Sample records for flooding polymer flooding

  1. Oilfield flooding polymer

    DOE Patents [OSTI]

    Martin, Fred D. (Socorro, NM); Hatch, Melvin J. (Socorro, NM); Shepitka, Joel S. (Socorro, NM); Donaruma, Lorraine G. (Syosset, NY)

    1986-01-01T23:59:59.000Z

    A monomer, polymers containing the monomer, and the use of the polymer in oilfield flooding is disclosed. The subject monomer is represented by the general formula: ##STR1## wherein: n is an integer from 0 to about 4; m is an integer from 0 to about 6; a is an integer equal to at least 1 except where m is equal to 0, a must equal 0 and where m is equal to 1, a must equal 0 or 1; p is an integer from 2 to about 10; b is an integer equal to at least 1 and is of sufficient magnitude that the ratio b/p is at least 0.2; and q is an integer from 0 to 2. The number of hydroxy groups in the monomer is believed to be critical, and therefore the sum of (a+b) divided by the sum (m+p) should be at least 0.2. The moieties linked to the acrylic nitrogen can be joined to provide a ringed structure.

  2. Multiobjective Design and Optimization of Polymer Flood Performance

    E-Print Network [OSTI]

    Ekkawong, Peerapong

    2013-07-22T23:59:59.000Z

    The multiobjective genetic algorithm can be used to optimize two conflicting objectives, oil production and polymer utility factor in polymer flood design. This approach provides a set of optimal solutions which can be considered as trade-off curve...

  3. Water Visualization and Flooding in Polymer Electrolyte Membrane Fuel Cells

    E-Print Network [OSTI]

    Petta, Jason

    Water Visualization and Flooding in Polymer Electrolyte Membrane Fuel Cells Brian Holsclaw West- 2H2O e- e- e- e- e- H+ H+ H+ Membrane + Schematic of a PEMFC Operation #12;PFR PEM Fuel Cell Plug for membrane Two-phase flow in channels #12;CSTR PEM Fuel Cell Continuous Stirred-Tank Reactor (CSTR) "Perfect

  4. HighResolution Numerical Methods for MicellarPolymer Flooding and Surfactant Enhanced Aquifer Remediation

    E-Print Network [OSTI]

    Trangenstein, John A.

    been used to study the micellar­ polymer flooding process in enhanced oil recovery [12], [18], [19 in practical im­ plementation of enhanced oil recovery techniques at this time, there is increasing interestHigh­Resolution Numerical Methods for Micellar­Polymer Flooding and Surfactant Enhanced Aquifer

  5. An optimal viscosity profile in enhanced oil recovery by polymer flooding

    E-Print Network [OSTI]

    Daripa, Prabir

    An optimal viscosity profile in enhanced oil recovery by polymer flooding Prabir Daripa a,*, G in oil reservoir is one of the effective methods of enhanced (tertiary) oil recovery. A classical model reserved. Keywords: Enhanced oil recovery; Polymer flooding; Linear stability 0020-7225/$ - see front

  6. Horizontal well improves oil recovery from polymer flood--

    SciTech Connect (OSTI)

    Bruckert, L. (Elf Aquitaine, Boussens, (FR))

    1989-12-18T23:59:59.000Z

    Horizontal drilling associated with an injection scheme appears to be highly promising for obtaining additional oil recovery. Horizontal well CR 163H, in the Chateaurenard field is discussed. It demonstrated that a thin unconsolidated sand can be successfully drilled and cased. The productivity index (PI) of the well was much greater than vertical wells, and an unproduced oil bank was successfully intersected. On the negative side, it was necessary to pump low in a very deviated part of the well, and the drilling cost was high compared to an onshore vertical well. CR 163H was the fifth and probably most difficult horizontal well drilled by Elf Aquitaine. Located within a polymer-flood project, the target was a 7-m thick sand reservoir at a vertical depth of 590:0080 m. In this inverted seven-spot configuration with one injector in the center and six producers at a distance of 400 m, a polymer solution was injected from 1977 to 1983, followed by water injection.

  7. Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

    SciTech Connect (OSTI)

    Brown, Lewis R.; Pittman Jr., Charles U.; Lynch, F. Leo; Vadie, A. Alex; French, W. Todd

    2003-02-10T23:59:59.000Z

    The objective of this project was to determine if the effectiveness of a microbial permeability profile modification technique can be improved through polymer flooding.

  8. Flooding and Fire Ants

    E-Print Network [OSTI]

    Nester, Paul

    2008-08-05T23:59:59.000Z

    Fire ants can be a serious problem during and after a flood. This publication explains how to protect yourself when you must return to flooded structures or deal with storm debris....

  9. Alkaline flooding injection strategy

    SciTech Connect (OSTI)

    French, T.R.; Josephson, C.B.

    1992-03-01T23:59:59.000Z

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  10. Field results of the polymer flooding pilot project in eastern Kansas

    SciTech Connect (OSTI)

    McCauley, R.T.

    1983-01-01T23:59:59.000Z

    The Moran field in Allen County, Kans., has been producing since the early 1900s. Flooding became the principal means of production in this pool in 1957. Inexco purchased the Moran field in 1968. In June of 1975, Inexco Oil Co. initiated a Polymer Pilot Project on the Kreiger Lease in the Moran field. In March of 1977, this project was expanded from it's original 20 acres to a 126-acre project. This case history addresses the financial and technical success of this project and is considered significant in terms of the future of enhanced recovery projects in this type of reservoir. Inexco has demonstrated the feasibility and successful recovery of additional oil from the Moran Pool by means of the addition of polymer to the existing waterflood. This work describes the operations and interpretation of the results.

  11. Application of Polymer Gels as Conformance Control Agents for Carbon Dioxide for Floods in Carbonate Reservoirs

    E-Print Network [OSTI]

    Al Ali, Ali 1986-

    2012-10-15T23:59:59.000Z

    ) .................................................... 203 Fig. 4.110 ? CT Image of Oil Saturated Core after Flooded with 1 PV of CO2 (CGI) .. 203 Fig. 4.111 ? CT Image of Oil Saturated Core after Flooded with 3 PV of CO2 (CGI) .. 203 Fig. 4.112 ? CT Image of Oil Saturated Core (CGI-Fracked...) ...................................... 204 Fig. 4.113 ? CT Image of Oil Saturated Core after Flooded with 1 PV of CO2 (CGI- Fracked) .................................................................................................. 204 Fig. 4.114 ? CT Image of Oil Saturated Core after...

  12. Improving Gas Flooding Efficiency

    SciTech Connect (OSTI)

    Reid Grigg; Robert Svec; Zheng Zeng; Alexander Mikhalin; Yi Lin; Guoqiang Yin; Solomon Ampir; Rashid Kassim

    2008-03-31T23:59:59.000Z

    This study focuses on laboratory studies with related analytical and numerical models, as well as work with operators for field tests to enhance our understanding of and capabilities for more efficient enhanced oil recovery (EOR). Much of the work has been performed at reservoir conditions. This includes a bubble chamber and several core flood apparatus developed or modified to measure interfacial tension (IFT), critical micelle concentration (CMC), foam durability, surfactant sorption at reservoir conditions, and pressure and temperature effects on foam systems.Carbon dioxide and N{sub 2} systems have been considered, under both miscible and immiscible conditions. The injection of CO2 into brine-saturated sandstone and carbonate core results in brine saturation reduction in the range of 62 to 82% brine in the tests presented in this paper. In each test, over 90% of the reduction occurred with less than 0.5 PV of CO{sub 2} injected, with very little additional brine production after 0.5 PV of CO{sub 2} injected. Adsorption of all considered surfactant is a significant problem. Most of the effect is reversible, but the amount required for foaming is large in terms of volume and cost for all considered surfactants. Some foams increase resistance to the value beyond what is practical in the reservoir. Sandstone, limestone, and dolomite core samples were tested. Dissolution of reservoir rock and/or cement, especially carbonates, under acid conditions of CO2 injection is a potential problem in CO2 injection into geological formations. Another potential change in reservoir injectivity and productivity will be the precipitation of dissolved carbonates as the brine flows and pressure decreases. The results of this report provide methods for determining surfactant sorption and can be used to aid in the determination of surfactant requirements for reservoir use in a CO{sub 2}-foam flood for mobility control. It also provides data to be used to determine rock permeability changes during CO{sub 2} flooding due to saturation changes, dissolution, and precipitation.

  13. Optimum Reservoir Operation for Flood Control and Conservation Purposes

    E-Print Network [OSTI]

    Wurbs, Ralph A.; Cabezas, L. Morris; Tibbets, Michael N.

    . With stringent flood plain management, susceptibility to flooding could actually decrease over time as existing activities choose to leave the flood plain and regulation prevents other activities from moving into the flood plain. Reservoir sedimentation reduces...

  14. Flood Plain and Floodway Management Act (Montana)

    Broader source: Energy.gov [DOE]

    The state regulates flood-prone lands and waters to prevent and alleviate flooding threats to life and health and reduce private and public economic losses. The purpose of 76-5 MCA, parts 1-4 is to...

  15. Flooding and Recycling Authorizations Konstantin (Kosta) Beznosov

    E-Print Network [OSTI]

    Flooding and Recycling Authorizations Konstantin (Kosta) Beznosov Laboratory for Education delivery channels with speculatively pre- computed authorizations and actively recycling them on a just Security Keywords authorization recycling, authorization flooding, access con- trol, authorization, publish

  16. Blackland's flood warning system protects soldiers

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01T23:59:59.000Z

    the No. 1 reason for installing the FAST system was ?to protect soldiers by alerting them of dangerous flood conditions.? Equipment and personnel had been lost at low water crossings during storms, he said. Wolfe said the sensors, which constantly... said they also hope to use real-time stream level and weather data to develop a flood prediction model to forecast the likelihood of flooding across Fort Hood. Blackland?s f lood warning system protects soldiers ...

  17. FEMA - National Flood Insurance Program Elevation Certificate...

    Open Energy Info (EERE)

    and Instructions Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: FEMA - National Flood Insurance Program Elevation Certificate and Instructions...

  18. Flood protection in the swamps

    E-Print Network [OSTI]

    Reesby, Raymond George

    1958-01-01T23:59:59.000Z

    LIBRA R Y A S N COLLEGE OF TEXAS FLOOD PROTECTION IN THE SWAMPS A Thesis Submitted to the Graduate School of the Agricultural and Mechanical School of Texas In Partial Fulfillment of the Requirements for the Professi. onal Degree of Civil... Joining points b, o, o , e tl ~Ke is a vertical cut-off wall extending downward from the bottom of the heel at its r1verside end. It has the dual function of reducing the uplift and xeinforcing the structure against sliding, and is defined by lines...

  19. Kiran Maharjan Climate change and floods

    E-Print Network [OSTI]

    Richner, Heinz

    management processes by providing many kinds of information. The level of vulnerability of people towardsKiran Maharjan Climate change and floods Climate change and floods Vulnerability analysis of people, in the livelihoods of people. Hence, climate change is making everyone vulnerable to its impacts. Most of the people

  20. New Executive Order Establishes a Federal Flood Risk Management...

    Energy Savers [EERE]

    New Executive Order Establishes a Federal Flood Risk Management Standard New Executive Order Establishes a Federal Flood Risk Management Standard February 5, 2015 - 10:55am Addthis...

  1. Green Infrastructure and Flood Resiliency-Land Use Management...

    Office of Environmental Management (EM)

    Green Infrastructure and Flood Resiliency-Land Use Management as an Adaptation Strategy in the Built Environment Green Infrastructure and Flood Resiliency-Land Use Management as an...

  2. EO 13690: Establishing a Federal Flood Risk Management Standard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EO 13690: Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input EO 13690: Establishing a Federal Flood Risk...

  3. Simulation and Economic Screening of Improved Oil Recovery Methods with Emphasis on Injection Profile Control Including Waterflooding, Polymer Flooding and a Thermally Activated Deep Diverting Gel

    E-Print Network [OSTI]

    Okeke, Tobenna

    2012-07-16T23:59:59.000Z

    recovery of hydrocarbons and premature well or field abandonment. Water production can be more problematic during waterflooding in a highly heterogeneous reservoir with vertical communication between layers leading to unevenness in the flood front, cross...

  4. Improved Efficiency of Miscible CO(2) Floods and Enhanced Prospects for CO(2) Flooding Heterogeneous Reservoirs.

    SciTech Connect (OSTI)

    Grigg, R.B.; Schechter, D.S.

    1997-08-01T23:59:59.000Z

    The overall goal of this project was to improve the efficiency of miscible C0{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This objective was accomplished through experimental and modeling research in three task areas: (1) foams for selective mobility control in heterogeneous reservoirs,( 2) reduction of the amount of C0{sub 2} required in C0{sub 2} floods, and (3) low IFT processe and the possibility of C0{sub 2} flooding in fractured reservoirs. This report provides results from the three-year project for each of the three task areas.

  5. Flood Zone Building Permits (District of Columbia)

    Broader source: Energy.gov [DOE]

    Building permits are required for new construction and development in the Special Flood Hazard Areas (SFHA). All development projects in SFHA must comply with Title 12 DCMR and Title 20 DCMR...

  6. Matrix Acidizing Parallel Core Flooding Apparatus

    E-Print Network [OSTI]

    Ghosh, Vivek

    2013-07-23T23:59:59.000Z

    and provide this information to the field. To conduct various experiments, core flooding setups are created. The setup consists of a core holder, accumulator, overburden pump, injection pump, accumulator, pressure sensors, and a back pressure regulator...

  7. Aqueous flooding methods for tertiary oil recovery

    DOE Patents [OSTI]

    Peru, Deborah A. (Bartlesville, OK)

    1989-01-01T23:59:59.000Z

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  8. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect (OSTI)

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21T23:59:59.000Z

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses were used to better understand porosity and permeability trends in the region and to characterize barriers and define flow units. Diagenetic alterations that impact porosity and permeability include development of quartz overgrowths, sutured quartz grains, dissolution of feldspar grains, formation of clay mineral coatings on grains, and calcite cementation. Many of these alterations are controlled by facies. Mapping efforts identified distinct flow units in the northern part of the field showing that the Pennsylvanian Bridgeport consists of a series of thick incised channel fill sequences. The sandstones are about 75-150 feet thick and typically consist of medium grained and poorly sorted fluvial to distributary channel fill deposits at the base. The sandstones become indistinctly bedded distributary channel deposits in the main part of the reservoir before fining upwards and becoming more tidally influenced near their top. These channel deposits have core permeabilities ranging from 20 md to well over 1000 md. The tidally influenced deposits are more compartmentalized compared to the thicker and more continuous basal fluvial deposits. Fine grained sandstones that are laterally equivalent to the thicker channel type deposits have permeabilities rarely reaching above 250 md. Most of the unrecovered oil in Lawrence Field is contained in Pennsylvanian Age Bridgeport sandstones and Mississippian Age Cypress sandstones. These reservoirs are highly complex and compartmentalized. Detailed reservoir characterization including the development of 3-D geologic and geocellular models of target areas in the field were completed to identify areas with the best potential to recover remaining reserves including unswept and by-passed oil. This project consisted of tasks designed to compile, interpret, and analyze the data required to conduct reservoir characterization for the Bridgeport and Cypress sandstones in pilot areas in anticipation of expanded implementation of ASP flooding in Lawrence Field. Geologic and geocellular modeling needed for reservoir characterization and res

  9. Drops, Slugs, and FloodingDrops, Slugs, and Flooding in PEM Fuel Cellsin PEM Fuel Cells

    E-Print Network [OSTI]

    Petta, Jason

    Drops, Slugs, and FloodingDrops, Slugs, and Flooding in PEM Fuel Cellsin PEM Fuel Cells A Study Fuel CellBackground: PEM Fuel Cell Graphic by Marc Marshall, Schatz Energy Research Center http ProjectDrag Project SetupSetup MFC (H2, N2 Inputs) Bubbler Current Humidity Sensor Modified PEM Fuel Cell

  10. POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING

    SciTech Connect (OSTI)

    Douglas Arnell; Malcolm Pitts; Jie Qi

    2004-11-01T23:59:59.000Z

    A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals in these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical-rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.

  11. A methodology for forecasting carbon dioxide flooding performance

    E-Print Network [OSTI]

    Marroquin Cabrera, Juan Carlos

    1998-01-01T23:59:59.000Z

    A methodology was developed for forecasting carbon dioxide (CO2) flooding performance quickly and reliably. The feasibility of carbon dioxide flooding in the Dollarhide Clearfork "AB" Unit was evaluated using the methodology. This technique is very...

  12. Deep Placement Gel Bank as an Improved Oil Recovery Process: Modeling, Economic Analysis and Comparison to Polymer Flooding

    E-Print Network [OSTI]

    Seyidov, Murad

    2011-08-08T23:59:59.000Z

    , the combination of delayed production response and large polymer amounts cause such projects to be less economically favorable than deep gel placement treatments. From results of several sensitivity runs, it can be concluded that plug size and oil viscosity...

  13. Inland and coastal flooding: developments in prediction and prevention

    E-Print Network [OSTI]

    Hunt, Julian

    of meteorological causes of floods, hydraulics of flood water movement and coastal wind­wave-surge. Probabilistic effects of climatic trends on flooding, appropriate planning of rapidly growing urban areas could mitigate factors, namely, the historical advantages of these locations for trade and the unstable tendency of large

  14. Fuel cell flooding detection and correction

    DOE Patents [OSTI]

    DiPierno Bosco, Andrew (Rochester, NY); Fronk, Matthew Howard (Honeoye Falls, NY)

    2000-08-15T23:59:59.000Z

    Method and apparatus for monitoring an H.sub.2 -O.sub.2 PEM fuel cells to detect and correct flooding. The pressure drop across a given H.sub.2 or O.sub.2 flow field is monitored and compared to predetermined thresholds of unacceptability. If the pressure drop exists a threshold of unacceptability corrective measures are automatically initiated.

  15. Caring for Important Papers after a Flood

    E-Print Network [OSTI]

    FCS Project Team - FDRM UNIT

    2005-09-30T23:59:59.000Z

    ER-003 6-06 Extension Family Development and Resource Management Specialists The Texas A&M University System If your important papers have been damaged by flooding or rainwater, you might be able to save them by following these instructions...

  16. Mitigating floods : reconstructing Lives : rehabilitating Thatta

    E-Print Network [OSTI]

    Gul, Marium

    2011-01-01T23:59:59.000Z

    Pakistan was struck by floods in July 2010, the effects of which left 20.36 million people affected and 1.9 million homes damaged or destroyed'. In the province of Sindh in Pakistan, most of the affected population of the ...

  17. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    SciTech Connect (OSTI)

    Grigg, Reid B.; Schechter, David S.

    1999-10-15T23:59:59.000Z

    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

  18. Development of cost-effective surfactant flooding technology. Final report

    SciTech Connect (OSTI)

    Pope, G.A.; Sepehrnoori, K.

    1996-11-01T23:59:59.000Z

    Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also available in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.

  19. Flood analyses for Department of Energy Y-12, ORNL and K-25 Plants. Flood analyses in support of flood emergency planning

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The study involved defining the flood potential and local rainfall depth and duration data for the Department of Energy`s (DOE) Y-12, Oak Ridge National Laboratory (ORNL), and K-25 plants. All three plants are subject to flooding from the Clinch River. In addition, the Y-12 plant is subject to flooding from East Fork Poplar and Bear Creeks, the ORNL plant from Whiteoak Creek and Melton Branch, and the K-25 plant from Poplar Creek. Determination of flood levels included consideration of both rainfall events and postulated failures of Norris and Melton Hill Dams in seismic events.

  20. Imbibition flooding with CO?-enriched water

    E-Print Network [OSTI]

    Grape, Steven George

    1990-01-01T23:59:59.000Z

    Imbibition of water into the pore space of the matrix is the dominant oil production factor in fractured reservoirs. Conventional water and gas injection methods fail to improve oil recovery in these reservoirs because of fluid channeling through... the fracture system. The largest fractured reservoirs in Texas are tight, dual porosity limestone reservoirs such as the Austin Chalk. Imbibition flooding is limited in tight fractured reservoirs because of low countercurrent water-oil imbibition flow rates...

  1. Flash flooding events in south central Texas

    E-Print Network [OSTI]

    Utley, Tom Wilson

    2012-06-07T23:59:59.000Z

    . Heights in Peters. (Fran Henry, 1981 I. TABLE 1. Station information for Del Rio, Stephenville, and Victoria (from Henry, 1981). Station Name Station Number Call Elevation Letters m Latitude Lon itude Del Rio 72261 Stephenville 72Z60 Victoria... Totals Index (TTI) was computed for each rawinsonde station using the following formula: 16 TABLE 5. Neteorological elements used to determine the state of the atmosphere orior to flash flooding events over South Central Texas in a triangular area...

  2. Scale-up of miscible flood processes

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1993-06-01T23:59:59.000Z

    The current project is a systematic research effort aimed at quantifying the interactions of physical mechanisms that control the scaling behavior of miscible floods. Displacement performance in a miscible flood is the result of a complex set of competing and interacting mechanisms. Phase behavior is of fundamental importance because the transfer of components from the oil to the injected fluid (as in most CO{sub 2} floods) or from the injected fluid to the oil (as in rich gas floods) can generate mixture compositions with displacement properties very different from those of pure CO{sub 2} and original oil. The goal of this project, is to make more accurate quantitative predictions of the impact of nonuniform flow, crossflow and phase behavior in flows in heterogeneous reservoir rocks. In past reports, we have discussed the instabilities arising from unfavorable mobility ratios that occur during injection of a solvent such as CO{sub 2}. In this report, two-dimensional (2D) and three-dimensional (3D) computations by a particle-tracking technique are compared for unstable displacements in homogeneous porous media, with and without gravity. In homogeneous porous media without gravity, 2D fingering patterns and the length of the transition zone are nearly the same as those obtained in 3D displacements. When gravity is added, however, calculated gravity tongues and fingering patterns can be very different when viscous and gravity forces are of comparable magnitude. We summarize results obtained by Ph.D. student Hamdi Tchelepi concerning 2D and 3D fingering in homogeneous media, and we compare displacements with and without gravity segregation. The computations show conclusively that there are some situations in which 2D simulations reproduce 3D behavior well and others for which they do not.

  3. Supporting technology for enhanced oil recovery: Chemical flood predictive model

    SciTech Connect (OSTI)

    Ray, R.M.; Munoz, J.D.

    1986-12-01T23:59:59.000Z

    The Chemical Flood Predictive Model (CFPM) was developed by Scientific Software-Intercomp for the US Department of Energy and was used in the National Petroleum Council's (NPC) 1984 survey of US enhanced oil recovery potential (NPC, 1984). The CFPM models micellar (surfactant)-polymer (MP) floods in reservoirs which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option is available in the model which allows a rough estimate of oil recovery by caustic (alkaline) or caustic-polymer processes. This ''caustic'' option, added for the NPC survey, is not modeled as a separate process. Rather, the caustic and caustic-polymer oil recoveries are computed simply as 15% and 40%, respectively, of the MP oil recovery. In the CFPM, an oil rate versus time function for a single pattern is computed and the results are passed to the economic routines. To estimate multi-pattern project behavior, a pattern development schedule must be specified. After-tax cash flow is computed by combining revenues with capital costs for drilling, conversion and upgrading of wells, chemical handling costs, fixed and variable operating costs, injectant costs, depreciation, royalties, severance, state, federal, and windfall profit taxes, cost and price inflation rates, and the discount rate. A lumped parameter uncertainty routine is used to estimate risk, and allows for variation in computed project performance within an 80% confidence interval. The CFPM uses theory and the results of numerical simulation to predict MP oil recovery in five-spot patterns. Oil-bank and surfactant breakthrough and project life are determined from fractional flow theory. A Koval-type factor, based on the Dykstra-Parsons (1950) coefficient, is used to account for the effects of reservoir heterogeneity on surfactant and oil bank velocities. 18 refs., 17 figs., 27 tabs.

  4. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis

    Office of Environmental Management (EM)

    Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by and October, 2011 Presentation Outline I. Introductions II. Pantex III. 10 Year Update IV. Final...

  5. Determining Hydrological Controls on Flood Frequency | U.S. DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    increasing aridity, variability increases. In contrast, BFI was found to exert a second-order control on flood frequency. Higher BFI, meaning higher contributions of subsurface...

  6. Willows Aid Flood Recovery in Los Alamos Desert

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – Los Alamos National Laboratory’s Associate Directorate of Environmental Programs (ADEP) has been busy with various flood recovery activities since last fall. 

  7. Climate Change and Flood Operations in the Sacramento Basin, California

    E-Print Network [OSTI]

    Willis, Ann D.; Lund, Jay R.; Townsley, Edwin S.; Faber, Beth A.

    2011-01-01T23:59:59.000Z

    Washington, D.C. : Climate Change Science Program andProgress in incorporating climate change into management ofJULY 2011 Climate Change and Flood Operations in the

  8. Topeka, Kansas, Flood Damage Reduction Project 30 January 2009

    E-Print Network [OSTI]

    US Army Corps of Engineers

    with and approved by the necessary resource agencies. The long-term environmental and cultural consequences of planTopeka, Kansas, Flood Damage Reduction Project 30 January 2009 Abstract: The recommended plan provides for flood risk management and restores the reliability of the Topeka, Kansas, Levee System located

  9. Partial entrainment of gravel bars during floods Christopher P. Konrad

    E-Print Network [OSTI]

    Montgomery, David R.

    tracer particles and bed load samplers have demonstrated that partial entrain- ment rather than completePartial entrainment of gravel bars during floods Christopher P. Konrad U.S. Geological Survey a gravel bar during a flood, or partial entrainment, had an approximately normal distribution with respect

  10. Dam-Breach Flood Wave Propagation Using Dimensionless Parameters

    E-Print Network [OSTI]

    Ponce, V. Miguel

    insight into the gamut of shallow water waves, including kinematic, diffusion, dynamic, and gravity wavesDam-Breach Flood Wave Propagation Using Dimensionless Parameters Victor M. Ponce, M.ASCE1 ; Ahmad Taher-shamsi2 ; and Ampar V. Shetty3 Abstract: An analytical model of flood wave propagation is used

  11. Environmental Impact Statement Truckee Meadows Flood Control Project

    E-Print Network [OSTI]

    US Army Corps of Engineers

    DRAFT Environmental Impact Statement for the Truckee Meadows Flood Control Project Nevada General Reevaluation Report Volume I ­ Draft Environmental Impact Statement prepared by U.S. Army Corps of Engineers Sacramento District May 2013 #12;#12;DRAFT Environmental Impact Statement for the Truckee Meadows Flood

  12. A Mechanistic Model for Flooding in Vertical Tubes

    E-Print Network [OSTI]

    Hogan, Kevin J.

    2010-10-12T23:59:59.000Z

    In a counter-current two-phase flow system, flooding can be defined as the onset of flow reversal of the liquid component which results in an upward co-current flow. Flooding in the surge line of pressurized water reactors poses a significant...

  13. Human-induced climate change reduces chance of flooding in Okavango...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-induced climate change reduces chance of flooding in Okavango Delta Human-induced climate change reduces chance of flooding in Okavango Delta March 27, 2014 | Tags:...

  14. Capacity building for flood management in developing countries under climate change.

    E-Print Network [OSTI]

    Katsuhama, Yoshihiro

    2010-01-01T23:59:59.000Z

    ??Climate change will bring new flood threats, especially in developing countries. In addition, the contexts surrounding flood management have been shifting globally. If developing countries… (more)

  15. Techniques for estimating flood hydrographs for ungaged urban watersheds

    SciTech Connect (OSTI)

    Stricker, V.A.; Sauer, V.B.

    1982-04-01T23:59:59.000Z

    The Clark Method, modified slightly, was used to develop a synthetic dimensionless hydrograph that can be used to estimate flood hydrographs for ungaged urban watersheds. Application of the technique results in a typical (average) flood hydrograph for a given peak discharge. Input necessary to apply the technique is an estimate of basin lagtime and the recurrence interval peak discharge. Equations for this purpose were obtained from a recent nationwide study on flood frequency in urban watersheds. A regression equation was developed which relates flood volumes to drainage area size, basin lagtime, and peak discharge. This equation is useful where storage of floodwater may be a part of design or flood prevention. 6 refs., 17 figs., 5 tabs.

  16. Modelling downstream change in river flood power: a novel approach based on the UK Flood Estimation Handbook

    E-Print Network [OSTI]

    Birmingham, University of

    Modelling downstream change in river flood power: a novel approach based on the UK Flood Estimation" (McEwen, 1994: 359). Lawler (1992) recognised that little was known about the downstream change. It is suggested that downstream change in discharge is best represented as a power function in terms of channel

  17. A NEW GENERATION CHEMICAL FLOODING SIMULATOR

    SciTech Connect (OSTI)

    Gary A. Pope; Kamy Sepehrnoori; Mojdeh Delshad

    2005-01-01T23:59:59.000Z

    The premise of this research is that a general-purpose reservoir simulator for several improved oil recovery processes can and should be developed so that high-resolution simulations of a variety of very large and difficult problems can be achieved using state-of-the-art algorithms and computers. Such a simulator is not currently available to the industry. The goal of this proposed research is to develop a new-generation chemical flooding simulator that is capable of efficiently and accurately simulating oil reservoirs with at least a million gridblocks in less than one day on massively parallel computers. Task 1 is the formulation and development of solution scheme, Task 2 is the implementation of the chemical module, and Task 3 is validation and application. In this final report, we will detail our progress on Tasks 1 through 3 of the project.

  18. Scale-up of miscible flood processes

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1992-05-01T23:59:59.000Z

    Results of a wide-ranging investigation of the scaling of the physical mechanisms of miscible floods are reported. Advanced techniques for analysis of crude oils are considered in Chapter 2. Application of supercritical fluid chromatography is demonstrated for characterization of crude oils for equation-of-state calculations of phase equilibrium. Results of measurements of crude oil and phase compositions by gas chromatography and mass spectrometry are also reported. The theory of development of miscibility is considered in detail in Chapter 3. The theory is extended to four components, and sample solutions for a variety of gas injection systems are presented. The analytical theory shows that miscibility can develop even though standard tie-line extension criteria developed for ternary systems are not satisfied. In addition, the theory includes the first analytical solutions for condensing/vaporizing gas drives. In Chapter 4, methods for simulation of viscous fingering are considered. The scaling of the growth of transition zones in linear viscous fingering is considered. In addition, extension of the models developed previously to three dimensions is described, as is the inclusion of effects of equilibrium phase behavior. In Chapter 5, the combined effects of capillary and gravity-driven crossflow are considered. The experimental results presented show that very high recovery can be achieved by gravity segregation when interfacial tensions are moderately low. We argue that such crossflow mechanisms are important in multicontact miscible floods in heterogeneous reservoirs. In addition, results of flow visualization experiments are presented that illustrate the interplay of crossflow driven by gravity with that driven by viscous forces.

  19. Flooding Experiments and Modeling for Improved Reactor Safety

    SciTech Connect (OSTI)

    Solmos, M., Hogan, K.J., VIerow, K.

    2008-09-14T23:59:59.000Z

    Countercurrent two-phase flow and “flooding” phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge line can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing.

  20. Quality assurance flood source and method of making

    DOE Patents [OSTI]

    Fisher, Darrell R [Richland, WA; Alexander, David L [West Richland, WA; Satz, Stanley [Surfside, FL

    2002-12-03T23:59:59.000Z

    Disclosed is a is an improved flood source, and method of making the same, which emits an evenly distributed flow of energy from a gamma emitting radionuclide dispersed throughout the volume of the flood source. The flood source is formed by filling a bottom pan with a mix of epoxy resin with cobalt-57, preferably at 10 to 20 millicuries and then adding a hardener. The pan is secured to a flat, level surface to prevent the pan from warping and to act as a heat sink for removal of heat from the pan during the curing of the resin-hardener mixture.

  1. Flood control reservoir operations for conditions of limited storage capacity

    E-Print Network [OSTI]

    Rivera Ramirez, Hector David

    2005-02-17T23:59:59.000Z

    ). Therefore, if the entire flood control capacity of a reservoir is available, only an extremely severe flood event would require the implementation of the EOS for most reservoir projects, and thus the bulk of the research has been focused on how to manage... operations objectives. In other words, the REOS provide a set of rules that reflect the risk of flooding upstream as well as downstream of the dams. The USACE and other reservoir management agencies may use the methodology proposed in this study...

