National Library of Energy BETA

Sample records for flooding steam flooding

  1. TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING...

    Office of Scientific and Technical Information (OSTI)

    TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING OF HEAVY OILS Citation Details In-Document Search Title: TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING...

  2. Distillation Column Flooding Predictor

    SciTech Connect (OSTI)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the columns approach to flood. But column delta-pressure is more an inference of the columns approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much left on the table when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor utilizes the mathematical first derivative of certain column variables to identify the columns pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoints proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor is implemented as closed-loop advanced control strategy on the plants distributed control system (DCS), thus automating control of the column at its hydraulic limit.

  3. National Flood Insurance Act | Open Energy Information

    Open Energy Info (EERE)

    the Federal Insurance Administration and made flood insurance available for the first time. The Flood Disaster Protection Act of 1973 made the purchase of flood insurance...

  4. Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils

    SciTech Connect (OSTI)

    Gabitto, Jorge; Barufet, Maria

    2002-11-20

    The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibrium diagrams, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

  5. Improving Gas Flooding Efficiency

    SciTech Connect (OSTI)

    Reid Grigg; Robert Svec; Zheng Zeng; Alexander Mikhalin; Yi Lin; Guoqiang Yin; Solomon Ampir; Rashid Kassim

    2008-03-31

    This study focuses on laboratory studies with related analytical and numerical models, as well as work with operators for field tests to enhance our understanding of and capabilities for more efficient enhanced oil recovery (EOR). Much of the work has been performed at reservoir conditions. This includes a bubble chamber and several core flood apparatus developed or modified to measure interfacial tension (IFT), critical micelle concentration (CMC), foam durability, surfactant sorption at reservoir conditions, and pressure and temperature effects on foam systems.Carbon dioxide and N{sub 2} systems have been considered, under both miscible and immiscible conditions. The injection of CO2 into brine-saturated sandstone and carbonate core results in brine saturation reduction in the range of 62 to 82% brine in the tests presented in this paper. In each test, over 90% of the reduction occurred with less than 0.5 PV of CO{sub 2} injected, with very little additional brine production after 0.5 PV of CO{sub 2} injected. Adsorption of all considered surfactant is a significant problem. Most of the effect is reversible, but the amount required for foaming is large in terms of volume and cost for all considered surfactants. Some foams increase resistance to the value beyond what is practical in the reservoir. Sandstone, limestone, and dolomite core samples were tested. Dissolution of reservoir rock and/or cement, especially carbonates, under acid conditions of CO2 injection is a potential problem in CO2 injection into geological formations. Another potential change in reservoir injectivity and productivity will be the precipitation of dissolved carbonates as the brine flows and pressure decreases. The results of this report provide methods for determining surfactant sorption and can be used to aid in the determination of surfactant requirements for reservoir use in a CO{sub 2}-foam flood for mobility control. It also provides data to be used to determine rock permeability changes during CO{sub 2} flooding due to saturation changes, dissolution, and precipitation.

  6. Oilfield flooding polymer

    DOE Patents [OSTI]

    Martin, Fred D.; Hatch, Melvin J.; Shepitka, Joel S.; Donaruma, Lorraine G.

    1986-01-01

    A monomer, polymers containing the monomer, and the use of the polymer in oilfield flooding is disclosed. The subject monomer is represented by the general formula: ##STR1## wherein: n is an integer from 0 to about 4; m is an integer from 0 to about 6; a is an integer equal to at least 1 except where m is equal to 0, a must equal 0 and where m is equal to 1, a must equal 0 or 1; p is an integer from 2 to about 10; b is an integer equal to at least 1 and is of sufficient magnitude that the ratio b/p is at least 0.2; and q is an integer from 0 to 2. The number of hydroxy groups in the monomer is believed to be critical, and therefore the sum of (a+b) divided by the sum (m+p) should be at least 0.2. The moieties linked to the acrylic nitrogen can be joined to provide a ringed structure.

  7. Flood Disaster Protection Act of 1973 | Open Energy Information

    Open Energy Info (EERE)

    Flood Disaster Protection Act of 1973Legal Abstract The National Flood Insurance Program (NFIP) is administered primarily under two statutes: the National Flood...

  8. Federal Flood Risk Management Standard (FEMA, 2015)

    Broader source: Energy.gov [DOE]

    The Federal Flood Risk Management Standard (FFRMS (2015)) expands upon E.O. 11988, Floodplain Management, (1977) by directing that federal agencies use a higher vertical flood elevation and...

  9. Los Alamos plants willows for flood recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants willows Los Alamos plants willows for flood recovery The Laboratory's Corrective Actions Program (CAP) planted nearly 10,000 willows to help preserve the Pueblo Canyon wetland after damage from September 2013 floods. June 18, 2014 In a flood recovery effort designed to stop further erosion in Pueblo Canyon, in April, Los Alamos planted nearly 10,000 willows along the stream banks surrounding the wetland. In a flood recovery effort designed to stop further erosion in Pueblo Canyon, Los

  10. Flooding Experiments and Modeling for Improved Reactor Safety

    SciTech Connect (OSTI)

    Solmos, M., Hogan, K.J., VIerow, K.

    2008-09-14

    Countercurrent two-phase flow and flooding phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge line can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing.

  11. Flooded First Street at Y-12 Plant | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flooded First Street at ... Flooded First Street at Y-12 Plant Vehicles negotiate flooded First Street at Y-12 Plant

  12. FEMA - National Flood Insurance Program Elevation Certificate...

    Open Energy Info (EERE)

    and Instructions Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: FEMA - National Flood Insurance Program Elevation Certificate and Instructions...

  13. Irrigation, Navigation Flood Control and Recreation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irrigation,-Navigation-Flood-Control-and-Recreation- Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand...

  14. Flood Fighting Research Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Jump to: navigation, search Basic Specifications Facility Name Flood Fighting Research Facility Overseeing Organization United States Army Corp of Engineers (ERDC)...

  15. EO 13690: Establishing a Federal Flood Risk Management Standard...

    Office of Environmental Management (EM)

    690: Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input EO 13690: Establishing a Federal Flood Risk...

  16. Vermont Flood Hazard Area and River Corridor Rule | Open Energy...

    Open Energy Info (EERE)

    compliance with National Flood Insurance Program (NFIP) criteria and enhance flood resilience. (b) Avoid and minimize the loss of life and property, the disruption of commerce,...

  17. Federal Flood Risk Management Standard | Department of Energy

    Office of Environmental Management (EM)

    Standard Federal Flood Risk Management Standard The Federal Flood Risk Management Standard builds upon Executive Order (E.O.) 11988 and is to be incorporated into existing Federal department and agency processes used to implement E.O. 11988. PDF icon FederalFloodRiskManagement.pdf More Documents & Publications Federal Flood Risk Management Standard (2015)

  18. Aqueous flooding methods for tertiary oil recovery

    DOE Patents [OSTI]

    Peru, Deborah A. (Bartlesville, OK)

    1989-01-01

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  19. Suggested Approaches for Probabilistic Flooding Hazard Assessment

    Broader source: Energy.gov [DOE]

    Suggested Approaches for Probabilistic Flooding Hazard Assessment Ahmed “Jemie” Dababneh, Ph.D., P.E. and Jeffrey Oskamp, E.I.T. Presentation for U.S. Department of Energy Natural Phenomena Hazards Meeting October 22, 2014

  20. gas_flooding | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    illustrates a nitrogen-CO2 flood. This and other cross-sectional illustrations of EOR methods that are in the public domain are available free from NETL. photo of a CO2...

  1. Oil recovery by nitrogen flooding. Final report

    SciTech Connect (OSTI)

    Ronde, H.; Hagoort, J.

    1992-03-01

    The general objective of the project is the Establishment of technical and economic design criteria and evaluation tools for oil and condensate recovery by Nitrogen Injection. The main objective has been divided into the following specific objectives: Determination of the effect of oil composition on the oil recovery; Investigation of the pros and cons of slim-tube experiments as a tool for the design and evaluation of nitrogen flooding; Measurement and calculation of the minimum miscibility pressures (MMP) for nitrogen flooding.

  2. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis |

    Office of Environmental Management (EM)

    Department of Energy Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by B&W Technical Services, Pantex and Pro2Serve October, 2011 PDF icon Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis More Documents & Publications DOE-STD-1020-2012 DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE

  3. Federal Flood Risk Management Standard (2015) | Department of Energy

    Office of Environmental Management (EM)

    Standard (2015) Federal Flood Risk Management Standard (2015) The Federal Flood Risk Management Standard (FFRMS (2015)) expands upon E.O. 11988, Floodplain Management, (1977) by directing that federal agencies use a higher vertical flood elevation and corresponding horizontal floodplain for federally funded projects to address current and future flood risk and ensure that projects last as long as intended. The FFRMS provides 3 approaches that federal agencies can use to define a floodplain for

  4. Fuel cell flooding detection and correction

    DOE Patents [OSTI]

    DiPierno Bosco, Andrew (Rochester, NY); Fronk, Matthew Howard (Honeoye Falls, NY)

    2000-08-15

    Method and apparatus for monitoring an H.sub.2 -O.sub.2 PEM fuel cells to detect and correct flooding. The pressure drop across a given H.sub.2 or O.sub.2 flow field is monitored and compared to predetermined thresholds of unacceptability. If the pressure drop exists a threshold of unacceptability corrective measures are automatically initiated.

  5. Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences...

    Office of Scientific and Technical Information (OSTI)

    This case study may help researchers and practitioners develop a better understanding of joint flood frequency with consideration of upstream dam regulation among several ...

  6. FEMA - National Flood Insurance Program webpage | Open Energy...

    Open Energy Info (EERE)

    webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: FEMA - National Flood Insurance Program webpage Abstract This webpage provides information on...

  7. Reviewing the success of intentional flooding of the Grand Canyon

    SciTech Connect (OSTI)

    Wirth, B.D.

    1997-04-01

    A description and evaluation of the results of an intentional flooding experiment at the Grand Canyon are described. The purpose of the 7-day release of flood waters from the Glen Canyon Dam was to determine if managed floods have the ability to predictably restore the riverine environment. A summary of environmental conditions leading to the experiment is provided and flood results are listed. Initial results showed significant improvement in the size and number of the river`s beaches, creation of backwater habitat for endangered species, and no adverse impact to the trout fishery, Indian cultural sites, and other resources.

  8. Vermont Flood Hazard Area and River Corridor General Permit Applicatio...

    Open Energy Info (EERE)

    the developer should provide a map generated from the ANR Natural Resources Atlas showing the river corridor and flood hazard area; A written description of the...

  9. LANL closes road, trails for safety reasons; flooding and erosion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    closed for safety reasons LANL closes road, trails for safety reasons; flooding and erosion control work under way Closure is in response to the increased fire risk and...

  10. DOE specification: Flooded-type lead-acid storage batteries

    SciTech Connect (OSTI)

    1996-08-01

    This document contains a ``fill-in-the-blanks`` guide specification for procurement of flooded-type lead-acid storage batteries, for uninterruptible power supply applications.

  11. 05679_ChemFlood | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crude oils. Core flooding tests to determine oil recovery performance were conducted with chemical formulations for nine oils. Tertiary oil recovery was greater than 90% for seven...

  12. Vermont Agency of Natural Resources Flood Hazard Area & River...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Vermont Agency of Natural Resources Flood Hazard Area & River Corridor...

  13. Vermont Flood Hazard Area and River Corridor Protection Procedure...

    Open Energy Info (EERE)

    other jurisdictions on the regulatory measures necessary to avoid the endangerment of the health, safety, and welfare of the public and of riparian owners during flooding2; (5)...

  14. September 2013 Storm and Flood Assessment Report

    SciTech Connect (OSTI)

    Walterscheid, J. C.

    2015-12-21

    Between September 10 and 17, 2013, New Mexico and Colorado received a historically large amount of precipitation (Figure 1). This report assesses the damage caused by flooding along with estimated costs to repair the damage at Los Alamos National Laboratory (the Laboratory) on the Pajarito Plateau. Los Alamos County, New Mexico, received between 200% and 600% of the normal precipitation for this time period (Figure 2), and the Laboratory received approximately 450% percent of its average precipitation for September (Figure 3). As a result, the Laboratory was inundated with rain, including the extremely large, greater-than-1000-yr return period event that occurred between September 12 and 13 (Table 1). With saturated antecedent soil conditions from the September 10 storm, when the September 12 to September 13 storm hit, the flooding was disastrous to the Laboratory’s environmental infrastructure, including access roads, gage stations, watershed controls, control measures installed under the National Pollutant Discharge Elimination System Permit (hereafter, the Individual Permit), and groundwater monitoring wells (Figures 4 through 21). From September 16 to October 1, 2013, the Laboratory completed field assessments of environmental infrastructure and generated descriptions and estimates of the damage, which are presented in spreadsheets in Attachments 1 to 4 of this report. Section 2 of this report contains damage assessments by watershed, including access roads, gage stations, watershed controls, and control measures installed under the Individual Permit. Section 3 contains damage assessments of monitoring wells by the groundwater monitoring groups as established in the Interim Facility-Wide Groundwater Monitoring Plan for Monitoring Year 2014. Section 4 addresses damage and loss of automated samplers. Section 5 addresses sediment sampling needs, and Section 6 is the summary of estimated recovery costs from the significant rain and flooding during September 2013.

  15. Quality assurance flood source and method of making

    DOE Patents [OSTI]

    Fisher, Darrell R [Richland, WA; Alexander, David L [West Richland, WA; Satz, Stanley [Surfside, FL

    2002-12-03

    Disclosed is a is an improved flood source, and method of making the same, which emits an evenly distributed flow of energy from a gamma emitting radionuclide dispersed throughout the volume of the flood source. The flood source is formed by filling a bottom pan with a mix of epoxy resin with cobalt-57, preferably at 10 to 20 millicuries and then adding a hardener. The pan is secured to a flat, level surface to prevent the pan from warping and to act as a heat sink for removal of heat from the pan during the curing of the resin-hardener mixture.

  16. Title 10 Chapter 45 Connecticut River Flood Control Compact ...

    Open Energy Info (EERE)

    5 Connecticut River Flood Control Compact Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 10 Chapter 45 Connecticut River...

  17. New Executive Order Establishes a Federal Flood Risk Management Standard

    Broader source: Energy.gov [DOE]

    President Obama signed Executive Order (E.O.) 13690, Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input, on January 30, 2015.

  18. Willows Aid Flood Recovery in Los Alamos Desert

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – Los Alamos National Laboratory’s Associate Directorate of Environmental Programs (ADEP) has been busy with various flood recovery activities since last fall. 

  19. LANL completes high-priority flood and erosion control work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    600 feet of water diversion barriers and removed more than 1,200 cubic yards of sediment in anticipation of flash flooding. July 11, 2011 Los Alamos National Laboratory sits...

  20. Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences:

    Office of Scientific and Technical Information (OSTI)

    Nashville, Tennessee (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences: Nashville, Tennessee Citation Details In-Document Search Title: Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences: Nashville, Tennessee Many cities are located at or near the confluence of streams where availability of water resources may be enhanced to sustain user needs while also posing an increased

  1. Polymer flood of the Rapdan pool

    SciTech Connect (OSTI)

    Pitts, M.J.; Surkalo, H.; Wyatt, K.; Campbell, T.A.

    1995-08-01

    A polymer-flood project in the Rapdan field is documented from laboratory design and numerical simulation to production performance and projected economics. The Rapdan field produces 10-mPa{center_dot}s oil from the Upper Shaunavon sand at a reservoir temperature of 55 C. Average permeability is 0.114 {mu}m{sup 2}, average porosity is 18%, and Dykstra-Parsons coefficient is 0.8. The field was discovered in 1953, and waterflood began in 1962. In January 1986, a polymer pilot was initiated in a portion of the field with a PV of 456 {times} 10{sup 4} m{sup 3}. The pilot consists of 13 producers and 5 injectors drilled on 162 {times} 10{sup 3}-m{sup 2} spacing. By December 1994, 43% PV, of a 21-mPa{center_dot}s polymer solution had been injected into a confined, central five spot (Wells 12-12 and 12-12A). The oil cut increased from a stable value of 8% during the waterflood to a peak value of 25%. The corresponding daily oil production increased from 8 to 28 m{sup 3}/d at an oil cut of 36%. Production rate has declined from 140 m{sup 3}/d in 1991 to 106 m{sup 3}/d in December 1994, with a corresponding oil-cut decline from 25% to 20%.

  2. POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING

    SciTech Connect (OSTI)

    Douglas Arnell; Malcolm Pitts; Jie Qi

    2004-11-01

    A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals in these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical-rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.

  3. Bridging the Gap between Chemical Flooding and Independent Oil Producers

    SciTech Connect (OSTI)

    Stan McCool; Tony Walton; Paul Whillhite; Mark Ballard; Miguel Rondon; Kaixu Song; Zhijun Liu; Shahab Ahmed; Peter Senior

    2012-03-31

    Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increased with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.

  4. Human-Induced Climate Change Reduces Chance of Flooding in Okavango...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Africa.gif Why it Matters: The...

  5. Human-induced climate change reduces chance of flooding in Okavango...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-induced climate change reduces chance of flooding in Okavango Delta Human-induced climate change reduces chance of flooding in Okavango Delta March 27, 2014 University of...

  6. Solar equipment ravaged by floods gets new life

    Broader source: Energy.gov [DOE]

    Mounting the electrical equipment for a solar array 12 feet off the ground on the side of an art studio building seemed like a safe height at first: it would be well above the 100-year-flood mark and out of reach of vandals.

  7. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis

    Office of Environmental Management (EM)

    Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by and October, 2011 Presentation Outline I. Introductions II. Pantex III. 10 Year Update IV. Final Results V. July 2010 Event VI. Emergency Planning VII.What's Next Pantex The Pantex Plant, located 17 miles northeast of Amarillo, Texas, in Carson County, is charged with maintaining the safety, security and reliability of the nation's nuclear weapons stockpile. Worked performed at Pantex supports three core missions. *

  8. Managing Floods and Resources at the Arroyo Las Positas

    SciTech Connect (OSTI)

    Sanchez, L; Van Hattem, M; Mathews, S

    2002-03-05

    Engineers and water resource professionals are challenged with protecting facilities from flood events within environmental resource protection, regulatory, and economic constraints. One case in point is the Arroyo Las Positas (ALP), an intermittent stream that traverses the Lawrence Livermore National Laboratory (LLNL) in Livermore, California. Increased runoff from post-drought rainfall, upstream development, and new perennial discharges from LLNL activities have resulted in increased dry weather flows and wetland vegetation. These new conditions have recently begun to provide improved habitat for the federally threatened California red-legged frog (Rana aurora draytonii; CRLF), but the additional vegetation diminishes the channel's drainage capacity and increases flood risk. When LLNL proposed to re-grade the channel to reestablish the 100-year flood capacity, traditional dredging practices were no longer being advocated by environmental regulatory agencies. LLNL therefore designed a desilting maintenance plan to protect LLNL facility areas from flooding, while minimizing impacts to wetland resources and habitat. The result was a combination of structural upland improvements and the ALP Five Year Maintenance Plan (Maintenance Plan), which includes phased desilting in segments so that the entire ALP is desilted after five years. A unique feature of the Maintenance Plan is the variable length of the segments designed to minimize LLNL's impact on CRLF movement. State and federal permits also added monitoring requirements and additional constraints on desilting activities. Two years into the Maintenance Plan, LLNL is examining the lessons learned on the cost-effectiveness of these maintenance measures and restrictions and reevaluating the direction of future maintenance activities.

  9. GIS-BASED PREDICTION OF HURRICANE FLOOD INUNDATION

    SciTech Connect (OSTI)

    JUDI, DAVID; KALYANAPU, ALFRED; MCPHERSON, TIMOTHY; BERSCHEID, ALAN

    2007-01-17

    A simulation environment is being developed for the prediction and analysis of the inundation consequences for infrastructure systems from extreme flood events. This decision support architecture includes a GIS-based environment for model input development, simulation integration tools for meteorological, hydrologic, and infrastructure system models and damage assessment tools for infrastructure systems. The GIS-based environment processes digital elevation models (30-m from the USGS), land use/cover (30-m NLCD), stream networks from the National Hydrography Dataset (NHD) and soils data from the NRCS (STATSGO) to create stream network, subbasins, and cross-section shapefiles for drainage basins selected for analysis. Rainfall predictions are made by a numerical weather model and ingested in gridded format into the simulation environment. Runoff hydrographs are estimated using Green-Ampt infiltration excess runoff prediction and a 1D diffusive wave overland flow routing approach. The hydrographs are fed into the stream network and integrated in a dynamic wave routing module using the EPA's Storm Water Management Model (SWMM) to predict flood depth. The flood depths are then transformed into inundation maps and exported for damage assessment. Hydrologic/hydraulic results are presented for Tropical Storm Allison.

  10. Evaluation and Enhancement of Carbon Dioxide Flooding Through Sweep Improvement

    SciTech Connect (OSTI)

    Hughes, Richard

    2009-09-30

    Carbon dioxide displacement is a common improved recovery method applied to light oil reservoirs (30-45{degrees}API). The economic and technical success of CO{sub 2} floods is often limited by poor sweep efficiency or large CO{sub 2} utilization rates. Projected incremental recoveries for CO{sub 2} floods range from 7% to 20% of the original oil in place; however, actual incremental recoveries range from 9% to 15% of the original oil in place, indicating the potential for significant additional recoveries with improved sweep efficiency. This research program was designed to study the effectiveness of carbon dioxide flooding in a mature reservoir to identify and develop methods and strategies to improve oil recovery in carbon dioxide floods. Specifically, the project has focused on relating laboratory, theoretical and simulation studies to actual field performance in a CO{sub 2} flood in an attempt to understand and mitigate problems of areal and vertical sweep efficiency. In this work the focus has been on evaluating the status of existing swept regions of a mature CO{sub 2} flood and developing procedures to improve the design of proposed floods. The Little Creek Field, Mississippi has been studied through laboratory, theoretical, numerical and simulation studies in an attempt to relate performance predictions to historical reservoir performance to determine sweep efficiency, improve the understanding of the reservoir response to CO{sub 2} injection, and develop scaling methodologies to relate laboratory data and simulation results to predicted reservoir behavior. Existing laboratory information from Little Creek was analyzed and an extensive amount of field data was collected. This was merged with an understanding of previous work at Little Creek to generate a detailed simulation study of two portions of the field the original pilot area and a currently active part of the field. This work was done to try to relate all of this information to an understanding of where the CO{sub 2} went or is going and how recovery might be improved. New data was also generated in this process. Production logs were run to understand where the CO{sub 2} was entering the reservoir related to core and log information and also to corroborate the simulation model. A methodology was developed and successfully tested for evaluating saturations in a cased-hole environment. Finally an experimental and theoretical program was initiated to relate laboratory work to field scale design and analysis of operations. This work found that an understanding of vertical and areal heterogeneity is crucial for understanding sweep processes as well as understanding appropriate mitigation techniques to improve the sweep. Production and injection logs can provide some understanding of that heterogeneity when core data is not available. The cased-hole saturation logs developed in the project will also be an important part of the evaluation of vertical heterogeneity. Evaluation of injection well/production well connectivities through statistical or numerical techniques were found to be as successful in evaluating CO{sub 2} floods as they are for waterfloods. These are likely to be the lowest cost techniques to evaluate areal sweep. Full field simulation and 4D seismic techniques are other possibilities but were beyond the scope of the project. Detailed simulation studies of pattern areas proved insightful both for doing a post-mortem analysis of the pilot area as well as a late-term, active portion of the Little Creek Field. This work also evaluated options for improving sweep in the current flood as well as evaluating options that could have been successful at recovering more oil. That simulation study was successful due to the integration of a large amount of data supplied by the operator as well as collected through the course of the project. While most projects would not have the abundance of data that Little Creek had, integration of the available data continues to be critical for both the design and evaluation stages of CO{sub 2} floods. For cases w

  11. Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment

    SciTech Connect (OSTI)

    Gerald Sehlke; Paul Wichlacz

    2010-12-01

    This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: • Determination of the design basis flood (DBFL) • Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

  12. E.O. 13690 (2015): Establishing a Federal Flood Risk Management...

    Broader source: Energy.gov (indexed) [DOE]

    On January 30, 2015, President Obama signed an Executive Order (E.O.) 13690, Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and...

  13. New Flood Risk Management Standard Responds to Effects of Climate Change |

    Office of Environmental Management (EM)

    Department of Energy New Flood Risk Management Standard Responds to Effects of Climate Change New Flood Risk Management Standard Responds to Effects of Climate Change March 2, 2015 - 1:38pm Addthis E.O.13690 explains that incorporating the FFRMS “will ensure that agencies expand management from the current base flood level to a higher vertical elevation and corresponding horizontal floodplain to address current and future flood risk.” E.O.13690 explains that incorporating the FFRMS

  14. Surfactant-enhanced alkaline flooding field project. Annual report

    SciTech Connect (OSTI)

    French, T.R.; Josephson, C.B.

    1993-12-01

    The Tucker sand from Hepler field, Crawford County, Kansas, was characterized using routine and advanced analytical methods. The characterization is part of a chemical flooding pilot test to be conducted in the field, which is classified as a DOE Class I (fluvial-dominated delta) reservoir. Routine and advanced methods of characterization were compared. Traditional wireline logs indicate that the reservoir is vertically compartmentalized on the foot scale. Routine core analysis, X-ray computed tomography (CT), minipermeameter measurement, and petrographic analysis indicate that compartmentalization and lamination extend to the microscale. An idealized model of how the reservoir is probably structured (complex layering with small compartments) is presented. There was good agreement among the several methods used for characterization, and advanced characterization methods adequately explained the coreflood and tracer tests conducted with short core plugs. Tracer and chemical flooding tests were conducted in short core plugs while monitoring with CT to establish flow patterns and to monitor oil saturations in different zones of the core plugs. Channeling of injected fluids occurred in laboratory experiments because, on core plug scale, permeability streaks extended the full length of the core plugs. A graphic example of how channeling in field core plugs can affect oil recovery during chemical injection is presented. The small scale of compartmentalization indicated by plugs of the Tucker sand may actually help improve sweep between wells. The success of field-scale waterflooding and the fluid flow patterns observed in highly heterogeneous outcrop samples are reasons to expect that reservoir flow patterns are different from those observed with short core plugs, and better sweep efficiency may be obtained in the field than has been observed in laboratory floods conducted with short core plugs.

  15. Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report

    SciTech Connect (OSTI)

    Aglan, H.

    2005-08-04

    The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair of field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.

  16. Next Generation Surfactants for Improved Chemical Flooding Technology

    SciTech Connect (OSTI)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.

  17. Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America

    SciTech Connect (OSTI)

    Prasad, Rajiv; Hibler, Lyle F.; Coleman, Andre M.; Ward, Duane L.

    2011-11-01

    The purpose of this document is to describe approaches and methods for estimation of the design-basis flood at nuclear power plant sites. Chapter 1 defines the design-basis flood and lists the U.S. Nuclear Regulatory Commission's (NRC) regulations that require estimation of the design-basis flood. For comparison, the design-basis flood estimation methods used by other Federal agencies are also described. A brief discussion of the recommendations of the International Atomic Energy Agency for estimation of the design-basis floods in its member States is also included.

  18. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOE Patents [OSTI]

    Johnson, J.S. Jr.; Westmoreland, C.G.

