings of traditional hydraulic approach are noted. Main questions of simulator development by the hydraulic approach are considered. New possibilities of a simulation with the structure approach employment are noted.

  15. Letter Report: Borehole Flow and Horizontal Hydraulic Conductivity with Depth at Well ER-12-4

    SciTech Connect (OSTI)

    Phil L. Oberlander; Charles E. Russell

    2005-12-31

    Borehole flow and fluid temperature during pumping were measured at well ER-12-4 at the Nevada Test Site in Nye County, Nevada. This well was constructed to characterize the carbonate aquifer. The well is cased from land surface to the total depth at 1,132 m (3,713 ft bgs) below ground surface (bgs). The screened section of the well consists of alternating sections of slotted well screen and blank casing from 948 to 1,132 m bgs (3,111 to 3,713 ft bgs). Borehole flow velocity (LT-1) with depth was measured with an impeller flowmeter from the top of the screened section to the maximum accessible depth while the well was pumped and under ambient conditions. A complicating factor to data interpretation is that the well was not filter packed and there is upward and downward vertical flow in the open annulus under ambient and pumping conditions. The open annulus in the well casing likely causes the calculated borehole flow rates being highly nonrepresentative of inflow from the formation. Hydraulic conductivities calculated under these conditions would require unsupportable assumptions and would be subject to very large uncertainties. Borehole hydraulic conductivities are not presented under these conditions.

  16. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect (OSTI)

    Woods, J.; Kozubal, E.

    2012-10-01

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  17. Analytical solution for two-phase flow in a wellbore using the drift-flux model

    SciTech Connect (OSTI)

    Pan, L.; Webb, S.W.; Oldenburg, C.M.

    2011-11-01

    This paper presents analytical solutions for steady-state, compressible two-phase flow through a wellbore under isothermal conditions using the drift flux conceptual model. Although only applicable to highly idealized systems, the analytical solutions are useful for verifying numerical simulation capabilities that can handle much more complicated systems, and can be used in their own right for gaining insight about two-phase flow processes in wells. The analytical solutions are obtained by solving the mixture momentum equation of steady-state, two-phase flow with an assumption that the two phases are immiscible. These analytical solutions describe the steady-state behavior of two-phase flow in the wellbore, including profiles of phase saturation, phase velocities, and pressure gradients, as affected by the total mass flow rate, phase mass fraction, and drift velocity (i.e., the slip between two phases). Close matching between the analytical solutions and numerical solutions for a hypothetical CO{sub 2} leakage problem as well as to field data from a CO{sub 2} production well indicates that the analytical solution is capable of capturing the major features of steady-state two-phase flow through an open wellbore, and that the related assumptions and simplifications are justified for many actual systems. In addition, we demonstrate the utility of the analytical solution to evaluate how the bottomhole pressure in a well in which CO{sub 2} is leaking upward responds to the mass flow rate of CO{sub 2}-water mixture.

  18. Valve for controlling solids flow

    DOE Patents [OSTI]

    Feldman, David K.

    1980-01-01

    A fluidized solids control valve is disclosed that is particularly well adapted for use with a flow of coal or char that includes both large particles and fines. The particles may or may not be fluidized at various times during the operation. The valve includes a tubular body that terminates in a valve seat covered by a normally closed closure plate. The valve body at the seat and the closure plate is provided with aligned longitudinal slots that receive a pivotally supported key plate. The key plate is positionable by an operator in inserted, intermediate and retracted positions respecting the longitudinal slot in the valve body. The key plate normally closes the slot within the closure plate but is shaped and aligned obliquely to the longitudinal slot within the valve body to provide progressively increasing slot openings between the inserted and retracted positions. Transfer members are provided between the operator, key plate and closure plate to move the closure plate into an open position only when the key plate is retracted from the longitudinal slot within the valve body.

  19. Cross flow electrofilter and method

    DOE Patents [OSTI]

    Gidaspow, Dimitri; Lee, Chang H.; Wasan, Darsh T.

    1981-01-01

    A filter for clarifying carbonaceous liquids containing finely divided solid particles of, for instance, unreacted coal, ash and other solids discharged from a coal liquefaction process is presented. The filter includes two passageways separated by a porous filter medium. In one preferred embodiment the filter medium is of tubular shape to form the first passageway and is enclosed within an outer housing to form the second passageway within the annulus. An electrode disposed in the first passageway, for instance along the tube axis, is connected to a source of high voltage for establishing an electric field between the electrode and the filter medium. Slurry feed flows through the first passageway tangentially to the surfaces of the filter medium and the electrode. Particles from the feed slurry are attracted to the electrode within the first passageway to prevent plugging of the porous filter medium while carbonaceous liquid filters into the second passageway for withdrawal. Concentrated slurry is discharged from the first passageway at an end opposite to the feed slurry inlet. Means are also provided for the addition of diluent and a surfactant into the slurry to control relative permittivity and the electrophoretic mobility of the particles.

  20. Fluid-elastic Instability of Helical Tubes Subjected to Single-Phase External Flow and Two-Phase Internal Flow

    SciTech Connect (OSTI)

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2004-07-01

    This study investigates the fluid-elastic instability characteristics of steam generator helical type tubes in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Investigated are the effects of the helix angle, the number of supports and the status of the inner fluid on the modal, and fluid-elastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, corresponding mode shape, and stability ratio. (authors)

  1. Estuarine Response to River Flow and Sea-Level Rise under Future Climate Change and Human Development

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Voisin, Nathalie; Copping, Andrea E.

