Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Transaction Based Power Flow Analysis For Transmission Utilization Allocation  

E-Print Network (OSTI)

allocation rules for cross terms are proposed to hedge firm or existing transactions against market risk markets (PX) and bilateral contract transactions (BC) share the same transmission system, and their ownTransaction Based Power Flow Analysis For Transmission Utilization Allocation Garng Huang, Senior

2

Analysis of the Lattice-Boltzmann-Based Code PowerFLOW: Flow Through a Parallel Confined Jet  

SciTech Connect

Recent advances in the development and practical implementation of the Lattice-Boltzmann (LB) method as applied to computational fluid dynamics (CFD) have spurred much interest. A simple literature search of this area yielded well over 200 articles published in the open literature since 1997. The key advantage of the LB method is the time-accurate simulation of complex flow phenomena that are intractable with traditional methods. Analysis of flow in a parallel confined jet (PCJ) has been performed using the commercial LB-based CFD code PowerFLOW (Exa Corporation, Lexington, MA, USA). Results are compared to both experimental data and numerical results given in the literature, and it was observed that PowerFLOW does very well in accurately emulating the PJC experimental data as compared to Reynolds-Averaged Navier-Stokes schemes. In addition, the inherently transient nature of the LB method allowed the analysis of time-dependent aspects of jet flows (e.g., flapping).

S.J. Vinay III; J.R. Buchanan, Jr.

2002-08-23T23:59:59.000Z

3

Load flow analysis: Base cases, data, diagrams, and results  

SciTech Connect

This report describes how an electric utility system is modeled by using load flow techniques to establish a validated power flow case suitable for simulating and evaluating alternative system scenarios. Details of the load flow model are supported by additional technical and descriptive information intended to correlate modeled electrical system parameters with the corresponding physical equipment that makes up the system. Pictures and technical specifications of system equipment from the utility, public, or vendor are provided to support this association for many system components. The report summarizes the load flow model construction, simulation, and validation and describes the general capabilities of an information query system designed to access load flow parameters and other electrical system information.

Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P.

1997-10-01T23:59:59.000Z

4

A power–flow analysis based on continuum dynamics  

Science Journals Connector (OSTI)

...first-order partial differential equation which does not directly correspond to the equation...respect to x, so that a choice of = 0 does not affect the value of the energy-flow...and slip damping. In Shock and vibration handbook (ed. C. M. Harris & C. E. Crede...

1999-01-01T23:59:59.000Z

5

Near-Infrared Detection of Flow Injection Analysis by Acoustooptic Tunable Filter-Based  

E-Print Network (OSTI)

Near-Infrared Detection of Flow Injection Analysis by Acoustooptic Tunable Filter University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881 The instrumentation development of a near-infrared organic compounds absorb light in the near-infrared region, this AOTF-based near-IR detector can serve

Reid, Scott A.

6

ANUDlSiTM-40 Load Flow Analysis: Base Cases, Data, Diagrams, and Results  

Office of Scientific and Technical Information (OSTI)

ANUDlSiTM-40 ANUDlSiTM-40 Load Flow Analysis: Base Cases, Data, Diagrams, and Results by E.C. Portante, J.A. Kavicky, J.C. VanKuiken, and J.P. Peerenboom Decision and Information Sciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 October 1997 Work sponsored by Navy Engineering Logistics Office This report is printed on recycled paper. @ DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness. or use- fulness of any information, apparatus, product, or process disclosed, or represents

7

Transient stability and control of renewable generators based on Hamiltonian surface shaping and power flow control. Part II, analysis.  

SciTech Connect

The swing equations for renewable generators connected to the grid are developed and a wind turbine is used as an example. The swing equations for the renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generators system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. The first step is to analyze the system as a conservative natural Hamiltonian system with no externally applied non-conservative forces. The Hamiltonian surface of the swing equations is related to the Equal-Area Criterion and the PEBS method to formulate the nonlinear transient stability problem. This formulation demonstrates the effectiveness of proportional feedback control to expand the stability region. The second step is to analyze the system as natural Hamiltonian system with externally applied non-conservative forces. The time derivative of the Hamiltonian produces the work/rate (power flow) equation which is used to ensure balanced power flows from the renewable generators to the loads. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generators system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate, and entropy rate. This paper will present the analysis and numerical simulation results for two nonlinear control design examples that include: (1) the One-Machine Infinite Bus (OMIB) system with a Unified Power Flow Controller (UPFC) and (2) the swing equation for a wind turbine connected to an infinite bus through a UPFC to determine the required performance of the UPFC to enable the maximum power output of a wind turbine subject to stochastic inputs while meeting the power system constraints on frequency and phase. The energy storage requirements will also be identified from the UPFC and/or FACTS devices while working in combination with the wind turbine.

Robinett, Rush D., III; Wilson, David Gerald

2010-11-01T23:59:59.000Z

8

Computational analysis of 3D-flows in rocket produced H2/H2O plasma based MHD generators for space applications  

Science Journals Connector (OSTI)

In this paper, a study is presented in which the magnetohydrodynamic interactions have been analysed in Faraday connection generators, which show potential for space applications. The channel design of an extensively studied Sakhalin generator developed in the former USSR has been used and coupled with a cesium seeded liquid hydrogen and liquid oxygen combustion based chemical rocket. The CFD analysis of this design has been done using a program code based on multigrid algorithms for the solution of momentum and electrical equations. The code implements corrections in k-epsilon turbulence equations and for the calculations of transport properties of the plasma. The development of the secondary flows with complicated six vortex cells in the MHD channel has been analysed, which show agreement with a previous experimental study. Also, it has been shown that power output of the MHD generator could be significantly improved by changing the configuration of the MHD channel.

Ayush Saurabh; Ali Turan

2013-01-01T23:59:59.000Z

9

Fluid Gravity Engineering Rocket motor flow analysis  

E-Print Network (OSTI)

Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External young scientists/engineers Fluid Gravity Engineering Ltd #12;

Anand, Mahesh

10

Microfluidics for flow cytometric analysis of cells and particles  

Science Journals Connector (OSTI)

This review describes recent developments in microfabricated flow cytometers and related microfluidic devices that can detect, analyze, and sort cells or particles. The high-speed analytical capabilities of flow cytometry depend on the cooperative use of microfluidics, optics and electronics. Along with the improvement of other components, replacement of conventional glass capillary-based fluidics with microfluidic sample handling systems operating in microfabricated structures enables volume- and power-efficient, inexpensive and flexible analysis of particulate samples. In this review, we present various efforts that take advantage of novel microscale flow phenomena and microfabrication techniques to build microfluidic cell analysis systems.

Dongeun Huh; Wei Gu; Yoko Kamotani; James B Grotberg; Shuichi Takayama

2005-01-01T23:59:59.000Z

11

Knowledge Flow Analysis for Security Protocols  

E-Print Network (OSTI)

Knowledge flow analysis offers a simple and flexible way to find flaws in security protocols. A protocol is described by a collection of rules constraining the propagation of knowledge amongst principals. Because this ...

Torlak, Emina

2005-10-19T23:59:59.000Z

12

Materials Science and Engineering B 117 (2005) 5361 Finite element analysis-based design of a fluid-flow control nano-valve  

E-Print Network (OSTI)

of a fluid-flow control nano-valve M. Grujicica,, G. Caoa, B. Pandurangana, W.N. Royb a Department A finite element method-based procedure is developed for the design of molecularly functionalized nano-size devices. The procedure is aimed at the single-walled carbon nano-tubes (SWCNTs) used in the construction

Grujicic, Mica

13

DOE Hydrogen Analysis Repository: FLOW Model  

NLE Websites -- All DOE Office Websites (Extended Search)

FLOW Model FLOW Model Project Summary Full Title: Chemical Engineering Process Simulation Platform - FLOW Project ID: 131 Principal Investigator: Juan Ferrada Brief Description: FLOW is a steady-state chemical process simulator. Modules have been developed for supply chain calculations, micro-economic calculations, and other calculations. Purpose Simulate steady-state chemical processes to support hydrogen infrastructure and transition analysis. Performer Principal Investigator: Juan Ferrada Organization: Oak Ridge National Laboratory (ORNL) Address: Bethel Valley 1, Bldg 5700, N217 Oak Ridge, TN 37831-6166 Telephone: 865-574-4998 Email: ferradajj@ornl.gov Sponsor(s) Name: Fred Joseck Organization: DOE Hydrogen Program Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov

14

Principles of Secure Information Flow Analysis Geoffrey Smith  

E-Print Network (OSTI)

Principles of Secure Information Flow Analysis Geoffrey Smith School of Computing and Information to explain the #12;2 Geoffrey Smith principles underlying secure information flow analysis and to discuss

Smith, Geoffrey

15

Geographically-Based Infrastructure Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Geographically-Based Infrastructure Analysis given by Keith Parks of the National Renewable Energy Laboratory during the DOE Hydrogen Transition Analysis Workshop on January 26, 2006.

16

Groundwater abstraction impacts on spring flow and base flow in the Hillsborough River Basin, Florida, USA  

Science Journals Connector (OSTI)

Groundwater abstraction has resulted in spring flow and groundwater base-flow declines in the Hillsborough River system of central Florida, USA. These declines have resulted in reduction of inflows to the Tamp...

Kenneth A. Weber; Robert G. Perry

2006-11-01T23:59:59.000Z

17

Analysis of oscillating flow cooled SMA actuator  

E-Print Network (OSTI)

literature, most of the cooling mechanisms involve unidirectional forced convection. This may not be the most effective method. Oscillating flow in a channel can sometimes enhance heat transfer over a unidirectional flow. One possible explanation...

Pachalla Seshadri, Rajagopal

2005-11-01T23:59:59.000Z

18

Flow Imaging Using MRI: Quantification and Analysis  

E-Print Network (OSTI)

&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Jim Ji Committee Members, Andrew K. Chan Deepa Kundur Yoonsuck Choe Mary P. McDougall Head of Department, Costas N... Committee: Dr. Jim Ji A complex and challenging problem in flow study is to obtain quantitative flow information in opaque systems, for example, blood flow in biological systems and flow channels in chemical reactors. In this regard, MRI is superior...

Jiraraksopakun, Yuttapong

2010-07-14T23:59:59.000Z

19

Finite element analysis of flows in secondary settling tanks D. Kleine 1 B. D. Reddy 2  

E-Print Network (OSTI)

Finite element analysis of flows in secondary settling tanks D. Kleine 1 B. D. Reddy 2 December 7, 2003 Abstract The equations governing unsteady flows in secondary settling tanks, a component settling tanks, and against results obtained from a finite difference code based on an idealized one

Reddy, Batmanathan Dayanand "Daya"

20

TRANSIENT FLOW ANALYSIS OF FILLING IN PULSE DETONATION  

E-Print Network (OSTI)

TRANSIENT FLOW ANALYSIS OF FILLING IN PULSE DETONATION ENGINE by VEERA VENKATA SUNEEL JINNALA. November 20, 2009 #12;iv ABSTRACT TRANSIENT FLOW ANALYSIS OF FILLING IN PULSE DETONATION ENGINE Veera The Pulse Detonation Engine (PDE) is considered to be a propulsion system of future air vehicles

Texas at Arlington, University of

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ionization based multi-directional flow sensor  

DOE Patents (OSTI)

A method, system, and apparatus for conducting real-time monitoring of flow (airflow for example) in a system (a hybrid power generation system for example) is disclosed. The method, system and apparatus measure at least flow direction and velocity with minimal pressure drop and fast response. The apparatus comprises an ion source and a multi-directional collection device proximate the ion source. The ion source is configured to generate charged species (electrons and ions for example). The multi-directional collection source is configured to determine the direction and velocity of the flow in real-time.

Chorpening, Benjamin T. (Morgantown, WV); Casleton, Kent H. (Morgantown, WV)

2009-04-28T23:59:59.000Z

22

CFD analysis of laminar oscillating flows  

SciTech Connect

This paper describes a numerical simulations of oscillating flow in a constricted duct and compares the results with experimental and theoretical data. The numerical simulations were performed using the computational fluid dynamics (CFD) code CFX4.2. The numerical model simulates an experimental oscillating flow facility that was designed to test the properties and characteristics of oscillating flow in tapered ducts, also known as jet pumps. Jet pumps are useful devices in thermoacoustic machinery because they produce a secondary pressure that can counteract an unwanted effect called streaming, and significantly enhance engine efficiency. The simulations revealed that CFX could accurately model velocity, shear stress and pressure variations in laminar oscillating flow. The numerical results were compared to experimental data and theoretical predictions with varying success. The least accurate numerical results were obtained when laminar flow approached transition to turbulent flow.

Booten, C. W. Charles W.); Konecni, S. (Snezana); Smith, B. L. (Barton L.); Martin, R. A. (Richard A.)

2001-01-01T23:59:59.000Z

23

Geographically-Based Infrastructure Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Analysis Margo Melendez & Keith Parks January 26, 2006 Geographically-Based Infrastructure Analysis (GIA) Utilizes GIS, geographically segregated data, and transition expertise to add the spatial component to infrastructure analysis NREL Core Competencies * Geographic data, tools, and expertise * Flexibility to address a wide array of transition issues NREL Capability Diagram Geographically-based Infrastructure Analysis GIS Transportation Technologies & Systems Electric & Hydrogen Technologies Energy Analysis Office GIA Activities Previous and Ongoing * HYDS ME - Evaluates best infrastructure options * Interstate Infrastructure Analysis - Minimal infrastructure to facilitate interstate travel during transition New Analyses * Quantifying transitional hydrogen demand

24

Ionization-Based Multi-directional Flow Sensor  

NLE Websites -- All DOE Office Websites (Extended Search)

Ionization-Based Multi-directional Flow Sensor Ionization-Based Multi-directional Flow Sensor Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,523,673 entitled "Ionization Based Multi-directional Flow Sensor." Disclosed in this patent is NETL's sensor system and process for multi- directional, real-time monitoring of the flow direction and velocity of a gas stream, with minimal pressure drop, such as air flow in a hybrid power generation system. The sensor comprises an ion source accom- panied by a multidirectional ion collection device near the ion source. Possible applications include power generation and weather monitoring. Overview To optimize the performance of certain industrial processes or apparatus,

25

Drag with external and pressure drop with internal flows: a new and unifying look at losses in the flow field based on the second law of thermodynamics  

Science Journals Connector (OSTI)

Internal and external flows are characterized by friction factors and drag coefficients, respectively. Their definitions are based on pressure drop and drag force and thus are very different in character. From a thermodynamics point of view in both cases dissipation occurs which can uniformly be related to the entropy generation in the flow field. Therefore we suggest to account for losses in the flow field by friction factors and drag coefficients that are based on the overall entropy generation due to the dissipation in the internal and external flow fields. This second law analysis (SLA) has been applied to internal flows in many studies already. Examples of this flow category are given together with new cases of external flows, also treated by the general SLA-approach.

Heinz Herwig; Bastian Schmandt

2013-01-01T23:59:59.000Z

26

A design flow based on modular refinement  

E-Print Network (OSTI)

We propose a practical methodology based on modular refinement to design complex systems. The methodology relies on modules with latency-insensitive interfaces so that the refinements can change the timing contract of a ...

Dave, Nirav H.

27

Validation Analysis of the Shoal Groundwater Flow and Transport Model  

SciTech Connect

Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of groundwater withdrawal activities in the area. The conceptual and numerical models were developed based upon regional hydrogeologic investigations conducted in the 1960s, site characterization investigations (including ten wells and various geophysical and geologic studies) at Shoal itself prior to and immediately after the test, and two site characterization campaigns in the 1990s for environmental restoration purposes (including eight wells and a year-long tracer test). The new wells are denoted MV-1, MV-2, and MV-3, and are located to the northnortheast of the nuclear test. The groundwater model was generally lacking data in the north-northeastern area; only HC-1 and the abandoned PM-2 wells existed in this area. The wells provide data on fracture orientation and frequency, water levels, hydraulic conductivity, and water chemistry for comparison with the groundwater model. A total of 12 real-number validation targets were available for the validation analysis, including five values of hydraulic head, three hydraulic conductivity measurements, three hydraulic gradient values, and one angle value for the lateral gradient in radians. In addition, the fracture dip and orientation data provide comparisons to the distributions used in the model and radiochemistry is available for comparison to model output. Goodness-of-fit analysis indicates that some of the model realizations correspond well with the newly acquired conductivity, head, and gradient data, while others do not. Other tests indicated that additional model realizations may be needed to test if the model input distributions need refinement to improve model performance. This approach (generating additional realizations) was not followed because it was realized that there was a temporal component to the data disconnect: the new head measurements are on the high side of the model distributions, but the heads at the original calibration locations themselves have also increased over time. This indicates that the steady-state assumption of the groundwater model is in error. To test the robustness of the model d

A. Hassan; J. Chapman

2008-11-01T23:59:59.000Z

28

Interpreting Velocities from Heat-Based Flow Sensors by NumericalSimulation  

SciTech Connect

We have carried out numerical simulations of three-dimensional non-isothermal flow around an in situ heat-based flow sensor to investigate how formation heterogeneities can affect the interpretation of ground water flow velocities from this instrument. The flow sensor operates by constant heating of a 0.75 m long, 5 cm diameter cylindrical probe, which contains 30 thermistors in contact with the formation. The temperature evolution at each thermistor can be inverted to obtain an estimate of the ground water flow velocity vector using the standard interpretive method, which assumes that the formation is homogeneous. Analysis of data from heat-based flow sensors installed in a sand aquifer at the Former Fort Ord Army Base near Monterey, California suggested an unexpected component of downward flow. The magnitudes of the vertical velocities were expected to be much less than the horizontal velocities at this site because the sensors were installed just above a clay aquitard. Numerical simulations were conducted to examine how differences in thermal conductivities may lead to spurious indications of vertical flow velocities. We found that a decrease in the thermal conductivity near the bottom of the sensor can perturb the temperature profiles along the instrument in such a manner that analyses assuming homogeneous thermal conductivity could indicate a vertical flow component even though flow is actually horizontal. This work demonstrates how modeling can be used to simulate instrument response to formation heterogeneity, and shows that caution must be used in interpreting data from such devices using overly simplistic assumptions.

Su, Grace W.; Freifeld, Barry M.; Oldenburg, Curtis M.; Jordan,Preston D.; Daley, Paul F.

2005-06-13T23:59:59.000Z

29

Optimal Power Flow Based Demand Response Offer Price Optimization  

E-Print Network (OSTI)

Optimal Power Flow Based Demand Response Offer Price Optimization Zhen Qiu 1 Introduction-time energy balance. Demand response programs are offered by the utility companies to reduce the load response cost in exchange for load reduction. A considerable amount of papers have discussed the demand

Lavaei, Javad

30

Dependency Analysis for Control Flow Cycles in Reactive Communicating Processes  

E-Print Network (OSTI)

of the system. The way in which cycle executions are combined is not ar- bitrary since cycles may depend are combined is certainly not arbitrary. For instance, the repetition of one cycle may rely on the repetitionsDependency Analysis for Control Flow Cycles in Reactive Communicating Processes Stefan Leue1 , Alin

Leue, Stefan

31

Dependency Analysis for Control Flow Cycles in Reactive Communicating Processes  

E-Print Network (OSTI)

processes of the system. The way in which cycle executions are combined is not ar- bitrary since cycles may in which cycle executions are combined is certainly not arbitrary. For instance, the repetition of oneDependency Analysis for Control Flow Cycles in Reactive Communicating Processes Stefan Leue1 , Alin

Reiterer, Harald

32

Numerical Analysis of Flow Characteristics of An Atmospheric Plasma Torch  

E-Print Network (OSTI)

Numerical Analysis of Flow Characteristics of An Atmospheric Plasma Torch You-Jae Kim, J.-G. HanCheon-dong, Suwon 440-746, KOREA Abstract The atmospheric plasma is regarded as an effective method for surface mathematical models used for simulating plasma characteristics inside an atmospheric plasma torch is carried

Paris-Sud XI, Université de

33

POWER FLOW ANALYSIS OF ELECTROSTRICTIVE ACTUATORS DRIVEN BYSWITCHMODE AMPLIFIERS  

E-Print Network (OSTI)

the actuator. INTRODUCTION Smart materials or smart structures are materials that contain actuators, sensors@vt.edu Journal on Intelligent Material Systems and Structures Vol. 9, No 3, March, 1998 pp. 210 - 222. Keywords: smart structures, smart skin, switchmode amplifiers, power flow analysis, electrostrictive actuators

Lindner, Douglas K.

34

A turbulence model for buoyant flows based on vorticity generation.  

SciTech Connect

A turbulence model for buoyant flows has been developed in the context of a k-{var_epsilon} turbulence modeling approach. A production term is added to the turbulent kinetic energy equation based on dimensional reasoning using an appropriate time scale for buoyancy-induced turbulence taken from the vorticity conservation equation. The resulting turbulence model is calibrated against far field helium-air spread rate data, and validated with near source, strongly buoyant helium plume data sets. This model is more numerically stable and gives better predictions over a much broader range of mesh densities than the standard k-{var_epsilon} model for these strongly buoyant flows.

Domino, Stefan Paul; Nicolette, Vernon F.; O'Hern, Timothy John; Tieszen, Sheldon R.; Black, Amalia Rebecca

2005-10-01T23:59:59.000Z

35

Supersonic Flutter Analysis Based on a Local Piston Theory  

E-Print Network (OSTI)

Supersonic Flutter Analysis Based on a Local Piston Theory Wei-Wei Zhang, Zheng-Yin Ye, and Chen§ University of California, Irvine, Irvine, California 92697-3975 DOI: 10.2514/1.37750 A highly efficient local-piston speeds. A steady mean flow solution is first obtained by an Euler method. The classical piston theory

Liu, Feng

36

Control Volume Analysis, Entropy Balance and the Entropy Production in Flow Systems  

E-Print Network (OSTI)

This chapter concerns "control volume analysis", the standard engineering tool for the analysis of flow systems, and its application to entropy balance calculations. Firstly, the principles of control volume analysis are enunciated and applied to flows of conserved quantities (e.g. mass, momentum, energy) through a control volume, giving integral (Reynolds transport theorem) and differential forms of the conservation equations. Several definitions of steady state are discussed. The concept of "entropy" is then established using Jaynes' maximum entropy method, both in general and in equilibrium thermodynamics. The thermodynamic entropy then gives the "entropy production" concept. Equations for the entropy production are then derived for simple, integral and infinitesimal flow systems. Some technical aspects are examined, including discrete and continuum representations of volume elements, the effect of radiation, and the analysis of systems subdivided into compartments. A Reynolds decomposition of the entropy production equation then reveals an "entropy production closure problem" in fluctuating dissipative systems: even at steady state, the entropy production based on mean flow rates and gradients is not necessarily in balance with the outward entropy fluxes based on mean quantities. Finally, a direct analysis of an infinitesimal element by Jaynes' maximum entropy method yields a theoretical framework with which to predict the steady state of a flow system. This is cast in terms of a "minimum flux potential" principle, which reduces, in different circumstances, to maximum or minimum entropy production (MaxEP or MinEP) principles. It is hoped that this chapter inspires others to attain a deeper understanding and higher technical rigour in the calculation and extremisation of the entropy production in flow systems of all types.

Robert K. Niven; Bernd R. Noack

2014-07-21T23:59:59.000Z

37

Analysis of anelastic flow and numerical treatment via finite elements  

SciTech Connect

In this report, we reconsider the various approximations made to the full equations of motion and energy transport for treating low-speed flows with significant temperature induced property variations. This entails assessment of the development of so-called anelastic for low-Mach number flows outside the range of validity of the Boussinesq equations. An integral part of this assessment is the development of a finite element-based numerical scheme for obtaining approximate numerical solutions to this class of problems. Several formulations were attempted and are compared.

Martinez, M.J.

1994-05-01T23:59:59.000Z

38

Network Flow Modeling Via Lattice-Boltzmann Based Channel Conductance  

SciTech Connect

Lattice-Boltzmann (LB) computations of single phase, pore-to-pore conductance are compared to models in which such conductances are computed via standard pore body-channel-pore body series resistance (SR), with the conductance of each individual element (pore body, channel) based on geometric shape factor measurements. The LB computations, based upon actual channel geometry derived from X-ray computed tomographic imagery, reveal that the variation in conductance for channels having similar shape factor is much larger than is adequately captured by the geometric models. Fits to the dependence of median value of conductance versus shape factor from the LB-based computations show a power law dependence of higher power than that predicted by the geometric models. We introduce two network flow models based upon the LB conductance computations: one model is based upon LB computations for each pore-to-pore connection; the second is based upon a power law fit to the relationship between computed conductance and throat shape factor. Bulk absolute permeabilities for Fontainebleau sandstone images are computed using the SR-based network models and the two LB-based models. Both LB-based network models produce bulk absolute permeability values that fit published data more accurately than the SR-based models.

Sholokhova, Y.; Kim, D; Lindquist, W

2009-01-01T23:59:59.000Z

39

Redox flow batteries based on supporting solutions containing chloride  

DOE Patents (OSTI)

Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

2014-01-14T23:59:59.000Z

40

Li, W. K. W. Bivariate and trivariate analysis in flow cytometry ...  

Science Journals Connector (OSTI)

analysis is to adjust the parameters of the: function so .... In order to comply with computer memory require- ..... puter system for analysis of flow cytometric data.

2000-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat Transport Simulator(aka FALCON) FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat...

42

Modeling Metal Stocks and Flows: A Review of Dynamic Material Flow Analysis Methods  

Science Journals Connector (OSTI)

Remote sensing methods are used by Takahashi et al.,(86) who analyze in-use copper stocks using satellite nighttime light observation data. ... McMillan et al.(54) quantify the sensitivity of the lifetime distribution, recycling rate, and metallic recovery by using the Fourier Amplitude Sensitivity Test method, which provides a measure of input sensitivity defined as the fraction of total model variance. ... Yano, J.; Hirai, Y.; Okamoto, K.; Sakai, S.Dynamic flow analysis of current and future end-of-life vehicles generation and lead content in automobile shredder residue J. Mater. ...

Esther Müller; Lorenz M. Hilty; Rolf Widmer; Mathias Schluep; Martin Faulstich

2014-01-17T23:59:59.000Z

43

Characterization of groundwater flow and transport in the General Separations Areas, Savannah River Plant: Flow model refinement and particle-tracking analysis report  

SciTech Connect

The Department of Energy (DOE) is preparing the necessary NEPA documentation for an Environmental Impact Statement (EIS) to address the waste disposal activities for groundwater protection at the Savannah River Plant (SRP). For purposes of this EIA, the areas within the plant have been separated into 26 functional groups based primarily on hydrogeologic setting and types of disposed waste materials. The overall objective is to provide an appropriate quantitative assessment of the environmental impacts from past and future operations within each functional group. The analysis from each functional group will be integrated to assess the impacts of plant-wide operations. A flexible approach to quantifying the impacts using several methods of quantitative analysis is being employed. Numerical flow and transport modeling is one method being applied to several functional groups. The scope of work can be divided into four broad categories: (1) Data Review and Conceptual Model Development, (2) Groundwater Flow Model Construction and Refinement, (3) Solute Transport Model Construction, and (4) Remedial Alternative Simulations. The major topics covered in this report are: (1) summary of the hydrogeologic conditions of the area, (2) observed flow velocities at the study site, (3) a summary of results from the preliminary flow modeling effort, (4) flow model refinement and results, and (5) particle tracking analyses based on the refined flow model.

Duffield, G.M.; Buss, D.R.; Root, R.W. Jr.; Hughes, S.S.; Mercer, J.W. [GeoTrans, Inc., Sterling, VA (United States)

1986-03-01T23:59:59.000Z

44

Non--Equilibrium Blunt Body Flow 1 Analysis of NonEquilibrium, Hypersonic Blunt  

E-Print Network (OSTI)

Non--Equilibrium Blunt Body Flow 1 Analysis of Non­Equilibrium, Hypersonic Blunt Body Flow streamline quantities and the stagnation point heat transfer in hypersonic flows about spheres or cylinders, as two-- dimensional hypersonic flows about spheres or cylinders exhibit an approximate local similarity

45

TRACKING ELEPHANT FLOWS IN INTERNET BACKBONE TRAFFIC WITH AN FPGA-BASED CACHE  

E-Print Network (OSTI)

TRACKING ELEPHANT FLOWS IN INTERNET BACKBONE TRAFFIC WITH AN FPGA-BASED CACHE Martin Zadnik an FPGA-friendly approach to track- ing elephant flows in network traffic. Our approach, Single Step elephant flows: con- servatively promoting potential elephants and evicting low- rate flows in LRU manner

Haddadi, Hamed

46

Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives  

SciTech Connect

Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.

Vitello, P A; Fried, L E; Howard, W M; Levesque, G; Souers, P C

2011-07-21T23:59:59.000Z

47

Multi-phase flow well test analysis in multi-layer reservoirs  

SciTech Connect

This paper investigates the performance of an oil well under multi-phase flow test conditions when the reservoir pressure falls below the bubble point pressure and is correspond with the performance of dissolved gas reservoirs. The model reservoir comprises two commingled layer, where a well test is conducted on a fully perforated interval. The water phase is assumed immobile. The main objective of this work is to interpret the flowing well pressure response and to predict reservoir characteristics based on its performance. The work presented is based on a constant terminal rate analysis, but it can also applied to constant bottomhole pressure and can be used to predict the Inflow Performance Relationship (IPR).

Jatmiko, W.; Archer, J.S. [Imperial College, London (United Kingdom); Daltaban, T.S.

1996-12-31T23:59:59.000Z

48

An artificial neural network based groundwater flow and transport simulator  

SciTech Connect

Artificial neural networks are investigated as a tool for the simulation of contaminant loss and recovery in three-dimensional heterogeneous groundwater flow and contaminant transport modeling. These methods have useful applications in expert system development, knowledge base development and optimization of groundwater pollution remediation. The numerical model runs used to develop the artificial neural networks can be re-used to develop artificial neural networks to address alternative optimization problems or changed formulations of the constraints and or objective function under optimization. Artificial neural networks have been analyzed with the goal of estimating objectives which normally require the use of traditional flow and transport codes: such as contaminant recovery, contaminant loss (unrecovered) and remediation failure. The inputs to the artificial neutral networks are variable pumping withdrawal rates at fairly unconstrained 3-D locations. A forward-feed backwards error propagation artificial neural network architecture is used. The significance of the size of the training set, network architecture, and network weight optimization algorithm with respect to the estimation accuracy and objective are shown to be important. Finally, the quality of the weight optimization is studied via cross-validation techniques. This is demonstrated to be a useful method for judging training performance for strongly under-described systems.

Krom, T.D.; Rosbjerg, D.

1998-07-01T23:59:59.000Z

49

Flow analysis for verifying properties of concurrent software systems  

Science Journals Connector (OSTI)

This article describes FLAVERS, a finite-state verification approach that analyzes whether concurrent systems satisfy user-defined, behavioral properties. FLAVERS automatically creates a compact, event-based model of the system that supports efficient ... Keywords: Dataflow analysis, finite-state verification, model checking

Matthew B. Dwyer; Lori A. Clarke; Jamieson M. Cobleigh; Gleb Naumovich

2004-10-01T23:59:59.000Z

50

Notes on Newton-Krylov based Incompressible Flow Projection Solver  

SciTech Connect

The purpose of the present document is to formulate Jacobian-free Newton-Krylov algorithm for approximate projection method used in Hydra-TH code. Hydra-TH is developed by Los Alamos National Laboratory (LANL) under the auspices of the Consortium for Advanced Simulation of Light-Water Reactors (CASL) for thermal-hydraulics applications ranging from grid-to-rod fretting (GTRF) to multiphase flow subcooled boiling. Currently, Hydra-TH is based on the semi-implicit projection method, which provides an excellent platform for simulation of transient single-phase thermalhydraulics problems. This algorithm however is not efficient when applied for very slow or steady-state problems, as well as for highly nonlinear multiphase problems relevant to nuclear reactor thermalhydraulics with boiling and condensation. These applications require fully-implicit tightly-coupling algorithms. The major technical contribution of the present report is the formulation of fully-implicit projection algorithm which will fulfill this purpose. This includes the definition of non-linear residuals used for GMRES-based linear iterations, as well as physics-based preconditioning techniques.

Robert Nourgaliev; Mark Christon; J. Bakosi

2012-09-01T23:59:59.000Z

51

1992 Columbia River Salmon Flow Measures Options Analysis/EIS.  

SciTech Connect

This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

Not Available

1992-01-01T23:59:59.000Z

52

Comparisons of complex network based models and direct current power flow model to analyze power grid vulnerability under intentional attacks  

Science Journals Connector (OSTI)

Abstract Many scholars have applied complex network based models to investigate power grid vulnerability, but how effective are these models to capture the real performance is an interesting topic. This paper selects two typical complex network based models, including a purely topological model (PTM) and a betweenness based model (BBM), as well as a direct current power flow model (DCPFM), to simulate the topology-based and flow-based vulnerability of power grid under degree, betweenness, maximum traffic and importance based intentional attacks. The relationships of vulnerability results from different models are analyzed and discussed for model comparisons. Taking IEEE 300 power grid with line capacity set proportional to tolerant parameter tp as example, the results show that there exists a critical node attack intensity A I = 0.147 , above which the three models produce almost identical topology-based vulnerability results under each attack strategy at any t p ? 1 , while producing identical flow-based vulnerability results from PTM and DCPFM occurs at A I > 0.147 , and A I > 0.73 for BBM and DCPFM, which indicates that the PTM can better approach the DCPFM for flow-based vulnerability analysis under intentional attacks. Similar results are also found for intentional edge attacks and other power grids.

Min Ouyang; Lijing Zhao; Zhezhe Pan; Liu Hong

2014-01-01T23:59:59.000Z

53

Dynamic Analysis of Global Copper Flows. Global Stocks, Postconsumer Material Flows, Recycling Indicators, and Uncertainty Evaluation  

Science Journals Connector (OSTI)

Thus, we compared Gaussian distributions to log-normal, ?2, and Weibull distributions, and obtained similar results to the analysis based on varying the standard deviation of the Gaussian distributions: The effect of changing the shape (functional form) of the lifetime distributions is small compared to the effect of changes in average lifetimes. ... Rosenau-Tornow, D.; Buchholz, P.; Riemann, A.; Wagner, M.Assessing the long-term supply risks for mineral raw materials. ...

Simon Glöser; Marcel Soulier; Luis A. Tercero Espinoza

2013-05-13T23:59:59.000Z

54

Numerical analysis of the flow field inside an entrained-flow gasifier  

Science Journals Connector (OSTI)

The flow field of an entrained-flow gasifier was numerically simulated to describe coal gasification ... inlet velocity, extension in burner length and gasifier geometry. The calculation results showed that the ....

Young Chan Choi; Xiang Yang Li; Tae Jun Park…

2001-05-01T23:59:59.000Z

55

Trace analysis of atmospheric organic bases  

E-Print Network (OSTI)

analysis of atmospheric organic bases were investigated; the study included (1) the analysis of submarine charcoal filter bed samples for nitrogen bases and (2) the use of metallic tetraphenylporphines (TPP) as specific adsorbents for atmospheric... gas chromatography (GC) and GC-mass spectrometry (GC-MS). The isolation procedure provided acceptable reproducibi lity in the determination of trace amounts of nitrogen bases in the submarine environment. Several metallic TPP adsorbents were...

Clark, Dwayne C.

2012-06-07T23:59:59.000Z

56

Symmetry group analysis of an ideal plastic flow  

E-Print Network (OSTI)

In this paper, we study the Lie point symmetry group of a system describing an ideal plastic plane flow in two dimensions in order to find analytical solutions. The infinitesimal generators that span the Lie algebra for this system are obtained. We completely classify the subalgebras of up to codimension two in conjugacy classes under the action of the symmetry group. Based on invariant forms, we use Ansatzes to compute symmetry reductions in such a way that the obtained solutions cover simultaneously many invariant and partially invariant solutions. We calculate solutions of the algebraic, trigonometric, inverse trigonometric and elliptic type. Some solutions depending on one or two arbitrary functions of one variable have also been found. In some cases, the shape of a potentially feasible extrusion die corresponding to the solution is deduced. These tools could be used to thin, curve, undulate or shape a ring in an ideal plastic material.

Vincent Lamothe

2011-02-11T23:59:59.000Z

57

What can we learn from hydrodynamic analysis of elliptic flow?  

E-Print Network (OSTI)

We can establish a new picture, the perfect fluid sQGP core and the dissipative hadronic corona, of the space-time evolution of produced matter in relativistic heavy ion collisions at RHIC. It is also shown that the picture works well also in the forward rapidity region through an analysis based on a new class of the hydro-kinetic model and is a manifestation of deconfinement.

Tetsufumi Hirano

2005-10-03T23:59:59.000Z

58

Analysis of models for induced gas flow in the unsaturated zone Kehua You,1  

E-Print Network (OSTI)

Analysis of models for induced gas flow in the unsaturated zone Kehua You,1 Hongbin Zhan,1 term are frequently employed in modeling the induced gas flow in an unsaturated zone underlying a leaky 2011. [1] Accurate description of induced gas flow in an unsaturated zone is indispensable

Zhan, Hongbin

59

Numeric Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based  

E-Print Network (OSTI)

Numeric Simulation of Heat Transfer and Electrokinetic Flow in an Electroosmosis-Based Continuous is dedicated to under- standing the fluid flow and heat transfer mechanisms occurring in continuous flow PCR are discussed in detail. The importance of each heat transfer mechanism for different situations is also

Le Roy, Robert J.

60

Hybrid Recursive Energy-based Method for Robust Optical Flow on Large Motion Fields  

E-Print Network (OSTI)

Hybrid Recursive Energy-based Method for Robust Optical Flow on Large Motion Fields Jangheon Kim for optical flow estimation. The method efficiently combines the advantage of discrete motion estimation and optical flow estimation in a recursive block-to-pixel estimation scheme. Integrated local and global

Wichmann, Felix

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Flow visualization and analysis of aerodynamically detuned supersonic rotors  

Science Journals Connector (OSTI)

The effect of aerodynamic detuning on the supersonic steady and unsteady blade passage flow field is experimentally investigated on a free surface water table by means of color Schlieren and shadowgraph flow v...

C. S. Farmer; S. Fleeter

1988-01-01T23:59:59.000Z

62

Electrochimica Acta 50 (2005) 53905398 Membraneless laminar flow-based micro fuel cells operating in alkaline,  

E-Print Network (OSTI)

Electrochimica Acta 50 (2005) 5390­5398 Membraneless laminar flow-based micro fuel cells operating) in membraneless, laminar flow-based micro fuel cells (LF-FCs) eliminates several PEM-related issues such as fuel the anode is in acidic media while the cathode is in alkali, or vice versa. Operating a fuel cell under

Kenis, Paul J. A.

63

Multiple stirred-flow chamber assembly for simultaneous automatic fractionation of trace elements in fly ash samples using a multisyringe-based flow system  

SciTech Connect

There is a current trend in automation of leaching tests for trace elements in solid matrixes by use of flow injection based column approaches. However, as a result of the downscaled dimensions of the analytical manifold and execution of a single extraction at a time, miniaturized flow-through column approaches have merely found applications for periodic investigations of trace element mobility in highly homogeneous environmental solids. A novel flow-based configuration capitalized on stirred-flow cell extraction is proposed in this work for simultaneous fractionation of trace elements in three solid wastes with no limitation of sample amount up to 1.0 g. A two-step sequential extraction scheme involving water and acetic acid (or acetic acid/acetate buffer) is utilized for accurate assessment of readily mobilizable fractions of trace elements in fly ash samples. The W automated extraction system features high tolerance to flow rates ({<=} 6 mL min{sup -1}) and, as opposed to operationally defined batchwise methods, the solid to liquid ratio is not a critical parameter for, determination of overall readily leachable trace elements provided that exhaustive extraction is ensured. Analytical performance of the dynamic extractor is evaluated for fractionation analysis of a real coal fly ash and BCR-176R fly ash certified reference material. No significant differences were found at the 0.05 significance level between summation of leached concentrations in each fraction plus residue and concentration values of BCR-176R, thus revealing the accuracy of the automated method. Overall extractable pools of trace metals in three samples are separated in less than 115 min, even for highly contaminated ashes, versus 18-24 h per fraction in equilibrium leaching tests. The multiple stirred-flow cell assembly is thus suitable for routine risk assessment studies of industrial solid byproduct.