    1980-08-20

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  19. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOE Patents [OSTI]

    Johnson, Jr., James S. (Oak Ridge, TN); Westmoreland, Clyde G. (Rockwood, TN)

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  20. Improvements in fast-response flood modeling: desktop parallel computing and domain tracking

    SciTech Connect (OSTI)

    Judi, David R; Mcpherson, Timothy N; Burian, Steven J

    2009-01-01

    It is becoming increasingly important to have the ability to accurately forecast flooding, as flooding accounts for the most losses due to natural disasters in the world and the United States. Flood inundation modeling has been dominated by one-dimensional approaches. These models are computationally efficient and are considered by many engineers to produce reasonably accurate water surface profiles. However, because the profiles estimated in these models must be superimposed on digital elevation data to create a two-dimensional map, the result may be sensitive to the ability of the elevation data to capture relevant features (e.g. dikes/levees, roads, walls, etc...). Moreover, one-dimensional models do not explicitly represent the complex flow processes present in floodplains and urban environments and because two-dimensional models based on the shallow water equations have significantly greater ability to determine flow velocity and direction, the National Research Council (NRC) has recommended that two-dimensional models be used over one-dimensional models for flood inundation studies. This paper has shown that two-dimensional flood modeling computational time can be greatly reduced through the use of Java multithreading on multi-core computers which effectively provides a means for parallel computing on a desktop computer. In addition, this paper has shown that when desktop parallel computing is coupled with a domain tracking algorithm, significant computation time can be eliminated when computations are completed only on inundated cells. The drastic reduction in computational time shown here enhances the ability of two-dimensional flood inundation models to be used as a near-real time flood forecasting tool, engineering, design tool, or planning tool. Perhaps even of greater significance, the reduction in computation time makes the incorporation of risk and uncertainty/ensemble forecasting more feasible for flood inundation modeling (NRC 2000; Sayers et al. 2000).

  1. TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING...

    Office of Scientific and Technical Information (OSTI)

    for experimental analysis. The prevailing sampling techniques used for compositional analysis of the fluids have potential for a large source of error. These techniques bring...

  2. Alvord (3000-ft Strawn) LPG flood: design and performance evaluation

    SciTech Connect (OSTI)

    Frazier, G.D.; Todd, M.R.

    1982-01-01

    Mitchell Energy Corporation has implemented a LPG-dry gas miscible process in the Alvord (3000 ft Strawn) Unit in Wise County, Texas utilizing the DOE tertiary incentive program. The field had been waterflooded for 14 years and was producing near its economic limit at the time this project was started. This paper presents the results of the reservoir simulation study that was conducted to evaluate pattern configuration and operating alternatives so as to maximize LPG containment and oil recovery performance. Several recommendations resulting from this study were implemented for the project. Based on the model prediction, tertiary oil recovery is expected to be between 100,000 and 130,000 bbls, or about 7 percent of th oil originally in place in the Unit. An evaluation of the project performance to date is presented. In July of 1981 the injection of a 16% HPV slug of propane was completed. Natural gas is being used to drive the propane slug. A peak oil response of 222 BOPD was achieved in August of 1981 and production has since been declining. The observed performance of the flood indicates that the actual tertiary oil recovered will reach the predicted value, although the project life will be longer than expected. The results presented in this paper indicate that, without the DOE incentive program, the economics for this project would still be uncertain at this time.

  3. Electron Flood Charge Compensation Device for Ion Trap Secondary Ion Mass Spectrometry

    SciTech Connect (OSTI)

    Appelhans, Anthony David; Ward, Michael Blair; Olson, John Eric

    2002-11-01

    During secondary ion mass spectrometry (SIMS) analyses of organophosphorous compounds adsorbed onto soils, the measured anion signals were lower than expected and it was hypothesized that the low signals could be due to sample charging. An electron flood gun was designed, constructed and used to investigate sample charging of these and other sample types. The flood gun was integrated into one end cap of an ion trap secondary ion mass spectrometer and the design maintained the geometry of the self-stabilizing extraction optics used in this instrument. The SIMION ion optics program was used to design the flood gun, and experimental results agreed with the predicted performance. Results showed the low anion signals from the soils were not due to sample charging. Other insulating and conducting samples were tested using both a ReO4- and a Cs+ primary ion beam. The proximity of the sample and electron source to the ion trap aperture resulted in generation of background ions in the ion trap via electron impact (EI) ionization during the period the electron gun was flooding the sample region. When using the electron gun with the ReO4- primary beam, the required electron current was low enough that the EI background was negligible; however, the high electron flood current required with the Cs+ beam produced background EI ions that degraded the quality of the mass spectra. The consequences of the EI produced cations will have to be evaluated on a sample-by-sample basis when using electron flood. It was shown that the electron flood gun could be intentionally operated to produce EI spectra in this instrument. This offers the opportunity to measure, nearly simultaneously, species evaporating from a sample, via EI, and species bound to the surface, via SIMS.

  4. Single well surfactant test to evaluate surfactant floods using multi tracer method

    DOE Patents [OSTI]

    Sheely, Clyde Q.

    1979-01-01

    Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.

  5. Investigation of Containment Flooding Strategy for Mark-III Nuclear Power Plant with MAAP4

    SciTech Connect (OSTI)

    Su Weinian; Wang, S.-J.; Chiang, S.-C

    2005-06-15

    Containment flooding is an important strategy for severe accident management of a conventional boiling water reactor (BWR) system. The purpose of this work is to investigate the containment flooding strategy of the Mark-III system after a reactor pressure vessel (RPV) breach. The Kuosheng Power Plant is a typical BWR-6 nuclear power plant (NPP) with Mark-III containment. The Severe Accident Management Guideline (SAMG) of the Kuosheng NPP has been developed based on the BWR Owners Group (BWROG) Emergency Procedure and Severe Accident Guidelines, Rev. 2. Therefore, the Kuosheng NPP is selected as the plant for study, and the MAAP4 code is chosen as the tool for analysis. A postulated specific station blackout sequence for the Kuosheng NPP is cited as a reference case for this analysis. Because of the design features of Mark-III containment, the debris in the reactor cavity may not be submerged after an RPV breach when one follows the containment flooding strategy as suggested in the BWROG generic guideline, and the containment integrity could be challenged eventually. A more specific containment flooding strategy with drywell venting after an RPV breach is investigated, and a more stable plant condition is achieved with this strategy. Accordingly, the containment flooding strategy after an RPV breach will be modified for the Kuosheng SAMG, and these results are applicable to typical Mark-III plants with drywell vent path.

  6. Analysis of Flood Hazards for the Materials and Fuels Complex at the Idaho National Laboratory Site

    SciTech Connect (OSTI)

    Skaggs, Richard; Breithaupt, Stephen A.; Waichler, Scott R.; Kim, Taeyun; Ward, Duane L.

    2010-11-01

    Researchers at Pacific Northwest National Laboratory conducted a flood hazard analysis for the Materials and Fuels Complex (MFC) site located at the Idaho National Laboratory (INL) site in southeastern Idaho. The general approach for the analysis was to determine the maximum water elevation levels associated with the design-basis flood (DBFL) and compare them to the floor elevations at critical building locations. Two DBFLs for the MFC site were developed using different precipitation inputs: probable maximum precipitation (PMP) and 10,000 year recurrence interval precipitation. Both precipitation inputs were used to drive a watershed runoff model for the surrounding upland basins and the MFC site. Outflows modeled with the Hydrologic Engineering Centers Hydrologic Modeling System were input to the Hydrologic Engineering Centers River Analysis System hydrodynamic flood routing model.

  7. Human-induced climate change reduces chance of flooding in Okavango Delta

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-induced climate change reduces chance of flooding in Okavango Delta Human-induced climate change reduces chance of flooding in Okavango Delta March 27, 2014 University of Cape Town: Berkeley Lab / NERSC: Riana Geldenhuys Linda Vu Office Tel: +27 21 650 4846 | Mobile: +27 82 460 5554 Office Tel: +1 510 533 5502 riana.geldenhuys@uct.ac.za lvu@lbl.gov OkavangoDeltainnorthernBotswana.jpg This image is a compilation of three images from Envisat's radar and shows where southwestern Africa's

  8. LANL closes road, trails for safety reasons; flooding and erosion control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    work under way Road, trails closed for safety reasons LANL closes road, trails for safety reasons; flooding and erosion control work under way Closure is in response to the increased fire risk and danger of flash flooding. July 8, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  9. Groundwater, Legacy Soil Cleanup and Flood Recovery Top Lab’s Accomplishments

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – Top 2014 accomplishments of the Los Alamos National Laboratory’s EM-supported Environmental Programs included remediation of chromium in groundwater, completion of a legacy contaminant soil cleanup project, and rapid recovery from a 1,000-year rain event that caused widespread flooding.

  10. EO 13690 (2015): Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input

    Broader source: Energy.gov [DOE]

    Executive Order (E.O.) 13690, Establishing a Federal Flood Risk Management Standard [FFRMS] and a Process for Further Soliciting and Considering Stakeholder Input (2015) amends E.O. 11988,...

  11. EO 13690: Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input

    Broader source: Energy.gov [DOE]

    On January 30, 2015, President Obama signed an Executive Order (E.O.) 13690, Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder...

  12. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    SciTech Connect (OSTI)

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2015-05-17

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code called NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins.

  13. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2015-05-17

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code calledmore » NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins.« less

  14. Impact of Aluminum on Anticipated Corrosion in a Flooded SNF Multi Canister Overpack (MCO)

    SciTech Connect (OSTI)

    DUNCAN, D.R.

    1999-07-06

    Corrosion reactions in a flooded MCO are examined to determine the impact of aluminum corrosion products (from aluminum basket grids and spacers) on bound water estimates and subsequent fuel/environment reactions during storage. The mass and impact of corrosion products were determined to be insignificant, validating the choice of aluminum as an MCO component and confirming expectations that no changes to the Technical Databook or particulate mass or water content are necessary.

  15. Determining Hydrological Controls on Flood Frequency | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Determining Hydrological Controls on Flood Frequency Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC

  16. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-03-31

    Progress is reported for the period from January 1, 2002 to March 31, 2002. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. While this review process is being conducted, work is proceeding on well testing to obtain reservoir properties and on the VIP reservoir simulation model to improve model prediction and better understand the controls that certain parameters exert on predicted performance. In addition, evaluation of the economics of commercial application in the surrounding area was performed. In a meeting on January 14, 2002 the possibility of staging the demonstration, starting with a 10-acre sub-pattern flood was raised and the decision made to investigate this plan in detail. The influence of carbon dioxide on oil properties and the influence of binary interaction parameters (BIP) used in the VIP simulator were investigated. VIP calculated swelling factors are in good agreement with published values up to 65% mole-fraction CO2. Swelling factor and saturated liquid density are relatively independent of the BIP over the range of BIPs used (0.08-0.15) up to 65% mole-fraction CO2. Assuming a CO2 EOR recovery rate projected as being most likely by current modeling, commercial scale CO2 flooding at $20/BO is possible in the leases in Hall-Gurney field. Relatively small floods (240-320 acres, 4-6 patterns) are economically viable at $20/BO in areas of very high primary and secondary productivity (>14 MBO/net acre recovery). Leases with moderately high primary and secondary productivity (> 10 MBO/net acre recovery) can be economic when combined with high productivity leases to form larger floods (>640 acres, 9 or more patterns).

  17. Modeling of a Flooding Induced Station Blackout for a Pressurized Water Reactor Using the RISMC Toolkit

    SciTech Connect (OSTI)

    Mandelli, Diego; Prescott, Steven R; Smith, Curtis L; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J; Kinoshita, Robert A

    2011-07-01

    In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.

  18. Green River Formation water flood demonstration project. Report for the period October 1992--March 1994

    SciTech Connect (OSTI)

    Pennington, B.I.; Lomax, J.D.; Neilson, D.L.; Deo, M.D.

    1994-12-01

    The current project targeted three fluvial deltaic reservoirs in the Uinta Basin, Utah. In primary recovery, the performance of the Monument Butte unit was typical of an undersaturated reservoir whose initial pressure was close to the bubble point pressure. The unit was producing at a rate of 40 stb/day when the water flood was initiated. The unit has been producing at more than 300 stb/day for the past four years. The reservoir characteristics of Monument Butte were established in the geologic characterization study. The reservoir fluid properties were measured in the engineering study. Results of a comprehensive reservoir simulation study using these characteristics provided excellent match with the field production data. Extended predictions using the model showed that it would be possible to recover a total of 20--25% of the oil in place. In the Travis unit, logs from the newly drilled 14a-28 showed extensively fractured zones. A new reservoir was discovered and developed on the basis of the information provided by the formation micro imaging logs. This reservoir also behaved in a manner similar to undersaturated reservoirs with initial reservoir pressures close to the reservoir fluid bubble point. The water flood activity was enhanced in the Travis unit. Even through the reservoir continued to be gradually pressurized, the water flood in the Travis unit appeared to be significantly affected by existing or created fractures. A dual-porosity, dual permeability reservoir model provided a good match with the primary production history. The well drilled in the Boundary unit did not intersect any producible zones, once again illustrating the unique challenges to developing fluvial deltaic reservoirs.

  19. Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-09-01

    Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

  20. DOE-SPEC-3018-96; Flooded-Type Lead-Acid Storage Batteries

    Office of Environmental Management (EM)

    8-96 August 1996 DOE SPECIFICATION FLOODED-TYPE LEAD-ACID STORAGE BATTERIES U.S. Department of Energy FSC 6140 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce,

  1. Title Flood Assessment at the Proposed Area 6 Liquid Waste Treatment System - DOE/NV Test

    National Nuclear Security Administration (NNSA)

    Proposed Area 6 Liquid Waste Treatment System - DOE/NV Test Site, Nye County, Nevada. Draft Issue; Not finalized. Author Miller, J.J., D. L. Gustafson, S. E. Rawlinson/RSN Document Date 10/1/94 Document Type Report Recipients DOE/NV 101160 ERC Index number 05.09.204 Box Number 1686-1 October 1994 Draft ]Q Flood Assessment at the Proposed Area 6 Liquid Waste Treatment System DOE/Nevada Test Site, Nye County, Nevada Prepared by Raytheon Services Nevada Environmental Restoration and Waste

  2. Cytotoxicity of settling particulate matter and sediments of the Neckar River (Germany) during a winter flood

    SciTech Connect (OSTI)

    Hollert, H.; Duerr, M.; Erdinger, L.; Braunbeck, T.

    2000-03-01

    To investigate the cytotoxic and genotoxic potentials of settling particulate matter (SPM) carried by the Neckar River, a well-studied model for a lock-regulated river in central Europe, during a flood, acute cytotoxicity was investigated using the fibroblast-like fish cell line RTG-2 with the neutral red retention, the succinic acid dehydrogenase (MTT), and the lactatedehydrogenase (LDH) release assays as well as microscopic inspection as endpoints. Genotoxicity of water, pore water, sediments, and SPM were assessed using the Ames test. Different extraction methods (Soxhlet extraction with solvents of variable polarity as well as a fluid/fluid extraction according to pH) in addition to a supplementation of biotests with 59 fractions from the liver of {beta}-naphthoflavone/phenobarbital-induced rats allowed a further characterization of the biological damage. Both sediments and SPM extracts caused cytotoxic effects in RTG-2 cells. Cytotoxicity was found to increase significantly with polarity of extracting solvents. Following extraction according to pH, cytotoxicity could be attributed mainly to neutral substances, whereas the slightly acid and basic fractions already showed little or no cytotoxicity. Samples taken during the period of flood rise showed the highest cytotoxic activities. Cytotoxicity was significantly enhanced by the addition of S9 preparations. In contrast, no genotoxic activity was found in native surface waters, pore waters, and SPM.

  3. CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin

    SciTech Connect (OSTI)

    O'Connor, William K.; Rush, Gilbert E.

    2005-09-01

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  4. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect (OSTI)

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-04-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  5. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect (OSTI)

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-03-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  6. Evaluating resilience of DNP3-controlled SCADA systems against event buffer flooding

    SciTech Connect (OSTI)

    Yan, Guanhua; Nicol, David M; Jin, Dong

    2010-12-16

    The DNP3 protocol is widely used in SCADA systems (particularly electrical power) as a means of communicating observed sensor state information back to a control center. Typical architectures using DNP3 have a two level hierarchy, where a specialized data aggregator device receives observed state from devices within a local region, and the control center collects the aggregated state from the data aggregator. The DNP3 communication between control center and data aggregator is asynchronous with the DNP3 communication between data aggregator and relays; this leads to the possibility of completely filling a data aggregator's buffer of pending events, when a relay is compromised or spoofed and sends overly many (false) events to the data aggregator. This paper investigates how a real-world SCADA device responds to event buffer flooding. A Discrete-Time Markov Chain (DTMC) model is developed for understanding this. The DTMC model is validated by a Moebius simulation model and data collected on real SCADA testbed.

  7. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Richard Pancake; JyunSyung Tsau; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2010-03-07

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide was injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide was injected to displace the oil bank to the production wells by water injection. By March 7,2010, 8,736 bbl of oil were produced from the pilot. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver A7, Colliver A3, Colliver A14 and Graham A4 located on adjacent leases. About 19,166 bbl of incremental oil were estimated to have been produced from these wells as of March 7, 2010. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Estimated oil recovery attributed to the CO2 flood is 27,902 bbl which is equivalent to a gross CO2 utilization of 4.8 MCF/bbl. The pilot project is not economic.

  8. Laboratory studies evaluating CO2 flood impact on the geomechanics of whole core samples

    SciTech Connect (OSTI)

    O'Connor, William K.

    2005-06-01

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the injected CO2 in these ancient aqueous systems is still uncertain. Migration of the CO2 beyond the natural reservoir seals could become problematic, thus the identification of means to enhance the natural seals may help lead to the utilization of this sequestration methodology. Co-injection of a mineral reactant slurry, either with the CO2 or in separate, secondary injection wells, could provide a means to enhance the natural reservoir seals by providing the necessary cations for precipitation of mineral carbonates along the periphery of the injection plume. The subject study evaluates the merit of several mineral slurry co-injection strategies, by conduct of a series of laboratory-scale CO2 flood tests on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  9. Case Studies of the ROZ CO2 Flood and the Combined ROZ/MPZ CO2 Flood at the Goldsmith Landreth Unit, Ector County, Texas. Using ''Next Generation'' CO2 EOR Technologies to Optimize the Residual Oil Zone CO2 Flood

    SciTech Connect (OSTI)

    Trentham, Robert C.; Melzer, L. Stephen; Kuuskraa, Vello; Koperna, George

    2015-06-30

    The technology for CO2 Enhanced Oil Recovery (CO2 EOR) has significantly advanced since the earliest floods were implemented in the 1970s. At least for the Permian Basin region of the U.S., the oil recovery has been now been extended into residual oil zones (ROZs) where the mobile fluid phase is water and immobile phase is oil. But the nature of the formation and fluids within the ROZs has brought some challenges that were not present when flooding the MPZs. The Goldsmith-Landreth project in the Permian Basin was intended to first identify the most pressing issues of the ROZs floods and, secondly, begin to address them with new techniques designed to optimize a flood that commingled the MPZ and the ROZ. The early phase of the research conducted considerable reservoir and fluid characterization work and identified both technical and commercial challenges of producing the enormous quantities of water when flooding the ROZs. It also noted the differing water compositions in the ROZ as compared to the overlying MPZs. A new CO2 gas lift system using a capillary string was successfully applied during the project which conveyed the CO2 to the deeper and differing ROZ reservoir conditions at Goldsmith and added a second capillary string that facilitated applying scale inhibitors to mitigate the scaling tendencies of the mixing ROZ and MPZ formation waters. The project also undertook a reservoir modeling effort, using the acquired reservoir characterization data, to history match both the primary and water flood phases of the MPZ and to establish the initial conditions for a modeling effort to forecast response of the ROZ to CO2 EOR. With the advantage of many profile logs acquired from the operator, some concentration on the original pattern area for the ROZ pilot was accomplished to attempt to perfect the history match for that area. Several optional scenarios for producing the ROZ were simulated seeking to find the preferred mode of producing the two intervals. Finally, the project attempted to document for the first time the production performance of commingled MPZ and ROZ CO2 EOR project at the nearby Seminole San Andres Unit. The analysis shows that over 10,000 bopd can be shown to be coming from the ROZ interval, a zone that would have produced no oil under primary or water flood phases. A similar analysis was done for the GLSAU project illustrating that 2000 bopd of incremental EOR oil is currently being produced. The results of the modeling work would suggest that 800 bopd can be attributed to the ROZ alone at GLSAU.

  10. POST WATERFLOOD CO2 MISCIBLE FLOOD IN LIGHT OIL FLUVIAL DOMINATED DELTAIC RESERVOIR

    SciTech Connect (OSTI)

    Tim Tipton

    2004-04-06

    Texaco Exploration and Production Inc. (TEPI) and the US Department of Energy (DOE) entered into a cost sharing cooperative agreement to conduct an Enhanced Oil Recovery demonstration project at Port Neches. The field is located in Orange County near Beaumont, Texas, and shown in Appendix A. The project would demonstrate the effectiveness of the CO{sub 2} miscible process in Fluvial Dominated Deltaic reservoirs. It would also evaluate the use of horizontal CO{sub 2} injection wells to improve the overall sweep efficiency and determine the recovery efficiency of CO{sub 2} floods in waterflooded and partial waterdrive reservoirs. Texaco's objective on this project was (1) to utilize all available technologies, and to develop new ones, and (2) to design a CO{sub 2} flood process which is cost effective and can be applied to many other reservoirs throughout the US. A database of potential reservoirs for the gulf coast region was developed by LSU, using a screening model developed by Texaco Research Center in Houston. A PC-based CO{sub 2} screening model was developed and the aforementioned database generated to show the utility of this technology throughout the US. Finally, the results and the information gained from this project was disseminated throughout the oil industry via a series of SPE papers and industry open forums. Reservoir characterization efforts for the Marginulina sand shown in Appendix C, were accomplished utilizing conventional and advanced technologies including 3-D seismic. Sidewall and conventional cores were cut and analyzed, lab tests were conducted on reservoir fluids and reservoir voidage was monitored as shown in Appendices B through M. Texaco has utilized the above data to develop a Stratamodel to best describe and characterize the reservoir and to use it as input for the compositional simulator. The compositional model was revised several times to integrate the new data from the 3-D seismic and field performance under CO{sub 2} injection, to ultimately develop an accurate economic model. The Port Neches CO{sub 2} Project concentrated upon the tertiary oil recoveries, to be obtained from two sections of the reservoir, which were at different stages of depletion. The large waterflooded fault block had an average remaining oil saturation of 31% while the small partial waterdrive fault block had an oil saturation of 43%.

  11. Real-time Global Flood Estimation using Satellite-based Precipitation and a Coupled Land Surface and Routing Model

    SciTech Connect (OSTI)

    Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George; Li, Hongyi; Wang, Jianjian

    2014-04-09

    A community land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model system, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood-monitoring parameters for the latitude-band 50{degree sign}N-50{degree sign}S at relatively high spatial (~12km) and temporal (3-hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Statistical results are slightly better for the research-quality input and significantly better for longer duration events (three-day events vs. one-day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is ~0.9 and the false alarm ratio is ~0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1,121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30ºS-30ºN) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. There were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

  12. Microwave ECR plasma electron flood for low pressure wafer charge neutralization

    SciTech Connect (OSTI)

    Vanderberg, Bo; Nakatsugawa, Tomoya; Divergilio, William

    2012-11-06

    Modern ion implanters typically use dc arc discharge Plasma Electron Floods (PEFs) to neutralize wafer charge. The arc discharge requires using at least some refractory metal hardware, e.g. a thermionically emitting filament, which can be undesirable in applications where no metallic contamination is critical. rf discharge PEFs have been proposed to mitigate contamination risks but the gas flows required can result in high process chamber pressures. Axcelis has developed a microwave electron cyclotron resonance (ECR) PEF to provide refractory metals contamination-free wafer neutralization with low gas flow requirement. Our PEF uses a custom, reentrant cusp magnet field providing ECR and superior electron confinement. Stable PEF operation with extraction slits sized for 300 mm wafers can be attained at Xe gas flows lower than 0.2 sccm. Electron extraction currents can be as high as 20 mA at absorbed microwave powers < 70 W. On Axcelis' new medium current implanter, plasma generation has proven robust against pressure transients caused by, for example, photoresist outgassing by high power ion beams. Charge monitor and floating potential measurements along the wafer surface corroborate adequate wafer charge neutralization for low energy, high current ion beams.

  13. Improvement in oil recovery using cosolvents with CO{sub 2} gas floods

    SciTech Connect (OSTI)

    Raible, C.

    1992-01-01

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  14. Improvement in oil recovery using cosolvents with CO sub 2 gas floods

    SciTech Connect (OSTI)

    Raible, C.

    1992-01-01

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  15. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    DOE Patents [OSTI]

    1984-08-14

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7.degree. F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88.degree. F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

  16. Assessment of Potential Flood Events and Impacts at INL's Proposed Remote-Handled Low-Level Waste Disposal Facility Sites

    SciTech Connect (OSTI)

    A. Jeff Sondrup; Annette L. Schafter

    2010-09-01

    Rates, depths, erosion potential, increased subsurface transport rates, and annual exceedance probability for potential flooding scenarios have been evaluated for the on-site alternatives of Idaho National Laboratorys proposed remote handled low-level waste disposal facility. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of flood impacts are required to meet the Department of Energys Low-Level Waste requirements (DOE-O 435.1), its natural phenomena hazards assessment criteria (DOE-STD-1023-95), and the Radioactive Waste Management Manual (DOE M 435.1-1) guidance in addition to being required by the National Environmental Policy Act (NEPA) environmental assessment (EA). Potential sources of water evaluated include those arising from (1) local precipitation events, (2) precipitation events occurring off of the INL (off-site precipitation), and (3) increased flows in the Big Lost River in the event of a Mackay Dam failure. On-site precipitation events include potential snow-melt and rainfall. Extreme rainfall events were evaluated for the potential to create local erosion, particularly of the barrier placed over the disposal facility. Off-site precipitation carried onto the INL by the Big Lost River channel was evaluated for overland migration of water away from the river channel. Off-site precipitation sources evaluated were those occurring in the drainage basin above Mackay Reservoir. In the worst-case scenarios, precipitation occurring above Mackay Dam could exceed the dams capacity, leading to overtopping, and eventually complete dam failure. Mackay Dam could also fail during a seismic event or as a result of mechanical piping. Some of the water released during dam failure, and contributing precipitation, has the potential of being carried onto the INL in the Big Lost River channel. Resulting overland flows from these flood sources were evaluated for their erosion potential, ability to overflow the proposed disposal facility, and for their ability to increase migration of contaminants from the facility. The assessment of available literature suggests that the likelihood of detrimental flood water impacting the proposed RH-LLW facility is extremely low. The annual exceedance probability associated with uncontrolled flows in the Big Lost River impacting either of the proposed sites is 1x10-5, with return interval (RI) of 10,000yrs. The most probable dam failure scenario has an annual exceedance probability of 6.3x10-6 (1.6x105 yr RI). In any of the scenarios generating possible on-site water, the duration is expected to be quite short, water depths are not expected to exceed 0.5 m, and the erosion potential can easily be mitigated by emplacement of a berm (operational period), and an engineered cover (post closure period). Subsurface mobilization of radionuclides was evaluated for a very conservative flooding scenario resulting in 50 cm deep, 30.5 day on-site water. The annual exceedance probability for which is much smaller than 3.6x10-7 (2.8x106 yr RI). For the purposes of illustration, the facility was assumed to flood every 500 years. The periodically recurring flood waters were predicted to marginally increase peak radionuclide fluxes into the aquifer by at most by a factor of three for non-sorbing radionuclides, and to have limited impact on peak radionuclide fluxes into the aquifer for contaminants that do sorb.