  2. A Reliability Aware Flooding Algorithm (RAFA) In Wireless Multi-hop Networks

    E-Print Network [OSTI]

    A Reliability Aware Flooding Algorithm (RAFA) In Wireless Multi-hop Networks Youndo Lee, Yoonbo the reliability of flooding, by using the retransmission mechanism. The retransmission policy of RBP is to perform on the retransmission- based flooding mechanism. RBP improves the reliability of flooding using the knowledge about

  3. The role of woodland in flood control: a landscape perspective T.R. Nisbet1

    E-Print Network [OSTI]

    as part of a whole-catchment approach to sustainable flood management. Keywords: Woodland; water use; soil-125. IALE(UK), Oxford.] Abstract Sustainable flood management is increasingly looking to the role infiltration; hydraulic roughness; sustainable flood management Introduction A series of major floods across

  4. SPECIAL EDITION: FLOOD RECOVERY Thursday, September 22, 2011 | Fall 2011: Volume 2, Issue 5

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    organizations wishing to publicize their events and service opportunities should e-mail all relevant details of Toiletries, Clothing, and Non-Perishable Food Clothing Drive CHOW Warehouse Needs Volunteers Flood Relief and Food Drive for Flood Victims Arts Benefit Show for Flood Relief GIM UNICEF Toy Drive for Flood

  5. Next Generation Surfactants for Improved Chemical Flooding Technology

    SciTech Connect (OSTI)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31T23:59:59.000Z

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.

  6. Flood survival: Getting a hydro plant back on line

    SciTech Connect (OSTI)

    Weatherford, C.W. (Entergy Services, Inc., Little Rock, AR (United States))

    1991-12-01T23:59:59.000Z

    The Remmel Dam and Hydro Plant of Arkansas Power and Light Company was flooded on May 20, 1990. This article describes the teamwork and innovation that went into restoring the powerhouse in a short amount of time.

  7. Protection of Coastal Infrastructure under Rising Flood Risk

    E-Print Network [OSTI]

    Lickley, M.J.

    The 2005 hurricane season was particularly damaging to the United States, contributing to significant losses to energy infrastructure—much of it the result of flooding from storm surge during hurricanes Katrina and Rita. ...

  8. Chilean glacial lake outburst flood impacts on dam construction

    E-Print Network [OSTI]

    Tauro, Flavia

    2009-01-01T23:59:59.000Z

    Four Glacial Lake Outburst Floods (GLOF) occurred in the Colonia Glacier (Northern Patagonia Icefield, Chile) from April 2008 to March 2009. Lago Cachet 2 emptied four times producing a maximum excess discharge in the ...

  9. A NEW GENERATION CHEMICAL FLOODING SIMULATOR

    SciTech Connect (OSTI)

    Gary A. Pope; Kamy Sepehrnoori; Mojdeh Delshad

    2003-04-01T23:59:59.000Z

    The premise of this research is that a general-purpose reservoir simulator for several improved oil recovery processes can and should be developed so that high-resolution simulations of a variety of very large and difficult problems can be achieved using state-of-the-art algorithms and computers. Such a simulator is not currently available to the industry. The goal of this proposed research is to develop a new-generation chemical flooding simulator that is capable of efficiently and accurately simulating oil reservoirs with at least a million gridblocks in less than one day on massively parallel computers. Task 1 is the formulation and development of solution scheme, Task 2 is the implementation of the chemical module, and Task 3 is validation and application. We have made significant progress on all three tasks and we are on schedule on both technical and budget. In this report, we will detail our progress on Tasks 1 through 3 for the first six months of the second year of the project.

  10. Flooding and conservation in the Albuquerque bosque

    SciTech Connect (OSTI)

    Crawford, C.S.; Molles, M.C. Jr.; Valett, H.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Biology

    1995-12-31T23:59:59.000Z

    Interest in the conservation of the Middle Rio Grande bosque has grown rapidly in the last decade. During that period, private organizations as well as governmental agencies have sharpened their focus on the issue, and in doing so have contributed to the development of a bosque biological management plan for the river reach between Cochiti Dam and Elephant Butte Reservoir. This increased regional attention reflects a growing national and international concern about human impacts on fluvial processes in large floodplain rivers. Because they impound large amounts of a river`s discharge and interfere with its natural flooding regime, dams can seriously disrupt the relationship between river basin hydrology and riparian zone functioning. In western North America, this interference reduces cottonwood germination and survival and, as will be discussed, negatively affects key ecological processes in riparian communities. In this paper the authors first review how the decoupling of basin hydrology from riparian forest processes has begun to affect the integrity of the Middle Rio Grande bosque ecosystem. Then they propose an alternative management scheme, with emphasis on the Albuquerque bosque, that centers on restoring its ecosystem functioning.

  11. Bridging the Gap between Chemical Flooding and Independent Oil Producers

    SciTech Connect (OSTI)

    Stan McCool; Tony Walton; Paul Whillhite; Mark Ballard; Miguel Rondon; Kaixu Song; Zhijun Liu; Shahab Ahmed; Peter Senior

    2012-03-31T23:59:59.000Z

    Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increased with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.

  12. Hydrodynamic model of Fukushima-Daiichi NPP Industrial site flooding

    E-Print Network [OSTI]

    Vaschenko, V N; Gerasimenko, T V; Vachev, B

    2014-01-01T23:59:59.000Z

    While the Fukushima-Daiichi was designed and constructed the maximal tsunami height estimate was about 3 m based on analysis of statistical data including Chile earthquake in 1960. The NPP project industrial site height was 10 m. The further deterministic estimates TPCO-JSCE confirmed the impossibility of the industrial site flooding by a tsunami and therefore confirmed ecological safety of the NPP. However, as a result of beyond design earthquake of 11 March 2011 the tsunami height at the shore near the Fukushima-Daiichi NPP reached 15 m. This led to flooding and severe emergencies having catastrophic environmental consequences. This paper proposes hydrodynamic model of tsunami emerging and traveling based on conservative assumptions. The possibility of a tsunami wave reaching 15 m height at the Fukushima-Daiichi NPP shore was confirmed for deduced hydrodynamic resistance coefficient of 1.8. According to the model developed a possibility of flooding is determined not only by the industrial site height, magni...

  13. Probable maximum flood control; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    DeGabriele, C.E.; Wu, C.L. [Bechtel National, Inc., San Francisco, CA (United States)

    1991-11-01T23:59:59.000Z

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility.

  14. Hydropower at flood control reservoirs - the variable speed option

    SciTech Connect (OSTI)

    Laurence, K.; Yale, J. [Stone & Webster Engineering Corp., Denver, CO (United States)

    1995-12-31T23:59:59.000Z

    Application of hydroelectric turbine-generators to flood control has been limited due to the inability of a single turbine to operate efficiently over the wide head and flow ranges encountered. Multiple and different unit combinations have been applied to this problem, but the cost of the additional unit(s), powerhouse, and supporting facilities typically causes the project to become unfeasible. Variable speed operation can increase the operating range of a single turbine, and significantly improve efficiency over single speed units. This can make hydroelectric generation at flood control projects feasible. This paper presents a comparison of the application of variable speed units, two speed units, and single speed units at the Blue River Dam Hydroelectric Project. The project consists of the addition of a powerhouse to an existing Army Corps of Engineers flood control project. Efficiency data for the different types of units are compared and historical flow and release data are used in a computer model to simulate plant operation.

  15. A first large-scale flood inundation forecasting model

    SciTech Connect (OSTI)

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie; Andreadis, Konstantinos M.; Pappenberger, Florian; Phanthuwongpakdee, Kay; Hall, Amanda C.; Bates, Paul D.

    2013-11-04T23:59:59.000Z

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domain has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode revealed that it is crucial to account for basin-wide hydrological response time when assessing lead time performances notwithstanding structural limitations in the hydrological model and possibly large inaccuracies in precipitation data.

  16. Soil Testing Following Flooding, Overland Flow of Wastewater and other Freshwater Disasters

    E-Print Network [OSTI]

    Provin, Tony; Feagley, Sam E.; Pitt, John L.; McFarland, Mark L.

    2009-05-26T23:59:59.000Z

    Freshwater flooding can seriously affect soil fertility and the physical and chemical properties of soil. This publication explains how to reclaim flooded soil. Having the soil tested for microbes, pesticides, hydrocarbons and other contaminants...

  17. Human-Induced Climate Change Reduces Chance of Flooding in Okavango...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Africa.gif Why it Matters: The...

  18. Flooding Experiments with Steam and Water in a Large Diameter Vertical Tube

    E-Print Network [OSTI]

    Williams, Susan Nicole

    2010-10-12T23:59:59.000Z

    An experimental study on flooding with steam and water in a large diameter vertical tube was conducted. This research has been performed to provide a better prediction of flooding in a pressurized water reactor (PWR) pressurizer surge line...

  19. Feasibility analysis and design of a flood barrier concept for the City of New York

    E-Print Network [OSTI]

    Ingilis, Demetres

    2014-01-01T23:59:59.000Z

    Flooding has always been a major concern for coastal communities. However, many parts of New York City never had to worry about flooding until Hurricane Sandy hit in October 2012. The hurricane brought a record level storm ...

  20. Precipitation analysis for a flood early warning system in the Manafwa River Basin, Uganda

    E-Print Network [OSTI]

    Cecinati, Francesca

    2013-01-01T23:59:59.000Z

    The communities living in the Manafwa River Basin experience frequent floods threatening their lives and property. Climate change and anthropogenic perturbations to the natural environment increase flooding frequency. This ...

  1. Methane emission from flooded coal seams in abandoned mines, in the light of laboratory investigations

    E-Print Network [OSTI]

    Boyer, Edmond

    Methane emission from flooded coal seams in abandoned mines, in the light of laboratory of methane from flooded unexploited coal seams Field experience from the flooding operations of the abandoned sorption capacity of coal in the dry-air state through determining the isotherm of methane sorption

  2. Forestflood relation still tenuous comment on `Global evidence that deforestation amplifies flood risk and

    E-Print Network [OSTI]

    Chappell, Nick A

    Forest­flood relation still tenuous ­ comment on `Global evidence that deforestation amplifies cover change, and conclude that deforestation amplifies flood risk and severity in the developing world% of the variation in reported flood occurrences, considerably more than forest cover or deforestation (o10

  3. Relationships among probability distributions of stream discharges in floods, climate,

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Relationships among probability distributions of stream discharges in floods, climate, bed load of both follow power laws. The number N(Q) of days on which the discharge exceeds Q, or the number of the United States. To examine the effect of climate change on bed load transport and river incision, we

  4. SPECIAL EDITION: FLOOD RECOVERY Thursday, September 15, 2011

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    their events and service opportunities should e-mail all relevant details to cce@binghamton.edu. Connect to help with this cause, contact Julie Lucia. Collection of Toiletries, Blankets, and Nonperishable Food and nonperishable food items are in high demand by victims of the flood. Donation boxes have been placed in Hinman

  5. Flood Operation Rules for a Single Reservoir Licheng Dong

    E-Print Network [OSTI]

    Lund, Jay R.

    , University of California - Davis 2012-12-12 Abstract This paper examines the theoretical behavior ecosystems. 2. Simple Inflow Hydrographs Three main factors affect the reservoir's inflow flood volume and peak outflow (Ergish, 2010): 1) inflow hydrograph volume and shape; 2) controllable reservoir storage

  6. Field test of microemulsion flooding, Chateaurenard Field, France

    SciTech Connect (OSTI)

    Putz, A.; Chevalier, J.P.; Stock, G.; Philippot, J.

    1981-04-01T23:59:59.000Z

    A pilot test of microemulsion flooding was conducted in a single five-spot pattern in the Chateaurenard field in France. The test had to accommodate a 40-mPa*s (40-cp) oil viscosity and a regional pressure gradient across the pattern. A very clear oil bank was observed, resulting in a substantial increase in oil production. 9 refs.

  7. Mitigating Flood Loss through Local Comprehensive Planning in Florida

    E-Print Network [OSTI]

    Kang, Jung Eun

    2010-10-12T23:59:59.000Z

    and environment planning and policy. When sustainability was embraced by international organizations and governmental organizations managing development programs and projects, the term, ?sustainable development? became popular (Beatley, 1998). Currently...; and a more economically integrated and diverse population (Vale & Campanella, 2005). Based on previous literature (Beatley, 1998; Berke, 1995; Mileti, 1999), this study develops principles of sustainability that can be applied to flood mitigation...

  8. Onsite Wastewater Treatment Systems: Responding to Power Outages and Floods

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

    2008-10-23T23:59:59.000Z

    People and the environment can be harmed if a home's onsite wastewater treatment system does not work properly after a flood or power outage. This publication explains the steps to take after such an event to get the system back into service. 4 pp...

  9. Development and verification of simplified prediction models for enhanced oil recovery applications. CO/sub 2/ (miscible flood) predictive model. Final report

    SciTech Connect (OSTI)

    Paul, G.W.

    1984-10-01T23:59:59.000Z

    A screening model for CO/sub 2/ miscible flooding has been developed consisting of a reservoir model for oil rate and recovery and an economic model. The reservoir model includes the effects of viscous fingering, reservoir heterogeneity, gravity segregation and areal sweep. The economic model includes methods to calculate various profitability indices, the windfall profits tax, and provides for CO/sub 2/ recycle. The model is applicable to secondary or tertiary floods, and to solvent slug or WAG processes. The model does not require detailed oil-CO/sub 2/ PVT data for execution, and is limited to five-spot patterns. A pattern schedule may be specified to allow economic calculations for an entire project to be made. Models of similar architecture have been developed for steam drive, in-situ combustion, surfactant-polymer flooding, polymer flooding and waterflooding. 36 references, 41 figures, 4 tables.

  10. Rebuilding your flooded home: Guidelines for incorporating energy efficiency

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    Repairs to your flood-damaged home can add energy efficiency at the same time you address pressing structural needs, mainly by replacing and upgrading insulation in walls and floors, and checking your foundation for flood damage. Many energy efficiency options are available to you today that may not have been widely available when you built your house even if that was only a few years ago. Cost-effectiveness depends on several factors, including cost of fuel and materials, efficiency levels of the structure and components, and climate. This booklet offers some general tips to improve the efficiency of your home`s shell and equipment. Additional information on any issue covered in this booklet is available from various agencies within or near your community, including your state energy office, local community action agency, utilities, Red Cross and Federal Emergency Management Agency (FEMA) offices.

  11. CO/sub 2/ foam flooding performance vs. rock wettability

    SciTech Connect (OSTI)

    Lescure, B.M.; Claridge, E.L.

    1986-01-01T23:59:59.000Z

    CO/sub 2/ flooding projects have shown large potential for oil recovery, but in many cases the volumetric sweep efficiency is greatly limited by gravity tonguing and/or viscous fingering. To reduce these effects foam could be used as an alternative to WAG CO/sub 2/ injection. Experiments on the CO/sub 2/ foam process were conducted in a 1/4 5-spot reservoir model in order to investigate the effect of rock wetting state and total CO/sub 2/ slug size on secondary and tertiary extra-oil recovery. Laboratory model results show that the process is more successful in an oil-wet medium than in a water-wet medium due to larger surfactant adsorption in the water-wet medium. Also, requirements for optimal CO/sub 2/ slug size are smaller than in the WAG process, with larger extra oil recovery for both secondary and tertiary floods.

  12. A mathematical and experimental study of caustic flooding

    E-Print Network [OSTI]

    Shen, Tsu-Cheng

    1985-01-01T23:59:59.000Z

    : Dr. Ching Buang Wu A simple non-equilibrium chemical displacement model for continuous, linear, caustic flooding of crude oil is presented. The laboratory experiments were conducted to support the numerical simulation and to verify the results.... The unique feature of this mathematic study is that it includes the chemistry of the acid hydrolysis to produce surfactants and the chemical reaction rate under the non- equilibrium state. The in-situ generated surfactant was presumed to alter the oil...

  13. Laboratory methods for enhanced oil recovery core floods

    SciTech Connect (OSTI)

    Robertson, E.P.; Bala, G.A.; Thomas, C.P.

    1994-03-01T23:59:59.000Z

    Current research at the Idaho National Engineering Laboratory (INEL) is investigating microbially enhanced oil recovery (MEOR) systems for application to oil reservoirs. Laboratory corefloods are invaluable in developing technology necessary for a field application of MEOR. Methods used to prepare sandstone cores for experimentation, coreflooding techniques, and quantification of coreflood effluent are discussed in detail. A technique to quantify the small volumes of oil associated with laboratory core floods is described.

  14. Laboratory studies of imbibition flooding using carbonated brine

    E-Print Network [OSTI]

    Sharif, Qamar Javaid

    1991-01-01T23:59:59.000Z

    and pressures was a major part of the phase II studies. A high pressure core holder was developed and set inside a temperature regulated in-house constructed oven for this purpose. The core face flushing method was developed for conducting imbibition... and the field for improving oil recovery. The most common techniques used to increase oil recovery include water injection, steam injection, in-situ combustion, carbon dioxide (CO&) injection, chemical flooding and caustic injection. Currently, however, due...

  15. Mobility control and scaleup for chemical flooding. Annual report, October 1981-September 1982

    SciTech Connect (OSTI)

    Pope, G.A.

    1984-11-01T23:59:59.000Z

    The ongoing objectives of this project are: (1) to determine quantitatively the effects of dispersion, relative permeabilities, apparent viscosity and inaccessible pore volume on micellar/polymer flooding, and (2) to develop numerical simulators which incorporate these and other features of the process, so that mobility control design and scaleup of the micellar/polymer flooding process can be better accomplished. Section 2 of this report includes the results for capillary desaturation experiments for low tension fluids in Berea. These results show that some residual brine remains during microemulsion flooding even at the highest capillary number obtained in this experiment. Section 2 also includes more extensive results from the dispersion and relative permeability experiments. This section also includes data which extends the dispersion and relative permeability results from the case of two-phase flow to include initial results of three-phase flow at steady state. Section 3 is a complete description of our updated simulator. Section 4 describes and gives the results of an oil recovery experiment. Section 5 compares the results of this oil recovery experiment with our simulator. The agreement is the best obtained so far. Section 6 compares our simulator with a Sloss experiment reported by Gupta. Again, the agreement is good and demonstrates the capability of the improved simulator to account for the separation of alcohol and surfactant. Section 7 contains the results of several 2-D areal simulations involving new features of the 2-D simulator reported last year. Section 8 is a list of some of the major conclusions of this simulation research. Section 9 is an SPE paper combining the results of Senol with Walsh, a Ph.D. student of Lake and Schechter. Her polymer experiments were interpreted using Walsh's geochemical simulator. 133 references, 118 figures, 21 tables.

  16. Missoula flood dynamics and magnitudes inferred from sedimentology of slack-water deposits on the Columbia Plateau, Washington

    SciTech Connect (OSTI)

    Smith, G.A. (Univ. of New Mexico, Albuquerque (United States))

    1993-01-01T23:59:59.000Z

    Sedimentological study of late Wisconsin, Missoula-flood slack-water sediments deposited along the Columbia and Tucannon Rivers in southern Washington reveals important aspects of flood dynamics. Most flood facies were deposited by energetic flood surges (velocities>6 m/sec) entering protected areas along the flood tract, or flowing up and then directly out of tributary valleys. True still-water facies are less voluminous and restricted to elevations below 230 m. High flood stages attended the initial arrival of the flood wave and were not associated with subsequent hydraulic ponding upslope from channel constrictions. Among 186 flood beds studied in 12 sections, 57% have bioturbated tops, and about half of these bioturbated beds are separated from overlying flood beds by nonflood sediments. A single graded flood bed was deposited at most sites during most floods. Sequences in which 2-9 graded beds were deposited during a single flood are restricted to low elevations. These sequences imply complex, multi-peaked hydrographs in which the first flood surge was generally the largest, and subsequent surges were attenuated by water already present in slack-water areas. Slack-water - sediment stratigraphy suggests a wide range of flood discharges and volumes. Of >40 documented late Wisconsin floods that inundated the Pasco Basin, only about 20 crossed the Palouse-Snake divide. Floods younger than the set-S tephras from Mount St.Helens were generally smaller than earlier floods of late Wisconsin age, although most still crossed the Palouse-Snake divide. These late floods primarily traversed the Cheney-Palouse scabland because stratigraphy of slack-water sediment along the Columbia River implies that the largest flood volumes did not enter the Pasco Basin by way of the Columbia River. 47 refs., 17 figs., 2 tabs.

  17. Evaluation and Enhancement of Carbon Dioxide Flooding Through Sweep Improvement

    SciTech Connect (OSTI)

    Hughes, Richard

    2009-09-30T23:59:59.000Z

    Carbon dioxide displacement is a common improved recovery method applied to light oil reservoirs (30-45{degrees}API). The economic and technical success of CO{sub 2} floods is often limited by poor sweep efficiency or large CO{sub 2} utilization rates. Projected incremental recoveries for CO{sub 2} floods range from 7% to 20% of the original oil in place; however, actual incremental recoveries range from 9% to 15% of the original oil in place, indicating the potential for significant additional recoveries with improved sweep efficiency. This research program was designed to study the effectiveness of carbon dioxide flooding in a mature reservoir to identify and develop methods and strategies to improve oil recovery in carbon dioxide floods. Specifically, the project has focused on relating laboratory, theoretical and simulation studies to actual field performance in a CO{sub 2} flood in an attempt to understand and mitigate problems of areal and vertical sweep efficiency. In this work the focus has been on evaluating the status of existing swept regions of a mature CO{sub 2} flood and developing procedures to improve the design of proposed floods. The Little Creek Field, Mississippi has been studied through laboratory, theoretical, numerical and simulation studies in an attempt to relate performance predictions to historical reservoir performance to determine sweep efficiency, improve the understanding of the reservoir response to CO{sub 2} injection, and develop scaling methodologies to relate laboratory data and simulation results to predicted reservoir behavior. Existing laboratory information from Little Creek was analyzed and an extensive amount of field data was collected. This was merged with an understanding of previous work at Little Creek to generate a detailed simulation study of two portions of the field – the original pilot area and a currently active part of the field. This work was done to try to relate all of this information to an understanding of where the CO{sub 2} went or is going and how recovery might be improved. New data was also generated in this process. Production logs were run to understand where the CO{sub 2} was entering the reservoir related to core and log information and also to corroborate the simulation model. A methodology was developed and successfully tested for evaluating saturations in a cased-hole environment. Finally an experimental and theoretical program was initiated to relate laboratory work to field scale design and analysis of operations. This work found that an understanding of vertical and areal heterogeneity is crucial for understanding sweep processes as well as understanding appropriate mitigation techniques to improve the sweep. Production and injection logs can provide some understanding of that heterogeneity when core data is not available. The cased-hole saturation logs developed in the project will also be an important part of the evaluation of vertical heterogeneity. Evaluation of injection well/production well connectivities through statistical or numerical techniques were found to be as successful in evaluating CO{sub 2} floods as they are for waterfloods. These are likely to be the lowest cost techniques to evaluate areal sweep. Full field simulation and 4D seismic techniques are other possibilities but were beyond the scope of the project. Detailed simulation studies of pattern areas proved insightful both for doing a “post-mortem” analysis of the pilot area as well as a late-term, active portion of the Little Creek Field. This work also evaluated options for improving sweep in the current flood as well as evaluating options that could have been successful at recovering more oil. That simulation study was successful due to the integration of a large amount of data supplied by the operator as well as collected through the course of the project. While most projects would not have the abundance of data that Little Creek had, integration of the available data continues to be critical for both the design and evaluation stages of CO{sub 2} floods. For cases w

  18. Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment

    SciTech Connect (OSTI)

    Gerald Sehlke; Paul Wichlacz

    2010-12-01T23:59:59.000Z

    This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: • Determination of the design basis flood (DBFL) • Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

  19. Climate Change Effects on the Sacramento Basin's Flood Control Projects ANN DENISE FISSEKIS

    E-Print Network [OSTI]

    Lund, Jay R.

    Climate Change Effects on the Sacramento Basin's Flood Control Projects By ANN DENISE FISSEKIS B.......................................................................6 Chapter III. Climate Change................................................................11 models...........................................................20 Climate change data

  20. Surfactant-enhanced alkaline flooding field project. Annual report

    SciTech Connect (OSTI)

    French, T.R.; Josephson, C.B.

    1993-12-01T23:59:59.000Z

    The Tucker sand from Hepler field, Crawford County, Kansas, was characterized using routine and advanced analytical methods. The characterization is part of a chemical flooding pilot test to be conducted in the field, which is classified as a DOE Class I (fluvial-dominated delta) reservoir. Routine and advanced methods of characterization were compared. Traditional wireline logs indicate that the reservoir is vertically compartmentalized on the foot scale. Routine core analysis, X-ray computed tomography (CT), minipermeameter measurement, and petrographic analysis indicate that compartmentalization and lamination extend to the microscale. An idealized model of how the reservoir is probably structured (complex layering with small compartments) is presented. There was good agreement among the several methods used for characterization, and advanced characterization methods adequately explained the coreflood and tracer tests conducted with short core plugs. Tracer and chemical flooding tests were conducted in short core plugs while monitoring with CT to establish flow patterns and to monitor oil saturations in different zones of the core plugs. Channeling of injected fluids occurred in laboratory experiments because, on core plug scale, permeability streaks extended the full length of the core plugs. A graphic example of how channeling in field core plugs can affect oil recovery during chemical injection is presented. The small scale of compartmentalization indicated by plugs of the Tucker sand may actually help improve sweep between wells. The success of field-scale waterflooding and the fluid flow patterns observed in highly heterogeneous outcrop samples are reasons to expect that reservoir flow patterns are different from those observed with short core plugs, and better sweep efficiency may be obtained in the field than has been observed in laboratory floods conducted with short core plugs.

  1. Erosion potential from Missoula floods in the Pasco Basin, Washington

    SciTech Connect (OSTI)

    Craig, R.G.; Hanson, J.P.

    1985-12-01T23:59:59.000Z

    Localities within the Pasco Basin preserve evidence of Missoula floods. Deposits are 46% sand-sized, 36% gravel-sized, and 18% finer than sand-sized. Mean thickness is 39 meters. High water marks at Wallula Gap require a discharge of approximately 12.5 Mcms. At Sentinel Gap, the slope-area method shows that the high water marks require a discharge of 34.6 Mcms. Since this discharge greatly exceeds any estimated for Missoula floods, there must have been backwater ponding from Wallula Gap. Projecting the slope of the water surface at the upper end of Wallula Gap to the downstream cross section at Gable Mountain leads to a discharge of 9.5 Mcms at Sentinel Gap. The HEC-6 steady state code and four sediment transport equations were applied. Assuming sand-sized particles, DuBoys function estimated 4 to 9 meters of scour. Yang's equation estimated 3 to 4 meters of scour. These are a minimum. A hydrograph synthesized for the boundaries of the Pasco Basin shows the maxima of the flood would occur after 90 h at Sentinel Gap, and at 114 h at Wallula Gap. The 200 areas will remain inundated for four days and six hours. With a quasi-dynamic sediment transport computation, HEC-6 scour estimates range from 0.61 meters to 0.915 meters. This is a minimum amount and erosion is highly variable suggesting reworking of sediment. The Meyer-Peter Meuller equations show less than 1 meter of net scour in the 200 areas. More extensive erosion was achieved during particular time steps of this analysis suggesting that sediment re-working would occur.

  2. REMEDIATION OF LEON WATER FLOOD, BUTLER COUNTY, KANSAS

    SciTech Connect (OSTI)

    M.L. Korphage; Kelly Kindscher; Bruce G. Langhus

    2001-11-26T23:59:59.000Z

    The Leon Water Flood site has undergone one season of soil amendments and growth of specialized plants meant to colonize and accelerate the remediation of the salt-impacted site. The researchers characterized the impacted soil as to chemistry, added soil amendments, and planted several species of seedlings, and seeded the scarred areas. After the first growing season, the surface soil was again characterized and groundcover was also characterized. While plant growth was quite meager across the area, soil chemistry did improve over most of the two scars.

  3. Geographic Visualization of the 1993 Midwest Flood Water Balance

    E-Print Network [OSTI]

    White, W. Scott; Ridd, Merrill K.; Mizgalewicz, Pawel J.; Maidment, David R.

    2003-01-01T23:59:59.000Z

    , flooding, and water storage. By the middle of July, large amounts of water were being stored in the southern part of the UMRB, particularly around the St. Louis area where the Mississippi and Missouri Rivers meet. Water was also being stored in larger...) includes the Mississippi River basin from the river’s headwaters in Minnesota to Cairo, Illinois, and the Lower Missouri River basin below Gavins Point dam, South Dakota, to St. Louis, Missouri (Figure 1.1). Using a digital elevation model of the study...

  4. FEMA - National Flood Insurance Program webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMA - National Flood Insurance Program

  5. CityFIT Urban Guide: Modelling and Deploying indicators of Property Exposure to Flooding in Lagos using LIDAR DEM and DSM data 

    E-Print Network [OSTI]

    Mosuro, Sulaiman

    2012-11-29T23:59:59.000Z

    application was prototyped for disseminating time-series flood model information and for reporting details of flood events as they occur to serve for model calibration and enhancement, thereby completing the flood modelling lifecycle....

  6. The influence of free gas saturation on water flood performance - variations caused by changes in flooding rate

    E-Print Network [OSTI]

    Dandona, Anil Kumar

    1971-01-01T23:59:59.000Z

    , 1971) Anil Kumar Dandona, B. S. , Indian School of Mines Directed by: Dr. R. A. Morse It has been recognised that the presence of a free gas satura- tion prior to water flooding can have an important influence on oil recovery. The published results... studies such as the disappearance of part or all of the free gas by solution in the oil bank. Also, it has been realised that gravity forces make it impossible to initiate and maintain a uniforxn gas saturation fram top to bottom of the production...

  7. Floods on Nottely River and Martin, Peachtree, and Slow Creeks in Cherokee County, North Carolina. Flood report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01T23:59:59.000Z

    This report describes the flood situation along the Nottely River from the North Carolina-Georgia State line, at stream mile 18.72, downstream to the head of Hiwassee Reservoir backwater, stream mile 6.50; Martin Creek from mile 6.12 downstream to mile 1.38; Peachtree Creek from Ammon Bottom at mile 4.78 downstream to its mouth at Hiwassee River mile 100,68; and Slow Creek from mile 3.15 downstream to its mouth at Peachtree Creek mile 1.98.

  8. The effect of flooding velocity and degree of reservoir depletion on the recovery of oil by water flooding

    E-Print Network [OSTI]

    Hall, Phillips C

    1959-01-01T23:59:59.000Z

    allowables and transfer of allowables from injection wells to producing wells. In some states, waterflood allowables are deter- mined solely by the capacity of the reservoir to produce i. e. unres- 1 tricted production As in the case of primary production... the flood water Q injected ~he eil is pro- ducec4- Other considerations of an economic nature leading to in- creased allowables include the high initial cost of a waterflood develop- ment and the recovery of oil from a reservoir which would be un...

  9. Characterization of Flood Sediments from Hurricanes Katrina and Rita and Potential Implications for Human

    E-Print Network [OSTI]

    Torgersen, Christian

    Characterization of Flood Sediments from Hurricanes Katrina and Rita and Potential Implications of sediments up to many centimeters thick on streets, lawns, parking lots, and other flat surfaces (fig. 1). During the flood dewatering and subsequent cleanup, there were concerns that these sediments might

  10. A kinematic wave model for rivers with flood plains and other irregular geometries

    E-Print Network [OSTI]

    Tabak, Esteban G.

    A kinematic wave model for rivers with flood plains and other irregular geometries Pablo M. Jacovkis Esteban G. Tabak March 2006 Abstract A general kinematic wave model for flood propagation) This kinematic wave equation, which has been studied by [3], can be derived from the complete system (1, 2) under

  11. Links Between Flood Frequency and Annual Water Balance Behaviors: A Basis for Similarity and Regionalization

    SciTech Connect (OSTI)

    Guo, Jiali; Li, Hongyi; Leung, Lai-Yung R.; Guo, Shenglian; Liu, Pan; Sivapalan, Murugesu

    2014-03-28T23:59:59.000Z

    This paper presents the results of a data based comparative study of several hundred catchments across continental United States belonging to the MOPEX dataset, which systematically explored the connection between the flood frequency curve and measures of mean annual water balance. Two different measures of mean annual water balance are used: (i) a climatic aridity index, AI, which is a measure of the competition between water and energy availability at the annual scale; and, (ii) baseflow index, BFI, the ratio of slow runoff to total runoff also at the annual time scale, reflecting the role of geology, soils, topography and vegetation. The data analyses showed that the aridity index, AI, has a first order control on both the mean and Cv of annual maximum floods. While mean annual flood decreases with increasing aridity, Cv increases with increasing aridity. BFI appeared to be a second order control on the magnitude and shape of the flood frequency curve. Higher BFI, meaning more subsurface flow and less surface flow leads to a decrease of mean annual flood whereas lower BFI leads to accumulation of soil moisture and increased flood magnitudes that arise from many events acting together. The results presented in this paper provide innovative means to delineate homogeneous regions within which the flood frequency curves can be assumed to be functionally similar. At another level, understanding the connection between annual water balance and flood frequency will be another building block towards developing comprehensive understanding of catchment runoff behavior in a holistic way.