Boonjob, W.; Miro, M.; Cerda, V. [Mahidol University, Bangkok (Thailand). Faculty of Science

2008-10-01T23:59:59.000Z

64

Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...  

Open Energy Info (EERE)

correlations. Downhole measurements of the tracer response exiting from discrete fracture zones permit further characterization of reservoir fluid flow behavior. Tracer...

65

Development of Eco-efficiency Indicators for Rubber Glove Product by Material Flow Analysis  

Science Journals Connector (OSTI)

Rubber glove product Thailand shows the trend of higher growth. Currently, the average export value of rubber glove product is 826.72 US$/year. Thus, the development guideline of this product for Thailand should be concerned. However, rubber glove process caused the environmental and human impacts. Hence, the eco-efficiency concept of rubber glove product was interested. Initial important step of eco-efficiency concept was indicator development. Therefore, this research developed the eco efficiency indicators including economic and environmental indicators of rubber glove product based on the eco-efficiency theory and material flow analysis. The result showed that economic indicators consisted of quantity product and net sale and environmental indicators consisted of material consumption, energy consumption, water consumption, wastewater production, solid waste production, greenhouse gas emission, were selected to eco-efficiency indicators based on eco-efficiency theory and material flow analysis. These eco-efficiency indicators would help to discover more economic and effective ways to improve productivity process and to enhance recyclability or reducing energy and material intensity.

Cheerawit Rattanapan; Thunwadee Tachapattaworakul Suksaroj; Weerawat Ounsaneha

2012-01-01T23:59:59.000Z

66

Comparisons of purely topological model, betweenness based model and direct current power flow model to analyze power grid vulnerability  

Science Journals Connector (OSTI)

This paper selects three frequently used power grid models including a purely topological model (PTM) a betweennness based model (BBM) and a direct current power flow model (DCPFM) to describe three different dynamical processes on a power grid under both single and multiple component failures. Each of the dynamical processes is then characterized by both a topology-based and a flow-based vulnerability metrics to compare the three models with each other from the vulnerability perspective. Taking as an example the IEEE 300 power grid with line capacity set proportional to a tolerance parameter tp the results show non-linear phenomenon: under single node failures there exists a critical value of tp?=?1.36 above which the three models all produce identical topology-based vulnerability results and more than 85% nodes have identical flow-based vulnerability from any two models; under multiple node failures that each node fails with an identical failure probability fp there exists a critical fp?=?0.56 above which the three models produce almost identical topology-based vulnerability results at any tp???1 but producing identical flow-based vulnerability results only occurs at fp?=?1. In addition the topology-based vulnerability results can provide a good approximation for the flow-based vulnerability under large fp and the priority of PTM and BBM to better approach the DCPFM for vulnerability analysis mainly depends on the value of fp. Similar results are also found for other failure types other system operation parameters and other power grids.

2013-01-01T23:59:59.000Z

67

Newton-Krylov Methods in Power Flow and Contingency Analysis  

E-Print Network (OSTI)

for the generation, transmission, and distribution of electrical energy. Power systems are considered to be the largest and most complex man-made systems. As electrical energy is vital to our society, power systems in both operational control and planning of power systems. Essential tools are power flow (or load flow

Vuik, Kees

68

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

69

A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant  

Science Journals Connector (OSTI)

Abstract The fate of total organic carbon, 32 elements (Al, Ag, As, Ba, Be, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, N, Na, Ni, P, Pb, S, Sb, Se, Sn, Sr, Ti, V, and Zn) and 4 groups of organic pollutants (linear alkylbenzene sulfonates, bis(2-ethylhexyl)phthalate, polychlorinated biphenyl and polycyclic aromatic hydrocarbons) in a conventional wastewater treatment plant were assessed. Mass balances showed reasonable closures for most of the elements. However, gaseous emissions were accompanied by large uncertainties and show the limitation of mass balance based substance flow analysis. Based on the assessment, it is evident that both inorganic and organic elements accumulated in the sewage sludge, with the exception of elements that are highly soluble or degradable by wastewater and sludge treatment processes. The majority of metals and metalloids were further accumulated in the incineration ash, while the organic pollutants were effectively destroyed by both biological and thermal processes. Side streams from the sludge treatment process (dewatering and incineration) back to the wastewater treatment represented less than 1% of the total volume entering the wastewater treatment processes, but represented significant substance flows. In contrast, the contribution by spent water from the flue gas treatment process was almost negligible. Screening of human and eco-toxicity by applying the consensus-based environmental impact assessment method \\{USEtox\\} addressing 15 inorganic constituents showed that removal of inorganic constituents by the wastewater treatment plant reduced the toxic impact potential by 87–92%.

H. Yoshida; T.H. Christensen; T. Guildal; C. Scheutz

2013-01-01T23:59:59.000Z

70

Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve  

SciTech Connect

A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

Song, Li; Wang, Gang; Brambley, Michael R.

2013-04-28T23:59:59.000Z

71

Exergy analysis of second-generation micro heat sinks under single-phase and flow boiling conditions  

Science Journals Connector (OSTI)

A parametric study of exergy efficiency was conducted for five micro pin fin heat sinks of different spacing and shapes. Of the four micro pin fin heat sinks tested under single-phase flow conditions, those with better heat transfer performance yielded superior exergy efficiencies. The use of R-123 in place of water as working fluid was found to enhance exergetic performance at the expense of reduced heat transfer performance. The exergy analysis was also extended to the flow boiling of R-123 in an additional hydrofoil-based micro pin fin heat sink. It was found that exergy efficiencies decreased with mass velocity.

Ali Kosar

2010-01-01T23:59:59.000Z

72

Coupled robot-flow injection analysis system for fully automated determination of total polyphenols in olive oil  

Science Journals Connector (OSTI)

Coupled robot-flow injection analysis system for fully automated determination of total polyphenols in olive oil ...

Jose A. Garcia-Mesa; M. Dolores Luque de Castro; Miguel Valcarcel

1993-12-01T23:59:59.000Z

73

Analysis of complex viscoelastic flows using a finite element method  

E-Print Network (OSTI)

The field of computational fluid mechanics of viscoelastic flows has been well explored in the three decades since its inception. Still, even with the vast amount of work detailed in the literature, much remains to be done ...

Phillips, Scott David, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

74

Throughput-cost analysis of optical flow switching  

E-Print Network (OSTI)

In this paper, we employ a cost model embodying major sources of capital expenditure (CapEx) to compare the throughput-cost tradeoff offered by optical flow switching to that of more traditional optical network architectures.

Chan, Vincent W. S.

75

Throughput-Cost Analysis of Optical Flow Switching  

Science Journals Connector (OSTI)

In this paper, we employ a cost model embodying major sources of capital expenditure (CapEx) to compare the throughput-cost tradeoff offered by Optical Flow Switching to that of more...

Weichenberg, Guy; Chan, Vincent W; Swanson, Eric A; Médard, Muriel

76

Analysis of two- and three-dimensional flow separation  

E-Print Network (OSTI)

Prandtl (1904) showed that streamlines in a steady flow past a two-dimensional streamlined body separate from the boundary where the skin friction (or wall shear) vanishes and admits a negative gradient. Although commonly ...

Grunberg, Olivier, 1978-

2004-01-01T23:59:59.000Z

77

Feature-Based Statistical Analysis of Combustion Simulation Data  

SciTech Connect

We present a new framework for feature-based statistical analysis of large-scale scientific data and demonstrate its effectiveness by analyzing features from Direct Numerical Simulations (DNS) of turbulent combustion. Turbulent flows are ubiquitous and account for transport and mixing processes in combustion, astrophysics, fusion, and climate modeling among other disciplines. They are also characterized by coherent structure or organized motion, i.e. nonlocal entities whose geometrical features can directly impact molecular mixing and reactive processes. While traditional multi-point statistics provide correlative information, they lack nonlocal structural information, and hence, fail to provide mechanistic causality information between organized fluid motion and mixing and reactive processes. Hence, it is of great interest to capture and track flow features and their statistics together with their correlation with relevant scalar quantities, e.g. temperature or species concentrations. In our approach we encode the set of all possible flow features by pre-computing merge trees augmented with attributes, such as statistical moments of various scalar fields, e.g. temperature, as well as length-scales computed via spectral analysis. The computation is performed in an efficient streaming manner in a pre-processing step and results in a collection of meta-data that is orders of magnitude smaller than the original simulation data. This meta-data is sufficient to support a fully flexible and interactive analysis of the features, allowing for arbitrary thresholds, providing per-feature statistics, and creating various global diagnostics such as Cumulative Density Functions (CDFs), histograms, or time-series. We combine the analysis with a rendering of the features in a linked-view browser that enables scientists to interactively explore, visualize, and analyze the equivalent of one terabyte of simulation data. We highlight the utility of this new framework for combustion science; however, it is applicable to many other science domains.

Bennett, J; Krishnamoorthy, V; Liu, S; Grout, R; Hawkes, E; Chen, J; Pascucci, V; Bremer, P T

2011-11-18T23:59:59.000Z

78

Uncertainty analysis of an IGCC system with single-stage entrained-flow gasifier  

SciTech Connect

Integrated Gasification Combined Cycle (IGCC) systems using coal gasification is an attractive option for future energy plants. Consequenty, understanding the system operation and optimizing gasifier performance in the presence of uncertain operating conditions is essential to extract the maximum benefits from the system. This work focuses on conducting such a study using an IGCC process simulation and a high-fidelity gasifier simulation coupled with stochastic simulation and multi-objective optimization capabilities. Coal gasifiers are the necessary basis of IGCC systems, and hence effective modeling and uncertainty analysis of the gasification process constitutes an important element of overall IGCC process design and operation. In this work, an Aspen Plus{reg_sign} steady-state process model of an IGCC system with carbon capture enables us to conduct simulation studies so that the effect of gasification variability on the whole process can be understood. The IGCC plant design consists of an single-stage entrained-flow gasifier, a physical solvent-based acid gas removal process for carbon capture, two model-7FB combustion turbine generators, two heat recovery steam generators, and one steam turbine generator in a multi-shaft 2x2x1 configuration. In the Aspen Plus process simulation, the gasifier is represented as a simplified lumped-parameter, restricted-equilibrium reactor model. In this work, we also make use of a distributed-parameter FLUENT{reg_sign} computational fluid dynamics (CFD) model to characterize the uncertainty for the entrained-flow gasifier. The CFD-based gasifer model is much more comprehensive, predictive, and hence better suited to understand the effects of uncertainty. The possible uncertain parameters of the gasifier model are identified. This includes input coal composition as well as mass flow rates of coal, slurry water, and oxidant. Using a selected number of random (Monte Carlo) samples for the different parameters, the CFD model is simulated to observe the variations in the output variables (such as syngas composition, gas and ash flow rates etc.). The same samples are then used to conduct simulations using the Aspen Plus IGCC model. The simulation results for the high-fidelity CFD-based gasifier model and the Aspen Plus equilibrium reactor model for selected uncertain parameters are then used to perform the estimation. Defining the ratio of CFD based results to the Aspen Plus result as the uncertainty factor (UF), the work quantifies the extent of uncertainty and then uses uniform* distribution to characterize the uncertainty factor distribution. The characterization and quantification of uncertainty is then used to conduct stochastic simulation of the IGCC system in Aspen Plus. The CAPE-OPEN compliant stochastic simulation capability allows one to conduct a rigorous analysis and generate the feasible space for the operation of the IGCC system. The stochastic simulation results can later be used to conduct multi-objective optimization of the gasifier using a set of identified decision variables. The CAPE-OPEN compliant multi-objective capability in Aspen Plus can be used to conduct the analysis. Since the analysis is based on the uncertainty modeling studies of the gasifier, the optimization accounts for possible uncertainties in the operation of the system. The results for the optimized IGCC system and the gasifier, obtained from the stochastic simulation results, are expected to be more rigorous and hence closer to those obtained from CFD-based rigorous modeling.

Shastri, Y.; Diwekar, U.; Zitney, S.

2008-01-01T23:59:59.000Z

79

Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal  

Open Energy Info (EERE)

Resource-Reservoir Investigations Based On Heat Flow And Thermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Details Activities (2) Areas (2) Regions (0) Abstract: Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of

80

The Analysis of Underexpanded Jet Flows for Hypersonic Aerodynamic Experiments in  

E-Print Network (OSTI)

The Analysis of Underexpanded Jet Flows for Hypersonic Aerodynamic Experiments in Vacuum Chambers V of rarefied-gas flows [1]- [3] and aerodynamics of hypersonic probes in wind tunnels [4]-[7]. The objective using quantum concepts [9], [10]. Aerodynamic characteristics of wedges, disks, and plates are studied

Riabov, Vladimir V.

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Static analysis for efficient hybrid information-flow control Scott Moore  

E-Print Network (OSTI)

-time overhead of the monitor, particularly in applications where sensitive (i.e., confidential or untrustedStatic analysis for efficient hybrid information-flow control Scott Moore and Stephen Chong TR-05 information-flow control Scott Moore School of Engineering and Applied Sciences Harvard University Cambridge

Chong, Stephen

82

ANALYSIS OF HIGH PRESSURE TESTS ON WET GAS FLOW METERING WITH A VENTURI METER  

E-Print Network (OSTI)

ANALYSIS OF HIGH PRESSURE TESTS ON WET GAS FLOW METERING WITH A VENTURI METER P. Gajan , Q, 64018 Pau cedex, France pierre.gajan@onera.fr Abstract This work deals with the flow metering of wet gas on the CEESI facilities are presented. They are performed at 75 bars with 0.6 beta ratio Venturi meter

83

Journal of Power Sources 128 (2004) 5460 Microfluidic fuel cell based on laminar flow  

E-Print Network (OSTI)

Journal of Power Sources 128 (2004) 54­60 Microfluidic fuel cell based on laminar flow Eric R a novel microfluidic fuel cell concept that utilizes the occurrence of multi-stream laminar flow of a Y-shaped microfluidic channel in which two liquid streams containing fuel and oxidant merge

Kenis, Paul J. A.

84

Online Speed Scaling Based on Active Job Count to Minimize Flow plus Energy  

E-Print Network (OSTI)

Online Speed Scaling Based on Active Job Count to Minimize Flow plus Energy Tak-Wah Lam Lap-Kei Lee research on online job scheduling has gradually taken speed scaling and energy usage into consideration algorithms that aim at minimizing the total flow time plus energy usage. The results are divided into two

Wong, Prudence W.H.

85

Framework for the Economic Analysis of Hybrid Systems Based on Exergy Consumption  

SciTech Connect

Starting from an overview of the dynamic behavior of the electricity market the need of the introduction of energy users that will provide a damping capability to the system is derived as also a qualitative analysis of the impact of uncertainty, both in the demand and supply side, is performed. Then it follows an introduction to the investment analysis methodologies based on the discounting of the cash flow, and then work concludes with the illustration and application of the exergonomic principles to provide a sound methodology for the cost accounting of the plant components to be used in the cash flow analysis.

Cristian Rabiti; Robert S. Cherry; Wesley R. Deason; Piyush Sabharwall; Shannon M. Bragg-Sitton; Richard D. Boardman

2014-08-01T23:59:59.000Z

86

Symbolic Test Selection Based on Approximate Analysis  

E-Print Network (OSTI)

Symbolic Test Selection Based on Approximate Analysis Bertrand Jeannet, Thierry J´eron, Vlad Rusu}@irisa.fr Abstract. This paper addresses the problem of generating symbolic test cases for testing the conformance. The challenge we consider is the selection of test cases according to a test purpose, which is here a set

Paris-Sud XI, Université de

87

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF...  

Open Energy Info (EERE)

FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: IN SITU STRESS,...

88

IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C...  

Open Energy Info (EERE)

FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library...

89

In situ stress, fracture, and fluid flow analysis in Well 38C...  

Open Energy Info (EERE)

situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to...

90

Analysis of operating data related to power and flow distribution in a PWR  

E-Print Network (OSTI)

The analysis of the effects of the uncertainties associated with temperature and power measurements in the Connecticut Yankee Reactor leads to the evaluation of the uncertainty associated with the effective flow factor. ...

Herbin, Henry Christophe

1974-01-01T23:59:59.000Z

91

Size Analysis of Automobile Soot Particles Using Field-Flow Fractionation  

Science Journals Connector (OSTI)

Size Analysis of Automobile Soot Particles Using Field-Flow Fractionation ... The off-line method includes a cascade impactor (23) and an electric low-pressure impactor (19). ...

Won-suk Kim; Sun Hui Kim; Dai Woon Lee; Seungho Lee; Cheol Soo Lim; Jung Ho Ryu

2001-02-07T23:59:59.000Z

92

A finite element viscous flow analysis in a radial turbine scroll  

E-Print Network (OSTI)

1987 Major Subject: Mechanical Engineering A FINITE ELEMENT VISCOUS FLOW ANALYSIS IN A RADIAL TURBINE SCROLL A Thesis by DONALD LEE HILL JR. Approved as to style snd content by: Dr. Erian A. Baskharone (Chairman of Conunittee) Dr. Alan B azzolo...A FINITE ELEMENT VISCOUS FLOW ANALYSIS IN A RADIAL TURBINE SCROLL A Thesis DONALD LEE HILL JR. Submitted to the Graduate College. of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December...

Hill, Donald Lee

1987-01-01T23:59:59.000Z

93

Finite element analysis of conjugate heat transfer in axisymmetric pipe flows  

E-Print Network (OSTI)

FINITE ELEMENT ANALYSIS OF CONJUGATE HEAT TRANSFER IN AXISYMMETRIC PIPE FLOWS A Thesis by ROBERT MILLER FITHEN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MA STER... OF S CI EN CE August 1987 Major Subject: Mechanical Engineering FINITE ELEMENT ANALYSIS OF CONJUGATE HEAT TRANSFER IN AXISYMMETRIC PIPE FLOWS A Thesis by ROBERT MILLER FITHEN Approved ss to style and content by: N. K. Anand (Chairman of Committee...

Fithen, Robert Miller

2012-06-07T23:59:59.000Z

94

A qualitative analysis of non-Darcy flow effects in hydraulically fractured gas wells  

E-Print Network (OSTI)

A QUALITATIVE ANALYSIS OF NON-DARCY FLOW EFFECTS IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by JOANNE CAROL HRESKO Submitted to the Graduate College of Texas A 5 M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1985 Major Subject: Petroleum Engineering A QUALITATIVE ANALYSIS OF NON-DARCY FLOW EFFECTS IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by JOANNE CAROL HRESKO Approved as to style and content by: W. J. Lee (Chairman...

Hresko, Joanne Carol

2012-06-07T23:59:59.000Z

95

Development of magnetic separation methods of analysis: magnetic field flow fractionation  

E-Print Network (OSTI)

of MASTER OF SCIENCE August 1980 Major Subject: Chemistry DEVELOPMENT OF MAGNETIC SEPARATION METHODS OF ANALYSIS: MAGNETIC FIELD FLOW FRACTIONATION A Thesis by JAIME GARCIA-RAMIREZ Approved as to style and content by: (Chairman of Committee) 1... of MASTER OF SCIENCE August 1980 Major Subject: Chemistry DEVELOPMENT OF MAGNETIC SEPARATION METHODS OF ANALYSIS: MAGNETIC FIELD FLOW FRACTIONATION A Thesis by JAIME GARCIA-RAMIREZ Approved as to style and content by: (Chairman of Committee) 1...

Garcia-Ramirez, Jaime

2012-06-07T23:59:59.000Z

96

An Equivalent Network for Load-Flow Analysis of Power Systems  

E-Print Network (OSTI)

AN EQUIVALENT NETWORK FOR LOAD-FLOW ANALYSIS OF POWER SYSTEMS A Thesis by Meri on L. Johnson Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partihl fulfillment of the requirements for the degree... of MASTER OF SCIENCE May, 1960 Major Subject: Electrical Engineering AN EQUIVALENT NETWORK FOR LOAD-FLOW ANALYSIS OF POWER SYSTEMS A Thesis By Merion L. Johnson Approv as to style a d content by (Chairman of Co ittee ) (Head of Department...

Johnson, Merion Luke

1960-01-01T23:59:59.000Z

97

TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries  

SciTech Connect

We will present a novel design lithium-organic non-aqueous redox flow battery based on a TEMPO catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

Wei, Xiaoliang; Xu, Wu; Vijayakumar, M.; Cosimbescu, Lelia; Liu, Tianbiao L.; Sprenkle, Vincent L.; Wang, Wei

2014-12-03T23:59:59.000Z

98

Modeling of gas-solid flow in a CFB riser based on computational particle fluid dynamics  

Science Journals Connector (OSTI)

A three-dimensional model for gas-solid flow in a circulating fluidized bed (CFB) riser was developed based on computational particle ... experimental data validated the CPFD model for the CFB riser. The model pr...

Yinghui Zhang; Xingying Lan; Jinsen Gao

2012-12-01T23:59:59.000Z

99

Unbalanced Three-Phase Power Flow Calculation Based on Newton Method for Micro-Grid  

Science Journals Connector (OSTI)

Because of the connection of distributed generation to energy complementary micro-grid, there are multi-supplying points and loop ... power flow calculation based on Newton method for micro-grid is presented, in ...

Jiang Guixiu; Shu Jie; Wu Zhifeng…

2012-01-01T23:59:59.000Z

100

A Cascade-Type Global Energy Conversion Diagram Based on Wave–Mean Flow Interactions  

Science Journals Connector (OSTI)

A cascade-type energy conversion diagram is proposed for the purpose of diagnosing the atmospheric general circulation based on wave–mean flow interactions. Mass-weighted isentropic zonal means facilitate the expression of nongeostrophic wave ...

Sachiyo Uno; Toshiki Iwasaki

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Graphene-based battery electrodes having continuous flow paths  

SciTech Connect

Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

2014-05-24T23:59:59.000Z

102

In situ stress, fracture, and fluid flow analysis in Well 38C-9: an  

Open Energy Info (EERE)

In situ stress, fracture, and fluid flow analysis in Well 38C-9: an In situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: In situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Abstract Geoscientists from the Coso Operating Company, EGI-Utah, GeoMechanics International, and the U.S. Geological Survey are cooperating in a multi-year study to develop an Enhanced Geothermal System (EGS) in the Coso Geothermal Field. Key to the creation of an EGS is an understanding of the relationship among natural fracture distribution, fluid flow, and the ambient tectonic stresses that exist within the resource in order to design

103

IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED  

Open Energy Info (EERE)

FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Details Activities (2) Areas (1) Regions (0) Abstract: Geoscientists from the Coso Operating Company, EGI-Utah, GeoMechanics International, and the U.S. Geological Survey are cooperating in a multi-year study to develop an Enhanced Geothermal System (EGS) in the Coso Geothermal Field. Key to the creation of an EGS is an understanding of the relationship among natural fracture distribution, fluid flow, and the ambient tectonic stresses that exist within the resource in order to design

104

Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model  

SciTech Connect

This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M&O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment.

P. Tucci

2001-12-20T23:59:59.000Z

105

Expert systems for flow cytometry data analysis: A preliminary report  

SciTech Connect

Flow Cytometry has become an accepted technique in the clinical laboratory for rapid immunophenotyping of patient blood samples. Multiple, fluorescent labeled monoclonal antibodies are used to tag the cells, which are then analyzed one at a time at rates of several thousand cells a second. Patient samples are processed through the flow cytometer at more than one a minute. Clinicians are being overwhelmed by the large amount of data that must be analyzed to provide the information needed to assist in disease diagnosis. An expert system is being developed to assist clinicians in analyzing this multivariate flow cytometry data. The data from each sample are processed by a clustering algorithm, which finds the means of the distinct cell subpopulations in a sample. These mean values of fluorescence are translated into words such as negative,'' dim'' and bright'' and the words are combined into patterns that are matched against the premises on the left hand side of the rules used to identify the disease categories. This is a report of work in progress. 13 refs., 4 figs.

Salzman, G.C. (Los Alamos National Lab., NM (USA)); Stewart, C.C. (Roswell Park Memorial Inst., Buffalo, NY (USA). Lab. of Flow Cytometry); Duque, R.E. (Norwood Clinic, Birmingham, AL (USA))

1990-01-01T23:59:59.000Z

106

Geographically-Based Infrastructure Analysis for California  

NLE Websites -- All DOE Office Websites (Extended Search)

Geographically-Based Infrastructure Geographically-Based Infrastructure Analysis for California Joan Ogden Institute of Transportation Studies University of California, Davis Presented at the USDOE Hydrogen Transition Analysis Meeting Washington, DC August 9-10, 2006 Acknowledgments UC Davis Researchers: Michael Nicholas Dr. Marc Melaina Dr. Marshall Miller Dr. Chris Yang USDOE: Dr. Sig Gronich Research support: USDOE; H2 Pathways Program sponsors at UC Davis * Refueling station siting and sizing are key aspects of designing H2 infrastructure during a transition * Initial H2 stations may be co-located with vehicle fleets * Wider consumer adoption of H2 vehicles depends on fuel availability and cost (which are related to station number, size and location), + other factors. * Decision when and where to deploy network

107

Web-based learning: an empirical analysis  

Science Journals Connector (OSTI)

Web-Based Learning (WBL) and training have become popular among academic institutions and companies. It has led to a widespread debate over whether technology-based learning alone will be a sufficient approach in the future or whether technology will simply complement traditional methods of learning. This debate has led to several studies on the application and effectiveness of WBL and its pros and cons with regard to effectiveness in teaching and learning. An empirical analysis was conducted with the help of data collected using a standard questionnaire from students in Hong Kong universities. The objective of this research was to investigate the extent to which WBL is popular and effective in Hong Kong. The results of the literature survey and empirical analysis helped to identify the barriers to and critical success factors in the successful application of WBL, and to develop a generic framework for WBL that could be useful in other environments. A summary of findings and conclusions are presented.

A. Gunasekaran; E.W.T. Ngai

2006-01-01T23:59:59.000Z

108

Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of hypothetical scenarios, thus proving its adequacy for strategic planning.

Font Vivanco, David, E-mail: font@cml.leidenuniv.nl [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden (Netherlands); Puig Ventosa, Ignasi [ENT Environment and Management, Carrer Sant Joan 39, First Floor, 08800 Vilanova i la Geltru, Barcelona (Spain); Gabarrell Durany, Xavier [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain)

2012-12-15T23:59:59.000Z

109

Directional Stability Analysis of a Ship Allowing for Time History Effects of the Flow  

Science Journals Connector (OSTI)

...research-article Directional Stability Analysis of a Ship Allowing for Time History Effects of the Flow R. E. D. Bishop R. K. Burcher W...determine the directional stability and control of a ship. A method of analysis is presented which indicates...

1973-01-01T23:59:59.000Z

110

Bulk-Flow analysis for force and moment coefficients of a shrouded centrifugal compressor impeller  

E-Print Network (OSTI)

An analysis is developed for a compressible bulk-flow model of the leakage path between a centrifugal compressor's impeller shroud and housing along the front and back side of the impeller. This is an extension of analysis performed first by Childs...

Gupta, Manoj Kumar

2005-08-29T23:59:59.000Z

111

A Practical and Flexible Flow Analysis for Higher-Order Languages  

E-Print Network (OSTI)

of Kansas, Lawrence, Kansas and R. Kent Dybvig Indiana University, Bloomington, Indiana A flow analysis is incorporated into and used in a production Scheme compiler. The analysis can process any legal Scheme program a procedure's code and lexical environment. At a call site the operator is an arbitrary expression This work

Dybvig, R. Kent

112

Wavelet-based Adaptive Techniques Applied to Turbulent Hypersonic Scramjet Intake Flows  

E-Print Network (OSTI)

The simulation of hypersonic flows is computationally demanding due to large gradients of the flow variables caused by strong shock waves and thick boundary or shear layers. The resolution of those gradients imposes the use of extremely small cells in the respective regions. Taking turbulence into account intensives the variation in scales even more. Furthermore, hypersonic flows have been shown to be extremely grid sensitive. For the simulation of three-dimensional configurations of engineering applications, this results in a huge amount of cells and prohibitive computational time. Therefore, modern adaptive techniques can provide a gain with respect to computational costs and accuracy, allowing the generation of locally highly resolved flow regions where they are needed and retaining an otherwise smooth distribution. An h-adaptive technique based on wavelets is employed for the solution of hypersonic flows. The compressible Reynolds averaged Navier-Stokes equations are solved using a differential Reynolds s...

Frauholz, Sarah; Reinartz, Birgit U; Müller, Siegfried; Behr, Marek

2013-01-01T23:59:59.000Z

113

Tsallis Entropy Based Velocity Distribution in Open Channel Flows  

E-Print Network (OSTI)

............................................................. 94 32 Dimensionless velocity distribution and parameter M ............................... 96 33 um/ umax versus various M ........................................................................... 99 34 Upper Tiber River basin with location... velocity distribution with different m ... 68 9 Computation of M, ?1 and ?V based on um and umax measured on the Po river (Italy) for different verticals at Pontelagoscuro gauged section during flood event that occurred on February 2, 1985...

Luo, Hao

2010-07-14T23:59:59.000Z

114

Flow distribution analysis on the cooling tube network of ITER thermal shield  

SciTech Connect

Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.

Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

2014-01-29T23:59:59.000Z

115

A Database and Meta-Analysis of Ecological Responses to Flow in the South Atlantic Region  

SciTech Connect

Generalized and quantitative relationships between flow and ecology are pivotal to developing environmental flow standards based on socially acceptable ecological conditions. Informing management at regional scales requires compiling sufficient hydrologic and ecological sources of information, identifying information gaps, and creating a framework for hypothesis development and testing. We compiled studies of empirical and theoretical relationships between flow and ecology in the South Atlantic region (SAR) of the United States to evaluate their utility for the development of environmental flow standards. Using database searches, internet searches, and agency contacts, we gathered 186 sources of information that provided a qualitative or quantitative relationship between flow and ecology within states encompassing the SAR. A total of 109 of the 186 sources had sufficient information to support quantitative analyses. Ecological responses to natural changes in flow magnitude, frequency, and duration were highly variable regardless of the direction and magnitude of changes in flow. In contrast, the majority of ecological responses to anthropogenic-induced flow alterations were negative. Fish consistently showed negative responses to anthropogenic flow alterations whereas other ecological groups showed somewhat variable responses (e.g. macroinvertebrates and riparian vegetation) and even positive responses (e.g. algae). Fish and organic matter had sufficient sample sizes to stratify natural flow-ecology relationships by specific flow categories (e.g. high flow, baseflows) or by region (e.g. coastal plain, uplands). After stratifying relationships, we found that significant correlations existed between changes in natural flow and ecological responses. In addition, a regression tree explained 57% of the variation in fish responses to anthropogenic and natural changes in flow. Because of some ambiguity in interpreting the directionality in ecological responses, we utilized ecological gains or losses, where each represents a benefit or reduction to ecosystem services, respectively. Variables explained 49% of the variation in ecological gains and losses for all ecological groups combined. Altogether, our results suggested that the source of flow change and the ecological group of interest played primary roles in determining the direction and magnitude of ecological responses. Furthermore, our results suggest that developing broadly generalized relationships between ecology and changes in flow at a regional scale is unlikely unless relationships are placed within meaningful contexts, such as environmental flow components or by geomorphic setting.

McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University (Virginia Tech); Davis, Dr, Mary [Southeastern Aquatic Resources Partnership; Kauffman, John [John Kauffman LLC.

2013-01-01T23:59:59.000Z

116

Second law analysis of water flow through smooth microtubes under adiabatic conditions  

SciTech Connect

In the study, a second law analysis for a steady-laminar flow of water in adiabatic microtubes has been conducted. Smooth microtubes with the diameters between 50 and 150 {mu}m made of fused silica were used in the experiments. Considerable temperature rises due to viscous dissipation and relatively high pressure losses of flow were observed in experiments. To identify irreversibility of flow, rate of entropy generation from the experiments have been determined in the laminar flow range of Re = 20-2200. The second law of thermodynamics was applied to predict the entropy generation. The results of model taken from the literature, proposed to predict the temperature rise caused by viscous heating, correspond well with the experimental data. The second law analysis results showed that the flow characteristics in the smooth microtubes distinguish substantially from the conventional theory for flow in the larger tubes with respect to viscous heating/dissipation (temperature rise of flow) total entropy generation rate and lost work. (author)

Parlak, Nezaket; Guer, Mesut; Ari, Vedat; Kuecuek, Hasan; Engin, Tahsin [The University of Sakarya, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, 54187 Sakarya (Turkey)

2011-01-15T23:59:59.000Z

117

Market-based Investment in Electricity Transmission Networks: Controllable Flow  

E-Print Network (OSTI)

in new lines, rather than small-scale network upgrades. Whereas market-based transmission investment may mitigate the problem of under- investment, it is unlikely to suffice alone and thus regulated projects by the designated transmission system... aims at transmission of bulk power to be less than small-scale AC network deepening projects; even if these AC projetcs are small scale, they may be large compared to the size of their market. The DC-interconnector projects in the USA are typically...

Brunekreeft, Gert

2004-06-16T23:59:59.000Z

118

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO  

Open Energy Info (EERE)

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Details Activities (1) Areas (1) Regions (0) Abstract: High rock temperatures, a high degree of fracturing, high tectonic stresses, and low permeability are the combination of qualities that define an ideal candidate-Enhanced Geothermal System (EGS) reservoir. The Coso Geothermal Field is an area where fluid temperatures exceeding 300°C have been measured at depths less than 10,000 feet and the reservoir is both highly fractured and tectonically stressed. Some of the wells within this portion of the reservoir are relatively impermeable,

119

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...  

Open Energy Info (EERE)

- Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle...

120

An analysis of the induced flow downstream between oscillating wings in a wind tunnel  

E-Print Network (OSTI)

AN ANALYSIS OF THE INDUCED FLOW DOWNSTREAM BETWEEN OSCILLATING WINGS IN A WIND TIMBAL A Thesis by BARRY ERWIN MORGAN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1970 Major Subject; Aerospace Engineering AN ANALYSIS OF THE INDUCED FLOW DOWNSTREAM BETWEEN OSCILLATING WINGS IN A WIND TUNNEL A Thesis by BARRY ERWIN MORGAN Approved as to style and content by: rman of Committee) (Hea of Depart ent...

Morgan, Barry Erwin

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Topology-based Feature Definition and Analysis  

SciTech Connect

Defining high-level features, detecting them, tracking them and deriving quantities based on them is an integral aspect of modern data analysis and visualization. In combustion simulations, for example, burning regions, which are characterized by high fuel-consumption, are a possible feature of interest. Detecting these regions makes it possible to derive statistics about their size and track them over time. However, features of interest in scientific simulations are extremely varied, making it challenging to develop cross-domain feature definitions. Topology-based techniques offer an extremely flexible means for general feature definitions and have proven useful in a variety of scientific domains. This paper will provide a brief introduction into topological structures like the contour tree and Morse-Smale complex and show how to apply them to define features in different science domains such as combustion. The overall goal is to provide an overview of these powerful techniques and start a discussion how these techniques can aid in the analysis of astrophysical simulations.

Weber, Gunther H.; Bremer, Peer-Timo; Gyulassy, Attila; Pascucci, Valerio

2010-12-10T23:59:59.000Z

122

Revisiting flow-based load balancing: Stateless path selection in data center networks  

Science Journals Connector (OSTI)

Hash-based load-balancing techniques are widely used to distribute the load over multiple forwarding paths and preserve the packet sequence of transport-level flows. Forcing a long-lived, i.e., elephant, flow to follow a specific path in the network is a desired mechanism in data center networks to avoid crossing hot spots. This limits the formation of bottlenecks and so improves the network use. Unfortunately, current per-flow load-balancing methods do not allow sources to deterministically force a specific path for a flow. In this paper, we propose a deterministic approach enabling end hosts to steer their flows over any desired load-balanced path without relying on any packet header extension. By using an invertible mechanism instead of solely relying on a hash function in routers, our method allows to easily select the packet’s header field values in order to force the selection of a given load-balanced path without storing any state in routers. We perform various simulations and experiments to evaluate the performance and prove the feasibility of our method using a Linux kernel implementation. Furthermore, we demonstrate with simulations and lab experiments how MultiPath TCP can benefit from the combination of our solution with a flow scheduling system that efficiently distributes elephant flows in large data center networks.

Gregory Detal; Christoph Paasch; Simon van der Linden; Pascal Mérindol; Gildas Avoine; Olivier Bonaventure

2013-01-01T23:59:59.000Z

123

Computational analysis of flow field around Ahmed car model passing underneath a flyover  

Science Journals Connector (OSTI)

A flow structure around a ground vehicle has been studied by many researchers using numerous methods either computational or experimental. However no analysis of flow field generated by a car passing under a flyover has been carried out. One of the famous simplified models of a car is the Ahmed body that has been established to investigate the influence of the flow structure on the drag. In this paper we investigate a flow field around Ahmed body of a single cruising condition as the vehicle passes under a flyover using a computational method with RANS equation. The main objective of this paper is to evaluate the turbulence kinetic energy and velocity magnitude developed within the wall boundary created by the flyover to the air flow field that is generated by the Ahmed reference car. It was observed that the simulated airflow passes the vehicle was bounded by the wall of the flyover and consequently changes the pattern of the flow field. Understanding the characteristic of this flow field under a flyover is essential if one wants to maximize the recovery of the dissipated energy which for example can be used to power a small vertical-axis wind turbine to produce and store electrical energy for lighting under the flyover.

Md Nor Musa; Kahar Osman; Ab Malik A. Hamat

2012-01-01T23:59:59.000Z

124

Flow induced vibration of a cantilever column jet: a spectral analysis  

E-Print Network (OSTI)

FLON INDUCED VIBRATION OF A CANTILEVER COLUMN JET ? A SPECTRAL ANALYSIS A Thesis by ROY BRYANT SHILLING III Submitted to the Graduate College of Texas A8M University ir, partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1978 Major Subject: Ocean Engineering FLOW INDUCED VIBRATION OF A CANTILEVER COLUMN JET - A SPECTRAL ANALYSIS A Thesis by ROY BRYANT SHILLING III Approved as to style and content by: (Chairman of Committee) (Head of Department) ember...

Shilling, Roy Bryant

2012-06-07T23:59:59.000Z

125

Analysis of Fish Response to Flows in the 1991 Pasco Flume Experiments  

E-Print Network (OSTI)

1 Analysis of Fish Response to Flows in the 1991 Pasco Flume Experiments by James J. Anderson. The hypothesis of the study is that low fish guidance efficiency (FGE) at Columbia River dams may, in part, be due to fish diving when they encounter changes in water velocities. This behavior would cause fish

Washington at Seattle, University of

126

Coarse analysis of multiscale systems: diffuser flows, charged particle motion, and connections to averaging theory  

E-Print Network (OSTI)

Coarse analysis of multiscale systems: diffuser flows, charged particle motion, and connections of working with Harish Bhat (without whom the particles work would not have been done), Matt West, Troy Smith, invisible, the only wise God, be honour and glory for ever and ever. Amen. 1 Timothy 1:15-17 #12;vi Abstract

Murray, Richard M.

127

Electro-osmotic flow control for living cell analysis in microfluidic Tomasz Glawdel, Carolyn L. Ren *  

E-Print Network (OSTI)

the problems associated with the use of high electric fields required for operating electro-osmotic pumps in living cell analysis. In particular, electroporation of cell mem- branes, Joule heating, electrolysis pressure-driven flow control systems. Futai et al. (2006) developed a recircu- lating perfusion platform

Le Roy, Robert J.