  17. EVALUATION OF THE FLOOD POTENTIAL OF THE SOUTH HOUSE (BLINEBRY) FIELD, LEA COUNTY, NEW MEXICO

    SciTech Connect (OSTI)

    L. Stephen Melzer

    2000-12-01

    The Blinebry (Permian) formation of eastern Lea County, NM has a long history of exploitation for petroleum and continues even today to be a strong target horizon for new drilling in the Permian Basin. Because of this long-standing interest it should be classified of strategic interest to domestic oil production; however, the formation has gained a reputation as a primary production target with limited to no flooding potential. In late May of 1999, a project to examine the feasibility of waterflooding the Blinebry formation was proposed to the U.S. Department of Energy's National Petroleum Technology Office (Tulsa, OK). A new well was proposed in one region (the South House area) to examine the reputation by acquiring core and borehole logging data for the collection of formation property data in order to conduct the waterflood evaluation. Notice of the DOE award was received on August 19, 1999 and the preparations for drilling, coring and logging were immediately made for a drilling start on 9/9/99. The Blinebry formation at 6000 feet, foot depth was reached on 9/16/99 and the coring of two 60 foot intervals of the Blinebry was completed on 9/19/99 with more than 98% core recovery. The well was drilled to a total depth of 7800 feet and the Blinebry interval was logged with spectral gamma ray, photoelectric cross section, porosity, resistivity, and borehole image logs on 8/24/99. The well was determined to be likely productive from the Blinebry interval and five & 1/2 inch casing was cemented in the hole on 9/25/99. Detailed core descriptions including environment of deposition have been accomplished. Whole core (a 4-inch diameter) and plug (1.5 inch diameter) testing for formation properties has been completed and are reported. Acquisition and analysis of the borehole logging results have been completed and are reported. Perforation of the Blinebry intervals was accomplished on November 8, 1999. The intervals were acidized and hydrofraced on 11/9 and 11/11 respectively. Production of oil and gas has been established with several months of production now available to make a reserve analysis. Production histories and reserves estimation are provided. An assessment of the flood potential for the South House project area has been completed with work concentrated on South House rock property and pay thickness characterization and analog studies. For the analogs, the North Robertson area, located twenty miles to the northeast, and the Teague Field, located 20 miles to the south, have been utilized due to their readily available database and previous waterflood studies. The South House area does appear to merit further examination as the rock quality compares favorably with both analog Fields; however, current well spacings of 40-acres will provide only marginal economics based upon $23.00/barrel oil prices. Permeability and porosity relationships are provided as a conditional demonstration that rock quality may be sufficient for successful waterflooding of the project area. Further rock property work and pay continuity studies are recommended.

  18. Origin of Scale-Dependent Dispersivity and Its Implications For Miscible Gas Flooding

    SciTech Connect (OSTI)

    Steven Bryant; Russ Johns; Larry Lake; Thomas Harmon

    2008-09-30

    Dispersive mixing has an important impact on the effectiveness of miscible floods. Simulations routinely assume Fickian dispersion, yet it is well established that dispersivity depends on the scale of measurement. This is one of the main reasons that a satisfactory method for design of field-scale miscible displacement processes is still not available. The main objective of this project was to improve the understanding of the fundamental mechanisms of dispersion and mixing, particularly at the pore scale. To this end, microsensors were developed and used in the laboratory to measure directly the solute concentrations at the scale of individual pores; the origin of hydrodynamic dispersion was evaluated from first principles of laminar flow and diffusion at the grain scale in simple but geometrically completely defined porous media; techniques to use flow reversal to distinguish the contribution to dispersion of convective spreading from that of true mixing; and the field scale impact of permeability heterogeneity on hydrodynamic dispersion was evaluated numerically. This project solved a long-standing problem in solute transport in porous media by quantifying the physical basis for the scaling of dispersion coefficient with the 1.2 power of flow velocity. The researchers also demonstrated that flow reversal uniquely enables a crucial separation of irreversible and reversible contributions to mixing. The interpretation of laboratory and field experiments that include flow reversal provides important insight. Other advances include the miniaturization of long-lasting microprobes for in-situ, pore-scale measurement of tracers, and a scheme to account properly in a reservoir simulator (grid-block scale) for the contributions of convective spreading due to reservoir heterogeneity and of mixing.

  19. Scale-up of miscible flood processes for heterogeneous reservoirs. Final report

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1996-04-01

    Results of a wide-ranging investigation of the scaling of gas injection processes are reported. The research examines how the physical mechanisms at work during a gas injection project interact to determine process performance. In particular, the authors examine: the interactions of equilibrium phase behavior and two-phase flow that determine local displacement efficiency and minimum miscibility pressure, the combined effects of viscous fingering, gravity segregation and heterogeneity that control sweep efficiency in 2- and 3-dimensional porous media, the use of streamtube/streamline methods to create very efficient simulation technique for multiphase compositional displacements, the scaling of viscous, capillary and gravity forces for heterogeneous reservoirs, and the effects of the thin films and spreading behavior on three-phase flow. The following key results are documented: rigorous procedures for determination of minimum miscibility pressure (MMP) or minimum miscibility enrichment (MME) for miscibility have been developed for multicomponent systems; the complex dependence of MMP`s for nitrogen/methane floods on oil and injection gas composition observed experimentally is explained for the first time; the presence of layer-like heterogeneities strongly influences the interplay of gravity segregation and viscous fingering, as viscous fingers adapt to preferential flow paths and low permeability layers restrict vertical flow; streamtube/streamline simulation techniques are demonstrated for a variety of injection processes in 2 and 3 dimensions; quantitative scaling estimates for the transitions from capillary-dominated to gravity-dominated to viscous-dominated flows are reported; experimental results are given that demonstrate that high pressure CO{sub 2} can be used to generate low IFT gravity drainage in fractured reservoirs if fractures are suitably connected; and the effect of wetting and spreading behavior on three-phase flow is described. 209 refs.

  20. Downhole steam generator with improved preheating, combustion, and protection features

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07

    For tertiary oil recovery, a downhole steam generator is designed which provides for efficient counterflow cooling of the combustion chamber walls and preheating of the fuel and water. Pressure-responsive doors are provided for closing and opening the outlet in response to flameout, thereby preventing flooding of the combustion chamber. (DLC)

  1. Surface mining and reclamation effects on flood response of watersheds in the central Appalachian Plateau region - article no. W04407

    SciTech Connect (OSTI)

    Ferrari, J.R.; Lookingbill, T.R.; McCormick, B.; Townsend, P.A.; Eshleman, K.N.

    2009-04-15

    Surface mining of coal and subsequent reclamation represent the dominant land use change in the central Appalachian Plateau (CAP) region of the United States. Hydrologic impacts of surface mining have been studied at the plot scale, but effects at broader scales have not been explored adequately. Broad-scale classification of reclaimed sites is difficult because standing vegetation makes them nearly indistinguishable from alternate land uses. We used a land cover data set that accurately maps surface mines for a 187-km{sup 2} watershed within the CAP. These land cover data, as well as plot-level data from within the watershed, are used with HSPF (Hydrologic Simulation Program-Fortran) to estimate changes in flood response as a function of increased mining. Results show that the rate at which flood magnitude increases due to increased mining is linear, with greater rates observed for less frequent return intervals. These findings indicate that mine reclamation leaves the landscape in a condition more similar to urban areas rather than does simple deforestation, and call into question the effectiveness of reclamation in terms of returning mined areas to the hydrological state that existed before mining.

  2. Nevada Test Site probable maximum flood study, part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for US Department of Energy, Office of Civilian Radioactive Waste Management

    SciTech Connect (OSTI)

    Bullard, K.L.

    1994-08-01

    The US Geological Survey (USGS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. In particular, the project is designed to acquire information necessary for the Department of Energy (DOE) to demonstrate in its environmental impact statement (EIS) and license application whether the MGDS will meet the requirements of federal regulations 10 CFR Part 60, 10 CFR Part 960, and 40 CFR Part 191. Complete study plans for this part of the project were prepared by the USGS and approved by the DOE in August and September of 1990. The US Bureau of Reclamation (Reclamation) was selected by the USGS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates are necessary for successful waste repository design and construction. The PMF technique was chosen for two reasons: (1) this technique complies with ANSI requirements that PMF technology be used in the design of nuclear related facilities (ANSI/ANS, 1981), and (2) the PMF analysis has become a commonly used technology to predict a ``worst possible case`` flood scenario. For this PMF study, probable maximum precipitation (PMP) values were obtained for a local storm (thunderstorm) PMP event. These values were determined from the National Weather Services`s Hydrometeorological Report No. 49 (HMR 49).

  3. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal - Appendix)

    SciTech Connect (OSTI)

    Bou-Mikael, Sami

    2002-02-05

    The main objective of the Port Neches Project was to determine the feasibility and producibility of CO2 miscible flooding techniques enhanced with horizontal drilling applied to a Fluvial Dominated Deltaic reservoir. The second was to disseminate the knowledge gained through established Technology Transfer mechanisms to support DOE's programmatic objectives of increasing domestic oil production and reducing abandonment of oil fields.

  4. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal), Class I

    SciTech Connect (OSTI)

    Bou-Mikael, Sami

    2002-02-05

    This project outlines a proposal to improve the recovery of light oil from waterflooded fluvial dominated deltaic (FDD) reservoir through a miscible carbon dioxide (CO2) flood. The site is the Port Neches Field in Orange County, Texas. The field is well explored and well exploited. The project area is 270 acres within the Port Neches Field.

  5. The President`s Floodplan Management Action Plan: Formulating a watershed and ecosystem approach to flood hazard mitigation and resource protection

    SciTech Connect (OSTI)

    McShane, J.

    1995-12-01

    The Great Midwest Flood of 1993 focused the attention of the Nation on the human and environmental costs associated with decades of efforts to control flooding, unwise land-use decisions, and the loss and degradation of the natural resources and functions of floodplains. The disaster can also be attributed to the single purpose decision-making process and fragmented planning at all levels of government, inconsistent statutory madates, and conflicting jurisdictional responsibilities. The Executive Office of the President established a Floodplain Management Review Committee to determine the major causes and consequences of the flood and to evaluate the performance of existing floodplain management and related watershed programs. The report, Sharing the Challenge: Floodplain Management into the 21st Century, included 90 recommendations to improve floodplain management and water resources planning including the need for a more comprehensive, coordinated approach to floodplain and watershed management. Preparation of the 1994 document A Unified National Program for Floodplain Management commenced prior to the Midwest Flood of 1993 and was completed, coincidentally, concurrently with the Review Committee`s report Sharing the Challenge. Both reports urge the formulation of a more comprehensive, watershed approach to managing human activities and protecting natural systems to ensure the long term viability of riparian ecosystems and the sustainable development of riverine communities. Both reports recognize that effective floodplain management will reduce the financial burdens placed upon all levels of government to compensate property owners and governments for flood losses caused by unwise land use decisions by individuals, as well as governments. This paper focuses on the fundamental changes in Federal floodplain management policies and programs that are emerging that will affect how as a Nation manage and use our floodplain resources into the 21st Century.

  6. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal floods during mid-loop operations. Volume 4

    SciTech Connect (OSTI)

    Kohut, P.

    1994-07-01

    The major objective of the Surry internal flood analysis was to provide an improved understanding of the core damage scenarios arising from internal flood-related events. The mean core damage frequency of the Surry plant due to internal flood events during mid-loop operations is 4.8E-06 per year, and the 5th and 95th percentiles are 2.2E-07 and 1.8E-05 per year, respectively. Some limited sensitivity calculations were performed on three plant improvement options. The most significant result involves modifications of intake-level structure on the canal, which reduced core damage frequency contribution from floods in mid-loop by about 75%.

  7. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2002-03-26

    The objective of this project is two-fold. It will demonstrate use of nitrogen as a widely available, cost-effective and environmentally superior injectant for miscible floods. It will also demonstrate the effectiveness of horizontal wellbores in reducing gas breakthrough and cycling. It is expected that the demonstration will lead to implementation of nitrogen injection projects in areas without readily available carbon dioxide sources. Technology transfer will occur throughout the project.

  8. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  9. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout caused by external flooding using the RISMC toolkit

    SciTech Connect (OSTI)

    Mandelli, Diego; Smith, Curtis; Prescott, Steven; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impacts of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper focuses on the impacts of power uprate on the safety margin of a boiling water reactor for a flooding induced station black-out event. Analysis is performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool currently under development at the Idaho National Laboratory, i.e. RAVEN. We employed both classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. Results obtained give a detailed investigation of the issues associated with a plant power uprate including the effects of station black-out accident scenarios. We were able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management.

  10. Development of an Advanced Simulator to Model Mobility Control and Geomechanics during CO{sub 2} Floods

    SciTech Connect (OSTI)

    Delshad, Mojdeh; Wheeler, Mary; Sepehrnoori, Kamy; Pope, Gary

    2013-12-31

    The simulator is an isothermal, three-dimensional, four-phase, compositional, equation-of state (EOS) simulator. We have named the simulator UTDOE-CO2 capable of simulating various recovery processes (i.e., primary, secondary waterflooding, and miscible and immiscible gas flooding). We include both the Peng-Robinson EOS and the Redlich-Kwong EOS models. A Gibbs stability test is also included in the model to perform a phase identification test to consistently label each phase for subsequent property calculations such as relative permeability, viscosity, density, interfacial tension, and capillary pressure. Our time step strategy is based on an IMPEC-type method (implicit pressure and explicit concentration). The gridblock pressure is solved first using the explicit dating of saturation-dependent terms. Subsequently, the material balance equations are solved explicitly for the total concentration of each component. The physical dispersion term is also included in the governing equations. The simulator includes (1) several foam model(s) for gas mobility control, (2) compositional relative permeability models with the hysteresis option, (3) corner point grid and several efficient solvers, (4) geomechanics module to compute stress field as the result of CO{sub 2} injection/production, (5) the format of commercial visualization software, S3graf from Science-soft Ltd., was implemented for user friendly visualization of the simulation results. All tasks are completed and the simulator was fully tested and delivered to the DOE office including a users guide and several input files and the executable for Windows Pcs. We have published several SPE papers, presented several posters, and one MS thesis is completed (V. Pudugramam, 2013) resulting from this DOE funded project.

  11. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect (OSTI)

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses were used to better understand porosity and permeability trends in the region and to characterize barriers and define flow units. Diagenetic alterations that impact porosity and permeability include development of quartz overgrowths, sutured quartz grains, dissolution of feldspar grains, formation of clay mineral coatings on grains, and calcite cementation. Many of these alterations are controlled by facies. Mapping efforts identified distinct flow units in the northern part of the field showing that the Pennsylvanian Bridgeport consists of a series of thick incised channel fill sequences. The sandstones are about 75-150 feet thick and typically consist of medium grained and poorly sorted fluvial to distributary channel fill deposits at the base. The sandstones become indistinctly bedded distributary channel deposits in the main part of the reservoir before fining upwards and becoming more tidally influenced near their top. These channel deposits have core permeabilities ranging from 20 md to well over 1000 md. The tidally influenced deposits are more compartmentalized compared to the thicker and more continuous basal fluvial deposits. Fine grained sandstones that are laterally equivalent to the thicker channel type deposits have permeabilities rarely reaching above 250 md. Most of the unrecovered oil in Lawrence Field is contained in Pennsylvanian Age Bridgeport sandstones and Mississippian Age Cypress sandstones. These reservoirs are highly complex and compartmentalized. Detailed reservoir characterization including the development of 3-D geologic and geocellular models of target areas in the field were completed to identify areas with the best potential to recover remaining reserves including unswept and by-passed oil. This project consisted of tasks designed to compile, interpret, and analyze the data required to conduct reservoir characterization for the Bridgeport and Cypress sandstones in pilot areas in anticipation of expanded implementation of ASP flooding in Lawrence Field. Geologic and geocellular modeling needed for reservoir characterization and reservoir simulation were completed as prerequisites for design of efficient ASP flood patterns. Characterizing the complex reservoir geology that identifies the geologic conditions that will optimize oil recoveries for expansion of the ASP pilots in the Bridgeport and Cypress sandstones to other areas of Lawrence Field is the primary objective of this project. It will permit evaluation of efficiency of oil recovery from Bridgeport and Cypress sandstone reservoirs using ASP technology. Additionally evaluation of similar Pennsylvanian and Chesterian reservoirs shows that it is likely that ASP flood technology can be successfully applied to similar reservoirs in the Illinois Basin as well as to other U.S. reservoirs. Chemical flooding was introduced in stages with the first flood initiated in 2010 and a second offset pilot project initiated during 2011. Rex Energy Corporation is reporting a positive response on its ASP Middagh pilot project in the Pennsylvanian Bridgeport B reservoir, Lawrence Field. Oil response in the 15 acre flood has continued to show an increase in oil cut from 1% to 12%. Total pattern production increased from 16 BOPD and stabilized at a range of 65-75 BOPD in the last three months of 2011. Peak production rose to 100 + BOPD. Oil cut in the pilot increased for 1.0% to ~ 12.0% with an individual well showing oil cuts greater than 20%. A second, 58 acre pilot (Perkins-Smith) adjacent to and likely in communication with the Middagh pilot has been initiated. Preliminary brine injection has been implemented and ASP injection was initiated in mid-2012. Response is expected by mid-2013 with peak recovery expected by late 2013. Rex Energy is projecting full scale expansion with the next step of development being a 351 acre project scheduled to begin in mid-2013. Preliminary development has been initiated in this Delta Unit area located in the south half of section 32, T4N, R12W.

  12. An Evaluation of the Feasibility of Combining Carbon Dioxide Flooding Technologies with Microbial Enhanced Oil Recovery Technologies in Order To Sequester Carbon Dioxide

    SciTech Connect (OSTI)

    Todd French; Lew Brown; Rafael Hernandez; Magan Green; Lynn Prewitt; Terry Coggins

    2009-08-19

    The need for more energy as our population grows results in an increase in the amount of CO2 introduced into the atmosphere. The effect of this introduction is currently debated intensely as to the severity of the effect of this. The bjective of this investigation was to determine if the production of more energy (i.e. petroleum) and the sequestration of CO2 could be coupled into one process. Carbon dioxide flooding is a well-established technique that introduces Compressed CO2 into a subsurface oil-bearing formation to aide in liquefying harder to extract petroleum and enhancing its mobility towards the production wells.

  13. Analysis of alternative modifications for reducing backwater flooding at the Honey Creek coal strip-mine reclamation site in Henry County, Missouri. Water Resources Investigation

    SciTech Connect (OSTI)

    Alexander, T.W.

    1990-01-01

    Studies to determine the hydrologic conditions in mined and reclaimed mine areas, as well as areas of proposed mining, have become necessary with the enactment of the Surface Mining Control and Reclamation Act of 1977. Honey Creek in Henry County, Missouri, has been re-routed to flow through a series of former strip mining pits which lie within the Honey Creek coal strip mine reclamation site. During intense or long duration rainfalls within the Honey Creek basin, surface runoff has caused flooding on agricultural land near the upstream boundary of the reclamation site. The calculated existing design discharge (3,050 cubic feet per second) water-surface profile is compared to the expected water-surface profiles from three assumed alternative channel modifcations within the Honey Creek study area. The alternative channel modifications used in these analyses include (1) improvement of channel bottom slope, (2) relocation of spoil material, and (3) improved by-pass channel flow conditions. The alternative 1, 2, and 3 design discharge increase will reduce the agricultural field current (1990) frequency of backwater flooding from a 3-year to a 6.5-year event.

  14. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    SciTech Connect (OSTI)

    Burns, Lyle D.

    2009-04-14

    The problem in CO{sub 2} flooding lies with its higher mobility causing low conformance or sweep efficiency. This is an issue in oilfield applications where an injected fluid or gas used to mobilize and produce the oil in a marginal field has substantially higher mobility (function of viscosity and density and relative permeability) relative to the crude oil promoting fingering and early breakthrough. Conformance is particularly critical in CO{sub 2} oilfield floods where the end result is less oil recovered and substantially higher costs related to the CO{sub 2}. The SPI-CO{sub 2} (here after called SPI) gel system is a unique silicate based gel system that offers a technically effective solution to the conformance problem with CO{sub 2} floods. This SPI gel system remains a low viscosity fluid until an external initiator (CO{sub 2}) triggers gelation. This is a clear improvement over current technologies where the gels set up as a function of time, regardless of where it is placed in the reservoir. In those current systems, the internal initiator is included in the injected fluid for water shut off applications. In this new research effort, the CO{sub 2} is an external initiator contacted after SPI gel solution placement. This concept ensures in the proper water wet reservoir environment that the SPI gel sets up in the precise high permeability path followed by the CO{sub 2}, therefore improving sweep efficiency to a greater degree than conventional systems. In addition, the final SPI product in commercial quantities is expected to be low cost over the competing systems. This Phase I research effort provided proof of concept that SPI gels possess strength and may be formed in a sand pack reducing the permeability to brine and CO{sub 2} flow. This SPI technology is a natural extension of prior R & D and the Phase I effort that together show a high potential for success in a Phase II follow-on project. Carbon dioxide (CO{sub 2}) is a major by-product of hydrocarbon combustion for energy, chemical and fertilizer plants. For example, coal fired power plants emit large amounts of CO{sub 2} in order to produce electrical energy. Carbon dioxide sequestration is gaining attention as concerns mount over possible global climate change caused by rising emissions of greenhouse gases. Removing the CO{sub 2} from the energy generation process would make these plants more environmentally friendly. In addition, CO{sub 2} flooding is an attractive means to enhance oil and natural gas recovery. Capture and use of the CO{sub 2} from these plants for recycling into CO{sub 2} flooding of marginal reservoirs provides a dual use opportunity prior to final CO{sub 2} sequestration in the depleted reservoir. Under the right pressure, temperature and oil composition conditions, CO{sub 2} can act as a solvent, cleaning oil trapped in the microscopic pores of the reservoir rock. This miscible process greatly increases the recovery of crude oil from a reservoir compared to recovery normally seen by waterflooding. An Enhanced Oil Recovery (EOR) project that uses an industrial source of CO{sub 2} that otherwise would be vented to the atmosphere has the added environmental benefit of sequestering the greenhouse gas.

  15. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2004-06-30

    The DOE-sponsored project at the East Binger Unit is an investigation into the benefits of reservoir characterization and horizontal wells in this particular setting of geologic and recovery method. The geologic setting is a tight (average porosity of 7% and average permeability of less than 1 millidarcy) Pennsylvanian-age sandstone at about 10,000 feet, and the recovery method is a miscible nitrogen flood. The projected oil recovery of the East Binger Unit, prior to the initiation of this project, was about 25%. Gravity segregation of nitrogen and crude oil was believed to be the principal cause of the poor sweep efficiency, and it was envisioned that with horizontal producing wells in the lower portion of the reservoir and horizontal injection wells near the top, the process could be converted from a lateral displacement process to a vertical displacement/gravity assisted process. Through the characterization and field development work completed in Budget Periods 1 and 2, Binger Operations, LLC (BOL) has developed a different interpretation of the sweep problem as well as a different approach to improving recovery. The sweep problem is now believed to be one of an areal nature, due to a combination of natural and hydraulic fracturing. Vertical wells have provided a much better economic return than have the horizontal wells. The natural and hydraulic fracturing manifests itself as a direction of higher permeability, and the flood is being converted to a line drive flood aligned with this orientation. Consistent with this concept, horizontal wells have been drilled along the line of the fracture orientation, such that hydraulic fracturing leads to 'longitudinal' fractures, in line with the wellbore. As such, the hydraulically fractured horizontal wells are not significantly different than hydraulically fractured vertical wells - save for the potential for a much longer fracture face. This Topical Report contains data from new wells, plus new and updated production, pressure, and gas analysis data that was not included in the Topical Report provided at the end of Budget Period 1. The analysis and interpretation of these data are provided in the many technical reports submitted throughout this project.

  16. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOE Patents [OSTI]

    McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

    1994-05-03

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  17. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOE Patents [OSTI]

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  18. Improvement of Carbon Dioxide Sweep Efficiency by Utilization of Microbial Permeability Profile Modification to Reduce the Amount of Oil Bypassed During Carbon Dioxide Flood

    SciTech Connect (OSTI)

    Darrel Schmitz; Lewis Brown F. Leo Lynch; Brenda Kirkland; Krystal Collins; William Funderburk

    2010-12-31

    The objective of this project was to couple microbial permeability profile modification (MPPM), with carbon dioxide flooding to improve oil recovery from the Upper Cretaceous Little Creek Oil Field situated in Lincoln and Pike counties, MS. This study determined that MPPM technology, which improves production by utilizing environmentally friendly nutrient solutions to simulate the growth of the indigenous microflora in the most permeable zones of the reservoir thus diverting production to less permeable, previously unswept zones, increased oil production without interfering with the carbon dioxide flooding operation. Laboratory tests determined that no microorganisms were produced in formation waters, but were present in cores. Perhaps the single most significant contribution of this study is the demonstration that microorganisms are active at a formation temperature of 115?C (239?F) by using a specially designed culturing device. Laboratory tests were employed to simulate the MPPM process by demonstrating that microorganisms could be activated with the resulting production of oil in coreflood tests performed in the presence of carbon dioxide at 66?C (the highest temperature that could be employed in the coreflood facility). Geological assessment determined significant heterogeneity in the Eutaw Formation, and documented relatively thin, variably-lithified, well-laminated sandstone interbedded with heavily-bioturbated, clay-rich sandstone and shale. Live core samples of the Upper Cretaceous Eutaw Formation from the Heidelberg Field, MS were quantitatively assessed using SEM, and showed that during MPPM permeability modification occurs ubiquitously within pore and throat spaces of 10-20 ?m diameter. Testing of the MPPM procedure in the Little Creek Field showed a significant increase in production occurred in two of the five production test wells; furthermore, the decline curve in each of the production wells became noticeably less steep. This project greatly extends the number of oil fields in which MPPM can be implemented.

  19. Post waterflood CO{sub 2} miscible flood in light oil, fluvial-dominated deltaic reservoir. Annual report, fiscal year 1996

    SciTech Connect (OSTI)

    1996-08-15

    The Port Neches CO{sub 2} flood has been operating for nearly 4 years. The project performance during the past year has been adversely affected by several factors including: water blockage, low residual oil saturation and wellbore mechanical problems. The company attempted to test a new procedure in a new fault block using CO{sub 2} to accelerate primary production in order to improve the primary reserves net present value. The test was abandoned when the discovery well Polk B-39 for the Marg Area 3 was a dry hole. Also, during this period the company terminated all new CO{sub 2} purchases from Cardox for economical reasons, while continuing to recycle produced CO{sub 2}. A data base for FDD reservoirs for the Louisiana and Texas Gulf Coast Region was developed by LSU and SAIC. This data base includes reservoir parameters and performance data for reservoirs with significant production and OOIP volumes that are amenable to CO{sub 2} injection. A paper discussing the Port Neches CO{sub 2} project was presented at the 1996 SPE/DOE Symposium on Improved Oil Recovery.

  20. DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

    SciTech Connect (OSTI)

    K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

    2002-09-01

    The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern for the project as it limited CO{sub 2} injectivity. To reduce voidage balance, and reservoir pressure, a disposal well was therefore drilled. Several injection surveys indicated the CO{sub 2} injection wells had severe conformance issues. After close monitoring of the project to the end of 1999, it was evident the project would not recover the anticipated tertiary reserves. The main reasons for under-performance were poor in zone CO{sub 2} injection into the upper San Andres layers, poorer offtake rates from newly drilled replacement wells and a higher than required reservoir pressure. After discussion internally within Phillips, externally with the Department of Energy (DOE) and SCU partners, a redevelopment of South Cowden was agreed upon to commence in year 2000. The redevelopment essentially abandoned the original development for Budget Phase II in favor of a revised approach. This involved conformance techniques to resolve out of zone CO{sub 2} injection and use of horizontal wells to improve in zone injectivity and productivity. A phased approach was used to ensure short radius lateral drilling could be implemented effectively at South Cowden. This involved monitoring drilling operations and then production response to determine if larger investments during the second phase were justified. Redevelopment Phase 1 was completed in May 2000. It was deemed a success in regard to finding suitable/cost-effective technology for drilling horizontal laterals and finding a technique that could sustain long-term productivity from the upper layers of the San Andres reservoir. Four existing vertical producing wells were isolated from their existing completions and sidetracked with horizontal laterals into the upper layers of the San Andres. Overall average offtake rates for the four wells increased by a factor of 12 during the first four months after completion of Phase 1. Phase 2 of the redevelopment focused on current CO{sub 2} vertical injection wells. Techniques were applied to resolve near well conformance concerns and then either single or dual laterals were dril

  1. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2006-06-30

    The reservoir characterization and investigation of the benefits of horizontal wells in the East Binger Unit miscible nitrogen flood as been completed. A significant work program was implemented from 2002 to 2005 in an effort to reduce gas cycling and economically increase ultimate oil recovery. Horizontal and vertical infill wells were drilled and existing producers were converted to injection. Due to successful infill drilling based on the improved flow characterization, more drilling was done than originally planned, and further drilling will occur after the project is completed. Through the drilling of wells and reservoir characterization work, it was determined that poor areal sweep efficiency is the primary factor causing nitrogen cycling and limiting oil recovery. This is in contrast to the perception prior to the initiation of development, which was that gravity segregation was causing poor vertical sweep efficiency. Although not true of all infill wells, most were drilled in areas with little sweep and came online producing gas with much lower nitrogen contents than previously drilled wells in the field and in the pilot area. Seven vertical and three horizontal wells were drilled in the pilot area throughout the project. As previously reported, the benefits of horizontal drilling were found to be insufficient to justify their increased cost. Nitrogen recycle, defined as nitrogen production as a percentage of injection, decreased from 72% prior to initiation of the project to about 25% before rising back to a current rate of 40%. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, increased 60% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas both decreased.