  12. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    E-Print Network [OSTI]

    Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes) was tested as a catalyst binder in a microbial fuel cell. 2012 Keywords: Microbial fuel cell Poly(dimethylsiloxane) Anti-flooding Catalyst binder a b s t r a c

  13. Location-Aided Flooding: An Energy-Efficient Data Dissemination Protocol for

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    Location-Aided Flooding: An Energy-Efficient Data Dissemination Protocol for Wireless Sensor such as the broadcast storm problem [6]. In this paper, we present an energy-efficient flooding mechanism, termed of battery and, hence, any solution must be energy-efficient. . Self-configuration. Since it is not feasible

  14. Earth'sFuture Accelerated flooding along the U.S. East Coast: On the impact

    E-Print Network [OSTI]

    Ezer,Tal

    Earth'sFuture Accelerated flooding along the U.S. East Coast: On the impact of sea-level rise accelerated in recent years for most coastal locations from the Gulf of Maine to Florida. The average increase­1990 to 1991­2013; spatial variations in acceleration of flooding resemble the spatial variations

  15. Flood Risk Management Newsletter 1 March 2013 vol 6 no 3

    E-Print Network [OSTI]

    US Army Corps of Engineers

    of decision models for planning new risk mitigation projects. Latent semantic analysis (LSA) is another tool is to be a system of models that will support decision making in emergency situations, like flood risk managementFlood Risk Management Newsletter 1 March 2013 vol 6 no 3 Fstocoll Table of Contents Social

  16. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell BRUNO KIEFFER1, ETHIOPIA 4 DEEPARTEMENT DES SCIENCES DE LA TERRE ET DE L'ENVIRONNEMENT, UNIVERSITEE LIBRE DE BRUXELLES 50 the shield volcanoes. KEY WORDS: Ethiopia; flood basalts; shield volcanism; superswell INTRODUCTION According

  17. Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report

    SciTech Connect (OSTI)

    Aglan, H.

    2005-08-04T23:59:59.000Z

    The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair of field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.

  18. PUBLISHED BY THE AMERICAN ARACHNOLOGICAL SOCIETY A new approach to examining scorpion peg sensilla: the mineral oil flood technique

    E-Print Network [OSTI]

    Gaffin, Doug

    an improved method of chemical stimulus delivery called the mineral oil flood technique, which uses non: the mineral oil flood technique Elizabeth D. Knowlton and Douglas D. Gaffin: Department of Zoology, University peg sensilla: the mineral oil flood technique Elizabeth D. Knowlton and Douglas D. Gaffin: Department

  19. Flood management in a complex river basin with a real-time decision support system based on hydrological forecasts

    E-Print Network [OSTI]

    , Portes du Scex,!) and in the hydropower plants "If a risk of overflowing exists, the Decision Support System MINDS proposes the optimal hydropower plants management for flood peak reduction PREDICTING FLOODS! ...taking profit of the existing hydropower schemes for reducing flood damages ...warning authorities

  20. California climate change, hydrologic response, and flood forecasting

    SciTech Connect (OSTI)

    Miller, Norman L.

    2003-11-11T23:59:59.000Z

    There is strong evidence that the lower atmosphere has been warming at an unprecedented rate during the last 50 years, and it is expected to further increase at least for the next 100 years. Warmer air mass implies a higher capacity to hold water vapor and an increased likelihood of an acceleration of the global water cycle. This acceleration is not validated and considerable new research has gone into understanding aspects of the water cycle (e.g. Miller et al. 2003). Several significant findings on the hydrologic response to climate change can be reported. It is well understood that the observed and expected warming is related to sea level rise. In a recent seminar at Lawrence Berkeley National Laboratory, James Hansen (Director of the Institute for Space Studies, National Aeronautics and Space Administration) stressed that a 1.25 Wm{sup -2} increase in radiative forcing will lead to an increase in the near surface air temperature by 1 C. This small increase in temperature from 2000 levels is enough to cause very significant impacts to coasts. Maury Roos (Chief Hydrologist, California Department of Water Resources) has shown that a 0.3 m rise in sea level shifts the San Francisco Bay 100-year storm surge flood event to a 10-year event. Related coastal protection costs for California based on sea level rise are shown. In addition to rising sea level, snowmelt-related streamflow represents a particular problem in California. Model studies have indicated that there will be approximately a 50% decrease in snow pack by 2100. This potential deficit must be fully recognized and plans need to be put in place well in advance. In addition, the warmer atmosphere can hold more water vapor and result in more intense warm winter-time precipitation events that result in flooding. During anticipated high flow, reservoirs need to release water to maintain their structural integrity. California is at risk of water shortages, floods, and related ecosystem stresses. More research needs to be done to further improve our ability to forecast weather events at longer time scales. Seasonal predictions have been statistical and only recently have studies begun to use ensemble simulations and historical observations to constrain such predictions. Understanding the mechanisms of large-scale atmospheric dynamics and its local impacts remain topics of intensive research. The ability to predict extreme events and provide policy makers with this information, along with climate change and hydrologic response information, will help to guide planning to form a more resilient infrastructure in the future.

  1. Problems with flooding in the Ronneburg mining district

    SciTech Connect (OSTI)

    Eckart, M. [Wismut GmbH, Gera (Germany)

    1993-12-31T23:59:59.000Z

    One of the most important uranium deposits of Wismut, the biggest uranium producer of the eastern world, was the Ronneburg mining area, located 10 km east of Gera in the central part of Germany. 110,000 t of uranium were produced in this ore field from 1950 to 1989. Mining in the Ronneburg ore field requires a knowledge of the hydrodynamic relationships during and after ground water recharge and preplanning of the flooding sequence in the mine. The technology necessary for recharge of the ground water layer and the open pit were established by flow models. Calculations were made of the transport of radioisotopes in the ground water. Preliminary results of these calculations are reported in this paper.

  2. Surfactant-enhanced alkaline flooding with weak alkalis

    SciTech Connect (OSTI)

    French, T.R.; Josephson, C.B.

    1991-02-01T23:59:59.000Z

    The objective of Project BE4B in FY90 was to develop cost-effective and efficient chemical flooding formulations using surfactant-enhanced, lower pH (weak) alkaline chemical systems. Chemical systems were studied that mitigate the deleterious effects of divalent ions. The experiments were conducted with carbonate mixtures and carbonate/phosphate mixtures of pH 10.5, where most of the phosphate ions exist as the monohydrogen phosphate species. Orthophosphate did not further reduce the deleterious effect of divalent ions on interfacial tension behavior in carbonate solutions, where the deleterious effect of the divalent ions is already very low. When added to a carbonate mixture, orthophosphate did substantially reduce the adsorption of an atomic surfactant, which was an expected result; however, there was no correlation between the amount of reduction and the divalent ion levels. For acidic oils, a variety of surfactants are available commercially that have potential for use between pH 8.3 and pH 9.5. Several of these surfactants were tested with oil from Wilmington (CA) field and found to be suitable for use in that field. Two low-acid crude oils, with acid numbers of 0.01 and 0.27 mg KOH/g of oil, were studied. It was shown that surfactant-enhanced alkaline flooding does have merit for use with these low-acid crude oils. However, each low-acid oil tested was found to behave differently, and it was concluded that the applicability of the method must be experimentally determined for any given low-acid crude oil. 19 refs., 10 figs. 4 tabs.

  3. Scale-up of miscible flood processes. Annual report

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1992-05-01T23:59:59.000Z

    Results of a wide-ranging investigation of the scaling of the physical mechanisms of miscible floods are reported. Advanced techniques for analysis of crude oils are considered in Chapter 2. Application of supercritical fluid chromatography is demonstrated for characterization of crude oils for equation-of-state calculations of phase equilibrium. Results of measurements of crude oil and phase compositions by gas chromatography and mass spectrometry are also reported. The theory of development of miscibility is considered in detail in Chapter 3. The theory is extended to four components, and sample solutions for a variety of gas injection systems are presented. The analytical theory shows that miscibility can develop even though standard tie-line extension criteria developed for ternary systems are not satisfied. In addition, the theory includes the first analytical solutions for condensing/vaporizing gas drives. In Chapter 4, methods for simulation of viscous fingering are considered. The scaling of the growth of transition zones in linear viscous fingering is considered. In addition, extension of the models developed previously to three dimensions is described, as is the inclusion of effects of equilibrium phase behavior. In Chapter 5, the combined effects of capillary and gravity-driven crossflow are considered. The experimental results presented show that very high recovery can be achieved by gravity segregation when interfacial tensions are moderately low. We argue that such crossflow mechanisms are important in multicontact miscible floods in heterogeneous reservoirs. In addition, results of flow visualization experiments are presented that illustrate the interplay of crossflow driven by gravity with that driven by viscous forces.

  4. Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America

    SciTech Connect (OSTI)

    Prasad, Rajiv; Hibler, Lyle F.; Coleman, Andre M.; Ward, Duane L.

    2011-11-01T23:59:59.000Z

    The purpose of this document is to describe approaches and methods for estimation of the design-basis flood at nuclear power plant sites. Chapter 1 defines the design-basis flood and lists the U.S. Nuclear Regulatory Commission's (NRC) regulations that require estimation of the design-basis flood. For comparison, the design-basis flood estimation methods used by other Federal agencies are also described. A brief discussion of the recommendations of the International Atomic Energy Agency for estimation of the design-basis floods in its member States is also included.

  5. Investigation of the scaling factor LVuw in the recovery of oil by water flooding

    E-Print Network [OSTI]

    McWilliams, Morris Hampton

    1962-01-01T23:59:59.000Z

    rnediuxn and. the Buid system, but also by the length of the flooded system and the x'ate of irjection. They further cor eluded that for floods performed in identical porous media and with the same oil-water viscosity ratio, the total length... water) as a scaling w coefficient. In other words, all floods conducted in a given porous rnediuxn, with a given oil-watex viscosity ratio and haVing the same value of this scalixxg coefficient must behave similarly and yield equal recoveries fax...

  6. FLOODING AND GAS EMISSIONS OF OLD IRON MINES IN LORAIN LAGNY Candice1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    related to abandoned mine workings. This study has been extended to other sectors of the Lorraine basin reservoirs of "Rosselange", Franchepré and "Orne". Then, investigation was made in non-flooded reservoirs

  7. After the flood : crisis, voice and innovation in Maputo's solid waste management sector

    E-Print Network [OSTI]

    Kruks-Wisner, Gabrielle (Gabrielle K.)

    2006-01-01T23:59:59.000Z

    This thesis explores responses to the problem of solid waste management (SWM) in two neighborhoods of Maputo, Mozambique in the wake of catastrophic flooding in 2000. In these neighborhoods, small-scale service providers ...

  8. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    SciTech Connect (OSTI)

    Johnson, J.S.; Westmoreland, C.G.

    1982-02-02T23:59:59.000Z

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  9. Model studies to investigate the effects of fixed streamlines on water flooding performance

    E-Print Network [OSTI]

    Green, Axel Venton

    1964-01-01T23:59:59.000Z

    MODEL STUDIES TO INVESTIGATE THE EFFECTS OF FIXED STREAMLINES ON WATER FLOODING PERFORMANCE A Thesis by Axel Venton Green Submitted to the Graduate College of the Texas ASrM University in partial fulfillment of the requirements...

  10. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOE Patents [OSTI]

    Johnson, Jr., James S. (Oak Ridge, TN); Westmoreland, Clyde G. (Rockwood, TN)

    1982-01-01T23:59:59.000Z

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  11. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOE Patents [OSTI]

    Johnson, J.S. Jr.; Westmoreland, C.G.

    1980-08-20T23:59:59.000Z

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  12. Resource Management Services: Land Use, Part 501: Use of Flood Control Lands (New York)

    Broader source: Energy.gov [DOE]

    No regulated activity or development is allowed to take place on lands used for flood control purposes unless a permit is obtained. These regulations describe provisions for the application,...

  13. Estimated Benefits of IBWC Rio Grande Flood-Control Projects in the United States

    E-Print Network [OSTI]

    Sturdivant, Allen W.; Lacewell, Ronald D.; Michelsen, Ari M.; Rister, M. Edward; Assadian, Naomi; Eriksson, Marian; Freeman, Roger; Jacobs, Jennifer H.; Madison, W. Tom; McGuckin, James T.; Morrison, Wendy; Robinson, John R.C.; Staats, Chris; Sheng, Zhuping; Srinivasan, R.; Villalobos, Joshua I.

    TR- 275 2004 Estimated Benefits of IBWC Rio Grande Flood-Control Projects in the United States Allen W. Sturdivant Ronald D. Lacewell Ari M. Michelsen M. Edward Rister Naomi Assadian Marian Eriksson Roger Freeman Jennifer H... Flood-Control Projects in the United States Prepared for: INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES SECTION EL PASO, TEXAS SEPTEMBER 2004 Prepared by: Texas Agriculture Experiment Station, and Texas Water Resources Institute of the Texas...

  14. Effects of fluid properties and initial gas saturation on oil recovery by water flooding

    E-Print Network [OSTI]

    Arnold, Marion Denson

    2012-06-07T23:59:59.000Z

    EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D. ARNOLD Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August, 1959 Major Subject: Petroleum Engineering EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D, ARNOLD Approved as to style and content by...

  15. Implementation of the El Mar (Delaware) Unit CO2 flood

    SciTech Connect (OSTI)

    McKnight, T.N. Jr. [Union Royalty, Inc., Midland, TX (United States); Merchant, D.L.

    1995-12-31T23:59:59.000Z

    Union Royalty, Inc., Amoco Production Company, and Enron Liquids Pipeline Company recently announced that they have commenced operations of an innovative enhanced oil recovery project at the El Mar (Delaware) Unit in Loving County, Texas, about 100 miles west of Midland, Texas. The project will convert the unit`s existing oil recovery system from a secondary (waterflood) system to a tertiary (CO2 flood) system designed to use carbon dioxide and water to increase crude oil production from the unit. What makes this EOR project unique is the creative deal structured by the partners involved. Amoco, Union Royalty, and Enron have worked out an unprecedented arrangement whereby Amoco essentially trades CO2 for an interest in Union Royalty`s future oil production from the unit. By pioneering this innovative deal new production life has been restored to a field that otherwise might dry up. Enron is participating in the project by transporting CO2 to the unit via a 40-mile expansion of its Central Basin Pipeline system from the Dollarhide oil field in Andrews county, Texas. The project will be implemented in four phases. The first phase in operation today comprises seven CO2 injection wells which have begun to process the reservoir with CO2. Plans now call for more CO2 injectors to be installed during the next three to five years until a total of 65 CO2 injectors and an on-site CO2 compression facility serve the unit`s 70 production wells.

  16. Green River Formation water flood demonstration project. Final report

    SciTech Connect (OSTI)

    Pennington, B.I.; Dyer, J.E.; Lomax, J.D. [Inland Resources, Inc. (United States); [Lomax Exploration Co., Salt Lake City, UT (United States); Deo, M.D. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

    1996-11-01T23:59:59.000Z

    The objectives of the project were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter core, Formation Micro Imaging (FMI) logs from several wells and Magnetic Resonance Imaging (MRI) logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using high-temperature gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2,000 barrels per day.

  17. Non-Adjoint Surfactant Flood Optimization of Net Present Value and Incorporation of Optimal Solution Under Geological and Economic Uncertainty

    E-Print Network [OSTI]

    Odi, Uchenna O.

    2011-02-22T23:59:59.000Z

    follows the style of SPE Journal. 2 2. LITERATURE REVIEW Literature reviews for this research involved studying the past history of surfactant flood optimization and water flood optimization. Each area was unique in its perspective... that it is not purely a physical problem but an economical problem also. They continued in their analysis of past work by critiquing the work that argues for optimal salinity as vital in designing optimal surfactant floods (Porzucek, et al., 1988a). Assimilating...

  18. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2004-06-30T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2004, 6.26 MM lb of carbon dioxide were injected into the pilot area. Carbon dioxide injection rates averaged about 250 MCFD. Carbon dioxide was detected in one production well near the end of May. The amount of carbon dioxide produced was small during this period. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February, increasing to an average of about 2.5 B/D in May and June. Operational problems encountered during the initial stages of the flood were identified and resolved.

  19. The investigation of the effects of wettability on residual oil after water flooding

    E-Print Network [OSTI]

    Burja, Edward Oscar

    1953-01-01T23:59:59.000Z

    THE INVESTIGATION OF THE EFFECTS OF WETTABILITY ON RESIDUAL OIL AFTER WATER FLOODING A Thesis BY E. 0, BUR JA Approved as to style and content by: (Cha rman of C mmittee (Head of Department) (Mo th (Year) THE INVESTIGATION OF THE EFFECTS... OF WETTABILITY ON RESIDUAL OIL AFTER WATER FLOODING By E. O. Burja A Thesis Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major Subject...

  20. Grain sorghum response to different flooding periods at the early boot stage

    E-Print Network [OSTI]

    Zolezzi del Rio, Oscar

    2012-06-07T23:59:59.000Z

    GRAIN SORGHUM RESPONSE TO DIFFERENT FLOODING PERIODS AT THE EARLY BOOT STAGE A Thesis by OSCAR ZOLEZZI DEL RIO Submitted to the Graduate College of Texas A)M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1976 Major Subject: Agricultural Engineering GRAIN SORGHUM RESPONSE TO DIFFERENT FLOODING PERIODS AT THE EARLY BOOT STAGE A Thesis by OSCAR 2OLE22I DEL RIO Approved as to style and content by: airman o ommzttee Hea o Departme t e er...

  1. The effect on oil recovery of water flooding at pressures above and below the bubble point

    E-Print Network [OSTI]

    Bass, Daniel Materson

    1955-01-01T23:59:59.000Z

    if the reservoir is water flooded in the presence of a {9) {10) free gas phase. Guerrero and Kennedy conducted a study using Woodbine sand and East Texas crude oil on the effect of surface-active agents on oil recovery by water flooding, They made several f.... Once the gas saturation increases to a value such that its mo- bility is as great as the mobility ef the otl it no longer can act as a blocking agent. , but probably the water is still forced to flush some of the more tortuous channels which normally...

  2. Palaeomagnetism of flood basalts in the Pilbara Craton, Western Australia: Late Archaean continental drift and the oldest known

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Palaeomagnetism of flood basalts in the Pilbara Craton, Western Australia: Late Archaean in the Nullagine Synclinorium (and Meentheena Centrocline) of the East Pilbara Basin, Western Australia, has been. Langereis, Palaeomagnetism of flood basalts in the Pilbara Craton, Western Australia: Late Archaean

  3. FLEXIBILITY IN WATER RESOURCES MANAGEMENT: REVIEW OF CONCEPTS AND DEVELOPMENT OF ASSESSMENT MEASURES FOR FLOOD MANAGEMENT SYSTEMS1

    E-Print Network [OSTI]

    Tullos, Desiree

    FLEXIBILITY IN WATER RESOURCES MANAGEMENT: REVIEW OF CONCEPTS AND DEVELOPMENT OF ASSESSMENT variability/change; risk assessment; flood management; water resources flexibility.) DiFrancesco, Kara N of Assessment Measures for Flood Management Systems. Journal of the American Water Resources Association (JAWRA

  4. A graphical method to study suspended sediment dynamics during flood events in the Wadi Sebdou, NW Algeria (19732004)

    E-Print Network [OSTI]

    A graphical method to study suspended sediment dynamics during flood events in the Wadi Sebdou, NW sediment concentration Semiarid watershed Flood Wadi Algeria s u m m a r y Small sub-basins are numerous period (1973­2004) was analyzed at the outlet of the Wadi Sebdou basin (256 km2 ) in northwest Algeria

  5. Improved efficiency of miscible CO{sub 2} floods and enhanced prospects for CO{sub 2} flooding heterogeneous reservoirs. Annual report, April 18, 1995--April 17, 1996

    SciTech Connect (OSTI)

    Grigg, R.B.; Schechter, D.S.

    1996-10-01T23:59:59.000Z

    The overall goal of this project is to improve the efficiency of miscible CO{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This objective is being accomplished by extending experimental and modeling research in three task areas: (1) foams for selective mobility control in heterogeneous reservoirs, (2) reduction of the amount of CO{sub 2} required in CO{sub 2} floods, and (3) low IFT processes and the possibility of CO{sub 2} flooding in fractured reservoirs. This report provides results of the second year of the three-year project for each of the three task areas. In the first task, we are investigating a desirable characteristic of CO{sub 2}-foam called Selective Mobility Reduction (SMR) that results in an improvement in displacement efficiency by reducing the effects of reservoir heterogeneity. Research on SMR of foam during the past year has focused on three subjects: (1) to verify SMR in different rock permeabilities that are in capillary contact; (2) to test additional surfactants for the SMR property; and (3) to develop a modeling approach to assess the oil recovery efficiency of SMR in CO{sub 2}-foam on a reservoir scale. The experimental results from the composite cores suggest that the rock heterogeneity has significant effect on two phase (CO{sub 2}/brine) flow behavior in porous media, and that foam can favorably control CO{sub 2} mobility. The numerical modeling results suggest that foam with SMR can substantially increase the sweep efficiency and therefore improve oil recovery.

  6. Flood Assessment at the Area 5 Radioactive Waste Management Site and the Proposed Hazardous Waste Storage Unit, DOE/Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Schmeltzer, J. S., Millier, J. J., Gustafson, D. L.

    1993-01-01T23:59:59.000Z

    A flood assessment at the Radioactive Waste Management Site (RWMS) and the proposed Hazardous Waste Storage Unit (HWSU) in Area 5 of the Nevada Test Site (NTS) was performed to determine the 100-year flood hazard at these facilities. The study was conducted to determine whether the RWMS and HWSU are located within a 100-year flood hazard as defined by the Federal Emergency Management Agency, and to provide discharges for the design of flood protection.

  7. Developing a GIS tool to assess potential damage of future floods J. Eleutrio1,2

    E-Print Network [OSTI]

    Boyer, Edmond

    analysis, vulnerability assessment, natural hazard, decision support tool. 1 Introduction Flood risk brings and A. Rozan1 1 UMR Cemagref/ENGEES GESTE, Territorial Management of Water and Environment, France 2 UTR Urban Hydraulics - UMR CNRS/UdS/ ENGEES Mechanical Institute of Fluids and Solids, France Abstract

  8. RESERVOIR RELEASE FORECAST MODEL FOR FLOOD OPERATION OF THE FOLSOM PROJECT INCLUDING PRE-RELEASES

    E-Print Network [OSTI]

    Bowles, David S.

    1 RESERVOIR RELEASE FORECAST MODEL FOR FLOOD OPERATION OF THE FOLSOM PROJECT INCLUDING PRE-line Planning Mode, the Reservoir Release Forecast Model (RRFM) is being used to test alternatives operating River Forecast Center. The RRFM will make possible the risk-based operation of the Folsom Project

  9. Cedar River, Cedar Rapids, Iowa Flood Risk Management Feasibility Study Report with Integrated Environmental Assessment

    E-Print Network [OSTI]

    US Army Corps of Engineers

    of Engineers (USACE) has developed a plan for the flood risk management for the Cedar River, Cedar Rapids, Iowa all 12 comments. 1. IEPR Comment - High Significance: The analysis of existing cultural resources Resources was revised to explain why the resolution of the cultural resources will not exceed the budgeted

  10. Flow and sediment processes in a cutoff meander of the Danube Delta during episodic flooding

    E-Print Network [OSTI]

    Flow and sediment processes in a cutoff meander of the Danube Delta during episodic flooding Laura as sediment storage locations, essentially removing channel and point bar sediments from the active sediment) in order to investigate the distribution of the flow and sediment and his impact on sedimentation

  11. Impact of relief accuracy on flood simulations and road network vulnerability analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    network by forcing users to take detours. In a risk preventive viewpoint, the network administrator has 1 Impact of relief accuracy on flood simulations and road network vulnerability analysis Jean in the water level and its consequences on the road network vulnerability. The first part focuses

  12. A Cost-Benefit Analysis of the New Orleans Flood Protection System Stphane Hallegatte1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    such a hurricane protection a rational investment, even if countervailing risks and moral hazard issues1 A Cost-Benefit Analysis of the New Orleans Flood Protection System Stéphane Hallegatte1 Center for Environmental Sciences and Policy, Stanford University, and Centre International de Recherche sur l

  13. CO2 gas production understanding above a partly flooded coal post-mining area

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - The Westphalian deposit is constituted by numerous exploited coal seams of different thicknesses. These seamsCO2 gas production understanding above a partly flooded coal post-mining area Candice Lagnya, a former coal mining area. To understand the origin of this production, a borehole of 90 meters deep

  14. High-speed Router Filter for Blocking TCP Flooding under DDoS Attack

    E-Print Network [OSTI]

    Chao, Jonathan

    High-speed Router Filter for Blocking TCP Flooding under DDoS Attack Yoohwan Kim',Ju-Yeon Jo', H during the Distributed Denial-oJService (DDoS) attack. By allocating bandwidths separately for TCP.9% of the attack trafic while legitimate traflc showed nearly identical performance as in the non-attacked

  15. High-Speed Router Filter for Blocking TCP Flooding under DDoS Attack

    E-Print Network [OSTI]

    Merat, Francis L.

    1 High-Speed Router Filter for Blocking TCP Flooding under DDoS Attack Yoohwan Kim1 , Ju-Yeon Jo1 Polytechnic University, Brooklyn, NY 11201 ABSTRACT Protection from Distributed Denial-of-Service attacks has been of a great interest recently and substantial progress has been made for preventing some attack

  16. Climate Change and Water Resources Management: Adaptations for Flood Control and Water Supply

    E-Print Network [OSTI]

    Lund, Jay R.

    of climate warming can be very significant. Integrated water resources management is a promising wayClimate Change and Water Resources Management: Adaptations for Flood Control and Water Supply climate warming impacts on surface runoff, groundwater inflows and reservoir evaporation for distributed

  17. Ecosystem effects of environmental flows: modelling and experimental floods in a dryland river

    E-Print Network [OSTI]

    physical system using: (1) a reservoir operations model to simulate reservoir releases and reservoir water experimental floods on the differential mortality of native and exotic riparian trees, on beaver dam integrity of model applications and experimental flow releases are contributing to adaptive flow management

  18. The Impact of Climate Change on Hurricane Flooding Inundation, Property Damages, and Population Affected

    E-Print Network [OSTI]

    Frey, Ashley E.

    2010-07-14T23:59:59.000Z

    Bret Low Estimate 2030 ... 58 19 Flood Building Loss Estimation ................................................................. 61 xiii FIGURE...) studied historical shoreline changes in the Gulf of Mexico. In addition to sea level, hurricanes and other strong storms can also greatly affect the morphology of barrier islands. This has been a popular topic of research in the past few years...

  19. A flow resistance model for assessing the impact of vegetation on flood routing mechanics

    E-Print Network [OSTI]

    Katul, Gabriel

    control in urban storm water runoff [Kirby et al., 2005], and linking tidal hydrodynamic forcing to flow and field studies. The proposed model asymptotically recovers the flow resistance formulation when the waterA flow resistance model for assessing the impact of vegetation on flood routing mechanics Gabriel G

  20. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise

    E-Print Network [OSTI]

    Wetzel, Andreas

    Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise Rik is related with the low shelf gradient and a strong acceleration of the East Asian sea-level rise from 34 depositional systems change into estuaries and eventually drown when sea-level rise overtakes the sediment

  1. Coastal flood damage and adaptation costs under 21st century sea-level rise

    E-Print Network [OSTI]

    Marzeion, Ben

    Coastal flood damage and adaptation costs under 21st century sea-level rise Jochen Hinkela,1st century sea-level rise are assessed on a global scale taking into account a wide range- ment and sea-level rise. Uncertainty in global mean and regional sea level was derived from four

  2. Indonesian official blames Illegal loggers for flood BUKIT LAWANG, Indonesia (AP) --Indonesia's environment minister on

    E-Print Network [OSTI]

    Indonesian official blames Illegal loggers for flood BUKIT LAWANG, Indonesia (AP) -- Indonesia. Environmentalists say unchecked logging in Indonesia, a sprawling archipelago with 210 million inhabitants, disrupts, Indonesia's largest environmental group, said that up to 20% of Leuser National Park, which overlooks Bukit

  3. HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON

    E-Print Network [OSTI]

    Julien, Pierre Y.

    HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON HIGHLANDS, Malaysia 4 Professor, Department of Civil Engineering, Colorado State University, USA ABSTRACT: Hydropower as possible for daily hydropower generation as well as to prevent any spillage at dam. However

  4. FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY

    E-Print Network [OSTI]

    Daripa, Prabir

    FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY Prabir Daripa developed flows in enhanced oil recovery (EOR). In a recent exhaustive study [Transport in Porous Media, 93 fluid flows that occur in porous media during tertiary dis- placement process of chemical enhanced oil

  5. Culvert Design for Flood Routing considering Sediment Transport W.J. Rahmeyer PhD.1

    E-Print Network [OSTI]

    Rahmeyer, William J.

    Culvert Design for Flood Routing considering Sediment Transport W.J. Rahmeyer PhD.1 and W routing methodologies do not consider sediment bed-load transport through the culverts or pipelines of road crossings. Many practitioners either ignore the transport of sediment through a culvert or assume

  6. Building boundary is necessary for the real estate industry, flood management, and homeland security applications.

    E-Print Network [OSTI]

    Shan, Jie

    Abstract Building boundary is necessary for the real estate industry, flood management, and homeland security applications. The extraction of building boundary is also a crucial and difficult step, and Purdue University campus are evaluated. Introduction Airborne lidar (light detection and ranging

  7. The effect of surface and interfacial tensions upon the recovery of oil by water flooding

    E-Print Network [OSTI]

    Guerrero, Erasmo Trevino

    1953-01-01T23:59:59.000Z

    THE EFFECT OF SURFACE AND INTERFACIAL TENSIONS UPON THE RECOVERY OF OIL BY WATER FLOODING A Dissertation By ERASMO T . GUERRERO Approved as to style and content by: J t Q J w & U 7 T Chsfirman of Cfommittee f Head of Department TABLE....................................................................................................... .......... 25 Surface and Interfacial Tensions..........................................................26 Adsorption............................... .................. . ........................................ .......... 31 Flow Tests...

  8. The Geology and Geography of Floods Jim E. O'Connor

    E-Print Network [OSTI]

    failures and terrestrial freshwater sources such as lakes and ice caps involve similar total volumes of ice caps and failures of ice and landslide Vlams. The fundamental limits to dam-failure floods primarily affected by individual storms, the largest flows are in areas where atmospheric moisture or storm

  9. Flooding of industrial facilities -Vulnerability rduction in practice A. Valle, B. Affeltranger, Ch. Duval

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the flooding of a refinery in Mohammedia (Morocco) on 25th November 2002. Many damages were reported to the snow loads, wind or rain C2: Fire or damage on electric equipments caused by storm and lightning C3,version1-4Apr2014 Author manuscript, published in "13. International Symposium on Loss Prevention

  10. www.exeter.ac.uk/inspiring-science Impact of Climate Change on Urban Flooding

    E-Print Network [OSTI]

    Mumby, Peter J.

    www.exeter.ac.uk/inspiring-science Impact of Climate Change on Urban Flooding: a fairy taleMatiCs and PhysiCal sCienCes 2011ceMPS45 Dr Ole Mark is a specialist in climate change and urban water systems-years' experience in both developed and developing countries. Dr Mark is a key partner in the CORFU

  11. Freshwater flooding from rivers, overflowing sewage and septic systems and other sources can have a signifi-

    E-Print Network [OSTI]

    there is no hazardous flood debris such as pro- pane tanks, pressurized-gas cylinders, refrigerators, air conditioners/sewer lines and oil/ gas pipelines, but you will be told whether or not you will have to contact those will locate all electrical, natural gas, communications and telephone lines.It may or may not locate water

  12. NATURAL HAZARDS ON ALLUVIAL FANS: THE VENEZUELA DEBRIS FLOW AND FLASH FLOOD DISASTER

    E-Print Network [OSTI]

    Eaton, L. Scott

    NATURAL HAZARDS ON ALLUVIAL FANS: THE VENEZUELA DEBRIS FLOW AND FLASH FLOOD DISASTER In December Venezuela. Rainfall on December 2-3 totaled 200 millimeters (8 inches) and was followed by a major storm, Denver, Colorado, Naples, Italy, and Vargas, Venezuela. In time scales spanning thousands of years

  13. How Accurate are Disaster Loss Data? The Case of U.S. Flood Damage

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    disaster assistance programs. Comparison of early damage estimates with actual expenditures in a California.S. National Weather Service (NWS) has compiled annual flood loss estimates for each state since 1955 the provision of disaster relief assistance, e.g., how much, when, and in what form. Loss estimates provide

  14. Defra FCERM Innovation Fund PROJECT SLD2316: RESTORING FLOODPLAIN WOODLAND FOR FLOOD

    E-Print Network [OSTI]

    London SW1P 2AL Tel: 020 7238 3000 Fax: 020 7238 6187 www.defra.gov.uk/environ/fcd © Crown copyright of facilitating the establishment of a sizeable area of floodplain woodland (15 ha) to help reduce flood risk results demonstrated that planting woodland at four sites in the River Laver catchment, totalling an area

  15. Antioch University and EPA Webinar: Green Infrastructure and Flood Resiliency Webinar

    Broader source: Energy.gov [DOE]

    Hosted by the Antioch University and U.S. Environmental Protection Agency (EPA), this webinar, which is part of a series, will address assessment, planning, and adaptation to not only better prepare for the next emergency, but to sustainably manage flooding and stormwater to maintain human health and a local economy.