128

A perturbation analysis of the unstable plastic flow pattern evolution in an aluminum alloy  

E-Print Network (OSTI)

A perturbation analysis of the unstable plastic flow pattern evolution in an aluminum alloy Seung Abstract In the tensile loading of sheet metals made from some polycrystalline aluminum alloys, a single in the uniaxial tension of polycrystalline aluminum alloys with periodic stress relaxations depends

Tong, Wei

129

Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys  

E-Print Network (OSTI)

Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys M, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version using FSW, the industrial interest has been primary in the welding of aluminum alloys. For a wide

Grujicic, Mica

130

Physically based Animation of Free Surface Flows with the Lattice Boltzmann Method  

E-Print Network (OSTI)

Physically based Animation of Free Surface Flows with the Lattice Boltzmann Method Physikalische Animation von Str�omungen mit freien Oberfl�achen mit der Lattice-Boltzmann-Methode Der Technischen Fakult on the lattice Boltzmann method. This method has been chosen due to the overall computational efficiency

131

A New Model of Centrality Measure based on Bidirectional Power Flow for  

E-Print Network (OSTI)

power flow based model to evaluate the criticality in smart grid environment. Change in direction of smart grid includes various generation options, primarily in the distribution side ­ near consumers. Engagement of customers with the energy management systems is the most lucrative part of smart grid from

Pota, Himanshu Roy

132

A data flow-based structural testing technique for FBD programs Eunkyoung Jee a  

E-Print Network (OSTI)

(Nuclear Regulatory Commission) [3] mandates that software unit testing for safety-critical systemsA data flow-based structural testing technique for FBD programs Eunkyoung Jee a , Junbeom Yoo b Available online 10 March 2009 Keywords: Software testing Structural testing Test coverage criteria

133

3D MHD Free Surface Fluid Flow Simulation Based on Magnetic-Field Induction Equations  

E-Print Network (OSTI)

1 3D MHD Free Surface Fluid Flow Simulation Based on Magnetic-Field Induction Equations H.L. HUANG Huang@fusion.ucla.edu Abstract: The purpose of this paper is to present our recent efforts on 3D MHD-plane magnetic field configurations have shown that 3D MHD effects from a surface normal field gradient cause

California at Los Angeles, University of

134

Ukraine and the great biofuel potential? A political material flow analysis  

Science Journals Connector (OSTI)

Abstract Ukraine was once considered the breadbasket of the Soviet Union, its agriculture subject to both extensification and intensification measures. Following the dissolution of the Soviet Union, both these processes were reversed, giving modern-day Ukraine the image of untapped agricultural potential. Alongside the country's proximity to the European Union and its access to the Black Sea, this has made Ukraine a key candidate as a global supplier of feedstock for biofuel. Demand for the latter is rising noticeably, especially in the wake of current European and international blending targets for liquid biofuels. Ukraine has responded with a number of initiatives to further biofuel feedstock production. We have compiled a material flow account for Ukraine, focusing especially on the development of the agricultural sector since the early 1990s. By complementing this physical account with an in-depth analysis of political and economic developments, we are able to trace the impact of rising demand for biofuel feedstock on Ukraine. We find that the attempt to establish a biofuel sector based largely on rapeseed was not successful but has nonetheless left the country at a cross-road in the development of both its economy and its resource use.

Anke Schaffartzik; Christina Plank; Alina Brad

2014-01-01T23:59:59.000Z

135

1992 Columbia River Salmon Flow Measures Options Analysis/EIS : Appendices.  

SciTech Connect

This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described. The document concludes with an evaluation of the potential effects that could result from implementing proposed actions. The conclusions are based on evaluation of existing data, utilization of numerical models, and application of logical inference. This volume contains the appendices.

Not Available

1992-01-01T23:59:59.000Z

136

Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora  

E-Print Network (OSTI)

analysis of the Czech alien flora Naturalizované rostliny mají mensí genom nez neinvadující druhy than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. ­ Preslia 82 in 93 alien species naturalized in the Czech Republic, belonging to 32 families, by using flow cytometry

KratochvĂ­l, Lukas

137

Demonstration of a plasma mirror based on a laminar flow water film  

SciTech Connect

A plasma mirror based on a laminar water film with low flow speed 0.5-2 cm/s has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as atarget surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does notproduce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70percent reflectivity, whilemaintaining high-quality of the reflected spot.

Panasenko, Dmitriy; Shu, Anthony; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Toth, Csaba; Leemans, Wim

2011-07-22T23:59:59.000Z

138

Two-phase stratified flow regime transition analysis for low gravity conditions  

E-Print Network (OSTI)

liquid, and dispersed bubble. This study lends well to stratified flow analysis because Taitel and Dukler [23] assumed an equilibrium stratified condition and developed transition models to the slug and annular regimes from this initial state. Also... This thesis follows the style of the A~lh~EllItlg. concentrated on low gravity conditions other than zero-g, such as moon gravity (1/6 g) or Mars gravity (1/3 g). This work concerns the development of a stratified flow regime transition model which...

Miller, Kathryn M.

1990-01-01T23:59:59.000Z

139

ESS 2012 Peer Review - Acid Based Blend Membranes for Redox Flow Batteries - Alan Cisar, Lynntech  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acid Based Blend Membranes for Redox Flow Batteries Acid Based Blend Membranes for Redox Flow Batteries DOE Grant No: DE-SC0006306 Alan Cisar* and Chris Rhodes Lynntech, Inc., 2501 Earl Rudder Freeway South, College Station, TX 77845 *E-mail: alan.cisar@lynntech.com, Phone: 979.764.2311 Prof. Arumugam Manthiram University of Texas, Austin, TX 78712 Prof. Fuqiang Liu University of Texas Arlington, Arlington, TX 76019 Conclusions Lynntech, in conjunction with the University of Texas and the University of Texas at Arlington, developed a new series of low-cost polymer blend membranes with high proton conductivity and ultralow vanadium ion permeability. The proton conductivity and physical properties of these membranes are tunable by adjusting the ratio of acid and base components. Membrane conductivity was found to be more critical to

140

Street-based Topological Representations and Analyses for Predicting Traffic Flow in GIS  

E-Print Network (OSTI)

It is well received in the space syntax community that traffic flow is significantly correlated to a morphological property of streets, which are represented by axial lines, forming a so called axial map. The correlation co-efficient (R square value) approaches 0.8 and even a higher value according to the space syntax literature. In this paper, we study the same issue using the Hong Kong street network and the Hong Kong Annual Average Daily Traffic (AADT) datasets, and find surprisingly that street-based topological representations (or street-street topologies) tend to be better representations than the axial map. In other words, vehicle flow is correlated to a morphological property of streets better than that of axial lines. Based on the finding, we suggest the street-based topological representations as an alternative GIS representation, and the topological analyses as a new analytical means for geographic knowledge discovery.

Jiang, Bin

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Statistical Analysis of Microgravity Two-Phase Slug Flow via the Drift Flux Model  

E-Print Network (OSTI)

. The result was a statistically consistent microgravity slug flow data base consisting of 220 data points from 8 different experiments and the associated values for the concentration parameter, Co, and drift velocity, u_(gj). A key component for this model...

Larsen, Benjamin A

2014-05-01T23:59:59.000Z

142

Stability of hypersonic reacting stagnation flow of a detonatable gas mixture by dynamical systems analysis  

SciTech Connect

The stability characteristics of the reacting hypersonic flow of the fuel/oxidizer mixture in the stagnation region of a blunt body are studied. The conditions for oscillations of the combustion front are assumed to be determined mainly by the flow conditions at the stagnation region. The density at the stagnation region is assumed to be constant at hypersonic flow conditions. By assuming a simplified flow model, the time dependent flow equations, including the heat addition due to the chemical reactions, are reduced to a second-order nonlinear differential equation for the instantaneous temperature. The solutions are analyzed assuming a one-step chemical reaction with zero-order and first-order processes using dynamical systems methods. These methods are used to determine the stability boundaries in terms of the flow and chemical reaction parameters. It is shown that the zero-order reaction has nonperiodic solutions that may lead to explosion whereas the first-order and higher-order reactions may have periodic solutions indicating oscillations. The zero-order analysis also reaffirms the requirements for a minimum size blunt body for the establishment of a detonation (in agreement with classical detonation theory) and the first-order analysis indicates a minimum body size for establishment of oscillations. The oscillation frequencies are calculated using the small perturbation approximation for the temperature oscillations. These frequencies are compared with results from published data on spheres and hemisphere cylindrical bodies fired into hydrogen-oxygen and acetylene oxygen mixtures. Very good agreement is found between the measured and calculated results.

Tivanov, G.; Rom, J. [Technion-Israel Inst. of Tech., Haifa (Israel)] [Technion-Israel Inst. of Tech., Haifa (Israel)

1995-12-01T23:59:59.000Z

143

Agent-Based Modeling and Simulation for Hydrogen Transition Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Agent-Based Modeling and Simulation for Hydrogen Transition Analysis given by Marianne Mintz of ANL during the DOE Hydrogen Transition Analysis Workshop on January 26, 2006.

144

In Depth Analysis of AVCOAT TPS Response to a Reentry Flow  

SciTech Connect

Modeling of the high altitude portion of reentry vehicle trajectories with DSMC or statistical BGK solvers requires accurate evaluation of the boundary conditions at the ablating TPS surface. Presented in this article is a model which takes into account the complex ablation physics including the production of pyrolysis gases, and chemistry at the TPS surface. Since the ablation process is time dependent the modeling of the material response to the high energy reentry flow starts with the solution of the rarefied flow over the vehicle and then loosely couples with the material response. The objective of the present work is to carry out conjugate thermal analysis by weakly coupling a flow solver to a material thermal response model. The latter model solves the one dimensional heat conduction equation accounting for the pyrolysis process that takes place in the reaction zone of an ablative thermal protection system (TPS) material. An estimate of the temperature range within which the pyrolysis reaction (decomposition and volatilization) takes place is obtained from Ref. [1]. The pyrolysis reaction results in the formation of char and the release of gases through the porous charred material. These gases remove additional amount of heat as they pass through the material, thus cooling the material (the process known as transpiration cooling). In the present work, we incorporate the transpiration cooling model in the material thermal response code in addition to the pyrolysis model. The flow in the boundary layer and in the vicinity of the TPS material is in the transitional flow regime. Therefore, we use a previously validated statistical BGK method to model the flow physics in the vicinity of the micro-cracks, since the BGK method allows simulations of flow at pressures higher than can be computed using DSMC.

Titov, E. V.; Kumar, Rakesh; Levin, D. A. [Pennsylvania State University, University Park, PA 16802 (United States)

2011-05-20T23:59:59.000Z

145

ESS 2012 Peer Review - New Generation Aqueous Base Redox Flow Battery Component Development - Wei Wang, PNNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation Aqueous Base Redox Flow Generation Aqueous Base Redox Flow Battery Component Development Wei Wang, Qingtao Luo, Xiaoliang Wei, Bin Li, Zimin Nie, Baowei Chen, Yuyan Shao, Vijayakumar Murugesan, Amy Chen, Gordon, Xia, Liyu Li, Gary Z. Yang, Vincent Sprenkle Pacific Northwest National Laboratory 902 Battelle Boulevard P. O. Box 999 Richland, WA 99352, USA DOE Stationary Energy Storage Program Review, Washington, DC Sept. 26-28, 2012 Dr. Imre Gyuk 1 2 Review of previous work 2.5M, ~30Wh/L, -5~50 o C Mixed-acid VRB Double Energy Density Extend temperature window Charge Discharge Charge Discharge Charge Discharge Catholyte: VO 2+ + Cl - + H 2 O - e VO 2 Cl + 2H + ε co =1.0 V Anolyte: V 3+ + e V 2+ ε ao =-0.25 Overall: VO 2+ + Cl

146

Economic assessment of regional bioenergy systems in Australia: a flow analysis application  

Science Journals Connector (OSTI)

This paper describes a modelling tool that integrates Material Flow Analysis, energy production and Greenhouse Gas (GHG) emissions accounting for biomass flows at a regional scale. This tool allows comprehensive analysis of alternative systems for management of biomass waste and bioenergy production in regional areas. Different possible options for processing a range of biomass waste streams can be evaluated against multiple criteria including various environmental impacts and cost-effectiveness. The objective is to support the design of integrated biomass waste and bioenergy systems that maximise synergies and optimise tradeoffs between bioenergy production, GHG emissions, recycling of valuable soil nutrients and control of harmful contaminants. This analytical tool is applied to a major agricultural region in Australia, the Murrumbidgee Irrigation Area. A scenario demonstrates how the construction of different types of bioenergy plant can offer valuable benefits with regard to renewable energy production, GHG emission reductions, increasing phosphorus cycling back to soils and reduced cadmium contamination.

Napat Jakrawatana; Stephen Moore; Iain MacGill

2009-01-01T23:59:59.000Z

147

Boundary layer flow and heat transfer analysis of a second-grade fluid  

SciTech Connect

Boundary layer flow and heat transfer analysis of a homogeneous, incompressible, non-Newtonian fluid of grade two at a stagnation point is presented. The flow is assumed to be steady and laminar. A power-law representation is assumed for the velocity distribution and wall temperature variation. The governing equations are solved using an iterative central difference approximation method in a non-uniform grid domain. This analysis show the effect of non-Newtonian nature of the fluid and the effect of suction/injection on the velocity profile. The effect of non-Newtonian nature of the fluid on the heat transfer coefficient at the wall for different values of Prandtl number and wall-temperature variation is also presented. (VC)

Massoudi, M. [USDOE Pittsburgh Energy Technology Center, PA (United States); Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1992-04-01T23:59:59.000Z

148

The Knowledge Base Evolution in Biotechnology: A Social Network Analysis.  

E-Print Network (OSTI)

The Knowledge Base Evolution in Biotechnology: A Social Network Analysis. Jackie Krafft*, Francesco of the biotechnology sector. Knowledge is here considered a collective good represented as a co

Paris-Sud XI, Université de

149

The Knowledge Base Evolution in Biotechnology: A Social Network Analysis.  

E-Print Network (OSTI)

The Knowledge Base Evolution in Biotechnology: A Social Network Analysis. Jackie Kraffta dynamics of the biotechnology sector. Knowledge is here considered a collective good represented as a co

Paris-Sud XI, Université de

150

Posters Preliminary Analysis of Ground-Based Microwave and Infrared...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Posters Preliminary Analysis of Ground-Based Microwave and Infrared Radiance Observations During the Pilot Radiation OBservation Experiment E. R. Westwater, Y. Han, J. H....

151

Supporting WCET Analysis with Data-Flow Analysis of Java Bytecode  

E-Print Network (OSTI)

for developing hard real-time systems. Many WCET analysis tools rely on manual annotations, which are however that are difficult (or impossible) for automatic program analysis. 1 Introduction In hard real-time systems, missing case execution time (WCET) analysis computes a safe bound for the execution time of tasks. These bounds

152

A parallel and matrix free framework for global stability analysis of compressible flows  

E-Print Network (OSTI)

An numerical iterative framework for global modal stability analysis of compressible flows using a parallel environment is presented. The framework uses a matrix-free implementation to allow computations of large scale problems. Various methods are tested with regard to convergence acceleration of the framework. The methods consist of a spectral Cayley transformation used to select desired Eigenvalues from a large spectrum, an improved linear solver and a parallel block-Jacobi preconditioning scheme.

Henze, O; Sesterhenn, J

2015-01-01T23:59:59.000Z

153

An individual-based instream flow model for coexisting populations of brown and rainbow trout  

SciTech Connect

This report describes an individual-based model for sympatric populations of brown and rainbow trout in a stream habitat. Hatchery rainbow trout are included as a third species. The model provides a tool for predicting flow effects on trout populations by linking the hydraulic component of the Physical Habitat Simulation (PHABSIM) methodology and an individual-based population modeling approach. PHABSIM simulates the spatial distribution of depth and velocity at different flows. The individual-based model simulates the reproduction, foraging, consumption, energetic costs, growth, habitat utilization, movement, and mortality of individual fish, and enables population attributes to be determined from relevant attributes of individual fish. The spatially explicit nature of the model permits evaluation of behavioral responses used by fish to mitigate temporary setbacks in habitat quality. This linked mechanistic modeling approach readily lends itself to the iterative process of making predictions, testing against field data, improving the model, and making more predictions. The model has been applied to a stream segment in the Tule River, California. Physical and biological data from this site are used as input to the model. Calibrating the model to abundance data was relatively easy because values for mortality parameters were not strongly constrained by empirical data. Calibrating the model to observed growth rates and habitat use was more challenging. The primary reason for developing this model has been to provide a new and complementary tool to PHABSIM that can be used in instream-flow assessments.

Van Winkle, W.; Jager, H.I.; Holcomb, B.D.

1996-03-01T23:59:59.000Z

154

Global Trade Analysis Project (GTAP) Data Base | Open Energy Information  

Open Energy Info (EERE)

Global Trade Analysis Project (GTAP) Data Base Global Trade Analysis Project (GTAP) Data Base Jump to: navigation, search Tool Summary Name: GTAP 6 Data Base Agency/Company /Organization: Purdue University Sector: Energy Topics: Policies/deployment programs, Co-benefits assessment, - Macroeconomic, Pathways analysis Resource Type: Dataset Website: www.gtap.agecon.purdue.edu/databases/v6/default.asp GTAP 6 Data Base Screenshot References: GTAP Data Base[1] "The GTAP Data Base is a fully documented, publicly available global data base which contains complete bilateral trade information, transport and protection linkages among 113 regions for all 57 GTAP commodities for a single year. " GTAP 6 Data Base "Includes: Updated data base corresponds to the global economy in 2001 Additional regional disaggregation (87 regions and 57 sectors),

155

From material flow analysis to material flow management Part I: social sciences modeling approaches coupled to MFA  

Science Journals Connector (OSTI)

This paper presents social sciences modeling approaches (SSMA) that have been coupled to material flow analyses in order to support management of material flows. The presented literature review revealed that the large share of these approaches stem from economics, as these models have similar data and modeling structure than the material flow models. The discussed modeling approaches support a better system understanding and allow for estimating the potential effects of economic policies on material flows. However, it has been shown that these approaches lack important aspects of human decision-making and, thus, the designed economic measures might not always lead to the expected improvements of the material system.

Claudia R. Binder

2007-01-01T23:59:59.000Z

156

UML based risk analysis -Application to a medical J. Guiochet  

E-Print Network (OSTI)

from unacceptable risk" [8]. Therefore it is necessary to reduce the risk to an acceptable levelUML based risk analysis - Application to a medical robot J. Guiochet GRIMM-ISYCOM/LESIA, University approach, based on the risk concept in order to guide designers along the safety analysis of such complex

Guiochet, Jérémie

157

Geographically-Based Infrastructure Analysis for California  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Joan Ogden of the University of California at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

158

Geographically Based Hydrogen Demand and Infrastructure Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

159

Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste”  

Science Journals Connector (OSTI)

Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste” ... Validated material flow models of waste treatment systems form a sound basis to evaluate system performance in view of environmental pollution as well as with respect to resource recovery. ... characteristics of refuse-derived fuels (RDF) that are processed from residual household waste by mech. ...

David Laner; Oliver Cencic

2013-12-05T23:59:59.000Z

160

Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry  

E-Print Network (OSTI)

In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a three dimensional laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently f...

Crua, Cyril

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Manufacturing all-polymer laminar flow-based fuel cells A.S. Hollinger, P.J.A. Kenis*  

E-Print Network (OSTI)

Manufacturing all-polymer laminar flow-based fuel cells A.S. Hollinger, P.J.A. Kenis* Department laminar flow fuel cell. Bonding strategy eliminates the need for heavy metal plates and clamping. Developed a strategy to encapsulate fuel cell electrodes in Kapton windows. Designs can be scaled

Kenis, Paul J. A.

162

Security enhancements for FPGA-based MPSoCs: a boot-to-runtime protection flow for an embedded  

E-Print Network (OSTI)

Security enhancements for FPGA-based MPSoCs: a boot-to-runtime protection flow for an embedded solutions to securely boot a bitstream and the associated OS while runtime transactions are not protected. This work proposes a full boot-to-runtime protection flow of an embedded Linux kernel during boot

Paris-Sud XI, Université de

163

3D MHD lead–lithium liquid metal flow analysis and experiments in a Test-Section of multiple rectangular bends at moderate to high Hartmann numbers  

Science Journals Connector (OSTI)

Abstract Experiments with liquid lead–lithium (Pb–Li) were carried out in a stainless steel (SS) Test Section (TS) consisting of multiple 90° bends for various flow rates and applied magnetic fields of up to 4 T. Characteristic MHD flow parameter Hartmann number, Ha ( = B 0 a ? / ? , Ha2 is the ratio of electromagnetic force to viscous force) and interaction parameter, N ( = ? a B 0 2 / ? U , N is the ratio of electromagnetic force to inertial force) of these experiments were varied from Ha = 515 to 2060 and N = 25 to 270 by changing the applied magnetic field and flow rates respectively. Three dimensional numerical simulations have been carried out using MHD module of FLUENT code. The measured Hartmann and side wall electric potential distribution at various locations of the Test Section have been compared with the numerical simulation results for different Hartmann numbers and interaction parameters (Ha = 1030, N = 25, 40, 67 for B = 2 T and Ha = 2060, N = 129, 161, 270 for B = 4 T). The numerical predictions based on laminar flow model are matching well with the measured values at all locations including bend regions for high magnetic field and low flow rates. However, at higher flow rates and lower magnetic fields (smaller Ha/Re values), the agreement was not good near the bend regions. This may be attributed to the significant presence of turbulence that was not accounted in the present simulation. The core velocity, estimated from the measured Hartmann wall potential at the locations far away from the bends, matched well with the numerical results. The analysis indicates that the flow distribution becomes rapidly symmetric when it turns at the bend where both the legs are perpendicular to the applied magnetic field. In contrast, flow distribution remains asymmetric for a longer distance when it turns from parallel to perpendicular direction of the applied field. The code is predicting reasonably well for MHD parameters relevant to Blanket Modules for single channel flows with bends.

P.K. Swain; P. Satyamurthy; R. Bhattacharyay; A. Patel; A. Shishko; E. Platacis; A. Ziks; S. Ivanov; A.V. Despande

2013-01-01T23:59:59.000Z

164

Geographically Based Hydrogen Demand and Infrastructure Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Analysis Prepared for: 2010-2025 H2 Scenario Analysis Meeting Margo Melendez - NREL 2 Disclaimer and Government License This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36- 99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes. Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability

165

Value based analysis of acquisition portfolios  

E-Print Network (OSTI)

Currently, program-funding allocation is based on program performance. Funding cuts commonly lead to a poor reflection on the program management assigned to the given program. If additional factors such as program risk and ...

Burgess, Cheri Nicole Markt

2010-01-01T23:59:59.000Z

166

FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow and Heat Transport Simulator(aka FALCON)  

Energy.gov (U.S. Department of Energy (DOE))

FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow and Heat Transport Simulator(aka FALCON) presentation at the April 2013 peer review meeting held in Denver, Colorado.

167

Monitoring- Based Commissioning with Advanced EMIS Analysis  

E-Print Network (OSTI)

?EMIS ? The?cornerstone?of?MBCx?is?a?comprehensive? Energy?Management?Information?System?(EMIS) An?EMIS?is?an?analytical?engine?with?capabilities?above?and? beyond?that?of?a?BAS.??Capabilities?include?up?to: ? Utility?cost?and?billing?analysis ? Enhanced...

Ratkovich, B.

2013-01-01T23:59:59.000Z

168

Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation  

SciTech Connect

The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by a highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.

Wu, Mengjie [Colorado School of Mines, Golden; Xiao, Feng [Colorado School of Mines, Golden; Johnson-Paben, Rebecca [Colorado School of Mines, Golden; Retterer, Scott T [ORNL; Yin, Xiaolong [Colorado School of Mines, Golden; Neeves, Keith B [ORNL

2012-01-01T23:59:59.000Z

169

Stress-induced patterns in ion-irradiated Silicon: a model based on anisotropic plastic flow  

E-Print Network (OSTI)

We present a model for the effect of stress on thin amorphous films that develop atop ion-irradiated silicon, based on the mechanism of ion-induced anisotropic plastic flow. Using only parameters directly measured or known to high accuracy, the model exhibits remarkably good agreement with the wavelengths of experimentally-observed patterns, and agrees qualitatively with limited data on ripple propagation speed. The predictions of the model are discussed in the context of other mechanisms recently theorized to explain the wavelengths, including extensive comparison with an alternate model of stress.

Scott A. Norris

2012-07-24T23:59:59.000Z

170

Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.  

SciTech Connect

This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

2009-08-01T23:59:59.000Z

171

Analysis of Mass Flow and Enhanced Mass Flow Methods of Flashing Refrigerant-22 from a Small Vessel  

E-Print Network (OSTI)

The mass flow characteristics of flashing Refrigerant-22 from a small vessel were investigated. A flash boiling apparatus was designed and built. It was modeled after the flashing process encountered by the accumulator of air-source heat pump...

Nutter, Darin Wayne

172

An elastic-perfectly plastic flow model for finite element analysis of perforated materials  

SciTech Connect

This paper describes the formulation of an elastic-perfectly plastic flow theory applicable to equivalent solid [EQS] modeling of perforated materials. An equilateral triangular array of circular penetrations is considered. The usual assumptions regarding geometry and loading conditions applicable to the development of elastic constants for EQS modeling of perforated plates are considered to apply here. An elastic-perfectly plastic [EPP] EQS model is developed for a collapse surface that includes fourth-order stress terms. The fourth order yield function has been shown to be appropriate for plates with a triangular array of circular holes. A complete flow model is formulated using the consistent tangent modulus approach based on the fourth order yield function.

Jones, D.P.; Gordon, J.L.; Hutula, D.N.; Banas, D.; Newman, J.B.

1999-02-01T23:59:59.000Z

173

Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

2001-11-09T23:59:59.000Z

174

Analysis of char-slag interaction and near-wall particle segregation in entrained-flow gasification of coal  

SciTech Connect

The fate of carbon particles during entrained-flow gasification of coal in the slagging regime is analyzed. More specifically, the study addresses the relevance of segregation of carbon particles in a near-wall region of the gasifier to coal conversion. Segregation of carbon particles is analyzed considering the effects of turbulence- and swirl-promoted particle migration toward the wall, interaction of the impinging particles with the wall ash layer, coverage of the slag layer by refractory carbon particles, accumulation of carbon particles in a dense-dispersed phase near the wall of the gasifier. Operating conditions of the gasifier and slag properties may be combined so as to give rise to a variety of conversion regimes characterized by distinctively different patterns of carbon particles segregation. A simple 1D model of an entrained-flow gasifier has been developed based on the conceptual framework of carbon particle segregation. The model aims at providing a general assessment of the impact of the different patterns of carbon particle segregation on the course and extent of carbon gasification. A sensitivity analysis with reference to selected model parameters is performed to identify key processes controlling carbon segregation and their impact on the gasifier performance. (author)

Montagnaro, Fabio [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant'Angelo, 80126 Napoli (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II and Istituto di Ricerche sulla Combustione, CNR, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy)

2010-05-15T23:59:59.000Z

175

Disaggregating regional energy supply/demand and flow data to 173 BEAs in support of export coal analysis. Final report  

SciTech Connect

This report documents the procedures and results of a study sponsored jointly by the US Department of Transportation and the US Department of Energy. The study was conducted to provide, Bureau of Economic Analysis (BEA)-level production/consumption data for energy materials for 1985 and 1990 in support of an analysis of transportation requirements for export coal. Base data for energy forecasts at the regional level were obtained from the Department of Energy, Energy Information Administration. The forecasts selected for this study are described in DOE/EIA's 1980 Annual Report to Congress, and are: 1985 Series, B, medium oil import price ($37.00/barrel); and 1990 Series B, medium oil import price ($41.00/barrel). Each forecast period is extensively described by approximately forty-three statistical tables prepared by EIA and made available to TERA for this study. This report provides sufficient information to enable the transportation analyst to appreciate the procedures employed by TERA to produce the BEA-level energy production/consumption data. The report presents the results of the procedures, abstracts of data tabulations, and various assumptions used for the preparation of the BEA-level data. The end-product of this effort was the BEA to BEA energy commodity flow data by more which serve as direct input to DOT's transportation network model being used for a detailed analysis of export coal transportation.

Not Available

1981-06-01T23:59:59.000Z

176

Diagnostics based on thermodynamic analysis of performance of steam turbines: Case histories  

SciTech Connect

The purpose of this paper is to describe some types of failures which have occurred with the ENEL stock of fossil-fuel steam turbines over the last 5--7 years. This paper also presents the corresponding thermodynamic analysis of turbine parameters which permitted failure diagnosis and pre-scheduled opening of the turbine. The examined failures concern: (1) in-service rupture of the bell seal retainer nut between a SH steam inlet sleeve and the inner HP/IP cylinder, on turbines with a main steam inlet system with bell seals; (2) incorrect assembly of pressure seal rings between steam inlet sleeves and the inner cylinder on turbines with a main steam inlet system with pressure seal rings during a scheduled outage; (3) steam flow path restriction in IP turbine inlet; (4) steam flow path restriction in 1st HP turbine stage nozzles; and (5) steam flow path restriction in 2nd HP turbine stage vanes. Thermodynamic failure analysis and the subsequent analysis of turbine damage (mechanical and financial) enabled condition-based maintenance operations to be carried out.

Tirone, G.; Arrighi, L.; Bonifacino, L.

1998-07-01T23:59:59.000Z

177

Energy and Material Flow Analysis of Binder-jetting Additive Manufacturing Processes  

Science Journals Connector (OSTI)

Abstract Manufacturing, where great amount of energy and materials are being consumed, should take response to have cleaner production and to improve its sustainability. Additive manufacturing (AM) technology shows potential to reduce environment impact as a more sustainable manufacturing method; however, the lack of well documented energy consumption and material flow data limits the development of Life-Cycle Inventory (LCI) analysis of AM technology. This paper presents an energy and material consumption model of Binder-Jetting (BJ) process. A Unit-Process (UP) level model is created and validated by experimental data to provide LCI data for further Life-Cycle Analysis (LCA) of BJ additive manufacturing processes. The accurate process model provides a tool to industry to understand the energy consumption and material efficiency aspect of the binder-jetting process and to allow comparisons with traditional processes.

Simon Meteyer; Xin Xu; Nicolas Perry; Yaoyao Fiona Zhao

2014-01-01T23:59:59.000Z

178

Defect site prediction based upon statistical analysis of fault signatures  

E-Print Network (OSTI)

Good failure analysis is the ability to determine the site of a circuit defect quickly and accurately. We propose a method for defect site prediction that is based on a site's probability of excitation, making no assumptions about the type...

Trinka, Michael Robert

2004-09-30T23:59:59.000Z

179

Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle  

SciTech Connect

Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development of the cycle and have gained an in-depth understanding of the governing fundamental knowledge, based on the laws of physics and thermodynamics and verified with our testing results. Through this research, we are identifying optimal working fluid and operating conditions to eventually demonstrate the core technology for space cooling or other applications.

Hosni, Mohammad H.

2014-03-30T23:59:59.000Z

180

Fast Algorithms for Power Grid Analysis Based on Effective Resistance  

E-Print Network (OSTI)

Fast Algorithms for Power Grid Analysis Based on Effective Resistance Selc¸uk K¨ose and Eby G method significantly outperforms previously proposed power grid analysis techniques in terms and the impedance of the power grid. The effective resistance between any two nodes in a uniform grid structure has

Friedman, Eby G.

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Reduction-based Security Analysis of Internet Routing Protocols  

E-Print Network (OSTI)

Reduction-based Security Analysis of Internet Routing Protocols Chen Chen, Limin Jia, Boon Thau Loo. These properties require routes announced by honest nodes in the network not to be tampered with by the adversary proofs with automated analysis. We define several reduction steps to reduce proving route authenticity

Pennsylvania, University of

182

Web-based Support Systems with Rough Set Analysis  

E-Print Network (OSTI)

Web-based Support Systems with Rough Set Analysis JingTao Yao Joseph P. Herbert Department. The applications of rough set analysis for WSS is looked at in this article. In particular, our focus of the challenges of using rough sets in a WMSS and detail some of the applications of rough sets in analyzing

Yao, JingTao

183

A microfluidics-based technique for automated and rapid labeling of cells for flow cytometry  

Science Journals Connector (OSTI)

Flow cytometry is a powerful technique capable of simultaneous multi-parametric analysis of heterogeneous cell populations for research and clinical applications. In recent years, the flow cytometer has been miniaturized and made portable for application in clinical- and resource-limited settings. The sample preparation procedure, i.e. labeling of cells with antibodies conjugated to fluorescent labels, is a time consuming (~45 min) and labor-intensive procedure. Microfluidics provides enabling technologies to accomplish rapid and automated sample preparation. Using an integrated microfluidic device consisting of a labeling and washing module, we demonstrate a new protocol that can eliminate sample handling and accomplish sample and reagent metering, high-efficiency mixing, labeling and washing in rapid automated fashion. The labeling module consists of a long microfluidic channel with an integrated chaotic mixer. Samples and reagents are precisely metered into this device to accomplish rapid and high-efficiency mixing. The mixed sample and reagents are collected in a holding syringe and held for up to 8 min following which the mixture is introduced into an inertial washing module to obtain 'analysis-ready' samples. The washing module consists of a high aspect ratio channel capable of focusing cells to equilibrium positions close to the channel walls. By introducing the cells and labeling reagents in a narrow stream at the center of the channel flanked on both sides by a wash buffer, the elution of cells into the wash buffer away from the free unbound antibodies is accomplished. After initial calibration experiments to determine appropriate 'holding time' to allow antibody binding, both modules were used in conjunction to label MOLT-3 cells (T lymphoblast cell line) with three different antibodies simultaneously. Results confirm no significant difference in mean fluorescence intensity values for all three antibodies labels (p

Phani K Patibandla; Rosendo Estrada; Manasaa Kannan; Palaniappan Sethu

2014-01-01T23:59:59.000Z

184

Analysis and Model-Based Control of Servomechanisms With Friction  

E-Print Network (OSTI)

Analysis and Model-Based Control of Servomechanisms With Friction Evangelos G. Papadopoulos e Engineering, National Technical University of Athens, 15780 Athens, Greece Friction is responsible for several, model-based feedback compensation is studied for servomechanism tracking tasks. Several kinetic friction

Papadopoulos, Evangelos

185

Surveillance data bases, analysis, and standardization program  

SciTech Connect

The traveler presented a paper at the Seventh ASTM-EURATOM Symposium on Reactor Dosimetry and co-chaired an oral session on Computer Codes and Methods. Papers of considerable interest to the NRC Surveillance Dosimetry Program involved statistically based adjustment procedures and uncertainties. The information exchange meetings with Czechoslovakia and Hungary were very enlightening. Lack of large computers have hindered their surveillance program. They depended very highly on information from their measurement programs which were somewhat limited because of the lack of sophisticated electronics. The Nuclear Research Institute at Rez had to rely on expensive mockups of power reactor configurations to test their fluence exposures. Computers, computer codes, and updated nuclear data would advance their technology rapidly, and they were not hesitant to admit this fact. Both eastern-bloc countries said that IBM is providing an IBM 3090 for educational purposes but research and development studies would have very limited access. They were very apologetic that their currencies were not convertible, and any exchange means that they could provide services or pay for US scientists in their respective countries, but funding for their scientists in the United States, or expenses that involved payment in dollars, must come from us.

Kam, F.B.K.

1990-09-26T23:59:59.000Z

186

Environmental Analysis of the Coal-based Power Production with Amine-based Carbon Capture  

E-Print Network (OSTI)

Environmental Analysis of the Coal-based Power Production with Amine-based Carbon Capture J. To capture carbon dioxide from fossil fuel power plants and to store it in geological formations (CCS at the beginning. From an electricity generator's perspective the amine based carbon capture offers some advantages

187

Control Technology - Multi-Pollutant Control Using Membrane-Based Up-Flow  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Control Control Technologies - Multi-Pollutant Control Using Membrane-Based Up-Flow Wet Precipitation Up-Flow Wet Precipitation The primary objective of this work is to compare the performance of metallic collecting surfaces to the performance of membrane collecting surfaces in a wet electrostatic precipitator (ESP), in terms of their efficiency in removing fine particulates, acid aerosols, and mercury from an actual power plant flue gas stream. The relative durability and overall cost-effectiveness of the membrane collectors versus metallic collectors will also be evaluated. Due to the higher specific powers, superior corrosion resistance, and better wetting and cleaning qualities, the membrane-collecting surface is expected to perform better than the metallic surface. The second objective of the project will be to compare the overall fine particulate, acid aerosol, and mercury removal efficiency of the baseline flue gas treatment system on BMP Units 1 and 2 to the efficiencies obtained when the two wet ESP systems (metallic and membrane collectors) are added to the existing treatment system.

188

MULTI-POLLUTANT CONTROL USING MEMBRANE--BASED UP-FLOW WET ELECTROSTATIC PRECIPITATION  

SciTech Connect

This is the Final Report of the ''Multi-Pollutant Control Using Membrane-Based Up-flow Wet Electrostatic Precipitation'' project funded by the US Department of Energy's National Energy Technology Laboratory under DOE Award No. DE-FC26-02NT41592 to Croll-Reynolds Clean Air Technologies (CRCAT). In this 18 month project, CRCAT and its team members conducted detailed emission tests of metallic and new membrane collection material within a wet electrostatic precipitator (WESP) at First Energy's Penn Power's Bruce Mansfield (BMP) plant in Shippingport, Pa. The Membrane WESP was designed to be as similar as the metallic WESP in terms of collection area, air-flow, and electrical characteristics. Both units are two-field units. The membrane unit was installed during the 2nd and 3rd quarters of 2003. Testing of the metallic unit was performed to create a baseline since the Mansfield plant had installed selective catalytic reduction equipment for NOx control and a sodium bisulfate injection system for SO3 control during the spring of 2003. Tests results on the metallic WESP were consistent with previous testing for PM2.5, SO3 mist and mercury. Testing on the membrane WESP demonstrated no adverse impact and equivalent removal efficiencies as that of the metallic WESP. Testing on both units was performed at 8,000 acfm and 15,000 acfm. Summary results are shown.

James Reynolds

2004-10-29T23:59:59.000Z

189

Diagnostics based on thermodynamic analysis of performance of steam turbines: case histories  

SciTech Connect

The purpose of this paper is to describe some types of failures which have occurred with the ENEL stock of fossil-fuel steam turbines over the last 5--7 years. This paper also presents the corresponding thermodynamic analysis of turbine parameters which permitted failure diagnosis and pre-scheduled opening of the turbine. The examined failures concern: in-service rupture of the bell seal retainer nut between the SH steam inlet sleeves and the inner HP/IP cylinder, on turbines with a main steam inlet system with bell seals; incorrect assembly of pressure seal rings between steam inlet sleeves and the inner cylinder on turbines with a main steam inlet system with pressure seal rings during a scheduled outage; and steam flow path restriction in IP turbine inlet. Thermodynamic failure analysis and the subsequent analysis of turbine damage (mechanical and financial) enabled condition-based maintenance operations to be carried out.

Tirone, G.; Arrighi, L.; Bonifacino, L.

1996-12-31T23:59:59.000Z

190

Complex-Wide Waste Flow Analysis V1.0 verification and validation report  

SciTech Connect

The complex-wide waste flow analysis model (CWWFA) was developed to assist the Department of Energy (DOE) Environmental Management (EM) Office of Science and Technology (EM-50) to evaluate waste management scenarios with emphasis on identifying and prioritizing technology development opportunities to reduce waste flows and public risk. In addition, the model was intended to support the needs of the Complex-Wide Environmental Integration (EMI) team supporting the DOE`s Accelerating Cleanup: 2006 Plan. CWWFA represents an integrated environmental modeling system that covers the life cycle of waste management activities including waste generation, interim process storage, retrieval, characterization and sorting, waste preparation and processing, packaging, final interim storage, transport, and disposal at a final repository. The CWWFA shows waste flows through actual site-specific and facility-specific conditions. The system requirements for CWWFA are documented in the Technical Requirements Document (TRD). The TRD is intended to be a living document that will be modified over the course of the execution of CWWFA development. Thus, it is anticipated that CWWFA will continue to evolve as new requirements are identified (i.e., transportation, small sites, new streams, etc.). This report provides a documented basis for system verification of CWWFA requirements. System verification is accomplished through formal testing and evaluation to ensure that all performance requirements as specified in the TRD have been satisfied. A Requirement Verification Matrix (RVM) was used to map the technical requirements to the test procedures. The RVM is attached as Appendix A. Since February of 1997, substantial progress has been made toward development of the CWWFA to meet the system requirements. This system verification activity provides a baseline on system compliance to requirements and also an opportunity to reevaluate what requirements need to be satisfied in FY-98.