  2. Peculiarities of Environment Pollution as a Special Type of Radioactive Waste: Field Means for Comprehensive Characterization of Soil and Bottom Sediments and their Application in the Survey at the Flood plain of Techa River - 13172

    SciTech Connect (OSTI)

    Ivanov, Oleg; Danilovich, Alexey; Potapov, Victor; Stepanov, Vyacheslav; Smirnov, Sergey; Volkovich, Anatoly

    2013-07-01

    Contamination of natural objects - zone alarm fallout, zones and flood plains near production sites (the result of technological accidents and resource extraction) occupy large areas. Large area and volume of contaminated matter, moderate specific activity (as low - medium-level wastes) make such objects specific types of radioactive waste. These objects exist for a long time, now they are characterized by a bound state of nuclides with the matrix. There is no cost-effective ways to remove these waste, the only solution for the rehabilitation of such areas is their isolation and regular monitoring through direct and indirect measurements. The complex of instruments was developed to field mapping of contamination. It consists of a portable spectrometric collimated detector, collimated spectrometric borehole detector, underwater spectrometer detector, spectrometer for field measurements of the specific activity of Sr-90, connected to a portable MCA 'Colibry (Hummingbird)'. The complex was used in settlements of Bryansk region, rivers Techa and Yenisei. The effectiveness of the developed complex considered by the example of characterization of the reservoir 10 (artificial lake) in Techinsky cascade containing a huge amount of radioactive waste. The developed field means for comprehensive characterization of soil and bottom sediments contamination are very effective for mapping and monitoring of environment contamination after accidents. Especially in case of high non-uniformity of fallout and may be very actual in Fukushima area. (authors)

  3. Superheated steam power plant with steam to steam reheater. [LMFBR

    SciTech Connect (OSTI)

    Silvestri, G.J.

    1981-06-23

    A desuperheater is disposed in a steam supply line supplying superheated steam to a shell and tube reheater.

  4. Polymer flood mixing apparatus and method

    SciTech Connect (OSTI)

    Cox, B.M.; Stephenson, S.V.

    1984-02-28

    A method and an apparatus are described for controlling the viscosity of a mixture by controlling the volumetric flow of a fluid with respect to the volumetric flow of another fluid. The apparatus includes volumetric flow detectors for detecting the flow of the 2 fluids. An electronic controller responds to electric signals generated by the volumetric flow detectors in proportion to the respective detective volumetric flows. The output of the controller operates a flow drive element, such as a pump, so that the volumetric flow of one of the fluids is controlled. The volumetric flow of the controlled fluid and the volumetric flow of the other fluid are mixed by a suitable mixer to obtain the mix having the desired viscosity. 7 claims

  5. Los Alamos plants willows for flood recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structures on Laboratory property. Collaborating with Mother Nature to control sediment migration, ADEP's Corrective Actions Program (CAP) and contractors TerranearPMC and...

  6. Improved Water Flooding through Injection Brine Modification

    SciTech Connect (OSTI)

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman

    2003-01-01

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  7. Inspect and Repair Steam Traps, Energy Tips: STEAM, Steam Tip...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    leaking traps should account for less than 5% of the trap population. If your steam distribution system includes more than 500 traps, a steam trap survey will probably reveal...

  8. Steam Digest Volume IV

    SciTech Connect (OSTI)

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  9. Achieve Steam System Excellence - Steam Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Achieve Steam System Excellence - Steam Overview Achieve Steam System Excellence - Steam Overview This fact sheet describes a steam systems approach to help companies operate and maintain their industrial steam plants and thermal manufacturing processes more efficiently. PDF icon Achieve Steam System Excellence - Steam Overview (December 2002) More Documents & Publications Save Energy Now in Your Steam Systems J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a

  10. Steam Field | Open Energy Information

    Open Energy Info (EERE)

    Steam Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Steam Field Dictionary.png Steam Field: No definition has been...

  11. Steam Oxidation of Advanced Steam Turbine Alloys

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2008-01-01

    Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650C to 800C) to steam at 34.5 MPa (650C to 760C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

  12. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  13. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  14. Steam Technical Brief: Steam Pressure Reduction: Opportunities and Issues

    SciTech Connect (OSTI)

    2010-06-25

    A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

  15. Steam Digest 2001

    SciTech Connect (OSTI)

    Not Available

    2002-01-01

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  16. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  17. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Muir, James F. (Albuquerque, NM); Wayland, Jr., J. Robert (Albuquerque, NM)

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  18. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, M.J.

    1987-05-04

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

  19. Geothermal Steam Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Steam Power Plant (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants...

  20. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, James E. (Simi Valley, CA)

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  1. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  2. Downhole steam injector

    DOE Patents [OSTI]

    Donaldson, A. Burl (Albuquerque, NM); Hoke, Donald E. (Albuquerque, NM)

    1983-01-01

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  3. Steam Technical Brief: Industrial Steam System Process-Control Schemes

    SciTech Connect (OSTI)

    2003-07-01

    This BestPractices Steam Technical Brief was developed to provide a basic understanding of the different process-control schemes used in a typical steam system.

  4. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, Michael J. (Plainfield, IL)

    1988-01-01

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

  5. Ukraine Steam Partnership

    SciTech Connect (OSTI)

    Gurvinder Singh

    2000-02-15

    The Ukraine Steam Partnership program is designed to implement energy efficiency improvements in industrial steam systems. These improvements are to be made by the private plants and local government departments responsible for generation and delivery of energy to end-users. One of the activities planned under this program was to provide a two-day training workshop on industrial steam systems focusing on energy efficiency issues related to the generation, distribution, and consumption of steam. The workshop was geared towards plant managers, who are not only technically oriented, but are also key decision makers in their respective companies. The Agency for Rational Energy Use and Ecology (ARENA-ECO), a non-governmental, not-for-profit organization founded to promote energy efficiency and environmental protection in Ukraine, in conjunction with the Alliance staff in Kiev sent out invitations to potential participants in all the regions of Ukraine. The purpose of this report is the describe the proceedings from the workshop and provide recommendations from the workshop's roundtable discussion. The workshop was broken down into two main areas: (1) Energy efficient boiler house steam generation; and Energy efficient steam distribution and consumption. The workshop also covered the following topics: (1) Ukrainian boilers; (2) Water treatment systems; (3) A profile of UKRESCO (Ukrainian Energy Services Company); (4) Turbine expanders and electricity generation; (5) Enterprise energy audit basics; and (6) Experience of steam use in Donetsk oblast.

  6. Steam generator tube failures

    SciTech Connect (OSTI)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  7. Steam Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Systems Steam Systems Many manufacturing facilities can recapture energy by installing more efficient steam equipment and processes and applying energy management practices. Use the software tools, training, and publications listed below to optimize performance and save energy. Steam Tools Tools to assess your energy system: Steam System Modeler Qualified Specialists Qualified Specialists have passed a rigorous competency examination on a specific industrial system assessment tool. Locate

  8. EO 13690 (2015): Establishing a Federal Flood Risk Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The amendments require federal agencies to use natural systems, ecosystem processes, and nature-based approaches to identify alternatives and require federal agency regulations or ...

  9. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis

    Office of Environmental Management (EM)

    is 19.7 inches * Three-fourths of the average falls from April through September Literature Review * NOAA Hydrometeorlogical Reports * Federal Emergency Management Agency *...

  10. Title 10 Chapter 32 Flood Hazard Areas | Open Energy Information

    Open Energy Info (EERE)

    Abstract The purpose of this chapter is to minimize and prevent the loss of life and property, the disruption of commerce, the impairment of the tax base, and the...

  11. Groundwater, Legacy Soil Cleanup and Flood Recovery Top Lab's...

    Office of Environmental Management (EM)

    a canyon; repairing storm water control measures at more than 130 sites; and sampling sediment throughout the laboratory and at areas downstream. Addthis Related Articles Workers...

  12. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect (OSTI)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2005-07-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  13. New Executive Order Establishes a Federal Flood Risk Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Register extension notice is at http:www.gpo.govfdsyspkgFR-2015-03-26pdf2015-06879.pdf Addthis Related Articles New Guidelines for Implementing Executive Order 11988,...

  14. Inspect and Repair Steam Traps - Steam Tip Sheet #1

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on inspecting and repairing steam traps provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  15. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  16. Simplifying steam trap selection

    SciTech Connect (OSTI)

    Debat, R.J. )

    1994-01-01

    In the current economic world order, there is an obligation to eliminate waste and conserve economic and natural resources. One trap blowing 100-lb of steam through a 1/4-in. orifice can cost more than $12,000 a year in wasted energy. Richard J. Debat of Armstrong International, Inc. explains the operating principles of the four basic types of steam traps as the first step in simplifying the selection process so the right trap can be specified for a given application.

  17. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

    1995-01-01

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  18. Inspect and Repair Steam Traps

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on inspecting and repairing steam traps provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  19. Steam Pressure Reduction: Opportunities and Issues

    Broader source: Energy.gov [DOE]

    This brief details industrial steam generation systems best practices and opportunities for reducing steam system operating pressure.

  20. Steam System Survey Guide | Department of Energy

    Energy Savers [EERE]

    Steam System Survey Guide Steam System Survey Guide This guide provides technical information for steam system operational personnel and plant energy managers on some of the major opportunities available to improve the energy efficiency and productivity of industrial steam systems. The guide covers five main areas of investigation: (1) profiling a steam system, (2) identifying steam properties for the steam system, (3) improving boiler operations, (4) improving resource utilization in the steam

  1. Steam separator latch assembly

    DOE Patents [OSTI]

    Challberg, Roy C. (Livermore, CA); Kobsa, Irvin R. (San Jose, CA)

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  2. Steam separator latch assembly

    DOE Patents [OSTI]

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  3. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P. (Idaho Falls, ID)

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  4. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  5. Steam Technical Brief: Industrial Steam System Heat-Transfer Solutions

    SciTech Connect (OSTI)

    2010-06-25

    This BestPractices Steam Technical Brief provides an overview of considerations for selecting the best heat-transfer solution for various applications.

  6. Process for purifying geothermal steam

    DOE Patents [OSTI]

    Li, Charles T. (Richland, WA)

    1980-01-01

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  7. Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief

    SciTech Connect (OSTI)

    Not Available

    2005-11-01

    A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

  8. Downhole steam injector. [Patent application

    SciTech Connect (OSTI)

    Donaldson, A.B.; Hoke, E.

    1981-06-03

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  9. dist_steam.pdf

    Gasoline and Diesel Fuel Update (EIA)

    District Steam Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y

  10. Steam System Survey Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1/263 Steam System Survey Guide Greg Harrell, Ph.D., P.E. DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax

  11. Steam-system upgrades | Open Energy Information

    Open Energy Info (EERE)

    upgrades Jump to: navigation, search TODO: Add description List of Steam-system upgrades Incentives Retrieved from "http:en.openei.orgwindex.php?titleSteam-systemupgrades&old...

  12. Benchmark the Fuel Cost of Steam Generation

    Broader source: Energy.gov [DOE]

    This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  13. Steam Digest 2001: Office of Industrial Technologies

    SciTech Connect (OSTI)

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  14. Standard Steam Trust LLC | Open Energy Information

    Open Energy Info (EERE)

    (Redirected from Standard Steam Trust) Jump to: navigation, search Name: Standard Steam Trust LLC Place: Denver, Colorado Sector: Geothermal energy Product: Subsidiary of...

  15. Steam boosted internal combustion engine

    SciTech Connect (OSTI)

    Green, M.A.

    1987-01-20

    A device is described to supplement the power produced by burning fuel in an internal combustion engine with steam, the device comprising: a means for producing a constant flow of water past a boiler means; a means for allowing the water to flow in the direction of the boiler; a boiler means external to the internal combustion engine to convert the water into superheated steam; a means for controlling the pressure of the water such that the water pressure is greater than the pressure of the steam produced by the boiler; and a means for injection of the superheated steam directly into a cylinder of the internal combustion engine, a means for producing a constant flow of water at a pressure greater than the pressure of the superheated steam, wherein the constant flow means at greater pressure comprises a chamber with a gaseous component, with the gaseous component being of constant volume and exerting constant pressure upon water within the chamber.

  16. Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BestPractices Steam Technical Brief Steam Pressure Reduction: Opportunities and Issues BestPractices Technical Brief Steam Pressure Reduction: Opportunities and Issues  Steam Pressure Reduction: Opportunities and Issues  Introduction Steam generation systems are found in industry and in the commercial and institutional sectors. Some of these plants employ large watertube boilers to produce saturated steam at pressures of 250 pounds per square inch (psig) or lower. They distribute steam

  17. Trends in packaged steam generators

    SciTech Connect (OSTI)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1996-09-01

    Oil and gas-fired packaged steam generators are used in many industrial plants. They generate saturated or superheated steam up to 250,000 lb/hr, 1000 psig, and 950 F. They may be used for continuous steam generation or as standby boilers in cogeneration systems. Numerous variables affect the design of this equipment. A few important considerations should be addressed at an early point by the plant engineer specifying or evaluating equipment options. These considerations include trends such as customized designs that minimize operating costs and ensure emissions regulations are met. The paper discusses efficiency considerations first.

  18. Wet-steam erosion of steam turbine disks and shafts

    SciTech Connect (OSTI)

    Averkina, N. V.; Zheleznyak, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.; Shishkin, V. I.

    2011-01-15

    A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

  19. Guide to Orifice Plate Steam Traps

    SciTech Connect (OSTI)

    Oland, C.B.

    2001-01-11

    This guide was prepared to serve as a foundation for making informed decisions about when orifice plate steam traps should be considered for use in new or existing steam systems. It presents background information about different types of steam traps and defines their unique functional and operational characteristics. The advantages and disadvantages associated with using orifice plate steam traps are provided to highlight their capabilities and limitations. Finally, recommendations for using orifice plate steam traps are presented, and possible applications are identified.

  20. Steam System Modeler | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam System Modeler Steam System Modeler April 17, 2014 - 11:34am Addthis There is often flexibility in the operational conditions and requirements of any steam system. In order to optimize performance, the impacts of potential adjustments need to be understood individually and collectively. The Steam System Modeler allows you to create up to a 3-pressure-header basic model of your current steam system. A second model can then be created by adjusting a series of characteristics simulating

  1. Steam reforming catalyst

    DOE Patents [OSTI]

    Kramarz, Kurt W. (Murrysville, PA); Bloom, Ira D. (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Ahmed, Shabbir (Bolingbrook, IL); Wilkenhoener, Rolf (Oakbrook Terrace, IL); Krumpelt, Michael (Naperville, IL)

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  2. Thermostatic steam trap

    SciTech Connect (OSTI)

    Anderson, A.H.; Mac Nicol, A.E.

    1987-03-03

    A thermostatic trap is described for a heating system having a feed pipe connected to a source of steam and a discharge pipe for discharge of condensate and comprising: housing means defining a volume and comprising a bowl shaped body, a removable cover therefor, a housing inlet pipe portion projecting from a side wall portion of the body and adapted for connection to the discharge pipe. A housing outlet pipe portion projects from a bottom wall portion of the body, and an outlet orifice defined by the bottom wall portion and extends between the volume and the outlet pipe portion; a valve body means retained within the volume and comprising an end wall, a side wall and a retaining ring portion that together define a valve chamber. The end wall defines a valve inlet opening communicating with the chamber and an annular valve seat within the chamber and encircling the valve inlet opening. The valve body means comprises a valve outlet pipe that defines a valve outlet opening axially aligned with the valve inlet opening and communicating with the chamber, the outlet pipe being fixed in the outlet orifice; a resilient, annular seal means disposed within the valve chamber and encircling the valve inlet opening; and a bi-metallic disc disposed within the valve chamber between the annular seal means and the outlet opening and having an outer peripheral portion retained by the retaining ring portion of the valve body means.

  3. Inspect and Repair Steam Traps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inspect and Repair Steam Traps Inspect and Repair Steam Traps This tip sheet on inspecting and repairing steam traps provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #1 PDF icon Inspect and Repair Steam Traps (January 2012) More Documents & Publications Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam Recover Heat

  4. Deaerators in Industrial Steam Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deaerators in Industrial Steam Systems Deaerators in Industrial Steam Systems This tip sheet on deaerators provides how-to advice for improving industrial steam systems using...

  5. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam

    Broader source: Energy.gov [DOE]

    This tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  6. How three smart managers control steam costs

    SciTech Connect (OSTI)

    Kendall, R.

    1982-11-01

    Three steam-intensive companies report innovative ways to reduce steam-production costs. Goodyear Tire and Rubber Co. concentrated on regular maintenance, process modifications, and heat recovery, but also has an on-going policy of seeking further cost savings. Future efforts will explore computer-based boiler controls. Zenith Radio Corporation's color picture tube-making process uses 12% less steam after 700 mechanical steam traps were replaced with fixed-orifice traps. Petro-Tex Chemical Corp. reduced steam costs by monitoring and optimizing process units and by making capital investments to improve steam management. (DCK)

  7. Use Steam Jet Ejectors or Thermoscompressors to Reduce Venting of Low-Pressure Steam - Steam Tip Sheet #29

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  8. Fast fluidized bed steam generator

    DOE Patents [OSTI]

    Bryers, Richard W. (Flemington, NJ); Taylor, Thomas E. (Bergenfield, NJ)

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  9. NUCLEAR FLASH TYPE STEAM GENERATOR

    DOE Patents [OSTI]

    Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

    1962-09-01

    A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

  10. Industrial Steam System Process-Control Schemes

    Broader source: Energy.gov [DOE]

    This brief provides a basic understanding of the different process-control schemes used in a typical steam system.

  11. Best Management Practice #8: Steam Boiler Systems

    Broader source: Energy.gov [DOE]

    Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

  12. Materials Performance in USC Steam

    SciTech Connect (OSTI)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 C).

  13. Steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  14. Closed loop steam cooled airfoil

    DOE Patents [OSTI]

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  15. Insulate Steam Distribution and Condensate Return Lines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Insulate Steam Distribution and Condensate Return Lines Insulate Steam Distribution and Condensate Return Lines This tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #2 PDF icon Insulate Steam Distribution and Condensate Return Lines (January 2012) More Documents & Publications Use a Vent Condenser to Recover Flash Steam Energy

  16. Consider Steam Turbine Drives for Rotating Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems. STEAM TIP SHEET #21 PDF icon Consider Steam Turbine Drives for Rotating Equipment (January 2012) More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition Adjustable Speed Drive Part-Load Efficiency Benchmark the Fuel Cost of

  17. Steam System Energy Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: fixing steam leaks. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  18. Steam Turbine Materials and Corrosion

    SciTech Connect (OSTI)

    Holcomb, G.H.; Hsu, D.H.

    2008-07-01

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

  19. Significant Silica Solubility in Geothermal Steam

    SciTech Connect (OSTI)

    James, Russell

    1986-01-21

    Although it is widely believed that silica solubility in low pressure (5 to 10 bar) geothermal steam is negligible, when one takes into account steam flows exceeding 10 million tonnes a year--at Wairakei, for instance--it is found that the amount transmitted in the vapor has the potential to give significant deposits on turbine nozzles and blades. A 150 MWe power station, when based on flows from a hot water reservoir at (a) 250 C or (b) 315 C, and with separator pressures of 6 bar, is found to carry about 100 and 200 kg/year respectively in the steam phase. In the case of a similar sized station exploiting a dry steam reservoir such as The Geysers, equivalent silica flows are obtained, dissolved in steam and carried as dust--the latter as solid particles precipitating from the vapor en route from source to turbine, and not preexisting in the formations as is commonly considered. Choking or coating of subterranean rock near such dry steam wells due to exsolving silica, may be the principal cause of declining steam discharge under production. Silica from completely dry or superheated steam can also seal the cap and sides of steam reservoirs when expanding below the criticus temperature (236 C) in a way previously thought possible only by hot water or wet steam.

  20. Optical steam quality measurement system and method

    DOE Patents [OSTI]

    Davidson, James R.; Partin, Judy K.

    2006-04-25

    An optical measurement system is presented that offers precision on-line monitoring of the quality of steam. Multiple wavelengths of radiant energy are passed through the steam from an emitter to a detector. By comparing the amount of radiant energy absorbed by the flow of steam for each wavelength, a highly accurate measurement of the steam quality can be determined on a continuous basis in real-time. In an embodiment of the present invention, the emitter, comprises three separate radiant energy sources for transmitting specific wavelengths of radiant energy through the steam. In a further embodiment, the wavelengths of radiant energy are combined into a single beam of radiant energy for transmission through the steam using time or wavelength division multiplexing. In yet a further embodiment, the single beam of radiant energy is transmitted using specialized optical elements.

  1. Benchmark the Fuel Cost of Steam Generation - Steam Tip Sheet #15

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  2. Steam Technical Brief: How to Calculate the True Cost of Steam

    SciTech Connect (OSTI)

    2010-06-25

    This BestPractice Steam Technical Brief helps you calculate the true cost of steam. Knowing the correct cost is important for many reasons and all of them have to do with improving the company's bottom line.

  3. Method of steam reforming methanol to hydrogen

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA)

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  4. Steam Systems, Retrofit Measure Packages, Hydronic Systems

    Energy Savers [EERE]

    Program www.buildingamerica.gov Decker Homes Buildings Technologies Program Steam Systems, Retrofit Measure Packages, Hydronic Systems Russell Ruch Elevate Energy Peter Ludwig Elevate Energy July 16, 2014 Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings Contents * Retrofit Measure Packages for steam and hydronic MF buildings that save 25-30% * System Balancing * Steam * Hydronic 2 | Building America Program www.buildingamerica.gov Background

  5. Industrial Steam System Heat-Transfer SolutionsL: A BestPractices Steam Technical Brief

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Technical Brief Industrial Steam System Heat-Transfer Solutions U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Industrial Technologies Program Boosting the productivity and competitiveness of U.S. industry through improvements in energy and environmental performance Industrial Steam System Heat-Transfer Solutions 1 Introduction This Best Practices Steam Technical Brief provides an

  6. Steam Technical Brief: Industrial Heat Pumps for Steam and Fuel Savings

    SciTech Connect (OSTI)

    2010-06-25

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  7. Greenville Steam Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleGreenvilleSteamBiomassFacility&oldid397532" Feedback Contact needs updating Image needs updating...

  8. Covered Product Category: Commercial Steam Cookers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, which are covered by the ENERGY STAR program.

  9. Warm or Steaming Ground | Open Energy Information

    Open Energy Info (EERE)

    causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles...

  10. Minimize Boiler Blowdown - Steam Tip Sheet #9

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on minimizing boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  11. Standard Steam Trust LLC | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Standard Steam Trust LLC Place: Denver, Colorado Sector: Geothermal energy Product: Subsidiary of Denver-based geothermal project developer, Terra...

  12. Designing an ultrasupercritical steam turbine

    SciTech Connect (OSTI)

    Klotz, H.; Davis, K.; Pickering, E.

    2009-07-15

    Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

  13. Steam turbine materials and corrosion

    SciTech Connect (OSTI)

    Holcomb, G.R.; Alman, D.E.; Dogan, O.N.; Rawers, J.C.; Schrems, K.K.; Ziomek-Moroz, M.

    2007-12-01

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760C. This project examines the steamside oxidation of candidate alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. As part of this research a concern has arisen about the possibility of high chromia evaporation rates of protective scales in the turbine. A model to calculate chromia evaporation rates is presented.

  14. Benchmark the Fuel Cost of Steam Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmark the Fuel Cost of Steam Generation Benchmark the Fuel Cost of Steam Generation This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving...

  15. Subject: Yellow Alert- Steam Valve Near-Miss Title: Yellow Alert- Steam Valve Near-Miss

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yellow Alert- Steam Valve Near-Miss Title: Yellow Alert- Steam Valve Near-Miss Date: 1/7/2002 Identifier: RFETS-02-0004 Lessons Learned: A near miss during troubleshooting of a steam control valve shows the importance of complete, detailed planning and clear communication between the individuals involved in the work. Discussion: On 12/12/01 while maintenance personnel were de-coupling an actuator from the facility service steam 100-psi steam control valve in order to troubleshoot a problem with

  16. Process steam production from cotton gin trash

    SciTech Connect (OSTI)

    LePori, W.A.; Carney, D.B.; Lalk, T.R.; Anthony, R.G.

    1981-01-01

    A steam producing system based on fluidized-bed gasification of biomass materials is discussed. Limited experimental results are discussed and show that steam has been produced at rates of 334.3 kg/hr. (737 lbs/hr.) with 2.8 kg of stream produced for each kilogram of cotton gin trash (2.8 lb/lb.). ref.

  17. Geothermal Steam Act of 1970 | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Steam Act of 1970 Jump to: navigation, search To encourage the development of geothermal energy, the United States government passed the Geothermal Steam Act in 1970...

  18. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use Vapor Recompression to Recover Low-Pressure Waste Steam Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Consider Installing High-Pressure Boilers with ...

  19. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Presented at the 2007 ...

  20. Integrated vacuum absorption steam cycle gas separation (Patent...

    Office of Scientific and Technical Information (OSTI)

    Integrated vacuum absorption steam cycle gas separation Citation Details In-Document Search Title: Integrated vacuum absorption steam cycle gas separation You are accessing a...

  1. Water-Efficient Technology Opportunity: Steam Sterilizer Condensate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Sterilizer Condensate Retrofit Kit Water-Efficient Technology Opportunity: Steam ... sterilizer condensate retrofit kits as a water-saving technology that is relevant to the ...

  2. Steam System Balancing and Tuning for Multifamily Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam System Balancing and Tuning for Multifamily Residential Buildings Chicago, Illinois PROJECT INFORMATION Project Name: Steam System Balancing and Tuning for Multifamily ...

  3. Paducah Package Steam Boilers to Provide Efficiency, Environmental Benefits

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – Five modern, modular steam boilers have replaced three larger coal-fired boilers that comprised the steam plant at EM’s Paducah Site.

  4. Steam drying of products containing solvent mixtures

    SciTech Connect (OSTI)

    Pothmann, E.; Schluender, E.U. [Univ. Karlsruhe (Germany). Inst. fuer Thermische Verfahrenstechnik

    1995-12-31

    Drying experiments with single, porous spheres wetted with mixtures of 2-propanol and water were performed using superheated steam, air, or steam-air mixtures as drying agent. Both the drying rate and the moisture composition were determined experimentally for different temperatures and compositions of the drying agent and for different initial compositions of the moisture. It is shown that evaporation of 2-propanol is enhanced by using superheated steam as drying agent instead of air due to steam condensing on the sample. While the overall drying rate increases with rising steam temperature, the evaporation rate of 2-propanol is hardly affected. When drying samples containing mixtures of 2-propanol and water, internal boiling can occur depending on the vapor-liquid equilibrium. Vapor generated inside the sample may cause mechanical dewatering of the sample which greatly increases the drying rate.