    2015-04-01

    Understanding the response of river flow and estuarine hydrodynamics to climate change, land-use/land-cover change (LULC), and sea-level rise is essential to managing water resources and stress on living organisms under these changing conditions. This paper presents a modeling study using a watershed hydrology model and an estuarine hydrodynamic model, in a one-way coupling, to investigate the estuarine hydrodynamic response to sea-level rise and change in river flow due to the effect of future climate and LULC changes in the Snohomish River estuary, Washington, USA. A set of hydrodynamic variables, including salinity intrusion points, average water depth, and salinity of the inundated area, were used to quantify the estuarine response to river flow and sea-level rise. Model results suggest that salinity intrusion points in the Snohomish River estuary and the average salinity of the inundated areas are a nonlinear function of river flow, although the average water depth in the inundated area is approximately linear with river flow. Future climate changes will shift salinity intrusion points further upstream under low flow conditions and further downstream under high flow conditions. In contrast, under the future LULC change scenario, the salinity intrusion point will shift downstream under both low and high flow conditions, compared to present conditions. The model results also suggest that the average water depth in the inundated areas increases linearly with sea-level rise but at a slower rate, and the average salinity in the inundated areas increases linearly with sea-level rise; however, the response of salinity intrusion points in the river to sea-level rise is strongly nonlinear.

  2. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    SciTech Connect (OSTI)

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  3. Experimental Investigation of Subcooled Flow Boiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Experimental Investigation of Subcooled Flow Boiling Yassin A. Hassan TAMU September 30, 2013 CASL-8-2013-0214-000 TEXAS A&M UNIVERSITY Experimental Investigation of Subcooled Flow Boiling Milestone Report PI: Yassin A. Hassan 9/30/2013 CASL-U-2013-0214-000 Contents Introduction ....................................................................................................................................................... 5 Experimental Setup

  4. Append_F_Stream Flow.xls

    Office of Legacy Management (LM)

    ... Page F-3 Collect Date Surface ID Calculated Flow (ft 3 sec) Comments 7162003 SW92-08TOSW94-01 0 no flow from SW92-08 to last station SW94-01,All surface water stations had ...

  5. Fuel cell system with coolant flow reversal

    DOE Patents [OSTI]

    Kothmann, Richard E. (Pittsburgh, PA)

    1986-01-01

    Method and apparatus for cooling electrochemical fuel cell system components. Periodic reversal of the direction of flow of cooling fluid through a fuel cell stack provides greater uniformity and cell operational temperatures. Flow direction through a recirculating coolant fluid circuit is reversed through a two position valve, without requiring modulation of the pumping component.

  6. Effects of Acclimation on Poststocking Dispersal and Physiological Condition of Age-1 Pallid Sturgeon

    SciTech Connect (OSTI)

    Oldenburg, Eric W.; Guy, Christopher S.; Cureton, Eli S.; Webb, Molly H.; Gardner, William M.

    2011-03-28

    A propagation program for pallid sturgeon Scaphirhynchus albus in the upper Missouri River was implemented by the U. S. Fish and Wildlife Service in 1997. Preliminary research indicated that many hatchery-reared pallid sturgeon were experiencing significant downstream poststocking dispersal, negatively affecting their recruitment. Therefore, the objective of this study was to evaluate the effects of acclimation to flow and site-specific physicochemical water conditions on poststocking dispersal and physiological condition of age-1 pallid sturgeon. Fish from three acclimation treatments were radio-tagged, released at two locations (Missouri River and Marias River), and monitored using passive telemetry stations. Marias treatment was acclimated to flow and site-specific physicochemical conditions, Bozeman treatment was acclimated to flow only, and traditional treatment had no acclimation (reared under traditional protocol). During both years fish released in the Missouri River dispersed less than fish released in the Marias River. In 2005, Marias treatment dispersed less and nearly twice as many fish remained in the Missouri River reach than traditional treatment. In 2006, pallid sturgeon dispersed similarly among treatments and fish remaining in the Missouri River reach were similar among all treatments. Differences in poststocking dispersal between years may be related to fin curl. Fin curl was present in all fish in 2005 and 27% of the fish in 2006. Pallid sturgeon from all treatments in both years had a greater affinity for the lower reaches of the Missouri River than the upper reaches. Thus, habitat at release site influenced poststocking dispersal more than acclimation treatment. No difference was observed in relative growth rate among treatments in 2006. However, acclimation to flow (i.e., exercise conditioning) may reduce liver fat content. Acclimation conditions used in this study may not benefit pallid sturgeon unless physiological maladies are present

  7. Steady-state magnetohydrodynamic flow around an unmagnetized conducting sphere

    SciTech Connect (OSTI)

    Romanelli, N.; Gmez, D.; Bertucci, C.; Delva, M. E-mail: Magda.Delva@oeaw.ac.at

    2014-07-01

    The noncollisional interaction between conducting obstacles and magnetized plasma winds can be found in different scenarios, from the interaction occurring between regions inside galaxy clusters to the interaction between the solar wind and Mars, Venus, and active comets, or even the interaction between Titan and the Saturnian magnetospheric flow. These objects generate, through several current systems, perturbations in the streaming magnetic field leading to its draping around the obstacle's effective conducting surface. Recent observational results suggest that several properties associated with magnetic field draping, such as the location of the polarity reversal layer of the induced magnetotail, are affected by variations in the conditions of the streaming magnetic field. To improve our understanding of these phenomena, we perform a characterization of several magnetic field draping signatures by analytically solving an ideal problem in which a perfectly conducting magnetized plasma (with frozen-in magnetic field conditions) flows around a spherical body for various orientations of the streaming magnetic field. In particular, we compute the shift of the inverse polarity reversal layer as the orientation of the background magnetic field is changed.

  8. Flow through electrode with automated calibration

    DOE Patents [OSTI]

    Szecsody, James E [Richland, WA; Williams, Mark D [Richland, WA; Vermeul, Vince R [Richland, WA

    2002-08-20

    The present invention is an improved automated flow through electrode liquid monitoring system. The automated system has a sample inlet to a sample pump, a sample outlet from the sample pump to at least one flow through electrode with a waste port. At least one computer controls the sample pump and records data from the at least one flow through electrode for a liquid sample. The improvement relies upon (a) at least one source of a calibration sample connected to (b) an injection valve connected to said sample outlet and connected to said source, said injection valve further connected to said at least one flow through electrode, wherein said injection valve is controlled by said computer to select between said liquid sample or said calibration sample. Advantages include improved accuracy because of more frequent calibrations, no additional labor for calibration, no need to remove the flow through electrode(s), and minimal interruption of sampling.