Hsu, K.M.; Lundeen, A.S.; Oswald, K.B.; Shropshire, D.E.; Robinson, J.M.; West, W.H.

1997-11-21T23:59:59.000Z

191

Viscous potential flow analysis of electrified miscible finitely conducting fluid through porous media  

SciTech Connect

In this work, a viscous potential flow analysis is used to investigate capillary surface waves between two horizontal finite fluid layers. The two layers have finite conductivities and admit mass and heat transfer. A general dispersion relation is derived. The presence of finite conductivities together with the dielectric permeabilities makes the horizontal electric field play a dual role in the stability criterion. The phenomenon of negative viscosity is observed. A new growth rate parameter, depending on the kinematical viscosity of the lower fluid layer, is found and has a stabilizing effect on the unstable modes. The growth rates and neutral stability curve are given and applied to air-water interface. The effects of various parameters are discussed for the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities.

Obied Allah, M. H. [Department of Mathematics, Faculty of Science, Assiut University, Assiut (Egypt)

2013-04-15T23:59:59.000Z

192

Multifractal detrended fluctuation analysis of combustion flames in four-burner impinging entrained-flow gasifier  

E-Print Network (OSTI)

On a laboratory-scale testing platform of impinging entrained-flow gasifier with four opposed burners, the flame images for diesel combustion and gasification process were measured with a single charge coupled device (CCD) camera. The two-dimensional multifractal detrended fluctuation analysis was employed to investigate the multifractal nature of the flame images. Sound power-law scaling in the annealed average of detrended fluctuations was unveiled when the order $q>0$ and the multifractal feature of flame images were confirmed. Further analyses identified two multifractal parameters, the minimum and maximum singularity $\\alpha_{\\min}$ and $\\alpha_{\\max}$, serving as characteristic parameters of the multifractal flames. These two characteristic multifractal parameters vary with respect to different experimental conditions.

Niu, Miao-Ren; Yan, Zhuo-Yong; Guo, Qing-Hua; Liang, Qin-Feng; Wang, Fu-Chen; Yu, Zun-Hong

2007-01-01T23:59:59.000Z

193

Mixed Aleatory/Epistemic Uncertainty Quantification for Hypersonic Flows via Gradient-Based Optimization  

E-Print Network (OSTI)

Mixed Aleatory/Epistemic Uncertainty Quantification for Hypersonic Flows via Gradient/aleatory uncertainties is demonstrated within the context of hypersonic flows. Specifically, this work focuses in which experimental data is difficult or impossible to obtain, as is the case with hypersonic flows

Anitescu, Mihai

194

American Institute of Aeronautics and Astronautics Numerical Simulations of Plasma Based Flow Control  

E-Print Network (OSTI)

strategies to various flow fields.1-3 One of the major areas for applications of flow control is the gas for reducing losses and improving performance in gas turbine engine component flowfields.6-9 Although many Field, Cleveland, OH 44135 A mathematical model was developed to simulate flow control applications

Jacob, Jamey

195

Nonlinear model-based control of two-phase flow in risers by feedback linearization  

E-Print Network (OSTI)

conditions at offshore oilfields. The slugging flow constitutes an unstable and highly nonlinear system and flow rates (Storkaas (2005), Storkaas and Skogestad (2007)). The oscillatory flow condition in offshore disturbances or plant changes. We aim to find a robust control solution for anti-slug control systems

Skogestad, Sigurd

196

An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique  

SciTech Connect

In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.

Battista, L.; Sciuto, S. A.; Scorza, A. [Department of Engineering, ROMA TRE University, via della Vasca Navale 79/81, Rome (Italy)

2013-03-15T23:59:59.000Z

197

Agent-Based Modeling and Simulation for Hydrogen Transition Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Agent Agent Agent - - Based Modeling Based Modeling and Simulation (ABMS) and Simulation (ABMS) for Hydrogen Transition for Hydrogen Transition Analysis Analysis Marianne Mintz Hydrogen Transition Analysis Workshop US Department of Energy January 26, 2006 Objectives and Scope for Phase 1 2 Analyze the hydrogen infrastructure development as a complex adaptive system using an agent-based modeling and simulation (ABMS) approach Develop an ABMS model to simulate the evolution of that system, spanning the entire H2 supply chain from production to consumption Identify key factors that either promote or inhibit the growth of H2 infrastructure Apply ABMS to get new insights into transition, particularly early transition phase - Dynamic interplay between supply and demand

198

Heat source/sink effects on non-Newtonian MHD fluid flow and heat transfer over a permeable stretching surface: Lie group analysis  

Science Journals Connector (OSTI)

An analysis is performed for flow and heat transfer of a non-Newtonian fluid known as Casson fluid over a permeable stretching surface through a...

M. N. Tufail; A. S. Butt; A. Ali

2014-01-01T23:59:59.000Z

199

Improvement of SRAM-based failure analysis calibrated IDDQ testing  

E-Print Network (OSTI)

the methodology and detail procedure of simulation based failure analysis t, echnique is explained. Chapter IV discusses the implementation of Iddq current calibration. Chapter V provides some examples supporting the failure analysis methodology . Conclusion... method that is often used to localize surface defects is by examining the hot emission spots. This process functions by detecting the excessive heat generated by the defective neighborhood during device operation. Heat sensitive liquid crystal...

Balachandran, Hariharan

1996-01-01T23:59:59.000Z

200

Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates  

Science Journals Connector (OSTI)

This paper presents an experimental energy and exergy analysis for a novel flat plate solar air heater (SAH) with several obstacles and without obstacles. For increasing the available heat-transfer area may be achieved if air is flowing simultaneously and separately over and under the different obstacle absorbing plates, instead of only flowing either over or under the different obstacle absorbing plates, leading to improved collector efficiency. The measured parameters were the inlet and outlet temperatures, the absorbing plate temperatures, the ambient temperature, and the solar radiation. Further, the measurements were performed at different values of mass flow rate of air and different levels of absorbing plates in flow channel duct. After the analysis of the results, the optimal value of efficiency is middle level of absorbing plate in flow channel duct for all operating conditions and the double-flow collector supplied with obstacles appears significantly better than that without obstacles. At the end of this study, the exergy relations are delivered for different SAHs. The results show that the largest irreversibility is occurring at the flat plate (without obstacles) collector in which collector efficiency is smallest.

Hikmet Esen

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Computational analysis of incompressible turbulent flow in an idealised swirl combustor  

Science Journals Connector (OSTI)

Isothermal turbulent swirling flow in a water test rig, representing an idealised swirl combustor, has been investigated experimentally and numerically. The Reynolds number based on combustor inlet diameter and mean axial velocity was 4600. Two cases were investigated at two different swirl intensities. Time-averaged velocities and RMS turbulence intensities were measured by Laser Doppler Anemometer (LDA), along radial traverses at different axial stations. In the three-dimensional, transient computations, Large Eddy Simulations (LES) and URANS Reynolds Stress Models (RSM) have basically been employed as modelling strategies for turbulence. To model subgrid-scale (SGS) turbulence for LES, the models owing to Smagorinsky and Voke were used. In one of the cases, Detached Eddy Simulations (DES) were also applied. The predictions have been compared with the measurements. It has been observed that LES provides the best overall accuracy, where no significant differences between the Smagorinsky and Voke models could be discerned.

A.C. Benim; M.P. Escudier; A. Nahavandi; A.K. Nickson; K.J. Syed; F. Joos

2011-01-01T23:59:59.000Z

202

Using the DOE Knowledge Base for Special Event Analysis  

SciTech Connect

The DOE Knowledge Base is a library of detailed information whose purpose is to support the United States National Data Center (USNDC) in its mission to monitor compliance with the Comprehensive Test Ban Treaty (CTBT). One of the important tasks which the USNDC must accomplish is to periodically perform detailed analysis of events of high interest, so-called "Special Events", to provide the national authority with information needed to make policy decisions. In this paper we investigate some possible uses of the Knowledge Base for Special Event Analysis (SEA), and make recommendations for improving Knowledge Base support for SEA. To analyze an event in detail, there are two basic types of data which must be used sensor-derived data (wave- forms, arrivals, events, etc.) and regiohalized contextual data (known sources, geological characteristics, etc.). Cur- rently there is no single package which can provide full access to both types of data, so for our study we use a separate package for each MatSeis, the Sandia Labs-developed MATLAB-based seismic analysis package, for wave- form data analysis, and ArcView, an ESRI product, for contextual data analysis. Both packages are well-suited to pro- totyping because they provide a rich set of currently available functionality and yet are also flexible and easily extensible, . Using these tools and Phase I Knowledge Base data sets, we show how the Knowledge Base can improve both the speed and the quality of SEA. Empirically-derived interpolated correction information can be accessed to improve both location estimates and associated error estimates. This information can in turn be used to identi~ any known nearby sources (e.g. mines, volcanos), which may then trigger specialized processing of the sensor data. Based on the location estimate, preferred magnitude formulas and discriminants can be retrieved, and any known blockages can be identified to prevent miscalculations. Relevant historic events can be identilled either by spatial proximity searches or through waveform correlation processing. The locations and waveforms of these events can then be made available for side-by-side comparison and processing. If synthetic modeling is thought to be warranted, a wide variety of rele- vant contextu~l information (e.g. crustal thickness and layering, seismic velocities, attenuation factors) can be retrieved and sent to the appropriate applications. Once formedj the synthetics can then be brought in for side-by-side comparison and fhrther processing. Based on our study, we make two general recommendations. First, proper inter-process communication between sensor data analysis software and contextual data analysis sofisvare should be developed. Second, some of the Knowl- edge Base data sets should be prioritized or winnowed to streamline comparison with observed quantities.

Armstrong, H.M.; Harris, J.M.; Young, C.J.

1998-10-20T23:59:59.000Z

203

Numerical study for CANDU moderator temperature prediction by using the two-phase flow analysis code, CUPID  

Science Journals Connector (OSTI)

Abstract KAERI has been developing a component-scale thermal–hydraulics code, CUPID. The code adopts a three-dimensional, transient, three-field model for two-phase flow. In this study, we investigated the thermal hydraulic behavior of the moderator inside the Calandria tank of a CANDU reactor by using the CUPID code. At first, we have validated the CUPID code using the experiments that were performed at Stern Laboratories Inc. To avoid the complexity to generate computational geometry around the Calandria tube bundles, a porous media approach was applied for that region and the flow resistance inside the porous media zone was modeled by an empirical correlation. An open media is applied to generate the outer fluid layer including the inlet nozzles. Computational grids near the inlet nozzles should be well-generated because the flow field is very sensitive to the momentum flux from the nozzle. Since the axial flow can be assumed to be invariant for this experiment, a two-dimensional approach was adopted. The mixed flow pattern of forced and natural convection inside the Calandria vessel has been successfully predicted by the CUPID code. The analysis has been further extended to two-phase flow conditions and, then, a map of the local maximum moderator temperature in the Calandria vessel versus the injection flow rate was derived, which can be used to predict the local subcooled margin in the vessel.

Jae Ryong Lee; Sang Gi Park; Han Young Yoon; Hyoung Tae Kim; Jae Jun Jeong

2013-01-01T23:59:59.000Z

204

An Integrated Modeling Analysis of Unsaturated Flow Patterns in Fractured Rock  

E-Print Network (OSTI)

study, heat flow simulations use a 3-D thermal model grid (model grid, which is used for gas flow and ambient heat-flowgrid showing a smaller model domain, used for modeling gas and heat

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

205

Uncertainty and sensitivity analysis for two-phase flow in the vicinity of the repository in the 1996 performance assessment for the Waste Isolation Pilot Plant: Undisturbed conditions  

SciTech Connect

Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment for the Waste Isolation Pilot Plant are presented for two-phase flow the vicinity of the repository under undisturbed conditions. Techniques based on Latin hypercube sampling, examination of scatterplots, stepwise regression analysis, partial correlation analysis and rank transformation are used to investigate brine inflow, gas generation repository pressure, brine saturation and brine and gas outflow. Of the variables under study, repository pressure is potentially the most important due to its influence on spallings and direct brine releases, with the uncertainty in its value being dominated by the extent to which the microbial degradation of cellulose takes place, the rate at which the corrosion of steel takes place, and the amount of brine that drains from the surrounding disturbed rock zone into the repository.

HELTON,JON CRAIG; BEAN,J.E.; ECONOMY,K.; GARNER,J.W.; MACKINNON,ROBERT J.; MILLER,JOEL D.; SCHREIBER,JAMES D.; VAUGHN,PALMER

2000-05-19T23:59:59.000Z

206

Experimental and numerical determination of mechanical properties of polygonal wood particles and their flow analysis in silos  

E-Print Network (OSTI)

Responding to a lack in the literature, mechanical properties of polygonal wood particles are determined for use in a discrete element model (DEM) for flow analysis in silos, and some methods are proposed for determining such parameters. The parameters arrived at here have also formed part of the input to the SPOLY software, developed in-house to compute the DEM model with spheropolyhedron elements. The model is validated using a 2D physical model, where prismatic particles with polygonal cross sections are placed inside a silo with variable aperture and hopper angle. Validation includes comparison of flow-rates computed by SPOLY, displacement profiles, and clogging thresholds with experimental results. The good agreement that emerges will encourage future use of miniature triaxial tests, grain-surface profilometry, inclined slope tests, and numerical analysis of the intragranular stresses - toward a direct construction of the contact-deformation relations required in realistic DEM modelling of particle flow with angular-shaped particles.

Fernando Alonso-Marroquín; Álvaro Ramírez-Gómez; Carlos González-Montellano; Nigel Balaam; Dorian A. H. Hanaor; E. A. Flores-Johnson; Yixiang Gan; Shumiao Chen; Luming Shen

2014-05-13T23:59:59.000Z

207

Fluid structure interaction modelling for the vibration of tube bundles, part I: analysis of the fluid flow in a tube bundle  

SciTech Connect

It is well known that a fluid may strongly influence the dynamic behaviour of a structure. Many different physical phenomena may take place, depending on the conditions: fluid flow, fluid at rest, little or high displacements of the structure. Inertial effects can take place, with lower vibration frequencies, dissipative effects also, with damping, instabilities due to the fluid flow (Fluid Induced Vibration). In this last case the structure is excited by the fluid. Tube bundles structures are very common in the nuclear industry. The reactor cores and the steam generators are both structures immersed in a fluid which may be submitted to a seismic excitation or an impact. In this case the structure moves under an external excitation, and the movement is influence by the fluid. The main point in such system is that the geometry is complex, and could lead to very huge sizes for a numerical analysis. Homogenization models have been developed based on the Euler equations for the fluid. Only inertial effects are taken into account. A next step in the modelling is to build models based on the homogenization of the Navier-Stokes equations. The papers presents results on an important step in the development of such model: the analysis of the fluid flow in a oscillating tube bundle. The analysis are made from the results of simulations based on the Navier-Stokes equations for the fluid. Comparisons are made with the case of the oscillations of a single tube, for which a lot of results are available in the literature. Different fluid flow pattern may be found, depending in the Reynolds number (related to the velocity of the bundle) and the Keulegan Carpenter number (related to the displacement of the bundle). A special attention is paid to the quantification of the inertial and dissipative effects, and to the forces exchanges between the bundle and the fluid. The results of such analysis will be used in the building of models based on the homogenization of the Navier-Stokes equations for the fluid. (authors)

Desbonnets, Quentin; Broc, Daniel [CEA, Lab Etudes Mecan Sism, DEN, SEMT, DM2S, F-91191 Gif Sur Yvette, (France)

2012-07-01T23:59:59.000Z

208

An analysis of pressure driven cross-flow through a long slot connecting two parallel channels  

SciTech Connect

Cross-flow between two parallel channels that were connected by a long narrow slot has been measured. The data was presented primarily in terms of transverse resistance coefficients. This data has been analyzed with momentum balances applied to both the axial and transverse components of the slot flow. The importance of wall friction to the slot flow and the necessity of calculating the axial component of the slot flow is demonstrated.

Shadday, M.A. Jr.

1992-12-31T23:59:59.000Z

209

Verification of a VOF-based two-phase flow model for wave breaking and wave–structure interactions  

Science Journals Connector (OSTI)

The objective of the present study is to develop a volume of fluid (VOF)-based two-phase flow model and to discuss the applicability of the model to the simulation of wave–structure interactions. First, an overview of the development of VOF-type models for applications in the field of coastal engineering is presented. The numerical VOF-based two-phase flow model has been developed and applied to the simulations of wave interactions with a submerged breakwater as well as of wave breaking on a slope. Numerical results are then compared with laboratory experimental data in order to verify the applicability of the numerical model to the simulations of complex interactions of waves and permeable coastal structures, including the effects of wave breaking. It is concluded that the two-phase flow model with the aid of the advanced VOF technique can provide with acceptably accurate numerical results on the route to practical purposes.

Phung Dang Hieu; Katsutoshi Tanimoto

2006-01-01T23:59:59.000Z

210

Multimodal knowledge-based analysis in multimedia event detection  

Science Journals Connector (OSTI)

Multimedia Event Detection (MED) is a multimedia retrieval task with the goal of finding videos of a particular event in a large-scale Internet video archive, given example videos and text descriptions. We focus on the multimodal knowledge-based analysis ... Keywords: acoustic concept indexing, adaptive semantic similarity, multimedia retrieval, visual concept signature

Ehsan Younessian; Teruko Mitamura; Alexander Hauptmann

2012-06-01T23:59:59.000Z

211

Type-Based Analysis of Generic Key Management APIs  

E-Print Network (OSTI)

Type-Based Analysis of Generic Key Management APIs Pedro Ad~ao1,2 , Riccardo Focardi3, Universit`a Ca' Foscari, Venezia, Italy Abstract In the past few years, cryptographic key management APIs. In fact, real APIs provide mechanisms to declare the intended use of keys but they are not strong enough

212

Model-Based Dependability Analysis of Programmable Drug Infusion Pumps  

E-Print Network (OSTI)

Model-Based Dependability Analysis of Programmable Drug Infusion Pumps Sriram Sankaranarayanan.lastname@colorado.edu Abstract. Infusion pumps are commonly used in home/hospital care to inject drugs into a patient a case-study involving an infusion pump used to manage pain through the infusion of analgesic drugs

Sankaranarayanan, Sriram

213

A Denotational Model for Component-Based Risk Analysis  

E-Print Network (OSTI)

matches the value of the assets to be protected. A certain level of risk may be acceptable if the riskA Denotational Model for Component-Based Risk Analysis Gyrd Brændeland1,2, , Atle Refsdal2 , and Ketil Stølen1,2 1 Department of Informatics, University of Oslo, Norway 2 SINTEF, Norway Abstract. Risk

Stølen, Ketil

214

Low Dose Radiation Research Program: Biologically Based Analysis of Lung  

NLE Websites -- All DOE Office Websites (Extended Search)

Biologically Based Analysis of Lung Cancer Incidence in a Large Biologically Based Analysis of Lung Cancer Incidence in a Large Canadian Occupational Cohort with Low-LET Low-dose Radiation Exposure, and Comparison with Japanese Atomic Bomb Survivors. Authors: W.D. Hazelton, D. Krewski, S.H. Moolgavkar Lung cancer incidence is analyzed in a large Canadian National Dose Registry (CNDR) cohort with individual annual dosimetry for low-dose occupational exposure to gamma and tritium radiation using several types of multistage models. The primary analysis utilizes the two-stage clonal expansion model (TSCE), with sensitivity analyses using extensions of this model incorporating additional stages. Characteristic and distinct temporal patterns of risk are found for dose-response affecting early, middle, or late stages of carcinogenesis, e.g., initiation with one or more stages,

215

On-board Velocity Estimation and Closed-loop Control of a Quadrotor UAV based on Optical Flow  

E-Print Network (OSTI)

On-board Velocity Estimation and Closed-loop Control of a Quadrotor UAV based on Optical Flow an efficient fall back routine for any kind of UAV (Unmanned Aerial Vehicles) since we rely solely. The results show that our approach is able to recover the ego-motion of a flying UAV in realistic conditions

216

A Comparison of Scale Estimation Schemes for a Quadrotor UAV based on Optical Flow and IMU Measurements  

E-Print Network (OSTI)

A Comparison of Scale Estimation Schemes for a Quadrotor UAV based on Optical Flow and IMU of autonomous UAV flight control, cameras are ubiquitously exploited as a cheap and effective onboard sensor linear velocity in the UAV body frame from direct measurement of the instantaneous (and non

Paris-Sud XI, Université de

217

A Multiscale Approach to Mesh-based Surface Tension Flows Nils Thurey Chris Wojtan Markus Gross Greg Turk  

E-Print Network (OSTI)

A Multiscale Approach to Mesh-based Surface Tension Flows Nils Th¨urey Chris Wojtan Markus Gross 1: Our method allows us to efficiently simulate complex surface tension phenomena such as this crown surface tension forces that is free from typical strict time step constraints. The second simulation layer

Frey, Pascal

218

Decomposition of fluorohydrocarbons in atmospheric-pressure flowing air using coaxial-line-based microwave torch plasma  

Science Journals Connector (OSTI)

Results of the investigation of decomposition of fluorohydrocarbons C2H2F4 (HFC-134a) and CHClF2 (CFC-22) in atmospheric-pressure flowing air using a coaxial-line-based microwave torch plasma are presented. Conce...

M. Jasi?ski; P. Szczucki; M. Dors; J. Mizeraczyk…

2000-03-01T23:59:59.000Z

219

High Performance Computing Based Methods for Simulation and Optimisation of Flow Problems.  

E-Print Network (OSTI)

??The thesis is concerned with the study of methods in high-performance computing for simulation and optimisation of flow problems that occur in the framework of… (more)

Bockelmann, Hendryk

2010-01-01T23:59:59.000Z

220

VFLOW2D - A Vorte-Based Code for Computing Flow Over Elastically Supported Tubes and Tube Arrays  

SciTech Connect

A numerical flow model is developed to simulate two-dimensional fluid flow past immersed, elastically supported tube arrays. This work is motivated by the objective of predicting forces and motion associated with both deep-water drilling and production risers in the oil industry. This work has other engineering applications including simulation of flow past tubular heat exchangers or submarine-towed sensor arrays and the flow about parachute ribbons. In the present work, a vortex method is used for solving the unsteady flow field. This method demonstrates inherent advantages over more conventional grid-based computational fluid dynamics. The vortex method is non-iterative, does not require artificial viscosity for stability, displays minimal numerical diffusion, can easily treat moving boundaries, and allows a greatly reduced computational domain since vorticity occupies only a small fraction of the fluid volume. A gridless approach is used in the flow sufficiently distant from surfaces. A Lagrangian remap scheme is used near surfaces to calculate diffusion and convection of vorticity. A fast multipole technique is utilized for efficient calculation of velocity from the vorticity field. The ability of the method to correctly predict lift and drag forces on simple stationary geometries over a broad range of Reynolds numbers is presented.

WOLFE,WALTER P.; STRICKLAND,JAMES H.; HOMICZ,GREGORY F.; GOSSLER,ALBERT A.

2000-10-11T23:59:59.000Z

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis: Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Geographically Based Hydrogen Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Technical Report NREL/TP-540-40373 October 2006 NREL is operated by Midwest Research Institute â—Ź Battelle Contract No. DE-AC36-99-GO10337 Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Prepared under Task No. HF65.8310 Technical Report NREL/TP-540-40373 October 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

222

Multivariate recurrence network analysis for characterizing horizontal oil-water two-phase flow  

Science Journals Connector (OSTI)

Characterizing complex patterns arising from horizontal oil-water two-phase flows is a contemporary and challenging problem of paramount importance. We design a new multisector conductance sensor and systematically carry out horizontal oil-water two-phase flow experiments for measuring multivariate signals of different flow patterns. We then infer multivariate recurrence networks from these experimental data and investigate local cross-network properties for each constructed network. Our results demonstrate that a cross-clustering coefficient from a multivariate recurrence network is very sensitive to transitions among different flow patterns and recovers quantitative insights into the flow behavior underlying horizontal oil-water flows. These properties render multivariate recurrence networks particularly powerful for investigating a horizontal oil-water two-phase flow system and its complex interacting components from a network perspective.

Zhong-Ke Gao; Xin-Wang Zhang; Ning-De Jin; Norbert Marwan; Jürgen Kurths

2013-09-13T23:59:59.000Z

223

Higher-order compositional modeling of three-phase flow in 3D fractured porous media based on cross-flow equilibrium  

SciTech Connect

Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical discontinuities in phase properties at the matrix-fracture interfaces and at phase boundaries. In this work, we account for gravity and Fickian diffusion. The modeling of capillary effects is discussed in a separate paper. We present the mathematical framework, using the implicit-pressure-explicit-composition (IMPEC) scheme, which facilitates rigorous thermodynamic stability analyses and the computation of phase behavior effects to account for transfer of species between the phases. A deceptively simple CFL condition is implemented to improve numerical stability and accuracy. We provide six numerical examples at both small and larger scales and in two and three dimensions, to demonstrate powerful features of the formulation.

Moortgat, Joachim, E-mail: jmoortgat@rerinst.org; Firoozabadi, Abbas, E-mail: abbas.firoozabadi@yale.edu

2013-10-01T23:59:59.000Z

224

Nonlinear model-based control of two-phase flow in risers by feedback linearization  

E-Print Network (OSTI)

conditions at offshore oilfields. The slugging flow constitutes an unstable and highly nonlinear system systems, stabilizing control. 1. INTRODUCTION The oscillatory flow condition in offshore multi systems tend to become unstable after some time, because of large inflow disturbances or plant changes

Skogestad, Sigurd

225

Analysis of Compressible and Incompressible Flows Through See-through Labyrinth Seals  

E-Print Network (OSTI)

effect on the discharge coefficient. In particular, for compressible fluid under certain flow and seal geometric conditions, the discharge coefficient did not increase with an increase in the Reynolds number. It was correlated to the pressure ratio, g...1842g1870. Moreover, it was also related to the fact that the flow of the fluid through the constriction became compressible and the flow eventually became choked. At low pressure ratios (less than 0.7), Saikishan?s incompressible model deviated from...

Woo, Jeng Won

2011-08-08T23:59:59.000Z

226

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

SciTech Connect

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

227

Analysis of wind turbine vibrations based on SCADA data  

E-Print Network (OSTI)

Vibrations of a wind turbine have a negative impact on its performance. Mitigating this undesirable impact requires knowledge of the relationship between the vibrations and other wind turbine parameters that could be potentially modified. Three approaches for ranking the impact importance of measurable turbine parameters on the vibrations of the drive train and the tower are discussed. They include the predictor importance analysis, the global sensitivity analysis, and the correlation coefficient analysis versed in data mining and statistics. To decouple the impact of wind speed on the vibrations of the drive train and the tower, the analysis is performed on data sets with narrow speed ranges. Wavelet analysis is applied to filter noisy accelerometer data. To exclude the impact malfunctions on the vibration analysis, the data are analyzed in a frequency domain. Data-mining algorithms are used to build models with turbine parameters of interest as inputs, and the vibrations of drive train and tower as outputs. The performance of each model is thoroughly evaluated based on metrics widely used in the wind industry. The neural network algorithm outperforms other classifiers and is considered to be the most promising approach to study wind turbine vibrations. ?DOI: 10.1115/1.4001461?

Andrew Kusiak; Zijun Zhang

2010-01-01T23:59:59.000Z

228

Purged window apparatus. [On-line spectroscopic analysis of gas flow systems  

DOE Patents (OSTI)

A purged window apparatus is described which utilizes tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube thereby preventing backstreaming of flowing gases under investigation in a chamber to which a plurality of similar purged apparatus is attached with the consequent result that spectroscopic analyses can be undertaken for lengthy periods without the necessity of interrupting the flow for cleaning or replacing the windows due to contamination.

Ballard, E.O.

1982-04-05T23:59:59.000Z

229

Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses  

E-Print Network (OSTI)

from previous evaluations of fracture hydromechanicalof flow through fractures in rock, In: Proceedings ofsaturated, variable-aperture fracture, Geophys. Res. Lett. ,

Cappa, F.

2009-01-01T23:59:59.000Z

230

Air-Breathing Laminar Flow-Based Microfluidic Fuel Cell Ranga S. Jayashree, Lajos Gancs, Eric R. Choban,, Alex Primak, Dilip Natarajan,  

E-Print Network (OSTI)

Air-Breathing Laminar Flow-Based Microfluidic Fuel Cell Ranga S. Jayashree, Lajos Gancs, Eric R-based microfluidic fuel cell. Micro fuel cells have long been recognized as promising high energy density power,5 and microfluidic cells.6 Recent efforts have shown that the microfluidic transport phenomenon of laminar flow can

Kenis, Paul J. A.

231

Laser-Based Ignition of the Preheated Supersonic Hydrogen-Air Flow  

Science Journals Connector (OSTI)

In recent years, optical breakdown is being studied for solving of body drag decreasing in supersonic flows (see, for example, [1]). At the same time the focusing of the laser radiation can be used as a method fo...

V. A. Pavlov; O. P. Shatalov; Yu. V. Tunik

2012-01-01T23:59:59.000Z

232

Drift-flux analysis of two-phase flow in microgravity  

E-Print Network (OSTI)

-phase phenomena such as flow regime transitions and void fraction at microgravity conditions is greatly limited and its development is still in its infancy. A Texas A&M University two-phase flow loop was tested aboard NASA's KC-135 aircraft to collect two...

Braisted, Jonathan David

2012-06-07T23:59:59.000Z

233

Weather data analysis based on typical weather sequence analysis. Application: energy building simulation  

E-Print Network (OSTI)

In building studies dealing about energy efficiency and comfort, simulation software need relevant weather files with optimal time steps. Few tools generate extreme and mean values of simultaneous hourly data including correlation between the climatic parameters. This paper presents the C++ Runeole software based on typical weather sequences analysis. It runs an analysis process of a stochastic continuous multivariable phenomenon with frequencies properties applied to a climatic database. The database analysis associates basic statistics, PCA (Principal Component Analysis) and automatic classifications. Different ways of applying these methods will be presented. All the results are stored in the Runeole internal database that allows an easy selection of weather sequences. The extreme sequences are used for system and building sizing and the mean sequences are used for the determination of the annual cooling loads as proposed by Audrier-Cros (Audrier-Cros, 1984). This weather analysis was tested with the datab...

David, Mathieu; Garde, Francois; Boyer, Harry

2014-01-01T23:59:59.000Z

234

Analysis of steady-state flow and advective transport in the Eastern Snake River Plain Aquifer System, Idaho  

SciTech Connect

The regional aquifer system of the eastern Snake River Plain is an important component of the hydrologic system in eastern Idaho. The aquifer was thought to be the largest unified ground-water reservoir on the North American continent but is probably second to the Floridian aquifer in the southeastern United States. Flow in the aquifer is from major recharge areas in the northeastern part of the plain to discharge areas in the southwestern part. A comprehensive analysis of the occurrence and movement of water in the aquifer was presented by Garabedian. The analysis included a description of the recharge and discharge, the hydraulic properties, and a numerical model of the aquifer. The purposes of this report are to: (1) describe compartments in the aquifer that function as intermediate and regional flow systems, (2) describe pathlines for flow originating at or near the water table, and (3) quantify traveltimes for adjective transport originating at or near the water table. The model constructed for this study and described in this report will aid those concerned with the management and protection of the aquifer. The model will serve as a tool to further our understanding of the aquifer and will aid in assessing the needs for future flow and transport studies of the aquifer.

Ackerman, D.J.

1995-10-01T23:59:59.000Z

235

Techno-Economic Analysis of Biofuels Production Based on Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Production Based on Biofuels Production Based on Gasification Ryan M. Swanson, Justinus A. Satrio, and Robert C. Brown Iowa State University Alexandru Platon ConocoPhillips Company David D. Hsu National Renewable Energy Laboratory Technical Report NREL/TP-6A20-46587 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Techno-Economic Analysis of Biofuels Production Based on Gasification Ryan M. Swanson, Justinus A. Satrio, and Robert C. Brown Iowa State University Alexandru Platon

236

Crawl-based analysis of web applications: Prospects and challenges  

Science Journals Connector (OSTI)

Abstract In this paper we review five years of research in the field of automated crawling and testing of web applications. We describe the open source Crawljax tool, and the various extensions that have been proposed in order to address such issues as cross-browser compatibility testing, web application regression testing, and style sheet usage analysis. Based on that we identify the main challenges and future directions of crawl-based testing of web applications. In particular, we explore ways to reduce the exponential growth of the state space, as well as ways to involve the human tester in the loop, thus reconciling manual exploratory testing and automated test input generation. Finally, we sketch the future of crawl-based testing in the light of upcoming developments, such as the pervasive use of touch devices and mobile computing, and the increasing importance of cyber-security.

Arie van Deursen; Ali Mesbah; Alex Nederlof

2015-01-01T23:59:59.000Z

237

Forming Teams for Teaching Programming based on Static Code Analysis  

E-Print Network (OSTI)

The use of team for teaching programming can be effective in the classroom because it helps students to generate and acquire new knowledge in less time, but these groups to be formed without taking into account some respects, may cause an adverse effect on the teaching-learning process. This paper proposes a tool for the formation of team based on the semantics of source code (SOFORG). This semantics is based on metrics extracted from the preferences, styles and good programming practices. All this is achieved through a static analysis of code that each student develops. In this way, you will have a record of students with the information extracted; it evaluates the best formation of teams in a given course. The team's formations are based on programming styles, skills, pair programming or with leader.

Arosemena-Trejos, Davis; Clunie, Clifton

2012-01-01T23:59:59.000Z

238

Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis  

SciTech Connect

Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)

2012-07-01T23:59:59.000Z

239

Analysis of cross-flow mixed convection with applications to building heat transfer  

SciTech Connect

A numerical simulation model has been developed for partial enclosure with restricted inlet and outlet simulating the building fluid flow and heat transfer scenario. Computed results are presented for a number of geometric configurations over a wide range of Reynolds and Rayleigh numbers and validated with available experimental data. The physical processes were modeled by solving equations for the conservation of mass, momentum, and energy with appropriate boundary conditions. The properties of the fluid were assumed to remain approximately constant over the range of operation and the buoyancy was incorporated using the Boussinesq approximation. The k-{var_epsilon} model was used for the simulation of turbulence. The computed results included the local velocity and temperature and the variation of local heat transfer coefficient along the heated side wall. Computed results showed excellent agreement with experimental data. The flow pattern within the enclosure was found to be quite complex in nature and consisted of a core flow due to forced convection near the central region of the enclosure and strong buoyancy induced flow near the heated side walls. It was found that as the flow rate through the enclosure increased, the enhancement of heat transfer above that for natural convection alone, also increased. The variation of the local heat transfer coefficient over the heated surface was found to be strongly affected by the recirculation of portions of the forced flow within the enclosure as well as the impingement to or separation of flow from the side walls in some regions.

Gao, S.; Rahman, M.M.

1999-07-01T23:59:59.000Z

240

ATLAS I: A GeneralPurpose, SingleChip ATM Switch with CreditBased Flow Control  

E-Print Network (OSTI)

ATLAS I: A General­Purpose, Single­Chip ATM Switch with Credit­Based Flow Control Manolis Katevenis@ics.forth.gr Tel.: +30 (81) 391664 Fax: +30 (81) 391661 URL: file://ftp.ics.forth.gr/tech­reports/1996/1996.HOTI.ATLAS_I_ATMswitchChip.ps.gz ABSTRACT: ATLAS I is a 16x16 single­chip ATM switch, featuring 20 Gbit/s aggregate I/O throughput, sub

Katevenis, Manolis G.H.

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New aspects in the analysis of loss-of-flow transients for homogeneous and heterogeneous LMFBR cores  

SciTech Connect

This paper presents the results of analyses of unprotected loss-of-flow (LOF) transients which have been performed to date using the new SAS4A code system. Accident histories for homogeneous and heterogeneous demo-sized cores (300 MWe) are compared and emphasis is placed on phenomena occurring after the initiation of fuel motion as described by LEVITATE. LEVITATE is the SAS4A model for the analysis of fuel and cladding dynamics under loss-of-flow (LOF) conditions and is believed to be the most-sophisticated computational tool currently available for fuel-motion analysis. The results of this analysis indicate that the initiation phase of an unprotected loss-of-flow accident has a considerably lower energetics potential in a heterogeneous core than in a homogeneous core. The difference is larger than previously indicated by SAS3D. Better phenomenological models implemented in SAS4A provide increased confidence in this aspect of safety evaluation of LMFBR cores.

Tentner, A.M.; Wider, H.U.

1982-01-01T23:59:59.000Z

242

A graph-based system for network-vulnerability analysis  

SciTech Connect

This paper presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The graph-based tool can identify the set of attack paths that have a high probability of success (or a low effort cost) for the attacker. The system could be used to test the effectiveness of making configuration changes, implementing an intrusion detection system, etc. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.

Swiler, L.P.; Phillips, C.

1998-06-01T23:59:59.000Z

243

Enabling microscopic simulators to perform system-level analysis of viscoelastic flows  

E-Print Network (OSTI)

State-of-the-art methods for simulating viscoelastic flows couple the conservation equations for mass and momentum with a model from kinetic theory that describes the microstructural state of the polymer. Introduction of ...

Anwar, Zubair

2008-01-01T23:59:59.000Z

244

Effects of non-Darcy flow on pressure buildup analysis of hydraulically fractured gas reservoirs  

E-Print Network (OSTI)

Conventional well-testing techniques are commonly used to evaluate pressure transient tests of hydraulically fractured wells to estimate values such as formation permeability, fracture length, and fracture conductivity. When non-Darcy flow occurs...

Alvarez Vera, Cesar

2012-06-07T23:59:59.000Z

245

NMR imaging and hydrodynamic analysis of neutrally buoyant non-Newtonian slurry flows  

SciTech Connect

The flow of solids loaded suspension in cylindrical pipes has been the object of intense experimental and theoretical investigations in recent years. These types of flows are of great interest in chemical engineering because of their important use in many industrial manufacturing processes. Such flows are for example encountered in the manufacture of solid-rocket propellants, advanced ceramics, reinforced polymer composites, in heterogenous catalytic reactors, and in the pipeline transport of liquid-solids suspensions. In most cases, the suspension microstructure and the degree of solids dispersion greatly affect the final performance of the manufactured product. For example, solid propellant pellets need to be extremely-well dispersed in gel matrices for use as rocket engine solid fuels. The homogeneity of pellet dispersion is critical to allow good uniformity of the burn rate, which in turn affects the final mechanical performance of the engine. Today`s manufacturing of such fuels uses continuous flow processes rather than batch processes. Unfortunately, the hydrodynamics of such flow processes is poorly understood and is difficult to assess because it requires the simultaneous measurements of liquid/solids phase velocities and volume fractions. Due to the recent development in pulsed Fourier Transform NMR imaging, NMR imaging is now becoming a powerful technique for the non intrusive investigation of multi-phase flows. This paper reports and exposes a state-of-the-art experimental and theoretical methodology that can be used to study such flows. The hydrodynamic model developed for this study is a two-phase flow shear thinning model with standard constitutive fluid/solids interphase drag and solids compaction stresses. this model shows good agreement with experimental data and the limitations of this model are discussed.

Bouillard, J.X. [Argonne National Lab., IL (United States); Sinton, S.W. [Lockheed Missiles and Space Co., Palo Alto, CA (United States). Research Lab.