  5. Insulate Steam Distribution and Condensate Return Lines, Energy Tips: STEAM, Steam Tip Sheet #2 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Insulate Steam Distribution and Condensate Return Lines Uninsulated steam distribution and condensate return lines are a constant source of wasted energy. The table shows typical heat loss from uninsulated steam distribution lines. Insulation can typically reduce energy losses by 90% and help ensure proper steam pressure at plant equipment. Any surface over 120°F should be insulated, including boiler surfaces, steam and condensate return piping, and fttings. Insulation frequently becomes

  6. Consider Steam Turbine Drives for Rotating Equipment, Energy Tips: STEAM, Steam Tip Sheet #21 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Consider Steam Turbine Drives for Rotating Equipment Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced or induced-draft fans, blowers, air compressors, and other rotating equipment. This service generally calls for a backpressure noncondensing steam turbine. The low-pressure steam turbine exhaust is available for feedwater heating, preheating of deaerator makeup water, and/or process requirements. Steam turbine drives are equipped with throttling valves

  7. Customizing pays off in steam generators

    SciTech Connect (OSTI)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (United States))

    1995-01-01

    Packaged steam generators are the workhorses of chemical process plants, power plants and cogeneration systems. They are available as oil- or gas-fired models, and are used to generate either high-pressure superheated steam (400 to 1,200 psig, at 500 to 900 F) or saturated steam at low pressures (100 to 300 psig). In today's emission- and efficiency- conscious environment, steam generators have to be custom designed. Gone are the days when a boiler supplier--or for that matter an end user--could look up a model number from a list of standard sizes and select one for a particular need. Thus, before selecting a system, it is desirable to know the features of oil- and gas-fired steam generators, and the important variables that influence their selection, design and performance. It is imperative that all of these data are supplied to the boiler supplier so that the engineers may come up with the right design. Some of the parameters which are discussed in this paper are: duty, steam temperature, steam purity, emissions, and furnace design. Superheaters, economizers, and overall performance are also discussed.

  8. Internal combustion engine injection superheated steam

    SciTech Connect (OSTI)

    Mahoney, F.G.

    1991-01-22

    This patent describes a method for introducing water vapor to the combustion chambers of an internal combustion engine. It comprises: introducing a metered amount of liquid water into a heat exchanger; contacting the heat exchanger directly with hot exhaust gases emanating from the exhaust manifold; maintaining the water in the heat exchanger for a period sufficient to vaporize the water into steam and superheat same; reducing pressure and increasing temperature to create superheated steam; introducing the superheated steam into the air supply proximate to the air induction system, upstream of any carburetion, of the internal combustion engine.

  9. Save Energy Now in Your Steam Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Systems Save Energy Now in Your Steam Systems This brief outlines typical ways to increase steam system efficiency through changes in distribution, generation, and recovery. PDF icon Save Energy Now in Your Steam Systems (January 2006) More Documents & Publications Save Energy Now in Your Process Heating Systems Install an Automatic Blowdown-Control System

  10. Assessing the impact of energy losses in steam systems

    SciTech Connect (OSTI)

    Fischer, D.W.

    1995-07-10

    This article examines the impact of steam leaks on the efficiency of the process steam system. The topics include steam losses under various operating conditions and orifice sizes, failed drip traps, the significance of small leaks, energy losses and pollutants generated by trap failure, steps to take to conserve steam and energy through repair and maintenance.

  11. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps for Steam and Fuel Savings U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Industrial Technologies Program Boosting the productivity and competitiveness of U.S. industry through improvements in energy and environmental performance Industrial Heat Pumps for Steam and Fuel Savings 1 Industrial Heat Pumps for Steam and Fuel Savings Industrial heat pumps are a class of active

  12. Benchmark the Fuel Cost of Steam Generation, Energy Tips: STEAM, Steam Tip Sheet #15 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Benchmark the Fuel Cost of Steam Generation Benchmarking the fuel cost of steam generation, in dollars per 1,000 pounds ($/1,000 lb) of steam, is an effective way to assess the effciency of your steam system. This cost is dependent upon fuel type, unit fuel cost, boiler effciency, feedwater temperature, and steam pressure. This calculation provides a good frst approximation for the cost of generating steam and serves as a tracking device to allow for boiler performance monitoring. Table 1

  13. Hartford Steam Co | Open Energy Information

    Open Energy Info (EERE)

    Co Jump to: navigation, search Name: Hartford Steam Co Place: Connecticut Phone Number: 860-725-7005 Website: www.hartfordsteam.com Outage Hotline: 860-725-7005 References: EIA...

  14. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  15. Steam turbine upgrading: low-hanging fruit

    SciTech Connect (OSTI)

    Peltier, R.

    2006-04-15

    The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

  16. Industrial Steam System Heat-Transfer Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat-Transfer Solutions Industrial Steam System Heat-Transfer Solutions This brief provides an overview of considerations for selecting the best heat-transfer equipment for various steam systems and applications. PDF icon Industrial Steam System Heat-Transfer Solutions (June 2003) More Documents & Publications Industrial Steam System Process-Control Schemes Considerations When Selecting a Condensing Economizer Steam Pressure Reduction: Opportunities and Issues

  17. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam, Energy Tips: STEAM, Steam Tip Sheet #29 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam Large industrial plants often vent signifcant quantities of low-pressure steam to the atmosphere, wasting energy, water, and water-treatment chemicals. Recovery of the latent heat content of low-pressure steam reduces the boiler load, resulting in energy and fuel cost savings. Low-pressure steam's potential uses include driving evaporation and distillation processes, producing hot water, space heating,

  18. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOE Patents [OSTI]

    Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  19. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)

    1985-01-01

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  20. Oxidation of advanced steam turbine alloys

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  1. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  2. LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING

    SciTech Connect (OSTI)

    William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Seung Soon Jang; Shiang-Tai Lin; Prabal Maiti; Yongfu Wu; Stefan Iglauer; Xiaohang Zhang

    2004-09-01

    This report provides a summary of the work performed in this 3-year project sponsored by DOE. The overall objective of this project is to identify new, potentially more cost-effective surfactant formulations for improved oil recovery (IOR). The general approach is to use an integrated experimental and computational chemistry effort to improve our understanding of the link between surfactant structure and performance, and from this knowledge, develop improved IOR surfactant formulations. Accomplishments for the project include: (1) completion of a literature review to assemble current and new surfactant IOR ideas, (2) Development of new atomistic-level MD (molecular dynamic) modeling methodologies to calculate IFT (interfacial tension) rigorously from first principles, (3) exploration of less computationally intensive mesoscale methods to estimate IFT, Quantitative Structure Property Relationship (QSPR), and cohesive energy density (CED) calculations, (4) experiments to screen many surfactant structures for desirable low IFT and solid adsorption behavior, and (5) further experimental characterization of the more promising new candidate formulations (based on alkyl polyglycosides (APG) and alkyl propoxy sulfate surfactants). Important findings from this project include: (1) the IFT between two pure substances may be calculated quantitatively from fundamental principles using Molecular Dynamics, the same approach can provide qualitative results for ternary systems containing a surfactant, (2) low concentrations of alkyl polyglycoside surfactants have potential for IOR (Improved Oil Recovery) applications from a technical standpoint (if formulated properly with a cosurfactant, they can create a low IFT at low concentration) and also are viable economically as they are available commercially, and (3) the alkylpropoxy sulfate surfactants have promising IFT performance also, plus these surfactants can have high optimal salinity and so may be attractive for use in higher salinity reservoirs. Alkylpropoxy sulfate surfactants are not yet available as large volume commercial products. The results presented herein can provide the needed industrial impetus for extending application (alkyl polyglycoside) or scaling up (alkylpropoxy sulfates) of these two promising surfactants for enhanced oil recovery. Furthermore, the advanced simulations tools presented here can be used to continue to uncover new types of surfactants with promising properties such as inherent low IFT and biodegradability.

  3. Inexpensive CO2 Thickening Agents for Improved Mobility Control of CO2 Floods

    SciTech Connect (OSTI)

    Robert Enick; Eric Beckman; Andrew Hamilton

    2005-08-31

    The objective of this research was the design, synthesis and evaluation of inexpensive, non-fluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly CO{sub 2}-philic, hydrocarbon-based monomer was to be identified. Polymers or oligomers of this monomer were then synthesized. The second step was to design a CO{sub 2}-thickener based on these CO{sub 2}-philic polymers. Two types of thickeners were considered. The first was a copolymer in which the CO{sub 2}-philic monomer was combined with a small proportion of CO{sub 2}-phobic associating groups that could cause viscosity-enhancing intermolecular interactions to occur. The second was a small hydrogen-bonding compound with urea groups in the core to promote intermolecular interactions that would cause the molecules to 'stack' in solution while the arms were composed of the CO{sub 2}-philic oligomers. Although we were not able to develop a viable thickener that exhibited high enough CO{sub 2} solubility at EOR MMP conditions to induce a viscosity increase, we made significant progress in our understanding of CO{sub 2}-soluble compounds that can be used in subsequent studies to design CO{sub 2}-soluble thickeners or CO{sub 2}-soluble surfactant-based foaming agents. These findings are detailed in this final report. In summary, we assessed many polymers and verified that the most CO{sub 2}-soluble oxygenated hydrocarbon polymer is poly(vinyl acetate), PVAc. This is primarily due to the presence of both ether and carbonyl oxygens associated with acetate-rich compounds. In addition to polymers, we also made small acetate-rich molecules that were also capable of associating in solution via the inclusion of hydrogen-bonding groups in hopes of forming viscosity-enhancing macromolecules. Despite the presence of multiple acetate groups in these compounds, which can impart incredible CO{sub 2}-solubility to many compounds, our attempts to make acetate-rich high molecular weight polymers and small hydrogen-bonding compounds did not yield a highly CO{sub 2}-soluble polymer or hydrogen-bonding associative thickener. The conclusions of our molecular modeling calculations confirmed that although acetates are indeed 'CO{sub 2}-philic', nitrogen-containing amines also interact favorably with CO{sub 2} and should also be examined. Therefore we obtained and synthesized many N-rich (e.g. amine-containing) polymers. Unfortunately, we found that the intermolecular polymer-polymer interactions between the amines were so strong that the polymers were essentially insoluble in CO{sub 2}. For the convenience of the reader, a table of all of the polymers evaluated during this research is provided.

  4. Selection of reservoirs amenable to micellar flooding. First annual report, October 1978-December 1979

    SciTech Connect (OSTI)

    Goldburg, A.; Price, H.

    1980-12-01

    The overall project objective is to build a solid engineering base upon which the Department of Energy (DOE) can improve and accelerate the application of micellar-polymer recovery technology to Mid-Continent and California sandstone reservoirs. The purpose of the work carried out under these two contracts is to significantly aid, both DOE and the private sector, in gaining the following Project Objectives: to select the better micellar-polymer prospects in the Mid-Continent and California regions; to assess all of the available field and laboratory data which has a bearing on recovering oil by micellar-polymer projects in order to help identify and resolve both the technical and economic constraints relating thereto; and to design and analyze improved field pilots and tests and to develop a micellar-polymer applications matrix for use by the potential technology users; i.e., owner/operators. The report includes the following: executive summary and project objectives; development of a predictive model for economic evaluation of reservoirs; reservoir data bank for micellar-polymer recovery evaluation; PECON program for preliminary economic evaluation; ordering of candidate reservoirs for additional data acquisition; validation of predictive model by numerical simulation; and work forecast. Tables, figures and references are included.

  5. Alvord (3,000-ft strawn) LPG flood - design and performance evaluation

    SciTech Connect (OSTI)

    Frazier, G.D.; Todd, M.R.

    1982-01-01

    Mitchell Energy Corporation has implemented a LPG-dry gas miscible process in the Alvord (3000' Strawn) Unit in Wise County, Texas utilizing the DOE tertiary incentive program. The field had been waterflooded for 14 years and was producing near its economic limit at the time this project was started. This paper presents the results of the reservoir simulation study that was conducted to evaluate pattern configuration and operating alternatives so as to maximize LPG containment and oil recovery performance. Several recommendations resulting from this study were implemented for the project. Based on the model predictions, tertiary oil recovery is expected to be between 100,000 and 130,000 bbls, or about 7 percent of the oil originally in place in the Unit. 12 refs.

  6. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave VanderGriend; Eric Mork; Paul Cantrell

    2003-03-31

    Progress is reported for the period from January 1, 2003 to March 31, 2003. A water supply well was permitted, drilled, and completed in the shallow, fresh-water, Dakota Sandstone. The pumphouse has been put in place and the long-term injection equipment is being set-up. Although the short-term injectivity test was cut short by power failure following an ice storm, results indicate the well exhibits sufficient injectivity to proceed with the long-term injectivity test, which will start in the beginning of the second quarter. The CO2 Project No.10 and No.12 wells were reworked and the Lansing-Kansas City (LKC) ''C'' interval in both wells isolated. The CO2 Project No.16 well was drilled deeper, cored in the LKC ''C'' and ''G'' zones, and cased to the ''C'' zone and will be perforated and stimulated in the beginning of second quarter. Initial wireline log analysis and examination of the core indicate that the porosity of the ''C'' zone in this location may be lower than in other parts of the pattern by 3-5 porosity units. Log analysis indicates water saturations are near 60% consistent with predicted residual oil saturation to waterflood modeling. Lower porosities may indicate lower permeability may also be present. Core analysis is being conducted and results will be available in the first week of the second quarter. A draft letter agreement has been presented to FLOCO2 Company for supply of CO2 storage and injection pump equipment.

  7. Post Waterflood CO{sub 2} Miscible Flood in Light Oil Fluvial-Dominated Deltaic Reservoirs

    SciTech Connect (OSTI)

    1996-04-30

    Texaco terminated the CO{sub 2} purchase agreement with Cardox due to the declining production from the project during 1995. This decision was supported by the DOE and the Exploration and Production Technology Department (EPTD) who developed the model to simulate reservoir performance. Texaco is planning to continue recycling produced CO{sub 2} to recover the remaining 400 MBO from the Marg Area 1 reservoir. Currently one well is remaining on production Kuhn {number_sign}15R after the second producing well Kuhn {number_sign}38 sanded up. Changing the water and CO{sub 2} injection patterns should improve the sweep efficiency and restore production from other existing wells.

  8. In the past, disaster management used to only include support for hurricanes, floods, tornados, and earthquakes

    Office of Environmental Management (EM)

    Disasters: Photovoltaics for Special Needs Author Young, William Presented at: ISES/Solar World Congress 2005 CT4. PV Technologies, Systems, and Applications C. Stand-alone and Grid-connected PV Systems Orlando, Florida USA Publication Number FSEC-PF-384-04 Copyright Copyright © Florida Solar Energy Center/University of Central Florida 1679 Clearlake Road, Cocoa, Florida 32922, USA (321) 638-1000 All rights reserved. Disclaimer The Florida Solar Energy Center/University of Central Florida nor

  9. Integrated vacuum absorption steam cycle gas separation

    DOE Patents [OSTI]

    Chen, Shiaguo (Champaign, IL); Lu, Yonggi (Urbana, IL); Rostam-Abadi, Massoud (Champaign, IL)

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  10. Ultra supercritical turbines--steam oxidation

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

    2004-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

  11. Cover Heated, Open Vessels - Steam Tip Sheet #19

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO steam tip sheet on covering heated, open vessels provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  12. Industrial Heat Pumps for Steam and Fuel Savings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps for Steam and Fuel Savings Industrial Heat Pumps for Steam and Fuel Savings This brief introduces heat-pump technology and its application in industrial processes as ...

  13. Install and Automatic Blowdown Control System - Steam Tip Sheet #23

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO steam tip sheet on installing automatic blowdown controls provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  14. Review of Orifice Plate Steam Traps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of Orifice Plate Steam Traps Review of Orifice Plate Steam Traps This guide was prepared to serve as a foundation for making informed decisions about when orifice plate...

  15. Pre-In-Plant Training Webinar (Steam) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Jim, Rich, and Mark have been excellent. An asset here, Deb and Steve at the corporate ... Steam trap's jobs are obviously several, but the cardinal two are trap the steam and make ...

  16. Use a Vent Condenser to Recover Flash Steam Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Vent Condenser to Recover Flash Steam Energy Use a Vent Condenser to Recover Flash Steam Energy This tip sheet on using vent condensers to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #13 PDF icon Use a Vent Condenser to Recover Flash Steam Energy (January 2012) More Documents & Publications Recover Heat from Boiler Blowdown Deaerators in Industrial Steam Systems Use Steam Jet

  17. How to Calculate the True Cost of Steam

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A BestPractices Steam Technical Brief How To Calculate The True Cost of Steam U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Industrial Technologies Program Boosting the productivity and competitiveness of U.S. industry through improvements in energy and environmental performance How To Calculate The True Cost of Steam Knowing the correct cost of steam is important for many reasons, and

  18. Save Energy Now in Your Steam Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Save Energy Now in Your Steam Systems Save Energy Now in Your Steam Systems This brief outlines typical ways to increase steam system efficiency through changes in distribution, generation, and recovery. PDF icon Save Energy Now in Your Steam Systems (January 2006) More Documents & Publications Install an Automatic Blowdown-Control System Save Energy Now in Your Process Heating Systems Save Energy Now in Your Motor-Driven Systems Advanced Manufacturing Home Key Activities Research &

  19. Covered Product Category: Commercial Steam Cookers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Cookers Covered Product Category: Commercial Steam Cookers The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, which are covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Energy Efficiency Requirements for Commercial Steam Cookers ENERGY STAR sets efficiency requirements

  20. Best Management Practice #8: Steam Boiler Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Steam Boiler Systems Best Management Practice #8: Steam Boiler Systems Steam boilers are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size and the amount of condensate returned. Operations and Maintenance Options To maintain water efficiency in operations and maintenance, federal agencies should do the following. Develop and implement a

  1. Improving Steam System Performance: A Sourcebook for Industry, Second Edition

    SciTech Connect (OSTI)

    2012-02-23

    This sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The sourcebook is divided into three main sections: steam system basics, performance improvement opportunities, and where to find help.

  2. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect (OSTI)

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  3. Improving Steam System Performance: A Sourcebook for Industry, Second Edition

    Broader source: Energy.gov [DOE]

    This sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The sourcebook is divided into three main sections: steam system basics, performance improvement opportunities, and where to find help.

  4. Water spray ejector system for steam injected engine

    SciTech Connect (OSTI)

    Hines, W.R.

    1991-10-08

    This paper describes a method of increasing the power output of a steam injected gas turbine engine. It comprises: a compressor, a combustor having a dome which receives fuel and steam from a dual flow nozzle, and a turbine in series combination with a gas flow path passing therethrough, and a system for injection of superheated steam into the gas flow path, the method comprising spraying water into the steam injection system where the water is evaporated by the superheated steam, mixing the evaporated water with the existing steam in the steam injection system so that the resultant steam is at a temperature of at least 28 degrees celsius (50 degrees fahrenheit) superheat and additional steam is added to the dome from the fuel nozzle to obtain a resultant increased mass flow of superheated steam mixture for injection into the gas flow path, and controlling the amount of water sprayed into the steam injection system to maximize the mass flow of superheated steam without quenching the flame.

  5. Replace Pressure-Reducing Valves with Backpressure Turbogenerators (International Fact Sheet), Energy Tips-Steam, Steam Tip Sheet #20c

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This English/Chinese ITP steam tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  6. Use Low-Grade Waste Steam to Power Absorption Chillers - Steam Tip Sheet #14

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on waste steam to power absorption chillers provides how-to advice for improving the system using low-cost, proven practices and technologies.

  7. Consider Steam Turbine Drives for Rotating Equipment - Steam Tip Sheet #21

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  8. Natural gas-assisted steam electrolyzer

    DOE Patents [OSTI]

    Pham, Ai-Quoc (San Jose, CA); Wallman, P. Henrik (Berkeley, CA); Glass, Robert S. (Livermore, CA)

    2000-01-01

    An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

  9. Fuel cell integrated with steam reformer

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

    1987-01-01

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  10. Gas turbine row #1 steam cooled vane

    DOE Patents [OSTI]

    Cunha, Frank J. (Longwood, FL)

    2000-01-01

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  11. Purchasing Energy-Efficient Commercial Steam Cookers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  12. Method of removing cesium from steam

    DOE Patents [OSTI]

    Carson, Jr., Neill J. (Clarendon Hills, IL); Noland, Robert A. (Oak Park, IL); Ruther, Westly E. (Skokie, IL)

    1991-01-01

    Method for removal of radioactive cesium from a hot vapor, such as high temperature steam, including the steps of passing input hot vapor containing radioactive cesium into a bed of silicate glass particles and chemically incorporating radioactive cesium in the silicate glass particles at a temperature of at least about 700.degree. F.

  13. Task 1Steam Oxidation (NETL-US)

    SciTech Connect (OSTI)

    G. R. Holcomb

    2010-05-01

    The proposed steam in let temperature in the Advanced Ultra Supercritical (AUSC) steam turbine is high enough (760C) Ihat traditional turbine casing and valve body materials such as ferr;tic/manensitic steels will not suffice due to temperature lim itations of this class of materials. Cast versions of three traditionally wrought Ni-based superalloys (Haynes 263. Haynes 282, and Nimonic 105) were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantia l: 2-5,000 kg each half and on the order of 100 nun thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equi valem microslruclUre . A multi_step homogenization heat treatment was d~ve loped to better disperse the al loy constituents. These castings were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (al 760 and 800 "C).

  14. Low chemical concentrating steam generating cycle

    DOE Patents [OSTI]

    Mangus, James D. (Greensburg, PA)

    1983-01-01

    A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

  15. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  16. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

    1995-01-01

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  17. Use a Vent Condenser to Recover Flash Steam Energy, Energy Tips: STEAM, Steam Tip Sheet #13 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Use a Vent Condenser to Recover Flash Steam Energy When the pressure of saturated condensate is reduced, a portion of the liquid "fashes" to low-pressure steam. Depending on the pressures involved, the fash steam contains approximately 10% to 40% of the energy content of the original condensate. In most cases, including condensate receivers and deaerators, the fashing steam is vented and its energy content lost. However, a heat exchanger can be placed in the vent to recover this

  18. Deliberate ignition of hydrogen-air-steam mixtures in condensing steam environments

    SciTech Connect (OSTI)

    Blanchat, T.K.; Stamps, D.W.

    1997-05-01

    Large scale experiments were performed to determine the effectiveness of thermal glow plug igniters to burn hydrogen in a condensing steam environment due to the presence of water sprays. The experiments were designed to determine if a detonation or accelerated flame could occur in a hydrogen-air-steam mixture which was initially nonflammable due to steam dilution but was rendered flammable by rapid steam condensation due to water sprays. Eleven Hydrogen Igniter Tests were conducted in the test vessel. The vessel was instrumented with pressure transducers, thermocouple rakes, gas grab sample bottles, hydrogen microsensors, and cameras. The vessel contained two prototypic engineered systems: (1) a deliberate hydrogen ignition system and (2) a water spray system. Experiments were conducted under conditions scaled to be nearly prototypic of those expected in Advanced Light Water Reactors (such as the Combustion Engineering (CE) System 80+), with prototypic spray drop diameter, spray mass flux, steam condensation rates, hydrogen injection flow rates, and using the actual proposed plant igniters. The lack of any significant pressure increase during the majority of the burn and condensation events signified that localized, benign hydrogen deflagration(s) occurred with no significant pressure load on the containment vessel. Igniter location did not appear to be a factor in the open geometry. Initially stratified tests with a stoichiometric mixture in the top showed that the water spray effectively mixes the initially stratified atmosphere prior to the deflagration event. All tests demonstrated that thermal glow plugs ignite hydrogen-air-steam mixtures under conditions with water sprays near the flammability limits previously determined for hydrogen-air-steam mixtures under quiescent conditions. This report describes these experiments, gives experimental results, and provides interpretation of the results. 12 refs., 127 figs., 16 tabs.

  19. Use Vapor Recompression to Recover Low-Pressure Waste Steam | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vapor Recompression to Recover Low-Pressure Waste Steam Use Vapor Recompression to Recover Low-Pressure Waste Steam This tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #11 PDF icon Use Vapor Recompression to Recover Low-Pressure Waste Steam (January 2012) More Documents & Publications Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of

  20. Laser removal of sludge from steam generators

    DOE Patents [OSTI]

    Nachbar, Henry D. (Ballston Lake, NY)

    1990-01-01

    A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

  1. Oxidation of alloys for advanced steam turbines

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Alman, David E.

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  2. Propellant actuated nuclear reactor steam depressurization valve

    DOE Patents [OSTI]

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  3. Materials Performance in USC Steam Portland

    SciTech Connect (OSTI)

    G.R. Holcomb; J. Tylczak; R. Hu

    2011-04-26

    Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

  4. Materials for advanced ultrasupercritical steam turbines

    SciTech Connect (OSTI)

    Purgert, Robert; Shingledecker, John; Saha, Deepak; Thangirala, Mani; Booras, George; Powers, John; Riley, Colin; Hendrix, Howard

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using traditional sand foundry practices, and a techno-economic study of an A-USC plant including cost estimates for an A-USC turbine which showed A-USC to be economically attractive for partial carbon and capture compared to today’s USC technology. Based on this successful materials research and a review with U.S. utility stakeholders, a new project to develop a component test facility (ComTest) including the world’s first A-USC turbine has been proposed to continue the technology development.

  5. Steam generator for liquid metal fast breeder reactor

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Garner, Daniel C. (Murrysville, PA); Wineman, Arthur L. (Greensburg, PA); Robey, Robert M. (North Huntingdon, PA)

    1985-01-01

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  6. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reforming | Department of Energy Hydrogen Production via Natural Gas Steam Reforming Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. PDF icon 27637.pdf More Documents & Publications Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis: Milestone

  7. Aerogel-Based Insulation for Industrial Steam Distribution Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Aerogel-Based Insulation for Industrial Steam Distribution Systems Aerogel-Based Insulation for Industrial Steam Distribution Systems New Efficient Insulation for Pipes Allows for the Use of Less Material with High-Temperature Durability Thermal loss through steam distribution systems is a significant source of wasted energy in the U.S. industrial sector. Traditional pipe insulation employs mineral wool, fiberglass, calcium silicate, perlite, and various foams. Annular

  8. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect (OSTI)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  9. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)

    Energy Savers [EERE]

    Technology for Tank 48H Treatment Project (TTP) | Department of Energy Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. PDF

  10. Building America Expert Meeting: Multifamily Hydronic and Steam Heating

    Energy Savers [EERE]

    Controls and Distribution Retrofits | Department of Energy Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits Building America Expert Meeting: Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits This expert meeting was conducted on July 13, 2011 by the ARIES Collaborative in New York City. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family

  11. DOE and Calpine Corporation Tap Geothermal Energy from Abandoned Steam

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wells | Department of Energy DOE and Calpine Corporation Tap Geothermal Energy from Abandoned Steam Wells DOE and Calpine Corporation Tap Geothermal Energy from Abandoned Steam Wells April 9, 2015 - 3:48pm Addthis The Geysers geothermal complex, where the Energy Department’s geothermal exploration at Caldwell Ranch is located, remains the largest operating geothermal field in the world. Caldwell Ranch has achieved a first-ever replicable strategy to reopen an abandoned steam field

  12. Consider Installing a Condensing Economizer - Steam Tip Sheet #26A

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet is part of a series of tip sheets on how to optimize an industrial steam system.

  13. Return Condensate to the Boiler - Steam Tip Sheet #8

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  14. Dongfang Steam Turbine Works DFSTW | Open Energy Information

    Open Energy Info (EERE)

    Turbine Works DFSTW Jump to: navigation, search Name: Dongfang Steam Turbine Works (DFSTW) Place: Deyang, Sichuan Province, China Zip: 618000 Sector: Wind energy Product:...

  15. Steam System Efficiency Optimized After J.R. Simplot Fertilizer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment Steam System Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment...

  16. Install an Automatic Blowdown-Control System, Energy Tips: STEAM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heat-transfer capabilities of the boiler, resulting in poor fuel-to-steam effciency and possible pressure vessel damage. ... and Pressure Vessel Code describe recommended practices. ...

  17. Improving Steam System Performance: A Sourcebook for Industry

    SciTech Connect (OSTI)

    2004-10-01

    A sourcebook designed to provide steam system users with a reference outlining opportunities to improve system performance and optimize energy efficiency in industrial energy systems.

  18. Steam System Opportunity Assessment for the Pulp and Paper, Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical...