  9. Geometric solitons of Hamiltonian flows on manifolds

    SciTech Connect (OSTI)

    Song, Chong; Sun, Xiaowei; Wang, Youde

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  10. Turbulence structure in free-surface channel flows

    SciTech Connect (OSTI)

    Rashidi, M.; Banerjee, S.

    1988-09-01

    A turbulence structure in horizontal liquid streams bounded by a free surface and a wall has been investigated using 10--25 ..mu..m oxygen bubbles as tracers. High speed video movies indicate that the dominant flow structure is caused by the periodic ejection of intensely turbulent fluid with low streamwise momentum from the wall region into the relatively quiescent bulk fluid which it displaces and mixes with slowly. The motion of these bursts is constrained by the free interface. Between bursts and the interface a high speed region with a steep velocity gradient develops as a consequence. This in turn causes progress of the burst fluid toward the interface to slow down and eventually to turn back toward the wall, giving rise to characteristic rolling structures, which rotate clockwise if the flow is viewed as going from left to right. To complement the video studies, quantitative data were obtained by analyzing bubble streak lines generated by photography of optically chopped flashes. These data show that in the vicinity of the interface the velocity fluctuations normal to it are damped whereas those parallel to it are enhanced. Analysis of conditional samples of the data indicate that fluid with relatively low streamwise momentum tends to move toward the interface while fluid with high momentum moves away giving rise to rotating structures that roll along with the flow in agreement with the video studies. A high degree of correlation between ejection events near the wall and the fluid motion near the interface also confirm that the bursts extend across the flow stream. This has important implications for surface renewal theories of turbulent transport at fluid--fluid interfaces.

  11. CX-013463: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor Air Conditioning Upgrades CX(s) Applied: B1.4Date: 02/19/2015 Location(s): IdahoOffices(s): Nuclear Energy

  12. CX-012531: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Distributed Wireless Antenna Sensors for Boiler Condition CX(s) Applied: B3.6Date: 41836 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  13. CX-012539: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Distributed Wireless Antenna Sensors for Boiler Condition CX(s) Applied: B3.6Date: 41836 Location(s): TexasOffices(s): National Energy Technology Laboratory

  14. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air

  15. Air-Conditioning Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior

  16. Conditions and Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Postdoctoral Research Awards » Award Information » Conditions and Requirements Conditions and Requirements Conditions and requirements for Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards are spelled out below: Length of the Appointment The Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards are for two years. The initial appointment period for the EERE Postdoctoral Research Awards is one year. Appointments may be extended for a second year

  17. Vermont Conditionally Exempt Generator Handbook: A Hazardous...

    Open Energy Info (EERE)

    Conditionally Exempt Generator Handbook: A Hazardous Waste Management Guide for Smaller Vermont Business Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  18. Financing Programs: RFP & Contract Terms and Conditions

    Broader source: Energy.gov [DOE]

    This webinar, held on Feb. 15, 2011, features sample terms and conditions for state and local financial programs that implement requests for proposals and contracts.

  19. Building America Expert Meeting: Simplified Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This meeting provided a forum for presentations and discussions on the interrelationship between advanced thermal enclosures, space conditioning systems, and comfort; and an ...

  20. Wind Turbine Condition Monitoring, Reliability Database, and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Gearbox Reliability Database, Condition Monitoring, and O&M Research Update ... (OEMs), gearbox rebuild shops, wind plant owneroperators, and consulting ...

  1. Unvented, Conditioned Crawlspaces - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crawlspaces - Building America Top Innovation Unvented, Conditioned Crawlspaces - Building America Top Innovation This photo shows the interior of a framed crawlspace with ...

  2. History of Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Air Conditioning History of Air Conditioning July 20, 2015 - 3:15pm Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs MORE ON AIR CONDITIONING Check out our Energy Saver 101 infographic to learn how air conditioners work. Go to Energy Saver for more tips and advice on home cooling. Stay up-to-date on how the Energy Department is working to improve air conditioning technology. We take the air conditioner for granted, but imagine what life would be

  3. Conditioning biomass for microbial growth (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses ...

  4. History of Air Conditioning | Department of Energy

    Energy Savers [EERE]

    Efficiency Standards Drive Improvements As air conditioning use soared in the 1970s, the energy crisis hit. In response, lawmakers passed laws to reduce energy consumption across...

  5. Wave Energy Converter Extreme Conditions Modeling Workshop |...

    Open Energy Info (EERE)

    process. The WEC industry has adopted extreme conditions design, modeling, and analysis techniques developed for offshore oil & gas and naval architecture applications. While...

  6. OMEGA Power Conditioning - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Conditioning - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map ...

  7. Building America Webinar: Retrofitting Central Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Conditioning Strategies for Multifamily Buildings - Control strategies to ... heating performance in three low-rise multifamily buildings, as well as evaluation of ...

  8. Open-source extreme conditions modeling tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... HomeEnergy, Modeling & Analysis, News, Renewable Energy, Water PowerOpen-source extreme ... numerical tools for use in modeling extreme conditions of wave energy converters (WECs). ...

  9. The Impact of RELAP5 Pipe Break Flow Rates Associated With Reverse Flow Limiter Removal for Steam Generator Replacement

    SciTech Connect (OSTI)

    Dong Zheng; Jarvis, Julie M.; Vieira, Allen T.