1995-02-01T23:59:59.000Z

246

A comparison of an analytical and two electric analogy methods of hydraulic flow analysis  

E-Print Network (OSTI)

~ +0. 00085 ~ *0. 0006 ~ ~0. 0005 OS0. 0004 ~ +0 ~ 00015 PIPE DIAMETER, D& IN INCHES FIGVRE 2 ~ RATIO ~ / D FOR VARIOOS TRIPES OF PIPES Employing the continuity equation for steady incompressible flow, the following relationship is found, Q=AV... ~ +0. 00085 ~ *0. 0006 ~ ~0. 0005 OS0. 0004 ~ +0 ~ 00015 PIPE DIAMETER, D& IN INCHES FIGVRE 2 ~ RATIO ~ / D FOR VARIOOS TRIPES OF PIPES Employing the continuity equation for steady incompressible flow, the following relationship is found, Q=AV...

Hoffman, Joe Douglas

2012-06-07T23:59:59.000Z

247

Modeling, Analysis and Simulation of Multiscale Preferential Flow - 8/05-8/10 - Final Report  

SciTech Connect

The research agenda of this project are: (1) Modeling of preferential transport from mesoscale to macroscale; (2) Modeling of fast flow in narrow fractures in porous media; (3) Pseudo-parabolic Models of Dynamic Capillary Pressure; (4) Adaptive computational upscaling of flow with inertia from porescale to mesoscale; (5) Adaptive modeling of nonlinear coupled systems; and (6) Adaptive modeling and a-posteriori estimators for coupled systems with heterogeneous data.

Ralph Showalter; Malgorzata Peszynska

2012-07-03T23:59:59.000Z

248

Loading and Regeneration Analysis of a Diesel Particulate Filter with a Radio Frequency-Based Sensor  

SciTech Connect

Accurate knowledge of diesel particulate filter (DPF) loading is critical for robust and efficient operation of the combined engine-exhaust aftertreatment system. Furthermore, upcoming on-board diagnostics regulations require on-board technologies to evaluate the status of the DPF. This work describes the application of radio frequency (RF) based sensing techniques to accurately measure DPF soot levels and the spatial distribution of the accumulated material. A 1.9L GM turbo diesel engine and a DPF with an RF-sensor were studied. Direct comparisons between the RF measurement and conventional pressure-based methods were made. Further analysis of the particulate matter loading rates was obtained with a mass-based soot emission measurement instrument (TEOM). Comparison with pressure drop measurements show the RF technique is unaffected by exhaust flow variations and exhibits a high degree of sensitivity to DPF soot loading and good dynamic response. Additional computational and experimental work further illustrates the spatial resolution of the RF measurements. Based on the experimental results, the RF technique shows significant promise for improving DPF control enabling optimization of the combined engine-aftertreatment system for improved fuel economy and extended DPF service life.

Sappok, Alex [Filter Sensing Technologies] [Filter Sensing Technologies; Prikhodko, Vitaly Y [ORNL] [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

249

Efficient sensitivity analysis for flow and transport in the Earth's crust and mantle  

Science Journals Connector (OSTI)

......1985. Sensitivity analysis for steady state...1963. Sensitivity Analysis of Dynamical Systems...cyclically operated reactors and separators...Application of sensitivity analysis to oil refinery emission, Reliability Eng. Sys. Safety......

C. A. Hier-Majumder; B. J. Travis; E. Bélanger; G. Richard; A. P. Vincent; D. A. Yuen

2006-08-01T23:59:59.000Z

250

Lossless droplet transfer of droplet-based microfluidic analysis  

DOE Patents (OSTI)

A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.

Kelly, Ryan T (West Richland, WA); Tang, Keqi (Richland, WA); Page, Jason S (Kennewick, WA); Smith, Richard D (Richland, WA)

2011-11-22T23:59:59.000Z

251

DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS  

SciTech Connect

In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.

X. Wang; X. Sun; H. Zhao

2011-09-01T23:59:59.000Z

252

A reduced-order model based on proper orthogonal decomposition for non-isothermal two-phase flows  

E-Print Network (OSTI)

computational e±ciency of the POD based ROM: 1) Database splitting, 2) Freezing the matrix of the linear system and 3) Time step adjustment. Detailed numerical analysis of both the full-order model, MFIX and the POD-based ROM, including estimating the number...

Richardson, Brian Ross

2009-05-15T23:59:59.000Z

253

Shear-slip analysis in multiphase fluid-flow reservoir engineering ap plications using TOUGH-FLAC  

E-Print Network (OSTI)

IN MULTIPHASE FLUID-FLOW RESERVOIR ENGINEERING APPLICATIONSin multiphase fluid-flow reservoir-engineering applications.in multiphase fluid-flow reservoir engineering applications.

Rutqvist, Jonny; Birkholzer, Jens; Cappa, Frederic; Oldenburg, Curt; Tsang, Chin-Fu

2008-01-01T23:59:59.000Z

254

Design and performance evaluation of an OpenFlow-based control plane for software-  

E-Print Network (OSTI)

. Muñoz, "Control plane techniques for elastic optical networks: GMPLS/PCE vs OpenFlow," in IEEE Global. Moreolo, R. Martinez, L. Liu, T. Tsuritani, and I. Morita, "Experimental assessment of a combined PCE, R. Martínez, L. Liu, T. Tsuritani, and I. Morita, "GMPLS/PCE control of flexi-grid DWDM optical

Yoo, S. J. Ben

255

Modified Centrality Measure Based on Bidirectional Power Flow for Smart and Bulk Power  

E-Print Network (OSTI)

the directionality of power flow of future smart grid. Appli- cability of the proposed method has been evaluated smart and new technologies by utilities [1]. The scope of smart grid includes various generation options systems is the most lucrative part of smart grid from the point of view of regulating energy usage. Excess

Pota, Himanshu Roy

256

Experiences and Challenges Scaling PFLOTRAN, a PETSc-based Code for Subsurface Reactive Flow Simulations,  

E-Print Network (OSTI)

, groundwater, solvers 1 Introduction Over the past several decades, subsurface (ground- water) flow these simplified ground- water models are still in wide use, advances in subsurface science have enabled and the efficacy of proposed remediation strategies for legacy waste sites. For years, traditional models

Mills, Richard

257

Numerical Analysis of Heat Transfer and Fluid Characteristics of Flowing Liquid Nitrogen in HTS Cable  

Science Journals Connector (OSTI)

Abstract High-temperature superconducting (HTS) cable has heat intrusion from the termination including joule heat generation at the terminal joint and from the room temperature cable through the Cu current lead. According to the length of the HTS cable, this heat loss may become a considerable amount which cannot be ignored in the HTS cable system. In this study, referring to a high-voltage cable (HV cable) which was developed in M-PACC project, the effect of heat transfer at the interface between the terminal joint and LN2 in the terminal vessel (ho) on the temperature of the HTS cable were calculated and evaluated. The condition of flow in the terminal vessel was assumed to be natural convection, forced flow or static condition for evaluating this effect with various heat transfer condition. As a result, in the case of the natural convection, most of heats flow into the LN2 in the terminal vessel where the volumetric flow of the LN2 is large since ho becomes high. Accordingly, the temperature rise of the LN2 in the inner pipe of Cu former and the terminal vessel can be restricted. However, in the cases of the forced flow and the static condition, most of heats flow into the LN2 in the inner pipe where the volumetric flow of the LN2 is small since ho becomes small. Accordingly, the temperature rise of the LN2 in the inner pipe becomes high. This temperature rise of the LN2 in the inner pipe makes the temperature of the HTS conductor large resulting in remarkable increase of AC losses. Consequently, on the HV cable design, for restriction of the AC loss increase, it is expected that designing the HTS cable termination such as extending outer surface of the terminal joint for increasing of the heat inflow from the terminal joint to the LN2 in the vessel is effective.

O. Maruyama; T. Ohkuma; T. Izumi; Y. Shiohara

2014-01-01T23:59:59.000Z

258

Numerical analysis of hypersonic continuum and rarefied gas flows near blunt probes is presented under conditions of intensive gas blowing from the surface.  

E-Print Network (OSTI)

1 Abstract Numerical analysis of hypersonic continuum and rarefied gas flows near blunt probes injection, hydrogen combustion, hypersonic flow, exponential box-scheme, direct-simulation Monte-Carlo method. 1 Introduction Numerical and experimental studies [1, 2] of aerothermodynamics of hypersonic

Riabov, Vladimir V.

259

A graph-based network-vulnerability analysis system  

SciTech Connect

This report presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.

Swiler, L.P.; Phillips, C. [Sandia National Labs., Albuquerque, NM (United States); Gaylor, T. [3M, Austin, TX (United States). Visual Systems Div.

1998-01-01T23:59:59.000Z

260

A graph-based network-vulnerability analysis system  

SciTech Connect

This paper presents a graph based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level of effort for the attacker, various graph algorithms such as shortest path algorithms can identify the attack paths with the highest probability of success.

Swiler, L.P.; Phillips, C.; Gaylor, T.

1998-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Three-dimensional analysis of fluid flow and heat transfer in single- and two-layered micro-channel heat sinks  

Science Journals Connector (OSTI)

A three-dimensional numerical analysis of laminar fluid flow and conjugate heat transfer has been conducted for single- and two-layered micro-channel heat sinks. The validity of the numerical model ... power, the...

M. L.-J. Levac; H. M. Soliman; S. J. Ormiston

2011-11-01T23:59:59.000Z

262

A Video Semantic Analysis Method Based on Kernel Discriminative Sparse Representation and Weighted KNN  

Science Journals Connector (OSTI)

......Intelligence, Machine Learning and Data Analytics A Video Semantic Analysis Method Based on Kernel Discriminative...China Handling editor: Zhangbing Zhou To improve the video semantic analysis for video surveillance, a new video semantic analysis method......

Yongzhao Zhan; Shan Dai; Qirong Mao; Lu Liu; Wei Sheng

2014-11-01T23:59:59.000Z

263

Numerical analysis of the coherent radiation emission by two stacked Josephson flux-flow oscillators  

SciTech Connect

The numerical investigation of the radiation emission by a system of two magnetically coupled, long Josephson junctions is reported. Time-dependent synchronized voltage response in the flux-flow regime is analyzed for the case of in-phase and out-of-phase oscillations in the junctions. Simulations show that Josephson junctions operating in the in-phase flux-flow mode may generate rf radiation power by a factor of more than 4 larger than that of a single Josephson junction. The radiation in the out-of-phase flux-flow mode is characterized by nearly completely suppressed amplitudes of odd harmonics and considerably damped even harmonics as compared to that of a single barrier junction. The dependence of the radiation power on the parameter spread between the junctions is investigated. The advantages of using stacked Josephson junctions as oscillators for the sub-mm wave band are discussed. {copyright} {ital 1996 American Institute of Physics.}

Wallraff, A.; Goldobin, E.; Ustinov, A.V. [Institute of Thin Film and Ion Technology, Research Center Juelich (KFA), D-52425 (Germany)] [Institute of Thin Film and Ion Technology, Research Center Juelich (KFA), D-52425 (Germany)

1996-12-01T23:59:59.000Z

264

Performance Analysis of an Annular Diffuser Under the Influence of a Gas Turbine Stage Exit Flow  

E-Print Network (OSTI)

stream entering the gap from the pressure side of the blade separates at the tip, due to the sharp corner, and contracts into a jet. Wear and tear of the sharp corners of the blade is inevitable with time, and as the tip corners get eroded the flow... displacements. Plus, over the engine life span the gap increases due to the metal wear and tear. One practiced method of mitigating the over the tip leakage flow is achieved by introducing a shroud to the rotor blade. In Figure 2.13, two high pressure...

Blanco, Rafael Rodriguez

2013-12-31T23:59:59.000Z

265

A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements  

SciTech Connect

With the recent development of temperature measurement systems, continuous temperature profiles can be obtained with high precision. Small temperature changes can be detected by modern temperature measuring instruments such as fiber optic distributed temperature sensor (DTS) in intelligent completions and will potentially aid the diagnosis of downhole flow conditions. In vertical wells, since elevational geothermal changes make the wellbore temperature sensitive to the amount and the type of fluids produced, temperature logs can be used successfully to diagnose the downhole flow conditions. However, geothermal temperature changes along the wellbore being small for horizontal wells, interpretations of a temperature log become difficult. The primary temperature differences for each phase (oil, water, and gas) are caused by frictional effects. Therefore, in developing a thermal model for horizontal wellbore, subtle temperature changes must be accounted for. In this project, we have rigorously derived governing equations for a producing horizontal wellbore and developed a prediction model of the temperature and pressure by coupling the wellbore and reservoir equations. Also, we applied Ramey's model (1962) to the build section and used an energy balance to infer the temperature profile at the junction. The multilateral wellbore temperature model was applied to a wide range of cases at varying fluid thermal properties, absolute values of temperature and pressure, geothermal gradients, flow rates from each lateral, and the trajectories of each build section. With the prediction models developed, we present inversion studies of synthetic and field examples. These results are essential to identify water or gas entry, to guide flow control devices in intelligent completions, and to decide if reservoir stimulation is needed in particular horizontal sections. This study will complete and validate these inversion studies.

Keita Yoshioka; Pinan Dawkrajai; Analis A. Romero; Ding Zhu; A. D. Hill; Larry W. Lake

2007-01-15T23:59:59.000Z

266

Numerical analysis of laminar fluid flow and heat transfer in a parallel plate channel with normally in-line positioned plates  

E-Print Network (OSTI)

NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEL WITH NORMALLY IN-LINE POSITIONED PLATES A Thesis by JOHN GRADY iVICMATH Submitted to the Office of Graduate Studies of Texas AkM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEI WITH NORMALLY IN-LINE POSITIONED PLATES A...

McMath, John Grady

2012-06-07T23:59:59.000Z

267

On Smoothing Surfaces in Voxel Based Finite Element Analysis of Trabecular Bone  

E-Print Network (OSTI)

-)finite element analysis based on three-dimen- sional computed tomography (CT) data of human bone takes place finite element (FE) analysis. The approach based on the FE analysis leads to linear systems of equations analysis the computational domain is composed of a multitude of tiny cubes, so-called voxels

Frey, Pascal

268

The Fourier-Like and Hartley-Like Wavelet Analysis Based on Hilbert Transforms  

E-Print Network (OSTI)

In continuous-time wavelet analysis, most wavelet present some kind of symmetry. Based on the Fourier and Hartley transform kernels, a new wavelet multiresolution analysis is proposed. This approach is based on a pair of orthogonal wavelet functions and is named as the Fourier-Like and Hartley-Like wavelet analysis. A Hilbert transform analysis on the wavelet theory is also included.

Soares, L R; Cintra, R J

2015-01-01T23:59:59.000Z

269

Results from One- and Two- Phase Fluid Flow Calculations within the Preliminary Safety Analysis of the Gorleben Site - 13310  

SciTech Connect

Rock salt is one of the possible host rock formations for the disposal of high-level radioactive wastes in Germany. The Preliminary Safety Analysis of the Gorleben Site (Vorlaeufige Sicherheitsanalyse Gorleben, VSG) evaluates the long-term safety of a hypothetical repository in the salt dome of Gorleben, Germany. A mature repository concept and detailed knowledge of the site allowed a detailed process analysis within the project by numerical modeling of single-phase and two-phase flow. The possibility of liquid transport from the shafts to the emplacement drifts is one objective of the present study. Also, the implications of brine inflow on radionuclide transport and gas generation are investigated. Pressure build-up due to rock convergence and gas generation, release of volatile radionuclides from the waste and pressure-driven contaminant transport were considered, too. The study confirms that the compaction behavior of salt grit backfill is one of the most relevant factors for the hydrodynamic evolution of the repository and the transport of contaminants. Due to the interaction between compaction, saturation and pore pressure, complex flow patterns evolve. Emplacement drifts serve as gas sinks or sources at different times. In most calculation cases, the backfill reaches its final porosity after a few hundred years. The repository is then sealed and radionuclides can only be transported by diffusion in the liquid phase. Estimates for the final porosity of compacted backfill range between 0 % and 2 %. The exact properties of the backfill regarding single- and two-phase flow are not well known for this porosity range. The study highlights that this uncertainty has a profound impact on flow and transport processes over long time-scales. Therefore, more research is needed to characterize the properties of crushed salt grit at low porosities or to reduce the adverse effects of possible higher porosities by repository optimization. (authors)

Kock, Ingo; Larue, Juergen; Fischer, Heidi; Frieling, Gerd; Navarro, Martin; Seher, Holger [Department of Final Disposal, GRS mbH, Schwertnergasse 1, 50667 Cologne (Germany)] [Department of Final Disposal, GRS mbH, Schwertnergasse 1, 50667 Cologne (Germany)

2013-07-01T23:59:59.000Z

270

ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost Grid Level Energy Storage - Jesse Wainright, Case Western Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. Iron Based Flow Batteries for Low Cost Grid Level Energy Storage J.S. Wainright, R. F. Savinell, P.I.s Dept. of Chemical Engineering, Case Western Reserve University Purpose Impact on Iron Based Batteries on the DOE OE Energy Storage Mission Recent Results Recent Results Develop efficient, cost-effective grid level storage capability based on iron. Goals of this Effort: * Minimize Cost/Watt by increasing current density - Hardware Cost >> Electrolyte Cost * Minimize Cost/Whr by increasing plating capacity * Maximize Efficiency by minimizing current lost to hydrogen evolution Electrochemistry of the all-Iron system:

271

A Novel Power Flow Method for Long Term Frequency Stability Analysis  

E-Print Network (OSTI)

This thesis presents a novel approach for a power system to find a practical power flow solution when all the generators in the system have hit their real power output limits, such as some generator units shutting down or load outages. The approach...

Yan, Wenjin

2013-05-06T23:59:59.000Z

272

CARBON FLOW AND ECOSYSTEM DYNAMICS IN THE MISSISSIPPI RIVER PLUME DESCRIBED BY INVERSE ANALYSIS  

E-Print Network (OSTI)

into four subregions connected by water flow to discretize the gradient of ecosystem properties as river with mid-salinity waters (15-29 psu), surrounded by a larger region of net heterotrophic waters where- salinity regions of the plume, with strongest sedimentation from the productive mid- salinity regions

Breed, Greg A.

273

Turbulent Flow Analysis and Coherent Structure Identification in Experimental Models with Complex Geometries  

E-Print Network (OSTI)

through the core of an annular pebble bed VHTR. The complex geometry of the core and the highly turbulent nature of the coolant flow passing through the gaps of fuel pebbles make this case quite challenging. In this experiment, a high frequency Hot Wire...

Amini, Noushin

2012-02-14T23:59:59.000Z

274

Stochastic Formulation for Uncertainty Analysis of Two-Phase Flow in  

E-Print Network (OSTI)

time, transverse displacement, water saturation, production rate, and cumulative recovery are presented as a random space function. In turn, satu- ration and flow velocity are random fields. We operate in a La, models of reservoir characterization are common practice in the oil industry. How- ever, deterministic

Zhang, Dongxiao

275

Properties Investigation of Sulfonated Poly(ether ether ketone)/Polyacrylonitrile Acid–Base Blend Membrane for Vanadium Redox Flow Battery Application  

Science Journals Connector (OSTI)

Acid–base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-...

Zhaohua Li; Wenjing Dai; Lihong Yu; Le Liu; Jingyu Xi; Xinping Qiu; Liquan Chen

2014-10-15T23:59:59.000Z

276

Survey of sampling-based methods for uncertainty and sensitivity analysis.  

SciTech Connect

Sampling-based methods for uncertainty and sensitivity analysis are reviewed. The following topics are considered: (1) Definition of probability distributions to characterize epistemic uncertainty in analysis inputs, (2) Generation of samples from uncertain analysis inputs, (3) Propagation of sampled inputs through an analysis, (4) Presentation of uncertainty analysis results, and (5) Determination of sensitivity analysis results. Special attention is given to the determination of sensitivity analysis results, with brief descriptions and illustrations given for the following procedures/techniques: examination of scatterplots, correlation analysis, regression analysis, partial correlation analysis, rank transformations, statistical tests for patterns based on gridding, entropy tests for patterns based on gridding, nonparametric regression analysis, squared rank differences/rank correlation coefficient test, two dimensional Kolmogorov-Smirnov test, tests for patterns based on distance measures, top down coefficient of concordance, and variance decomposition.

Johnson, Jay Dean; Helton, Jon Craig; Sallaberry, Cedric J. PhD. (.; .); Storlie, Curt B. (Colorado State University, Fort Collins, CO)

2006-06-01T23:59:59.000Z

277

Nanoparticle sizing method based on fluorescence anisotropy analysis  

Science Journals Connector (OSTI)

Abstract Demand for applications of nanoparticles in electric architecture has been increasing. Nanoparticles provide new opportunities for improving circuit response. We discuss a novel method for evaluating nanoparticle sizes based on fluorescence anisotropy analysis. Particle size evaluation is possible through measurements of the rotational diffusion coefficient, which is sensitive to particle size. We develop a system for measuring rotational diffusion coefficients by using a fluorescent probe to label a particle. We report fundamental experiments that verify the feasibility of the proposed method. The rotational diffusion coefficients of gold nanoparticles with diameters ranging 6–20 nm were measured using the proposed method. The measured rotational diffusion coefficients decrease with increasing particle size. This finding indicates that nanoparticles smaller than 15 nm can be measured with fine resolution.

Terutake Hayashi; Yuki Ishizaki; Masaki Michihata; Yasuhiro Takaya; Shin-Ichi Tanaka

2015-01-01T23:59:59.000Z

278

Effectiveness of computer-based instruction: An updated analysis  

Science Journals Connector (OSTI)

A meta-analysis of findings from 254 controlled evaluation studies showed that computer-based instruction (CBI) usually produces positive effects on students. The studies covered learners of all age levels — from kindergarten pupils to adult students. CBI programs raised student examination scores by 0.30 standard deviations in the average study, a moderate but significant effect. Size of effect varied, however, as a function of study feature. Effects were larger in published rather than unpublished studies, in studies in which different teachers taught experimental and control classes, and in studies of short duration. CBI also produced small but positive changes in student attitudes toward teaching and computers, and it reduced substantially the amount of time needed for instruction.

Chen-Lin C. Kulik; James A. Kulik

1991-01-01T23:59:59.000Z

279

A COMPREHENSIVE STATISTICALLY-BASED METHOD TO INTERPRET REAL-TIME FLOWING MEASUREMENTS  

SciTech Connect

In this project, we are developing new methods for interpreting measurements in complex wells (horizontal, multilateral and multi-branching wells) to determine the profiles of oil, gas, and water entry. These methods are needed to take full advantage of ''smart'' well instrumentation, a technology that is rapidly evolving to provide the ability to continuously and permanently monitor downhole temperature, pressure, volumetric flow rate, and perhaps other fluid flow properties at many locations along a wellbore; and hence, to control and optimize well performance. In this first year, we have made considerable progress in the development of the forward model of temperature and pressure behavior in complex wells. In this period, we have progressed on three major parts of the forward problem of predicting the temperature and pressure behavior in complex wells. These three parts are the temperature and pressure behaviors in the reservoir near the wellbore, in the wellbore or laterals in the producing intervals, and in the build sections connecting the laterals, respectively. Many models exist to predict pressure behavior in reservoirs and wells, but these are almost always isothermal models. To predict temperature behavior we derived general mass, momentum, and energy balance equations for these parts of the complex well system. Analytical solutions for the reservoir and wellbore parts for certain special conditions show the magnitude of thermal effects that could occur. Our preliminary sensitivity analyses show that thermal effects caused by near-wellbore reservoir flow can cause temperature changes that are measurable with smart well technology. This is encouraging for the further development of the inverse model.

Pinan Dawkrajai; Analis A. Romero; Keita Yoshioka; Ding Zhu; A.D. Hill; Larry W. Lake

2004-10-01T23:59:59.000Z

280

A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements  

SciTech Connect

This project is motivated by the increasing use of distributed temperature sensors for real-time monitoring of complex wells (horizontal, multilateral and multi-branching wells) to infer the profiles of oil, gas, and water entry. Measured information can be used to interpret flow profiles along the wellbore including junction and build section. In this second project year, we have completed a forward model to predict temperature and pressure profiles in complex wells. As a comprehensive temperature model, we have developed an analytical reservoir flow model which takes into account Joule-Thomson effects in the near well vicinity and multiphase non-isothermal producing wellbore model, and couples those models accounting mass and heat transfer between them. For further inferences such as water coning or gas evaporation, we will need a numerical non-isothermal reservoir simulator, and unlike existing (thermal recovery, geothermal) simulators, it should capture subtle temperature change occurring in a normal production. We will show the results from the analytical coupled model (analytical reservoir solution coupled with numerical multi-segment well model) to infer the anomalous temperature or pressure profiles under various conditions, and the preliminary results from the numerical coupled reservoir model which solves full matrix including wellbore grids. We applied Ramey's model to the build section and used an enthalpy balance to infer the temperature profile at the junction. The multilateral wellbore temperature model was applied to a wide range of cases varying fluid thermal properties, absolute values of temperature and pressure, geothermal gradients, flow rates from each lateral, and the trajectories of each build section.

Pinan Dawkrajai; Keita Yoshioka; Analis A. Romero; Ding Zhu; A.D. Hill; Larry W. Lake

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

MSET modeling of Crystal River-3 venturi flow meters.  

SciTech Connect

The analysis of archived Crystal River-3 feedwater flow data reveals a slow and steady degradation of the flow meter measurements during the 1992/1993 operating cycle. MSET can reliably estimate the true flow rate and quantify the degree of departure between the indicated signal and the true flow rate with high accuracy. The MSET computed flow rate could, in principle, be used to provide an improved estimate of the reactor power and hence avoid the revenue loss associated with derating the reactor based on a faulty feedwater flow rate indication.

Bockhorst, F. K.; Gross, K. C.; Herzog, J. P.; Wegerich, S. W.

1998-01-05T23:59:59.000Z

282

Outlook of the World Steel Cycle Based on the Stock and Flow Dynamics  

Science Journals Connector (OSTI)

The material flows are dependent on various factors, such as economic parameters (GDP, metal price, energy price, etc.) and technological restrictions (ore grade, energy intensity, etc.) (7). ... Compared with eq 9, the variable t is replaced with per capita GDP, and stock is handled in per capita values as well (therefore, here Ssat, which denotes total stock, was replaced with ssat, which denotes per capita stock). ... that the world demand for iron ore (primary iron) depends not on the vol. of GDP but on the variation of GDP, as already reported. ...

Hiroki Hatayama; Ichiro Daigo; Yasunari Matsuno; Yoshihiro Adachi

2010-07-22T23:59:59.000Z

283

Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions.  

SciTech Connect

Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) techniques. The major challenges facing commercialization of steam electrolysis technology are related to efficiency, cost, and durability of the SOECs. The goal of this effort is to guide the design and optimization of performance for high temperature electrolysis (HTE) systems. An SOEC module developed by FLUENT Inc. as part of their general CFD code was used for the SOEC analysis by INL. ANL has developed an independent SOEC model that combines the governing electrochemical mechanisms based on first principals to the heat transfer and fluid dynamics in the operation of SOECs. The ANL model was embedded into the commercial STAR-CD CFD software, and is being used for the analysis of SOECs by ANL. The FY06 analysis performed by ANL and reported here covered the influence of electrochemical properties, SOEC component resistances and their contributing factors, SOEC size and inlet flow conditions, and SOEC flow configurations on the efficiency and expected durability of these systems. Some of the important findings from the ANL analysis are: (1) Increasing the inlet mass flux while going to larger cells can be a compromise to overcome increasing thermal and current density gradients while increasing the cell size. This approach could be beneficial for the economics of the SOECs; (2) The presence of excess hydrogen at the SOEC inlet to avoid Ni degradation can result in a sizeable decrease in the process efficiency; (3) A parallel-flow geometry for SOEC operation (if such a thing be achieved without sealing problems) yields smaller temperature gradients and current density gradients across the cell, which is favorable for the durability of the cells; (4) Contact resistances can significantly influence the total cell resistance and cell temperatures over a large range of operating potentials. Thus it is important to identify and avoid SOEC stack conditions leading to such high resistances due to poor contacts.

Yildiz, B.; Smith, J.; Sofu, T.; Nuclear Engineering Division

2008-06-25T23:59:59.000Z

284

E-Print Network 3.0 - analysis web-based interface Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

web-based interface Search Powered by Explorit Topic List Advanced Search Sample search results for: analysis web-based interface Page: << < 1 2 3 4 5 > >> 1 Web-based Support...

285

Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow  

DOE Patents (OSTI)

A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

Armstrong, William D. (Laramie, WY); Naughton, Jonathan (Laramie, WY); Lindberg, William R. (Laramie, WY)

2008-09-02T23:59:59.000Z

286

Analysis of laser remote fusion cutting based on a mathematical model  

SciTech Connect

Laser remote fusion cutting is analyzed by the aid of a semi-analytical mathematical model of the processing front. By local calculation of the energy balance between the absorbed laser beam and the heat losses, the three-dimensional vaporization front can be calculated. Based on an empirical model for the melt flow field, from a mass balance, the melt film and the melting front can be derived, however only in a simplified manner and for quasi-steady state conditions. Front waviness and multiple reflections are not modelled. The model enables to compare the similarities, differences, and limits between laser remote fusion cutting, laser remote ablation cutting, and even laser keyhole welding. In contrast to the upper part of the vaporization front, the major part only slightly varies with respect to heat flux, laser power density, absorptivity, and angle of front inclination. Statistical analysis shows that for high cutting speed, the domains of high laser power density contribute much more to the formation of the front than for low speed. The semi-analytical modelling approach offers flexibility to simplify part of the process physics while, for example, sophisticated modelling of the complex focused fibre-guided laser beam is taken into account to enable deeper analysis of the beam interaction. Mechanisms like recast layer generation, absorptivity at a wavy processing front, and melt film formation are studied too.

Matti, R. S. [Department of Engineering Sciences and Mathematics, Luleĺ University of Technology, S-971 87 Luleĺ (Sweden); Department of Mechanical Engineering, College of Engineering, University of Mosul, Mosul (Iraq); Ilar, T.; Kaplan, A. F. H. [Department of Engineering Sciences and Mathematics, Luleĺ University of Technology, S-971 87 Luleĺ (Sweden)

2013-12-21T23:59:59.000Z

287

An analog analysis of transient heat flow in solids with temperature-dependent thermal properties  

E-Print Network (OSTI)

) used a nonlinear material known as Metrosil to simulate the nonlinear variations of thermal properties for combined conductive and radiant heat transfer. Since that time, Friedmann (8) has used nonlinear resistances in conjunction with an electronic... at end of this thesis. K = thermal conductivity of heat conducting media, and K and S are functions of the temperature t. Since the formation of these equations, solutions of transient heat flow problems involving materials in which the thermal...

Lee, Dwain Edward

2012-06-07T23:59:59.000Z

288

Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor  

E-Print Network (OSTI)

Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.

Chris H. Rycroft; Gary S. Grest; James W. Landry; Martin Z. Bazant

2006-02-16T23:59:59.000Z

289

Analysis of granular flow in a pebble-bed nuclear reactor  

Science Journals Connector (OSTI)

Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440000 frictional, viscoelastic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30° or 60°. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.

Chris H. Rycroft; Gary S. Grest; James W. Landry; Martin Z. Bazant

2006-08-24T23:59:59.000Z

290

Analysis of the flow imbalance on the profile shape during the extrusion of thin magnesium sheets  

SciTech Connect

The extrusion process facilitates the production of magnesium sheets featuring a very thin thickness as well as excellent surface properties by using a single process step only. However, the extrusion of the magnesium sheets applying not optimized process parameters, e.g. low billet temperature or/ and poorly deformable magnesium alloy, produce pronounced buckling and waving of the extruded sheets as well as a variation of accuracy in profile shape along the cross section. The present investigation focuses on the FEM-simulation of the extrusion of magnesium sheets in order to clarify the origin of the mentioned effects. The simulations identify the flow imbalance during extrusion as the main critical factor. Due to the flow imbalance after passing the die a large compression stress zone is formed causing the buckling and waving of the thin sheets. Furthermore, the simulations of the magnesium sheet extrusion reveal that the interaction of the material flow gradients along the width and along the thickness direction near the die orifice lead to the variation of the accuracy in profile shape.

Gall, Sven [Forschungszentrum Strangpressen, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, 13355, Germany, and Metallische Werkstoffe, Technische Universität Berlin, Ernst-Reuter-Platz 1, Berlin, 10587 (Germany); Müller, Sören [Forschungszentrum Strangpressen, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, 13355 (Germany); Reimers, Walter [Metallische Werkstoffe, Technische Universität Berlin, Ernst-Reuter-Platz 1, Berlin, 10587 (Germany)

2013-12-16T23:59:59.000Z

291

Substation Topology Analysis Based on Improved Tracking Algorithm  

Science Journals Connector (OSTI)

The substation network topology analysis is an important part ... simulation results validate that the proposed algorithm for substation network topology analysis is easy to be...

Shi Jianlei; Zhang Xuan; Zhao Qiang…

2014-01-01T23:59:59.000Z

292

Wind flow modeling for wind energy analysis of the Nellis Dunes area in Nevada.  

E-Print Network (OSTI)

??A wind energy analysis of the Nellis Dunes area in Nevada was conducted. A DEM file which contains the elevation data was used to generate… (more)

Rangegowda, Upendra

2010-01-01T23:59:59.000Z

293

A fast inverse consistent deformable image registration method based on symmetric optical flow computation  

Science Journals Connector (OSTI)

Deformable image registration is widely used in various radiation therapy applications including daily treatment planning adaptation to map planned tissue or dose to changing anatomy. In this work, a simple and efficient inverse consistency deformable registration method is proposed with aims of higher registration accuracy and faster convergence speed. Instead of registering image I to a second image J, the two images are symmetrically deformed toward one another in multiple passes, until both deformed images are matched and correct registration is therefore achieved. In each pass, a delta motion field is computed by minimizing a symmetric optical flow system cost function using modified optical flow algorithms. The images are then further deformed with the delta motion field in the positive and negative directions respectively, and then used for the next pass. The magnitude of the delta motion field is forced to be less than 0.4 voxel for every pass in order to guarantee smoothness and invertibility for the two overall motion fields that are accumulating the delta motion fields in both positive and negative directions, respectively. The final motion fields to register the original images I and J, in either direction, are calculated by inverting one overall motion field and combining the inversion result with the other overall motion field. The final motion fields are inversely consistent and this is ensured by the symmetric way that registration is carried out. The proposed method is demonstrated with phantom images, artificially deformed patient images and 4D-CT images. Our results suggest that the proposed method is able to improve the overall accuracy (reducing registration error by 30% or more, compared to the original and inversely inconsistent optical flow algorithms), reduce the inverse consistency error (by 95% or more) and increase the convergence rate (by 100% or more). The overall computation speed may slightly decrease, or increase in most cases because the new method converges faster. Compared to previously reported inverse consistency algorithms, the proposed method is simpler, easier to implement and more efficient.

Deshan Yang; Hua Li; Daniel A Low; Joseph O Deasy; Issam El Naqa

2008-01-01T23:59:59.000Z

294

Transient Signal Analysis is a digital device testing method that is based on the analysis of voltage transients at multi-  

E-Print Network (OSTI)

-free and defective devices in both simulations and hardware. 1.0 Introduction Transient Signal Analysis (TSAAbstract Transient Signal Analysis is a digital device testing method that is based on the analysis of voltage transients at multi- ple test points. The power supply transient signals of an 8-bit multiplier

Plusquellic, James

295

Update and assessment of geothermal economic models, geothermal fluid flow and heat distribution models, and geothermal data bases  

SciTech Connect

Numerical simulation models and data bases that were developed for DOE as part of a number of geothermal programs have been assessed with respect to their overall stage of development and usefulness. This report combines three separate studies that focus attention upon: (1) economic models related to geothermal energy; (2) physical geothermal system models pertaining to thermal energy and the fluid medium; and (3) geothermal energy data bases. Computerized numerical models pertaining to the economics of extracting and utilizing geothermal energy have been summarized and catalogued with respect to their availability, utility and function. The 19 models that are discussed in detail were developed for use by geothermal operators, public utilities, and lending institutions who require a means to estimate the value of a given resource, total project costs, and the sensitivity of these values to specific variables. A number of the models are capable of economically assessing engineering aspects of geothermal projects. Computerized simulations of heat distribution and fluid flow have been assessed and are presented for ten models. Five of the models are identified as wellbore simulators and five are described as reservoir simulators. Each model is described in terms of its operational characteristics, input, output, and other pertinent attributes. Geothermal energy data bases are reviewed with respect to their current usefulness and availability. Summaries of eight data bases are provided in catalogue format, and an overall comparison of the elements of each data base is included.

Kenkeremath, D. (ed.)

1985-05-01T23:59:59.000Z

296

Improved mesh based photon sampling techniques for neutron activation analysis  

SciTech Connect

The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)

Relson, E.; Wilson, P. P. H.; Biondo, E. D. [University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

2013-07-01T23:59:59.000Z

297

High-performance computing-based exploration of flow control with micro devices  

Science Journals Connector (OSTI)

...Tucker and James DeBonis High-performance computing-based exploration of...perform. Leading-edge, high-performance computing infrastructures (HPCIs...Research (SPIRE) of the High Performance Computing Initiative in Japan...

2014-01-01T23:59:59.000Z

298

DAMOCO: MATLAB toolbox for multivariate data analysis, based on coupled oscillators approach  

E-Print Network (OSTI)

DAMOCO: MATLAB toolbox for multivariate data analysis, based on coupled oscillators approach This manual describes the collection of MATLAB programs for multivariate data analysis, based on modeling.agnld.uni-potsdam.de/~mros/damoco.html. 1 Introduction DAMOCO means Data Analysis with Models Of Coupled Oscillators. This MATLAB toolbox

Potsdam, Universität

299

A Conceptual Framework for Semantic Case-based Safety Analysis Olawande Daramola, Tor Stlhane  

E-Print Network (OSTI)

.biffl}@tuwien.ac.at Abstract Hazard and Operability (HAZOP) Analysis and Fail- ure Mode and Effect Analysis (FMEA) are among-based framework for safety analy- sis, which facilitates the reuse of previous HAZOP and FMEA experiences in order application. Key words: Safety analysis, HAZOP, FMEA, ontology, requirements, case-based reasoning, natural

300

EIS-0163: 1992 Columbia River Salmon Flow Measures Options Analysis/EIS  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Army Corps of Engineers – Walla Walla District prepared this statement to analyze four general alternatives to modify the flow of water in the lower Columbia-Snake River in order to help anadromous fish migrate past eight multipurpose Federal dams. The U.S. Department of Energy’s Bonneville Power Administration served as a cooperating agency due to its key role in direct operation of the integrated and coordinated Columbia-Snake River System, and adopted this statement on February 10, 1992.

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ULTRAVIOLET SPECTROSCOPIC ANALYSIS OF TRANSIENT MASS FLOW OUTBURST IN U CEPHEI  

SciTech Connect

Spectra from the International Ultraviolet Explorer taken in 1989 September over one full orbital period of U Cephei (U Cep, HD 5796) are analyzed. The TLUSTY and SYNSPEC stellar atmospheric simulation programs are used to generate synthetic spectra to which U Cep continuum levels are normalized. Absorption lines attributed to the photosphere are divided out to isolate mass flow and accretion spectra. A radial velocity curve is constructed for conspicuous gas stream features, and shows evidence for a transient flow during secondary eclipse with outward velocities ranging between 200 and 350 km s{sup –1}, and a number density of (3 ± 2) × 10{sup 10} cm{sup –3}. The validity of C IV 1548 and 1550 and Si IV 1393 and 1402 lines are re-examined in the context of extreme rotational blending effects. A G-star to B-star mass transfer rate of (5 ± 4) × 10{sup –9} M{sub ?} yr{sup –1} is calculated as an approximate upper limit, and a model system is presented.