  19. Improving Steam System Performance: A Sourcebook for Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Improving Steam System Performance: A Sourcebook for Industry, Second Edition (October 2012) More Documents & Publications Flash High-Pressure Condensate to Regenerate ...

  20. Boiler Upgrades and Decentralizing Steam Systems Save Water and...

    Office of Environmental Management (EM)

    Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Case study details Naval Air Station Oceana...

  1. Review of Orifice Plate Steam Traps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition Remove Condensate with Minimal Air Loss FAQS Reference Guide - Facility ...

  2. Y-12 Steam Plant Project Received National Recognition for Project...

    National Nuclear Security Administration (NNSA)

    Steam Plant Project Received National Recognition for Project Management Excellence | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  3. Use Vapor Recompression to Recover Low-Pressure Waste Steam, Energy Tips: STEAM, Steam Tip Sheet #11 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Use Vapor Recompression to Recover Low-Pressure Waste Steam Low-pressure steam exhaust from industrial operations such as evaporators or cookers is usually vented to the atmosphere or condensed in a cooling tower. Simultaneously, other plant operations may require intermediate-pressure steam at 20 to 50 pounds per square inch gauge (psig). Instead of letting down high- pressure steam across a throttling valve to meet these needs, low-pressure waste steam can be mechanically compressed or

  4. Sales lag sparks steam trap diversity

    SciTech Connect (OSTI)

    Crawford, E.

    1980-03-03

    Competing manufacturers have broadened their product range and customer services in an effort to survive a tightened market and the introduction of unconventional devices. Users and vendors agree that rising energy costs now give inspection and maintenance of steam traps top priority. New products on the market are described. Competition has led to some questionable advertising and legal action. Fixed orifice and temperature-actuated valves are among the alternative products offered. Models of the major manufacturers are compared by type, pressure and condensate load range, primary use, and price.

  5. The value of steam turbine upgrades

    SciTech Connect (OSTI)

    Potter, K.; Olear, D.

    2005-11-01

    Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

  6. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    DOE Patents [OSTI]

    Gorman, William G. (Ballston Spa, NY); Carberg, William George (Ballston Spa, NY); Jones, Charles Michael (Ballston Lake, NY)

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  7. [National Institute for Petroleum and Energy Research] quarterly technical report for April--June 30, 1993. Volume 2, Energy Production Research

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    Progress reports are presented for: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology. Chemical flooding includes; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; and surfactant-enhanced alkaline flooding field project. Gas displacement research covers: gas flooding performance prediction improvement; and mobility control, profile modification, and sweep improvement in gas flooding. Thermal recovery research includes: thermal processes for light oil recovery; thermal processes for heavy oil recovery; feasibility study of heavy oil recovery in the Midcontinent region: Oklahoma, Kansas, and Missouri; simulation analysis of steam-foam projects; and organization of UNITAR 6th International Conference on Heavy Crude and Tar Sands. Geoscience technology covers: three-phase relative permeability; and imaging techniques applied to the study of fluids in porous media. Resource assessment technology includes: reservoir assessment and characterization; TORIS research support; upgrade the BPO Crude Oil Analysis Data Base; compilation and analysis of outcrop data from the Muddy and Almond Formations; and horizontal well production from fractured reservoir. Microbial Technology covers: development of improved microbial flooding methods; and microbial-enhanced waterflooding field project.

  8. Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: U.S. Dollars per Physical Units. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than

  9. Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Physical Units or Btu. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total

  10. Replace Pressure-Reducing Valves with Backpressure Turbogenerators, Energy Tips: STEAM, Steam Tip Sheet #20 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Replace Pressure-Reducing Valves with Backpressure Turbogenerators Many industrial facilities produce steam at a pressure higher than that demanded by process requirements. Steam passes through pressure-reducing valves (PRVs, also known as letdown valves) at various locations in the steam distribution system to let down or reduce its pressure. A noncondensing or backpressure steam turbine can perform the same pressure-reducing function as a PRV while converting steam energy into electrical

  11. Investigation of Bio-Ethanol Steam Reforming over Cobalt-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Presented at the 2007...

  12. Flash High-Pressure Condensate to Regenerate Low-Pressure Steam

    Broader source: Energy.gov [DOE]

    This tip sheet outlines optimal conditions for flashing high-pressure condensate to regenerate low-pressure steam in steam systems.

  13. Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

  14. Steam trap maintenance management saves $180,000 annually

    SciTech Connect (OSTI)

    Franks, F.C.; Wickersham, C.

    1985-12-01

    The Reichhold Chemical plant is located in Elizabeth, NJ. At this location, the cost of steam had skyrocketed to $5.30 per million Btu. The plant has 600 steam traps manufactured by ten different companies. Some 17 different models of traps are used with 33 piping configurations. There are five different operating pressures throughout the plant ranging from 15-175 psig, including 30, 65, and 120 psig. Five different applications of steam usage can be broken down as follows: steam tracing (56%); drip (21%); comfort heating (18%); tank coil (4%); and process (1%). In the fall of 1983, the annual yearly inspection of steam traps was supplanted with an independent trap survey service, specializing in detecting the malfunctioning of various types of steam traps. The basic program included location and tagging of all steam traps; survey and inspection of steam trap population; development of a trap map; and full computer analysis of collected data. It was determined that approximately 3919 lb/hr of steam could be saved by repairing the failed open traps and implementing the report's recommendations. There were also benefits from fixing the failed closed traps which were out of service at the time of the survey. These traps do not allow the flow of steam or condensate to pass through the orifice. This condition causes condensate to back up and reduce efficiency. The maintenance management has been pleased with the results and recommendations of the program. It has provided them with a complete inventory and status report of the 600 traps plantwide. It saved $180,000 over the previous year in energy expenditures. This was the most important contribution in lowering the plant energy costs.

  15. Deaerators in Industrial Steam Systems, Energy Tips: STEAM, Steam Tip Sheet #18 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Deaerators in Industrial Steam Systems Deaerators are mechanical devices that remove dissolved gases from boiler feedwater. Deaeration protects the steam system from the effects of corrosive gases. It accomplishes this by reducing the concentration of dissolved oxygen and carbon dioxide to a level where corrosion is minimized. A dissolved oxygen level of 5 parts per billion (ppb) or lower is needed to prevent corrosion in most high- pressure (>200 pounds per square inch) boilers. While

  16. Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2009-07-01

    The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  17. Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines

    SciTech Connect (OSTI)

    Gordon H. Holcomb

    2009-01-01

    U.S. Department of Energys goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  18. Achieve Steam System Excellence: Industrial Technologies Program BestPractices Steam Overview Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BESTPRACTICES STEAM PARTNERS 3M American Boiler Manufacturers Association Armstrong International, Inc. Association of Energy Engineers BASF Corporation Bethlehem Steel Corporation CERL - U.S. Army Corps of Engineers Council of Industrial Boiler Owners Enbridge Consumers Gas Enercheck Systems Industrial Interactions, Inc. Institute of Textile Technology Iowa Energy Center Johns Manville Corporation Millennium Chemicals* N.Y. State Energy Research and Development National Board of Boiler and

  19. SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT

    SciTech Connect (OSTI)

    Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

    2005-07-01

    Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

  20. Method and apparatus for improving the performance of a steam driven power system by steam mixing

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA); Prichard, Andrew W. (Richland, WA); Reid, Bruce D. (Pasco, WA); Burritt, James (Virginia Beach, VA)

    1998-01-01

    A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  1. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  2. Thermo-gasification of steam classified municipal solid waste

    SciTech Connect (OSTI)

    Eley, M.H.; Sebghati, J.M.

    1996-12-31

    Municipal solid waste (MSW) has been processed using a procedure called steam classification. This material has been examined for use as a combustion fuel, feedstock for composting, and cellulytic enzyme hydrolysis. An initial study has been conducted using a prototype plasma arc pyrolysis system to transform the steam classified MSW into a pyrolysis gas and vitrified material. With 136 kg (300 lbs) of the steam classified MSW pyrolysized at a feed rate of 22.7 kg/hour (50 lbs/hour), samples of the gas and grasslike material were captured for analysis. A presentation of the emission data and details on the system used will be presented.

  3. Steam bubble collapse induced water hammer in draining pipes

    SciTech Connect (OSTI)

    Griffith, P.; Silva, R.J.

    1991-08-01

    When hot steam replaces cold condensate in a horizontal or almost horizontal pipe, a steam bubble collapse induced water hammer often results. The effect of condensate drainage velocity and pipe declination on the incidence of steam bubble collapse induced water hammer is investigated experimentally. Declining the pipe more than 2.4{degrees} allows drainage velocities up to 3 ft/sec (1m/s) in a two inch (5 cm) pipe without water hammer. A semi-empirical theory allows extrapolation to other pressures, pipe sizes and inclinations. 4 refs.

  4. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    DOE Patents [OSTI]

    Eldrid, Sacheverel Q. (Saratoga Springs, NY); Salamah, Samir A. (Niskayuna, NY); DeStefano, Thomas Daniel (Ballston Lake, NY)

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  5. Steam Plant Replaces Outdated Coal-Fired System | Department of Energy

    Energy Savers [EERE]

    Steam Plant Replaces Outdated Coal-Fired System Steam Plant Replaces Outdated Coal-Fired System September 1, 2012 - 12:00pm Addthis A new natural gas-fired steam plant will replace an older coal-fired steam plant shown here. The new plant has the capacity to heat buildings at the Portsmouth site much more efficiently than the old coal-fired steam plant. A new natural gas-fired steam plant will replace an older coal-fired steam plant shown here. The new plant has the capacity to heat buildings at

  6. Minimize Boiler Short Cycling Losses - Steam Tip Sheet #16

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  7. Recover Heat from Boiler Blowdown - Steam Tip Sheet #10

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on recovering heat from boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  8. Minimize Boiler Short Cycling Losses - Steam Tip Sheet #16

    SciTech Connect (OSTI)

    2006-01-01

    This revised AMO tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  9. C++ Implementation of IAPWS Water/Steam Properties

    SciTech Connect (OSTI)

    Ling Zou; Haihua Zhao; Hongbin Zhang; Qiyue Lu

    2014-02-01

    For the calculations of water-involved systems, such as safety analysis of light water reactors, it is essential to provide accurate water properties. The International Association for the Properties of Water and Steam is an international non-profit association of national organizations concerned with the properties of water and steam. It provides internationally accepted formulations of water/steam properties for scientific and industrial applications. The purpose of this work is to provide a stand-alone software package in C++ programming language to provide accurate and efficient water/steam properties evaluation, based on the latest IAPWS releases. The discussion on related IAPWS releases, code implementations and verifications are provided in details.

  10. Dow Chemical Company: Assessment Leads to Steam System Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Dow Chemical Company saved 272,000 MMBtu and 1.9 million annually after increasing the steam system energy efficiency of a plant in Louisiana. Dow Chemical Company: Assessment...

  11. Use Low-Grade Waste Steam to Power Absorption Chillers

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on waste steam to power absorption chillers provides how-to advice for improving the system using low-cost, proven practices and technologies.

  12. Alloys for advanced steam turbines--Oxidation behavior

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2007-10-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy (DOE) include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760C. Current research on the oxidation of candidate materials for advanced steam turbines is presented with a focus on a methodology for estimating chromium evaporation rates from protective chromia scales. The high velocities and pressures of advanced steam turbines lead to evaporation predictions as high as 5 10-8 kg m-2s-1 of CrO2(OH)2(g) at 760C and 34.5 MPa. This is equivalent to 0.077 mm per year of solid Cr loss.

  13. Assessment of superheated steam drying of wood waste

    SciTech Connect (OSTI)

    Woods, B.G.; Nguyen, Y.; Bruce, S.

    1994-12-31

    A 5 MW co-generation facility using wood waste is described which will supply power to Ontario Hydro, steam to the sawmill for process heating, and hot water for district heating customers in the town. The use of superheated steam for drying the wood was investigated to determine the impact on boiler performance, the environmental impact and the economic feasibility. The main benefit with superheated steam drying is the reduction in VOC emissions. The capital cost is currently higher with superheated steam drying, but further investigation is warranted to determine if the cost reductions which could be achieved by manufacturing the major components in North America are sufficient to make the technology cost competitive.

  14. Water-Efficient Technology Opportunity: Steam Sterilizer Condensate Retrofit Kit

    Broader source: Energy.gov [DOE]

    FEMP identified steam sterilizer condensate retrofit kits as a water-saving technology that is relevant to the federal sector, is commercially available, and offers significant water-savings potential.

  15. How to Calculate the True Cost of Steam | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Calculate the True Cost of Steam How to Calculate the True Cost of Steam This brief details how to calculate the true cost of steam, which is important for monitoring and managing energy use in a plant, evaluating proposed design changes to the generation or distribution infrastructure and the process itself, and for continuing to identify competitive advantages through steam system and plant efficiency improvements. PDF icon How to Calculate the True Cost of Steam (September 2003) More

  16. Method for increasing steam decomposition in a coal gasification process

    DOE Patents [OSTI]

    Wilson, M.W.

    1987-03-23

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  17. Downhole steam generator having a downhole oxidant compressor

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07

    Am improved apparatus is described for the downhole injection of steam into boreholes, for tertiary oil recovery. It includes an oxidant supply, a fuel supply, an igniter, a water supply, an oxidant compressor, and a combustor assembly. The apparatus is designed for efficiency, preheating of the water, and cooling of the combustion chamber walls. The steam outlet to the borehole is provided with pressure-responsive doors for closing the outlet in response to flameout. (DLC)

  18. Firm turns trash to steam, saves $60,500

    SciTech Connect (OSTI)

    Cohn, L.

    1982-05-17

    An incinerator/boiler system that the Ingersoll-Rand Co. uses to burn trash and produce steam for heating and parts cleaning saved the company $60,500 in avoided fuel and trash-disposal costs last year. Replacing a natural gas-fired boiler, the new system reduces the demand for gas by 14%. Heat recovered from the trash burning is transferred to the boiler to make steam. No smoke is emitted. (DCK)

  19. Steam System Opportunity Assessment for the Pulp and Paper, Chemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing, and Petroleum Refining Industries | Department of Energy Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries This report assesses steam generation and use in the pulp and paper, chemical manufacturing, and the petroleum refining industries. The report also estimates the energy savings potential available from

  20. Method for increasing steam decomposition in a coal gasification process

    DOE Patents [OSTI]

    Wilson, Marvin W. (Fairview, WV)

    1988-01-01

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  1. Recent Progress on Steam Hydrogasification of Carbonaceous Matter to Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synthetic Diesel Fuel | Department of Energy on Steam Hydrogasification of Carbonaceous Matter to Clean Synthetic Diesel Fuel Recent Progress on Steam Hydrogasification of Carbonaceous Matter to Clean Synthetic Diesel Fuel 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_singh.pdf More Documents &

  2. Table A39. Total Expenditures for Purchased Electricity and Steam

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic

  3. Table A44. Average Prices of Purchased Electricity and Steam

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam" ," (kWh)",," (million Btu)" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic

  4. Drum drying of black liquor using superheated steam impinging jets

    SciTech Connect (OSTI)

    Shiravi, A.H.; Mujumdar, A.S.; Kubes, G.J. [McGill Univ., Montreal, Quebec (Canada)

    1997-05-01

    A novel drum dryer for black liquor utilizing multiple impinging jets of superheated steam was designed and built to evaluate the performance characteristics and effects of various operating parameters thereon. Appropriate ranges of parameters such as steam jet temperature and velocity were examined experimentally to quantify the optimal operating conditions for the formation of black liquor film on the drum surface as well as the drying kinetics.

  5. Savannah River's Biomass Steam Plant Success with Clean and Renewable

    Energy Savers [EERE]

    Energy | Department of Energy River's Biomass Steam Plant Success with Clean and Renewable Energy Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy In order to meet the federal energy and environmental management requirements in Presidential Executive Order 13423, DOE Order 430.2B, and the Transformational Energy Action Management (TEAM) Initiative, DOE Secretary Samuel Bodman encouraged the DOE federal complex to utilize third party financing options like the

  6. Building America Technology Solutions for New and Existing Homes: Steam

    Energy Savers [EERE]

    System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet) | Department of Energy Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet) The Partnership for Advanced Residential Retrofit (PARR), a U.S. Department of Energy Building

  7. Downhole steam generator using low pressure fuel and air supply

    DOE Patents [OSTI]

    Fox, Ronald L. (Albuquerque, NM)

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  8. Single pressure steam bottoming cycle for gas turbines combined cycle

    SciTech Connect (OSTI)

    Zervos, N.

    1990-01-30

    This patent describes a process for recapturing waste heat from the exhaust of a gas turbine to drive a high pressure-high temperature steam turbine and a low pressure steam turbine. It comprises: delivering the exhaust of the gas turbine to the hot side of an economizer-reheater apparatus; delivering a heated stream of feedwater and recycled condensate through the cold side of the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus to elevate the temperature below the pinch point of the boiler; delivering the discharge from the high pressure-high temperature steam turbine through the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus; driving the high pressure-high temperature steam turbine with the discharge stream of feedwater and recycled condensate which is heated to a temperature below the pinch point of the boiler by the economizer-reheater apparatus; and driving the low pressure steam turbine with the discharged stream of the high pressure-high temperature steam turbine reheated below the pinch point of the boiler by the economizer-reheater apparatus.

  9. Closed circuit steam cooled turbine shroud and method for steam cooling turbine shroud

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY); Sexton, Brendan Francis (Simpsonville, SC); Kellock, Iain Robertson (Simpsonville, SC)

    2002-01-01

    A turbine shroud cooling cavity is partitioned to define a plurality of cooling chambers for sequentially receiving cooling steam and impingement cooling of the radially inner wall of the shoud. An impingement baffle is provided in each cooling chamber for receiving the cooling media from a cooling media inlet in the case of the first chamber or from the immediately upstream chamber in the case of the second through fourth chambers and includes a plurality of impingement holes for effecting the impingement cooling of the shroud inner wall.

  10. Evaluation of some transport and thermodynamic properties of superheated steam: Effects of steam temperature and pressure

    SciTech Connect (OSTI)

    Devahastin, S.; Mujumdar, A.S.

    2000-05-01

    For machine computation of drying, humidification and dehumidification processes it is necessary to have reliable correlations to predict transport and thermodynamic properties of the drying medium as functions of temperature and pressure. In this paper empirical correlations for specific volume, dynamic viscosity, thermal conductivity as well as specific isobaric heat capacity of superheated steam over the temperature range of 160--500 C and the pressure range of 100--500 kPa are presented. The Prandtl numbers at various temperatures and pressures are also presented. Comments on the properties and the use of these correlations are given.

  11. Heat recovery steam generator outlet temperature control system for a combined cycle power plant

    SciTech Connect (OSTI)

    Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

    1986-04-01

    This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

  12. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    Marshall, D.W.; Soelberg, N.R.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  13. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    D. W. Marshall; N. R. Soelberg

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  14. Commercial scale demonstration enhanced oil recovery by micellar-polymer flood. Annual report, October 1979-September 1980

    SciTech Connect (OSTI)

    Howell, J.C.; Snyder, W.O.

    1981-04-01

    This commercial scale test, known as the M-1 Project, is located in Crawford County, Illinois. It encompasses 407 acres of Robinson sand reservoir and covers portions of several waterflood projects that were approaching economic limit. The project includes 248 acres developed on a 2.4-acre five-spot pattern and 159 acres developed on a 5.0-acre five-spot pattern. Development work commenced in late 1974 and has previously been reported. Micellar solution (slug) injection was initiated on February 10, 1977, and is now completed. After 10% of a pore volume of micellar slug was injected, injection of 11% pore volume of Dow 700 Pusher polymer was conducted at a concentration of 1156 ppM. At the end of this reporting period, 625 ppM polymer was being injected into the 2.5-acre pattern and 800 ppM polymer was being injected into the 5.0-acre pattern. The oil cut of the 2.5 and 5.0-acre patterns increased from 8.6% and 5.2%, respectively in September 1979, to 11.0% and 5.9% in September 1980. The oil cut performance has consistently exceeded that predicted for the project. This Fourth Annual Report is organized under the following three Work Breakdown Structures: fluid injection; production; and performance monitoring.

  15. Development of improved mobility control agents for surfactant/polymer flooding. Second annual report, October 1, 1979-September 30, 1980

    SciTech Connect (OSTI)

    Martin, F.D.; Donaruma, L.G.; Hatch, M.J.

    1981-04-01

    The objective of this laboratory work is to develop improved mobility control agents that are more effective than the commercial polymers currently used in this process. During the second year of the project, the baseline testing of commercial products was completed. These baseline tests with polymers include studies on mobility control, retention, and shear degradation in Berea cores, the effect of common ions on rheological properties, thermal stability, microbial degradation, and surfactant-polymer interactions. These data are used for comparison of the commercial agents at standardized sets of conditions, and are also used to evaluate new, modified, or improved polymers. Work was also initiated on the synthesis, characterization, and preliminary screening of new and modified polymers. Testing of these analogs provides systematic correlations of polymer performance with polymer structure. This preliminary testing consists of measurements of shear degradation and viscosity loss in NaCl brines by the use of a simplified screening procedure. To date, a number of potential structure-utility relationships have been observed. Solution viscosities of all nonionic polymers tested are essentially insensitive to changes in NaCl concentration. Increasing the charge-to-mass ratio (degree of hydrolysis) of either polyacrylamides or N-alkyl analogs enhances the ability of these polymers to build viscosity in low salinity NaCl brines. However, such polymers are increasingly subject to viscosity loss as the salinity is increased. Above a certain critical molecular weight, polymers become more susceptible to shear degradation. Many of the polymers that possess stiffer backbones exhibit improved brine and shear stability. The results of these studies will be used to develop an improved mobility control polymer in the next phase of this project.

  16. INEXPENSIVE CO{sub 2} THICKENING AGENTS FOR IMPROVED MOBILITY CONTROL OF CO{sub 2} FLOODS

    SciTech Connect (OSTI)

    Robert M. Enick; Eric J. Beckman; Andrew Hamilton

    2004-10-01

    The objective of this research was the design, synthesis and evaluation of inexpensive, nonfluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly CO{sub 2}-philic, hydrocarbon-based monomer was to be identified. Polymers or oligomers of this monomer were then synthesized. The second step was to be completed only when a CO{sub 2}-soluble polymer that was soluble in CO{sub 2} at pressures comparable to the MMP was identified. In the second step, viscosity-enhancing associating groups were to be incorporated into the polymer to make it a viable thickener that exhibited high CO{sub 2} solubility at EOR MMP conditions. This final report documents the CO{sub 2} solubility of a series of commercial and novel polymers composed of carbon, hydrogen, oxygen and, in some cases, nitrogen.

  17. Probable maximum flood (PMF): basic information and problems with the procedure used for its calculation in Russia

    SciTech Connect (OSTI)

    Zhirkevich, A. N.; Asarin, A. E.

    2010-09-15

    A procedure is proposed for enhancement of the hydrologic safety of entities in the tail races of dams.

  18. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  19. Reliable steam: To cogenerate or not to cogenerate?

    SciTech Connect (OSTI)

    Jaber, D.; Jones, T.; D'Anna, L.; Vetterick, R.

    1999-07-01

    Leading industrial companies and institutions are forever seeking new and better ways to reduce their expenses, reduce waste, meet environmental standards, and, in general, improve their bottom-line. One approach to achieving all of these goals is a 100 year-old concept, cogeneration. Many industrial and institutional plants need thermal energy, generally as steam, for manufacturing processes and heating. They also need electric power for motors, lighting, compressed air and air conditioning. Traditionally, these fundamental needs are met separately. Steam is produced with industrial boilers and electricity is purchased from a local utility company. However, these needs can be met at the same time with cogeneration, using the same heat source. Cogeneration is the concurrent production of electrical power and thermal energy from the same heat source. Large steam users commonly take advantage of cogeneration by using high pressure steam with a back pressure turbine to generate electricity, and extract lower pressure steam from the turbine exhaust for their process needs. This approach reduces their electric utility bills while still providing thermal energy for industrial processes. The result is also a more efficient process that uses less total heat and discharges less smoke up the stack. Newer technologies are making cogeneration opportunities available to smaller-sized thermal plants, and electric utility deregulation opportunities are causing many CEOs to seriously consider cogeneration in their manufacturing plants. Whether steam is created through cogeneration or separate generation, many opportunities exist to improve productivity in the distribution system, operation, and maintenance. These opportunities are captured by taking a systems approach, which is promoted by programs such as the Department of Energy's Steam Challenge.

  20. Potential failure of steam generator tubes following a station blackout

    SciTech Connect (OSTI)

    Ward, L.W.; Palmrose, D.E.

    1994-12-31

    The U.S. Nuclear Regulatory Commission is considering changes to pressurized water reactor (PWR) requirements relating to steam generator tube plugging and repair criteria, including leakage monitoring. The proposed changes are known as the alternate tube plugging criteria (APC) and are intended to permit PWRs to operate with through-wall cracks in steam generator tubes subject to meeting a specified limit on predicted primary to secondary leakage under accident conditions. To assess the consequences of the alternate plugging criteria, analyses were performed for a station blackout sequence in which the reactor core melts while the reactor coolant system (RCS) remains at high pressure. Evaluations were conducted to investigate the potential for tube failure with and without secondary system depressurization. The excessive heat coupled with the high-pressure differentials across the steam generator tubes could result in creep rupture failure of the tubes during a severe accident, which could lead to a radiological release directly to the environment. In order to assess the safety significance of the APC, it is important to identify the level of steam generator tube leakage that can occur without challenging the previous study conclusions that steam generator creep failure will not occur prior to a surge line or hot-leg failure. To assess the effect of leakage on steam generator tube integrity during a core melt sequence with the RCS at high pressure and the secondary side of the steam generators pressurized and depressurized, an analysis was performed for a core melt event resulting from an unmitigated station blackout to identify the total steamenerator and tube leakage flow rates that could induce tube ruptures prior to other RCS boudary faliures that could depressurize the RCS.

  1. Optimization of steam explosion pretreatment. Final report

    SciTech Connect (OSTI)

    Foody, P.

    1980-04-01

    Different operating conditions are required to optimize the yield from each of the various fractions in the substrate. Xylose recovery is maximized at short cooking times whereas maximum lignin recovery requires much longer cooking times. Peak glucose yield and rumen digestibility occur at intermediate times. If process conditions are set for maximum glucose yield we have achieved a yield of 68% of the theoretical, based on an average of a dozen substrates tested. Individual results ranged from 46 to 87%. If the process is optimized for maximum total sugars (i.e. glucose plus xylose) we have obtained an average yield of 60%, with a range of 31 to 75%. With rumen microflora, the average value of the in-vitro cellulose digestibility was 82%, with a range of 41 to 90%. The optimum operating conditions for total sugars are a pressure of 500 to 550 psig with a cooking time of 40 to 50 seconds and 35% starting moisture content. Particle size is not a significant factor, nor is pre-steaming or use of a constricting die in the gun nozzle. High quality lignin can be extracted with 80% yield. The Iotech lignin is very soluble, has a low molecular weight and is reactive. The unique properties of the lignin derive from the explosion at the end of the pretreatment. A lignin formaldehyde resin has been successfully formulated and tested. It represents a high value utilization of the lignin byproduct with immediate market potential. A detailed engineering design of the process gives an estimated operating cost of $7.50/OD ton of biomass. At this low cost, the Iotech process achieves many important pretreatment goals in a single step. The substrate has been sterilized; it has been pulverized into a powder; the cellulose has been accessible; and a highly reactive lignin fraction can be recovered and utilized.

  2. High-temperature oxidation of Zircaloy in hydrogen-steam mixtures. [PWR; BWR

    SciTech Connect (OSTI)

    Chung, H.M.; Thomas, G.R.