  16. Robust Optimization of Oil Reservoir Flooding G.M. van Essen, M.J. Zandvliet,

    E-Print Network [OSTI]

    Van den Hof, Paul

    Robust Optimization of Oil Reservoir Flooding G.M. van Essen, M.J. Zandvliet, P.M.J. Van den Hof the reservoir to the subsurface. The injection wells inject water into the oil reservoir with the aim to push reservoirs, the oil-water front does not travel uniformly towards the pro- duction wells, but is usually

  17. Risk prevention and policy formulation : responding to the 1999 mud-floods catastrophe in El Litoral Central, Venezuela

    E-Print Network [OSTI]

    Parisca-Blanco, Sonia

    2005-01-01T23:59:59.000Z

    Fifteen days of constant and intense rainfall in Venezuela culminated on December 16 1999, in catastrophic landslides and flooding along 25 miles of the Vargas State coastal strip. This catastrophe ravaged the Caracas ...

  18. Development of a HEC-HMS model to inform river gauge placement for a flood early warning system in Uganda

    E-Print Network [OSTI]

    Kaatz, Joel Alan

    2014-01-01T23:59:59.000Z

    Communities in the downstream region of the Manafwa River Basin in eastern Uganda experience floods caused by heavy precipitation upstream. The Massachusetts Institute of Technology (MIT) has partnered with the Red Cross ...

  19. Incorporating daily flood control objectives into a monthly stochastic dynamic programming model for a hydroelectric complex

    SciTech Connect (OSTI)

    Druce, D.J. (British Columbia Hydro and Power Authority, Vancouver, British Columbia (Canada))

    1990-01-01T23:59:59.000Z

    A monthly stochastic dynamic programing model was recently developed and implemented at British Columbia (B.C.) Hydro to provide decision support for short-term energy exports and, if necessary, for flood control on the Peace River in northern British Columbia. The model established the marginal cost of supplying energy from the B.C. Hydro system, as well as a monthly operating policy for the G.M. Shrum and Peace Canyon hydroelectric plants and the Williston Lake storage reservoir. A simulation model capable of following the operating policy then determines the probability of refilling Williston Lake and possible spill rates and volumes. Reservoir inflows are input to both models in daily and monthly formats. The results indicate that flood control can be accommodated without sacrificing significant export revenue.

  20. DEVELOPMENT OF MORE-EFFICIENT GAS FLOODING APPLICABLE TO SHALLOW RESERVOIRS

    SciTech Connect (OSTI)

    William R. Rossen; Russell T. Johns; Gary A. Pope

    2003-08-21T23:59:59.000Z

    The objective of this research is to widen the applicability of gas flooding to shallow oil reservoirs by reducing the pressure required for miscibility using gas enrichment and increasing sweep efficiency with foam. Task 1 examines the potential for improved oil recovery with enriched gases. Subtask 1.1 examines the effect of dispersion processes on oil recovery and the extent of enrichment needed in the presence of dispersion. Subtask 1.2 develops a fast, efficient method to predict the extent of enrichment needed for crude oils at a given pressure. Task 2 develops improved foam processes to increase sweep efficiency in gas flooding. Subtask 2.1 comprises mechanistic experimental studies of foams with N2 gas. Subtask 2.2 conducts experiments with CO{sub 2} foam. Subtask 2.3 develops and applies a simulator for foam processes in field application.

  1. Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell

    E-Print Network [OSTI]

    Natarajan, Dilip; Van Nguyen, Trung

    2003-03-27T23:59:59.000Z

    . Researchers all over the world are focusing on optimizing this system to be cost competitive with energy conversion devices currently available. It is a well known fact that the cathode of the PEM fuel cell is the performance limiting component due...THREE DIMENSIONAL EFFECTS OF LIQUID WATER FLOODING IN THE CATHODE OF A PEM FUEL CELL by Dilip Natarajan and Trung Van Nguyen* Department of Chemical and Petroleum Engineering University of Kansas Lawrence, KS 66045, USA Submitted...

  2. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-03-31T23:59:59.000Z

    Progress is reported for the period from January 1, 2002 to March 31, 2002. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. While this review process is being conducted, work is proceeding on well testing to obtain reservoir properties and on the VIP reservoir simulation model to improve model prediction and better understand the controls that certain parameters exert on predicted performance. In addition, evaluation of the economics of commercial application in the surrounding area was performed. In a meeting on January 14, 2002 the possibility of staging the demonstration, starting with a 10-acre sub-pattern flood was raised and the decision made to investigate this plan in detail. The influence of carbon dioxide on oil properties and the influence of binary interaction parameters (BIP) used in the VIP simulator were investigated. VIP calculated swelling factors are in good agreement with published values up to 65% mole-fraction CO2. Swelling factor and saturated liquid density are relatively independent of the BIP over the range of BIPs used (0.08-0.15) up to 65% mole-fraction CO2. Assuming a CO2 EOR recovery rate projected as being most likely by current modeling, commercial scale CO2 flooding at $20/BO is possible in the leases in Hall-Gurney field. Relatively small floods (240-320 acres, 4-6 patterns) are economically viable at $20/BO in areas of very high primary and secondary productivity (>14 MBO/net acre recovery). Leases with moderately high primary and secondary productivity (> 10 MBO/net acre recovery) can be economic when combined with high productivity leases to form larger floods (>640 acres, 9 or more patterns).

  3. Appendix A. Individual Evaluations of 30 Peak Discharges from 28 Extraordinary Floods in the United States

    E-Print Network [OSTI]

    States #12;#12;Appendix A: Seco Creek 55 Location: This flood site is located at 29.4750 N and 99.3000 W,000 ft3 /s, as published in Crippen and Bue (1977). The rating is poor. Drainage area: 142 mi2 . Data by several gaging-station records in the area that show a major peak discharge occurring on or about May 31

  4. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-09-30T23:59:59.000Z

    Progress is reported for the period from July 1, 2002 to September 30, 2002. On September 27, 2002 the US DOE approved the proposed modified plan to flood a 10+-acre pattern. MV Energy has received informal notification that GE Capital will approve sale of the portion of the Colliver lease involved in the pilot. Murfin Drilling Company is seeking local small independent partners for the pilot and has received commitment from White Eagle Energy and John O. Farmer Oil Company to date. A Contract was signed between the Kansas Department of Commerce & Housing and Murfin formalizing the KSDOC&H contribution of $88,000 to the pilot project. This money will be used for well rework and testing. The results of this small flood will be used to evaluate the viability of performing a larger-scale demonstration and will be used by the partners to decide their role in a larger-scale demonstration. The 10+-acre pattern requires the least up-front expense to all parties to obtain the data required to accurately assess the viability and economics of CO2 flooding in the L-KC and of a larger-scale demonstration. Proposed modifications to the project plan were reviewed in the previous quarterly technical progress report.

  5. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-06-30T23:59:59.000Z

    Progress is reported for the period from July 1, 2002 to September 30, 2002. Assessment of the demonstration site has defined many aspects of the reservoir. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. Further analysis of the pilot site by the partners has indicated that a staged demonstration is considered optimal. A phased approach to implementation of the demonstration is proposed to reduce the risk of uncertainties as to whether the reservoir has basic properties (connectivity and ability to pressure-up) conducive to a meaningful CO2 flood demonstration. The proposed plan is to flood a 10+-acre pattern. The results of this small flood will be used to evaluate the viability of performing a larger-scale ({approx}60-acre) demonstration and will be used by the partners to decide their role in a larger-scale demonstration. The 10+-acre pattern requires the least up-front expense to all parties to obtain the data required to accurately assess the viability and economics of CO2 flooding in the L-KC and of a larger-scale demonstration. In general, the following significant modifications to the original Statement of Work are proposed: (1) The proposed plan would extend the period of Budget Period 1 to May 7, 2003. (2) Redefine the period of Budget Period 2 from 3/7/01-3/7/05 to 5/7/03-3/7/08. (3) Redefine the period of Budget Period 3 from 3/7/05-3/7/06 to 3/7/08-3/7/09. (4) To allow initial verification of the viability of the process before proceeding into the flood demonstration, move activities involved with preparing wells in the flood pattern (Task 5.1), repressurizing the pattern (Task 5.2), and constructing surface facilities (Task 5.3) from Budget Period 2 to Budget Period 1. (5) Allow US Energy Partners (USEP) to be a supplier of carbon dioxide from the ethanol plant in Russell, Kansas. (6) Change the pilot flood pattern, including the number and location of wells involved in the pilot. (7) Expenses are shifted from Budget Period 2 to Budget Period 1 to cover costs of additional reservoir characterization. All modified activities and tasks would maintain the existing required industry match of 55% in Budget Period 1, 65% in Budget Period 2, and 90% in Budget Period 3. Carbon dioxide supplied by the USEP ethanol facility would be valued such that the total cost of CO2 delivered to the demonstration site injection wellhead would not exceed the $3.00/MCF cost of supplying CO2 from Guymon, OK. Total cost of the modified project is $4,415,300 compared with $5,388,064 in the original project. The modified project would require no additional funding from US DOE.

  6. Green River Formation Water Flood Demonstration Project: Final report. [October 21, 1992-April, 30, 1996

    SciTech Connect (OSTI)

    Deo, M.D. [Dept. of Chemical and Fuels Engineering, University of Utah, Salt Lake City (US); Dyer, J.E.; Lomax, J.D. [Inland Resources, Inc., Lomax Exploration Co., Salt Lake City, UT (US); Nielson, D.L.; Lutz, S.J. [Energy and Geoscience Institute at the University of Utah, Salt Lake City (US)

    1996-11-01T23:59:59.000Z

    The objectives were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. Comprehensive reservoir characterization and reservoir simulations of the Monument Butte, Travis and Boundary units were presented in the two published project yearly reports. The primary and the secondary production from the Monument Butte unit were typical of oil production from an undersaturated oil reservoir close to its bubble point. The water flood in the smaller Travis unit appeared affected by natural and possibly by large interconnecting hydraulic fractures. Water flooding the boundary unit was considered more complicated due to the presence of an oil water contact in one of the wells. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter c ore, Formation Micro Imaging logs from several wells and Magnetic Resonance Imaging logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir characterization efforts identified new reservoirs in the Travis and the Boundary units. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2000 barrels per day.

  7. Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-09-01T23:59:59.000Z

    Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

  8. Water balance of Pin-Point and Flush-Flood irrigated rice

    E-Print Network [OSTI]

    Roel Dellazoppa, Alvaro

    1996-01-01T23:59:59.000Z

    plant m '. The planting dates were May 26 and May 18 for the 1994 and 1995 growing seasons, respectively. At the first tiller stage, a mix of Quinclorac (Facet) and Bentazon (Basagran) herbicide was applied to the Flush-Flood (FF) plots only, at a... rate of 400g of active ingredient of Quinclorac and 800g of active 19 ingredient of Bentazon per hectare. The herbicide application was necessary to control mainly barnyardgrass (Kchinodoa spp. ) and sedges on the FF plots in both years. Pin- Point...

  9. A correlation between wettability and the recovery of oil by water flooding

    E-Print Network [OSTI]

    Miller, Robert Thomas

    1956-01-01T23:59:59.000Z

    in color and dispersible in hard watez. Petronate L (32) is a low molecular weight& highly refined petroleum sulfonate It is insoluble in waterz highly soluble in kerosene& and is a very viscous~ dark brown liquid. Ethofat 2/+2/60 (33) i. s a tall oil... fulfillment of the requirements for the degree of MASTER OF SCIENCE ~ust 1~6 Major Subject Petroleum ineerin A COHRELAT ION BETWEEN WETTABILlTY AND THE RECOVERY CF OIL BY WATER FLOODING A Thesis ROBERT T KLLIK Approved as to style and content by...

  10. The project design flood and spillway for the Arroyo Seco Reservoir near San Antonio, Texas

    E-Print Network [OSTI]

    Gilbreth, Joe Clyde

    2012-06-07T23:59:59.000Z

    of the remainder of a stand- ard storm. Recognised procedures for such extensions are published and are in regular use. In this case reference was made to Civil Engineer Bulletin No. 52-8, Department of the Army, Office of the Chief of Engi- neers( ) "Standard... Project Flood Determinations" ~ Employment of the procedure outlined therein, and described in the following section, produced a hypothetical rainfall pattern as follows: Period (hours duration) 1 Rainfall (inches) 15. 18 3 6 24 22 27 ' 75 45, 0...

  11. AP1000{sup R} design robustness against extreme external events - Seismic, flooding, and aircraft crash

    SciTech Connect (OSTI)

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01T23:59:59.000Z

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel which is further surrounded by a substantial 'steel concrete' composite shield building. The containment vessel is not affected by external flooding, and the shield building design provides hazard protection beyond that provided by a comparable reinforced concrete structure. The intent of this paper is to demonstrate the robustness of the AP1000 design against extreme events. The paper will focus on the plants ability to withstand extreme external events such as beyond design basis flooding, seismic events, and malicious aircraft impact. The paper will highlight the robustness of the AP1000 nuclear island design including the protection provided by the unique AP1000 composite shield building. (authors)

  12. Low-frequency QPO, Magnetic Flood and the states of GRS 1915+105

    E-Print Network [OSTI]

    M. Tagger

    2002-08-27T23:59:59.000Z

    We sum up progress accomplished, since the last microquasar workshop, on the physics of the Accretion-Ejection Instability (AEI), and its ability to explain the properties of the low-frequency QPO of microquasars. These results concern the basic theory of the instability, its numerical simulation and the resulting modelisation of the QPO, as well as detailed observations of the QPO properties. They converge to reinforce the `magnetic flood' scenario, extrapolated from the AEI to explain the ~ 30 minutes cycles of G1915. We then discuss directions in which this scenario might be extended toward a more global view of the evolution of this source.

  13. CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin

    SciTech Connect (OSTI)

    O'Connor, William K.; Rush, Gilbert E.

    2005-09-01T23:59:59.000Z

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  14. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfn; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2004-12-31T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. Continuous carbon dioxide injection began on December 2, 2003. By the end of December 2004, 11.39 MM lb of carbon dioxide were injected into the pilot area. Carbon dioxide injection rates averaged about 242 MCFD. Vent losses were excessive during June as ambient temperatures increased. Installation of smaller plungers in the carbon dioxide injection pump reduced the recycle and vent loss substantially. Carbon dioxide was detected in one production well near the end of May and in the second production well in August. No channeling of carbon dioxide was observed. The GOR has remained within the range of 3000-4000 for most the last six months. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February, increasing to an average of about 2.35 B/D for the six month period between July 1 and December 31. Cumulative oil production was 814 bbls. Neither well has experienced increased oil production rates expected from the arrival of the oil bank generated by carbon dioxide injection.

  15. Supporting technology for enhanced oil recovery: CO/sub 2/ miscible flood predictive model

    SciTech Connect (OSTI)

    Ray, R.M.; Munoz, J.D.

    1986-12-01T23:59:59.000Z

    The CO/sub 2/ Miscible Flood Predictive Model (CO2PM) was developed by Scientific Software-Intercomp for the US Department of Energy and was used in the National Petroleum Council's (NPC) 1984 survey of US enhanced oil recovery potential (NPC, 1984). The CO2PM is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO/sub 2/ injection or water-alternating-gas (WAG) processes. In the CO2PM, an oil rate versus time function for a single pattern is computed, the results of which are passed to the economic calculations. To estimate multi-pattern project behavior a pattern development schedule is required. After-tax cash flow is computed by combining revenues with costs for drilling, conversion and well workovers, CO/sub 2/ compression and recycle, fixed and variable operating costs, water treating and disposal costs, depreciation, royalties, severance, state, federal and windfall profit taxes, cost and price inflation rates, and the discount rate. A lumped parameter uncertainty model is used to estimate risk, allowing for variation in computed project performance within an 80% confidence interval. The CO2PM is a three-dimensional (layered, five-spot), two-phase (aqueous and oleic), three component (oil, water, and CO/sub 2/) model. It computes oil and CO/sub 2/ breakthrough and recovery from fractional theory modified for the effects of viscous fingering, areal sweep, vertical heterogeneity and gravity segregation. 23 refs., 19 figs., 57 tabs.

  16. A technical and economic comparison of waterflood infill drilling and CO2 flooding for Monahans Clearfork Unit of West Texas

    E-Print Network [OSTI]

    Xue, Guoping

    1993-01-01T23:59:59.000Z

    A TECHNICAL AND ECONOMIC COMPARISON OF WATERFIXK)D INFILL DRILLING AND CO2 FLOODING FOR MONAHANS CLEARFORK UNIT OF WEST TEXAS A Thesis by GUOPING XUE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1993 Major Subject: Petroleum Engineering A TECHNICAL AND ECONOMIC COMPARISON OF WATERFLOOD INFILL DRILLING AND CO2 FLOODING FOR MONAHANS CLEARFORK UNIT OF WEST TEXAS A Thesis by GUOPING XUE...

  17. Discussion of "Development and Verification of an Analytical Solution for Fore-casting Nonlinear Kinematic Flood Waves" by Sergio E. Serrano

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Kinematic Flood Waves" by Sergio E. Serrano Journal of Hydrologic Engineering, July/August 2006, Vol. 11, No presents an interesting method to forecast nonlinear kinematic flood waves (Serrano, 2006). As a first to the Kinematic Wave Equation (KWE). The range of time lags for which this analytical solution is applicable being

  18. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Czirr, K.L.; Gaddis, M.P.; Moshell, M.K.

    2002-02-21T23:59:59.000Z

    The principle objective of this project is to demonstrate the economic viability and widespread applicability of an innovative reservoir management and carbon dioxide (CO2) flood project development approach for improving CO2 flood project economics in shallow shelf carbonate (SSC) reservoirs.

  19. The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale

    E-Print Network [OSTI]

    Allan, Richard P.

    and deliver is also essential for water resources and supply [Dettinger et al., 2011]. [3] Knowledge about of the vertically integrated horizontal water vapor transport for the detection of persistent ARs (lasting 18 h as the cause of heavy precipitation and flooding over mid- latitude landmasses [e.g., Ralph et al., 2006

  20. 266 VOLUME 13 | NUMBER 3 | MARCH 2007 NATURE MEDICINE After decades of drought, new drug possibilities floodTB pipeline

    E-Print Network [OSTI]

    Cai, Long

    possibilities floodTB pipeline For the first time in decades, there are nearly 30 drugs for tuberculosis (TB--but less than just five years ago, the pipeline was running empty. The newest drug used to treat the infection and don't interact with AIDS medications. "The drug pipeline is larger than it has ever been

  1. Evaluation of CO/sub 2/ flood performance, springer ''A'' sand, NE Purdy Unit, Garvin County, OK

    SciTech Connect (OSTI)

    Fox, M.J.; Beaty, W.G.; Simlote, V.N.

    1984-04-01T23:59:59.000Z

    This paper describes and presents results of an overall program of monitoring and evaluation of a carbon dioxide flood being conducted in the Northeast Purdy Springer ''A'' Sand Unit in Garvin County, Oklahoma. The response of one specific five-spot pattern is described through detailed reservoir simulation utilizing data from observation well logging, pressure transient analysis, carbon dioxide injection profiling, sampling of produced fluids, and monitoring of production rates. A reservoir description satisfying primary, secondary and tertiary performance is also described in detail. History matching of the carbon dioxide flood performance is being utilized to define the effects on reservoir performance of waterblocking, viscous fingering and residual oil saturation to carbon dioxide flooding. These parameters are not laboratory defined. Sensitivity work was conducted to design the best process. In-situ saturation changes obtained from an observation well logging program are presented and correlated with model calculated saturation changes and indicate that oil is being mobilized as predicted by the simulator. A comparison of carbon dioxide injection profiles to water injection profiles and the results of observation well logging indicates that the carbon dioxide is flooding certain reservoir layers that were not waterflooded. The model reservoir description was modified to include these layers. Results of compositional analyses of produced fluids are presented.

  2. Evaluating resilience of DNP3-controlled SCADA systems against event buffer flooding

    SciTech Connect (OSTI)

    Yan, Guanhua [Los Alamos National Laboratory; Nicol, David M [UNIV OF IL; Jin, Dong [UNIV OF IL

    2010-12-16T23:59:59.000Z

    The DNP3 protocol is widely used in SCADA systems (particularly electrical power) as a means of communicating observed sensor state information back to a control center. Typical architectures using DNP3 have a two level hierarchy, where a specialized data aggregator device receives observed state from devices within a local region, and the control center collects the aggregated state from the data aggregator. The DNP3 communication between control center and data aggregator is asynchronous with the DNP3 communication between data aggregator and relays; this leads to the possibility of completely filling a data aggregator's buffer of pending events, when a relay is compromised or spoofed and sends overly many (false) events to the data aggregator. This paper investigates how a real-world SCADA device responds to event buffer flooding. A Discrete-Time Markov Chain (DTMC) model is developed for understanding this. The DTMC model is validated by a Moebius simulation model and data collected on real SCADA testbed.

  3. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Richard Pancake; JyunSyung Tsau; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2010-03-07T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide was injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide was injected to displace the oil bank to the production wells by water injection. By March 7,2010, 8,736 bbl of oil were produced from the pilot. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver A7, Colliver A3, Colliver A14 and Graham A4 located on adjacent leases. About 19,166 bbl of incremental oil were estimated to have been produced from these wells as of March 7, 2010. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Estimated oil recovery attributed to the CO2 flood is 27,902 bbl which is equivalent to a gross CO2 utilization of 4.8 MCF/bbl. The pilot project is not economic.

  4. Uganda Manafwa River early flood warning system development hydrologic watershed modeling using HEC-HMS, HEC-RAS, ArcGIS

    E-Print Network [OSTI]

    Ma, Yan, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    The Manafwa River basin spans several districts in Eastern Uganda. Over the years, frequent floods have constantly posed a great threat to the local communities in these districts. The Uganda Red Cross Society (URCS) intends ...

  5. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2001-12-31T23:59:59.000Z

    Progress is reported for the period from October 1, 2001 to December 31, 2001. Technical design and budget for a larger (60-acre) CO{sub 2} demonstration project are being reviewed by the US DOE for approval. While this review process is being conducted, work is proceeding on well testing to obtain reservoir properties and on the VIP reservoir simulation model to improve model prediction and better understand the controls that certain parameters exert on predicted performance. Testing of present Colliver lease injection water on Lansing-Kansas City (L-KC) oomoldic rock indicates that injection brine must be filtered to < {approx}3-5 um and <15 um to prevent plugging of rocks with permeability as low as 1 md (millidarcy; 0.001 um2) and 10 md (0.01 um2), respectively. Pressure build-up testing on the Carter-Colliver No.7 well is interpreted to indicate the L-KC reservoir surrounding this well is {approx}9 ft (2.7 m) thick having an average effective water permeability of 25-35 md (0.025-0.035 um2) that is connected to the wellbore by either a high permeability fracture, bed, or region with low skin. Reservoir simulation evaluation of gridcell size effect on model oil recovery prediction indicates that, based on the model prediction of distribution of produced oil and CO{sub 2} volumes, oil recovery is strongly influenced by gravity segregation of CO{sub 2} into the upper higher permeability layers and indicates the strong control that vertical permeability and permeability barriers between depositional flood cycles exert on the CO{sub 2} flooding process. Simulations were performed on modifications of the 60-acre, two-injector pattern to evaluate oil recovery using other large-scale patterns. Simulations indicated that several 73-acre patterns with a single injector located near the Colliver No.7 could provide improved economics without increasing the amount of CO{sub 2} injected. The US Energy Partners ethanol plant in Russell, KS began operations in October ahead of schedule.

  6. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite

    2003-09-30T23:59:59.000Z

    Progress is reported for the period from July 1, 2003 to September 30, 2003. Conductivity testing between the CO{sub 2}I No.1 and CO{sub 2} No.13 was performed over the period 08/20/03 through 09/05/03. Observed response in CO{sub 2} 13 production rates to changes in CO{sub 2}I No.1 injection rates are consistent with sufficient permeability between CO{sub 2}I No.1 and CO{sub 2} No.13 for a viable CO{sub 2} flood with a sufficient Process Pore Volume Rate (PPV). Based on the permeabilities near the CO{sub 2} No.16, a 2-producing well pattern has been determined to be optimal but may be changed during the flood depending on the response observed in the CO{sub 2} No.16. Present inter-well test results indicate there is greater permeability architecture complexity than originally predicted and that a low-permeability region or barrier that restricts but does stop flow may exist between the CO{sub 2}I No.1 and the CO{sub 2} No.13. Pilot area repressurization began on 09/05/03, immediately after CO{sub 2}I No.1-CO{sub 2} No.13 conductivity testing was complete, by increasing injection in the CO{sub 2}I No.1, CO{sub 2} No.10, and CO{sub 2} No.18. Adequate reservoir pressure in the portion of the pilot area needed to be above minimum miscibility pressure should be reached in November at which time initial CO{sub 2} injection could begin. It is estimated the 2-producing well, 10+-acre (4.05 ha) producing pattern will produce 18,000-21,000 BO (barrels oil; 2,880-3,360 m{sup 3}). Depending primarily on surface facilities costs, operating expenses, and the price of oil, for the predicted range of oil recovery the pilot is estimated to either break-even or be profitable from this point forward. Final arrangements and agreements for CO{sub 2} supply and delivery are being worked on and will be finalized in the next month.

  7. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2007-03-07T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide were injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide has been injected to displace the oil bank to the production wells by water injection. By December 31, 2006, 79,072 bbls of water were injected into CO2 I-1 and 3,923 bbl of oil were produced from the pilot. Water injection rates into CO2 I-1, CO2 No.10 and CO2 No.18 were stabilized during this period. Oil production rates increased from 4.7 B/D to 5.5 to 6 B/D confirming the arrival of an oil bank at CO2 No.12. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver No.7, Colliver No.3 and possibly Graham A4 located on an adjacent property. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Our management plan is to continue water injection maintaining oil displacement by displacing the carbon dioxide remaining in the C zone,. If the decline rate of production from the Colliver Lease remains as estimated and the oil rate from the pilot region remains constant, we estimate that the oil production attributed to carbon dioxide injection will be about 12,000 bbl by December 31, 2007. Oil recovery would be equivalent to 12 MCF/bbl, which is consistent with field experience in established West Texas carbon dioxide floods. The project is not economic.

  8. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2003-06-30T23:59:59.000Z

    Progress is reported for the period from April 1, 2003 to June 30, 2003. The pilot water injection plant became operational 4/18/03 and began long-term injection in the CO2I No.1 on 4/23/03. The CO2I No.1 exhibits sufficient injectivity for pilot requirements with average absolute permeability surrounding this well equal to {approx}85 millidarcies. Response to injection in the CO2I No.1 has established that conductivity between CO2I No.1 and CO2 No.12, No.10, No.18 and TB Carter No.5 is sufficient for the demonstration. Workovers of the CO2 No.16 and CO2 No.13 were completed in April and May, respectively. Pressure response indicates No.16 communicates with the flood pattern area but core, swab-test, and pressure response data indicate permeability surrounding No.16 is not adequate to maintain the production rates needed to support the original pattern as the well is presently completed. Decisions concerning possible further testing and stimulation have been postponed until after testing of the No.13 is complete. Production rates for the No.13 are consistent with a surrounding reservoir average absolute permeability of {approx}80 md. However, pressure and rate tests results, partially due to the nature of the testing conducted to date, have not confirmed the nature of the CO2I No.1-CO2 No.13 conductivity. A build-up test and conductivity test are planned to begin the first weeks of the next quarter to obtain reservoir properties data and establish the connectivity and conductivity between CO2 I-1 and CO2 No.13. A new geomodel of the pattern area has been developed based on core from No.16 and the new wireline logs from the No.10, No.12, No.16, and No.13. The new geomodel is currently being incorporated into the basic calculations of reservoir volume and flood design and predicted response as well as the reservoir simulators. Murfin signed a letter agreement with FLOCO2 of Odessa, TX for supply of CO2 storage and injection equipment. Technology transfer activities have included presentations to the Environmental Protection Agency, Prof. Accountants Soc. of KS, Am. Assoc. of Petroleum Geologists, and a US Congressional aide staff member. The Associated Press also released a story concerning the project that was picked up by many Kansas newspapers.

  9. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2005-12-31T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and two production wells on about 10 acre spacing. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide were injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide has been injected to displace the oil bank to the production wells by water injection. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February 2004, increasing to an average of about 3.78 B/D for the six month period between January 1 and June 30, 2005 before declining. By the end of December 2005, 14,115 bbls of water were injected into CO2I-1 and 2,091 bbl of oil were produced from the pilot. Injection rates into CO2I-1 declined with time, dropping to an unacceptable level for the project. The injection pressure was increased to reach a stable water injection rate of 100 B/D. However, the injection rate continued to decline with time, suggesting that water was being injected into a region with limited leakoff and production. Oil production rates remained in the range of 3-3.5 B/D following conversion to water injection. There is no evidence that the oil bank generated by injection of carbon dioxide has reached either production well. Continued injection of water is planned to displace oil mobilized by carbon dioxide to the production wells and to maintain the pressure in the PPV region at a level that supports continued miscible displacement as the carbon dioxide is displaced by the injected water.

  10. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2006-06-30T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and two production wells on about 10 acre spacing. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide were injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide has been injected to displace the oil bank to the production wells by water injection. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February 2004, increasing to an average of about 3.78 B/D for the six month period between January 1 and June 30, 2005 before declining. By June 30, 2006, 41,566 bbls of water were injected into CO2I-1 and 2,726 bbl of oil were produced from the pilot. Injection rates into CO2I-1 declined with time, dropping to an unacceptable level for the project. The injection pressure was increased to reach a stable water injection rate of 100 B/D. However, the injection rate continued to decline with time, suggesting that water was being injected into a region with limited leakoff and production. Oil production rates remained in the range of 3-3.5 B/D following conversion to water injection. Oil rates increased from about 3.3 B/D for the period from January through March to about 4.7 B/D for the period from April through June. If the oil rate is sustained, this may be the first indication of the arrival of the oil bank mobilized by carbon dioxide injection. A sustained fluid withdrawal rate of about 200 B/D from CO2 No.12 and CO2 No.13 appears to be necessary to obtain higher oil rates. There is no evidence that the oil bank generated by injection of carbon dioxide has reached either production well. Water injection will continue to displace oil mobilized by carbon dioxide to the production wells and to maintain the pressure in the PPV region at a level that supports continued miscible displacement as the carbon dioxide is displaced by the injected water.

  11. Scale-up of miscible flood processes for heterogeneous reservoirs. Quarterly report, April 1--June 30, 1995

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1995-06-01T23:59:59.000Z

    The current project is a systematic research effort aimed at quantifying relationships between process mechanisms that can lead to improved recovery from gas injection processes performed in heterogeneous Class 1 and Class 2 reservoirs. It will provide a rational basis for the design of displacement processes that take advantage of crossflow due to capillary, gravity and viscous forces to offset partially the adverse effects of heterogeneity. In effect, the high permeability zones are used to deliver fluid by crossflow to zones that would otherwise be flooded only very slowly. Thus, the research effort is divided into five areas: Development of miscibility in multicomponent systems; Design estimates for nearly miscible displacements; Design of miscible floods for fractured reservoirs; Compositional flow visualization experiments; Simulation of near-miscible flow in heterogeneous systems The status of the research effort in each area is reviewed briefly in the following section.

  12. Scale-up of miscible flood processes for heterogeneous reservoirs. Quarterly report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1995-10-01T23:59:59.000Z

    The current project is a systematic research effort aimed at quantifying relationships between process mechanisms that can lead to improved recovery from gas injection processes performed in heterogeneous Class 1 and Class 2 reservoirs. It will provide a rational basis for the design of displacement processes that take advantage of crossflow due to capillary, gravity and viscous forces to offset partially the adverse effects of heterogeneity. In effect, the high permeability zones are used to deliver fluid by crossflow to zones that would otherwise be flooded only very slowly. Thus, the research effort is divided into five areas: Development of miscibility in multicomponent systems; Design estimates for nearly miscible displacements; Design of miscible floods for fractured reservoirs; Compositional flow visualization experiments; and Simulation of near-miscible flow in heterogeneous systems. The status of the research effort in each area is reviewed briefly in the following section.