Tupa, Peter R.; DeLeo, Gary G.; McCluskey, George E. [Physics Department, Lehigh University, Bethlehem, PA 18015 (United States); Kondo, Yoji [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sahade, Jorge [Facultad de Ciencias Astronómicas, Paseo del Bosque s/n, B1900FWA-La Plata (Argentina); Giménez, Alvaro [Centro de Astrobiologia, CSIC/INTA, Carretera de Torrejon a Ajalvir, E-28850 Torrejon de Ardoz (Madrid) (Spain); Caton, Daniel B., E-mail: pet205@lehigh.edu [Appalachian State University, Boone, NC 28608 (United States)

2013-09-20T23:59:59.000Z

302

The Interstellar H Flow: Updated Analysis of SOHO/SWAN Data  

E-Print Network (OSTI)

We update two kinds of results obtained with the SWAN instrument on board SOHO. First, we use H cell data recorded in 2001 and derive the H flow direction in the same way we performed the study at solar minimum. We compare with the Helium flow and doing so we correct for the coordinate system change between the Ulysses and SOHO mission. The deflection plane we obtain is compatible with the previous result within error bars, confirming the predominant role of the interstellar magnetic field. Secondly, we extend the derivation of solar wind ionization temporal evolution as a function of heliolatitude. The pattern for the present solar minimum is strikingly different from the previous minimum, with a much wider slow solar wind equatorial belt which persists until at least 2008. Comparing with synoptic LASCO/C2 electron densities we infer from a preliminary study that the acceleration of the high speed solar wind occurs at a higher altitude during this minimum, a change expansion models should be able to explain.

Lallement, Rosine; Koutroumpa, Dimitra; Bertaux, Jean-Loup; Ferron, Stéphane; Schmidt, Walter

2014-01-01T23:59:59.000Z

303

Theoretical and numerical analysis of a spreading opposed-flow diffusion flame  

Science Journals Connector (OSTI)

...the incident heat flux impinging...The surface heats up and decomposes...used in most hydrocarbon combustion simulations...pyrolysis and combustion. In The chemistry...axisymmetric hydrocarbon fuel jets In...Wichman 2000 Heat transfer analysis...

2009-01-01T23:59:59.000Z

304

PWR FLECHT SEASET 21-rod bundle flow blockage task data and analysis report. NRC/EPRI/Westinghouse Report No. 11. Appendices K-P  

SciTech Connect

This report presents data and limited analysis from the 21-Rod Bundle Flow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Separate Effects and Systems Effects Test Program (FLECHT SEASET). The tests consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. Steam cooling and hydraulic characteristics tests were also conducted. These tests were utilized to determine effects of various flow blockage configurations (shapes and distributions) on reflooding behavior, to aid in development/assessment of computational models in predicting reflooding behavior of flow blockage configurations, and to screen flow blockage configurations for future 163-rod flow blockage bundle tests.

Loftus, M.J.; Hochreiter, L.E.; Lee, N.; McGuire, M.F.; Wenzel, A.H.; Valkovic, M.M.

1982-09-01T23:59:59.000Z

305

Assessment of modular IGCC plants based on entrained flow coal gasification supplemental studies  

SciTech Connect

In a previous study (1), Foster Wheeler made an assessment of modular IGCC power systems employing Texaco entrained flow gasification of Illinois No. 6 coal. In that study, five case studies were developed in order to compare the relative performance and economics of air vs. oxygen blown gasification and high temperature vs. low temperature gas cleanup. As a supplemental study, two additional IGCC design cases were developed as alternate to the original Case 2 and Case 3 configurations. The objective of the Case 2 alternate study was to assess the potential of zinc titanate in place of zinc ferrite. Compared to zinc ferrite, the zinc titanate system offered the following potential advantages: Does not require steam conditioning of the feed gas to avoid carbon formation; does not require reductive regeneration and the corresponding use of fuel gas; operates at higher temperature, about 1350{degree}F; and has a longer projected sorbent life. The objective of the alternate Case 3 study was to determine the economic impact of producing sulfuric acid, instead of elemental sulfur, as the by-product from high temperature desulfurization using zinc ferrite. Sulfur recovery as by-product sulfuric acid therefore offered the potential for reducing both the capital and operating costs. 6 refs., 5 figs., 15 tabs.

Fu, R.K.

1989-10-01T23:59:59.000Z

306

Numerical Simulations of Synthetic Jet Based Separation Control in a Canonical Separated Flow  

E-Print Network (OSTI)

first superharmonic is found to result in optimal control of the mean separation bubble. The stability and blunt trailing edge at zero incidence in a free-stream. A separation bubble of prescribed size in terms of local linear stability theory based on the Orr�Sommerfeld equation. The numerical results

Mittal, Rajat

307

Model-Based Tool-Chain Infrastructure for Automated Analysis of Embedded Systems  

Science Journals Connector (OSTI)

In many safety-critical applications of embedded systems, the system dynamics exhibits hybrid behaviors. To enable automatic analysis of these ... many analysis tools have been developed based on hybrid automata ...

Hang Su; Graham Hemingway; Kai Chen…

2006-01-01T23:59:59.000Z

308

Analysis and optimization of incompressible separated flow around an airfoil with two finite-gap flaps  

E-Print Network (OSTI)

and a 25% Slotted Flap ((2 = 8. 0' 6s = 0. 0 6f = 20 ) 90 91 36 Pressure Distribution, NACA 23012 with a 17% Fixed Slot and a 25% Slotted Flap (o - 8. 0 , 6s = 0. 0 , 6'f - 40 ) 92 37 Drag Coefficient versus Lift Coefficient for a GA(W)-2 with a... distributed vorticity V(s) on B, and 4s is produced by uniformly distributed sources of strength o(s) on B. For two dimensional flow lv and 4s can be written as: ln r(x, z;s')ds' s J02s e = -I'~s' e(x, z;s )as JO 2 s With these definitions, equation (1...

Anderson, Murray Belser

1988-01-01T23:59:59.000Z

309

Urban Sewage Delivery Heat Transfer System (1): Flow Resistance and Energy Analysis  

E-Print Network (OSTI)

? Specific Resistance?s 2/m6? Diameter?mm? Specific Resistance?s 2/m6? Diameter?mm? Specific Resistance?s 2/m6? 10 77392033.96 125 118.87 400 0.249907 15 9024280.53 150 45.23 450 0.133866 20 1964433.28 175 19.98 500 0.076587 25 602024... pipe and the old cast iron pipe. It is 0.30 0.021 z d? = (6) (1.2/um> )s Defined the ratio of flow resistance of mediate water and sewage is zHw, the ratio of the flux is wz,and the ratio of velocity is z wUr u u= , supposed the inside...

Zhang, C.; Wu, R.; Li, G.; Li, X.; Huang, L.; Sun, D.

2006-01-01T23:59:59.000Z

310

Concurrent design of facility layout and flow-based department formation  

E-Print Network (OSTI)

of their similarities in manufacturing and design [30]. The department may be formed based on the product family, the process, or a combination of both, and the part-machine incidence matrix is traditionally used to form the department. The fractal layout [31, 32... be placed randomly throughout the manufacturing facility with no speci?c department boundary, while the product family and fractal layout assume that the number of departments and the maximum number of machines assigned to each department are known...

Chae, Junjae

2005-02-17T23:59:59.000Z

311

E-Print Network 3.0 - analysis based lng Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG... receiving terminal in Baja California, Mexico. Based on...

312

E-Print Network 3.0 - activity based analysis Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences 4 Reasoning about Repairability of Workflows at Design Time Summary: activities can be provided by the workflow designer based on the analysis of different aspects...

313

Flow Cytometric Analysis of the Effect of Sodium Chloride on Gastric Cancer Risk in the Rat  

Science Journals Connector (OSTI)

...rats by gavage. Twenty-four h later, animals were...The mucosa appears to lift away from the underlying...weight at various time points after treatment with a...treatment at the earlier time points. Analysis of variance...cycle, at various time points after treat ment. Chart...

Gail Charnley and Steven R. Tannenbaum

1985-11-01T23:59:59.000Z

314

Fluid Flow and Thermodynamic Analysis of a Wing Anti-Icing System  

E-Print Network (OSTI)

is installed on most passenger airplanes. It introduces hot bleeding air from the power plant into the wing-mail: liu@utias.utoronto.ca Received 26 August 2003. 1. INTRODUCTION The thermal anti-icing system of this paper is to apply the existing CFD tools to assist the system modeling and simulation analysis

Liu, Hugh H.T.

315

Fusion Engineering and Design 82 (2007) 22172225 Integrated thermo-fluid analysis towards helium flow  

E-Print Network (OSTI)

Fusion Engineering and Design 82 (2007) 2217­2225 Integrated thermo-fluid analysis towards helium. Andob, I. Komadab a Fusion Engineering Sciences, Mechanical and Aerospace Eng. Department, University the ITER test blanket module (TBM) warrants the need of extensive computer aided engineering (CAE

Abdou, Mohamed

316

Validation Analysis for the Calculation of a Turbulent Free Jet in Water Using CFDS-FLOW 3-D and FLUENT  

SciTech Connect

The application of computational fluid dynamics methods to the analysis of mixing in the high level waste tanks at the Savannah River Site requires a demonstration that the computer codes can properly represent the behavior of fluids in the tanks. The motive force for mixing the tanks is a set of jet pumps taking suction from the tank fluid and discharging turbulent jets near the bottom of the tank. The work described here focuses on the free turbulent jet in water as the simplest case of jet behavior for which data could be found in the open literature. Calculations performed with both CFDS-FLOW3D and FLUENT were compared with data as well as classical jet theory. Results showed both codes agreed reasonably well with each other and with the data, but that results were sensitive to the computational mesh and, to a lesser degree, the selection of turbulence models.

Dimenna, R.A.; Lee, S.Y.

1995-05-01T23:59:59.000Z

317

USAGE: a web-based approach towards the analysis of SAGE data  

Science Journals Connector (OSTI)

... Oxford University Press 2000 Original Paper USAGE: a web-based approach towards the analysis of...an application was not available we developed the USAGE package. Results: USAGE is a web-based application that comprises an integrated......

A. H. C. van Kampen; B. D. C. van Schaik; E. Pauws; E. M. C. Michiels; J. M. Ruijter; H. N. Caron; R. Versteeg; S. H. Heisterkamp; J. A. M. Leunissen; F. Baas; M. van der Mee

2000-10-01T23:59:59.000Z

318

Building Energy Performance Analysis of an Academic Building Using IFC BIM-Based Methodology  

E-Print Network (OSTI)

This paper discusses the potential to use an Industry Foundation Classes (IFC)/Building Information Modelling (BIM) based method to undertake Building Energy Performance analysis of an academic building. BIM/IFC based methodology provides a...

Aziz, Z.; Arayici, Y.; Shivachev, D.

2012-01-01T23:59:59.000Z

319

Flow-based pipeline for systematic modulation and analysis of 3D tumor microenvironments  

E-Print Network (OSTI)

The cancer microenvironment, which incorporates interactions with stromal cells, extracellular matrix (ECM), and other tumor cells in a 3-dimensional (3D) context, has been implicated in every stage of cancer development, ...

Li, Cheri Y.

320

Continuum flow sampling mass spectrometer for elemental analysis with an inductively coupled plasma ion source  

SciTech Connect

The sampling of ions from an atmospheric pressure inductively coupled plasma for mass spectrometry (ICP-MS) with a supersonic nozzle and skimmer is shown to follow similar behavior found for neutral beam studies and for ion extraction from other plasmas and flames. In particular, highest ion beam intensity is found if the skimmer tip is close to the Mach disk and at a calculated skimming Knudsen number close to the recommended value of 1. Our ICP-MS instrument with an off-axis detector and conventional cylindrical electrostatic ion focusing in the transition flow regime gives intense count rates of 1 to 5 MHz per mg L/sup -1/ of analyte superimposed on a background of 1 to 10 kHz. The dependence of count rates for metal oxide and doubly charged ions on ICP operating parameters, and sampling interface configuration are discussed for this instrument. A simple method is described for the approximate measurement of the ion energy distribution in ICP-MS. The average ion kinetic energy, kinetic energy spread, and maximum kinetic energy are evaluated from a plot of ion signal as a function of retarding voltage applied to the quadrupole mass analyzer. The effects of plasma operating parameters on ion signals and energies are described. In particular, kinetic energy is a sensitive function of aerosol gas flow rate. This behavior is attributed to a non-thermal, possibly electrical, interaction between the plasma and the sampling interface, which is induced by the presence of the axial channel in the ICP. The interference on the ionization of cobalt by five salts, NaCl, MgCl/sub 2/, NH/sub 4/I, NH/sub 4/Br and NH/sub 4/Cl, in an ICP is first considered theoretically and subsequently the theoretical trends are established experimentally by ICP-MS. The interference trends are found to be in the order of the most easily ionized element in the matrix salt, i.e., Na > Mg > I > Br > Cl.

Olivares, J.A.

1985-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Video surveillance-based insulator condition monitoring analysis for substation monitoring system (SMS)  

Science Journals Connector (OSTI)

Video surveillance (VS) of electric power lines along with its accessories such as insulators has emerged as a potential alternative for the traditional practice of on-site physical detection. There has been a paradigm shift in electric substation automation using substation monitoring system (SMS). Since the damaged insulators severely affect the distribution system performance in terms of reduction in voltage as well as flow of leakage currents, therefore, the incorporation of insulator health as an augmented feature in SMS would improve the quality and reliability of power supply. By using information technology, the automation of insulator monitoring of power system is made faster to recover the fault system immediately. This paper presents a methodology for insulator condition analysis based on VS combined with wavelet coefficient differentiator (WCD) for SMS purposes. The case studies and results contained herein corroborate the efficacy of the proposed methodology to dispense with the conventional on-site physical methods, which are not only tedious, but also time-consuming.

Velaga Sreerama Murthy; D.K. Mohanta; Sumit Gupta

2011-01-01T23:59:59.000Z

322

Automatic stock market trading based on Technical Analysis.  

E-Print Network (OSTI)

?? The theory of technical analysis suggests that future stock price developement can be foretold by analyzing historical price fluctuations and identifying repetitive patterns. A… (more)

Larsen, Fredrik

2007-01-01T23:59:59.000Z

323

Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack  

Science Journals Connector (OSTI)

Abstract Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

Kuahai Yu; Xi Yang; Yongzhou Cheng; Changhao Li

2014-01-01T23:59:59.000Z

324

Material Flow Analysis of Scarce Metals: Sources, Functions, End-Uses and Aspects for Future Supply  

Science Journals Connector (OSTI)

First, it surveys the main sources of geologically scarce (byproduct) metals currently considered critical by one or other of several recent studies. ... One example is the use of phosphors based on scarce metals in LEDs now competing with older types of light for many applications such as automobile headlights and streetlights as well as interior lighting. ... (9) MFA has been used to study the industrial metabolism of major base metals (iron and steel, aluminum, copper, zinc, lead, and nickel) to quantify waste residuals generated by processing. ...

Laura Talens Peiró; Gara Villalba Méndez; Robert U. Ayres

2013-02-13T23:59:59.000Z

325

Inverse Prediction and Optimization of Flow Control Conditions for Confined Spaces using a CFD-Based Genetic Algorithm  

E-Print Network (OSTI)

temperature and velocity. In order to identify the best flow control conditions, conventional approach function to optimize the inlet boundary conditions (e.g., supply velocity, temperature, and angle of critical flow control conditions such as flow inlet temperature, velocity and angle. In order to identify

Chen, Qingyan "Yan"

326

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005  

Open Energy Info (EERE)

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model [1] NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model This model calculates the 2005 national average life cycle greenhouse gas emissions for petroleum-based fuels sold or distributed in the United

327

Transient Signal Analysis (TSA) is a parametric device testing technique based on the analysis of dynamic (transient) current  

E-Print Network (OSTI)

such as primary outputs or scan-latches. Third, the supply transients potentially provide a rich source of parametAbstract Transient Signal Analysis (TSA) is a parametric device testing technique based on the analysis of dynamic (transient) current (iDDT) drawn by the core logic from the power supply pads in a CMOS

Plusquellic, James

328

Transportation Analysis, Modeling, and Simulation (TAMS) Application  

E-Print Network (OSTI)

Transportation Analysis, Modeling, and Simulation (TAMS) Application Center for Transportation Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Center for Transportation Analysis (CTA) TAMS application is a web-based tool that supports

329

Analysis of pressure buildup curves based on field experience  

SciTech Connect

This paper deals with the application of pressure build-up data in computing vital reservoir parameters in oil fields. Generally the technique of Miller Dyes and Hutchinson is utilized to determine flow capacity, permeability skin effect and completion efficiency. Pressure build-up data is utilized in detecting the existence of faults. The method of Brons and Marting has been found to be more reliable to determine the partial penetration effect. The computer software package which was developed recently is discussed and, due to near ideal behaviour of pressure build-up curves, is safely utilized. The computational work using the software package is rapid.

Arora, P.D.

1983-03-01T23:59:59.000Z

330

Event-based Approach to Money Laundering Data Analysis and Visualization  

E-Print Network (OSTI)

Event-based Approach to Money Laundering Data Analysis and Visualization Tat-Man Cheong Faculty, an event-based approach to money laundering data analysis and visualization is proposed in this paper. The effectiveness of the proposed method is demonstrated on a money laundering case from Taiwan. Categories

Si, Yain Whar "Lawrence"

331

Global sensitivity analysis in the development of first principle-based eutrophication models  

Science Journals Connector (OSTI)

In this work, we formulate a dynamic first principle-based eutrophication model for a reservoir and perform global sensitivity analysis to determine most influential parameters. Both first-order and total sensitivity indices profiles have been calculated ... Keywords: Eutrophication, First principle-based water quality model, Global sensitivity analysis, Sensitivity indices

V. Estrada; M. S. Diaz

2010-12-01T23:59:59.000Z

332

Inverting geodetic time series with a principal component analysis-based inversion method  

E-Print Network (OSTI)

Inverting geodetic time series with a principal component analysis-based inversion method A. P (2010), Inverting geodetic time series with a principal component analysis-based inversion method, J; Cohen, 1999]. This formulation is linear and easily inverted using standard algorithms. The distribution

Avouac, Jean-Philippe

333

Interactive Transient and Steady-state Analysis of Regional Ice Flow C30-W65A Jed Brown jedbrown@mcs.anl.gov, Iulian Grindeanu, Dmitry Karpeev, Barry Smith, Tim Tautges  

E-Print Network (OSTI)

Interactive Transient and Steady-state Analysis of Regional Ice Flow C30-W65A Jed Brown jedbrown/files/WCRP2011-RegionalIceFlow.pdf Preprocessing Model data for a regional ice flow models often comes from many. From these inputs, univer- sal kriging is used to produce an initial fine triangular mesh, this mesh

Brown, Jed

334

Network Based Evaluation Method for Financial Analysis of Toll Roads  

E-Print Network (OSTI)

was $25,003 millions (Yescombe, 2002). There are three main quantitative methods for pricing of bonds used in the credit risk analysis: structural, reduced, and incomplete information approach (Giesecke, 2004). At the center of the credit risk...

Vajdic, Nevena

2011-02-22T23:59:59.000Z

335

An Improved AMG-based Method for Fast Power Grid Analysis Cheng Zhuo, Jiang Hu1  

E-Print Network (OSTI)

An Improved AMG-based Method for Fast Power Grid Analysis Cheng Zhuo, Jiang Hu1 and Kangsheng Chen and verification. Meanwhile, the huge size of power grid requires its analysis to be fast and highly scalable. Algebraic multigrid (AMG) has been recognized as a promising approach for fast power grid analysis. We

Hu, Jiang

336

Chapter 4 - Axial-Flow Turbines: Mean-Line Analysis and Design  

Science Journals Connector (OSTI)

This chapter begins with a historical perspective on the development of the modern axial turbine, which is now a highly advanced technology that is critical for aircraft propulsion and power generation. The basic analysis of axial turbines is covered, including velocity triangles and the principle mean-line relationships. The derivation of turbine efficiency from loss coefficients is presented as well as a detailed discussion of the various loss sources that lead to efficiency reduction. The main calculations used in the initial design of a multistage turbine are then detailed along with worked examples and comparisons between designs with low and high levels of reaction. Turbine efficiency correlations are also explored for different design styles. In the final sections, the centrifugal stresses in turbine rotor blades and the effects of turbine blade cooling are considered.

S.L. Dixon; C.A. Hall

2014-01-01T23:59:59.000Z

337

Mapping the Global Journey of Anthropogenic Aluminum: A Trade-Linked Multilevel Material Flow Analysis  

Science Journals Connector (OSTI)

The countries are ordered by the per capita GDP in 2008 (measured based on purchasing power parity, i.e., GDP PPP, in 1990 international dollars(36)). ... Process efficiency improvement and recycling can contribute to reducing emissions per material output; however, long-term material demand and scrap availability for recycling depend fundamentally on the dynamics of societies' stocks of products in use, an issue that has been largely neglected in climate science. ... The contemporary global aluminum stock in use (0.6 Gt or 90 kg/capita) has reached about 10% of that in known bauxite reserves and represents an embodied energy amt. ...

Gang Liu; Daniel B. Müller

2013-09-11T23:59:59.000Z

338

DOE'S ENERGY DATA BASE (EDB) VERSUS OTHER ENERGY-RELATED DATA BASES: A COMPARATIVE ANALYSIS  

E-Print Network (OSTI)

n c i s c o , CA, DOE'S ENERGY DATA BASE (EDB) VERSUS OTHERData Baae: History The Energy Data Base it produced by thethe aim of the Energy Data Base i s to be a comprehensive

Robinson, J.

2010-01-01T23:59:59.000Z

339

Isotope Dilution Analysis for Flow Injection ICPMS Determination of Microgram per Gram Levels of Boron in Iron and Steel after Matrix Removal  

Science Journals Connector (OSTI)

Isotope Dilution Analysis for Flow Injection ICPMS Determination of Microgram per Gram Levels of Boron in Iron and Steel after Matrix Removal ... 15,16ID analysis coupled with ICPMS is a powerful technique capable of highly accurate and precise determinations of elements that have two or more stable isotopes. ... To determine boron in unknowns, first the boron isotopic composition of the enriched spike must be characterized, and then the total boron concentration of the spike solution must be determined. ...

Aurora G. Coedo; Teresa Dorado; Bernardo J. Fernandez; Francisco J. Alguacil

1996-03-15T23:59:59.000Z

340

Decision analysis methodology applied to deep base communications  

SciTech Connect

Deep underground basing of an ICBM facility improves its survivability. The deep basing concept relies on the thick rock overburden to provide it with an ''earth shield'' to absorb any Soviet nuclear attack. However, this basing scheme complicates the problem of how communication is maintained between the deep base facility and higher authority in a post-attack environment. This report addresses the identification of what communication links between the underground facility and the surface will be operational in a post-attack environment and will meet the communication requirements of the ICBM deep base. This problem is difficult and complex because of the inability of conventional communications systems to survive and the lack of information about newer systems designed for survival. In addition, there are significant uncertainties concerning nuclear weapons effects, shock propagation, and the influence of geological parameters. There are numerous communication options for the deep base. In general, these options can be characterized by three general types: proliferated, hardened surface antennas; through-the-earth communications; and reconstituted communications, of which the rapid bore-out option is a specific case. Many of the potential options are costly and incorporate many new and untested technologies. The identification of the preferred option or combination of options is an important step in the deep basing communication system design and could affect overall facility design in terms of basing location, geometry, support systems, and cost. 35 refs., 21 figs., 7 tabs.

Latorre, V.R.; Harben, P.E.; Strait, R.S.; Didwall, E.M.

1986-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A formal analysis of requirements-based testing  

Science Journals Connector (OSTI)

The aim of requirements-based testing is to generate test cases from a set of requirements for a given system or piece of software. In this paper we propose a formal semantics for the generation of test cases from requirements by revising and extending ... Keywords: coverage metrics, requirements-based testing

Charles Pecheur; Franco Raimondi; Guillaume Brat

2009-07-01T23:59:59.000Z

342

Response to Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste”  

Science Journals Connector (OSTI)

Response to Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste” ... treatment-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery. ... Velis, C. A.; Cooper, J.Are solid recovered fuels resource-efficient? ...

Costas A. Velis; Stuart Wagland; Phil Longhurst; Bryce Robson; Keith Sinfield; Stephen Wise; Simon Pollard

2013-12-05T23:59:59.000Z

343

Enhanced oil recovery data base analysis by simplified predictive models  

SciTech Connect

The U.S. Department of Energy, Bartlesville Energy Technology Center (BETC), has been developing computerized data bases and simplified predictive models to be used to predict enhanced oil recovery (EOR) potential in the U.S. The development phase of this work is nearing completion whereupon the models and data bases will be made available to the public. This paper describes the overall development phase for the models and data bases with analyses of selected EOR projects using the predictive models. Examples of model outputs are discussed and brief descriptions of the predictive algorithms are given.

Ray, R.M.; Wesson, T.C.

1982-11-01T23:59:59.000Z

344

Michael Wachendorf, slaug Helgadttir, Giuseppe Parente [editors]: Sward dynamics, N-flows and forage utilization in legume-based systems. Proceedings of the 2nd  

E-Print Network (OSTI)

-flows and forage utilization in legume-based systems. Proceedings of the 2nd COST 852 workshop held in Grado, Italy. A common problem is the use of various indices of "biodiversity effect" in statistical analyses experiments and real agriculture by the experimenter and farmer respectively. In real ecological communities

Leps, Jan "Suspa"

345

Numerical analysis of convective heat transfer characteristics of supercritical hydrocarbon fuel in cooling panel with local flow blockage structure  

Science Journals Connector (OSTI)

Abstract The convection heat transfer of hydrocarbon fuel at supercritical pressure has a great influence on the regenerative cooling technology of a scramjet engine. A three-dimensional numerical simulation was conducted for the convection transfer of hydrocarbon fuel in the cooling panel of a combustion chamber wall. And the flow field around the local flow blockage structure and the outlet flow rate distribution characteristics of fuel in the cooling channels were analyzed in detail. The results of analyses indicate that with the optimized local flow blockage structure, the outlet flow rate distribution of fuel among the cooling channels become more uniform, as the area of local flow dead zone decreases. However, as the fuel temperature increases, the dramatic variation of thermodynamic physical properties of fuel has a strong influence on the flow field around the local flow blockage structure. Especially, a local flow dead zone can be easily formed in the supercritical temperature region. Meanwhile, transverse pressure gradient around the throat region of blockage structure and additional loss, which is caused by turbulence fluctuation and energy exchange of fluid in the downstream area, affect the outlet flow rate distribution of fuel among the coolant passages seriously. It can therefore be concluded that the local flow blockage structure is more suitably designed in the subcritical temperature region by taking above-mentioned factors into consideration.

Yu Feng; Jiang Qin; Wen Bao; Qinchun Yang; Hongyan Huang; Zhongqi Wang

2014-01-01T23:59:59.000Z

346

DOE Hydrogen Analysis Repository: Gasification-Based Fuels and Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification-Based Fuels and Electricity Production from Biomass Gasification-Based Fuels and Electricity Production from Biomass Project Summary Full Title: Gasification-Based Fuels and Electricity Production from Biomass, without and with Carbon Capture and Storage Project ID: 226 Principal Investigator: Eric D. Larson Keywords: Biomass; Fischer Tropsch; hydrogen Purpose Develop and analyze process designs for gasification-based thermochemical conversion of switchgrass into Fischer-Tropsch (F-T) fuels, dimethyl ether (DME), and hydrogen. All process designs will have some level of co-production of electricity, and some will include capture of byproduct CO2 for underground storage. Performer Principal Investigator: Eric D. Larson Organization: Princeton University Telephone: 609-258-4966 Email: elarson@princeton.edu

347

An Analysis of TRL-Based Cost and Schedule Models  

E-Print Network (OSTI)

The GAO's, NASA's, and the DoD's adoption of the technology readiness level (TRL) scale to improve technology management has led to the emergence of many TRL-based models that are used to monitor technology maturation, ...

Kenley, C. Robert

2012-04-30T23:59:59.000Z

348

Security Analysis and Improvement Model for Web-based Applications  

E-Print Network (OSTI)

, confidentiality, and data integrity. According to the reports from http://www.securityfocus.com in May 2006, operating systems account for 9% vulnerability, web-based software systems account for 61% vulnerability, and other applications account for 30...

Wang, Yong

2010-01-14T23:59:59.000Z

349

Laser Ablation Sampling of Materials Directly into the Formed Liquid Microjunction of a Continuous Flow Surface Sampling Probe/Electrospray Ionization Emitter for Mass Spectral Analysis and Imaging  

SciTech Connect

Transmission geometry laser ablation directly into a formed liquid microjunction of a continuous flow liquid microjunction surface sampling probe/electrospray ionization emitter was utilized for molecular and elemental detection and mass spectrometry imaging. The ability to efficiently capture and ionize ablated material was demonstrated by the detection of various small soluble n-mers of polyaniline and silver ion solvent clusters formed from laser ablation of electropolymerized polyaniline and silver thin films, respectively. In addition, analysis of surfaces that contain soluble components was accomplished by coating or laminating the sample with an insoluble film to enable liquid junction formation without directly extracting material from the surface. The ability to perform mass spectrometry imaging at a spatial resolution of about 50 m was illustrated by using laminated inked patterns on a microscope slide. In general, these data demonstrate at least an order of magnitude signal enhancement compared to the non-contact, laser ablation droplet capture-based surface sampling/ionization approaches that have been previously presented.

Ovchinnikova, Olga S [ORNL] [ORNL; Lorenz, Matthias [ORNL] [ORNL; Kertesz, Vilmos [ORNL] [ORNL; Van Berkel, Gary J [ORNL] [ORNL

2013-01-01T23:59:59.000Z

350

Functional Gene Array-Based Analysis of Microbial Community  

E-Print Network (OSTI)

correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p diversity with geochemistry, we can better understand which variables are most important in deter- mining studied for bioremediation of heavy metals due to legacy contamination from Cold War-era uranium

Hazen, Terry

351

A Simple Biomass-Based Length-Cohort Analysis for Estimating Biomass and Fishing Mortality  

E-Print Network (OSTI)

, Washington 98115, USA Abstract.--A biomass-based length-cohort analysis (LCA) was examined for its compared two LCA methods--(1) a numbers-based LCA that relies on catch numbers at length as input data and (2) a new biomass-based LCA that relies on catch biomass at length--by applying both to simulated

352

Signal Probability Based Statistical Timing Analysis University of California, San Diego  

E-Print Network (OSTI)

Signal Probability Based Statistical Timing Analysis Bao Liu University of California, San Diego propose sig- nal probability (i.e., the logic one occurrence probability on a net) based statistical estimation tech- niques are categorized as (1) static, (2) statistical, and (3) simulation and testing based

Liu, Bao

353

PATCH-BASED MARKOV MODELS FOR CHANGE DETECTION IN IMAGE SEQUENCE ANALYSIS  

E-Print Network (OSTI)

PATCH-BASED MARKOV MODELS FOR CHANGE DETECTION IN IMAGE SEQUENCE ANALYSIS Thierry P image. In this paper, we propose an original patch-based Markov modeling framework to de- tect spatial are then detected. Therefore, we propose an original patch-based Markov modeling that detects irregu- larities

Paris-Sud XI, Université de

354

Climate Policy Decisions Require Policy-Based Lifecycle Analysis  

Science Journals Connector (OSTI)

Lifecycle analysis (LCA) metrics of greenhouse gas emissions are increasingly being used to select technologies supported by climate policy. ... For example, an economic framework used to evaluate biofuel policies in the US should at least incorporate fuel blenders, which is the sector regulated by biofuel policies, domestic and international agriculture and land markets, which are impacted by expansions in biofuels, and domestic and international fuel markets, which are affected by reduced demand for gasoline. ...

Antonio M. Bento; Richard Klotz

2014-04-18T23:59:59.000Z

355

Theoretical and Experimental Thermal Performance Analysis of Complex Thermal Storage Membrane Containing Bio-Based Phase Change Material (PCM)  

SciTech Connect

Since 2000, an ORNL research team has been testing different configurations of PCM-enhanced building envelop components to be used in residential and commercial buildings. During 2009, a novel type of thermal storage membrane was evaluated for building envelope applications. Bio-based PCM was encapsulated between two layers of heavy-duty plastic film forming a complex array of small PCM cells. Today, a large group of PCM products are packaged in such complex PCM containers or foils containing arrays of PCM pouches of different shapes and sizes. The transient characteristics of PCM-enhanced building envelope materials depend on the quality and amount of PCM, which is very often difficult to estimate because of the complex geometry of many PCM heat sinks. The only widely used small-scale analysis method used to evaluate the dynamic characteristics of PCM-enhanced building products is the differential scanning calorimeter (DSC). Unfortunately, this method requires relatively uniform, and very small, specimens of the material. However, in numerous building thermal storage applications, PCM products are not uniformly distributed across the surface area, making the results of traditional DSC measurements unrealistic for these products. In addition, most of the PCM-enhanced building products contain blends of PCM with fire retardants and chemical stabilizers. This combination of non-uniform distribution and non-homogenous composition make it nearly impossible to select a representative small specimen suitable for DSC tests. Recognizing these DSC limitations, ORNL developed a new methodology for performing dynamic heat flow analysis of complex PCM-enhanced building materials. An experimental analytical protocol to analyze the dynamic characteristics of PCM thermal storage makes use of larger specimens in a conventional heat-flow meter apparatus, and combines these experimental measurements with three-dimensional (3-D) finite-difference modeling and whole building energy simulations. Based on these dynamic tests and modeling, ORNL researchers then developed a simplified one-dimensional (1-D) model of the PCM-enhanced building component that can be easily used in whole-building simulations. This paper describes this experimental-analytical methodology as used in the analysis of an insulation assembly containing a complex array of PCM pouches. Based on the presented short example of whole building energy analysis, this paper describes step-by-step how energy simulation results can be used for optimization of PCM-enhanced building envelopes. Limited results of whole building energy simulations using the EnergyPlus program are presented as well.

Kosny, Jan [ORNL; Stovall, Therese K [ORNL; Shrestha, Som S [ORNL; Yarbrough, David W [ORNL

2010-12-01T23:59:59.000Z

356

Analysis of environmental issues related to small-scale hydroelectric development. V. Instream flow needs for fishery resources  

NLE Websites -- All DOE Office Websites (Extended Search)

45b 45b 0554033 I . . ~ ...... . . . . . . . . _ . . _ ~ ~~ ~~ - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . , O R N U T M - 7 8 6 1 Distribution Category UC-97e 0. W-7405-eng-26 ANALYSIS OF ENVIRO RELATED TO SMALL-SCALE HYDROELECTRIC DEVELOPMENT. V. INSTREAM FLOW NEE S FOR FISHERY RESOURCES James M. Loar Michael J. Sale TAL SCIENCES D r v r S - I o N Pub1 i c a t i on No. 1829 Prepared f o r U. S. Department o f Energy, A s s i s t a n t Secretary f o r Conservation and Renewable Energy, D i v i s i o n o f H y d r o e l e c t r i c Resource Development Date Pub1 i shed: October 1981 L Tennessee 37830 UNION CARBIDE ~ O ~ ~ ~ R A T I O N f o r the ENT OF ENERGY 3 445b 0554033 B ACKNOWLEDGMENTS W e thank W i l l i a m Knapp (1I.S. F i s h and W i l d l i f e Service, Region 5) and Mark Robinson (Federal Energy Regulatory Commission) for h

357

GIS Based Multi-criteria Analysis for Industrial Site Selection  

Science Journals Connector (OSTI)

Abstract Site selection is one of the basic vital decisions in the start-up process, expansion or relocation of businesses of all kinds. Construction of a new industrial system is a major long-term investment, and in this sense determining the location is critical point on the road to success or failure of industrial system. One of the main objectives in industrial site selection is finding the most appropriate site with desired conditions defined by the selection criteria. Most of the data used by managers and decision makers in industrial site selection are geographical which means that industrial site selection process is spatial decision problem. Such studies are becoming more and more common, due to the availability of the Geographic Information Systems (GIS) with user-friendly interfaces. Geographic information systems (GIS) are powerful tool for spatial analysis which provides functionality to capture, store, query, analyze, display and output geographic information. Geographic Information Systems are used in conjunction with other systems and methods such as systems for decision making (DSS) and the method for multi-criteria decision making (MCDM). Synergistic effect is generated by combining these tools contribute to the efficiency and quality of spatial analysis for industrial site selection. This paper presents a successful solution for spatial decision support in the case of spatial analysis of Vojvodina as a region of interest for industrial site selection.

Aleksandar Rikalovic; Ilija Cosic; Djordje Lazarevic

2014-01-01T23:59:59.000Z

358

Modeling the Performance, Emissions, and Cost of an Entrained-Flow Gasification Combined Cycle System Using  

E-Print Network (OSTI)

1 Modeling the Performance, Emissions, and Cost of an Entrained-Flow Gasification Combined Cycle-based Integrated Gasification Combined Cycle (IGCC) system using ASPEN. ASPEN is a steady-state chemical process-flow Integrated Gasification Combined Cycle (IGCC) system. This study aims at developing a base case analysis

Frey, H. Christopher

359

Realistic Performance Analysis of WSN Protocols Through Trace Based Simulation  

E-Print Network (OSTI)

. Generic network simulators are often used, but they tend to rely on synthetic models. Because WSN enable trace based WSN simulation by first enhancing an existing WSN profiler that automates. These include simulation area, node density, radio model, noise model, etc. These parameters are used

Han, Qi "Chee"

360

Analysis of WebBased Simulation Data Andrew F. Seila  

E-Print Network (OSTI)

simulation, all output data depend upon the initial state of the system. The objective of running a transient simulation is to estimate a system parameter that is conditioned on the starting state. A steady and systems. The use of beans in Web­based simulation allows many independently developed components to work

Miller, John A.

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Face-based multiple instance analysis for smart electronics billboard  

Science Journals Connector (OSTI)

This paper introduces a visual-based system, which can count the number of viewers and recognize their gender in front of an electronic billboard in real-time video streams. The viewers actually watching an advertisement are captured via frontal face ... Keywords: Electronic billboard, Gender recognition, Viewer counting

Duan-Yu Chen; Kuan-Yi Lin

2012-07-01T23:59:59.000Z

362

Rapid Detection and Enumeration of Giardia lamblia Cysts in Water Samples by Immunomagnetic Separation and Flow Cytometric Analysis  

Science Journals Connector (OSTI)

...Drinking Water 0 Sewage 7732-18-5 Water | Aquatic Organisms growth & development immunology isolation & purification Cryptosporidium isolation & purification Drinking Water Flow Cytometry methods Giardia lamblia...

Hans-Anton Keserue; Hans Peter Füchslin; Thomas Egli

2011-06-17T23:59:59.000Z

363

Accessibility analysis for telecommuting: a GIS-based approach  

E-Print Network (OSTI)

Basemap. shp Travis County Cancel Figure 4-3: Example of interface for base map generation 4. 4. 2 Impedance function calculation ~ Measuring the distance matrix for the study area In transport models, measurements of physical separation between... of each TAZ must be constructed first. phk Ihe ptopmtion theme Comnmtmg tune. shp Distance shp Austrnu shp Str. addtess shp Build pshp mean travel time ~DK pick Ihe mean ccmrmrting lane theme Coomutmg time shp Durance ptopotson shp Distance shp...

Chen, Chun

2001-01-01T23:59:59.000Z

364

The Phase Inversion-based Coal-CO? Slurry (PHICCOS) feeding system : design, coupled multiscale analysis, and technoeconomic assessment  

E-Print Network (OSTI)

The continuous conveying of a solid feedstock like pulverized coal into a pressurized environment is a challenging task required in multiple industrial processes. Plants based on pressurized, entrained-flow gasifiers (EFG) ...

Botero, Cristina, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

365

ADVANCED EXERGY ANALYSIS APPLIED TO THE GAS-TURBINE BASED CO-GENERATION SYSTEM.  

E-Print Network (OSTI)

??The thesis focuses on the evaluation and improvement of a gas-turbine based co-generation system, from an exergetic point of view. A conventional exergy analysis has… (more)

AZZARELLI, GIUSEPPE

2008-01-01T23:59:59.000Z

366

Proof Details for "Performance Analysis of Godard-Based Blind Channel Identification"  

E-Print Network (OSTI)

1 Proof Details for "Performance Analysis of Godard-Based Blind Channel Identification" Philip) The bulk of the proof is spent analyzing the righthand term above. E ^^h(0) i - ^h(0) i 2 2 = E ^^h(0) i 2

Schniter, Philip

367

Turbulent Patch Identification in Microstructure Profiles: A Method Based on Wavelet Denoising and Thorpe Displacement Analysis  

Science Journals Connector (OSTI)

A new method based on wavelet denoising and the analysis of Thorpe displacements dT profiles is presented for turbulent patch identification. Thorpe profiles are computed by comparing the observed density profile ?(z) and the monotonic density ...