    2006-07-01

    Pipe break flow rates are calculated for a main feedwater line break (FWLB) in the main steam valve vault (MSVV) for a PWR Steam Generator Replacement (SGR). A reverse flow limiter is installed in the original steam generator (OSG) feedwater nozzle to limit the blowdown flowrate in the event of a postulated FWLB. This feature is not incorporated in the replacement steam generator (RSG) design. The change in RSG nozzle design in conjunction with new operating conditions results in increased FWLB mass and energy releases which can impact environmental temperatures and pressures and flooding levels. In the United States, benchmarking for safety related analyses is necessary in consideration of 10CFR50.59 requirements. RELAP5/MOD3 is used to model the pipe break flowrates for a FWLB at different break locations. The benchmark FWLB blowdown releases are larger than the OSG design basis blowdown releases due to differences in RELAP5/MOD3 versions which are found to have different algorithms for subcooled choked flow. The SGR FWLB blowdown release rates are determined to have minimal impact on the compartment temperature and pressure response. However, the flooding levels and associated equipment qualification are potentially impacted. Modeling techniques used to minimize the impact of the SGR blowdown releases on MSVV flooding levels include modeling flashing effects, more realistic RSG temperature distribution, inventory depletion and Auxiliary Feedwater (AFW) flow initiation time, and considering loss of offsite power scenarios. A detailed flooding hazard evaluation is needed, which considers the actual main feedwater isolation times to ensure that environmentally qualified safety related components, required to mitigate the effects of a FWLB inside the MSVV, can perform their safety function prior to being submerged. (authors)

  10. An investigation of a model of the flow pattern transition mechanism in relation to the identification of annular flow of R134a in a vertical tube using various void fraction models and flow regime maps

    SciTech Connect (OSTI)

    Dalkilic, A.S. [Heat and Thermodynamics Division, Department of Mechanical Engineering, Yildiz Technical University, Yildiz, Besiktas, Istanbul 34349 (Turkey); Wongwises, S. [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2010-09-15

    In the present study, new experimental data are presented for literature on the prediction of film thickness and identification of flow regime during the co-current downward condensation in a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments are done at mass fluxes of 300 and 515 kg m{sup -2} s{sup -1}. The condensing temperatures are between 40 and 50 C; heat fluxes are between 12.65 and 66.61 kW m{sup -2}. The average experimental heat transfer coefficient of the refrigerant HFC-134a is calculated by applying an energy balance based on the energy transferred from the test section. A mathematical model by Barnea et al. based on the momentum balance of liquid and vapor phases is used to determine the condensation film thickness of R134a. The comparative film thickness values are determined indirectly using relevant measured data together with various void fraction models and correlations reported in the open literature. The effects of heat flux, mass flux, and condensation temperature on the film thickness and condensation heat transfer coefficient are also discussed for the laminar and turbulent flow conditions. There is a good agreement between the film thickness results obtained from the theoretical model and those obtained from six of 35 void fraction models in the high mass flux region of R134a. In spite of their different valid conditions, six well-known flow regime maps from the literature are found to be predictive for the annular flow conditions in the test tube in spite of their different operating conditions. (author)

  11. Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)

    SciTech Connect (OSTI)

    2010-09-09

    GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today’s flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC’s flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

  12. Debris flows on Belding Creek, Salmonberry River basin, northern Oregon Coast Range

    SciTech Connect (OSTI)

    Burris, L.M. . Dept. of Geology)

    1993-04-01

    Belding Creek, a tributary of the Salmonberry River, has experienced repeated debris flow episodes. The Salmonberry River flows through Paleocene Tillamook Basalt and is located at longitude 45[degree]43 minutes in the Northern Oregon Coast Range. On January 9, 1990, a debris flow initiated on a first order tributary of Belding Creek during a heavy precipitation event. A month later another debris flow initiated on a different first order stream under similar conditions. Both debris flows traveled for a distance of approximately 2.1 km and poured into the main Belding Creek channel washing out Belding Road which crosses the stream. Numerical data was obtained from the youngest flow deposit. The debris flow material density is 2.5 g/cm[sup 3]. It traveled at an average velocity of 2.9 m/s with a shear strength of 2.5 [times] 10[sup 4] dn/cm[sup 2], a friction angle of 4[degree], and a cohesion value of 1.4 [times] 10[sup 4] dn/cm[sup 3]. Less than 3% of the fine sediments deposited are clay and silt. Deposits from previous, older debris flow events are in and adjacent to the Belding Creek stream channel. Similar processes are evident in other major tributaries of the Salmonberry River, although these other stream channels have not shown recent activity. Each stream in the area that has experienced past debris flows similar to Belding Creek has a landslide feature at the top and follows regional lineation patterns.

  13. Quantitative tomographic measurements of opaque multiphase flows

    SciTech Connect (OSTI)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O'HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  14. Oxidation of SiC cladding under Loss of Coolant Accident (LOCA) conditions in LWRs

    SciTech Connect (OSTI)

    Lee, Y.; Yue, C.; Arnold, R. P.; McKrell, T. J.; Kazimi, M. S.

    2012-07-01

    An experimental assessment of Silicon Carbide (SiC) cladding oxidation rate in steam under conditions representative of Loss of Coolant Accidents (LOCA) in light water reactors (LWRs) was conducted. SiC oxidation tests were performed with monolithic alpha phase tubular samples in a vertical quartz tube at a steam temperature of 1140 deg. C and steam velocity range of 1 to 10 m/sec, at atmospheric pressure. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO{sub 2} volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate. Over the range of test conditions, SiC oxidation rates were shown to be about 3 orders of magnitude lower than the oxidation rates of zircaloy 4. A SiC volatilization correlation for developing laminar flow in a vertical channel is formulated. (authors)

  15. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect (OSTI)

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  16. Ionization based multi-directional flow sensor

    DOE Patents [OSTI]

    Chorpening, Benjamin T.; Casleton, Kent H.

    2009-04-28

    A method, system, and apparatus for conducting real-time monitoring of flow (airflow for example) in a system (a hybrid power generation system for example) is disclosed. The method, system and apparatus measure at least flow direction and velocity with minimal pressure drop and fast response. The apparatus comprises an ion source and a multi-directional collection device proximate the ion source. The ion source is configured to generate charged species (electrons and ions for example). The multi-directional collection source is configured to determine the direction and velocity of the flow in real-time.