  13. Surfactant-Polymer Interaction for Improved Oil Recovery

    SciTech Connect (OSTI)

    Gabitto, Jorge; Mohanty, Kishore K.

    2002-01-07T23:59:59.000Z

    The goal of this research was to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, oil solubility in the displacing fluid and mobility control. Surfactant-polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation and viscous/heterogeneity fingering.

  14. ANALYSIS OF PWR SBO CAUSED BY EXTERNAL FLOODING USING THE RISMC TOOLKIT

    SciTech Connect (OSTI)

    Mandelli, Diego; Smith, Curtis; Prescott, Steven; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2014-08-01T23:59:59.000Z

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impacts of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper focuses on the impacts of power uprate on the safety margin of a boiling water reactor for a flooding induced station black-out event. Analysis is performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool currently under development at the Idaho National Laboratory, i.e. RAVEN. We employed both classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. Results obtained give a detailed investigation of the issues associated with a plant power uprate including the effects of station black-out accident scenarios. We were able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management.

  15. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    DOE Patents [OSTI]

    1984-08-14T23:59:59.000Z

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7.degree. F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88.degree. F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

  16. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    SciTech Connect (OSTI)

    Kamath, K.

    1984-08-14T23:59:59.000Z

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7/sup 0/ F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88/sup 0/ F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

  17. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    SciTech Connect (OSTI)

    Kamath, K.

    1983-05-03T23:59:59.000Z

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7/sup 0/F at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88/sup 0/F it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products. 1 table.

  18. Scale-up of miscible flood processes. [Quarterly report], January 1--April 31, 1992

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1992-08-01T23:59:59.000Z

    Efficient application of miscible floods to heterogeneous reservoirs requires the designer to take advantage of more than one of the physical mechanisms that act and interact to determine displacement performance. In this report, the investigators summarize the interactions of phase behavior, nonuniform flow, and crossflow and based on novel results obtained during the course of their experimental efforts. They suggest design opportunities for application of gas injection to near-miscible recovery processes, to enhanced gravity drainage, and even to fractured reservoirs. To design such processes intelligently, the quantitative scaling of the interplay of phase equilibria, reservoir heterogeneity, viscous fingering and particularly crossflow must be understood. In essence, they propose to make use of crossflow, i.e. transport in the direction transverse to the basic flow direction, to sweep portions of reservoirs that can be reached only very slowly by direct displacement. In this report, the core displacement and flow visualization experiments described suggest that the effects of low interfacial tensions (IFT`s) and gravity can be used to advantage in the design of multicontact miscible displacements for heterogeneous reservoirs, including fractured reservoirs.

  19. Improvement in oil recovery using cosolvents with CO{sub 2} gas floods

    SciTech Connect (OSTI)

    Raible, C.

    1992-01-01T23:59:59.000Z

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  20. Improvement in oil recovery using cosolvents with CO sub 2 gas floods

    SciTech Connect (OSTI)

    Raible, C.

    1992-01-01T23:59:59.000Z

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  1. EVALUATION OF THE FLOOD POTENTIAL OF THE SOUTH HOUSE (BLINEBRY) FIELD, LEA COUNTY, NEW MEXICO

    SciTech Connect (OSTI)

    L. Stephen Melzer

    2000-12-01T23:59:59.000Z

    The Blinebry (Permian) formation of eastern Lea County, NM has a long history of exploitation for petroleum and continues even today to be a strong target horizon for new drilling in the Permian Basin. Because of this long-standing interest it should be classified of strategic interest to domestic oil production; however, the formation has gained a reputation as a primary production target with limited to no flooding potential. In late May of 1999, a project to examine the feasibility of waterflooding the Blinebry formation was proposed to the U.S. Department of Energy's National Petroleum Technology Office (Tulsa, OK). A new well was proposed in one region (the South House area) to examine the reputation by acquiring core and borehole logging data for the collection of formation property data in order to conduct the waterflood evaluation. Notice of the DOE award was received on August 19, 1999 and the preparations for drilling, coring and logging were immediately made for a drilling start on 9/9/99. The Blinebry formation at 6000 feet, foot depth was reached on 9/16/99 and the coring of two 60 foot intervals of the Blinebry was completed on 9/19/99 with more than 98% core recovery. The well was drilled to a total depth of 7800 feet and the Blinebry interval was logged with spectral gamma ray, photoelectric cross section, porosity, resistivity, and borehole image logs on 8/24/99. The well was determined to be likely productive from the Blinebry interval and five & 1/2 inch casing was cemented in the hole on 9/25/99. Detailed core descriptions including environment of deposition have been accomplished. Whole core (a 4-inch diameter) and plug (1.5 inch diameter) testing for formation properties has been completed and are reported. Acquisition and analysis of the borehole logging results have been completed and are reported. Perforation of the Blinebry intervals was accomplished on November 8, 1999. The intervals were acidized and hydrofraced on 11/9 and 11/11 respectively. Production of oil and gas has been established with several months of production now available to make a reserve analysis. Production histories and reserves estimation are provided. An assessment of the flood potential for the South House project area has been completed with work concentrated on South House rock property and pay thickness characterization and analog studies. For the analogs, the North Robertson area, located twenty miles to the northeast, and the Teague Field, located 20 miles to the south, have been utilized due to their readily available database and previous waterflood studies. The South House area does appear to merit further examination as the rock quality compares favorably with both analog Fields; however, current well spacings of 40-acres will provide only marginal economics based upon $23.00/barrel oil prices. Permeability and porosity relationships are provided as a conditional demonstration that rock quality may be sufficient for successful waterflooding of the project area. Further rock property work and pay continuity studies are recommended.

  2. Origin of Scale-Dependent Dispersivity and Its Implications For Miscible Gas Flooding

    SciTech Connect (OSTI)

    Steven Bryant; Russ Johns; Larry Lake; Thomas Harmon

    2008-09-30T23:59:59.000Z

    Dispersive mixing has an important impact on the effectiveness of miscible floods. Simulations routinely assume Fickian dispersion, yet it is well established that dispersivity depends on the scale of measurement. This is one of the main reasons that a satisfactory method for design of field-scale miscible displacement processes is still not available. The main objective of this project was to improve the understanding of the fundamental mechanisms of dispersion and mixing, particularly at the pore scale. To this end, microsensors were developed and used in the laboratory to measure directly the solute concentrations at the scale of individual pores; the origin of hydrodynamic dispersion was evaluated from first principles of laminar flow and diffusion at the grain scale in simple but geometrically completely defined porous media; techniques to use flow reversal to distinguish the contribution to dispersion of convective spreading from that of true mixing; and the field scale impact of permeability heterogeneity on hydrodynamic dispersion was evaluated numerically. This project solved a long-standing problem in solute transport in porous media by quantifying the physical basis for the scaling of dispersion coefficient with the 1.2 power of flow velocity. The researchers also demonstrated that flow reversal uniquely enables a crucial separation of irreversible and reversible contributions to mixing. The interpretation of laboratory and field experiments that include flow reversal provides important insight. Other advances include the miniaturization of long-lasting microprobes for in-situ, pore-scale measurement of tracers, and a scheme to account properly in a reservoir simulator (grid-block scale) for the contributions of convective spreading due to reservoir heterogeneity and of mixing.

  3. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan P. Byrnes; G. Paul Willhite

    2003-01-01T23:59:59.000Z

    Progress is reported for the period from October 1, 2002 to December 31, 2002. On September 27, 2002 the US DOE approved the proposed modified plan to flood a 10+-acre pattern. On November 1, 2002 Murfin Drilling Company purchased the 70-acre pilot area and will continue as the operator of the pilot. Murfin is seeking working interest partners and meetings with local small independents were conducted. To date, White Eagle Resources and John O. Farmer Oil Company have committed to working interest in the project. Arrangements have been made with Rein Operating to test the Rein No. 7 water supply well on the neighboring lease. Based on review of wellbore conditions in the Colliver No. 9 and No. 16 it has been decided to use the No. 16 in the pilot. A new tank battery was installed near the Colliver No. 10 well and the existing producers plumbed to the new tank battery to isolate production from the pilot area. Reservoir simulations have indicated that the low-permeability interval in the Carter-Colliver CO2I No. 1 injection well below 2,900 ft does not exhibit sufficient injectivity to warrant special stimulation or conformance treatment programs at the present time. Discussions have been initiated with FLOCO2 and preliminary conditions have been agreed upon for the exchange of CO2 for the use of storage and pump equipment at the pilot. A short-term injection test and the well reworks have been scheduled. Proposed modifications to the project plan were reviewed in the previous quarterly technical progress report. A presentation was given at the DOE Class II Review Meeting in Midland, TX on December 12, 2002.

  4. Scale-up of miscible flood processes for heterogeneous reservoirs. Final report

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1996-04-01T23:59:59.000Z

    Results of a wide-ranging investigation of the scaling of gas injection processes are reported. The research examines how the physical mechanisms at work during a gas injection project interact to determine process performance. In particular, the authors examine: the interactions of equilibrium phase behavior and two-phase flow that determine local displacement efficiency and minimum miscibility pressure, the combined effects of viscous fingering, gravity segregation and heterogeneity that control sweep efficiency in 2- and 3-dimensional porous media, the use of streamtube/streamline methods to create very efficient simulation technique for multiphase compositional displacements, the scaling of viscous, capillary and gravity forces for heterogeneous reservoirs, and the effects of the thin films and spreading behavior on three-phase flow. The following key results are documented: rigorous procedures for determination of minimum miscibility pressure (MMP) or minimum miscibility enrichment (MME) for miscibility have been developed for multicomponent systems; the complex dependence of MMP`s for nitrogen/methane floods on oil and injection gas composition observed experimentally is explained for the first time; the presence of layer-like heterogeneities strongly influences the interplay of gravity segregation and viscous fingering, as viscous fingers adapt to preferential flow paths and low permeability layers restrict vertical flow; streamtube/streamline simulation techniques are demonstrated for a variety of injection processes in 2 and 3 dimensions; quantitative scaling estimates for the transitions from capillary-dominated to gravity-dominated to viscous-dominated flows are reported; experimental results are given that demonstrate that high pressure CO{sub 2} can be used to generate low IFT gravity drainage in fractured reservoirs if fractures are suitably connected; and the effect of wetting and spreading behavior on three-phase flow is described. 209 refs.

  5. Water/sand flooded and immersed critical experiment and analysis performed in support of the TOPAZ-II Safety Program

    SciTech Connect (OSTI)

    Glushkov, E.S.; Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Garin, V.P.; Gomin, E.A.; Kompanietz, G.V.; Krutoy, A.M.; Lobynstev, V.A.; Maiorov, L.V.; Polyakov, D.N. [RRC Kurchatov Institute, Moscow (Russian Federation)] [and others

    1994-11-01T23:59:59.000Z

    Presented is a brief description of the Narciss-M2 critical assemblies, which simulate accidental water/wet-sand immersion of the TOPAZ-II reactor as well as water-flooding of core cavities. Experimental results obtained from these critical assemblies, including experiments with several fuel elements removed from the core, are shown. These configurations with several extracted fuel elements simulate a proposed fuel-out anticriticality-device modification to the TOPAZ-II reactor. Preliminary computational analysis of these experiments using the Monte Carlo neutron-transport method is outlined. Nuclear criticality safety of the TOPAZ-II reactor with an incorporated anticriticality unit is demonstrated.

  6. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01T23:59:59.000Z

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  7. Modelling floods in theAmmer catchment:limitations and challenges with a coupled meteo-hydrological model approach Hydrology and Earth System Sciences, 7(6), 833847 (2003) EGU

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modelling floods in theAmmer catchment:limitations and challenges with a coupled meteo-hydrological model approach 833 Hydrology and Earth System Sciences, 7(6), 833847 (2003) © EGU Modelling floods in the Ammer catchment: limitations and challenges with a coupled meteo-hydrological model approach R. Ludwig1

  8. Figure 1. The wet area is flooded by damming up a small stream adjacent to the study area once a year for a period of 2-3 months. By

    E-Print Network [OSTI]

    Schierup, Mikkel Heide

    Figure 1. The wet area is flooded by damming up a small stream adjacent to the study area once. Figure 1.g The wet area is flooded by damming up a small streamded by damming up a smded by damwet area Vegetation data are obtained from two ri- parian grassland sites with strong hydro- logical gradients

  9. TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING OF HEAVY OILS

    SciTech Connect (OSTI)

    Jorge Gabitto; Maria Barrufet

    2002-09-01T23:59:59.000Z

    Hydrocarbon/water and CO{sub 2} systems are frequently found in petroleum recovery processes, petroleum refining, and gasification of coals, lignites and tar sands. Techniques to estimate the phase volume and phase composition are indispensable to design and improve oil recovery processes such as steam, hot water, or CO{sub 2}/steam combinations of flooding techniques typically used for heavy oils. An interdisciplinary research program to quantify transport, PVT, and equilibrium properties of selected oil/CO{sub 2}/water mixtures at pressures up to 10,000 psia and at temperatures up to 500 F has been put in place. The objectives of this research include experimental determination and rigorous modeling and computation of phase equilibrium diagrams, and volumetric properties of hydrocarbon/CO{sub 2}/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils. Highlighting the importance of phase behavior, researchers ([1], and [2]) insist on obtaining truly representative reservoir fluids samples for experimental analysis. The prevailing sampling techniques used for compositional analysis of the fluids have potential for a large source of error. These techniques bring the sample to atmospheric conditions and collect the liquid and vapor portion of the samples for further analysis. We developed a new experimental technique to determine phase volumes, compositions and equilibrium K-values at reservoir conditions. The new methodology is able to measure phase volume and composition at reservoir like temperatures and pressures. We use a mercury free PVT system in conjunction with a Hewlett Packard gas chromatograph capable of measuring compositions on line at high pressures and temperatures. This is made possible by an essentially negligible disturbance of the temperature and pressure equilibrium during phase volume and composition measurements. In addition, not many samples are withdrawn for compositional analysis because a negligible volume (0.1 {micro}l to 0.5 {micro}l) is sent directly to the gas chromatograph through sampling valves. These amounts are less than 1 x 10{sup -5} % of total volume and do not affect the overall composition or equilibrium of the system. A new method to compute multi-component phase equilibrium diagrams based on an improved version of the Peng-Robinson equation has been developed [3]. This new version of the Peng-Robinson equation uses a new volume translation scheme and new mixing rules to improve the accuracy of the calculations. Calculations involving multicomponent mixtures of CO{sub 2}/water and hydrocarbons have been completed. A scheme to lump multi-component materials such as, oils into a small set of ''pseudo-components'' according to the technique outlined by Whitson [4] has been implemented. This final report presents the results of our experimental and predicted phase behavior diagrams and calculations for mixtures of CO{sub 2}/water and real oils at high pressures and temperatures.

  10. COLLINS, KELLY ALYSSA. A Field Evaluation of Four Types of Permeable Pavement with Respect to Water Quality Improvement and Flood Control. (Under the direction of

    E-Print Network [OSTI]

    Hunt, William F.

    to Water Quality Improvement and Flood Control. (Under the direction of Dr.William F. Hunt.) In North were compared to permeable pavement exfiltrate quality for pH and concentrations of total nitrogen (TN capabilities in reducing runoff, but are not credited for improving water quality. To further test

  11. 814 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 4, NO. 4, DECEMBER 2011 Deriving Water Fraction and Flood Maps From

    E-Print Network [OSTI]

    Sun, Donglian

    -Spectral Scanner (MSS), Landsat Thematic Mapper (TM), the Advanced Very High Resolution Radiometer (AVHRR-flood studies may be classified into two types: 1) passive, in which the sensor receives energy naturally illumination and records the amount of incident energy returned from the imaged Manuscript received June 14

  12. [Email response for project 35057 -Habitat Condition and Restoration Potential of Columbia River Flood Plains: A Critical, Missing Element of Fisheries Recovery Science

    E-Print Network [OSTI]

    . Response: We agree that social and economic considerations should be part of our prioritization process a need for a social/economic analysis of options on flood plains being considered for restoration riparian habitat condition) but will now also include analysis of social and economic constraints

  13. Operational hydro-meteorological warning and real-time flood forecasting:the Piemonte region case study Hydrology and Earth System Sciences, 9(4), 457466 (2005) EGU

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Operational hydro-meteorological warning and real-time flood forecasting:the Piemonte region case study 457 Hydrology and Earth System Sciences, 9(4), 457466 (2005) © EGU Operational hydro forecasting system in the context of the Piemonte Regions hydro-meteorological operational alert procedure

  14. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal), Class I

    SciTech Connect (OSTI)

    Bou-Mikael, Sami

    2002-02-05T23:59:59.000Z

    This project outlines a proposal to improve the recovery of light oil from waterflooded fluvial dominated deltaic (FDD) reservoir through a miscible carbon dioxide (CO2) flood. The site is the Port Neches Field in Orange County, Texas. The field is well explored and well exploited. The project area is 270 acres within the Port Neches Field.

  15. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal - Appendix)

    SciTech Connect (OSTI)

    Bou-Mikael, Sami

    2002-02-05T23:59:59.000Z

    The main objective of the Port Neches Project was to determine the feasibility and producibility of CO2 miscible flooding techniques enhanced with horizontal drilling applied to a Fluvial Dominated Deltaic reservoir. The second was to disseminate the knowledge gained through established Technology Transfer mechanisms to support DOE's programmatic objectives of increasing domestic oil production and reducing abandonment of oil fields.

  16. Modelling the long-term evolution of groundwater's quality in a flooded iron-ore mine using a reactive transport pipe network model

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modelling the long-term evolution of groundwater's quality in a flooded iron- ore mine using, groundwater quality, ePanet Introduction in lorraine (France), industrial mining began in the 19th century make classic groundwater modelling insuitable for predicting the impact of mining activities

  17. GEOPHYSICS, VOL. 63, NO. 4 (JULY-AUGUST 1998); P. 11371149, 10 FIGS., 1 TABLE. Electrical conductivity of steam-flooded,

    E-Print Network [OSTI]

    Knight, Rosemary

    conductivity of steam-flooded, clay-bearing geologic materials David B. Butler and Rosemary J. Knight ABSTRACT the conductivity of a steam zone by providing a surface conduction path that is enhanced strongly by temperature increases. Clay also increases the residual water saturation in a steam zone, further increasing

  18. Under very extreme conditions a flood that threatens to overtop a dam may be combined with strong winds that generate waves in the reservoir.

    E-Print Network [OSTI]

    Bowles, David S.

    Under very extreme conditions a flood that threatens to overtop a dam may be combined with strong winds that generate waves in the reservoir. Prolonged wave overtopping or a combination of wave the actions of wind generated waves and wave overtopping. The uneven elevations of the dam crest

  19. VNU Journal of Earth and Environmental Sciences, Vol. 29, No. 1 (2013) 38-44 Development of an Online Supporting System Flood Warning

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    , and they are also the types causing most economic, social and environmental damages. According to recent fiveVNU Journal of Earth and Environmental Sciences, Vol. 29, No. 1 (2013) 38-44 38 Development the affects of flood-related damage was provided to residents at risk in the low land areas of the Vu Gia

  20. Nevada Test Site probable maximum flood study, part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for US Department of Energy, Office of Civilian Radioactive Waste Management

    SciTech Connect (OSTI)

    Bullard, K.L.

    1994-08-01T23:59:59.000Z

    The US Geological Survey (USGS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. In particular, the project is designed to acquire information necessary for the Department of Energy (DOE) to demonstrate in its environmental impact statement (EIS) and license application whether the MGDS will meet the requirements of federal regulations 10 CFR Part 60, 10 CFR Part 960, and 40 CFR Part 191. Complete study plans for this part of the project were prepared by the USGS and approved by the DOE in August and September of 1990. The US Bureau of Reclamation (Reclamation) was selected by the USGS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates are necessary for successful waste repository design and construction. The PMF technique was chosen for two reasons: (1) this technique complies with ANSI requirements that PMF technology be used in the design of nuclear related facilities (ANSI/ANS, 1981), and (2) the PMF analysis has become a commonly used technology to predict a ``worst possible case`` flood scenario. For this PMF study, probable maximum precipitation (PMP) values were obtained for a local storm (thunderstorm) PMP event. These values were determined from the National Weather Services`s Hydrometeorological Report No. 49 (HMR 49).

  1. Estimates of incremental oil recoverable by carbon dioxide flooding and related carbon dioxide supply requirements for flooding major carbonate reservoirs in the Permian, Williston, and other Rocky Mountain basins

    SciTech Connect (OSTI)

    Goodrich, J.H.

    1982-12-01T23:59:59.000Z

    The objective of the work was to build a solid engineering foundation (in) carbonate reservoirs for the purpose of extending the technology base in carbon dioxide miscible flooding. This report presents estimates of incremental oil recovery and related carbon dioxide supply requirements for selected carbonate reservoirs in the Permian, Williston, and Rocky Mountain Basins. The estimates presented here are based on calculations using a volumetric model derived and described in this report. The calculations utilized data developed in previous work. Calculations were made for a total of 279 reservoirs in the Permian, Williston, and several smaller Rocky Mountain Basins. Results show that the carbonate reservoirs of the Permian Basin constitute an order of magnitude larger target for carbon dioxide flooding than do all the carbonate reservoirs of the Williston and Rocky Mountain intermontane basins combined. Review of the calculated data in comparison with information from earlier work indicates that the figures given here are probably optimistic in that incremental oil volumes may be biased toward the high side while carbon dioxide supply requirements may be biased toward the low side. However, the information available would not permit further practical refinement of the calculations. Use of the incremental oil figures given for individual reservoirs as an official estimate is not recommended because of various uncertainties in individual field data. Further study and compilation of data for field projects as they develop appears warranted to better calibrate the calculation procedures and thus to develop more refined estimates of incremental oil potential and carbon dioxide supply requirements. 11 figures, 16 tables.

  2. Water/sand flooded and immersed critical experiment and analysis performed in support of the TOPAZ-II safety program

    SciTech Connect (OSTI)

    Glushkov, E.S.; Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Garin, V.P.; Gomin, E.A.; Kompanietz, G.V.; Krutov, A.M.; Lobynstev, V.A.; Maiorov, L.V.; Polyakov, D.N.; Chunyaev, E.I. [RRC Kurchatov Institute, Moscow 123182 (Russian Federation); Marshall, A.C. [International Nuclear Safety, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Sapir, J.L.; Pelowitz, D.B. [Reactor Design and Analysis Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1995-01-20T23:59:59.000Z

    Presented is a brief description of the Narciss-M2 critical assemblies, which simulate accidental water/wet-sand immersion of the TOPAZ-II reactor as well as water-flooding of core cavities. Experimental results obtained from these critical assemblies, including experiments with several fuel elements removed from the core, are shown. These configurations with several extracted fuel elements simulate a proposed fuel-out anticriticality-device modification to the TOPAZ-II reactor. Preliminary computational analysis of these experiments using the Monte Carlo neutron-transport method is outlined. Nuclear criticality safety of the TOPAZ-II reactor with an incorporated anticriticality unit is demonstrated. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  3. Chernobyl nuclear accident hydrologic analysis and emergency evaluation of radionuclide distributions in the Dnieper River, Ukraine, during the 1993 summer flood

    SciTech Connect (OSTI)

    Voitsekhovitch, O.V. [Ukrainian Hydrometeorological Inst., Kiev (Ukraine); Zheleznyak, M.J. [Ukrainian Academy of Sciences, Kiev (Ukraine). Cybernetics Center; Onishi, Y. [Pacific Northwest Lab., Richland, WA (United States)

    1994-06-01T23:59:59.000Z

    This report describes joint activities of Program 7.1.F, ``Radionuclide Transport in Water and Soil Systems,`` of the USA/Commonwealth of Independent States (CIS) Joint Coordinating Committee of Civilian Nuclear Reactor Safety to study the hydrogeochemical behavior of radionuclides released to the Pripyat and Dnieper rivers from the Chernobyl Nuclear Power Plant in Ukraine. These joint activities included rapid evaluation of radionuclide distributions in the Pripyat and Dnieper river system and field data evaluation and modeling for the 1993 summer flood to assist the Ukrainian government in their emergency response during the flood. In July-August 1993, heavy rainfall over the Pripyat River Catchment in Belarus and Ukraine caused severe flooding, significantly raising {sup 90}Sr concentrations in the river. Near the Chernobyl area, the maximum {sup 90}Sr concentration in the Pripyat River reached 20--25 PCi/L in early August; near the Pripyat River mouth, the concentration rose to 35 pCi/L. The peak {sup 90}Sr concentration in the Kiev Reservoir (a major source of drinking water for Kiev) was 12 pCi/L. Based on these measured radionuclide levels, additional modeling results and the assumption of water purification in a water treatment station, {sup 90}Sr concentrations in Kiev`s drinking water were estimated to be less than 8 pCi/L. Unlike {sup 90}Sr, {sup 137}Cs concentrations in the Pripyat River during the flood did not rise significantly to the pre-flood levels. Estimated {sup 137}Cs concentrations for the Kiev drinking water were two orders of magnitude lower than the drinking water standard of 500 pCi/L for {sup 137}Cs.

  4. Scale-up of miscible flood processes for heterogeneous reservoirs. Quarterly report, 1 January--31 March 1994

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1994-04-01T23:59:59.000Z

    The current project is a systematic research effort aimed at quantifying relationships between process mechanisms that can lead to improved recovery from gas injection processes performed in heterogeneous Class 1 and Class 2 reservoirs. It will provide a rational basis for the design of displacement processes that take advantage of crossflow due to capillary, gravity and viscous forces to offset partially the adverse effects of heterogeneity. In effect, the high permeability zones are used to deliver fluid by crossflow to zones that would otherwise be flooded only very slowly. Thus, the research effort is divided into five areas: Development of miscibility in multicomponent systems; design estimates for nearly miscible displacements; design of miscible floods for fractured reservoirs; compositional flow visualization experiments; simulation of near-miscible flow in heterogeneous systems. The status of the research effort in each area is reviewed briefly in the following section. From this work, we can make the following conclusions: (1) We demonstrated theoretically and experimentally that a linear combination of gravity and viscous forces can be used to correlate residual nonwetting phase saturations for both gravity-favorable and gravity-unfavorable displacements. (2) When gravity forces are comparable to or larger than the viscous forces) gravity unfavorable displacements have significantly higher residual nonwetting phase saturation than gravity-favorable displacements. (3) Because soils have much higher permeabilities than oil reservoirs, gravity effects on residual nonwetting phase saturations are much more significant in spilled-oil clean-up than in oil recovery processes. (4) The effective correlation length for a percolation process can be related to a linear combination of the gravity and viscous forces.

  5. BEHAVIOR OF SURFACTANT MIXTURES AT SOLID/LIQUID AND OIL/LIQUID INTERFACES IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect (OSTI)

    P. Somasundaran

    2004-11-20T23:59:59.000Z

    The aim of the project is to develop a knowledge base to help the design of enhanced processes for mobilizing and extracting untrapped oil. We emphasize evaluation of novel surfactant mixtures and obtaining optimum combinations of the surfactants for efficient chemical flooding EOR processes. In this regard, an understanding of the aggregate shape, size and structure is crucial since these properties govern the crude oil removal efficiency. During the three-year period, the adsorption and aggregation behavior of sugar-based surfactants and their mixtures with other types of surfactants have been studied. Sugar-based surfactants are made from renewable resources, nontoxic and biodegradable. They are miscible with water and oil. These environmentally benign surfactants feature high surface activity, good salinity, calcium and temperature tolerance, and unique adsorption behavior. They possess the characteristics required for oil flooding surfactants and have the potential for replacing currently used surfactants in oil recovery. A novel analytical ultracentrifugation technique has been successfully employed for the first time, to characterize the aggregate species present in mixed micellar solution due to its powerful ability to separate particles based on their size and shape and monitor them simultaneously. Analytical ultracentrifugation offers an unprecedented opportunity to obtain important information on mixed micelles, structure-performance relationship for different surfactant aggregates in solution and their role in interfacial processes. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. Four softwares: OptimaTM XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The results have been compared to that from Light Scattering. Based on the tests, Svedberg and SEDFIT analysis were chosen for further studies.

  6. Selection of reservoirs amenable to micellar flooding. First annual report, October 1978-December 1979

    SciTech Connect (OSTI)

    Goldburg, A.; Price, H.

    1980-12-01T23:59:59.000Z

    The overall project objective is to build a solid engineering base upon which the Department of Energy (DOE) can improve and accelerate the application of micellar-polymer recovery technology to Mid-Continent and California sandstone reservoirs. The purpose of the work carried out under these two contracts is to significantly aid, both DOE and the private sector, in gaining the following Project Objectives: to select the better micellar-polymer prospects in the Mid-Continent and California regions; to assess all of the available field and laboratory data which has a bearing on recovering oil by micellar-polymer projects in order to help identify and resolve both the technical and economic constraints relating thereto; and to design and analyze improved field pilots and tests and to develop a micellar-polymer applications matrix for use by the potential technology users; i.e., owner/operators. The report includes the following: executive summary and project objectives; development of a predictive model for economic evaluation of reservoirs; reservoir data bank for micellar-polymer recovery evaluation; PECON program for preliminary economic evaluation; ordering of candidate reservoirs for additional data acquisition; validation of predictive model by numerical simulation; and work forecast. Tables, figures and references are included.

  7. Inexpensive CO2 Thickening Agents for Improved Mobility Control of CO2 Floods

    SciTech Connect (OSTI)

    Robert Enick; Eric Beckman; Andrew Hamilton

    2005-08-31T23:59:59.000Z

    The objective of this research was the design, synthesis and evaluation of inexpensive, non-fluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly CO{sub 2}-philic, hydrocarbon-based monomer was to be identified. Polymers or oligomers of this monomer were then synthesized. The second step was to design a CO{sub 2}-thickener based on these CO{sub 2}-philic polymers. Two types of thickeners were considered. The first was a copolymer in which the CO{sub 2}-philic monomer was combined with a small proportion of CO{sub 2}-phobic associating groups that could cause viscosity-enhancing intermolecular interactions to occur. The second was a small hydrogen-bonding compound with urea groups in the core to promote intermolecular interactions that would cause the molecules to 'stack' in solution while the arms were composed of the CO{sub 2}-philic oligomers. Although we were not able to develop a viable thickener that exhibited high enough CO{sub 2} solubility at EOR MMP conditions to induce a viscosity increase, we made significant progress in our understanding of CO{sub 2}-soluble compounds that can be used in subsequent studies to design CO{sub 2}-soluble thickeners or CO{sub 2}-soluble surfactant-based foaming agents. These findings are detailed in this final report. In summary, we assessed many polymers and verified that the most CO{sub 2}-soluble oxygenated hydrocarbon polymer is poly(vinyl acetate), PVAc. This is primarily due to the presence of both ether and carbonyl oxygens associated with acetate-rich compounds. In addition to polymers, we also made small acetate-rich molecules that were also capable of associating in solution via the inclusion of hydrogen-bonding groups in hopes of forming viscosity-enhancing macromolecules. Despite the presence of multiple acetate groups in these compounds, which can impart incredible CO{sub 2}-solubility to many compounds, our attempts to make acetate-rich high molecular weight polymers and small hydrogen-bonding compounds did not yield a highly CO{sub 2}-soluble polymer or hydrogen-bonding associative thickener. The conclusions of our molecular modeling calculations confirmed that although acetates are indeed 'CO{sub 2}-philic', nitrogen-containing amines also interact favorably with CO{sub 2} and should also be examined. Therefore we obtained and synthesized many N-rich (e.g. amine-containing) polymers. Unfortunately, we found that the intermolecular polymer-polymer interactions between the amines were so strong that the polymers were essentially insoluble in CO{sub 2}. For the convenience of the reader, a table of all of the polymers evaluated during this research is provided.

  8. spe438-20 page 1 Garrison, N.J., Busby, C.J., Gans, P.B., Putirka, K., and Wagner, D.L., 2008, A mantle plume beneath California? The mid-Miocene Lovejoy flood basalt, northern

    E-Print Network [OSTI]

    Busby, Cathy

    -Miocene Lovejoy flood basalt, northern California Noah J. Garrison Cathy J. Busby Phillip B. Gans Department the eastern Snake River Plain toward the Yellowstone caldera (Armstrong et al., 1975; Rodgers et al., 1990

  9. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal floods during mid-loop operations. Volume 4

    SciTech Connect (OSTI)

    Kohut, P. [Brookhaven National Lab., Upton, NY (United States)

    1994-07-01T23:59:59.000Z

    The major objective of the Surry internal flood analysis was to provide an improved understanding of the core damage scenarios arising from internal flood-related events. The mean core damage frequency of the Surry plant due to internal flood events during mid-loop operations is 4.8E-06 per year, and the 5th and 95th percentiles are 2.2E-07 and 1.8E-05 per year, respectively. Some limited sensitivity calculations were performed on three plant improvement options. The most significant result involves modifications of intake-level structure on the canal, which reduced core damage frequency contribution from floods in mid-loop by about 75%.