Jaume Piera; Elena Roget; Jordi Catalan

2002-09-01T23:59:59.000Z

368

Automatic Sensitivity Analysis of DAE-systems Generated from Equation-Based Modeling Languages  

Science Journals Connector (OSTI)

This paper aims at sensitivity analysis of differential algebraic equation (DAE) systems, generated from mathematical models, specified in equation-based modeling languages. Modern simulation languages (e.g. M...

Atya Elsheikh; Wolfgang Wiechert

2008-01-01T23:59:59.000Z

369

Techniques for Hydrograph Synthesis Based on Analysis of Data from Small Drainage Basins in Texas  

E-Print Network (OSTI)

TR-3 1966 Techniques for Hydrograph Synthesis Based on Analysis of Data from Small Drainage Basins in Texas M.D. Hudlow Texas Water Resources Institute Texas A&M University ...

Hudlow, M.D.

370

Sustainability analysis of complex dynamic systems using embodied energy flows: The eco-bond graphs modeling and simulation framework  

Science Journals Connector (OSTI)

Abstract This article presents a general methodology for modeling complex dynamic systems focusing on sustainability properties that emerge from tracking energy flows. We adopt the embodied energy (emergy) concept that traces all energy transformations required for running a process. Thus, energy at any process within a system is studied in terms of all the energy previously invested to support it (up to the primary sources) and therefore sustainability can be analyzed structurally. These ideas were implemented in the bond graph framework, a modeling paradigm where physical variables are explicitly checked for adherence to energy conservation principles. The results are a novel Ecological Bond Graphs (EcoBG) modeling paradigm and the new EcoBondLib library, a set of practical ready-to-use graphical models based on EcoBG principles and developed under the Modelica model encoding standard. EcoBG represents general systems in a three-faceted fashion, describing dynamics at their mass, energy, and emergy facets. EcoBG offers a scalable graphical formalism for the description of emergy dynamic equations, resolving some mathematical difficulties inherited from the original formulation of the equations. The core elements of EcoBG offer a soundly organized mathematical skeleton upon which new custom variables and indexes can be built to extend the modeling power. This can be done safely, without compromising the correctness of the core energy balance calculations. As an example we show how to implement a custom sustainability index at local submodels, for detecting unsustainable phases that are not automatically discovered when using the emergy technique alone. The fact that we implemented EcoBondLib relying on the Modelica technology opens up powerful possibilities for studying sustainability of systems with interactions between natural and industrial processes. Modelica counts on a vast and reusable knowledge base of industrial-strength models and tools in engineering applications, developed by the Modelica community throughout decades.

Rodrigo D. Castro; François E. Cellier; Andreas Fischlin

2014-01-01T23:59:59.000Z

371

Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects  

SciTech Connect

Buildings rarely perform as intended, resulting in energy use that is higher than anticipated. Building commissioning has emerged as a strategy for remedying this problem in non-residential buildings. Complementing traditional hardware-based energy savings strategies, commissioning is a 'soft' process of verifying performance and design intent and correcting deficiencies. Through an evaluation of a series of field projects, this report explores the efficacy of an emerging refinement of this practice, known as monitoring-based commissioning (MBCx). MBCx can also be thought of as monitoring-enhanced building operation that incorporates three components: (1) Permanent energy information systems (EIS) and diagnostic tools at the whole-building and sub-system level; (2) Retro-commissioning based on the information from these tools and savings accounting emphasizing measurement as opposed to estimation or assumptions; and (3) On-going commissioning to ensure efficient building operations and measurement-based savings accounting. MBCx is thus a measurement-based paradigm which affords improved risk-management by identifying problems and opportunities that are missed with periodic commissioning. The analysis presented in this report is based on in-depth benchmarking of a portfolio of MBCx energy savings for 24 buildings located throughout the University of California and California State University systems. In the course of the analysis, we developed a quality-control/quality-assurance process for gathering and evaluating raw data from project sites and then selected a number of metrics to use for project benchmarking and evaluation, including appropriate normalizations for weather and climate, accounting for variations in central plant performance, and consideration of differences in building types. We performed a cost-benefit analysis of the resulting dataset, and provided comparisons to projects from a larger commissioning 'Meta-analysis' database. A total of 1120 deficiency-intervention combinations were identified in the course of commissioning the projects described in this report. The most common location of deficiencies was in HVAC equipment (65% of sites), followed by air-handling and distributions systems (59%), cooling plant (29%), heating plants (24%), and terminal units (24%). The most common interventions were adjusting setpoints, modifying sequences of operations, calibration, and various mechanical fixes (each done in about two-thirds of the sites). The normalized rate of occurrence of deficiencies and corresponding interventions ranged from about 0.1/100ksf to 10/100ksf, depending on the issue. From these interventions flowed significant and highly cost-effective energy savings For the MBCx cohort, source energy savings of 22 kBTU/sf-year (10%) were achieved, with a range of 2% to 25%. Median electricity savings were 1.9 kWh/sf-year (9%), with a range of 1% to 17%. Peak electrical demand savings were 0.2 W/sf-year (4%), with a range of 3% to 11%. The aggregate commissioning cost for the 24 projects was $2.9 million. We observed a range of normalized costs from $0.37 to 1.62/sf, with a median value of $1.00/sf for buildings that implemented MBCx projects. Per the program design, monitoring costs as a percentage of total costs are significantly higher in MBCx projects (median value 40%) than typical commissioning projects included in the Meta-analysis (median value of 2% in the commissioning database). Half of the projects were in buildings containing complex and energy-intensive laboratory space, with higher associated costs. Median energy cost savings were $0.25/sf-year, for a median simple payback time of 2.5 years. Significant and cost-effective energy savings were thus obtained. The greatest absolute energy savings and shortest payback times were achieved in laboratory-type facilities. While impacts varied from project to project, on a portfolio basis we find MBCx to be a highly cost-effective means of obtaining significant program-level energy savings across a variety of building types. Energy savings are ex

Mills, Evan; Mathew, Paul

2009-04-01T23:59:59.000Z

372

Experimental Analysis of Water Based Drilling Fluid Aging Processes at High Temperature and High Pressure Conditions  

E-Print Network (OSTI)

! ! EXPERIMENTAL ANALYSIS OF WATER BASED DRILLING FLUID AGING PROCESSES AT HIGH TEMPERATURE AND HIGH PRESSURE CONDITIONS A Thesis by BRANDON SCOTT ZIGMOND Submitted to the Office of Graduate Studies of Texas A&M University... Temperature and High Pressure Conditions Copyright 2012 Brandon Scott Zigmond ! ! EXPERIMENTAL ANALYSIS OF WATER BASED DRILLING FLUID AGING PROCESSES AT HIGH TEMPERATURE AND HIGH PRESSURE CONDITIONS A Thesis by BRANDON SCOTT ZIGMOND Submitted...

Zigmond, Brandon

2012-10-19T23:59:59.000Z

373

A column based variance analysis approach to static reservoir model upgridding  

E-Print Network (OSTI)

A COLUMN BASED VARIANCE ANALYSIS APPROACH TO STATIC RESERVOIR MODEL UPGRIDDING A Thesis by MATTHEW BRANDON TALBERT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2008 Major Subject: Petroleum Engineering A COLUMN BASED VARIANCE ANALYSIS APPROACH TO STATIC RESERVOIR MODEL UPGRIDDING A Thesis by MATTHEW BRANDON TALBERT Submitted to the Office...

Talbert, Matthew Brandon

2008-10-10T23:59:59.000Z

374

Design and analysis of an Extended Kalman Filter based navigator for an autonomous underwater vehicle  

E-Print Network (OSTI)

DESIGN AND ANALYSIS OF AN EXTENDED KALMAN FILTER BASED NAVIGATOR FOR AN AUTONOMOUS UNDERWATER VEHICLE A Thesis by BRADLEY EUGENE JUST Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1994 Major Subject: Mechanical Engineering DESIGN AND ANALYSIS OF AN EXTENDED KALMAN FILTER BASED NAVIGATOR FOR AN AUTONOMOUS UNDERWATER VEHICLE A Thesis by BRADLEY EUGENE JUST Submitted to Texas A...

Just, Bradley Eugene

2012-06-07T23:59:59.000Z

375

Variability Analysis of Complex Networks Measures based on Stochastic Distances  

E-Print Network (OSTI)

Complex networks can model the structure and dynamics of different types of systems. It has been shown that they are characterized by a set of measures. In this work, we evaluate the variability of complex networks measures face to perturbations and, for this purpose, we impose controlled perturbations and quantify their effect. We analyze theoretical models (random, small-world and scale-free) and real networks (a collaboration network and a metabolic networks) along with the shortest path length, vertex degree, local cluster coefficient and betweenness centrality measures. In such analysis, we propose the use of three stochastic quantifiers: the Kullback-Leibler divergence and the Jensen-Shannon and Hellinger distances. The sensitivity of these measures was analyzed with respect to the following perturbations: edge addition, edge removal, edge rewiring and node removal, all of them applied at different intensities. The results reveal that the evaluated measures are influenced by these perturbations. Additio...

Cabral, Raquel; Ramírez, Jaime

2014-01-01T23:59:59.000Z

376

Neutronics analysis for an accelerator-based nuclear waste transmuter  

SciTech Connect

The neutronic analysis for a target/blanket design that is capable of supporting the high level waste stream from 2.5 LWR`s is described. The target consists of a set of solid tungsten and lead plates, cooled by heavy water and surrounded by a lead annulus. The annular blanket, which surrounds the target, consists of a set of AcO{sub 2} slurry bearing tubes, each 3 meters long, surrounded by heavy water moderator. Heat removal from the slurry tubes is by passing the rapidly moving slurry through an external heat exchanger. There are separate regions for long-lived fission product burning. Using the Monte Carlo codes LAHET and MCNP we have optimized the design for a minimum beam current of 62.5 mA of 1.6 GeV protons.

Sailor, W.C.; Beard, C.A.

1993-07-01T23:59:59.000Z

377

Safety analysis of software product lines using state-based modeling q , Josh Dehlinger a  

E-Print Network (OSTI)

Safety analysis of software product lines using state-based modeling q Jing Liu a , Josh Dehlinger of managing variations and their potential interactions across an entire product line currently hinders safety analysis in safety-critical, software product lines. The work described here contributes to a solution

Lutz, Robyn R.

378

ATLAS-BASED FIBER CLUSTERING FOR MULTI-SUBJECT ANALYSIS OF HIGH ANGULAR RESOLUTION DIFFUSION  

E-Print Network (OSTI)

ATLAS-BASED FIBER CLUSTERING FOR MULTI-SUBJECT ANALYSIS OF HIGH ANGULAR RESOLUTION DIFFUSION and a co-registered probabilistic DTI atlas to select key pathways, applied a threshold and median anatomy 3. Make tract analysis robust to differences in the atlas and subject 1. Image Data · 105-gradient

Thompson, Paul

379

An analysis and validation pipeline for large-scale RNAi-based screens  

E-Print Network (OSTI)

An analysis and validation pipeline for large-scale RNAi-based screens Michael Plank1 , Guang Hu2 pipeline to prioritize these candidates incorporating effect sizes, functional enrichment analysis associated with oxidative stress resistance, as a proof-of-concept of our pipeline we demonstrate

de MagalhĂŁes, JoĂŁo Pedro

380

Experimental Analysis of Task-based Energy Consumption in Cloud Computing Systems  

E-Print Network (OSTI)

computing, green cloud, energy consumption, performance analysis, energy efficiency. 1. INTRODUCTION Cloud in green cloud computing systems [4]. Many efforts have been made to improve the energy efficiency of cloudExperimental Analysis of Task-based Energy Consumption in Cloud Computing Systems Feifei Chen, John

Schneider, Jean-Guy

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Stochastic Analysis and Improvement of the Reliability of DHT-based Multicast  

E-Print Network (OSTI)

applications, such as text/voice streaming and distributed white board. Reliability is one of the major the distribution of node residual lifetime, which plays a fundamental role in the reliability analysis throughoutStochastic Analysis and Improvement of the Reliability of DHT-based Multicast Guang Tan and Stephen

Jarvis, Stephen

382

The Coordinated Control of a Central Air Conditioning System Based on Variable Chilled Water Temperature and Variable Chilled Water Flow  

E-Print Network (OSTI)

At present, regulation of water flow by means of pump frequency conversion is one of the major methods for power-saving in central air conditioning systems. In this article, optimization regulation for central air conditioning system on the basis...

Liu, J.; Mai, Y.; Liu, X.

2006-01-01T23:59:59.000Z

383

Compressive Sensing Based Machine Learning Strategy For Characterizing The Flow Around A Cylinder With Limited Pressure Measurements  

SciTech Connect

Compressive sensing is used to determine the flow characteristics around a cylinder (Reynolds number and pressure/flow field) from a sparse number of pressure measurements on the cylinder. Using a supervised machine learning strategy, library elements encoding the dimensionally reduced dynamics are computed for various Reynolds numbers. Convex L1 optimization is then used with a limited number of pressure measurements on the cylinder to reconstruct, or decode, the full pressure field and the resulting flow field around the cylinder. Aside from the highly turbulent regime (large Reynolds number) where only the Reynolds number can be identified, accurate reconstruction of the pressure field and Reynolds number is achieved. The proposed data-driven strategy thus achieves encoding of the fluid dynamics using the L2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting L1 norm.

Bright, Ido; Lin, Guang; Kutz, Nathan

2013-12-05T23:59:59.000Z

384

Hybrid Scenario Based Performance Analysis of DSDV and DSSR  

E-Print Network (OSTI)

The area of mobile ad hoc networking has received considerable attention of the research community in recent years. These networks have gained immense popularity primarily due to their infrastructure-less mode of operation which makes them a suitable candidate for deployment in emergency scenarios like relief operation, battlefield etc., where either the pre-existing infrastructure is totally damaged or it is not possible to establish a new infrastructure quickly. However, MANETs are constrained due to the limited transmission range of the mobile nodes which reduces the total coverage area. Sometimes the infrastructure-less ad hoc network may be combined with a fixed network to form a hybrid network which can cover a wider area with the advantage of having less fixed infrastructure. In such a combined network, for transferring data, we need base stations which act as gateways between the wired and wireless domains. Due to the hybrid nature of these networks, routing is considered a challenging task. Several r...

Majumder, Koushik; 10.5121/ijcsit.2010.2305

2010-01-01T23:59:59.000Z

385

A computational analysis of the carbon-nanotube-based resonant-circuit sensors  

E-Print Network (OSTI)

A computational analysis of the carbon-nanotube-based resonant-circuit sensors M. Grujicica,* , G reduction in the resonant frequency of the resonant circuit-based chemical gas sensors. It is found of applications ranging from house gas and fire alarms to medical diagnostic applications and the control

Grujicic, Mica

386

The Importance of Cognitive Architectures: An Analysis Based on Cognitive Science Department  

E-Print Network (OSTI)

The Importance of Cognitive Architectures: An Analysis Based on CLARION Ron Sun Cognitive Science: http://www.cogsci.rpi.edu/rsun September 15, 2006 Abstract Research in computational cognitive modeling investigates the nature of cognition through developing process-based understanding by specifying computational

Varela, Carlos

387

FP-Rank: An Effective Ranking Approach Based on Frequent Pattern Analysis  

E-Print Network (OSTI)

FP-Rank: An Effective Ranking Approach Based on Frequent Pattern Analysis Yuanfeng Song, Kenneth. Ranking documents in terms of their relevance to a given query is fundamental to many real on developing efficient ranking models. While ranking mod- els are usually trained based on given training

Ng, Wilfred Siu Hung

388

Sensors and Actuators B 111112 (2005) 230241 Improvements in LED-based fluorescence analysis systems  

E-Print Network (OSTI)

Sensors and Actuators B 111­112 (2005) 230­241 Improvements in LED-based fluorescence analysis the stability, power output, and spectral flexibility of light emitting diode (LED)-based systems used to excite fluorescence or other forms of luminescence. LEDs are an attractive alternative to conventional white

Wilson, Denise

389

Asymptotic analysis of utility-based prices and hedging strategies for utilities defined on the  

E-Print Network (OSTI)

Asymptotic analysis of utility-based prices and hedging strategies for utilities defined 6th 2009 #12;Outline Optimal investment and utility-based pricing hedging Asymptotic expansions horizon T 3. preferences over terminal wealth described by a utility function U #12;Trading strategies

Sîrbu, Mihai

390

DOE'S ENERGY DATA BASE (EDB) VERSUS OTHER ENERGY-RELATED DATA BASES: A COMPARATIVE ANALYSIS  

E-Print Network (OSTI)

PLANTATIONS FIGURE 2 BIOGAS PROCESS TL'BIOGAS _ANAERQBICf o r Other Data Bases >BIOGAS/TI,DE,ID BIO(W)GAS/TI,DE,IDSEARCHES Methane (or Biogas) Production from Agricultural

Robinson, J.

2010-01-01T23:59:59.000Z

391

A Novel Sensor-Based Methodology for Learner's Motivation Analysis in Game-Based Learning  

Science Journals Connector (OSTI)

......AND FUTURE WORK As the education and gaming communities...sciencedirect.com/science/article/pii/S0278262611001370...International 2011-Posters' Extended Abstracts...Computer and Information Science-Stephanidis C...Intelligent Toys Based Education (2008) 124-131......

Ioana Ghergulescu; Cristina Hava Muntean

2014-07-01T23:59:59.000Z

392

Synthesis of Enterprise and Value-Based Methods for Multiattribute Risk Analysis  

SciTech Connect

This paper describes a method for performing multiattribute decision analysis to prioritize ap-proaches to handling risks during the development and operation of complex socio-technical systems. The method combines risk categorization based on enterprise views, risk prioritization of the categories based on the Analytic Hierarchy Process (AHP), and more standard probability-consequence ratings schemes. We also apply value-based testing me-thods used in software development to prioritize risk-handling approaches. We describe a tool that synthesizes the methods and performs a multiattribute analysis of the technical and pro-grammatic risks on the Next Generation Nuclear Plant (NGNP) enterprise.

C. Robert Kenley; John W. Collins; John M. Beck; Harold J. Heydt; Chad B. Garcia

2001-10-01T23:59:59.000Z

393

A new algorithm for wavelet-based heart rate variability analysis  

E-Print Network (OSTI)

One of the most promising non-invasive markers of the activity of the autonomic nervous system is Heart Rate Variability (HRV). HRV analysis toolkits often provide spectral analysis techniques using the Fourier transform, which assumes that the heart rate series is stationary. To overcome this issue, the Short Time Fourier Transform is often used (STFT). However, the wavelet transform is thought to be a more suitable tool for analyzing non-stationary signals than the STFT. Given the lack of support for wavelet-based analysis in HRV toolkits, such analysis must be implemented by the researcher. This has made this technique underutilized. This paper presents a new algorithm to perform HRV power spectrum analysis based on the Maximal Overlap Discrete Wavelet Packet Transform (MODWPT). The algorithm calculates the power in any spectral band with a given tolerance for the band's boundaries. The MODWPT decomposition tree is pruned to avoid calculating unnecessary wavelet coefficients, thereby optimizing execution t...

García, Constantino A; Vila, Xosé; Márquez, David G

2014-01-01T23:59:59.000Z

394

Multiple Flow Regimes in the Northern Hemisphere Winter. Part II: Sectorial Regimes and Preferred Transitions  

Science Journals Connector (OSTI)

This paper presents an observational analysis of recurrent flow patterns in the Northern Hemisphere (NH) winter, based on a 37-year series of daily 700-mb height anomalies. Large-scale anomaly patterns that appear repeatedly and persist beyond ...

Masahide Kimoto; Michael Ghil

1993-08-01T23:59:59.000Z

395

Flow-Through Fourier Transform Infrared Sensor for Total Hydrocarbons Determination in Water  

Science Journals Connector (OSTI)

A new flow-through Fourier transform infrared (FT-IR) sensor for oil in water analysis based on solid-phase spectroscopy on octadecyl (C18) silica particles has been developed. The C18...

Pérez-Palacios, David; Armenta, Sergio; Lendl, Bernhard

2009-01-01T23:59:59.000Z

396

CFD Analysis of Core Bypass Flow and Crossflow in the Prismatic Very High Temperature Gas-cooled Nuclear Reactor  

E-Print Network (OSTI)

Very High Temperature Rector (VHTR) had been designated as one of those promising reactors for the Next Generation (IV) Nuclear Plant (NGNP). For a prismatic core VHTR, one of the most crucial design considerations is the bypass flow and crossflow...

Wang, Huhu 1985-

2012-12-13T23:59:59.000Z

397

3D Numerical heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with electrohydrodynamic enhancement  

Science Journals Connector (OSTI)

Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes...V E...=0–16 kV) are investigated in detail...

Chia-Wen Lin; Jiin-Yuh Jang

2005-05-01T23:59:59.000Z

398

A Robust Four-Fluid Transient Flow Simulator as an Analysis and Decision Making Tool for Dynamic Kill Operation  

E-Print Network (OSTI)

The worst scenario of drilling operation is blowout which is uncontrolled flow of formation fluid into the wellbore. Blowouts result in environmental damage with potential risk of injuries and fatalities. Although not all blowouts result in disaster...

Haghshenas, Arash

2013-04-24T23:59:59.000Z

399

Fault tree synthesis for software design analysis of PLC based safety-critical systems  

SciTech Connect

As a software verification and validation should be performed for the development of PLC based safety-critical systems, a software safety analysis is also considered in line with entire software life cycle. In this paper, we propose a technique of software safety analysis in the design phase. Among various software hazard analysis techniques, fault tree analysis is most widely used for the safety analysis of nuclear power plant systems. Fault tree analysis also has the most intuitive notation and makes both qualitative and quantitative analyses possible. To analyze the design phase more effectively, we propose a technique of fault tree synthesis, along with a universal fault tree template for the architecture modules of nuclear software. Consequently, we can analyze the safety of software on the basis of fault tree synthesis. (authors)

Koo, S. R.; Cho, C. H. [Corporate R and D Inst., Doosan Heavy Industries and Construction Co., Ltd., 39-3, Seongbok-Dong, Yongin-Si, Gyeonggi-Do 449-795 (Korea, Republic of); Seong, P. H. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-3 Guseong-dong, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

2006-07-01T23:59:59.000Z

400

A framework for graph-based synthesis, analysis, and visualization of HPC cluster job data.  

SciTech Connect

The monitoring and system analysis of high performance computing (HPC) clusters is of increasing importance to the HPC community. Analysis of HPC job data can be used to characterize system usage and diagnose and examine failure modes and their effects. This analysis is not straightforward, however, due to the complex relationships that exist between jobs. These relationships are based on a number of factors, including shared compute nodes between jobs, proximity of jobs in time, etc. Graph-based techniques represent an approach that is particularly well suited to this problem, and provide an effective technique for discovering important relationships in job queuing and execution data. The efficacy of these techniques is rooted in the use of a semantic graph as a knowledge representation tool. In a semantic graph job data, represented in a combination of numerical and textual forms, can be flexibly processed into edges, with corresponding weights, expressing relationships between jobs, nodes, users, and other relevant entities. This graph-based representation permits formal manipulation by a number of analysis algorithms. This report presents a methodology and software implementation that leverages semantic graph-based techniques for the system-level monitoring and analysis of HPC clusters based on job queuing and execution data. Ontology development and graph synthesis is discussed with respect to the domain of HPC job data. The framework developed automates the synthesis of graphs from a database of job information. It also provides a front end, enabling visualization of the synthesized graphs. Additionally, an analysis engine is incorporated that provides performance analysis, graph-based clustering, and failure prediction capabilities for HPC systems.

Mayo, Jackson R.; Kegelmeyer, W. Philip, Jr.; Wong, Matthew H.; Pebay, Philippe Pierre; Gentile, Ann C.; Thompson, David C.; Roe, Diana C.; De Sapio, Vincent; Brandt, James M.

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Abstract--This work develops a three-phase unbalanced load flow tool tailored for radial distribution networks based  

E-Print Network (OSTI)

) generators where most of the systems are single phase. New ancillary service such as static reactive power, thermal limits of grid components and power losses in radial MV-LV networks with photovoltaic (PV support by PV inverters can be also merged together with the load flow solution tool and thus, the impact

Teodorescu, Remus

402

Is WTI crude oil market becoming weakly efficient over time?: New evidence from multiscale analysis based on detrended fluctuation analysis  

Science Journals Connector (OSTI)

This paper extends the work in Tabak and Cajueiro [Are the crude oil markets becoming weakly efficient over time, Energy Economics 29 (2007) 28–36] and Alvarez-Ramirez et al. [Short-term predictability of crude oil markets: a detrended fluctuation analysis approach, Energy Economics 30 (2008) 2645–2656]. In this paper, we test for the efficiency of WTI crude oil market through observing the dynamic of local Hurst exponents employing the method of rolling window based on multiscale detrended fluctuation analysis. Empirical results show that short-term, medium-term and long-term behaviors were generally turning into efficient behavior over time. However, in this way, the results also show that the market did not evolve along stable conditions for long times. Multiscale analysis is also implemented based on multifractal detrended fluctuation analysis. We found that the small fluctuations of WTI crude oil market were persistent; however, the large fluctuations had high instability, both in the short- and long-terms. Our discussion is also extended by incorporating arguments from the crude oil market structure for explaining the different correlation dynamics.

Yudong Wang; Li Liu

2010-01-01T23:59:59.000Z

403

Cotton flow  

E-Print Network (OSTI)

Using the conformally invariant Cotton tensor, we define a geometric flow, the "Cotton flow", which is exclusive to three dimensions. This flow tends to evolve the initial metrics into conformally flat ones, and is somewhat orthogonal to the Yamabe flow, the latter being a flow within a conformal class. We define an entropy functional, and study the flow of nine homogeneous spaces both numerically and analytically. In particular, we show that the arbitrarily deformed homogeneous 3-sphere flows into the round 3-sphere. Two of the nine homogeneous geometries, which are degenerated by the Ricci flow, are left intact by the Cotton flow.

Ali Ulas Ozgur Kisisel; Ozgur Sarioglu; Bayram Tekin

2008-06-17T23:59:59.000Z

404

Experimental study of dynamic barite sag in oil-based drilling fluids using a modified rotational viscometer and a flow loop  

Science Journals Connector (OSTI)

During drilling operations, control of the sub-surface pressure is of utmost importance. High density minerals, such as barite and hematite, are used to increase the density of drilling fluids and thereby control these pressures. However, contributing factors, such as the gravitational force, cause the weighting material particles to settle out of the suspension. This is designated as “sag” within the drilling industry and can lead to a variety of major drilling problems, including lost circulation, well control difficulties, poor cement jobs, and stuck pipes. The study of this phenomenon, including ways to mitigate its effects, has long been of interest. In this paper several methods for evaluating dynamic barite sag in oil-based drilling fluids are examined in a flow loop with the use of a rotational viscometer modified by the addition of a sag shoe (MRV). Tests using the MRV in the range of 0–100 RPM were conducted, and the effects of rotation speed on sag were correlated with flow loop tests performed by varying the inner pipe rotation speed. The combined effects of eccentricity and pipe rotation on dynamic barite sag in oil-based drilling fluids are also described in this paper. Flow loop test results indicate that pipe rotation has a greater impact on reducing sag when the pipe is eccentric rather than concentric. Additionally, results in the MRV indicate a strong correlation between the test RPM and the degree of measured sag.

Tan Nguyen; Stefan Miska; Mengjiao Yu; Nicholas Takach; Ramadan Ahmed; Arild Saasen; Tor Henry Omland; Jason Maxey

2011-01-01T23:59:59.000Z

405

Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects Title Monitoring Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects Publication Type Report LBNL Report Number LBNL-1972E Year of Publication 2009 Authors Mills, Evan, and Paul A. Mathew Call Number LBNL-1972E Abstract HVAC systems that are designed without properly accounting for equipment load variation across laboratory spaces in a facility can significantly increase simultaneous heating and cooling, particularly for systems that use zone reheat for temperature control. This best practice guide describes the problem of simultaneous heating and cooling resulting from load variations, and presents several technological and design process strategies to minimize it.

406

Analysis of Customer Enrollment Patterns in TIme-Based Rate Programs:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis of Customer Enrollment Patterns in TIme-Based Rate Analysis of Customer Enrollment Patterns in TIme-Based Rate Programs: Initial Results from the SGIG Consumer Behavior Studies (July 2013) Analysis of Customer Enrollment Patterns in TIme-Based Rate Programs: Initial Results from the SGIG Consumer Behavior Studies (July 2013) The U.S. Department of Energy is implementing the Smart Grid Investment Grant (SGIG) program under the American Recovery and Reinvestment Act of 2009 (Recovery Act). The SGIG program involves 99 projects that are deploying smart grid technologies, tools, and techniques for electric transmission, distribution, advanced metering, and customer systems. A subset of the 99 SGIG projects is conducting consumer behavior studies. These studies examine the response of residential and small commercial

407

A Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of  

Open Energy Info (EERE)

Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Altered Rocks- An Example From The Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Altered Rocks- An Example From The Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt Details Activities (0) Areas (0) Regions (0) Abstract: We propose a simple graphic and statistical method for processing short-wave infrared (SWIR) reflectivity spectra of alteration minerals, which classifies spectra according to their shape and absorption features, thus obtaining groups of spectra equivalent to mineral assemblages. It also permits selection of fewer samples for further mineralogical verification.

408

U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis | Open  

Open Energy Info (EERE)

Technical Potentials: A GIS-Based Analysis Technical Potentials: A GIS-Based Analysis Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis Abstract Renewable energy technical potential as defined in this report represents the achievable energy generation of a particular technology given system performance, topographic limitations, environmental, and land-use constraints. The primary benefit of assessing technical potential is that it establishes an upper-boundary estimate of development potential. Authors Anthony Lopez, Billy Roberts, Donna Heimiller, Nate Blair and Gian Porro Organization National Renewable Energy Laboratory Published National Renewable Energy Laboratory, 2012 Report Number NREL/TP-6A20-51946 DOI

409

Techno-economic analysis of coal gasification based co-production systems  

Science Journals Connector (OSTI)

Abstract Coal gasification based co-production systems are increasing popular in the world because they are assumed to be advantageous in energy efficiency and economic cost. However, there has been seldom researches on quantifying these advantages. In this paper, the co-prouction systems are analyzed from the technical and ecnomic point of views. During the study, the co-production system, of which the products are electricity and methanol, is modeled and simulated. For analysis, the energy analysis model and the economy analysis model are established. Results show that the co-production system has higher energy efficiency and less capital expenditure than tranditional single production systems.

Siyu Yang; Hengchong Li; Yu Qian

2012-01-01T23:59:59.000Z

410

Stability analysis and reactive power compensation issue in a microgrid with a DFIG based WECS  

Science Journals Connector (OSTI)

Abstract This paper presents a novel methodology for compensating reactive power in a microgrid, having a DFIG based wind–diesel system, to enhance the voltage stability of the hybrid system. UPFC as a FACTS device is proposed in order to improve the control of reactive power mismatch and the stability of the system. A small signal model of the wind–diesel system, DFIG based wind turbine system, UPFC and the controllers are designed for the stability analysis. Further, the voltage variation and reactive power compensation is analysed with the incorporation of proposed ANFIS based UPFC controller. Simulations are performed in MATLAB environment for transient stability analysis in a wind–diesel based microgrid with different wind power input and 2% step increase in load demand. Simulation results illustrate the efficiency and effectiveness of the proposed approach and its impact upon transient behaviour of the microgrid.

Asit Mohanty; Meera Viswavandya; Prakash K. Ray; Sandipan Patra

2014-01-01T23:59:59.000Z

411

Mar. Fresh. Behav. Physiol., December 2003, Vol. 36, No. 4, pp. 307319 ANALYSIS OF THE FLOW FIELD OF THE KRILL,  

E-Print Network (OSTI)

propulsion. Keywords: Krill; Euphausia pacifica; Flow field; Particle image velocimetry; PIV; Pleopods; Hydrodynamics INTRODUCTION Euphausiid krill play a major role in marine ecosystems (Loeb et al., 1997; Mangel enable krill to sense the shear layers of the propulsion jets of neighboring krill (Wiese and Marschall

412

Laboratory analysis of fluid flow and solute transport through a variably saturated fracture embedded in porous tuff  

SciTech Connect

Laboratory techniques are developed that allow concurrent measurement of unsaturated matrix hydraulic conductivity and fracture transmissivity of fractured rock blocks. Two Apache Leap tuff blocks with natural fractures were removed from near Superior, Arizona, shaped into rectangular prisms, and instrumented in the laboratory. Porous ceramic plates provided solution to block tops at regulated pressures. Infiltration tests were performed on both test blocks. Steady flow testing of the saturated first block provided estimates of matrix hydraulic conductivity and fracture transmissivity. Fifteen centimeters of suction applied to the second block top showed that fracture flow was minimal and matrix hydraulic conductivity was an order of magnitude less than the first block saturated matrix conductivity. Coated-wire ion-selective electrodes monitored aqueous chlorided breakthrough concentrations. Minute samples of tracer solution were collected with filter paper. The techniques worked well for studying transport behavior at near-saturated flow conditions and also appear to be promising for unsaturated conditions. Breakthrough curves in the fracture and matrix, and a concentration map of chloride concentrations within the fracture, suggest preferential flows paths in the fracture and substantial diffusion into the matrix. Average travel velocity, dispersion coefficient and longitudinal dispersivity in the fracture are obtained. 67 refs., 54 figs., 23 tabs.

Chuang, Y.; Haldeman, W.R.; Rasmussen, T.C.; Evans, D.D. [Arizona Univ., Tucson, AZ (USA). Dept. of Hydrology and Water Resources

1990-02-01T23:59:59.000Z

413

Wind power application for low flow irrigation from the Edwards-Trinity aquifer of West Texas  

E-Print Network (OSTI)

for this region. A relationship of flow pumped from a wind powered pumping system was developed to better predict flow rate based on available wind speed and pumping water depth data.The economic analysis of this system showed that if the local utility sold power...

Molla, Saiful Islam

2012-06-07T23:59:59.000Z

414

NONLINEAR ANALYSIS OF RUBBER-BASED POLYMERIC MATERIALS WITH THERMAL RELAXATION MODELS  

E-Print Network (OSTI)

NONLINEAR ANALYSIS OF RUBBER-BASED POLYMERIC MATERIALS WITH THERMAL RELAXATION MODELS R. V. N of the material and their close connection with the effect of thermal relaxation time can be best appreciated (phonons). A relaxation time appears naturally as the characteristic of thermal resistance in the solid

Melnik, Roderick

415

Towards QoS Prediction Based on Composition Structure Analysis and Probabilistic Environment Models  

E-Print Network (OSTI)

Towards QoS Prediction Based on Composition Structure Analysis and Probabilistic Environment Models Dragan Ivanovi´c Universidad Polit´ecnica de Madrid idragan@clip.dia.fi.upm.es Peerachai Kaowichakorn Universidad Polit´ecnica de Madrid p.kaowichakorn@gmail.com Manuel Carro Universidad Polit´ecnica de Madrid

Politécnica de Madrid, Universidad

416

Proper Orthogonal Decomposition-Based Modeling, Analysis, and Simulation of Dynamic Wind Load  

E-Print Network (OSTI)

Proper Orthogonal Decomposition-Based Modeling, Analysis, and Simulation of Dynamic Wind Load.1061/ ASCE 0733-9399 2005 131:4 325 CE Database subject headings: Simulation; Wind loads; Buildings; Random on the decomposition of the covariance and XPSD matrices is presented. A physically meaningful linkage between the wind

Chen, Xinzhong

417

Combining Discriminant Analysis and Neural Networks for Fraud Detection on the Base of  

E-Print Network (OSTI)

Combining Discriminant Analysis and Neural Networks for Fraud Detection on the Base of Complex suspicious, unknown event patterns in the field of fraud detection by using a combi- nation of discriminant of finding unknown fraud patterns, several statistical meth- ods are discussed. On this background, first

Tucci, Sara

418

A phylogenetic analysis of the emberizid sparrows based on three mitochondrial genes  

E-Print Network (OSTI)

A phylogenetic analysis of the emberizid sparrows based on three mitochondrial genes Rebecca J phylogenetic studies have examined the taxonomic relationships among a number of typical emberizid sparrow The phylogenetic relationships within the family Emberizidae have presented avian systematists with a taxonomic

Spicer, Greg S.

419

Study on intelligent contract information configuration and analysis by case-based reasoning  

Science Journals Connector (OSTI)

This paper presents an intelligent contract analysis and processing method, which can process a mass of contract information to meet the various demands of the enterprises. Here contracts are properly decomposed and configured according to their important ... Keywords: case-based reasoning (CBR), contract intelligent configuration, contract intelligent processing, data mining, knowledge database

Yi Sun; Jianrong Tan; Yalang Mao; Ming Lou

2006-04-01T23:59:59.000Z

420

Enabling access-privacy for random walk based data analysis applications q  

E-Print Network (OSTI)

of the future states depend only on the present. A Markov chain is a discrete-time stochastic process which. In this paper, we focus on access-privacy enabled outsourced Markov chain based data analysis applications This submission is an extended version of Ping Lin, K. Selc¸uk Candan: Access-private outsourcing of Markov chain

Candan, Selçuk

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Analysis of measures to enhance safeguards, and proliferation resistance in thorium based fuel fabrication plants  

Science Journals Connector (OSTI)

Abstract The presence of high energy gamma rays emitted by U232, which is always associated in ppm quantities with reprocessed U233, lends robustness or physical protection to the thorium fuel cycle. India is currently setting up a thorium based fuel cycle for its Advanced Heavy Water Reactor (AHWR). Identification and deployment of suitable extrinsic measures for fuel fabrication facilities would help in strengthening overall proliferation resistance. The extrinsic measures proposed in this paper include several measures which have been identified for the first time. A quantitative assessment of the contribution of these measures to overall safeguardability of the fuel fabrication plant has been carried out. Multi Attribute Utility Analysis (MAUA) has been used to evaluate the Proliferation Resistance (PR) value for two hypothetical facilities, one employing none of these measures and the other employing some or all of these measures. The analysis is based on the expert opinion of designers, operators, quality control managers and implementers of safeguards in fuel cycle facilities. Sensitivity analysis for all the proposed measures has also been carried out to study the effect of the influence of individual measures on the overall proliferation resistance of the fuel fabrication plant. The analysis ranks various safeguards measures based on the importance factor of a measure which is defined as the ratio of overall proliferation resistance with and without the measure. Important measures identified based on ranking are near real time monitoring, automation, safeguards-by-design, dynamic nuclear material accounting, and plant imaging.

Suresh Gangotra; R.B. Grover; K.L. Ramakumar

2014-01-01T23:59:59.000Z

422

An Automated Failure Modes and Effect Analysis Based Visual Matrix Approach to Sensor Selection and  

E-Print Network (OSTI)

- prehensive automated Failure Modes and Effects Analysis (FMEA) using qualitative model based reasoning techniques. The automated FMEA pro- vides a comprehensive set of fault­effect rela- tions by qualitative FMEA results in a fault-effect mapping that can be used to investi- gate the diagnosability

Snooke, Neal

423

Model-based Failure Modes and Effects Analysis of Neal Snooke 1  

E-Print Network (OSTI)

embedded software developers who are already familiar with the benefits of FMEA analysis. Several au- thors discuss experiences of performing manual FMEA of software however there has been no attempt at automating of software and the success of model based automated FMEA for hardware. 1 Introduction The notion of Software

Snooke, Neal

424

On a tensor-based finite element model for the analysis of shell structures  

E-Print Network (OSTI)

In the present study, we propose a computational model for the linear and nonlinear analysis of shell structures. We consider a tensor-based finite element formulation which describes the mathematical shell model in a natural and simple way by using...