  17. Multiphase Flow and Cavern Abandonment in Salt

    SciTech Connect (OSTI)

    Ehgartner, Brian; Tidwell, Vince

    2001-02-13

    This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

  18. Large volume flow-through scintillating detector

    DOE Patents [OSTI]

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  19. Multiphase Flow Analysis in Hydra-TH

    SciTech Connect (OSTI)

    Christon, Mark A.; Bakosi, Jozsef; Francois, Marianne M.; Lowrie, Robert B.; Nourgaliev, Robert

    2012-06-20

    This talk presents an overview of the multiphase flow efforts with Hydra-TH. The presentation begins with a definition of the requirements and design principles for multiphase flow relevant to CASL-centric problems. A brief survey of existing codes and their solution algorithms is presented before turning the model formulation selected for Hydra-TH. The issues of hyperbolicity and wellposedness are outlined, and a three candidate solution algorithms are discussed. The development status of Hydra-TH for multiphase flow is then presented with a brief summary and discussion of future directions for this work.

  20. Fluid properties determine flow line blockage potential

    SciTech Connect (OSTI)

    Hunt, A.

    1996-07-15

    A thorough understanding of fluid properties helps in determining the potential of hydrates, paraffins, or asphaltenes to block subsea flow lines. Thermal, chemical, and mechanical methods are the main ways for preventing deposition. Already in both the North Sea and the Gulf of Mexico, blockages have led to significant losses in production and reserves recovery. This first article in a two-part series discusses thermal and chemical methods in overcoming fluid behavior problems caused by hydrate and other fluid constituents in subsea multiphase flow. The paper discusses subsea production, possible problems, nucleation, growth, deposition, preventing deposition, hydrate predictions, multiphase flow, and hydrate inhibition.

  1. Minimizing maintenance with oil condition monitoring

    SciTech Connect (OSTI)

    2005-09-01

    Oil condition monitoring (OCM) involves the analysis of oil samples taken at specific points in the equipment at regular intervals. The condition of the oil, its pace of deterioration and the presence of contaminants provide important indicators of component wear or equipment failure. Shell Lubricants has developed a number of bespoke tests to meet equipment and operative requirements. 1 fig.

  2. Time and Materials Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 4/9/13) Exhibit A General Conditions Page 1 of 32 EXHIBIT "A" GENERAL CONDITIONS TABLE OF CONTENTS GC Title Page GC-1 DEFINITIONS (Aug 2012) .......................................................................................................... 3 GC-2A AUTHORIZED REPRESENTATIVES, COMMUNICATIONS AND NOTICES (Jan 2010) ........................................................................................................................................... 3 GC-3 INDEPENDENT

  3. Boundary conditions for the subdiffusion equation

    SciTech Connect (OSTI)

    Shkilev, V. P.

    2013-04-15

    The boundary conditions for the subdiffusion equations are formulated using the continuous-time random walk model, as well as several versions of the random walk model on an irregular lattice. It is shown that the boundary conditions for the same equation in different models have different forms, and this difference considerably affects the solutions of this equation.

  4. Optimal operation of a concurrent-flow corn dryer with a drying heat pump using superheated steam

    SciTech Connect (OSTI)

    Moraitis, C.S. [Systelligence Consultants and Research Associates, Volos (Greece); Akritidis, C.B. [Dept. of Hydraulics and Agricultural Engineering, Thessaloniki (Greece)

    1998-07-01

    A numerical model of a concurrent-flow dryer of corn using superheated steam as drying medium is solved applying a shooting technique, so as to satisfy boundary conditions imposed by the optimal design of a drying heat pump. The drying heat pump is based on the theory of minimum energy cycles. The solution of the model proves the applicability of the heat pump to a concurrent-flow dryer, achieving a Specific Energy Consumption as low as 1080 kJ/kg.

  5. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  6. Experimental and numerical study of mixed convection with flow reversal in coaxial double-duct heat exchangers

    SciTech Connect (OSTI)

    Mare, Thierry; Voicu, Ionut; Miriel, Jacques [Laboratoire de Genie Civil et de Genie Mecanique (LGCGM), INSA de Rennes, IUT Saint Malo, 35043 Rennes (France); Galanis, Nicolas [Faculte de genie, Universite de Sherbrooke, Sherbrooke, QC (Canada); Sow, Ousmane [Laboratoire d'Energie Appliquee, Ecole superieure Polytechnique, Dakar (Senegal)

    2008-04-15

    Velocity vectors in a vertical coaxial double-duct heat exchanger for parallel ascending flow of water under conditions of laminar mixed convection have been determined experimentally using the particle image velocimetry technique. The measured velocity distributions for large annular flow rates, resulting in an essentially isothermal environment for the stream in the inner tube, are in very good agreement with corresponding numerical predictions. For flow rates of the same order of magnitude in the inner tube and the annulus, and corresponding temperature differences of about 20 C, experimental observations show that flow reversal occurs simultaneously in both streams over large axial distances for both heating and cooling of the flow in the inner tube. (author)

  7. Improved blade profile loss and deviation angle models for advanced transonic compressor bladings. Part 2: A model for supersonic flow

    SciTech Connect (OSTI)

    Koenig, W.M.; Hennecke, D.K.; Fottner, L.

    1996-01-01

    New blading concepts as used in modern transonic axial-flow compressors require improved loss and deviation angle correlations. The new model presented in this paper incorporates several elements and treats blade-row flows having subsonic and supersonic inlet conditions separately. The second part of the present report focuses on the extension of a well-known correlation for cascade losses at supersonic inlet flows. It was originally established for DCA bladings and is now modified to reflect the flow situation in blade rows having low-cambered, arbitrarily designed blades including precompression blades. Finally, the steady loss increase from subsonic to supersonic inlet-flow velocities demonstrates the matched performance of the different correlations of the new model.

  8. Effect of reactor conditions on MSIV (main steam isolation valves)-ATWS power level

    SciTech Connect (OSTI)

    Diamond, D.J.

    1987-01-01

    In a boiling water reactor (BWR) when there is closure of the main steam isolation valves (MSIVs), the energy generated in the core will be transferred to the pressure suppression pool (PSP) via steam flows out of the relief valves. The pool has limited capacity as a heat sink and hence, if there is no reactor trip (an ATWS event), there is the possibility that the pool temperature may rise beyond acceptable limits. The present study was undertaken to determine how the initial reactor conditions affect the power during an MSIV-ATWS event. The time of interest is during the 20-30 minute period when it is assumed that the reactor is in a quasi-equilibrium condition with the water level and pressure fixed, natural circulation conditions and no control rod movement or significant boron in the core. The initial conditions of interest are the time during the cycle and the operating state. 4 refs., 2 tabs.