    1982-09-01

    Oxidation rates of Zircaloy-4 cladding tubes have been measured in hydrogen-steam mixtures at 1200 to 1700/sup 0/C. For a given isothermal oxidation temperature, the oxide layer thicknesses have been measured as a function of time, steam supply rate, and hydrogen overpressure. The oxidation rates in the mixtures were compared with similar data obtained in pure steam and helium-steam environments under otherwise identical conditions. The rates in pure steam and helium-steam mixtures were equivalent and comparable to the parabolic rates obtained under steam-saturated conditions and reported in the literature. However, when the helium was replaced with hydrogen of equivalent partial pressure, a significantly smaller oxidation rate was observed. For high steam-supply rates, the oxidation kinetics in a hydrogen-steam mixture were parabolic, but the rate was smaller than for pure steam or helium-steam mixtures. Under otherwise identical conditions, the ratio of the parabolic rate for hydrogen-steam to that for pure steam decreased with increasing temperature and decreasing steam-supply rate.

  3. Managing steam: An engineering guide to industrial, commercial, and utility systems

    SciTech Connect (OSTI)

    Makansi, J.

    1985-01-01

    This book is a guide to steam production, utilization, handling, transport, system optimization, and condensation and recovery. This book incudes a description of how steam, condensate, and hot water are used in various industrial, commercial, institutional, and utility sectors and explains how steam is generated and distributed. Waste-heat recovery, fluidized-bed boilers, and cogeneration systems and boiler control theory are discussed. The book also describes different types of valves, valve components, regulators, steam traps, and metering devices available for managing steam and condensate and discusses maintaining steam systems for optimum service and longer life.

  4. Use Low-Grade Waste Steam to Power Absorption Chillers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Low-Grade Waste Steam to Power Absorption Chillers Use Low-Grade Waste Steam to Power Absorption Chillers This tip sheet on waste steam to power absorption chillers provides how-to advice for improving steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #14 PDF icon Use Low-Grade Waste Steam to Power Absorption Chillers (January 2012) More Documents & Publications Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications,

  5. Use Low-Grade Waste Steam to Power Absorption Chillers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use Low-Grade Waste Steam to Power Absorption Chillers Use Low-Grade Waste Steam to Power Absorption Chillers This tip sheet on waste steam to power absorption chillers provides how-to advice for improving steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #14 PDF icon Use Low-Grade Waste Steam to Power Absorption Chillers (January 2012) More Documents & Publications Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP

  6. Steam exit flow design for aft cavities of an airfoil

    DOE Patents [OSTI]

    Storey, James Michael (Clifton Park, NY); Tesh, Stephen William (Simpsonville, SC)

    2002-01-01

    Turbine stator vane segments have inner and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates. Steam flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. A skirt or flange structure is provided for shielding the steam cooling impingement holes adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.

  7. Downhole steam generator with improved preheating, combustion and protection features

    DOE Patents [OSTI]

    Fox, Ronald L. (Albuquerque, NM)

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.

  8. Bore tube assembly for steam cooling a turbine rotor

    DOE Patents [OSTI]

    DeStefano, Thomas Daniel (Ballston Lake, NY); Wilson, Ian David (Clifton Park, NY)

    2002-01-01

    An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.

  9. Life assessment product catalog for boilers, steam pipes, and steam turbines

    SciTech Connect (OSTI)

    Hoffman, S. , Santa Clara, CA )

    1992-07-01

    Aging fossil power plants, escalating costs of new plant construction, and load growth rate uncertainties are motivating utilities to make the most effective use of critical components in existing power plants. To help meet this need, EPRI has refined existing methods and developed new methods of predicting the remaining life of key fossil plant components with greater accuracy and confidence. This report describes 16 EPRI products (guidelines, computer programs, and other tools) that apply these techniques to boiler tubes, boiler headers, steam lines, and turbine rotors, blades, and casings. Utility personnel, including plant engineers, maintenance supervisor, engineering department staff, plant operating staff, and performance engineers, can use these products to assess remaining component life, as well as to set cost-effective maintenance procedures, inspection schedules, and operating procedures.

  10. Steam turbine development for advanced combined cycle power plants

    SciTech Connect (OSTI)

    Oeynhausen, H.; Bergmann, D.; Balling, L.; Termuehlen, H.

    1996-12-31

    For advanced combined cycle power plants, the proper selection of steam turbine models is required to achieve optimal performance. The advancements in gas turbine technology must be followed by advances in the combined cycle steam turbine design. On the other hand, building low-cost gas turbines and steam turbines is desired which, however, can only be justified if no compromise is made in regard to their performance. The standard design concept of two-casing single-flow turbines seems to be the right choice for most of the present and future applications worldwide. Only for very specific applications it might be justified to select another design concept as a more suitable option.

  11. Steam Generator Group Project. Task 6. Channel head decontamination

    SciTech Connect (OSTI)

    Allen, R.P.; Clark, R.L.; Reece, W.D.

    1984-08-01

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described.

  12. A simplified model of decontamination by BWR steam suppression pools

    SciTech Connect (OSTI)

    Powers, D.A.

    1997-05-01

    Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

  13. Superalloys for ultra supercritical steam turbines--oxidation behavior

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2008-09-01

    Goals of the U.S. Department of Energys Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

  14. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    DOE Patents [OSTI]

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  15. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, R.P.

    1996-12-24

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water. 3 figs.

  16. Bucket-type steam traps removed in $82K retrofit

    SciTech Connect (OSTI)

    Poplett, J.

    1985-08-19

    A retrofit of 481 mostly failed steam traps at Martin Marietta's Aerospace Division should reduce steam costs by $70,000 and require little or no maintenance. Payback should occur within 14 months. The new traps include orifice, bellow-type thermostatic, and float-type traps that have few or no moving parts. Lack of maintenance was responsible for the poor performance of the bucket traps that were replaced, although manufacturers of the bucket traps disagree that replacement of certain parts is necessary every six months. The author describes the design and operation of each type of trap.

  17. Okeelanta Cogeneration Project: Electricity and steam from sugar cane

    SciTech Connect (OSTI)

    Schaberg, D.

    1994-12-31

    The Okeelanta Cogeneration Project is a Bagasse- and wood chip-fired cogeneration project with a net electrical output of approximately 70MW, located at the Okeelanta Corporation`s sugar mill in South Bay, Florida. The Project is comprised of three stoker type boilers each capable of producing 440,000 lbs/hr of steam at 1455 psia, 955F, and a single extraction/condensing steam turbine with a gross output of 75 MW. The electrical output will be sold to Florida Power and Light under the terms of an executed power purchase agreement and delivered at 138kV.

  18. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, Rusi P. (Knoxville, TN)

    1996-01-01

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.

  19. Use Vapor Recompression to Recover Low-Pressure Waste Steam (Revised0

    SciTech Connect (OSTI)

    Not Available

    2008-03-01

    This revised ITP tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  20. Use Vapor Recompression to Recover Low-Pressure Waste - Steam Tip Sheet #11

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  1. Modeling the Effects of Steam-Fuel Reforming Products on Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of n-Heptane Modeling the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of...

  2. Control Scheme Modifications Increase Efficiency of Steam Generation System at Exxon Mobil Gas Plant

    SciTech Connect (OSTI)

    2002-01-01

    This case study highlights control scheme modifications made to the steam system at ExxonMobil's Mary Ann Gas Plant in Mobile, Alabama, which improved steam flow efficiency and reduced energy costs.

  3. Replace Pressure-Reducing Valves with Backpressure Turbogenerators - Steam Tip Sheet #20

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO steam tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  4. File:03UTDGeothermalSteamLeaseUtahNonTrustLands.pdf | Open Energy...

    Open Energy Info (EERE)

    3UTDGeothermalSteamLeaseUtahNonTrustLands.pdf Jump to: navigation, search File File history File usage Metadata File:03UTDGeothermalSteamLeaseUtahNonTrustLands.pdf Size of this...

  5. File:03UTEGeothermalSteamLeaseUtahTrustLands.pdf | Open Energy...

    Open Energy Info (EERE)

    3UTEGeothermalSteamLeaseUtahTrustLands.pdf Jump to: navigation, search File File history File usage Metadata File:03UTEGeothermalSteamLeaseUtahTrustLands.pdf Size of this preview:...

  6. Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a

    Office of Environmental Management (EM)

    Petrochemical Plant | Department of Energy Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant This case study describes how Dow Chemical Company saved 272,000 MMBtu and $1.9 million annually after increasing the steam system energy efficiency of a plant in Louisiana. PDF icon Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a

  7. Flash High-Pressure Condensate to Regenerate Low-Pressure Steam, Energy Tips: STEAM, Steam Tip Sheet #12 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Low-pressure process steam requirements are usually met by throttling high- pressure steam, but a portion of the process requirements can be achieved at low cost by fashing high-pressure condensate. Flashing is particularly attractive when it is not economically feasible to return the high-pressure condensate to the boiler. In the table below, the quantity of steam obtained per pound of condensate fashed is given as a function of

  8. Steam engines. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect (OSTI)

    1995-09-01

    The bibliography contains citations of selected patents concerning steam engines. The patents detail water spray injecter system, internal combustion, reaction chamber, valveless bi-chamber, multicylinder, steam recovery and recompression, sound simulator, oscillating, and rotary steam engines. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOE Patents [OSTI]

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  10. Experimental investigations of beet pulp drying in superheated steam under pressure

    SciTech Connect (OSTI)

    Urbaniec, K.; Malczewski, J. [Warsaw Univ. of Technology, Plock (Poland). Dept. of Process Equipment

    1997-10-01

    Beet pulp drying in superheated steam under pressure makes it possible to save energy in sugar factories. A new concept of a two-stage convective steam drier is presented. To obtain kinetic data on beet pulp drying, an experimental setup was built. Beet pulp samples were dried at steam pressure up to 4 bar and temperature up to 220 C.

  11. Electric power generating plant having direct coupled steam and compressed air cycles

    DOE Patents [OSTI]

    Drost, Monte K. (Richland, WA)

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  12. Optimization of some parameters of atomic steam-gas powerplant

    SciTech Connect (OSTI)

    Ratnikov, Y.F.

    1985-10-21

    Determination of optimum parameters of binary-type atomic steam-gas powerplant is a difficult analytical problem in view of the complicated interdependence of parameters, which characterize the reactor, gas-turbine, and steam-turbine parts of the installation. Conclusions include: 1) Determination of optimum parameters of atomic steam-gas installation is recommended to produce with gas consumption = const and heat output of the reactor = var. since best technical-economic indices of installation correspond to this case. 2) With increase in power of atomic steam-gas installation, together with improvement in economic indices, the optimum pressure ratio descends and optimum temperature of feed water increases. 3) Increase in the fuel component leads to a decrease of optimum pressure ratio and to increase in temperature of feed water. 4) Change of cost of reactor plant over wide limits virtually does not have effect on numerical values of optimum parameters being investigated. 5) In all cases optimum pressure ratio is more, and temperature of feed water is less than outer limits, obtained by thermodynamic calculations.

  13. Status of the CRBRP steam-generator design

    SciTech Connect (OSTI)

    Schmidt, J.E.; Martinez, R.S.; Murdock, J.F.

    1981-06-01

    Fabrication of the Prototype Unit is near completion and will be delivered to the test site in August, 1981. The Plant Unit design is presently at an advanced stage and will result in steam generator units fully capable of meeting all the requiments of the CRBRP Power Plant.

  14. Downhole steam generator having a downhole oxidant compressor

    DOE Patents [OSTI]

    Fox, Ronald L. (Albuquerque, NM)

    1983-01-01

    Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

  15. Cast Alloys for Advanced Ultra Supercritical Steam Turbines

    SciTech Connect (OSTI)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 C).

  16. Steam Reforming of Low-Level Mixed Waste

    SciTech Connect (OSTI)

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  17. Replacement of alloy 800H superheated steam line

    SciTech Connect (OSTI)

    Barbier, R.A.; Bullock, J.W. [Sterling Chemicals, Texas City, TX (United States)

    1996-07-01

    Sterling Chemicals utilizes alloy 800HT (UNS N08811) piping for superheated steam service in its styrene dehydrogenation unit. An engineering project to replace these lines was recently completed. Material acquisition, shop fabrication, inspection requirements, and field erection will be highlighted in this paper.

  18. Pebble Bed Boiling Water Reactor Concept With Superheated Steam

    SciTech Connect (OSTI)

    Tsiklauri, G.; Newman, D.; Meriwether, G.; Korolev, V. [Pacific Northwest National Laboratory, P.O. Box 999 Richland, WA 99352 (United States)

    2002-07-01

    An Advanced Nuclear Reactor concept is presented which extends Boiling Water Reactor technology with micro-fuel elements (MFE) and produces superheated steam. A nuclear plant with MFE is highly efficient and safe, due to ceramic-clad nuclear fuel. Water is used as both moderator and coolant. The fuel consists of spheres of about 1.5 mm diameter of UO{sub 2} with several external coatings of different carbonaceous materials. The outer coating of the particles is SiC, manufactured with chemical vapor disposition (CVD) technology. Endurance of the integrity of the SiC coating in water, air and steam has been demonstrated experimentally in Germany, Russia and Japan. This paper describes a result of a preliminary design and analysis of 3750 MWt (1500 MWe) plant with standard pressure of 16 MPa, which is widely achieved in the vessel of pressurized-water type reactors. The superheated steam outlet temperature of 550 deg. C elevates the steam cycle to high thermal efficiency of 42%. (authors)

  19. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    SciTech Connect (OSTI)

    Therkelesen, Peter; McKane, Aimee

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  20. Y-12 Steam Plant Project Received National Recognition for Project

    National Nuclear Security Administration (NNSA)

    Management Excellence | National Nuclear Security Administration Steam Plant Project Received National Recognition for Project Management Excellence | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations

  1. Practical aspects of steam injection processes: A handbook for independent operators

    SciTech Connect (OSTI)

    Sarathi, P.S.; Olsen, D.K.

    1992-10-01

    More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

  2. Use Feedwater Economizers for Waste Heat Recovery, Energy Tips: STEAM, Steam Tip Sheet #3 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROGRAM Energy Tips: STEAM Steam Tip Sheet #3 Use Feedwater Economizers for Waste Heat Recovery A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the fue gas to incoming feedwater. Boiler fue gases are often rejected to the stack at temperatures more than 100°F to 150°F higher than the temperature of the generated steam. Generally, boiler effciency can be increased by 1% for every 40°F reduction in fue gas temperature. By recovering waste heat, an

  3. Methods for disassembling, replacing and assembling parts of a steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian D. (Mauldin, SC); Wesorick, Ronald R. (Albany, NY)

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.

  4. Monthly progress report for April 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    Accomplishments for the month of April are described briefly for the following tasks: energy production research; fuels research; and supplemental government program. Energy production research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteratom-containing compounds. Supplemental government program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; process- engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams for oil production symposium; technology transfer to independent producers; compilations and analysis of outcrop data from the Muddy and Almond Formations; implementation of oil and gas technology transfer initiative; and horizontal well production from fractured reservoirs.

  5. [National Institute for Petroleum and Energy Research], monthly progress report for March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    Accomplishments for the month of April are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nigrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant- enhanced alkaline flooding field project; process- engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams of oil production symposium; technology transfer to independent producers; compilations and analysis of outcrop data from the Muddy and Almond formations; and horizontal well production from fractured reservoirs.

  6. National Institute for Petroleum and Energy Research monthly progress report, May 1993

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    Accomplishments for the month of May are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels Research covers: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteratom-containing compounds. Supplemental Government Program covers: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams for oil production symposium; technology transfer to independent producers; compilation and analysis of outcrop data from the Muddy and Almond formations; implementation of oil and gas technology transfer initiative; horizontal well production from fractured reservoirs; and chemical EOR workshop.

  7. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  8. Oil shale retorting with steam and produced gas

    SciTech Connect (OSTI)

    Merrill, L.S. Jr.; Wheaton, L.D.

    1991-08-20

    This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

  9. Physical Characterization and Steam Chemical Reactivity of Carbon Fiber Composites

    SciTech Connect (OSTI)

    Anderl, Robert Andrew; Pawelko, Robert James; Smolik, Galen Richard

    2001-05-01

    This report documents experiments and analyses that have been done at the Idaho National Engineering and Environmental Laboratory (INEEL) to measure the steam chemical reactivity of two types of carbon fiber composites, NS31 and NB31, proposed for use at the divertor strike points in an ITER-like tokamak. These materials are 3D CFCs constituted by a NOVOLTEX preform and densified by pyrocarbon infiltration and heat treatment. NS31 differs from NB31 in that the final infiltration was done with liquid silicon to reduce the porosity and enhance the thermal conductivity of the CFC. Our approach in this work was twofold: (1) physical characterization measurements of the specimens and (2) measurements of the chemical reactivity of specimens exposed to steam.

  10. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energys Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspens best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XTs commercial success has been driven by its 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  11. Steam Balancing and Tuning for Multifamily Residential Buildings in Chicagoland

    SciTech Connect (OSTI)

    Choi, J.; Ludwig, P.; Brand, L.

    2012-08-01

    Older heating systems often suffer from mis-investment--multiple contractors upgrading parts of systems in inadequate or inappropriate ways that reduce system functionality and efficiency--or from a lack of proper maintenance. This technical report addresses these barriers to information, contractor resources, and cost-savings. Building off of previous research, CNT Energy conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam; system balancing.

  12. Technical evaluation: 300 Area steam line valve accident

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    On June 7, 1993, a journeyman power operator (JPO) was severely burned and later died as a result of the failure of a 6-in. valve that occurred when he attempted to open main steam supply (MSS) valve MSS-25 in the U-3 valve pit. The pit is located northwest of Building 331 in the 300 Area of the Hanford Site. Figure 1-1 shows a layout of the 300 Area steam piping system including the U-3 steam valve pit. Figure 1-2 shows a cutaway view of the approximately 10- by 13- by 16-ft-high valve pit with its various steam valves and connecting piping. Valve MSS-25, an 8-in. valve, is located at the bottom of the pit. The failed 6-in. valve was located at the top of the pit where it branched from the upper portion of the 8-in. line at the 8- by 8- by 6-in. tee and was then ``blanked off`` with a blind flange. The purpose of this technical evaluation was to determine the cause of the accident that led to the failure of the 6-in. valve. The probable cause for the 6-in. valve failure was determined by visual, nondestructive, and destructive examination of the failed valve and by metallurgical analysis of the fractured region of the valve. The cause of the accident was ultimately identified by correlating the observed failure mode to the most probable physical phenomenon. Thermal-hydraulic analyses, component stress analyses, and tests were performed to verify that the probable physical phenomenon could be reasonably expected to produce the failure in the valve that was observed.

  13. Oxidation of alloys targeted for advanced steam turbines

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

    2006-03-12

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

  14. Investigation of thermal storage and steam generator issues

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    A review and evaluation of steam generator and thermal storage tank designs for commercial nitrate salt technology showed that the potential exists to procure both on a competitive basis from a number of qualified vendors. The report outlines the criteria for review and the results of the review, which was intended only to assess the feasibility of each design, not to make a comparison or select the best concept.

  15. Selection of materials for sodium fast reactor steam generators

    SciTech Connect (OSTI)

    Dubiez-Le Goff, S.; Garnier, S.; Gelineau, O.; Dalle, F.; Blat-Yrieix, M.; Augem, J. M.

    2012-07-01

    Sodium Fast Reactor (SFR) is considered in France as the most mature technology of the different Generation IV systems. In the short-term the designing work is focused on the identification of the potential tracks to demonstrate licensing capability, availability, in-service inspection capability and economical performance. In that frame materials selection for the major components, as the steam generator, is a particularly key point managed within a French Research and Development program launched by AREVA, CEA and EDF. The choice of the material for the steam generator is indeed complex because various aspects shall be considered like mechanical and thermal properties at high temperature, interaction with sodium on one side and water and steam on the other side, resistance to wastage, procurement, fabrication, weldability and ability for inspection and in-situ intervention. The following relevant options are evaluated: the modified 9Cr1Mo ferritic-martensitic grade and the Alloy 800 austenitic grade. The objective of this paper is to assess for both candidates their abilities to reach the current SFR needs regarding material design data, from AFCEN RCC-MRx Code in particular, compatibility with environments and manufacturability. (authors)

  16. Steam reforming of low-level mixed waste. Final report

    SciTech Connect (OSTI)

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  17. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  18. Superheated-steam test of ethylene propylene rubber cables using a simultaneous aging and accident environment

    SciTech Connect (OSTI)

    Bennett, P.R.; St. Clair, S.D.; Gilmore, T.W.

    1986-06-01

    The superheated-steam test exposed different ethylene propylene rubber (EPR) cables and insulation specimens to simultaneous aging and a 21-day simultaneous accident environment. In addition, some insulation specimens were exposed to five different aging conditions prior to the 21-day simultaneous accident simulation. The purpose of this superheated-steam test (a follow-on to the saturated-steam tests (NUREG/CR-3538)) was to: (1) examine electrical degradation of different configurations of EPR cables; (2) investigate differences between using superheated-steam or saturated-steam at the start of an accident simulation; (3) determine whether the aging technique used in the saturated-steam test induced artificial degradation; and (4) identify the constituents in EPR that affect moisture absorption.

  19. Improving Steam System Performance: A Sourcebook for Industry, Second Edition (Book) (Revised), Advanced Manufacturing Office (AMO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam System Performance: A Sourcebook for Industry Second Edition The Office of Energy Efficiency and Renewable Energy (EERE) invests in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. IMPROVING STEAM SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY ACKNOWLEDGMENTS Improving Steam System Performance: A Sourcebook for Industry was developed for the U.S. Department of Energy's (DOE) Advanced Manufacturing Office (AMO), formerly

  20. Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural

  1. Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 20

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " ","

  2. Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural

  3. Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " ","

  4. Table N8.3. Average Prices of Purchased Electricity, Natural Gas, and Steam,

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Average Prices of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " ","

  5. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation) | Department of Energy High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 07_anl_high_pressure_steam_ethanol_reforming.pdf More Documents & Publications High Pressure Ethanol Reforming for Distributed Hydrogen Production Bio-Derived

  6. Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at

    Energy Savers [EERE]

    Naval Air Station Oceana | Department of Energy Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Case study details Naval Air Station Oceana findings that its heating needs could be met more efficiently by replacing its central plant with a

  7. Wireless Sensing, Monitoring and Optimization for Campus-Wide Steam Distribution

    SciTech Connect (OSTI)

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Sukumar, Sreenivas R; Woodworth, Ken; Lake, Joe E

    2011-11-01

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize energy delivery within the steam distribution system. Our approach leverages an integrated wireless sensor and real-time monitoring capability. We make real time state assessment on the steam trap health and steam flow estimate of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observing measurements of these sensors with state estimators for system health. Our assessments are based on a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps status. Experimental results show that the energy signature scheme has the potential to identify different steam trap states and it has sufficient sensitivity to estimate flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. We are able to present the steam flow and steam trap status, sensor readings, and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  8. Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at

    Energy Savers [EERE]

    Naval Air Station Oceana | Department of Energy Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana January 7, 2015 - 4:52pm Addthis Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Addthis Related Articles Building Science Corporation worked with Transformations, Inc., on a subdivision of

  9. Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors

    SciTech Connect (OSTI)

    Nathan V. Hoffer; Nolan A. Anderson; Piyush Sabharwall

    2011-08-01

    A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

  10. Comprehensive Study of the Impact of Steam on Polyethyleneimine on Silica

    Office of Scientific and Technical Information (OSTI)

    for CO{sub 2} Capture (Journal Article) | SciTech Connect Comprehensive Study of the Impact of Steam on Polyethyleneimine on Silica for CO{sub 2} Capture Citation Details In-Document Search Title: Comprehensive Study of the Impact of Steam on Polyethyleneimine on Silica for CO{sub 2} Capture An amine sorbent, prepared by impregnation of polyethyleneimine on silica, was tested for steam stability. The stability of the sorbent was investigated in a fixed bed reactor using multiple steam cycles

  11. 01-07-2002 - Steam Valve Near-Miss | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7-2002 - Steam Valve Near-Miss Document Number: NA Effective Date: 01/2002 File (public): PDF icon 01-07-2002_yellow

  12. Considerations When Selecting a Condensing Economizer - Steam Tip Sheet #26B

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet is part of a series of tip sheets on how to optimize an industrial steam system.

  13. PREDICTION OF OXIDE SCALE EXFOLIATION IN STEAM TUBES

    SciTech Connect (OSTI)

    Sabau, Adrian S; Wright, Ian G

    2010-01-01

    Numerical simulation results are presented for the prediction of the likelihood of oxide scale exfoliation from superheater tubes. The scenarios considered involved alloys T22, TP347H, and TP347HFG subjected to a simplified operating cycle in a power plant generating supercritical steam. The states of stress and strain of the oxides grown in steam were based solely on modeling the various phenomena experienced by superheater tubes during boiler operation, current understanding of the oxidation behavior of each alloy in steam, and consideration of operating parameters such as heat flux, tube dimensions, and boiler duty cycle. Interpretation of the evolution of strain in these scales, and the approach to conditions where scale failure (hence exfoliation) is expected, makes use of the type of Exfoliation Diagrams that incorporate various cracking and exfoliation criteria appropriate for the system considered. In these diagrams, the strain accumulation with time in an oxide is represented by a strain trajectory derived from the net strain resulting from oxide growth, differences in coefficients of thermal expansion among the components, and relaxation due to creep. It was found that an oxide growing on a tube subjected to routine boiler load cycling conditions attained relatively low values of net strain, indicating that oxide failure would not be expected to occur during normal boiler operation. However, during a boiler shut-down event, strains sufficient to exceed the scale failure criteria were developed after times reasonably in accord with plant experience, with the scales on the ferritic steel failing in tension, and those on the austenitic steels in compression. The results presented illustrate that using this approach to track the state of strain in the oxide scale through all phases of boiler operation, including transitions from full-to-low load and shut-down events, offers the possibility of identifying the phase(s) of boiler operation during which oxide failure is most likely to occur.

  14. Use Low-Grade Waste Steam to Power Absorption Chillers, Energy Tips: STEAM, Steam Tip Sheet #14 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Use Low-Grade Waste Steam to Power Absorption Chillers Absorption chillers use heat, instead of mechanical energy, to provide cooling. The mechanical vapor compressor is replaced by a thermal compressor (see fgure) that consists of an absorber, a generator, a pump, and a throttling device. The refrigerant vapor from the evaporator is absorbed by a solution mixture in the absorber. This solution is then pumped to the generator where the refrigerant is revaporized using a waste steam heat

  15. Improved global efficiency in industrial applications with cogeneration steam turbines

    SciTech Connect (OSTI)

    Hassan, A.; Alsthom, G.

    1998-07-01

    This paper focuses on medium steam turbine in the range of 10--80 MW and their application in cogeneration plants. The author summarizes the different steps which have led to the TM concept: good efficiency; competitive price; short delivery time; operation flexibility; ease of integration in a cogeneration process. The second part of the document shows two examples of integration of these turbines in cogeneration processes; one for acrilonitril (ACN) and polypropylene plant in Spain and the second for a textile plant in Taiwan.

  16. Analysis of pure electrical and cogeneration steam power plants

    SciTech Connect (OSTI)

    Albar, A.F.

    1982-01-01

    General Electric's method of steam turbine performance was used with pure electrical and with cogeneration power plants at various flow rates. Comparisons were made for two cases: (1) the same amount of heat is added to each boiler and the amount of electrical power generated is compared; and (2) when each plant should produce the same amount of electric power and the amount of heat added to each boiler is compared. Cogeneration is energetically more efficient than pure electrical plant. Correlations for the dependence of heat rate, power generated, heat added to throttle flow ratio were obtained from this work.

  17. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    In this project, the ARIES Building America team collected apartment temperature data from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. Data was analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating in an effort to answer the question, "What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?" This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort.

  18. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today??s high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.

  19. Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.

    SciTech Connect (OSTI)

    Pacheco, James Edward; Wolf, Thorsten; Muley, Nishant

    2013-03-01

    Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

  20. Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control

    SciTech Connect (OSTI)

    Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y.

    2006-07-01

    The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

  1. Hydrogen chloride in superheated steam and chloride in deep brine at The Geysers geothermal field, California

    SciTech Connect (OSTI)

    Haizlip, J.R.; Truesdell, A.H.