Arciniega Aleman, Roman Augusto

2006-04-12T23:59:59.000Z

425

AN APPROACH FOR INTERSUBJECT ANALYSIS OF 3D BRAIN IMAGES BASED ON CONFORMAL GEOMETRY  

E-Print Network (OSTI)

AN APPROACH FOR INTERSUBJECT ANALYSIS OF 3D BRAIN IMAGES BASED ON CONFORMAL GEOMETRY Guangyu Zou Emission Tomography (PET) and Diffusion Tensor Imaging (DTI) have accelerated brain research in many aspects. In order to better understand the synergy of the many processes involved in normal brain function

Hua, Jing

426

Model-based Biomarker Detection and Systematic Analysis in Translational Science  

E-Print Network (OSTI)

and guidance, endless love and support. vii TABLE OF CONTENTS CHAPTER Page I INTRODUCTION : : : : : : : : : : : : : : : : : : : : : : : : : : 1 A. MS-based proteomics . . . . . . . . . . . . . . . . . . . . . 2 1. Feature extraction in MS data analysis... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1. Spectrum preprocessing and obtaining peptide candidates 13 2. Modeling the mass spectrum . . . . . . . . . . . . . . 14 3. Bayesian peptide detection . . . . . . . . . . . . . . . 16 a. Sampling the peak height vector . . . . . . . . . . 17...

Sun, Youting

2012-07-16T23:59:59.000Z

427

Policy Design and Performance of Emissions Trading Markets: An Adaptive Agent-Based Analysis  

Science Journals Connector (OSTI)

Policy Design and Performance of Emissions Trading Markets: An Adaptive Agent-Based Analysis ... Emissions trading is considered to be a cost-effective environmental economic instrument for pollution control. ... However, the pilot emissions trading programs in China have failed to bring remarkable success in the campaign for pollution control. ...

Zhang Bing; Yu Qinqin; Bi Jun

2010-06-30T23:59:59.000Z

428

Decision Support Modeling and analysis of an auction-based logistics market  

E-Print Network (OSTI)

Decision Support Modeling and analysis of an auction-based logistics market Semra Agrali a , BarisĂ? a logistics spot market where the transportation orders from a number of firms are matched with two types that have lower costs. In order to analyze the effects of implementing a logistics spot market

Karaesmen, Fikri

429

Pitch angle distribution analysis of radiation belt electrons based on Combined Release and Radiation Effects Satellite  

E-Print Network (OSTI)

Pitch angle distribution analysis of radiation belt electrons based on Combined Release of pitch angle distributions (PADs) of energetic electrons is performed. The distributions are classified a is the local pitch angle, a profile of the parameter n versus L-shell is produced for local times corresponding

Li, Xinlin

430

Current-based 4D shape analysis for the mechanical personalization of heart models  

E-Print Network (OSTI)

Current-based 4D shape analysis for the mechanical personalization of heart models Lo¨ic Le Folgoc1. Abstract. Patient-specific models of the heart may lead to better understanding of cardiovascular diseases-mechanical model of the heart, from the kinematics of the endo- and epicardium, is presented in this paper. We use

Paris-Sud XI, Université de

431

Adoption of energy-efficiency measures in SMEs An empirical analysis based on energy audit data  

E-Print Network (OSTI)

Adoption of energy-efficiency measures in SMEs ­ An empirical analysis based on energy audit data;Abstract This paper empiricallyinvestigates the factors driving the adoption of energy-efficiency measures bysubjective and objective proxies, appear to impede the adoption of energy-efficient measures, even

Boyer, Edmond

432

European Wind Energy Conference 2007 Milan Measurement based analysis of active and reactive power  

E-Print Network (OSTI)

European Wind Energy Conference 2007 ­ Milan 1 Measurement based analysis of active and reactive to the network through distribution systems. Because the production units, the distribution systems units will cover consumption in the vicinity. This can contribute to the reduction of the system losses

433

Performance Analysis of an EEMD-based Hilbert Huang Transform as a Bearing Failure Detector  

E-Print Network (OSTI)

challenging as far as wind energy conversion system are deployed onshore or offshore wherePerformance Analysis of an EEMD-based Hilbert Huang Transform as a Bearing Failure Detector in Wind, Brest, France Sylvie.Turri@univ-brest.fr Abstract--Sustainability and viability of wind farms are highly

Brest, Université de

434

Integrated Analysis for the Design of Reusable TPS based on Variable Transpiration Cooling for Hypersonic Cruise  

E-Print Network (OSTI)

with the high dynamic pressure flight trajectories, generates surface temperatures for which the strength1 Integrated Analysis for the Design of Reusable TPS based on Variable Transpiration Cooling of hypersonic air-breathing vehicles presents formidable challenges. Reusable thermal protection systems (TPS

Texas at Arlington, University of

435

3D-mesh models: view-based indexing and structural analysis  

E-Print Network (OSTI)

3D-mesh models: view-based indexing and structural analysis Mohamed Daoudi, Tarik Filali Ansary.daoudi@lifl.fr, tarik.filali@lifl.fr, julien.tierny@lifl.fr, jean-philippe.vandeborre@lifl.fr Abstract. 3D-mesh models applications, medical or military simulations, video games and so on. Indexing and analyzing these 3D data

Paris-Sud XI, Université de

436

MONO-TEMPORAL GIS UPDATE ASSISTANCE SYSTEM BASED ON UNSUPERVISED COHERENCE ANALYSIS AND EVOLUTIONARY OPTIMISATION  

E-Print Network (OSTI)

MONO-TEMPORAL GIS UPDATE ASSISTANCE SYSTEM BASED ON UNSUPERVISED COHERENCE ANALYSIS-automation ABSTRACT: Data in Geo Information Systems (GIS) is used for map services and various applications. Thus-automatically analyse up-to-date satellite image data to narrow down areas that have to be considered for GIS updates

437

Simulator Generation Using an Automaton Based Pipeline Model for Timing Analysis  

E-Print Network (OSTI)

Simulator Generation Using an Automaton Based Pipeline Model for Timing Analysis Rola Kassem, Mika the description of the pipeline. The description is transformed into an automaton and a set of resources which. The blocks communicate and synchronise with each other in order to handle the pipeline hazards. A pipeline

Paris-Sud XI, Université de

438

Analysis of single-molecule FRET trajectories of transcription complexes based on Hidden-Markov Modelling  

E-Print Network (OSTI)

Analysis of single-molecule FRET trajectories of transcription complexes based on Hidden of transcription and direct probing of intermediates has become possible thanks to single-molecule methods. In contrast to ensemble methods that report on the mean properties of large populations, single-molecule

Goldschmidt, Christina

439

Thermodynamic-Analysis-Based Energy Consumption Minimization for Natural Gas Liquefaction  

Science Journals Connector (OSTI)

The earliest NG liquefaction plants consisted of fairly simple processes based on either cascaded refrigeration or single mixed-refrigerant (MR) processes with train capacities of less than 1 million tons per annum (MTPA). ... Kano?lu, M.Exergy analysis of multistage cascade refrigeration cycle used for natural gas liquefaction Int. ...

Meiqian Wang; Jian Zhang; Qiang Xu; Kuyen Li

2011-09-25T23:59:59.000Z

440

STAMP-Based Analysis of a Refinery Overflow Accident Nancy Leveson, Margaret Stringfellow, and John Thomas  

E-Print Network (OSTI)

1 STAMP-Based Analysis of a Refinery Overflow Accident Nancy Leveson, Margaret Stringfellow, and John Thomas As an example of STAMP, we have taken an accident report produced for a real refinery failures and operator actions (or missing actions) related to the loss. But stopping after identifying

Leveson, Nancy

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Bayes Linear Uncertainty Analysis for Oil Reservoirs Based on Multiscale Computer Experiments  

E-Print Network (OSTI)

Bayes Linear Uncertainty Analysis for Oil Reservoirs Based on Multiscale Computer Experiments, 2008 1 Introduction Reservoir simulators are important and widely-used tools for oil reservoir for reservoirs, where the model inputs are physical parameters, such as the permeability and porosity of various

Oakley, Jeremy

442

A Wavelet Theory -Based Adaptive Trend Analysis System for Process Monitoring and Diagnosis  

E-Print Network (OSTI)

A Wavelet Theory - Based Adaptive Trend Analysis System for Process Monitoring and Diagnosis Hiranmayee Vedam Venkat Venkatasubramanian* Laboratory for Intelligent Process Systems School of Chemical-ASTRA performs process monitoring and diagnosis. The main contributions of this paper are two fold. A wavelet

Venkatasubramanian, Venkat

443

Regression Models for Demand Reduction based on Cluster Analysis of Load  

NLE Websites -- All DOE Office Websites (Extended Search)

Regression Models for Demand Reduction based on Cluster Analysis of Load Regression Models for Demand Reduction based on Cluster Analysis of Load Profiles Speaker(s): Nobuyuki Yamaguchi Date: March 26, 2009 - 12:00pm Location: 90-3122 This seminar provides new regression models for demand reduction of Demand Response programs for the purpose of ex ante evaluation of the programs and screening for recruiting customer enrollment into the programs. The proposed regression models employ load sensitivity to outside air temperature and representative load pattern derived from cluster analysis of customer baseline load as explanatory variables. We examined the performance of the proposed models with respect to the validity of explanatory variables and fitness of regressions, using actual load profile data of Pacific Gas and Electric Company's commercial and industrial

444

Drag-induced Breakup Mechanism for Droplet Generation in Dripping Within Flow Focusing Microfluidics  

Science Journals Connector (OSTI)

Abstract Based on viscous drag-induced breakup mechanism, a simple model was proposed to predict the dripping droplet size as a function of controllable parameters in flow focusing micro devices. The size of thread before breakup was also investigated through laminar flow theory. Experiments and numerical simulations by VOF are carried out simultaneously to validate the theoretical analysis, showing that droplet size decreases rapidly with the increase of the flow rate ratio and capillary number.

Ping Wu; Zhaofeng Luo; Zhifeng Liu; Zida Li; Chi Chen; Lili Feng; Liqun He

2014-01-01T23:59:59.000Z

445

Long Term World Oil Supply (A Resource Base/Production Path Analysis)  

Gasoline and Diesel Fuel Update (EIA)

Long Term World Oil Supply Long Term World Oil Supply (A Resource Base/Production Path Analysis) 07/28/2000 Click here to start Table of Contents Long Term World Oil Supply (A Resource Base/Production Path Analysis) Executive Summary Executive Summary (Continued) Executive Summary (Continued) Overview The Year of Peak Production..When will worldwide conventional oil production peak?... Lower 48 Crude Oil Reserves & Production 1945-2000 Texas Oil and Condensate Production, and Texas First Purchase Price (FPP), 1980-1999 Published Estimates of World Oil Ultimate Recovery Different Interpretations of a Hypothetical 6,000 Billion Barrel World Original Oil-in-Place Resource Base Campbell-Laherrère World Oil Production Estimates, 1930-2050 Laherrere’s Oil Production Forecast, 1930-2150

446

TANK MIXING STUDY WITH FLOW RECIRCULATION  

SciTech Connect

The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

Lee, S.

2014-06-25T23:59:59.000Z

447

Three-dimensional coupled ground water flow, thermal transport and/or migration of nuclides analysis by boundary element method  

SciTech Connect

In the safety analyses of radioactive waste disposal, it is important and indispensable to analyze coupled problems of ground water flow, thermal transport and/or migration of nuclides. The three-dimensional coupled problems is solved by boundary element method in this paper. The results of this method are compared with those experiments of JAERI and STRIPA SWEDEN on the thermal problem, and with those analyses of analytical and FEM results on the migration problem. In this formulation, natural convection is considered by Boussinesq approximation. An example of coupled ground water flow and migration of nuclides with decay chain U{sup 234} {yields} Th{sup 230} {yields} Ra{sup 226} is also tried.

Kawamura, Ryuji [Information and Mathematical Science Lab., Inc., Kanagawa (Japan)

1994-12-31T23:59:59.000Z

448

Security Analysis of Selected AMI Failure Scenarios Using Agent Based Game Theoretic Simulation  

SciTech Connect

Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. We concentrated our analysis on the Advanced Metering Infrastructure (AMI) functional domain which the National Electric Sector Cyber security Organization Resource (NESCOR) working group has currently documented 29 failure scenarios. The strategy for the game was developed by analyzing five electric sector representative failure scenarios contained in the AMI functional domain. From these five selected scenarios, we characterize them into three specific threat categories affecting confidentiality, integrity and availability (CIA). The analysis using our ABGT simulation demonstrates how to model the AMI functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the AMI network with respect to CIA.

Abercrombie, Robert K [ORNL] [ORNL; Schlicher, Bob G [ORNL] [ORNL; Sheldon, Frederick T [ORNL] [ORNL

2014-01-01T23:59:59.000Z

449

Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste  

Science Journals Connector (OSTI)

This diagram shows the flow of actual mass from which it is useful to recover energy. ... The utilization of solid recovered fuels (SRF) for energy recovery has been increasing steadily in recent years, and this development is set to continue. ... To date, Korea has used four species of solid recovered fuels (SRFs) which have been certified by the Environmental Ministry of Korea: refuse-derived fuel (RDF), refused plastic fuel (RPF), tyre-derived fuel (TDF), and wood chip fuel (WCF). ...

Costas A. Velis; Stuart Wagland; Phil Longhurst; Bryce Robson; Keith Sinfield; Stephen Wise; Simon Pollard

2013-02-11T23:59:59.000Z

450

Reservoir characterization based on tracer response and rank analysis of production and injection rates  

SciTech Connect

Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

Refunjol, B.T. [Lagoven, S.A., Pdvsa (Venezuela); Lake, L.W. [Univ. of Texas, Austin, TX (United States)

1997-08-01T23:59:59.000Z

451

A numerica1 study of fluid flow and heat transfer in different microchannel heat sinks for electronic chip cooling  

Science Journals Connector (OSTI)

Four different microchannel heat sinks are designed to study the effects of structures in microchannel heat sinks for electronic chips cooling. Based on the theoretic analysis and numerical computation of flow...

Shanglong Xu; Guangxin Hu; Jie Qin…

2012-04-01T23:59:59.000Z

452

Comparative analysis of energy data bases for the industrial and commercial sectors  

SciTech Connect

Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

Roop, J.M.; Belzer, D.B.; Bohn, A.A.

1986-12-01T23:59:59.000Z

453

TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada  

SciTech Connect

Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa; Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; ,; Guy Roemer

2002-09-01T23:59:59.000Z

454

Analysis of long-term flows resulting from large-scale sodium-water reactions in an LMFBR secondary system  

SciTech Connect

Leaks in LMFBR steam generators cannot entirely be prevented; thus the steam generators and the intermediate heat transport system (IHTS) of an LMFBR must be designed to withstand the effects of the leaks. A large-scale leak which might result from a sudden break of a steam generator tube, and the resulting sodium-water reaction (SWR) can generate large pressure pulses that propagate through the IHTS and exert large forces on the piping supports. This paper discusses computer programs for analyzing long-term flow and thermal effects in an LMFBR secondary system resulting from large-scale steam generator leaks, and the status of the development of the codes.

Shin, Y.W.; Chung, H.; Choi, U.S.; Wiedermann, A.H.; Ockert, C.E.

1984-07-01T23:59:59.000Z

455

A Web?based Tool For The Analysis Of Concept Inventory Data  

Science Journals Connector (OSTI)

“FOCIA” stands for Free Online Concept Inventory Analyzer. FOCIA our new web?based tool will allow teachers and researchers in any location to upload their test data and instantly receive a complete analysis report. Analyses included with this tool are basic test statistics Traditional Item Analysis Concentration Analysis Model Analysis Theory results pre and post test comparison including the calculations of gain normalized change and effect size. The tool currently analyzes data from the Lunar Phases Concept Inventory (LPCI) the Force Concept Inventory (FCI) the Astronomy Diagnostic Test (ADT) the Force and Motion Concept Inventory (FMCE) and generically any multiple choice test. It will be expanded to analyze data from other commonly utilized concept inventories in the PER community and from user?designed and uploaded tools. In this paper we will discuss the development of this analysis tool including some technical details of implementation and a description of what is available for use. Instructors and researchers are encouraged to use the latest version of the analysis tool via our website http://www.sciedures.org.

Joseph P. Beuckman; Scott V. Franklin; Rebecca S. Lindell

2005-01-01T23:59:59.000Z

456

Identification of a Small Molecule Yeast TORC1 Inhibitor with a Multiplex Screen Based on Flow Cytometry  

E-Print Network (OSTI)

*,,,§ Center for Molecular Discovery, Cancer Research and Treatment Center, § Department of Pathology yeast. Each GFP-tagged clone was differentially color-coded, and the GFP signal of each clone confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept

Halazonetis, Thanos

457

Pouring flows  

Science Journals Connector (OSTI)

Free surface flows of a liquid poured from a container are calculated numerically for various configurations of the lip. The flow is assumed to be steady two dimensional and irrotational; the liquid is treated as inviscid and incompressible; and gravity is taken into account. It is shown that there are jetlike flows with two free surfaces and other flows with one free surface which follow along the underside of the lip or spout. The latter flows occur in the well?known ‘‘teapot effect ’’ which was treated previously without including gravity. Some of the results are applicable also to flows over weirs and spillways.

Jean?Marc Vanden?Broeck; Joseph B. Keller

1986-01-01T23:59:59.000Z

458

U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Technical Renewable Energy Technical Potentials: A GIS-Based Analysis Anthony Lopez, Billy Roberts, Donna Heimiller, Nate Blair, and Gian Porro Technical Report NREL/TP-6A20-51946 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 U.S. Renewable Energy Technical Potentials: A GIS- Based Analysis Anthony Lopez, Billy Roberts, Donna Heimiller, Nate Blair, and Gian Porro Prepared under Task Nos. SA10.1012 and SA10.20A4 Technical Report NREL/TP-6A20-51946

459

Approach to proliferation risk assessment based on multiple objective analysis framework  

SciTech Connect

The approach to the assessment of proliferation risk using the methods of multi-criteria decision making and multi-objective optimization is presented. The approach allows the taking into account of the specifics features of the national nuclear infrastructure, and possible proliferation strategies (motivations, intentions, and capabilities). 3 examples of applying the approach are shown. First, the approach has been used to evaluate the attractiveness of HEU (high enriched uranium)production scenarios at a clandestine enrichment facility using centrifuge enrichment technology. Secondly, the approach has been applied to assess the attractiveness of scenarios for undeclared production of plutonium or HEU by theft of materials circulating in nuclear fuel cycle facilities and thermal reactors. Thirdly, the approach has been used to perform a comparative analysis of the structures of developing nuclear power systems based on different types of nuclear fuel cycles, the analysis being based on indicators of proliferation risk.

Andrianov, A.; Kuptsov, I. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhI (Russian Federation); Studgorodok 1, Obninsk, Kaluga region, 249030 (Russian Federation)

2013-07-01T23:59:59.000Z

460

A case-based distance model for multiple criteria ABC analysis  

Science Journals Connector (OSTI)

In ABC analysis, a well-known inventory planning and control technique, stock-keeping units (SKUs) are sorted into three categories. Traditionally, the sorting is based solely on annual dollar usage. The aim of this paper is to introduce a case-based multiple-criteria ABC analysis that improves on this approach by accounting for additional criteria, such as lead time and criticality of SKUs, thereby providing more managerial flexibility. Using decisions from cases as input, preferences over alternatives are represented intuitively using weighted Euclidean distances which can be easily understood by a decision maker. Then a quadratic optimization program finds optimal classification thresholds. This system of multiple criteria decision aid is demonstrated using an illustrative case study.

Ye Chen; Kevin W. Li; D. Marc Kilgour; Keith W. Hipel

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Analysis of Aquifer Response, Groundwater Flow, and Plume Evolution at Site OU 1, Former Fort Ord, California  

E-Print Network (OSTI)

solvents were placed in the burn pit and combusted for fireareas as well as the burn pit. The depiction shown is based

Jordan, Preston D.; Oldenburg, Curtis M.; Su, Grace W.

2005-01-01T23:59:59.000Z

462

Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network  

SciTech Connect

There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions. The experiments show that this method can improve the recognition rate and the time of feature extraction.

Wang Xiaojia; Mao Qirong; Zhan Yongzhao [School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, 212013 (China)

2008-11-06T23:59:59.000Z

463

FPGA Based Real-time Network Traffic Analysis using Traffic Dispersion Patterns  

SciTech Connect

The problem of Network Traffic Classification (NTC) has attracted significant amount of interest in the research community, offering a wide range of solutions at various levels. The core challenge is in addressing high amounts of traffic diversity found in today's networks. The problem becomes more challenging if a quick detection is required as in the case of identifying malicious network behavior or new applications like peer-to-peer traffic that have potential to quickly throttle the network bandwidth or cause significant damage. Recently, Traffic Dispersion Graphs (TDGs) have been introduced as a viable candidate for NTC. The TDGs work by forming a network wide communication graphs that embed characteristic patterns of underlying network applications. However, these patterns need to be quickly evaluated for mounting real-time response against them. This paper addresses these concerns and presents a novel solution for real-time analysis of Traffic Dispersion Metrics (TDMs) in the TDGs. We evaluate the dispersion metrics of interest and present a dedicated solution on an FPGA for their analysis. We also present analytical measures and empirically evaluate operating effectiveness of our design. The mapped design on Virtex-5 device can process 7.4 million packets/second for a TDG comprising of 10k flows at very high accuracies of over 96%.

Khan, F; Gokhale, M; Chuah, C N

2010-03-26T23:59:59.000Z

464

Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models: Stability analysis and convergence behaviour of a point and a plane solver  

SciTech Connect

Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models are presented and their stability analyzed. The integration algorithms are based on dual-time stepping with fourth-order Runge-Kutta in pseudo-time. The domain is solved point or plane wise. The discretization of the inviscid terms is based on a low-Mach limit of the multi-phase preconditioned advection upstream splitting method (MP-AUSMP). The numerical stability of the simultaneous solution algorithms is analyzed in 2D with the Fourier method. Stability results are compared with the convergence behaviour of 3D riser simulations. The impact of the grid aspect ratio, preconditioning, artificial dissipation, and the treatment of the source terms is investigated. A particular advantage of the simultaneous solution algorithms is that they allow a fully implicit treatment of the source terms which are of crucial importance for the Eulerian-Eulerian gas-solid flow models and their solution. The numerical stability of the optimal simultaneous solution algorithm is analyzed for different solids volume fractions and gas-solid slip velocities. Furthermore, the effect of the grid resolution on the convergence behaviour and the simulation results is investigated. Finally, simulations of the bottom zone of a pilot-scale riser with a side solids inlet are experimentally validated.

Wilde, Juray de [Laboratorium voor Petrochemische Techniek, Ghent University, Krijgslaan 281, Blok S5, B-9000 Ghent (Belgium) and Fluid Mechanics Laboratory, Department of Fluid, Heat and Combustion Mechanics, Ghent University, St.-Pietersnieuwstraat 41, B-9000 Ghent (Belgium)]. E-mail: Guray.Marin@UGent.be; Vierendeels, Jan [Fluid Mechanics Laboratory, Department of Fluid, Heat and Combustion Mechanics, Ghent University, St.-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Heynderickx, Geraldine J. [Laboratorium voor Petrochemische Techniek, Ghent University, Krijgslaan 281, Blok S5, B-9000 Ghent (Belgium); Marin, Guy B. [Laboratorium voor Petrochemische Techniek, Ghent University, Krijgslaan 281, Blok S5, B-9000 Ghent (Belgium)

2005-07-20T23:59:59.000Z

465

Gene-set Cohesion Analysis Tool (GCAT): A literature based web tool for calculating functional cohesiveness of gene groups  

Science Journals Connector (OSTI)

Numerous algorithms exist for producing gene sets from high-throughput genomic and proteomic technologies. However, analysis of the functional significance of these groups of genes or proteins remains a big challenge. We developed a Web based system ... Keywords: interferon, gene set cohesion analysis tool, functional cohesiveness, gene groups, genomics, proteomics, latent semantic indexing, gene ontology, embryonic fibroblasts, literature based Web tool, gene-gene literature similarities, microarray data analysis

Lijing Xu; R. Homayouni; N. A. Furlotte; K. E. Heinrich; E. O. George; M. W. Berry

2009-11-01T23:59:59.000Z

466

1.Given the following five-buspower system (with lOOMVA base): (a) Find the power flow equations.  

E-Print Network (OSTI)

is R = 2 0 Q g find the reflective coefficient. (2) A single phase transmission line having lineY - 69AkV, leakage reactance of 8%. The generator voltage VG is 13.2kV(1ine-teline), the transmission line impedance Zline= 10 + jlOOR, and the load impedance Zlocrd= 300R. Use the per-unit analysis

Huang, Haimei

467

A new flow field design for polymer electrolyte-based fuel cells C. Xu, T.S. Zhao *  

E-Print Network (OSTI)

of the PEMFC system, including the water management of the cathode, have been studied extensively [1 mass transport rates of reactants and products to and from the catalyst layer and reduces the amount (PEM)-based fuel cells, including hydrogen fed PEMFCs and direct liquid metha- nol fuel cells (DMFCs

Zhao, Tianshou

468

To BDI, or not to BDI: design choices in an agent-based traffic flow management simulation  

Science Journals Connector (OSTI)

Belief-Desire-Intention (BDI) is a powerful agent paradigm that allows for the development of so-called intelligent agents - agents that can reason and act based on their beliefs and intentions. However, this power often comes at the cost of increased ... Keywords: air traffic control, belief-desire-intent, efficiency

Shawn R. Wolfe; Maarten Sierhuis; Peter A. Jarvis

2008-04-01T23:59:59.000Z

469

Analysis of loss-of-flow transients in a pool-type LMFBR using SSC-P  

SciTech Connect

In order to have a general analytical capability for the safety evaluation of any proposed LMFBR system, the USNRC is sponsoring the development and validation of computer codes for both pool- and loop-type plants. The computer code for pool-type LMFBRs is designated SSC-P. This paper is concerned with the application of SSC-P to simulate loss-of-flow accident transients in a pool-type LMFBR. The models required for dynamic plant simulation are briefly highlighted. The system response is calculated for (1) a complete loss of electric power event, with scram, leading the plant into buoyancy-induced natural circulation, (2) a protected pipe rupture accident in the primary pump discharge line, and (3) an unprotected loss of off-site power event. For the last case, the predicted results from SSC-P are compared with the published results of Phenix behavior by NOVATOME.

Madni, I.K.; Cazzoli, E.G.

1982-01-01T23:59:59.000Z

470

Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube  

Science Journals Connector (OSTI)

Abstract The heat transfer coefficient and friction factor of TiO2 and SiO2 water based nanofluids flowing in a circular tube under turbulent flow are investigated experimentally under constant heat flux boundary condition. TiO2 and SiO2 nanofluids with an average particle size of 50 nm and 22 nm respectively are used in the working fluid for volume concentrations up to 3.0%. Experiments are conducted at a bulk temperature of 30 °C in the turbulent Reynolds number range of 5000 to 25,000. The enhancements in viscosity and thermal conductivity of TiO2 are greater than SiO2 nanofluid. However, a maximum enhancement of 26% in heat transfer coefficients is obtained with TiO2 nanofluid at 1.0% concentration, while SiO2 nanofluid gave 33% enhancement at 3.0% concentration. The heat transfer coefficients are lower at all other concentrations. The particle concentration at which the nanofluids give maximum heat transfer has been determined and validated with property enhancement ratio. It is observed that the pressure drop is directly proportional to the density of the nanoparticle.

W.H. Azmi; K.V. Sharma; P.K. Sarma; Rizalman Mamat; G. Najafi

2014-01-01T23:59:59.000Z

471

Numerical simulation of electrokinetically driven micro flows  

E-Print Network (OSTI)

Spectral element based numerical solvers are developed to simulate electrokinetically driven flows for micro-fluidic applications. Based on these numerical solvers, basic phenomena and devices for electrokinetic applications in micro and nano flows...

Hahm, Jungyoon

2005-11-01T23:59:59.000Z

472

Advances in Reduced-Order Modeling Based on Proper Orthogonal Decomposition for Single and Two-Phase Flows  

E-Print Network (OSTI)

dimensions, (x; y; z). R(x;x0) can then be written as: R(x;x0) = 1 M MX i=1 u(x; ti)uT (x0; ti): (2.6) C. General Scheme for Reduced-Order Modeling Based on Proper Or- thogonal Decomposition Reduced-order models utilizing proper orthogonal... dimensions, (x; y; z). R(x;x0) can then be written as: R(x;x0) = 1 M MX i=1 u(x; ti)uT (x0; ti): (2.6) C. General Scheme for Reduced-Order Modeling Based on Proper Or- thogonal Decomposition Reduced-order models utilizing proper orthogonal...

Fontenot, Raymond Lee

2012-02-14T23:59:59.000Z

473

Analysis of the validity of analytical models used for assessment of forty-five waste site areas: Subsurface flow and chemical transport  

SciTech Connect

Closure actions at 45 waste sites were analyzed using an analytical model. A quality assurance program, which consisted of (1) comparison to analytical solutions with different boundary conditions, (2) comparison of model results to measured concentrations, (3) comparison with layered numerical solutions, and (4) evaluation and sensitivity analysis of input data, suggests that this type of analysis is a reasonable screening tool. Boundary conditions and controlling processes, such as chemical speciation, must be properly identified when defining input parameters; also, transient models that account for unsaturated zone processes predict higher peak concentrations than steady-state models such as the EPA VHS model. Assessment of complex systems that have multiple flow paths, or studies of remedial actions (such as ground water withdrawal and treatment) may require numerical modeling to meet the required objectives. However, the quality assurance analysis for the subject waste sites indicates that analytical approximations are sufficiently accurate to make relative environmental assessments (e.g., prioritizing sites or assessing various closure actions).

Looney, B.B.; Fjeld, R.A.; Merrell, G.B.; Duffield, G.M.; Andrews, C.B.

1987-01-01T23:59:59.000Z

474

Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source reactor at Oak Ridge National Laboratory  

SciTech Connect

This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at ORNL. Damage propagation is postulated to occur from thermal conduction between dmaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur beause of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A parametric study was done for several uncertain variables. The study included investigating effects of plate contact area, convective heat transfer coefficient, thermal conductivity on fuel swelling, and initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects of damage propagation. Results provide useful insights into how variouss uncertain parameters affect damage propagation.

Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

1995-12-31T23:59:59.000Z

475

Influence of viscosity modifier nature and concentration on the viscous flow behaviour of oil-based drilling fluids at high pressure  

Science Journals Connector (OSTI)

Abstract This work deals with the effect of viscosity modifier nature and concentration on the rheological properties of model oil-based drilling fluids (OBM) submitted to high pressure. The oil-based fluids were formulated by dispersing, with a high shear mixer, two selected organobentonites in a mineral oil, at room temperature. The viscous flow behaviour of the corresponding dispersions was characterised as a function of pressure, organoclay nature and organoclay concentration, using a controlled-stress rheometer equipped with both pressure cell and coaxial cylinder geometries. A factorial Sisko–Barus model, which takes into account both shear and pressure effects in the same equation, fitted the experimental pressure–viscosity data fairly well. The influence of disperse phase concentration on the shear-thinning characteristics of these organoclay dispersions is related to the development of different microstructures, which depend on organoclay nature. In this sense, the resulting microstructure has been attributed to the cohesion energy between microgels domains. From the experimental results obtained, it can be concluded that the viscous flow behaviour of the OBM investigated is strongly affected by organoclay nature and concentration. The pressure–viscosity behaviour of these dispersions is mainly influenced by the piezoviscous properties of the oil and the properties of the continuous phase. The Sisko–Barus model proposed can be a useful tool, from an engineering point of view, for calculating pressure losses in the different sections of the bore, as well as being of significant help to solve other additional problems, such as hole cleaning, induced fracturing, and hole erosion during the drilling operation.

J. Hermoso; F. Martinez-Boza; C. Gallegos

2014-01-01T23:59:59.000Z

476

Automatic screening of obstructive sleep apnea from the ECG based on empirical mode decomposition and wavelet analysis  

E-Print Network (OSTI)

Automatic screening of obstructive sleep apnea from the ECG based on empirical mode decomposition apnea from the ECG based on empirical mode decomposition and wavelet analysis M O Mendez1,2 , J Corthout different methods to detect obstructive sleep apnea (OSA) during sleep time based only on the ECG signal

477

Ninja data analysis with a detection pipeline based on the Hilbert-Huang Transform  

E-Print Network (OSTI)

The Ninja data analysis challenge allowed the study of the sensitivity of data analysis pipelines to binary black hole numerical relativity waveforms in simulated Gaussian noise at the design level of the LIGO observatory and the VIRGO observatory. We analyzed NINJA data with a pipeline based on the Hilbert Huang Transform, utilizing a detection stage and a characterization stage: detection is performed by triggering on excess instantaneous power, characterization is performed by displaying the kernel density enhanced (KD) time-frequency trace of the signal. Using the simulated data based on the two LIGO detectors, we were able to detect 77 signals out of 126 above SNR 5 in coincidence, with 43 missed events characterized by signal to noise ratio SNR less than 10. Characterization of the detected signals revealed the merger part of the waveform in high time and frequency resolution, free from time-frequency uncertainty. We estimated the timelag of the signals between the detectors based on the optimal overlap of the individual KD time-frequency maps, yielding estimates accurate within a fraction of a millisecond for half of the events. A coherent addition of the data sets according to the estimated timelag eventually was used in a characterization of the event.

Alexander Stroeer; Jordan Camp

2009-03-11T23:59:59.000Z

478

Experimental analysis of the vorticity and turbulent flow dynamics of a pitching airfoil at realistic flight (helicopter) conditions  

E-Print Network (OSTI)

: Chair of Committee, Rodney Bowersox Committee Members, Othon Rediniotis Paul Cizmas Simon North Head of Department, Helen Reed May 2008 Major Subject: Aerospace Engineering iii ABSTRACT Experimental Analysis of the Vorticity... to express my sincerest gratitude and appreciation to my advisor Dr. Rodney Bowersox for his valuable guidance throughout the progress of this research. I am grateful to him for motivating me during my tough times. I thank Dr. Othon Rediniotis, Dr. Paul...

Sahoo, Dipankar

2008-10-10T23:59:59.000Z

479

Risk-based performance analysis for regional hybrid fuel with compressed natural gas option  

Science Journals Connector (OSTI)

Compressed natural gas is widely used for transportation due to its competitive price and less environmental impacts compared with traditional gasoline. With the recent push to implement electric vehicles, it became important to evaluate the current transportation fuelling status and identify best scenarios to move towards greener transportation. This paper presents analysis of hybrid transportation with compressed natural gas as a fuelling option to determine the most effective way to implement regional green transportation. Intelligent modelling and simulation techniques are proposed to model transportation and fuelling process and used as basis for performance modelling and analysis for different scenarios. Compressed natural gas is found to be a superior fuel to gasoline based on given scenario conditions and criteria for regional green hybrid transportation. The proposed scenarios are applied on case studies in Ontario to confirm the high value of compressed natural gas as viable fuelling scenarios.

Hossam A. Gabbar; Raymond Bedard

2012-01-01T23:59:59.000Z

480

A novel acquisition method of nuclear spectrum based on pulse area analysis  

E-Print Network (OSTI)

A novel method based on pulse area analysis(PAA) was presented for acquisition nuclear spectrum by the digitizer. PAA method can be used as a substitute for the traditional method of pulse height analysis (PHA). In the PAA method a commercial digitizer was employed to sample and sum in the pulse, and the area of pulse is proportional to the energy of the detected radiation. The results of simulation and experiment indicate the great advantages of PAA method, especially when the count rate is high and shaping time constant is small. When shaping time constant is 0.5us, the energy resolution of PAA is about 66% better than that of PHA.

Dongcang, Li; Lei, Yang; Zhong, Qi; Xiangting, Meng; Bitao, Hu

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flow analysis base" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A novel acquisition method of nuclear spectrum based on pulse area analysis  

E-Print Network (OSTI)

A novel method based on pulse area analysis(PAA) was presented for acquisition nuclear spectrum by the digitizer. PAA method can be used as a substitute for the traditional method of pulse height analysis (PHA). In the PAA method a commercial digitizer was employed to sample and sum in the pulse, and the area of pulse is proportional to the energy of the detected radiation. The results of simulation and experiment indicate the great advantages of PAA method, especially when the count rate is high and shaping time constant is small. When shaping time constant is 0.5us, the energy resolution of PAA is about 66% better than that of PHA.

Li Dongcang; Ren Zhongguo; Yang Lei; Qi Zhong; Meng Xiangting; Hu Bitao

2014-07-23T23:59:59.000Z

482

Thermo–chemical treatments based on NH3/O2 for improved graphite-based fiber electrodes in vanadium redox flow batteries  

Science Journals Connector (OSTI)

Abstract Electrochemical behavior of the polyacrylonitrile (PAN)-based graphite as a low cost electrode material for vanadium based redox batteries (VFB) in sulfuric acid medium has been improved by means of the successful introduction of nitrogen and oxygen-containing groups at the graphite surface by thermal activation under NH3/O2 (1:1) atmosphere. Influence of the temperature and treatment duration times have been studied towards the positive reaction of VFB. The structure, composition, and electrochemical properties of the treated samples have been characterized with field emission scanning electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The estimation of electrochemical surface area has also been evaluated. The treatment of PAN graphite material at 773 K for 24-h leads to electrode materials with the best electrochemical activity towards the VO 2 + /VO2+ redox couple. This method produces an increase of the nitrogen and oxygen content at the surface up to 8% and 32%, respectively, and is proved to be a straightforward and cost-effective methodology. This improvement of the electrochemical properties is attributed to the incorporation of the nitrogen and oxygen-containing groups that facilitate the electron transfer through the electrode/electrolyte interface for both oxidation and reduction processes.

Cristina Flox; Javier Rubio-García; Marcel Skoumal; Teresa Andreu; Juan Ramón Morante

2013-01-01T23:59:59.000Z

483

Cancer progression analysis based on ordinal relationship of cancer stages and co-expression network modularity  

Science Journals Connector (OSTI)

A comprehensive understanding of cancer progression may shed light on genetic and molecular mechanisms of oncogenesis, and provide important information for effective diagnosis and prognosis. We propose a multicategory logit model to identify genes that show significant correlations across multiple cancer stages. We have applied the approach on a Prostate Cancer (PCA) progression data and obtained a set of genes that show consistent trends across multiple stages. Further analysis based on multiple evidences demonstrates that our candidate list includes not only some well-known prostate-cancer-related genes, but also novel genes that have been confirmed very recently.

Yoon Soo Pyon; Xin Li; Jing Li

2011-01-01T23:59:59.000Z

484

Genetic Algorithms for Agent-Based Infrastructure Interdependency Modeling and Analysis  

SciTech Connect

Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, electric power, telecommunication, and financial networks. This paper describes initial research combining agent-based infrastructure modeling software and genetic algorithms (GAs) to help optimize infrastructure protection and restoration decisions. This research proposes to apply GAs to the problem of infrastructure modeling and analysis in order to determine the optimum assets to restore or protect from attack or other disaster. This research is just commencing and therefore the focus of this paper is the integration of a GA optimization method with a simulation through the simulation’s agents.

May Permann

2007-03-01T23:59:59.000Z

485

Statistical process control based on Multivariate Image Analysis: A new proposal for monitoring and defect detection  

Science Journals Connector (OSTI)

Abstract The monitoring, fault detection and visualization of defects are a strategic issue for product quality. This paper presents a novel methodology based on the integration of textural Multivariate Image Analysis (MIA) and multivariate statistical process control (MSPC) for process monitoring. The proposed approach combines MIA and p-control charts, as well as T2 and RSS images for defect location and visualization. Simulated images of steel plates are used to illustrate the monitoring performance of it. Both approaches are also applied on real clover images.

J.M. Prats-Montalbán; A. Ferrer

2014-01-01T23:59:59.000Z

486

Multiphase Flow Modeling Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Chris Guenther, Director Computational Science Division RUA Spring Meeting, Morgantown, WV March 2013 2 NETL's Multiphase Flow Science Team * The Multiphase