  9. Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2004-03-01

    In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall

  10. Flow Cells for Energy Storage Workshop Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CWRU Revisiting flow-battery R&D 11:00-11:25 Stephen Clarke, Applied Intellectual Capital Lessons learned and yet to be learned from 20 years in RFB R&D 11:25-11:45 Imre ...

  11. SOLVENT DISPERSION AND FLOW METER CALCULATION RESULTS

    SciTech Connect (OSTI)

    Nash, C.; Fondeur, F.; Peters, T.

    2013-06-21

    Savannah River National Laboratory (SRNL) found that the dispersion numbers for the six combinations of CSSX:Next Generation Solvent (NGS) “blend” and pure NGS versus salt solution, caustic wash, and strip aqueous solutions are all good. The dispersion numbers are indications of processability with centrifugal contactors. A comparison of solvent physical and thermal properties shows that the Intek™ solvent flow meter in the plant has a reading biased high versus calibrated flow when NGS is used, versus the standard CSSX solvent. The flow meter, calibrated for CSSX solvent, is predicted to read 2.8 gpm of NGS in a case where the true flow of NGS is 2.16 gpm.

  12. Historical river flow rates for dose calculations

    SciTech Connect (OSTI)

    Carlton, W.H.

    1991-06-10

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  13. Aqueous carrier waveguide in a flow cytometer

    DOE Patents [OSTI]

    Mariella, Jr., Raymond P.; van den Engh, Gerrit; Northrup, M. Allen

    1995-01-01

    The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified.

  14. Aqueous carrier waveguide in a flow cytometer

    DOE Patents [OSTI]

    Mariella, R.P. Jr.; Engh, G. van den; Northrup, M.A.

    1995-12-12

    The liquid of a flow cytometer itself acts as an optical waveguide, thus transmitting the light to an optical filter/detector combination. This alternative apparatus and method for detecting scattered light in a flow cytometer is provided by a device which views and detects the light trapped within the optical waveguide formed by the flow stream. A fiber optic or other light collecting device is positioned within the flow stream. This provides enormous advantages over the standard light collection technique which uses a microscope objective. The signal-to-noise ratio is greatly increased over that for right-angle-scattered light collected by a microscope objective, and the alignment requirements are simplified. 6 figs.

  15. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  16. Thermodynamics of Flow Battery Electrode Reactions. (Conference...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the International Flow Battery Forum held June 25-28, 2012 ...

  17. Microelectromechanical flow control apparatus (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting ...

  18. Fast flow phenomena in a toroidal plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flow phenomena in a toroidal plasma* D. J. Den Hat-tog,+ A. F. Almagri, J. T. Chapman, H. ... figure prominently in a variety of plasma phe- nomena, including particle ...

  19. Method and apparatus for controlling fluid flow

    DOE Patents [OSTI]

    Miller, J.R.

    1980-06-27

    A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.

  20. Flow cytometer acquisition and detection system

    DOE Patents [OSTI]

    Casstevens, Martin K.; Burzynski, Ryszard; Weibel, John; Kachynski, Alexander

    2010-05-04

    A flow cytometer has a flow cell through which a sample flows and at least one laser emitting an excitation beam for illuminating a corresponding interrogation region in the flow cell. Scattered and fluorescence light from each interrogation region is collected by one or more input fibers for that region, and the input fiber(s) are fed to a dispersion module for that interrogation region that disperses the incoming light into different spectral regions. The dispersed light is conveyed, such as by a plurality of output fibers, to one or more photosensitive detectors. Thus, time multiplexed light signals may be delivered to a detector whereby several unique light signals can be measured by a single detector.

  1. Pressure balanced drag turbine mass flow meter

    DOE Patents [OSTI]

    Dacus, Michael W.; Cole, Jack H.

    1982-01-01

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  2. Pressure balanced drag turbine mass flow meter

    DOE Patents [OSTI]

    Dacus, M.W.; Cole, J.H.

    1980-04-23

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  3. Magnetic Amplifier for Power Flow Control

    SciTech Connect (OSTI)

    2012-02-24

    GENI Project: ORNL is developing an electromagnet-based, amplifier-like device that will allow for complete control over the flow of power within the electric grid. To date, complete control of power flow within the grid has been prohibitively expensive. ORNL’s controller could provide a reliable, cost-effective solution to this problem. The team is combining two types of pre-existing technologies to assist in flow control, culminating in a prototype iron-based magnetic amplifier. Ordinarily, such a device would require expensive superconductive wire, but the magnetic iron core of ORNL’s device could serve as a low-cost alternative that is equally adept at regulating power flow.

  4. Patterns and instability of grannular flow

    SciTech Connect (OSTI)

    Ecke, Robert E; Borzsonyi, Tamas; Mcelwaine, Jim N

    2009-01-01

    Dense granular flows are often observed to become unstable and form inhomogeneous structures in nature or industry. Although recently significant advances have been made in understanding simple flows, instabilities are often not understood in detail. We present experimental and numerical results that show the formation of longitudinal stripes. These arise from instability of the uniform flowing state of granular media on a rough inclined plane. The form of the stripes depends critically on the mean density of the flow with a robust form of stripes at high density that consists of fast sliding plug-like regions (stripes) on top of highly agitated boiling material -- a configuration reminiscent of the Leidenfrost effect when a droplet of liquid lifted by its vapor is hovering above a hot surface.

  5. Redox Flow Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The major issue of this type of flow battery is the high capital cost, partially due to the high market prices of vanadium compounds. Another drawback of the vanadium system is the ...

  6. Kinetics of Uranium(VI) Desorption from Contaminated Sediments: Effect of Geochemical Conditions and Model Evaluation

    SciTech Connect (OSTI)

    Liu, Chongxuan; Shi, Zhenqing; Zachara, John M.