    1988-01-01

    Chloride (Cl) concentrations of 10-120 ppm{sub w} have been measured in superheated steam produced by wells at The Geysers, a vapor-dominated geothermal field in northern California. Corrosion of the well casing and steam-gathering system has been recognized in some parts of The Geysers, and is apparently related to the presence of Cl. Cl in the steam is in a volatile form, generated with the steam at reservoir temperatures, and probably travels to the wellhead as HCl gas. Published experimental data for partial pressures of HCl in steam over aqueous HCl solutions and for dissociation constants of HCl were used to calculate distribution coefficients for HCl. Reservoir liquid Cl concentrations capable of generating steam with the observed Cl concentrations were then calculated as a function of pH and temperatures from 250 to 350 C. Equilibrium mineral/liquid reactions with the K-mica and K-feldspar assemblage found in the wells limit the reservoir liquid pH values at various Cl concentrations to about 5 to 6 (near neutral at 250 to 350 C). Within this pH range, liquid at 250 C could not produce steam containing the high Cl concentrations observed. However, liquid at higher temperatures (300 to 350 C) with chloride concentrations greater than 10,000 ppm{sub w} could generate steam with 10 to over 200 ppm{sub w} Cl. There is a positive correlation between pH and the chloride concentrations required to generate a given Cl concentration in steam. The concentration of Cl in superheated steam constrains not only the reservoir liquid composition, but the temperature at which the steam last equilibrated with liquid.

  2. Slag monitoring system for combustion chambers of steam boilers

    SciTech Connect (OSTI)

    Taler, J.; Taler, D.

    2009-07-01

    The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

  3. Modified Ni-Cu catalysts for ethanol steam reforming

    SciTech Connect (OSTI)

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.

    2013-11-13

    Three Ni-Cu catalysts, having different Cu content, supported on ?-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N{sub 2} adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150C amorphous carbon was evidenced, while at 350C crystalline, filamentous carbon is formed.

  4. Next Generation Engineered Materials for Ultra Supercritical Steam Turbines

    SciTech Connect (OSTI)

    Douglas Arrell

    2006-05-31

    To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

  5. Considerations When Selecting a Condensing Economizer, Energy Tips: STEAM, Steam Tip Sheet #26B (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6B Considerations When Selecting a Condensing Economizer Boilers equipped with condensing economizers can have an overall effciency that exceeds 90%. A condensing economizer can increase overall heat recovery and steam system effciency by up to 10% by reducing the fue gas temperature below its dew point, resulting in improved effectiveness of waste heat recovery. This tip sheet is a companion to Steam Tip Sheet 26A, Consider Installing a Condensing Economizer, and discusses two types of

  6. Steam system opportunity assessment for the pulp and paper, chemical manufacturing, and petroleum refining industries: Main report

    SciTech Connect (OSTI)

    None, None

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  7. EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to salvage and demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping...

  8. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  9. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    SciTech Connect (OSTI)

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  10. Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings

    SciTech Connect (OSTI)

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2013-04-01

    This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. The guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.

  11. Alternatives to traditional water washing used to remove impurities in superheated geothermal steam

    SciTech Connect (OSTI)

    Fisher, D.W.; Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

    1996-12-31

    The method of water washing impurities from superheated geothermal steam as adopted from traditional steam boiler operations in electric power generation stations has been used for a decade and a half under several pseudonyms, e.g., de-superheating, enthalpy modification, de-scaling, etc. Water washing can be effective, but it is costly. It is not necessarily expensive to implement or operate, but the cost of unrecoverable energy lost due to steam enthalpy reduction can be quite high. Are there other ways to remove these undesirables from superheated geothermal steam? That question is the focus of this paper. Several alternatives to water washing will be proposed including dry scrubbing, oil washing, and hybrid cleaning. A discussion of the advantages and disadvantages of each method will be presented along with the various geothermal steam impurities and their effects on the process and equipment.

  12. Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Energy Efficency and Renewable Energy U.S. Department of Energy Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Main Report Main Report Download CD-ROM Zip File (27.3 MB) Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System

  13. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, D.E.; Corletti, M.M.

    1993-11-16

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

  14. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, Douglas E. (Delmont, PA); Corletti, Michael M. (New Kensington, PA)

    1993-01-01

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

  15. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  16. High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental

    SciTech Connect (OSTI)

    McHugh, Kevin M; Garnier, John E; Sergey Rashkeev; Michael V. Glazoff; George W. Griffith; Shannong M. Bragg-Sitton

    2013-01-01

    Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a -SiC CMC overbraid, and sintered a-SiC were tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.

  17. Table 14. Steam Coal Exports by Customs District

    Gasoline and Diesel Fuel Update (EIA)

    4. Steam Coal Exports by Customs District (short tons) Year to Date Customs District July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change Eastern Total 1,548,026 1,877,731 2,730,789 6,838,402 10,771,454 -36.5 Baltimore, MD 660,234 1,021,447 748,318 3,223,473 2,702,411 19.3 Boston, MA - 28 - 28 - - Buffalo, NY 3,659 1,435 2,132 6,289 4,312 45.8 New York City, NY 2,203 2,544 1,662 8,307 6,202 33.9 Norfolk, VA 836,759 789,223 1,964,001 3,458,272 8,011,198 -56.8

  18. Table 9. U.S. Steam Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    9. U.S. Steam Coal Exports (short tons) Year to Date Continent and Country of Destination July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 1,406,611 1,627,550 1,191,182 4,453,223 4,544,573 -2.0 Canada* 420,127 547,078 469,237 1,343,851 1,921,358 -30.1 Dominican Republic 50,863 54,923 96,258 107,531 162,299 -33.7 Guatemala 36,375 6,341 - 42,775 88,162 -51.5 Honduras - - 35,825 34,651 142,190 -75.6 Jamaica 45,406 37,479 34,272 118,986

  19. Durability Testing of Fluidized Bed Steam Reforming Products

    SciTech Connect (OSTI)

    JANTZEN, CAROL M.; PAREIZS, JOHN M.; LORIER, TROY H.; MARRA, JAMES C.

    2005-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes but especially aqueous high sodium wastes at the Hanford site, at the Idaho National Laboratory (INL), and at the Savannah River Site (SRS). The FBSR technology converts organic compounds to CO{sub 2} and H{sub 2}O, converts nitrate/nitrite species to N{sub 2}, and produces a solid residue through reactions with superheated steam, the fluidizing media. If clay is added during processing a ''mineralized'' granular waste form can be produced. The mineral components of the waste form are primarily Na-Al-Si (NAS) feldspathoid minerals with cage-like and ring structures and iron bearing spinel minerals. The cage and ring structured minerals atomically bond radionuclides like Tc{sup 99} and Cs{sup 137} and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals appear to stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Durability testing of the FBSR products was performed using ASTM C1285 (Product Consistency Test) and the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP). The FBSR mineral products (bed and fines) evaluated in this study were found to be two orders of magnitude more durable than the Hanford Low Activity Waste (LAW) glass requirement of 2 g/m{sup 2} release of Na{sup +}. The PCT responses for the FBSR samples tested were consistent with results from previous FBSR Hanford LAW product testing. Differences in the response can be explained by the minerals formed and their effects on PCT leachate chemistry.

  20. Development of the first demonstration CFB boiler for gas and steam cogeneration

    SciTech Connect (OSTI)

    Fang, M; Luo, Z.; Li, X.; Wang, Q.; Shi, Z.; Ni, M.; Cen, K.

    1997-12-31

    To solve the shortage of gas and steam supply in the small towns of the country, a new gas steam cogeneration system has been developed. On the basis of the fundamental research on the system, a demonstration gas steam cogeneration system has been designed. As the phase 1 of the project, a 75t/h demonstration CFB boiler for gas steam cogeneration has been erected and operated at Yangzhong Thermal Power Plant of China. This paper introduces the first 75t/h demonstration CFB boiler for gas steam cogeneration. Due to the need of gas steam cogeneration process, the boiler has the features of high temperature cyclone separation, high solid recycle ratio, staged combustion and an external heat exchanger adjusting bed temperature and heat load. The operation results show that the boiler has wide fuel adaptability and the heating value of the coal changes from 14MJ/Kg to 25MJ/Kg. The heat load changes from 85t/h to 28t/h while steam parameter is maintained at the normal conditions. The combustion efficiency of the boiler attain 98%. The boiler design and operation experiences may be a guide to the design and operation of larger CFB units in the future.

  1. Open cycle ocean thermal energy conversion steam control and bypass system

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA); Jennings, Stephen J. (Radnor Township, Delaware County, PA)

    1980-01-01

    Two sets of hinged control doors for regulating motive steam flow from an evaporator to a condenser alternatively through a set of turbine blades in a steam bypass around the turbine blades. The evaporator has a toroidal shaped casing situated about the turbine's vertical axis of rotation and an outlet opening therein for discharging motive steam into an annular steam flow path defined between the turbine's radially inner and outer casing structures. The turbine blades extend across the steam flow path intermediate the evaporator and condenser. The first set of control doors is arranged to prevent steam access to the upstream side of the turbine blades and the second set of control doors acts as a bypass around the blades so as to maintain equilibrium between the evaporator and condenser during non-rotation of the turbine. The first set of control doors preferably extend, when closed, between the evaporator casing and the turbine's outer casing and, when open, extend away from the axis of rotation. The second set of control doors preferably constitute a portion of the turbine's outer casing downstream from the blades when closed and extend, when open, toward the axis of rotation. The first and second sets of control doors are normally held in the open and closed positions respectively by locking pins which may be retracted upon detecting an abnormal operating condition respectively to permit their closing and opening and provide steam flow from the evaporator to the condenser.

  2. Steam reforming as a method to treat Hanford underground storage tank (UST) wastes

    SciTech Connect (OSTI)

    Miller, J.E.; Kuehne, P.B.

    1995-07-01

    This report summarizes a Sandia program that included partnerships with Lawrence Livermore National Laboratory and Synthetica Technologies, Inc. to design and test a steam reforming system for treating Hanford underground storage tank (UST) wastes. The benefits of steam reforming the wastes include the resolution of tank safety issues and improved radionuclide separations. Steam reforming destroys organic materials by first gasifying, then reacting them with high temperature steam. Tests indicate that up to 99% of the organics could be removed from the UST wastes by steam exposure. In addition, it was shown that nitrates in the wastes could be destroyed by steam exposure if they were first distributed as a thin layer on a surface. High purity alumina and nickel alloys were shown to be good candidates for materials to be used in the severe environment associated with steam reforming the highly alkaline, high nitrate content wastes. Work was performed on designing, building, and demonstrating components of a 0.5 gallon per minute (gpm) system suitable for radioactive waste treatment. Scale-up of the unit to 20 gpm was also considered and is feasible. Finally, process demonstrations conducted on non-radioactive waste surrogates were carried out, including a successful demonstration of the technology at the 0.1 gpm scale.

  3. Steam supply system for superposed turbine and process chamber, such as coal gasification

    SciTech Connect (OSTI)

    Menger, W.M.

    1986-08-26

    A steam supply system is described for a process chamber consuming superheated steam at a pressure of about 600 psi or below which is driven by a boiler operating at a pressure of about 2000 psi, a pressure range above that needed by the process chamber for also driving a superposed turbine. The system consists of: (a) a high pressure boiler feed pump for supplying highly purified water to the boiler; (b) a condensing reboiler connected to receive steam from the superposed turbine in a high pressure side; (c) the condensing reboiler also having a low pressure side, essentially isolated from fluid contact with the high pressure side, for receiving water for use in the lower operating pressure steam processes; (d) the condensing reboiler further comprising integral superheating means for heating the water received in the low pressure side into superheated low pressure steam with the steam received in the high pressure side; (e) means for conveying fluid from the high pressure side of the condensing reboiler to the boiler feed pump; and (f) means for conveying the low pressure superheated steam from the condensing reboiler to the process chamber.

  4. Steam generator materials performance in high temperature gas-cooled reactors

    SciTech Connect (OSTI)

    Chafey, J.E.; Roberts, D.I.

    1980-11-01

    This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 760/sup 0/C and produce superheated steam at 538/sup 0/C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 10/sup 6/ MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc.

  5. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    SciTech Connect (OSTI)

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  6. Annual Steam-Electric Plant Operation and Design Data (EIA-767 data file)

    Gasoline and Diesel Fuel Update (EIA)

    Electricity data files > Form EIA-767 Form EIA-767 historical data files Data Released: November 02, 2006 Next Release: None(discontinued) Annual steam-electric plant operation and design data Historical data files contain annual data from organic-fueled or combustible renewable steam-electric plants with a generator nameplate rating of 10 or more megawatts. The data are derived from the Form EIA-767 "Steam-Electric Plant Operation and Design Report." The files contains data on

  7. Appendices: Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DE P A R T M E N U E N I T E D S T A T S O F A E R IC A M Office of Energy Efficency and Renewable Energy U.S. Department of Energy Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Appendices Appendices (This page intentionally left blank.) Steam System Opportunity Assessment for the Pulp and Paper, Chemical

  8. Workers Demolish Coal-fired Steam Plant at EM's Portsmouth Site |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. One of three large smoke stacks comes down during the demolition. One of three large smoke stacks comes down during the demolition. A high-pressure water cannon is used to control dust for the demolition of the X-600 Steam Plant. One of three large smoke stacks comes down during

  9. Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant

    SciTech Connect (OSTI)

    2007-11-01

    This DOE Save Energy Now case study describes how Dow Chemical Company saves 272,000 MMBtu and $1.9 million annually after increasing the steam system energy efficiency of a plant in Louisiana.

  10. Clean Boiler Water-side Heat Transfer Surfaces - Steam Tip Sheet #7

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  11. Use Feedwater Economizers for Waste Heat Recovery - Steam Tip Sheet #3

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  12. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOE Patents [OSTI]

    Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

    1995-09-12

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

  13. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOE Patents [OSTI]

    Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA); Newmark, Robin L. (Pleasanton, CA); Udell, Kent (Berkeley, CA); Buetnner, Harley M. (Livermore, CA); Aines, Roger D. (Livermore, CA)

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  14. Analysis of potential for jet-impingement erosion from leaking steam generator tubes during severe accidents.

    SciTech Connect (OSTI)

    Majumdar, S.; Diercks, D. R.; Shack, W. J.; Energy Technology

    2002-05-01

    This report summarizes analytical evaluation of crack-opening areas and leak rates of superheated steam through flaws in steam generator tubes and erosion of neighboring tubes due to jet impingement of superheated steam with entrained particles from core debris created during severe accidents. An analytical model for calculating crack-opening area as a function of time and temperature was validated with tests on tubes with machined flaws. A three-dimensional computational fluid dynamics code was used to calculate the jet velocity impinging on neighboring tubes as a function of tube spacing and crack-opening area. Erosion tests were conducted in a high-temperature, high-velocity erosion rig at the University of Cincinnati, using micrometer-sized nickel particles mixed in with high-temperature gas from a burner. The erosion results, together with analytical models, were used to estimate the erosive effects of superheated steam with entrained aerosols from the core during severe accidents.

  15. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators - Steam Tip Sheet #22

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on installing high-pressure boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  16. Steam System Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment

    Broader source: Energy.gov [DOE]

    This case study describes how a DOE energy assessment helped the J.R. Simplot Company identify ways to reduce energy use in its Pocatello, Idaho, plant's steam system.

  17. Some considerations in simulation of superheated steam drying of softwood lumber

    SciTech Connect (OSTI)

    Pang, S. [New Zealand Forest Research Inst., Rotorua (New Zealand). Wood Processing Div.

    1997-05-01

    A mathematical model for high-temperature drying of softwood lumber with moist air has been modified and extended to simulate wood drying with superheated steam. In the simulation, differences between the two types of drying are considered, these include: external heat and mass transfer processes and calculation of equilibrium moisture content. The external mass transfer coefficient in the superheated steam drying was found to be much higher than that in the moist air drying, however, the heat transfer coefficients for these two cases were of the same order. The predicted drying curves and wood temperatures from the superheated steam drying model were compared with experimental data and there was close agreement. Further studies will apply the model to development of commercial drying schedules for wood drying with superheated steam.

  18. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    SciTech Connect (OSTI)

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2013-08-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources.

  19. Integrated vacuum absorption steam cycle gas separation (Patent) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect SciTech Connect Search Results Patent: Integrated vacuum absorption steam cycle gas separation Citation Details In-Document Search Title: Integrated vacuum absorption steam cycle gas separation Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the

  20. "Table A48. Total Expenditures for Purchased Electricity, Steam, and Natural"

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Million Dollars)" ," Electricity",," Steam",," Natural Gas" ,"-","-----------","-","-----------","-","------------","-----------","RSE" "

  1. "Table A49. Average Prices of Purchased Electricity, Steam, and Natural Gas"

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Average Prices of Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam",," Natural Gas" ," (Million kWh)",," (Billion Btu)",," (1000 cu ft)"

  2. Technology Solutions Case Study: Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois

    SciTech Connect (OSTI)

    2013-10-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources.

  3. Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Million U.S. Dollars. Electricity Components Natural Gas Electricity Electricity from Sources Natural Gas NAICS Electricity from Local Other than Natural Gas from Local Code(a) Subsector and Industry Total Utility(b) Local Utility(c) Total Utility(b) Total United States 311 Food 5,328 4,635

  4. Table A23. Quantity of Purchased Electricity, Steam, and Natural Gas by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam",," Natural Gas" ,," (Million kWh)",," (Billion Btu)",," (Billion cu ft)" ,," -------------------------",," -------------------------",,"

  5. Table A27. Quantity of Purchased Electricity, Steam, and Natural Gas by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," Electricity",," Steam",," Natural Gas" ," (Million (kWh)",," (Billion Btu)",," (Billion cu ft)" ," -----------------------",," -----------------------",,"

  6. Downhole steam generator using low-pressure fuel and air supply

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07

    For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

  7. Environmental Assessment for the Replacement Source of Steam for A Area at the Savannah River Site

    Office of Environmental Management (EM)

    68 OCTOBER 2006 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE ENVIRONMENTAL ASSESSMENT FOR THE REPLACEMENT SOURCE OF STEAM FOR A AREA AT THE SAVANNAH RIVER SITE DOE/EA-1568 ENVIRONMENTAL ASSESSMENT FOR THE REPLACEMENT SOURCE OF STEAM FOR A AREA AT THE SAVANNAH RIVER SITE OCTOBER 2006 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE ii TABLE OF CONTENTS Page 1.0 INTRODUCTION

  8. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR -- EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-08-24

    Budget Period 2 of the East Binger Unit (''EBU'') DOE Project has been. Recent activities included additional data gathering and project monitoring, plus initiation of work on an SPE paper on the modeling efforts of the project. Early production performance suggests horizontal wells do not provide sufficient additional production over vertical wells to justify their incremental cost. It will take more time to evaluate the impact of the horizontal wells on sweep and ultimate recovery, but it is unlikely that an improvement in recovery will be sufficient to make the overall economic value of horizontal wells greater than the economic value of vertical wells. Monitoring of overall performance of the pilot area continues. Overall response to the various projects continues to be very favorable. Injection into the pilot area has nearly doubled, while gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area has dropped from 60% to 20%. Efforts to further disseminate knowledge gained through this project, by means of technical paper presentations to industry groups, are underway. Project monitoring and technology transfer will be focus areas of Budget Period 3.

  9. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR--EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-06-03

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project is complete. Two additional vertical infill wells were drilled, completed, and brought on production during the reporting period. These were the last two of five wells to be drilled in the pilot area. Additional drilling is planned for Budget Period 3. Overall response to the various projects continues to be very favorable. Nitrogen injection into the pilot area had doubled prior to unrelated nitrogen supply problems, while gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area has dropped from 60% to 20%. Meanwhile, pilot area oil production has increased from 300 bpd prior to development to an average of 435 bpd for January through March 2004. March production was the highest at 542 bpd due to the addition of the two new vertical wells. Production performances of the new wells continue to support the current opinion that horizontal wells do not provide sufficient additional production over vertical wells to justify their incremental cost.

  10. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2003-01-31

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project continues. Major development work planned for the project includes the drilling of three horizontal production and one vertical injection wells, the conversion of five wells from production to injection service, and the expansion of injection capacity at the nitrogen management facility. Other work items include initiation of project monitoring and continued reservoir simulation. EBU 74G-2, the injection well planned to support the production of EBU 64-3H, has been drilled. Completion was underway at the time of this report. EBU 64-3H was fracture-stimulated during the period, further increasing production from this new horizontal well. Drilling of the final two wells of the pilot project is planned for 2003. Both are planned as horizontal producing wells. Work also began on projects aimed at increasing injection in the pilot area. The project to add compression and increase injection capacity at the nitrogen management facility was initiated, with completion targeted for March 2003. Additional producer-to-injector conversions are expected to be implemented around the same time. The revised history match of the simulation model has been completed, and work has begun to evaluate options with forecast simulations. The quality of the history match is significantly improved over the prior match. The predicted distribution of remaining reserves in the field is significantly changed. Decisions on projects planned for implementation later in Budget Period 2 will be guided by new forecasts.

  11. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir--East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2006-05-18

    A significant work program was implemented from 2002 to 2005 in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work included the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, has increased an average of 60% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas have both decreased. After decreasing to 20-25% early in the project, nitrogen recycle (produced nitrogen volume divided by injected nitrogen volume) within the pilot area has risen to about 40%, still far below the 72% prior to initiation of the project. Poor areal sweep efficiency appears to be the primary cause of nitrogen cycling. Seven vertical and three horizontal wells have been drilled in the pilot area throughout the project, and most have had initial produced gas oil ratios and gas nitrogen contents significantly below the field averages. Given similar reservoir conditions of net thickness and gas sweep, vertical wells are performing nearly as well as horizontal wells. Additional vertical well drilling was completed in 2005 following the success of wells drilled from 2002 through 2004.

  12. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR--EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-12-22

    A significant work program has been implemented in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work includes the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area has nearly doubled, while gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area has increased to 23% in recent months, but this is still far below the 58% recycle prior to initiation of the project. Two additional wells--EBU 65-2 and EBU 67-2--were brought on line during this reporting period. EBU 65-2 was successfully sidetracked after encountering thin pay on the edge of the reservoir, and is awaiting conversion to nitrogen injection service. The early performance of EBU 67-2 has been as predicted.

  13. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir--East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2005-09-15

    A significant work program was implemented from 2002 to 2004 in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work included the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area, though limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, and has increased 70% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area is now only about 32%, far below the 72% recycle prior to initiation of the project. Poor areal sweep efficiency appears to be the primary cause of nitrogen cycling. Four vertical and three horizontal wells have been drilled in the pilot area throughout the project, and most have had initial produced gas oil ratios and gas nitrogen contents significantly below the field averages. Additional vertical well drilling is planned due to the success of wells drilled to date.

  14. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir -- East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2006-03-23

    A significant work program was implemented from 2002 to 2005 in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work included the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, has increased an average of 50% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas have both decreased. After decreasing to 20-25% early in the project, nitrogen recycle (produced nitrogen volume divided by injected nitrogen volume) within the pilot area has risen back to about 42%, still far below the 72% prior to initiation of the project. Poor areal sweep efficiency appears to be the primary cause of nitrogen cycling. Seven vertical and three horizontal wells have been drilled in the pilot area throughout the project, and most have had initial produced gas oil ratios and gas nitrogen contents significantly below the field averages. Given similar reservoir conditions of net thickness and gas sweep, vertical wells are performing nearly as well as horizontal wells. Additional vertical well drilling was completed in 2005 following the success of wells drilled from 2002 through 2004.

  15. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2003-05-30

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project continues. Significant advances with the reservoir simulation model have led to changes in the program. One planned horizontal well location, EBU 44-3H, has been eliminated from the program, and another, EBU 45-3H, has been deferred, and may be replaced by a vertical well or completely eliminated at a future date. A new horizontal well location, EBU 63-2H, has been added. EBU 74G-2, the one new injection well planned for the project, was completed and brought on production. It will be produced for a period of time before converting it to injection. Performance is exceeding expectations. Work also continued on projects aimed at increasing injection in the pilot area. EBU 65-1 was converted to injection service. The project to add compression and increase injection capacity at the nitrogen management facility is nearing completion. Additional producer-to-injector conversions will follow.

  16. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2002-01-16

    Work associated with Budget Period 1 of the East Binger (Marchand) Unit project is nearing completion. A major aspect of this project is accurate modeling of the performance of horizontal wells. Well EBU 37-3H, the first horizontal well drilled in the unit, was drilled in the second quarter of 2001. After much difficulty establishing economic production from the well, the well was hydraulically fractured in November 2001. Post-treatment production has been very encouraging and is significantly better than a vertical well drilled in a similar setting. International Reservoir Technologies, Inc. has completed the final history match of the pilot area reservoir simulation model, including tuning to the performance of the horizontal well. The model's predicted reservoir pressure gradient between injection and production wells accurately matches observed data from the field, a significant improvement from prior model predictions. The model's predicted gas injection profiles now also more accurately match field data. Work has begun toward evaluating the optimum development scenario with the pilot model. Initially, four scenarios will be evaluated--two involving all horizontal infill wells, one involving all vertical infill wells, and one involving a combination of vertical and horizontal infill wells. The model cases for these scenarios have been defined, and construction of them is underway.

  17. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR-EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-02-24

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project is progressing and nearing completion. Two of three planned horizontal wells have been drilled and completed. The third horizontal well will be replaced by two vertical wells, both of which will be drilled in early 2004. Based on costs and performances of all new wells, it is believed that, in the setting of the East Binger Unit, the benefits of horizontal wells do not justify the additional cost. In addition to the drilling of new wells, the project also includes conversions of producing wells to injection service. Four wells have now been converted, and injection in the pilot area has doubled. A fifth planned conversion has been removed from the project. Overall response to the various projects continues to be very favorable. Gas injection into the pilot area has increased from 4.0 MMscf/d prior to development to 8.0 MMscf/d in November, while gas production has decreased from 4.1 MMscf/d to 3.0 MMscf/d. The nitrogen content of produced gas has dropped from 58% to 45%. This has reduced the nitrogen recycle within the pilot area from 60% to under 20%. Meanwhile, pilot area oil production has increased, from 300 bpd prior to development to over 425 bpd in November 2003. This is down from 600 bopd in September because EBU 63-2H has begun to level off and other wells were temporarily down. This incremental rate will increase with the addition of the two vertical wells.

  18. Design and Implementation of a C02 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in a Shallow Shelf Carbonate Approaching Waterflood Depletion

    SciTech Connect (OSTI)

    1997-08-01

    The objective is to utilize reservoir characteristics and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. Also the project seeks to demonstrate the performance and economic viability of the project in the field.

  19. Design and Implementation of a CO{sub 2} Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in a Shallow Shelf Carbonate Approaching Waterflood Design

    SciTech Connect (OSTI)

    Durrent, E.G.; Harpole, K.J.; Owen, Rex; Robertson, C.R.

    1999-01-14

    Work reported in this document covers tasks in Budget Phase II. The principle task in Budget Phase II is Field Demonstration.

  20. Post waterflood CO{sub 2} miscible flood in light oil fluvial - dominated deltaic reservoirs. Fourth quarterly progress report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    1995-11-10

    Production from the Marg Area 1 at Port Neches is averaging 222 BOPD for this quarter. The production drop is due in part to mechanical problems and to poor sweep efficiency caused by water blockage that prevented the CO{sub 2} from contacting new residual oil deeper in the reservoir. Alternating water and gas injection assisted to some extent in maintaining oil production and improved the reservoir yield by reducing the gas production. A workover was performed on well Kuhn No. 38 to correct failed gravel pack setting. Production from the well was restored to 60 BOPD. Plugging of the injection wells continue to be a problem, reducing the injection rate in critical areas of the reservoir, near well Kuhn No. 15R. Texaco drilled the well Polk B No. 39 to The Marg Area 3 reservoir to gain structural position based on the 3D seismic, and found the sand present as anticipated. However, the sand did not have any hydrocarbon accumulation. For this reason, Texaco will abandon testing the idea of utilizing CO{sub 2} to accelerate the primary production rate and reduce water production and primary production cycle time, in the reservoir.