  10. Investigating impacts of natural and human-induced environmental changes on hydrological processes and flood hazards using a GIS-based hydrological/hydraulic model and remote sensing data

    E-Print Network [OSTI]

    Wang, Lei

    2009-06-02T23:59:59.000Z

    a GISbased hydrological and hydraulic modeling system, which incorporates state-of-the-art remote sensing data to simulate flood under various scenarios. The conceptual framework and technical issues of incorporating multi-scale remote sensing data...

  11. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2002-03-26T23:59:59.000Z

    The objective of this project is two-fold. It will demonstrate use of nitrogen as a widely available, cost-effective and environmentally superior injectant for miscible floods. It will also demonstrate the effectiveness of horizontal wellbores in reducing gas breakthrough and cycling. It is expected that the demonstration will lead to implementation of nitrogen injection projects in areas without readily available carbon dioxide sources. Technology transfer will occur throughout the project.

  12. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18T23:59:59.000Z

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  13. Chemical flood progress evaluation test, South Pass Block 27 field, Plaquemines Parish, Louisiana. Final report, September 28, 1979-May 16, 1980

    SciTech Connect (OSTI)

    Johnston, J. R.; Guillory, A. J.

    1981-02-01T23:59:59.000Z

    A field test of a surfactant flooding process has been designed for a reservoir located in the South Pass Block 27 field, Plaquemines Parish, Louisiana. The objectives of the test are to continue chemical flooding research by applying the process in a reservoir which is a candidate for this enhanced oil recovery technique if the process is proved economically viable. The plan is to acquire field data which will lead to a better understanding of how the process works under reservoir conditions at a well-to-well distance intermediate to laboratory floods and economic well spacing. The initial step in starting the field test began late in 1979 when the first pilot injection-residual oil saturation determination well was drilled and pressured cored in the selected test reservoir, the N/sub 4/ sand Reservoir B, at about 8000 feet. A log-inject-log measurement in this well has also been completed to provide an added evaluation. This report documents the results of the N/sub 4/, sand residual oil saturation measurements in Well SL 1011 No. 88. The Shell-DOE contract is restricted to this phase of the field test. Results indicate a waterswept residual oil saturation less than 20% at the objective location based on coring and PNC log-inject-log measurements. The value is lower than anticipated. Consequently, an alternate test site must be selected if the field test plans are continued.

  14. Performance of DOE's micellar-polymer project in northwest Oklahoma

    SciTech Connect (OSTI)

    Thomas, R.D.; Spence, K.L.; Burtch, F.W.; Lorenz, P.B.

    1982-01-01T23:59:59.000Z

    DOE's Bartlesville Energy Technology Center has completed a micellar-polymer flood in the Delaware Childers Field in NE Oklahoma. Micellar-polymer flooding uses a combination of low interfacial tension and mobility control in producing reservoir that usually has been successfully waterflood. A test site was selected after consideration of other possible sites reasonably close to BETC. The selected micellar-polymer fluids were injected into a central injection well, displaced through the formation, and produced from four surrounding production wells. Eight water injection wells surrounding the test pattern were used to afford an effective outer boundary for fluid containment. 9 refs.

  15. Development of an Advanced Simulator to Model Mobility Control and Geomechanics during CO{sub 2} Floods

    SciTech Connect (OSTI)

    Delshad, Mojdeh; Wheeler, Mary; Sepehrnoori, Kamy; Pope, Gary

    2013-12-31T23:59:59.000Z

    The simulator is an isothermal, three-dimensional, four-phase, compositional, equation-of– state (EOS) simulator. We have named the simulator UTDOE-CO2 capable of simulating various recovery processes (i.e., primary, secondary waterflooding, and miscible and immiscible gas flooding). We include both the Peng-Robinson EOS and the Redlich-Kwong EOS models. A Gibbs stability test is also included in the model to perform a phase identification test to consistently label each phase for subsequent property calculations such as relative permeability, viscosity, density, interfacial tension, and capillary pressure. Our time step strategy is based on an IMPEC-type method (implicit pressure and explicit concentration). The gridblock pressure is solved first using the explicit dating of saturation-dependent terms. Subsequently, the material balance equations are solved explicitly for the total concentration of each component. The physical dispersion term is also included in the governing equations. The simulator includes (1) several foam model(s) for gas mobility control, (2) compositional relative permeability models with the hysteresis option, (3) corner point grid and several efficient solvers, (4) geomechanics module to compute stress field as the result of CO{sub 2} injection/production, (5) the format of commercial visualization software, S3graf from Science-soft Ltd., was implemented for user friendly visualization of the simulation results. All tasks are completed and the simulator was fully tested and delivered to the DOE office including a user’s guide and several input files and the executable for Windows Pcs. We have published several SPE papers, presented several posters, and one MS thesis is completed (V. Pudugramam, 2013) resulting from this DOE funded project.

  16. Rate Optimization for Polymer and CO2 Flooding Under Geologic Uncertainty

    E-Print Network [OSTI]

    Sharma, Mohan

    2012-10-19T23:59:59.000Z

    , in terms of optimal production and injection rates, to maximize recovery. The increasing deployment of smart well completions and i-field has inspired many researchers to develop algorithms to optimize the production/injection rates along intervals of smart...

  17. Decontaminating Flooded Wells

    E-Print Network [OSTI]

    Boellstorff, Diana; Dozier, Monty; Provin, Tony; Dictson, Nikkoal; McFarland, Mark L.

    2005-09-30T23:59:59.000Z

    ER-011 6-06 Mark L. McFarland, Associate Professor and Extension Water Resources Specialist; Diane E. Boellstorff, Program Specialist Water Quality; Tony L. Provin, Associate Professor and Extension Soil Chemist; Monty C. Dozier, Assistant... and local hospitals may also test water samples for bacteria. The cost of the test ranges from $8 to $30, depending on the lab. Well disinfection does not eliminate hydrocarbons (fuels, oils), pesticides, heavy metals or other types of nonbiological...

  18. Decontaminating Flooded Wells (Spanish)

    E-Print Network [OSTI]

    Boellstorff, Diana; Dozier, Monty; Provin, Tony; Dictson, Nikkoal; McFarland, Mark L.

    2007-10-08T23:59:59.000Z

    , Profesor Adjunto y Especialista en Recursos H?dricos de Extensi?n; Nikkoal J. Dictson, Especialista en Programa Calidad de Agua Sistema Universitario Texas A&M Si se ha inundado su pozo, debe asumir que el agua en ?l se ha contaminado. No utilice el... agua del pozo para beber, cocinar, preparar hielo, cepillarse los dientes o asearse hasta no estar seguro de que no est? contaminada. El agua proveniente de la inundaci?n puede resultar contaminada por sustancias arrastradas como esti?rcol, residuos...

  19. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    SciTech Connect (OSTI)

    Burns, Lyle D.

    2009-04-14T23:59:59.000Z

    The problem in CO{sub 2} flooding lies with its higher mobility causing low conformance or sweep efficiency. This is an issue in oilfield applications where an injected fluid or gas used to mobilize and produce the oil in a marginal field has substantially higher mobility (function of viscosity and density and relative permeability) relative to the crude oil promoting fingering and early breakthrough. Conformance is particularly critical in CO{sub 2} oilfield floods where the end result is less oil recovered and substantially higher costs related to the CO{sub 2}. The SPI-CO{sub 2} (here after called “SPI”) gel system is a unique silicate based gel system that offers a technically effective solution to the conformance problem with CO{sub 2} floods. This SPI gel system remains a low viscosity fluid until an external initiator (CO{sub 2}) triggers gelation. This is a clear improvement over current technologies where the gels set up as a function of time, regardless of where it is placed in the reservoir. In those current systems, the internal initiator is included in the injected fluid for water shut off applications. In this new research effort, the CO{sub 2} is an external initiator contacted after SPI gel solution placement. This concept ensures in the proper water wet reservoir environment that the SPI gel sets up in the precise high permeability path followed by the CO{sub 2}, therefore improving sweep efficiency to a greater degree than conventional systems. In addition, the final SPI product in commercial quantities is expected to be low cost over the competing systems. This Phase I research effort provided “proof of concept” that SPI gels possess strength and may be formed in a sand pack reducing the permeability to brine and CO{sub 2} flow. This SPI technology is a natural extension of prior R & D and the Phase I effort that together show a high potential for success in a Phase II follow-on project. Carbon dioxide (CO{sub 2}) is a major by-product of hydrocarbon combustion for energy, chemical and fertilizer plants. For example, coal fired power plants emit large amounts of CO{sub 2} in order to produce electrical energy. Carbon dioxide sequestration is gaining attention as concerns mount over possible global climate change caused by rising emissions of greenhouse gases. Removing the CO{sub 2} from the energy generation process would make these plants more environmentally friendly. In addition, CO{sub 2} flooding is an attractive means to enhance oil and natural gas recovery. Capture and use of the CO{sub 2} from these plants for recycling into CO{sub 2} flooding of marginal reservoirs provides a “dual use” opportunity prior to final CO{sub 2} sequestration in the depleted reservoir. Under the right pressure, temperature and oil composition conditions, CO{sub 2} can act as a solvent, cleaning oil trapped in the microscopic pores of the reservoir rock. This miscible process greatly increases the recovery of crude oil from a reservoir compared to recovery normally seen by waterflooding. An Enhanced Oil Recovery (EOR) project that uses an industrial source of CO{sub 2} that otherwise would be vented to the atmosphere has the added environmental benefit of sequestering the greenhouse gas.

  20. Experimental and theoretical study of polymer flow in porous media

    SciTech Connect (OSTI)

    Sorbie, K.S.; Parker, A.; Clifford, P.J.

    1987-08-01T23:59:59.000Z

    In this paper, an extensive study is presented on the single-phase flow of xanthum/tracer slugs in a consolidated sandstone. The phenomena studied include polymer/tracer dispersion, excluded/inaccessible-volume effects, polymer adsorption, and viscous fingering. In some floods, there is also evidence of nonequilibrium effects. Macroscopic flow equations are derived that include terms to model all the behaviors listed above. A microscopic approach is also developed that describes certain features of polymer flow in porous media semiquantitatively.

  1. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2004-06-30T23:59:59.000Z

    The DOE-sponsored project at the East Binger Unit is an investigation into the benefits of reservoir characterization and horizontal wells in this particular setting of geologic and recovery method. The geologic setting is a tight (average porosity of 7% and average permeability of less than 1 millidarcy) Pennsylvanian-age sandstone at about 10,000 feet, and the recovery method is a miscible nitrogen flood. The projected oil recovery of the East Binger Unit, prior to the initiation of this project, was about 25%. Gravity segregation of nitrogen and crude oil was believed to be the principal cause of the poor sweep efficiency, and it was envisioned that with horizontal producing wells in the lower portion of the reservoir and horizontal injection wells near the top, the process could be converted from a lateral displacement process to a vertical displacement/gravity assisted process. Through the characterization and field development work completed in Budget Periods 1 and 2, Binger Operations, LLC (BOL) has developed a different interpretation of the sweep problem as well as a different approach to improving recovery. The sweep problem is now believed to be one of an areal nature, due to a combination of natural and hydraulic fracturing. Vertical wells have provided a much better economic return than have the horizontal wells. The natural and hydraulic fracturing manifests itself as a direction of higher permeability, and the flood is being converted to a line drive flood aligned with this orientation. Consistent with this concept, horizontal wells have been drilled along the line of the fracture orientation, such that hydraulic fracturing leads to 'longitudinal' fractures, in line with the wellbore. As such, the hydraulically fractured horizontal wells are not significantly different than hydraulically fractured vertical wells - save for the potential for a much longer fracture face. This Topical Report contains data from new wells, plus new and updated production, pressure, and gas analysis data that was not included in the Topical Report provided at the end of Budget Period 1. The analysis and interpretation of these data are provided in the many technical reports submitted throughout this project.

  2. USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS

    SciTech Connect (OSTI)

    Randall Seright

    2011-09-30T23:59:59.000Z

    This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, we examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficiency for polymer flooding versus in-depth profile modification (i.e., 'Bright Water') as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer solution viscosity, (5) polymer or blocking-agent bank size, and (6) relative costs for polymer versus blocking agent. Fourth, we experimentally established how much polymer flooding can reduce the residual oil saturation in an oil-wet core that is saturated with viscous North Slope crude. Finally, an experimental study compared mechanical degradation of an associative polymer with that of a partially hydrolyzed polyacrylamide. Detailed results from the first two years of the project may be found in our first and second annual reports. Our latest research results, along with detailed documentation of our past work, can be found on our web site at http://baervan.nmt.edu/randy/. As an overall summary of important findings for the project, polymer flooding has tremendous potential for enhanced recovery of viscous oil. Fear of substantial injectivity reduction was a primary hurdle that limited application of polymer flooding. However, that concern is largely mitigated by (1) use of horizontal wells and (2) judicious injection above the formation parting pressure. Field cases now exist where 200-300-cp polymer solutions are injected without significant reductions in injectivity. Concern about costs associated with injection of viscous polymer solutions was a second major hurdle. However, that concern is reduced substantially by realization that polymer viscosity increases approximately with the square of polymer concentration. Viscosity can be doubled with only a 40% increase in polymer concentration. Up to a readily definable point, increases in viscosity of the injected polymer solution are directly related to increases in sweep efficiency and oil recovery. Previously published simulation results - suggesting that shear-thinning polymer solutions were detrimental to sweep efficiency - were shown to be unfounded (both theoretically and experimentally).

  3. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    SciTech Connect (OSTI)

    Unknown

    1998-10-01T23:59:59.000Z

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system have been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.

  4. Improvement of Carbon Dioxide Sweep Efficiency by Utilization of Microbial Permeability Profile Modification to Reduce the Amount of Oil Bypassed During Carbon Dioxide Flood

    SciTech Connect (OSTI)

    Darrel Schmitz; Lewis Brown F. Leo Lynch; Brenda Kirkland; Krystal Collins; William Funderburk

    2010-12-31T23:59:59.000Z

    The objective of this project was to couple microbial permeability profile modification (MPPM), with carbon dioxide flooding to improve oil recovery from the Upper Cretaceous Little Creek Oil Field situated in Lincoln and Pike counties, MS. This study determined that MPPM technology, which improves production by utilizing environmentally friendly nutrient solutions to simulate the growth of the indigenous microflora in the most permeable zones of the reservoir thus diverting production to less permeable, previously unswept zones, increased oil production without interfering with the carbon dioxide flooding operation. Laboratory tests determined that no microorganisms were produced in formation waters, but were present in cores. Perhaps the single most significant contribution of this study is the demonstration that microorganisms are active at a formation temperature of 115?C (239?F) by using a specially designed culturing device. Laboratory tests were employed to simulate the MPPM process by demonstrating that microorganisms could be activated with the resulting production of oil in coreflood tests performed in the presence of carbon dioxide at 66?C (the highest temperature that could be employed in the coreflood facility). Geological assessment determined significant heterogeneity in the Eutaw Formation, and documented relatively thin, variably-lithified, well-laminated sandstone interbedded with heavily-bioturbated, clay-rich sandstone and shale. Live core samples of the Upper Cretaceous Eutaw Formation from the Heidelberg Field, MS were quantitatively assessed using SEM, and showed that during MPPM permeability modification occurs ubiquitously within pore and throat spaces of 10-20 ?m diameter. Testing of the MPPM procedure in the Little Creek Field showed a significant increase in production occurred in two of the five production test wells; furthermore, the decline curve in each of the production wells became noticeably less steep. This project greatly extends the number of oil fields in which MPPM can be implemented.

  5. INEXPENSIVE CO{sub 2} THICKENING AGENTS FOR IMPROVED MOBILITY CONTROL OF CO{sub 2} FLOODS

    SciTech Connect (OSTI)

    Robert M. Enick; Eric J. Beckman; Andrew Hamilton

    2004-10-01T23:59:59.000Z

    The objective of this research was the design, synthesis and evaluation of inexpensive, nonfluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly CO{sub 2}-philic, hydrocarbon-based monomer was to be identified. Polymers or oligomers of this monomer were then synthesized. The second step was to be completed only when a CO{sub 2}-soluble polymer that was soluble in CO{sub 2} at pressures comparable to the MMP was identified. In the second step, viscosity-enhancing associating groups were to be incorporated into the polymer to make it a viable thickener that exhibited high CO{sub 2} solubility at EOR MMP conditions. This final report documents the CO{sub 2} solubility of a series of commercial and novel polymers composed of carbon, hydrogen, oxygen and, in some cases, nitrogen.

  6. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Teresa Muhic

    2000-07-31T23:59:59.000Z

    The cooperative agreement for this project was finalized and signed during April 2000. The official project start date was April 11, 2000. Initial reporting requirements, including the completion of a Project Management Plan, Milestone Plan and Log, and a Hazardous Substance Plan, were completed and submitted to the DOE in early May 2000. Work on the project tasks was initiated in May 2000. During the course of this budget period, efforts will focus on enhancing reservoir characterization work that had been in progress prior to the start of this grant project, incorporation of this information into an existing 3-D full-field compositional model, and utilization of a ''window area'' of the model (representing a selected pilot area) to evaluate the impacts of horizontal laterals on recovery in the miscible nitrogen flood. The ''window area'' model will also be used to design the most effective configuration and placement of the lateral sections. The following is a summary of progress made between April 11, 2000 and June 30, 2000.

  7. An optimal viscosity profile in enhanced oil recovery by polymer Prabir Daripa1,

    E-Print Network [OSTI]

    Daripa, Prabir

    An optimal viscosity profile in enhanced oil recovery by polymer flooding Prabir Daripa1, and G. Pa is one of the effective methods of enhanced (tertiary) oil recovery. A classical model of this process channeling of flow through high permeable region in the heterogeneous case. Key words: enhanced oil recovery

  8. DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

    SciTech Connect (OSTI)

    K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

    2002-09-01T23:59:59.000Z

    The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern for the project as it limited CO{sub 2} injectivity. To reduce voidage balance, and reservoir pressure, a disposal well was therefore drilled. Several injection surveys indicated the CO{sub 2} injection wells had severe conformance issues. After close monitoring of the project to the end of 1999, it was evident the project would not recover the anticipated tertiary reserves. The main reasons for under-performance were poor in zone CO{sub 2} injection into the upper San Andres layers, poorer offtake rates from newly drilled replacement wells and a higher than required reservoir pressure. After discussion internally within Phillips, externally with the Department of Energy (DOE) and SCU partners, a redevelopment of South Cowden was agreed upon to commence in year 2000. The redevelopment essentially abandoned the original development for Budget Phase II in favor of a revised approach. This involved conformance techniques to resolve out of zone CO{sub 2} injection and use of horizontal wells to improve in zone injectivity and productivity. A phased approach was used to ensure short radius lateral drilling could be implemented effectively at South Cowden. This involved monitoring drilling operations and then production response to determine if larger investments during the second phase were justified. Redevelopment Phase 1 was completed in May 2000. It was deemed a success in regard to finding suitable/cost-effective technology for drilling horizontal laterals and finding a technique that could sustain long-term productivity from the upper layers of the San Andres reservoir. Four existing vertical producing wells were isolated from their existing completions and sidetracked with horizontal laterals into the upper layers of the San Andres. Overall average offtake rates for the four wells increased by a factor of 12 during the first four months after completion of Phase 1. Phase 2 of the redevelopment focused on current CO{sub 2} vertical injection wells. Techniques were applied to resolve near well conformance concerns and then either single or dual laterals were dril

  9. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2006-06-30T23:59:59.000Z

    The reservoir characterization and investigation of the benefits of horizontal wells in the East Binger Unit miscible nitrogen flood as been completed. A significant work program was implemented from 2002 to 2005 in an effort to reduce gas cycling and economically increase ultimate oil recovery. Horizontal and vertical infill wells were drilled and existing producers were converted to injection. Due to successful infill drilling based on the improved flow characterization, more drilling was done than originally planned, and further drilling will occur after the project is completed. Through the drilling of wells and reservoir characterization work, it was determined that poor areal sweep efficiency is the primary factor causing nitrogen cycling and limiting oil recovery. This is in contrast to the perception prior to the initiation of development, which was that gravity segregation was causing poor vertical sweep efficiency. Although not true of all infill wells, most were drilled in areas with little sweep and came online producing gas with much lower nitrogen contents than previously drilled wells in the field and in the pilot area. Seven vertical and three horizontal wells were drilled in the pilot area throughout the project. As previously reported, the benefits of horizontal drilling were found to be insufficient to justify their increased cost. Nitrogen recycle, defined as nitrogen production as a percentage of injection, decreased from 72% prior to initiation of the project to about 25% before rising back to a current rate of 40%. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, increased 60% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas both decreased.

  10. Design and Implementation of a CO(2) Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in Shallow Shelf Carbonate Approaching Waterflood Depletion

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The work reported herein covers select tasks in Budget Phase 11. The principle Task in Budget Phase 11 included in this report is Field Demonstration. Completion of many of the Field Demonstration tasks during the last report period enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed, economically evaluated, and implemented in the field. Field implementation of the project commenced during late 1995, with actual C0{sub 2} injection commencing in mid-July, 1996. This report summarizes activities incurred following initial project start-up, towards the goal of optimizing project performance. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative C0{sub 2} purchase agreement (no take-or-pay provisions, C0{sub 2} purchase price tied to West Texas Intermediate (WTI) crude oil price) and gas recycle agreement (expensing costs as opposed to a large upfront capital investment for compression) were negotiated to further improve the project economics. The Grayburg-San Andres section had previously been divided into multiple zones based on the core study and gamma ray markers that correlate wells within the Unit. Each zone was mapped as continuous across the field. Previous core studies concluded that the reservoir quality in the South Cowden Unit (SCU) is controlled primarily by the distribution of a bioturbated and diagenetically-altered rock type with a distinctive chaotic texture. The chaotic modifier is derived from the visual effect of pervasive, small-scale intermixing of tan oil-stained reservoir rock with tight gray non- reservoir rock. The chaotic reservoir rock extends from Zone C (4780`-4800`) to the lower part of Zone F (4640`-4680`). Zones D (4755`-4780`) and E (4680`-4755`) are considered the main floodable zones, though Zone F is also productive and Zone C is productive above the oil- water contact. During Budget Phase 1, the Stratamodel computer program was utilized as the primary tool to integrate the diverse geologic, petrophysical, and seismic data into a coherent three dimensional (3-D) model. The basic porosity model having been constructed, critiqued and modified based on field production and detailed cross-section displays, permeability data was imported into the model, and a 3-D interpolation of the permeability was completed.

  11. Asphalt deposition in miscible floods

    E-Print Network [OSTI]

    Hasan, Syed Mir Ahmed

    1964-01-01T23:59:59.000Z

    . ACKNOWLEDGMENTS. . 22 23 8. REFERENCES. 24 9. APPENDIX. 26 LIST OF TABLES Table Page I II IV Properties of the Crude Oils Studied Average Core Properties for Different Tests Average Perrneabilities of Different Sections of Core Before and After... Displacement with Liquefied Petroleum Gas Percent Reduction in Permeability in Different Sections of Core Due to Asphalt Deposition Average Recoveries of Four Crude Oils and Increase in Swept Area due to Plugging by Asphalt Deposition 27 29 ABSTRACT...

  12. Gas Emissions FLOODING THE LAND,

    E-Print Network [OSTI]

    Batiste, Oriol

    signif- icant sources of emissions of the greenhouse gases carbon dioxide and, in particular, methane to bacteria breaking down organic matter in the water. Methane, a much more powerful greenhouse gas than coal plants generating the same amounts of power. Dams and their associated reservoirs are globally

  13. Facility Flood Response Standard Procedure

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    ("sewage"), steam condensate, high ambient humidity, process chilled water, and rain, ground, and surface

  14. Flooding and Fire Ants (Spanish)

    E-Print Network [OSTI]

    Nester, Paul

    2008-08-05T23:59:59.000Z

    ER-043S 8-08 Paul R. Nester, Extension Agent?IPM The Texas A&M System Cuando las tormentas causan inundaciones en regiones de Texas que es- t?n infestadas de la llamada hormiga brava importada, dichas hormigas pueden representar una grave amenaza...

  15. Flood events Dr. Andre Paquier

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for Developing Countries due to Climate Change, Kyoto, Japan, March 2011 hal-00593481,version1-16May2011 Author be influenced by climate change or more directly by other anthropogenic changes. Some parameters control the quantity of water provided to hydrographical network. They can be linked with climate change: rainfall

  16. Federal Flood Risk Management Standard

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergy Federal EfficiencyReporting & Data »

  17. Monitoring polymer properties in production wells of Chateaurenard oilfield

    SciTech Connect (OSTI)

    Putz, A.G. (Elf Aquitaine, Avenue Larribau, Pau (FR)); Lecourtier, J. (Inst. Francais du Petrole, Avenue Bois-Preau, 92500 Rueil-Malmaison (FR))

    1991-01-01T23:59:59.000Z

    A polymer flooding test was conducted in the Chateaurenard field (France) from 1985 to 1989. The test was run on a ten-acre inverted five-spot. A total of 240,000 m{sup 3} of partially hydrolyzed polyacrylamide at a concentration of 1000 ppm was injected followed by an equal volume of solution but at a tapered concentration. A strong response in oil recovery for three of the four producers was observed. This paper reports on an original methodology that was designed for sampling and analyzing the polymer in the effluents of the producing wells. Concentrations and main characteristics of produced polyacrylamide were determined versus injected volume. No degradation of the polymer was detected. A molecular weight fractionation during polymer slug propagation into the reservoir due to adsorption/retention chromatography was observed. The low-polymer concentration of the effluents could be explained by a strong retention of the polymer in the low permeability zones of the reservoir.

  18. The effect of polyacrylamide polymers and formaldehyde on selected strains of oilfield related bacteria

    SciTech Connect (OSTI)

    Farquhar, G.B. [Texaco E.P.T.D., Houston, TX (United States)

    1996-08-01T23:59:59.000Z

    A preliminary study of the effect of two polyacrylamide polymers and formaldehyde on certain strains of oil field related bacteria was performed. Since at this stage of the development of planning the proposed North Sea polymer flood field samples of native bacteria populations and fluid samples were not available, the preliminary study was made using pure strains of bacteria associated with the oilfield environment. The tests were run using ideal growth conditions of temperature and culture media. The purpose of the study was to determine the effect of proposed polyacrylamide polymer flooding materials on the growth of selected strains of bacteria belonging to families common to the oilfield environment. The effect of 100 ppm of formaldehyde on these organisms also was investigated. The results of the tests showed that these bacteria responded differently to exposure to formaldehyde, polyacrylamide polymers and mixtures of both. These results indicate another possible mechanism for the occurrence of high bacteria related corrosion rates reported to occur on the producing side of polymer floods.

  19. Field project to obtain pressure core, wireline log, and production test data for evaluation of CO/sub 2/ flooding potential. Texas Pacific Bennett Ranch Unit well No. 310, Wasson (San Andres) Field, Yoakum County, Texas

    SciTech Connect (OSTI)

    Swift, T.E.; Goodrich, J.H.; Kumar, R.M.; McCoy, R.L.; Wilhelm, M.H.; Glascock, M.R.

    1982-01-01T23:59:59.000Z

    The coring, logging and testing of Bennett Ranch Unit well No. 310 was a cooperative effort between Texas Pacific, owner of the well, and Gruy Federal, Inc. The requirements of the contract, which are summarized in Enclosure 1, Appendix A, include drilling and coring activities. The pressure-coring and associated logging and testing programs in selected wells are intended to provide data on in-situ oil saturation, porosity and permeability distribution, and other data needed for resource characterization of fields and reservoirs in which CO/sub 2/ injection might have a high probability of success. This report presents detailed information on the first such project. This project demonstrates the usefulness of integrating pressure core, log and production data to realistically evaluate a reservoir for carbon dioxide flood. The engineering of tests and analysis of such experimental data requires original thinking, but the reliability of the results is higher than data derived from conventional tests.

  20. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    SciTech Connect (OSTI)

    Unknown

    1997-09-01T23:59:59.000Z

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation, high adsorption and viscous/heterogeneity fingering. This report contains data concerning selection of appropriate fluids for use in laboratory experiments and numerical simulations. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer is proposed. The properties of this system has been determined. The experimental set-up has been conditioned for use and experiments involving the aforementioned system have already started. A commercial simulator has been acquired for use in reproducing the experiments. A graduate student has been trained in its use. Linear stability analysis equations have been developed and phase maps for one and two-dimensions are currently computed.

  1. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.

  2. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate gels that were stable to injection of alkaline-surfactant-polymer solutions at 72 F were stable to injection of alkaline-surfactant-polymer solutions at 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Xanthan gum-chromium acetate gels maintained gel integrity in linear corefloods after injection of an alkaline-surfactant-polymer solution at 125 F. At 175 F, Xanthan gum-chromium acetate gels were not stable either with or without subsequent alkaline-surfactant-polymer solution injection. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls when a gel was placed in the B sand. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls when a gel was placed in the B sand. Alkaline-surfactant-pol

  3. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  4. Supporting technology for enhanced oil recovery: Polymer predictive model

    SciTech Connect (OSTI)

    Not Available

    1986-12-01T23:59:59.000Z

    The Polymer Flood Predictive Model (PFPM) was developed by Scientific Software-Intercomp for the National Petroleum Council's (NPC) 1984 survey of US enhanced oil recovery potential (NPC, 1984). The PFPM is switch-selectable for either polymer or waterflooding, and an option in the model allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. The architecture of the PFPM is similar to that of the other predictive models in the series: in-situ combustion, steam drive (Aydelotte and Pope, 1983), chemical flooding (Paul et al., 1982) and CO/sub 2/ miscible flooding (Paul et al., 1984). In the PFPM, an oil rate versus time function for a single pattern is computed and then is passed to the economic calculations. Data for reservoir and process development, operating costs, and a pattern schedule (if multiple patterns are desired) allow the computation of discounted cash flow and other measures of profitability. The PFPM is a three-dimensional (stratified, five-spot), two-phase (water and oil) model which computes water from breakthrough and oil recovery using fractional flow theory, and models areal and vertical sweeps using a streamtube approach. A correlation based on numerical simulation results is used to model the polymer slug size effect. The physical properties of polymer fluids, such as adsorption, permeability reduction, and non-Newtonian effects, are included in the model. Pressure drop between the injector and producer is kept constant, and the injectivity at each time step is calculated based on the mobility in each streamtube. Heterogeneity is accounted for by either entering detailed layer data or using the Dykstra-Parsons coefficient for a reservoir with a log-normal permeability distribution. 24 refs., 27 figs., 59 tabs.

  5. Peculiarities of Environment Pollution as a Special Type of Radioactive Waste: Field Means for Comprehensive Characterization of Soil and Bottom Sediments and their Application in the Survey at the Flood plain of Techa River - 13172

    SciTech Connect (OSTI)

    Ivanov, Oleg; Danilovich, Alexey; Potapov, Victor; Stepanov, Vyacheslav; Smirnov, Sergey; Volkovich, Anatoly [National Research Centre - Kurchatov Institute, 1 Kurchatov Sq. (Russian Federation)] [National Research Centre - Kurchatov Institute, 1 Kurchatov Sq. (Russian Federation)

    2013-07-01T23:59:59.000Z

    Contamination of natural objects - zone alarm fallout, zones and flood plains near production sites (the result of technological accidents and resource extraction) occupy large areas. Large area and volume of contaminated matter, moderate specific activity (as low - medium-level wastes) make such objects specific types of radioactive waste. These objects exist for a long time, now they are characterized by a bound state of nuclides with the matrix. There is no cost-effective ways to remove these waste, the only solution for the rehabilitation of such areas is their isolation and regular monitoring through direct and indirect measurements. The complex of instruments was developed to field mapping of contamination. It consists of a portable spectrometric collimated detector, collimated spectrometric borehole detector, underwater spectrometer detector, spectrometer for field measurements of the specific activity of Sr-90, connected to a portable MCA 'Colibry (Hummingbird)'. The complex was used in settlements of Bryansk region, rivers Techa and Yenisei. The effectiveness of the developed complex considered by the example of characterization of the reservoir 10 (artificial lake) in Techinsky cascade containing a huge amount of radioactive waste. The developed field means for comprehensive characterization of soil and bottom sediments contamination are very effective for mapping and monitoring of environment contamination after accidents. Especially in case of high non-uniformity of fallout and may be very actual in Fukushima area. (authors)

  6. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Annual report, July 1, 1996--June 30, 1997

    SciTech Connect (OSTI)

    Dollens, K.B.; Harpole, K.J.; Durrett, E.G.; Bles, J.S.