    2009-09-01

    Stirred-flow cell experiments were performed to investigate the kinetics of uranyl [U(VI)] desorption from a contaminated sediment collected from the Hanford 300 Area at the US Department of Energy (DOE) Hanford Site, Washington. Three influent solutions of variable pH, Ca and carbonate concentrations that affected U(VI) aqueous and surface speciation were used under dynamic flow conditions to evaluate the effect of geochemical conditions on the rate of U(VI) desorption. The measured rate of U(VI) desorption varied with solution chemical composition that evolved as a result of thermodynamic and kinetic interactions between the influent solutions and sediment. The solution chemical composition that led to a lower equilibrium U(VI) sorption to the solid phase yielded a faster desorption rate. The experimental results were used to evaluate a multi-rate, surface complexation model (SCM) that has been proposed to describe U(VI) desorption kinetics in the Hanford sediment that contained complex sorbed U(VI) species in mass transfer limited domains. The model was modified and supplemented by including multi-rate, ion exchange reactions to describe the geochemical interactions between the solutions and sediment. With the same set of model parameters, the modified model reasonably well described the evolution of major ions and the rates of U(VI) desorption under variable geochemical and flow conditions, implying that the multi-rate SCM is an effective way to describe U(VI) desorption kinetics in subsurface sediments.

  7. The effect of a small creek valley on drainage flows in the Rocky Flats region

    SciTech Connect (OSTI)

    Porch, W.

    1996-12-31

    Regional scale circulation and mountain-plain interactions and effects on boundary layer development are important for understanding the fate of an atmospheric release from Rocky Flats, Colorado. Numerical modeling of Front Range topographic effects near Rocky Flats have shown that though the Front Range dominates large scale flow features, small-scale terrain features near Rocky Flats are important to local transport during nighttime drainage flow conditions. Rocky Flats has been the focus of interest for the Department of Energy`s Atmospheric Studies in Complex Terrain (ASCOT) program.

  8. Demonstration of a plasma mirror based on a laminar flow water film

    SciTech Connect (OSTI)

    Panasenko, Dmitriy; Shu, Anthony; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Toth, Csaba; Leemans, Wim

    2011-07-22

    A plasma mirror based on a laminar water film with low flow speed 0.5-2 cm/s has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as atarget surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does notproduce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70percent reflectivity, whilemaintaining high-quality of the reflected spot.

  9. Demonstration of a plasma mirror based on a laminar flow water film

    SciTech Connect (OSTI)

    Panasenko, Dmitriy; Shu, Anthony J.; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas H.; Toth, Csaba; Leemans, Wim P. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    2010-08-15

    A plasma mirror based on a laminar water film with low flow speed (0.5-2 cm/s) has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as a target surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does not produce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70% reflectivity, while maintaining high-quality of the reflected spot.

  10. Simulates the Forced-Flow Chemical Vapor Infiltration in Steady State

    Energy Science and Technology Software Center (OSTI)

    1997-12-12

    GTCVI is a finite volume model for steady-state simulation of forced-flow chemical vapor infiltration in either Cartesian or cylindrical coordinates. The model solves energy and momentum balances simultaneously over a given domain discretized into an array of finite volume elements. The species balances and deposition rates are determined after the energy and momentum balances converge. Density-dependent preform properties are included in the model. Transient average density, backpressure, temperature gradient, and average radial deposition rates canmore » be summarized. Optimal infiltration conditions can be found by varying temperature, flow, and reactant concentration.« less

  11. CURRENT - A Computer Code for Modeling Two-Dimensional, Chemically Reaccting, Low Mach Number Flows

    SciTech Connect (OSTI)

    Winters, W.S.; Evans, G.H.; Moen, C.D.

    1996-10-01

    This report documents CURRENT, a computer code for modeling two- dimensional, chemically reacting, low Mach number flows including the effects of surface chemistry. CURRENT is a finite volume code based on the SIMPLER algorithm. Additional convergence acceleration for low Peclet number flows is provided using improved boundary condition coupling and preconditioned gradient methods. Gas-phase and surface chemistry is modeled using the CHEMKIN software libraries. The CURRENT user-interface has been designed to be compatible with the Sandia-developed mesh generator and post processor ANTIPASTO and the post processor TECPLOT. This report describes the theory behind the code and also serves as a user`s manual.

  12. Perturbative analysis of sheared flow Kelvin-Helmholtz instability in a weakly relativistic magnetized electron fluid

    SciTech Connect (OSTI)

    Sundar, Sita; Das, Amita; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)

    2012-05-15

    In the interaction of intense lasers with matter/plasma, energetic electrons having relativistic energies get created. These energetic electrons can often have sheared flow profiles as they propagate through the plasma medium. In an earlier study [Phys. Plasmas 17, 022101 (2010)], it was shown that a relativistic sheared electron flow modifies the growth rate and threshold condition of the conventional Kelvin-Helmholtz instability. A perturbative analytic treatment for the case of weakly relativistic regime has been provided here. It provides good agreement with the numerical results obtained earlier.

  13. Parametric System Curves: Correlations Between Fan Pressure Rise and Flow for Large Commercial Buildings

    SciTech Connect (OSTI)

    Sherman, Max; Wray, Craig

    2010-05-19

    A substantial fraction of HVAC energy use in large commercial buildings is due to fan operation. Fan energy use depends in part on the relationship between system pressure drop and flow through the fan, which is commonly called a "system curve." As a step toward enabling better selections of air-handling system components and analyses of common energy efficiency measures such as duct static pressure reset and duct leakage sealing, this paper shows that a simple four-parameter physical model can be used to define system curves. Our model depends on the square of the fan flow, as is commonly considered. It also includes terms that account for linear-like flow resistances such as filters and coils, and for supply duct leakage when damper positions are fixed or are changed independently of static pressure or fan flow. Only two parameters are needed for systems with variable-position supply dampers (e.g., VAV box dampers modulating to control flow). For these systems, reducing or eliminating supply duct leakage does not change the system curve. The parametric system curve may be most useful when applied to field data. Non-linear techniques could be used to fit the curve to fan pressure rise and flow measurements over a range of operating conditions. During design, when measurements are unavailable, one could use duct design calculation tools instead to determine the coefficients.

  14. Dynamic control of rotating stall in axial flow compressors using aeromechanical feedback

    SciTech Connect (OSTI)

    Gysling, D.L.; Greitzer, E.M.

    1995-07-01

    Dynamic control of rotating stall in an axial flow compressor has been implemented using aeromechanical feedback. The control strategy developed used an array of wall jets, upstream of a single-stage compressor, which were regulated by locally reacting reed valves. These reed valves responded to the small-amplitude flow-field pressure perturbations that precede rotating stall. The valve design was such that the combined system, compressor plus reed valve controller, was stable under operating conditions that had been unstable without feedback. A 10 percent decrease in the stalling flow coefficient was obtained using the control strategy, and the extension of stall flow range was achieved with no measurable change in the steady-state performance of the compression system. The experiments demonstrate the first use of aeromechanical feedback to extend the stable operating range of an axial flow compressor, and the first use of local feedback and dynamic compensation techniques to suppress rotating stall. The design of the experiment was based on a two-dimensional stall inception model, which incorporated the effect of the aeromechanical feedback. The physical mechanism for rotating stall in axial flow compressors was examined with focus on the role of dynamic feedback in stabilizing compression system instability. As predicted and experimentally demonstrated, the effectiveness of the aeromechanical control strategy depends on a set of nondimensional control parameters that determine the interaction of the control strategy and the rotating stall dynamics.

  15. Numerical simulation of a thermoacoustic refrigerator. I. Unsteady adiabatic flow around the stack

    SciTech Connect (OSTI)

    Worlikar, A.S.; Knio, O.M.

    1996-09-01

    A low Mach-number compressible flow model for the simulation of acoustically driven flow in a thermoacoustic stack is constructed. The model is based on the assumption that the acoustic wavelength is much larger than the characteristic hydrodynamic lengthscale. Thus, a simplified description of the flow is obtained which still retains the essential features of acoustically induced velocity oscillations near solid boundaries. A vorticity-based formulation of the governing equation is derived which relies on the Helmholtz decomposition of the velocity vector into irrotational and divergence-free components. Irrotational motion is used to represent the action of acoustic waves. Meanwhile the divergence-free velocity component is used to capture the nonlinear vortical perturbations due to no-slip boundaries. A simplified version of the model is applied to analyze unsteady flow in the neighborhood of an idealized thermo-acoustic stack which consists of a periodic array of thin plates placed in an acoustic standing wave. Computed results are used to analyze, for different stack configurations, the nonlinear response of the flow to different acoustic driving amplitudes and frequencies. In particular, it is shown that the flow is dominated by the motion of vortices which result from the shedding of boundary layers from the edges of the stack. The dependence of energy losses on stack configuration and operating conditions is also examined. 28 refs., 23 figs., 2 tabs.

  16. Calibrating feedwater flow nozzles in-situ

    SciTech Connect (OSTI)

    Caudill, M.; Diaz-Tous, I.; Murphy, S.; Leggett, M.; Crandall, C.

    1996-05-01

    This paper presents a new method for in-situ calibration of feedwater flow nozzles wherein feedwater flow is determined indirectly by performing a high accuracy heat balance around the highest-pressure feedwater heater. It is often difficult to reliably measure feedwater flow. Over the life of a power plant, the feedwater nozzle can accumulate deposits, erode, or suffer other damage that can render the original nozzle calibration inaccurate. Recalibration of installed feedwater flow nozzles is expensive and time consuming. Traditionally, the nozzle is cut out of the piping and sent to a laboratory for recalibration, which can be an especially difficult, expensive, and time-consuming task when involving high pressure feedwater lines. ENCOR-AMERICA, INC. has developed an accurate and cost-effective method of calibrating feedwater nozzles in-situ as previously reported at the 1994 EPRI Heat Rate Improvement Conference. In this method, feedwater flow and differential pressure across the nozzle are measured concurrently. The feedwater flow is determined indirectly by performing a heat balance around the highest-pressure feedwater heater. Extraction steam to the feedwater heater is measured by use of a high accuracy turbine flowmeter. The meters used have been calibrated at an independent laboratory with a primary or secondary device traceable to the NIST. In this paper, a new variation on the above method is reported. The new approach measures the heater drains and vent flows instead of the extraction steam flow. Test theory and instrumentation will be discussed. Results of in-situ feedwater nozzle calibration tests performed at two units owned by Tri-State Generation and Transmission Association will be presented.

  17. Shear dispersion in dense granular flows

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Christov, Ivan C.; Stone, Howard A.

    2014-04-18

    We formulate and solve a model problem of dispersion of dense granular materials in rapid shear flow down an incline. The effective dispersivity of the depth-averaged concentration of the dispersing powder is shown to vary as the Péclet number squared, as in classical Taylor–Aris dispersion of molecular solutes. An extension to generic shear profiles is presented, and possible applications to industrial and geological granular flows are noted.

  18. Spark gap switch with spiral gas flow

    DOE Patents [OSTI]

    Brucker, John P.

    1989-01-01

    A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.

  19. Solyndra Facts vs. Fiction: Cash Flow Modeling

    Broader source: Energy.gov [DOE]

    Questions have been raised about a quote selectively pulled from an Aug. 20, 2009 email to make it look like Solyndra would run out of cash by Sept. 2011. To be clear, the analysis addressed in that email did not refer to Solyndra’s corporate cash flow, but rather the cash flow for a subsidiary of Solyndra – the “Fab 2 Project Company.

  20. DNA polymorphism identity determination using flow cytometry

    DOE Patents [OSTI]

    Nolan, John P.; White, P. Scott; Cai, Hong

    2001-01-01

    DNA polymorphism identity determination using flow cytometry. Primers designed to be immobilized on microspheres are allowed to anneal to the DNA strand under investigation, and are extended by either DNA polymerase using fluorescent dideoxynucleotides or ligated by DNA ligase to fluorescent reporter oligonucleotides. The fluorescence of either the dideoxynucleotide or the reporter oligonucleotide attached to the immobilized primer is measured by flow cytometry, thereby identifying the nucleotide polymorphism on the DNA strand.