    1997-12-01T23:59:59.000Z

    The work reported herein covers select tasks in Budget Phase 2. The principle Task in Budget Phase 2 included in this report is Field Demonstration. Completion of many of the Field Demonstration tasks during the last report period enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed, economically evaluated, and implemented in the field. Field implementation of the project commenced during late 1995, with actual CO{sub 2} injection commencing in mid-July, 1996. This report summarizes activities incurred following initial project start-up, towards the goal of optimizing project performance. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take-or-pay provisions, CO{sub 2} purchase price tied to West Texas Intermediate (WTI) crude oil price) and gas recycle agreement (expensing costs as opposed to a large upfront capital investment for compression) were negotiated to further improve the project economics.

  7. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-04-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.

  8. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Annual Report, July 1, 1995--June 30, 1996

    SciTech Connect (OSTI)

    Chimahusky, J.S.; Hallenbeck, L.D.; Harpole, K.J.; Dollens, K.B.

    1997-05-01T23:59:59.000Z

    The work reported herein covers select tasks remaining in Budget Phase I and many of the tasks of Budget Phase II. The principal Tasks in Budget Phase I included in this report are Reservoir Analysis and Characterization; Advanced Technical Studies; and Technology Transfer, Reporting and Project Management Activities for Budget Phase I. The principle Task in Budget Phase II included in this report is Field Demonstration. Completion of these tasks has enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed, economically evaluated, and implemented in the field. Field implementation of the project commenced during late 1995, with actual CO{sub 2} injection scheduled for start-up in mid-July, 1996. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take-or-pay provisions, CO{sub 2} purchase price tied to West Texas Intermediate (WTI) crude oil price) and gas recycle agreements (expensing costs as opposed to a large upfront capital investment for compression) were negotiated to further improve the project economics. The Grayburg-San Andres section had previously been divided into multiple zones based on the core study and gamma ray markers that correlate wells within the Unit. Each zone was mapped as continuous across the field. Previous core studies concluded that the reservoir quality in the South Cowden Unit (SCU) is controlled primarily by the distribution of a bioturbated and diagenetically-altered rock type with a distinctive {open_quotes}chaotic{close_quotes} texture. The {open_quotes}chaotic{close_quotes} modifier is derived from the visual effect of pervasive, small-scale intermixing of tan oil-stained reservoir rock with tight gray non-reservoir rock.

  9. Field project to obtain pressure core, wireline log, and production test data for evaluation of CO/sub 2/ flooding potential, Conoco MCA unit well No. 358, Maljamar Field, Lea County, New Mexico

    SciTech Connect (OSTI)

    Swift, T.E.; Marlow, R.E.; Wilhelm, M.H.; Goodrich, J.H.; Kumar, R.M.

    1981-11-01T23:59:59.000Z

    This report describes part of the work done to fulfill a contract awarded to Gruy Federal, Inc., by the Department of Energy (DOE) on Feburary 12, 1979. The work includes pressure-coring and associated logging and testing programs to provide data on in-situ oil saturation, porosity and permeability distribution, and other data needed for resource characterization of fields and reservoirs in which CO/sub 2/ injection might have a high probability of success. This report details the second such project. Core porosities agreed well with computed log porosities. Core water saturation and computed log porosities agree fairly well from 3692 to 3712 feet, poorly from 3712 to 3820 feet and in a general way from 4035 to 4107 feet. Computer log analysis techniques incorporating the a, m, and n values obtained from Core Laboratories analysis did not improve the agreement of log versus core derived water saturations. However, both core and log analysis indicated the ninth zone had the highest residual hydrocarbon saturations and production data confirmed the validity of oil saturation determinations. Residual oil saturation, for the perforated and tested intervals were 259 STB/acre-ft for the interval from 4035 to 4055 feet, and 150 STB/acre-ft for the interval from 3692 to 3718 feet. Nine BOPD was produced from the interval 4035 to 4055 feet and no oil was produced from interval 3692 to 3718 feet, qualitatively confirming the relative oil saturations as calculated. The low oil production in the zone from 4022 to 4055 and the lack of production from 3692 to 3718 feet indicated the zone to be at or near residual waterflood conditions as determined by log analysis. This project demonstrates the usefulness of integrating pressure core, log, and production data to realistically evaluate a reservoir for carbon dioxide flood.

  10. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Annual report, June 3, 1994--October 31, 1995

    SciTech Connect (OSTI)

    Hallenbeck, L.D.; Harpole, K.J.; Gerard, M.G.

    1996-05-01T23:59:59.000Z

    The work reported here covers Budget Phase I of the project. The principal tasks in Budget Phase I are the Reservoir Analysis and Characterization Task and the Advanced Technology Definition Task. Completion of these tasks have enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed and evaluated from an economic and risk analysis standpoint. Field implementation of the project has been recommended to the working interest owner of the South Cowden Unit (SCU) and approval has been obtained. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take or pay requirements, CO{sub 2} purchase price tied to West Texas Intermediate crude oil price) and gas recycle agreements (expensing cost as opposed to large capital investments for compression) were negotiated to further improve project economics. A detailed reservoir characterization study was completed by an integrated team of geoscientists and engineers. The study consisted of detailed core description, integration of log response to core descriptions, mapping of the major flow units, evaluation of porosity and permeability relationships, geostatistical analysis of permeability trends, and direct integration of reservoir performance with the geological interpretation. The study methodology fostered iterative bidirectional feedback between the reservoir characterization team and the reservoir engineering/simulation team to allow simultaneous refinement and convergence of the geological interpretation with the reservoir model. The fundamental conclusion from the study is that South Cowden exhibits favorable enhanced oil recovery characteristics, particularly reservoir quality and continuity.

  11. Federal Flood Assessment Conference Recommendations and Proceedings

    E-Print Network [OSTI]

    Reyes, Silvestre; Brock, Peter; Michelsen, Ari

    2006-09-06T23:59:59.000Z

    for future research activities and modeling to improve the forecast of local events which in turn would benefit the public safety in characterizing those local areas prone to specific hazards. 9/15/06 David J. Novlan Meteorologist Climate Focal...

  12. Toolbox Safety Talk Facility Flood Response

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    water, drain waste vent wastes ("sewage"), steam condensate, high ambient humidity, process chilled water, and rain, ground, and surface run-off water. The uncontrolled presence of water can create or Building Coordinator should ascertain the level of damage to building surfaces and materials, and determine

  13. Improved Water Flooding through Injection Brine Modification

    SciTech Connect (OSTI)

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman; (U of Wyoming)

    2003-01-01T23:59:59.000Z

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  14. Injection pressure falloff with flooded zone

    E-Print Network [OSTI]

    Ariadji, Tutuka

    2012-06-07T23:59:59.000Z

    D. 0J Gl IU Z O I t. IA st Ol 182 18 18-2 18 1 188 181 Epuivalerit Time (hr) 182 Fig. 18 ? Radial type curve analysis of Well No. 2 field test data. 29 k (md) IEI ( e-se) Ls (00. ) CR('D C (Cblsp ) CUP ~ 42'77 (4, (k ee. 00... 79 49 3512. . 79932-91 -3. 991 . 9999 Ql t: Z 18~ O 18 18-2 ?J 18 ? 1 188 18 18 Equivalent Time (hr ) Fit;. 9 ? Radial type analysis of Well No. l field test data, 20 184 k ( d& "- 3. 921 II ( d-ft. & = 66. 66 Lf &ft& = te. 61 C fo...

  15. An assessment of derived flood frequency distributions

    E-Print Network [OSTI]

    Raines, Timothy Howard

    2012-06-07T23:59:59.000Z

    )exp(-), t -o)I'(v+1)u ? oS0. 4416tt &. 44I6I (6Q) . j -0. 44l6lexp(-1. 39Q47)3~80 4416)I %. 44161 j 0. 55839) j I ) Q Watershed Response Models A watershed response model allows the peak direct runoff ~ to be calculated for a given excess rainfall... the region of the i~, t plane where the peak discharge is less than or equal to that particular value of QD. In other words, it is the integration area for evaluating the CDF of QD. Ft2 (QD)= I-exp(-o)F(o+1)o o+ J [ f fi T (i, +dtJdi 0 0 ~ tre* + J[ J...

  16. Flood Plain or Floodway Development (Iowa)

    Broader source: Energy.gov [DOE]

    This section describes situations when a permit is needed for the construction, reconstruction, or modification of dams, waste or water treatment facilities, and pipeline crossings, among others.

  17. Management of Specific Flood Plain Areas (Iowa)

    Broader source: Energy.gov [DOE]

    Floodplain management orders by the Iowa Department of Natural Resources as well as approved local ordinances designate an area as a regulated floodplain. These regulations establish minimum...

  18. Clear Creek, Texas Flood Risk Management Project

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ) of 1996 requires four distinct steps for an evaluation of economic benefits and costs for projects for an evaluation of economic benefits and costs for projects were conducted and displayed in the Economic Appendix ­ Economic Evaluation. The non-Federal projects (FEMA buyout and detention on Marys Creek) augments

  19. Los Alamos plants willows for flood recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    near Hatch, New Mexico. Lab scientist from Espaola provides technical assistance to small New Mexico businesses November, 1 2014 - Wind, solar and hydro energy production can...

  20. Group Presentations: 1. Flooding Oct 29, 2010

    E-Print Network [OSTI]

    Boyd, Sylke

    . Smog Nov 15, 2010 5. Acid rain Nov 22, 2010 6. Monsoons Nov 24, 2010 7. El Nino/El Nina Nov 29, 2010 8, 2010 14. Carbon cycle tba 15. Rain Making tba 16. Ocean circulation tba 17. Atmosphere of Venus tba 18

  1. Scale-up of miscible flood processes

    SciTech Connect (OSTI)

    Orr, F.M.

    1991-06-01T23:59:59.000Z

    This report describes recent progress in a research effort to quantify the scaling of interactions of phase behavior of multicomponent mixtures with unstable flow in heterogeneous porous media. Results are presented in three areas: Phase behavior, fluid properties and characterization of crude oils; interactions of phase behavior and flow; viscous fingering and reservoir heterogeneity. In the first area, results of phase behavior experiments are reported for mixtures of CO{sub 2} with crude oil from the Means field. Detailed analyses of phase compositions are also reported for samples taken during the PVT experiments. Also reported are results of an investigation of crude oil compositions and phase compositions by gas chromatography combined with mass spectrometry. In the second area, the first detailed comparison is reported for displacements with and without volume change as components change phase. The solutions described were obtained by the method of characteristics. Also described is a transformation that allows radial flow solutions to be obtained from the linear solutions presented previously. Results of experiments and numerical computations that described the growth of viscous fingers are described in the third area. Results and simulations show clearly that even mild permeability heterogeneity can have a dramatic effect on the form and location of viscous fingers. They also show that the simulations reproduce with good accuracy the transition from flow dominated by viscous forces to flow dominated by the permeability distribution. The agreement between simulation and experiment is good enough that the particle-tracking simulation approach can be used with confidence to explore scaling questions. 54 refs., 126 figs., 23 tabs.

  2. Flood Protection and Dam Safety (Virginia)

    Broader source: Energy.gov [DOE]

    All dams in Virginia are subject to the Dam Safety Act and Dam Safety Regulations unless specifically excluded. A dam is excluded if it: (a) is less than six feet high; (b) has a maximum capacity...

  3. National Flood Insurance Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst Second Power Equipment

  4. Irrigation, Navigation Flood Control and Recreation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for andFuel-Efficient Engines |Iron is the

  5. Suggested Approaches for Probabilistic Flooding Hazard Assessment |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small Business Webinar JuneFOADepartment|EnergySuccessful

  6. Los Alamos plants willows for flood recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las Conchas recoveryNuclearPhysicist honored byplants

  7. Flood Fighting Research Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs Actual DataNext 25 YearsFlatFloatingFighting

  8. gas_flooding | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors | National91 A New Engine forganghGas

  9. Preliminary Flood Plain Characterization Appendix A

    E-Print Network [OSTI]

    Characterization August 2010 Table of Contents 1 Introduction................................................................................................................................2 2.2 Grab Groundwater Sampling..................................................................................................3 2.5 Data Collection for Geochemical Modeling

  10. Detailed evaluation of the West Kiehl alkaline-surfactant-polymer field project and it`s application to mature Minnelusa waterfloods. Technical progress report, January--March 1993

    SciTech Connect (OSTI)

    Pitts, M.J.

    1993-06-01T23:59:59.000Z

    The objective of this report is to (1) quantify the incremental oil produced from the West Kiehl alkaline-surfactant-polymer project by classical engineering and numerical simulation techniques,(2) to quantify the effect of chemical slug volume injection on incremental oil in the two swept areas of the field, (3) to determine the economic ramifications of the application of the alkaline-surfactant-polymer technology, (4) to forecast the results of injecting an alkaline-surfactant-polymer solution to mature waterfloods and polymer floods, and (5) to provide the basis for independent operators to book additional oil, reserves by using the alkaline-surfactant-polymer technology. This report document the initial geological and reservoir engineering data gathering. In addition, some of the initial laboratory results are discussed. Some evaluation of the West Kiehl has been published.

  11. Detailed evaluation of the West Kiehl alkaline-surfactant-polymer field project and its application to mature Minnelusa waterfloods. Annual report for the period January 1993--December 1993

    SciTech Connect (OSTI)

    Pitts, M.J.; Surkalo, H.; Mundorf, W.R.

    1994-11-01T23:59:59.000Z

    The combination of an interfacial tension agent and a mobility control agent has the potential to produce additional oil beyond a waterflood. The West Kiehl alkaline-surfactant-polymer project is the most advanced application of this chemical enhanced oil recovery technique. The West Kiehl alkaline-surfactant-polymer flood was initiated in September 1987 as a secondary application after primary recovery. A preliminary analysis of the West Kiehl alkaline-surfactant-polymer flood indicates that incremental oil of 20% of the original stock tank oil in place will be produced above waterflooding. The cost of the incremental oil will be less than $2.50 per incremental barrel. A statistical analysis of approximately 120 Minnelusa oil fields in the Powder River Basin indicates that the original stock tank oil in place exceeds one billion barrels. If the enhanced oil recovery technology implemented at West Kiehl field could be successfully applied to these fields, the potential incremental oil recovery would approach 200 million barrels. {open_quotes}Detailed Evaluation of the West Kiehl Alkaline-Surfactant-Polymer Field Project and Its Application to Mature Minnelusa Waterfloods{close_quotes} objective is to evaluate both the field performance of the alkaline-surfactant-polymer enhanced oil recovery technology as well as its potential application to other Minnelusa oil fields.

  12. Associative and repulsive interactions in polymer-surfactant systems studied by gel permeation chromatography

    SciTech Connect (OSTI)

    Veggeland, K.

    1995-11-01T23:59:59.000Z

    Polymer-surfactant interactions have been studied by Gel Permeation Chromatography in order to include a dynamic aspect. Associative interactions can be identified and studied with this method. Also quantitative measurements on the amount of surfactant associated with the polymer have been performed. Association between PEO and ethoxylated sulfonates decreases when the number of EO-groups in the surfactant increases. For more than 3 EO-groups the association with PEO disappears. When there are repulsive interactions, like in polymer-surfactant (P{sup {minus}}S{sup {minus}})-systems, the results are difficult to interpret. A (P{sup {minus}}S{sup {minus}})-system is separated in a GPC column due to osmosis and size exclusion. PS-interactions cannot explain the surprising core flood results.

  13. Using a Quasipotential Transformation for Modeling Diffusion Media inPolymer-Electrolyte Fuel Cells

    SciTech Connect (OSTI)

    Weber, Adam Z.; Newman, John

    2008-08-29T23:59:59.000Z

    In this paper, a quasipotential approach along with conformal mapping is used to model the diffusion media of a polymer-electrolyte fuel cell. This method provides a series solution that is grid independent and only requires integration along a single boundary to solve the problem. The approach accounts for nonisothermal phenomena, two-phase flow, correct placement of the electronic potential boundary condition, and multilayer media. The method is applied to a cathode diffusion medium to explore the interplay between water and thermal management and performance, the impact of the rib-to-channel ratio, and the existence of diffusion under the rib and flooding phenomena.

  14. STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    SciTech Connect (OSTI)

    Charles McCormick; Roger Hester

    2004-09-30T23:59:59.000Z

    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increase in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.

  15. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    Charles McCormick; Andrew Lowe

    2007-03-20T23:59:59.000Z

    Recent recommendations made by the Department of Energy, in conjunction with ongoing research at the University of Southern Mississippi, have signified a need for the development of 'smart' multi-functional polymers (SMFPs) for Enhanced Oil Recovery (EOR) processes. Herein we summarize research from the period of September 2003 through March 2007 focusing on both Type I and Type II SMFPs. We have demonstrated the synthesis and behavior of materials that can respond in situ to stimuli (ionic strength, pH, temperature, and shear stress). In particular, Type I SMFPs reversibly form micelles in water and have the potential to be utilized in applications that serve to lower interfacial tension at the oil/water interface, resulting in emulsification of oil. Type II SMFPs, which consist of high molecular weight polymers, have been synthesized and have prospective applications related to the modification of fluid viscosity during the recovery process. Through the utilization of these advanced 'smart' polymers, the ability to recover more of the original oil in place and a larger portion of that by-passed or deemed 'unrecoverable' by conventional chemical flooding should be possible.

  16. Coping with floods: Preparedness, response and recovery of flood-affected residents in

    E-Print Network [OSTI]

    Baer, Christian

    water flow put moveable contents upstairs protect oil tanks install water pump safeguard domestic = very ineffectively performed measure 2002 2005 2006 2010 2011Year: switch off gas/electricity Figure 3

  17. PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring

    SciTech Connect (OSTI)

    Mukul Sharma; Steven Bryant; Chun Huh

    2008-03-31T23:59:59.000Z

    There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents to better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties of HPAM solutions were measured. These include: steady-shear viscosity and viscoelastic behavior as functions of pH; shear rate; polymer concentration; salinity, including divalent ion effects; polymer molecular weight; and degree of hydrolysis. A comprehensive rheological model was developed for HPAM solution rheology in terms of: shear rate; pH; polymer concentration; and salinity, so that the spatial and temporal changes in viscosity during the polymer flow in the reservoir can be accurately modeled. A series of acid coreflood experiments were conducted to understand the geochemical reactions relevant for both the near-wellbore injection profile control and for conformance control applications. These experiments showed that the use hydrochloric acid as a pre-flush is not viable because of the high reaction rate with the rock. The use of citric acid as a pre-flush was found to be quite effective. This weak acid has a slow rate of reaction with the rock and can buffer the pH to below 3.5 for extended periods of time. With the citric acid pre-flush the polymer could be efficiently propagated through the core in a low pH environment i.e. at a low viscosity. The transport of various HPAM solutions was studied in sandstones, in terms of permeability reduction, mobility reduction, adsorption and inaccessible pore volume with different process variables: injection pH, polymer concentration, polymer molecular weight, salinity, degree of hydrolysis, and flow rate. Measurements of polymer effluent profiles and tracer tests show that the polymer retention increases at the lower pH. A new simulation capability to model the deep-penetrating mobility control or conformance control using pH-sensitive polymer was developed. The core flood acid injection experiments were history matched to estimate geochemical reaction rates. Preliminary scale-up simulations employing linear and radial geometry floods in 2-layer reservoir models were conducted. It is clearly shown that the injection rate of pH-sensitive polymer solutions can be significantly increased by injecting it at a pH below 3.5 (at a fixed bottom-hole pressure). This improvement in injectivity by a fa

  18. In situ permeability modification using gelled polymer systems. Topical report, June 10, 1996--April 10, 1997

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.

    1997-10-01T23:59:59.000Z

    Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program is focused on five areas: gel treatment in fractured systems; gel treatment in carbonate rocks; in-depth placement of gels; gel systems for application in carbon dioxide flooding; and gel treatment in production wells. The research program is primarily an experimental program directed at improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the first 10 months of a 28 month program is described in the following sections.

  19. In situ permeability modification using gelled polymer systems. Annual report, April 11, 1997--April 10, 1998

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.; Michnick, M.J.

    1998-09-01T23:59:59.000Z

    Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program focused on five areas: Gel treatment in fractured systems; Gel treatment in carbonate rocks; In-depth placement of gels; Gel systems for application in carbon dioxide flooding; and Gel treatment in production wells. The research program is primarily an experimental program directed toward improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the second 12 month period of a 28 month program is described.

  20. Surfactant-polymer interaction for improved oil recovery. Semi-annual report, September 1, 1996--March 1, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The goal of the proposed research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation, high adsorption and viscous/heterogeneity fingering. The strategy of the proposed research is to use a scaled physical areal model to monitor surfactant-polymer slug movement in well-defined laboratory-scale surfactant-polymer floods. Suitable surfactant and polymer systems will be identified from phase behavior and coreflood experiments. Polymers and surfactant concentrations will be varied and the stability of the surfactant movement will be measured in the scaled physical areal model. Vertical and horizontal injection will be studied. The scaled model, fluids and all rock-fluid properties will be adequately characterized. Mechanistic simulations will be made to capture the mechanisms of fluid flow. This simulation will be used for process scale-up and optimization. The proposed research will supply experimental data and mechanistic principles for optimum surfactant-polymer slug design.

  1. Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas

    SciTech Connect (OSTI)

    James Spillane

    2005-10-01T23:59:59.000Z

    The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

  2. FOR STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    SciTech Connect (OSTI)

    Charles McCormick; Roger Hester

    2002-04-29T23:59:59.000Z

    To date, our synthetic research efforts have been focused on the development of stimuli-responsive water-soluble polymers designed for use in enhanced oil recovery (EOR) applications. These model systems are structurally tailored for potential application as viscosifiers and/or mobility control agents for secondary and tertiary EOR methods. The following report discloses the progress of our ongoing research of polyzwitterions, polymers derived from monomers bearing both positive and negative charges, that show the ability to sustain or increase their hydrodynamic volume (and thus, solution viscosity) in the presence of electrolytes. Such polymers appear to be well-suited for use under conditions similar to those encountered in EOR operations. Additionally, we disclose the synthesis and characterization of a well-defined set of polyacrylamide (PAM) homopolymers that vary by MW. The MW of the PAM samples is controlled by addition of sodium formate to the polymerization medium as a conventional chain transfer agent. Data derived from polymer characterization is used to determine the kinetic parameter C{sub CT}, the chain transfer constant to sodium formate under the given polymerization conditions. The PAM homopolymer series will be employed in future set of experiments designed to test a simplified intrinsic viscosity equation. The flow resistance of a polymer solution through a porous medium is controlled by the polymer's hydrodynamic volume, which is strongly related to it's intrinsic viscosity. However, the hydrodynamic volume of a polymer molecule in an aqueous solution varies with fluid temperature, solvent composition, and polymer structure. This report on the theory of polymer solubility accentuates the importance of developing polymer solutions that increase in intrinsic viscosity when fluid temperatures are elevated above room conditions. The intrinsic viscosity response to temperature and molecular weight variations of three polymer solutions verified the modeling capability of a simplified intrinsic viscosity equation. These results imply that the simplified intrinsic viscosity equation is adequate in modeling polymer coil size response to solvent composition, temperature and polymer molecular weight. The equation can be used to direct efforts to produce superior polymers for mobility control during flooding of reservoirs at elevated temperatures.

  3. E-Print Network 3.0 - arbitrary l-state solutions Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State Vi, exists by observation (02). The wave speeds are compatible... .) In a polymer flood, water thickened with polymer is injected into the reservoir. A polymer is a ......

  4. Climate Change and Flood Operations in the Sacramento Basin, California

    E-Print Network [OSTI]

    Willis, Ann D.; Lund, Jay R.; Townsley, Edwin S.; Faber, Beth A.

    2011-01-01T23:59:59.000Z

    coast streamflow. Journal of Climate 5(12):1468–1483. [DWR]Washington, D.C. : Climate Change Science Program anddrier: The West’s changed climate. Denver ( CO): The Rocky

  5. Groundwater, Legacy Soil Cleanup and Flood Recovery Top Lab's...

    Broader source: Energy.gov (indexed) [DOE]

    and bioremediation. Chromium in the regional aquifer originated from its use as a corrosion inhibitor at the laboratory's main power plant between 1956 and 1972. The...

  6. Matrix Acidizing Core Flooding Apparatus: Equipment and Procedure Description

    E-Print Network [OSTI]

    Grabski, Elizabeth 1985-

    2012-12-10T23:59:59.000Z

    of the apparatus is the ability to apply 3000psi back pressure. This is the pressure necessary to keep CO 2, a product of the CaCO3 and HCl reaction, in solution at elevated temperatures. To perform experiments at temperature, the core holder is wrapped...

  7. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect (OSTI)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2004-11-01T23:59:59.000Z

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  8. Implementing A Novel Cyclic CO2 Flood In Paleozoic Reefs

    SciTech Connect (OSTI)

    James R. Wood; W. Quinlan; A. Wylie

    2005-03-31T23:59:59.000Z

    Recycled CO{sub 2} is being used in this demonstration project to produce bypassed oil from the Silurian Dover 35 Niagaran pinnacle reef located in Otsego County, Michigan. CO{sub 2} injection in the Dover 35 field into the Salling-Hansen 4-35A well began on May 6, 2004. A second injection well, the Salling-Hansen 1-35, commenced injection in August 2004. Oil production in the Pomerzynski 5-35 producing well increased from 9 BOPD prior to operations to an average of 165 BOPD in December, 2004 and is presently producing 52 BOPD. The Salling-Hansen 4-35A also produced during this reporting period an average of 21 BOPD. These increases have occurred as a result of CO{sub 2} injection and the production rate appears to be stabilizing. CO{sub 2} injection volume has reached approximately 1.6 BCF. The CO{sub 2} injection phase of this project has been fully operational since December 2004 and most downhole mechanical issues have been solved and surface facility modifications have been completed. It is anticipated that filling operations will run for another 6-12 months from July 1, 2005. In most other aspects, the demonstration is going well and hydrocarbon production has been successfully increased to a stable rate of 73 BOPD. Our industry partners continue to experiment with injection rates and pressures, various downhole and surface facility mechanical configurations, and the huff-n-puff technique to develop best practices for these types of enhanced recovery projects. Subsurface characterization is being completed using well log tomography and 3D visualizations to map facies distributions and reservoir properties in the Belle River Mills, Chester 18, Dover 35, and Dover 36 Fields. The Belle River Mills and Chester 18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitude slicing of the log porosity, normalized gamma ray, core permeability, and core porosity curves is showing trends that indicate significant heterogeneity and compartmentalization in these reservoirs associated with the original depositional fabric and pore types of the carbonate reservoir rocks. Accumulated pressure data supports the hypothesis of extreme heterogeneity in the Dover 35. Some intervals now have pressure readings over 2345 psig (April 29, 2005) in the A-1 Carbonate while nearby Niagaran Brown intervals only show 1030 psig (March 7, 2005). This is a pressure differential over 1300 psig and suggests significant vertical barriers in the reef, consistent with the GR tomography modeling Digital and hard copy data continue to be compiled for the Niagaran reefs in the Michigan Basin. Technology transfer took place through technical presentations regarding visualization of the reservoir heterogeneity in these Niagaran reefs. Oral presentations were given at two Petroleum Technology Transfer Council workshops, a Michigan Oil and Gas Association Conference, a Michigan Basin Geological Society meeting, and the Eastern American Association of Petroleum Geologist's Annual meeting. In addition, we met with our industry partners several times during the first half of 2005 to communicate and discuss the reservoir characterization and field site aspects of the demonstration project. A technical paper was published in the April 2005 issue of the AAPG Bulletin on the characterization of the Belle River Mills Field.

  9. Analysis of density effect in probabilistic flooding in MANETs

    E-Print Network [OSTI]

    Bani Yassein, M.

    Bani Yassein,M. Ould-Khaoua,M. Papanastasiou,S. Al- Ayyoub,A. Proc. Int. Arab Conference on Information Technology (ACITâ??04), Mentouri University of Constantine, Algeria, December 12th-15th, 2004, to appear

  10. Geo-webservices for animated mapping of flood Barend Kobben

    E-Print Network [OSTI]

    Köbben, Barend

    than the sum of all other external risk sources (e.g., nuclear power plants, airports, explosions etc realistic looking virtual worlds or virtual globes.

  11. IMPROVING URBAN FLOOD MANAGEMENT WITH AUTONOMOUS MINI-UAVS

    E-Print Network [OSTI]

    Giger, Christine

    . Markus FlĂĽckiger and Anton Miescher from Holinger AG were our hosts for the Lucerne case study, and Miriam Asanger from the city of Lucerne facilitated the flights on location. Reiner Gitzel from

  12. Meal Preparation and Food Safety During and After a Flood

    E-Print Network [OSTI]

    temperature water. Air dry before opening. Or you can sanitize dishes, glassware, metal pans and utensils. s Hand can opener. s Battery-powered radio. s Extra batteries. s Camp stove or other emergency cooking

  13. Concepts pertaining to reservoir pretreatment for chemical flooding

    SciTech Connect (OSTI)

    Meyers, K.O.; Salter, S.J.

    1984-04-01T23:59:59.000Z

    In this paper, a model is proposed which details how preflush chemicals in the aqueous phase are transported through an oil-containing porous media. The example preflush process chosen is monovalent/divalent, cation-exchange. Initially, the chemistry of ion exchange is summarized. This is followed by a careful system of core characterization designed to determine as many of the ion-exchange characteristics of the chosen porous media as possible, independent from specific preflush experiments. A series of preflush experiments, run with zero and waterflood residual oil saturations are then described. Finally, a mathematical model is proposed to describe the preflush process. This model is solved numerically and compared with the experimental results. The model is shown to be successful in both a matching and predicting mode over a wide variety of conditions. This success verifies many of the ion-exchange and flow concepts used in formulating the model.

  14. California climate change, hydrologic response, and flood forecasting

    E-Print Network [OSTI]

    Miller, Norman L.

    2003-01-01T23:59:59.000Z

    U.S. Geological Survey, Water Res. Investigations Rep. 95-United States. J. Amer. Water Resources Assoc, 35, 1525-hydrology. J. American Water Resources Association, 39, 771-

  15. Climate Change and Flood Operations in the Sacramento Basin, California

    E-Print Network [OSTI]

    Willis, Ann D.; Lund, Jay R.; Townsley, Edwin S.; Faber, Beth A.

    2011-01-01T23:59:59.000Z

    Yuba River, California: water control manual. Sacramento (River, California: water control manual. Sacramento (CA):Nov 9. [DWR] Department of Water Resources. 1969. California

  16. IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS

    SciTech Connect (OSTI)

    James R. Wood; W. Quinlan; A. Wylie

    2004-07-01T23:59:59.000Z

    Recycled CO2 will be used in this demonstration project to produce bypassed oil from the Silurian Dover 35 pinnacle reef (Otsego County) in the Michigan Basin. We began injecting CO2 in the Dover 35 field into the Salling-Hansen 4-35A well on May 6, 2004. Subsurface characterization is being completed using well log tomography animations and 3D visualizations to map facies distributions and reservoir properties in three reefs, the Belle River Mills, Chester 18, and Dover 35 Fields. The Belle River Mills and Chester 18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitude slicing of the log porosity, normalized gamma ray, core permeability, and core porosity curves is showing trends that indicate significant heterogeneity and compartmentalization in these reservoirs associated with the original depositional fabric of the rocks. Digital and hard copy data continues to be compiled for the Niagaran reefs in the Michigan Basin. Technology transfer took place through technical presentations regarding visualization of the heterogeneity of the Niagaran reefs. Oral presentations were given at the Petroleum Technology Transfer Council workshop, Michigan Oil and Gas Association Conference, and Michigan Basin Geological Society meeting. A technical paper was submitted to the Bulletin of the American Association of Petroleum Geologists on the characterization of the Belle River Mills Field.

  17. IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS

    SciTech Connect (OSTI)

    James R. Wood; W. Quinlan; A. Wylie

    2004-01-01T23:59:59.000Z

    Recycled CO2 will be used in this demonstration project to produce bypassed oil from the Silurian Dover 35 pinnacle reef (Otsego County) in the Michigan Basin. Contract negotiations by our industry partner to gain access to the CO2 supply have been completed and the State of Michigan has issued an order to allow operation of the project. Injection of CO2 is scheduled to begin in February, 2004. Subsurface characterization is being completed using well log tomography animations and 3D visualizations to map facies distributions and reservoir properties in two reefs, the Belle River Mills and Chester 18 Fields. The Belle River Mills and Chester18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitude slicing of the normalized gamma ray and core permeability and core porosity curves is showing trends that indicate significant heterogeneity and compartmentalization in these reservoirs associated with the original depositional fabric of the rocks. Digital and hard copy data continues to be compiled for the Niagaran reefs in the Michigan Basin. Technology transfer took place through technical presentations regarding visualization of the heterogeneity of the Niagaran reefs. An oral presentation was given at the AAPG Eastern Section Meeting and a booth at the same meeting was used to meet one-on-one with operators.

  18. IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS

    SciTech Connect (OSTI)

    James R. Wood; W. quinlan; A. Wylie

    2006-06-01T23:59:59.000Z

    Recycled CO2 is being used in this demonstration project to produce bypassed oil from the Silurian Dover 35 Niagaran pinnacle reef located in Otsego County, Michigan. CO2 injection in the Dover 35 field into the Salling-Hansen 4-35A well began on May 6, 2004. A second injection well, the Salling-Hansen 1-35, commenced injection in August 2004. Oil production in the Pomerzynski 5-35 producing well increased from 9 BOPD prior to operations to an average of 165 BOPD in December, 2004 and has produced at an average rate of 61 BOPD (Jan-Dec, 2005). The Salling-Hansen 4-35A also produced during this reporting period an average of 29 BOPD. These increases have occurred as a result of CO2 injection and the production rate appears to be stabilizing. CO2 injection volume has reached approximately 2.18 BCF. The CO2 injection phase of this project has been fully operational since December 2004 and most downhole mechanical issues have been solved and surface facility modifications have been completed. It is anticipated that filling operations will run for another 6-12 months from July 1, 2005. In most other aspects, the demonstration is going well and hydrocarbon production has been stabilized at an average rate of 57 BOPD (July-Dec, 2005). Our industry partners continue to experiment with injection rates and pressures, various downhole and surface facility mechanical configurations, and the huff-n-puff technique to develop best practices for these types of enhanced recovery projects. Subsurface characterization was completed using well log tomography and 3D visualizations to map facies distributions and reservoir properties in the Belle River Mills, Chester 18, Dover 35, and Dover 36 Fields. The Belle River Mills and Chester 18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitude slicing of the log porosity, normalized gamma ray, core permeability, and core porosity curves are showing trends that indicate significant heterogeneity and compartmentalization in these reservoirs associated with the original depositional fabric and pore types of the carbonate reservoir rocks. Accumulated pressure data supports the hypothesis of extreme heterogeneity in the Dover 35. Some intervals now have pressure readings over 2345 psig (April 29, 2005) in the A-1 Carbonate while nearby Niagaran Brown intervals only show 1030 psig (March 7, 2005). This is a pressure differential over 1300 psig and suggests significant vertical barriers in the reef, consistent with the GR tomography modeling. Digital and hard copy data have been compiled for the Niagaran reefs in the Michigan Basin, including a detailed summary of 20 fields in the vicinity of the demonstration well. Technology transfer took place through technical presentations regarding visualization of the reservoir heterogeneity in these Niagaran reefs. Oral presentations were given at two Petroleum Technology Transfer Council workshops, a Michigan Oil and Gas Association Conference, a Michigan Basin Geological Society meeting, and the Eastern American Association of Petroleum Geologist's Annual meeting. In addition, we met with our industry partners several times during the first half of 2005 to communicate and discuss the reservoir characterization and field site aspects of the demonstration project. A technical paper was published in the April 2005 issue of the AAPG Bulletin on the characterization of the Belle River Mills Field.

  19. PROJECTIONS OF POTENTIAL FLOOD REGIME CHANGES IN CALIFORNIA

    E-Print Network [OSTI]

    to benefit California's electricity and natural gas ratepayers. The PIER Program strives to conduct the most on the following RD&D program areas: · Buildings End-Use Energy Efficiency · Energy-Related Environmental Research · Energy Systems Integration · Environmentally Preferred Advanced Generation · Industrial

  20. IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS

    SciTech Connect (OSTI)

    James R. Wood; W. Quinlan; A. Wylie

    2003-07-01T23:59:59.000Z

    Recycled CO2 will be used in this demonstration project to produce bypassed oil from the Silurian Charlton 6 pinnacle reef (Otsego County) in the Michigan Basin. Contract negotiations by our industry partner to gain access to this CO2 that would otherwise be vented to the atmosphere are near completion. A new method of subsurface characterization, log curve amplitude slicing, is being used to map facies distributions and reservoir properties in two reefs, the Belle River Mills and Chester 18 Fields. The Belle River Mills and Chester18 fields are being used as typefields because they have excellent log-curve and core data coverage. Amplitude slicing of the normalized gamma ray curves is showing trends that may indicate significant heterogeneity and compartmentalization in these reservoirs. Digital and hard copy data continues to be compiled for the Niagaran reefs in the Michigan Basin. Technology transfer took place through technical presentations regarding the log curve amplitude slicing technique and a booth at the Midwest PTTC meeting.

  1. Theoretical study of water blocking in miscible flooding

    SciTech Connect (OSTI)

    Muller, T. (BEB Erdgas and Erdol GmbH (DE)); Lake, L.W. (Texas Univ., Austin, TX (United States))

    1991-11-01T23:59:59.000Z

    Miscible displacement processes can leave a substantial amount of residual oil behind the displacement front. This phenomenon has two general causes: instabilities caused by local heterogeneities or viscous fingering and water blocking. This paper describes a study of the latter. Numerous laboratory experiments have shown that significant blocking of oil from the solvent by mobile water can occur in water-wet media and at large water saturations. Despite this, water-blocking studies have been limited to either simple correction functions in numerical simulations or microscopic models. To the best of the authors' knowledge, no explicit theoretical model considers the macroscopic bypassing and subsequent interaction of the solvent stream with a trapped hydrocarbon phase. In this study, CO{sub 2} is the miscible solvent. A numerical model calculates the mass flux between flowing and stagnant regions separated by a water film. The model considers solvent diffusion and diffusional extraction of oil accompanied by swelling or shrinking of the stagnant hydrocarbon phase.

  2. IEEE Communications Magazine October 200242 Defending against Flooding-Based

    E-Print Network [OSTI]

    Chang, Rocky Kow-Chuen

    , a large number of compromised hosts are amassed to send useless packets to jam a victim, or its Internet side, cur- rent technologies are still unable to withstand large-scale attacks. The main purpose in that a sufficient number of compromised hosts is amassed to send useless packets toward a victim around the same

  3. Groundwater, Legacy Soil Cleanup and Flood Recovery Top Lab's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Source Heat Pump Subprogram

  4. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 Frontera STAT. 1867

  5. New Executive Order Establishes a Federal Flood Risk Management Standard |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’sCut Businesses' Energy Bills

  6. LANL closes road, trails for safety reasons; flooding and erosion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory...

  7. A Framework to Design and Optimize Chemical Flooding Processes

    SciTech Connect (OSTI)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2006-08-31T23:59:59.000Z

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  8. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect (OSTI)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2005-07-01T23:59:59.000Z

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  9. LANL completes high-priority flood and erosion control work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs & GraduatesReducing SelectLANLworkLab

  10. Federal Flood Risk Management Standard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &ofDepartment of EnergyEnergy Management ProgramThe

  11. 05679_ChemFlood | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars and

  12. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley Responsible DOE Office: Office-85(1).pdf094May, 2013NE

  13. FEMA - National Flood Insurance Program Elevation Certificate and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,Law

  14. Flood Disaster Protection Act of 1973 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs Actual DataNext 25 YearsFlatFloating

  15. Caring for Important Papers after a Flood (Spanish)

    E-Print Network [OSTI]

    FCS Project Team - FDRM UNIT

    2007-09-30T23:59:59.000Z

    sustancias contenidas en el agua de inundaciones. Producido por AgriLife Communications, El Sistema Texas A&M Las publicaciones de Texas AgriLife Extension se pueden encontrar en Internet en: http://AgriLifebookstore.org Los programas educativos de Texas...

  16. ERDCTR-13-11 Flood and Coastal Systems

    E-Print Network [OSTI]

    US Army Corps of Engineers

    and Real Vegetation EngineerResearchandDevelopment Center Mary E. Anderson, Jane McKee Smith, Duncan B through Artificial and Real Vegetation Mary E. Anderson, Jane McKee Smith, and Duncan B. Bryant Coastal

  17. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses with the exception of the xanthan gum-chromium acetate gels. Aluminum-polyacrylamide flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9, either in linear corefloods or in dual separate radial core, common manifold corefloods. Chromium acetate-polyacrylamide flowing and rigid tonguing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid tonguing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Chromium acetate gels were stable to injection of alkaline-surfactant-polymer solutions at 72 F, 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection at 72, 125, and 175 F. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid tonguing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid tonguing gel producing the greatest amount. Higher oil recovery could have been due to higher differentia

  18. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses with the exception of the xanthan gum-chromium acetate gels. Aluminum-polyacrylamide flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9, either in linear corefloods or in dual separate radial core, common manifold corefloods. Chromium acetate-polyacrylamide flowing and rigid tonguing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid tonguing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Chromium acetate gels were stable to injection of alkaline-surfactant-polymer solutions at 72 F, 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetatexanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection at 72, 125, and 175 F. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid tonguing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid tonguing gel producing the greatest amount. Higher oil recovery could have been due to higher differential

  19. Enhanced oil recovery in Rumania

    SciTech Connect (OSTI)

    Carcoana, A.N.

    1982-01-01T23:59:59.000Z

    The paper describes the application of the fire-floods to a broad range of Romanian oil reservoirs and crude properties and reviews the field tests of polymer flooding, surfactant flooding and alkaline flooding. A commercial scale project with cyclic steam injection is presented and also the use of the domestic CO/sub 2/ sources to enhanced oil recovery. The results and the difficulties encountered are briefly discussed and also the potential of EOR methods in Romania are presented. 17 refs.

  20. ORIGINAL PAPER Synthesis and solution properties of novel comb-shaped

    E-Print Network [OSTI]

    -efficiency polymer flooding agent for the enhanced oil recovery. Comb-shaped polyacrylamide is a kind of polymer in polymer flooding, and its application in oil fields has become an important technology for enhanced oil enhancement in the heat- and salt-resistant properties. In addition, the increase of the side-chain length

  1. Surface Wettability Impact on Water Management in PEM Fuel Cell.

    E-Print Network [OSTI]

    Al Shakhshir, Saher

    2012-01-01T23:59:59.000Z

    ??Excessive water formation inside the polymer electrolyte membrane (PEM) fuel cell’s structures leads to the flooding of the cathode gas diffusion layer (GDL) and cathode… (more)

  2. Dielectric Actuation of Polymers

    E-Print Network [OSTI]

    Niu, Xiaofan

    2013-01-01T23:59:59.000Z

    S. Stanford, Interpenetrating polymer networks for high-based on interpenetrating polymer networks, Proceeding ofX. Niu, Q. Pei, Interpenetrating polymer networks based on

  3. TYPES OF FLOODING IN AUSTRALIA Floods are part of the natural water cycle or a "Hydrologic Cycle". In this natural cycle, the energy of the sun causes

    E-Print Network [OSTI]

    Greenslade, Diana

    to carry the water that has entered the river network, and the banks overflow. The area that gets inundated an emergency kit containing: o a first aid kit o a torch and portable radio with spare batteries o candles records, including wills, birth/marriage certificates, banking, financial records, etc · keep a list

  4. Hurricane Surge Flooding Damage Assessment and Web-Based Game Development to Support K12 Education for Understanding Climate Change Impact on Hurricane Surge Flooding Damage

    E-Print Network [OSTI]

    Hsu, Chih-Hung

    2014-08-10T23:59:59.000Z

    to extend my gratitude to the National Sea Grant of the U.S. Department of Commerce’s National Oceanic and Atmospheric Administration, for funding this research (Grant No. NA 10OAR4170099). Special thanks to Dr. Irish in Virginia Tech University, her... .................................................................. 26 Figure 3-10 Shift of Central Pressure Deficit ................................................................... 32 Figure 3-11 Global Sea Level Rise Projection (Table5.5 in National Research Council (2012) p.93...

  5. Changes in Flood Management along the Pajaro River: A Transition to Watershed Management Approaches and Lessons from the Water Framework Directive and Flood Directive

    E-Print Network [OSTI]

    Jagger, Stacie

    2009-01-01T23:59:59.000Z

    human actions causing environmental damage and the full-costand include the environmental damage and recovery costs (

  6. Anion exchange polymer electrolytes

    DOE Patents [OSTI]

    Kim, Yu Seung; Kim, Dae Sik

    2013-09-10T23:59:59.000Z

    Solid anion exchange polymer electrolytes include chemical compounds comprising a polymer backbone with side chains that include guanidinium cations.

  7. Antimocrobial Polymer

    DOE Patents [OSTI]

    McDonald, William F. (Utica, OH); Huang, Zhi-Heng (Walnut Creek, CA); Wright, Stacy C. (Columbus, GA)

    2005-09-06T23:59:59.000Z

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  8. Antimicrobial Polymer

    DOE Patents [OSTI]

    McDonald, William F. (Utica, OH); Wright, Stacy C. (Flint, MI); Taylor, Andrew C. (Ann Arbor, MI)

    2004-09-28T23:59:59.000Z

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  9. PREDICTIVE MODELS. Enhanced Oil Recovery Model

    SciTech Connect (OSTI)

    Ray, R.M. [DOE Bartlesville Energy Technology Center, Bartlesville, OK (United States)

    1992-02-26T23:59:59.000Z

    PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding; 2 carbon dioxide miscible flooding; 3 in-situ combustion; 4 polymer flooding; and 5 steamflood. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes. The IBM PC/AT version includes a plotting capability to produces a graphic picture of the predictive model results.

  10. PREDICTIVE MODELS

    SciTech Connect (OSTI)

    Ray, R.M. (DOE Bartlesville Energy Technology Center, Bartlesville, OK (United States))

    1988-10-01T23:59:59.000Z

    PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1) chemical flooding; 2) carbon dioxide miscible flooding; 3) in-situ combustion; 4) polymer flooding; and 5) steamflood. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes. The IBM PC/AT version includes a plotting capability to produces a graphic picture of the predictive model results.

  11. A Nonisothermal, Two-Phase Model for Polymer Electrolyte Yun Wang* and Chao-Yang Wang**,z

    E-Print Network [OSTI]

    heating arising from protonic/electronic resistance, and latent heat of water condensation and/or evaporation. A theoretical analysis is presented to show that in the two-phase zone, water transport via vapor water removal from the gas diffusion layer GDL under the channel and exacerbates GDL flooding under

  12. Conductive Polymers

    SciTech Connect (OSTI)

    Bohnert, G.W.

    2002-11-22T23:59:59.000Z

    Electroluminescent devices such as light-emitting diodes (LED) and high-energy density batteries. These new polymers offer cost savings, weight reduction, ease of processing, and inherent rugged design compared to conventional semiconductor materials. The photovoltaic industry has grown more than 30% during the past three years. Lightweight, flexible solar modules are being used by the U.S. Army and Marine Corps for field power units. LEDs historically used for indicator lights are now being investigated for general lighting to replace fluorescent and incandescent lights. These so-called solid-state lights are becoming more prevalent across the country since they produce efficient lighting with little heat generation. Conductive polymers are being sought for battery development as well. Considerable weight savings over conventional cathode materials used in secondary storage batteries make portable devices easier to carry and electric cars more efficient and nimble. Secondary battery sales represent an $8 billion industry annually. The purpose of the project was to synthesize and characterize conductive polymers. TRACE Photonics Inc. has researched critical issues which affect conductivity. Much of their work has focused on production of substituted poly(phenylenevinylene) compounds. These compounds exhibit greater solubility over the parent polyphenylenevinylene, making them easier to process. Alkoxy substituted groups evaluated during this study included: methoxy, propoxy, and heptyloxy. Synthesis routes for production of alkoxy-substituted poly phenylenevinylene were developed. Considerable emphasis was placed on final product yield and purity.

  13. Surface water interaction with the flood plain in the lower Virgin River, Clark County, Nevada.

    E-Print Network [OSTI]

    Pompeo, Jeffrie L.

    2008-01-01T23:59:59.000Z

    ??Development of existing surface water rights on the Virgin River would decrease Southern Nevada's dependency on the Colorado River. Three monitoring sites were established to… (more)

  14. 1. MOTIVATION AND OVERVIEW Each year across the United States, floods,

    E-Print Network [OSTI]

    Xue, Ming

    winds, lightning, and winter storms ­ so-called mesoscale weather events -- cause hundreds of deaths and Carbone 2002). Although mitigating the impacts of such events would yield enormous economic and societal that cannot accommodate the real time, on-demand, and dynamically-adaptive needs of mesoscale weather research

  15. Urbanizing Watersheds and Changing River Flood Dynamics: Implications for Urban Wetland Restoration

    E-Print Network [OSTI]

    Simmons, M.

    2003-01-01T23:59:59.000Z

    Urbanization alters river hydrology, morphology, water quality, and habitat and ecology. Most of these associated changes are due to an increase in impervious surface cover (ISC) throughout the watershed. But the spatial location of urban areas...

  16. A real-time hydrological model for flood prediction using GIS and the WWW

    E-Print Network [OSTI]

    Blackburn, Alan

    water distribution. The development of such a system would be particularly important outside of urban and spatial real-time, emergency decision support. Rather than discuss develop- ments in the modelling Computers, Environment and Urban Systems 27 (2003) 9­32 www.elsevier.com/locate/compenvurbsys 0198

  17. Manual on Conditional Reliability, Daily Time Step, Flood Control, and Salinity Features of WRAP (Draft)

    E-Print Network [OSTI]

    Wurbs, Ralph

    files describing the hydrology and the water management facilities and practices for the river basin or region of concern along with other related information. The programs are connected through input/output files. Certain programs create files... ......................................................................................................... 245 LIST OF FIGURES 2.1 System Schematic for the Example ................................................................................. 22 3.1 Stream Flow Hydrograph and Water Management Targets...

  18. Northern lowlands of Mars: Evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period

    E-Print Network [OSTI]

    Head III, James William

    -surface residual ice deposits remaining f and some circumpolar deposits partially obscure it, supporting the interpretation that some circumpolar deposit thicknesses exceed several hundred meters and that wrinkle-ridge formation was not active

  19. An investigation of the effects of wettability on oil recovery after water flooding

    E-Print Network [OSTI]

    Boykin, Robert Stith

    1954-01-01T23:59:59.000Z

    i Theeie Lpyr as te stg1o ask eoateat hgs 7, L1BRARY A A B COLLEGE OF TEXAS AB IB|tESTIGATION OF TBE EFFECTS QF WETTABILITY OK OIL RECO|tERT AFTER WATER FMOIDIBG Robert, S, BojFldn Suhaittsl to the GracTnate School cd. ' the Agrioultaral a...CRncwlelgaenteo b'av eee ~ a ~ 0 ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ e ~ aee ~ ee ~ e ~ e ReferenCeet ~ ~ ~ ~ ~ e ~ ~ ~ a ~ 0 ~ ~ eao ~ ~ tee ~ ~ e44 ~ 4 ~ 4 ~ ~ 0 ~ 04 ~ 1. Schsaatio Diagram of Theoretical Oil Retention?~ ?, . ??4, 2. Schematic Diagram of Theoretical Oil...

  20. Optimization of a CO2 flood design Wesson Field - west Texas

    E-Print Network [OSTI]

    Garcia Quijada, Marylena

    2006-10-30T23:59:59.000Z

    The Denver Unit of Wasson Field, located in Gaines and Yoakum Counties in west Texas, produces oil from the San Andres dolomite at a depth of 5,000 ft. Wasson Field is part of the Permian Basin and is one of the largest petroleum-producing basins...

  1. Mechanisms of gas migration in flooding post-mining context nils Le gAL,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    coal. in parallel, several models are in development using the HYTec code to describe mine methane, for example methane from coal beds (e.g. doyle 2001; Scott 2002; Besnard 2004). According to Scott (2002 to study gas transfer and to characterize the influence of hydrostatic pressure on methane release from

  2. MODELLING A COASTAL LAKE FOR FLOOD AND QUALITY E. Giusti, S. Marsili-Libelli*, A. Gualchieri

    E-Print Network [OSTI]

    water shortage due to climate changes and by land subsidence. To cope with these adversities a project, when the water level falls below the sea level. This, in addition to representing a water shortage/quality model of the lake and its tributaries to be integrated in a Decision Support System to manage the water

  3. Updated flood frequencies and a canal breach on the upper Klamath River

    E-Print Network [OSTI]

    Fahey, Dan

    2006-01-01T23:59:59.000Z

    2004. “Klamath Hydroelectric Project (FERC Project No.Agencies at the Klamath Hydroelectric Project, FERC Project2005) Figure 2. The Klamath Hydroelectric Project Source:

  4. Flood control of the Demer by using Model Predictive Control Maarten Breckpot a,n

    E-Print Network [OSTI]

    , the local government has installed water reservoirs to store the excess of water during periods of heavy rainfall. Also hydraulic structures were built to control the discharges in the river and the water going rivers during different operating conditions. By minimising the deviations of water levels from

  5. Hydraulic Calculations Relating to the Flooding and Draining of the Roman Colosseum for Naumachiae 

    E-Print Network [OSTI]

    Crapper, Martin

    This report includes full details of the calculations used in determining flows into and out of the Colosseum. It should be read in conjunction with the published paper in the Proceedings of ICE Civil Engineering 160 ...

  6. Flood forecasting with the A&M watershed model: a hydrometeorological study

    E-Print Network [OSTI]

    Robinson, Cedric Glynn

    1990-01-01T23:59:59.000Z

    'c 219R'? 67. 6R ' "' 66. 5R'w 204Rc o 205R' " ) 3PPR~? 450R' '" j 184R' '" 278R"'" 240R'""' 176R'" 15 I R "' 179R'" 227n'o 17 8R "c 150R"" 137R' "" 330R'? 298R''" ) 520Rwo 730Rcn ) 255R' " 426R' 'c Sal'man (1957) Shupiatskii (1957... procedure. The rain gage locations reporting valid data within or near the watershed boundary are identified. The rainfall measured by each gage is compared to the amount measured by the radar at the gage location. If the measured rainfall exceeds a...

  7. Review of miscible flood performance, intisar ''D'' field, socialist people's Libyan Arab Jamahiriya

    SciTech Connect (OSTI)

    Des Brisay, C.L.; Elghussein, B.F.; Holst, P.H.; Misellati, A.

    1982-08-01T23:59:59.000Z

    One of the largest miscible gas injection projects in the world is in its 12th year in the Intisar ''D'' field in the Socialist People's Libyan Arab Jamahiriya. As of March 31, 1981, cumulative oil production totaled 890 MMbbl (141.4 X 10/sup 6/ m/sup 3/) of oil, or 56% recovery of the estimated stock-tank original oil in place (OOIP). This past performance and recent simulation studies indicate a final recovery efficiency on the order of 70%.

  8. NGO coordination in humanitarian action : the case of Czech floods of August 2002

    E-Print Network [OSTI]

    Kumar, Pankaj, 1979-

    2005-01-01T23:59:59.000Z

    In responding to disasters and emergencies, it is generally expected that there is effective coordination and exchange of information among those affected by or involved in the disaster response at the national and ...

  9. Novel hopanoid cyclases from the environment Ann Pearson,* Sarah R. Flood Page,

    E-Print Network [OSTI]

    Fischer, Woodward

    in modern biota, in recent sediments and in low-maturity sedimentary rocks. Because these lipids primarily of the information about sources of hopanoids has come from surveys of culture collections, an approach that does databases. The data imply that the sources of these important geologic biomarkers remain largely unknown

  10. Subcooling Effects for Flooding Experiments with Steam and Water in a Large Diameter Vertical Tube

    E-Print Network [OSTI]

    Cullum, Wes

    2012-10-19T23:59:59.000Z

    of these experiments can be disregarded as they do not pertain to the direct concentration of this experiment. However, some important past work in uential to this endeavor will be examined to provide the essential framework. This previous work does not nec... and Lobo plotted with the Wallis correlation [5]. Kg = g 1 2 jg [g ( f g)] 1 4 (2.4) Kf = f 1 2 jf [g ( f g)] 1 4 (2.5) 8 Pushinka and Sorokin observed that for the large diameter tubes used in the experiment, the tube diameter does...

  11. Nutrient dynamics in marsh sediments contaminated by an oil spill following a flood

    E-Print Network [OSTI]

    Harris, Benjamin Cord

    1997-01-01T23:59:59.000Z

    the event. Nutrients monitored include ammonium (plus ammonia), nitrate (plus nitrite), available phosphorus, total Kjeldahl nitrogen and total Kjeldahl phosphorus. Available nutrient concentrations were initially high and then declined to presumed...

  12. The Flooding Time Synchronization Protocol Mikls Marti Branislav Kusy Gyula Simon kos Ldeczi

    E-Print Network [OSTI]

    MarĂłti, MiklĂłs

    networks monitor the structural health of the Golden Gate Bridge in San Francisco and the microclimates

  13. On the performance of probabilistic flooding in mobile ad hoc networks

    E-Print Network [OSTI]

    Bani Yassein, M.

    Bani Yassein,M. Ould-Khaoua,M. Papanastasiou,S. Proc. 1st Int. Workshop on Performance Modelling in Wired, Wireless, Mobile Networking and Computing (PMW2MNC' 05), held in conjunction with ICPADS'2005, Fukuoka, Japan, 20 - 22 July 2005, IEEE Computer Society Press

  14. Using Outside Air for Flooded Oil Screw Compressors at an Industrial Facility

    E-Print Network [OSTI]

    Hunt, D. G.; Terry, S.

    2014-01-01T23:59:59.000Z

    A study has been performed to determine if inlet air temperature provides an increase in compressor efficiency, seen through reduced power for some specified mass flow. A theoretical analysis suggests that power is not a function of volumetric flow...

  15. Quaternary International 90 (2002) 87115 Sedimentary and stratigraphic evidence for subglacial flooding,

    E-Print Network [OSTI]

    Fisher, Timothy G.

    carbonates to clastics and finally to crystallines from the lower till through the gravel facies. Sedimentary descriptions from 14 gravel pits indicate a consistent stratigraphy across a width of 15 km and that the entire till­gravel­till sequence resulted from the same glacial advance. r 2002 Elsevier Science Ltd

  16. A water quality characterization of a tidally influenced flood control canal of Galveston Bay, Texas

    E-Print Network [OSTI]

    Polasek, Jeffrey Steven

    1992-01-01T23:59:59.000Z

    H), specific conductance, sulfide, total organic carbon (TOC), and turbidity samples were collected at seven stations in HBDC and from the effluent of two municipal wastewater treatment plants (MWTP) discharging into HBDC in order to detect significant... to MWTP outfall. Specific conductance patterns mirrored salinity trends. TOC levels showed a steady bayward decrease. Turbidity levels were consistently highest in bottom waters. No trends were apparent for COD, pH, and sulfide. HBDC water quality...

  17. The effect of asphalt deposition on permeability in miscible flooding with liquified petroleum gas (LPG

    E-Print Network [OSTI]

    Pinson, Arthur Edward, Jr

    1962-01-01T23:59:59.000Z

    'teen milliliters of oil was mixed thoroughly with 85 milliliters of petroleum ether and centrifuged at 1750 rpm for 450 seconds. The results of the precipitation tests are shown in Table III. The petroleum ether used was 67. )fo N-Pentane and. $2. 7%%d Di.... 48 0. 114 21 ' 8 24. 7 36 ' 6 41. 4 39. 0 37. 7 37-3 ?Hawkins and Talco at 80'F, others at 74 F TABLE III PRECIPITATION BEHAVIOR OP OILS MIXED WITH PETROLEUM ETHER OILS Denton 75%%d Denton/25% "Heavy" 50% Denton/50%%d "Heavy" 25...

  18. Conditional Reliability, Sub-Monthly Time Step, Flood Control, and Salinity Features of WRAP

    E-Print Network [OSTI]

    Salazar, A.A.; Olmos, H.E.; Hoffpauir, R.J.; Wurbs, R.A.

    WRAP is a generalized river/reservoir system simulation model providing flexible capabilities for analyzing water resources development, management, control, allocation, and use. This supplemental reference and users manual documents expanded WRAP...

  19. An evaluation of ebb and flood subirrigation using solid-state electronic tensiometers

    E-Print Network [OSTI]

    Samengo, Antonella

    2012-06-07T23:59:59.000Z

    watering systems. The two most important are: 1) reduction of runoff through better management of water and fertilizer; and 2) labor savings ( Biernbaum, 1990; Biernbaum et al. , 1988b; Furuta, 1976; Hamrick, 1989; Insider, 1989; Ludolph, 1991; Neal..., 1989; Roberts, 1991; Roberts, 1990; Smith, 1982; Strefeler, 1991; Thomas, 1989). Other advantages of subirrigation include: a better use of greenhouse space (Roberts, 1990), no restriction on pot size and pot spacing (Hamrick, 1989; Insider, 1989...

  20. Artificial Geothermal Energy Potential of Steam-flooded Heavy Oil Reservoirs

    E-Print Network [OSTI]

    Limpasurat, Akkharachai

    2011-10-21T23:59:59.000Z

    This study presents an investigation of the concept of harvesting geothermal energy that remains in heavy oil reservoirs after abandonment when steamflooding is no longer economics. Substantial heat that has accumulated within reservoir rock and its...

  1. Moving towards climate-smart flood management in Bangkok and Tokyo

    E-Print Network [OSTI]

    Takemoto, Shoko, M.C.P. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Managing the impacts of climate change is no longer a concern of the future, but a significant reality of the present. Preparing for, and mitigating extreme weather events and adapting to the gradual shift in climatic ...

  2. COLORADO SCHOOL OF MINES RESEARCH INSTITUTE (CSMRI) SITE FLOOD PLAIN AREA CLEANUP FACT SHEET & PROJECT SUMMARY

    E-Print Network [OSTI]

    .S. Environmental Protection Agency excavated and stockpiled soil from the tailings pond and surrounding area, demolished several buildings, and cleaned an industrial sewer system. The School subsequently shipped use in 1997. During the later 1990's several thousand drums of materials were characterized

  3. Flood Risk Management Newsletter June 2014 vol 7 no 3 1

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ...................... 2 NWF Climate Publication .......................12 New ECB Regarding Climate Change..... 3 New for Abstracts..........................14 Risk Communication................................ 8 Conferences...........................................14 ASCE TCFSPP Considers Changes ....... 8 Subscribe-Unsubscribe..........................16

  4. The effect of the volume of liquid injected on recovery in solvent slug flooding

    E-Print Network [OSTI]

    Bowman, Charles Hay

    1959-01-01T23:59:59.000Z

    the effect of slug size on oil recovered. A series of verti. cal displacements was performed on a kerosene- and-water saturated core 10 feet in length, using butane as the solvent and methane as the inert dksplacing medium. Breakthrough recovery was fo... storage problem, it mrght be ea, sily possible to solve two difficultres 11 simultaneously, as suggested by Kennedy. The LPG is easily recovered following the displacement by the srmple expedient of blowing down the reservoir, Much interest has...

  5. Nutrient-dependent recovery of Atlantic salmon streams from a catastrophic flood

    E-Print Network [OSTI]

    Mazumder, Asit

    " to distur- bances (Webster et al. 1983; Resh et al. 1988; Biggs et al. 1999). Resistance is the ability of communities or ecosystems after a distur- bance (Biggs et al. 1999). The interactions between these two

  6. Operation of water supply reservoirs for flood mitigation : hydrologic and institutional considerations

    E-Print Network [OSTI]

    Craney, Patrick Wayne

    1996-01-01T23:59:59.000Z

    Additional demands are being placed upon reservoirs to meet a variety of diverse needs. These demands require efficient management of the limited storage through reservoir operations. This efficiency is most critical with water supply reservoirs...

  7. An interdisciplinary approach to characterize flash flood occurrence frequency for mountainous Southern California

    E-Print Network [OSTI]

    Carpenter, Theresa Marie Modrick

    2011-01-01T23:59:59.000Z

    2006: Integrated forecast and reservoir management (INFORM)in Integrated Forecast and Reservoir Management: INFORM – A

  8. Flooding in urban drainage systems: Coupling hyperbolic conservation laws for sewer systems and surface flow

    E-Print Network [OSTI]

    Borsche, Raul

    2014-01-01T23:59:59.000Z

    In this paper we propose a model for a sewer network coupled to surface flow and investigate it numerically. In particular, we present a new model for the manholes in storm sewer systems. It is derived using the balance of the total energy in the complete network. The resulting system of equations contains, aside from hyperbolic conservation laws for the sewer network and algebraic relations for the coupling conditions, a system of ODEs governing the flow in the manholes. The manholes provide natural points for the interaction of the sewer system and the run off on the urban surface modelled by shallow water equations. Finally, a numerical method for the coupled system is presented. In several numerical tests we study the influence of the manhole model on the sewer system and the coupling with 2D surface flow.

  9. E-Print Network 3.0 - adjacent amazonian flooded Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grjota Valles and Athabasca Valles - date to the Amazonian Period... and originate at fis- sures. The channels show common in-channel morpholog- ical indications of ... Source:...

  10. Storm smart planning for adaptation to sea level rise : addressing coastal flood risk in East Boston

    E-Print Network [OSTI]

    Wolff, Victoria H

    2009-01-01T23:59:59.000Z

    Regardless of how well we implement sustainability plans, now and in the future, the weight of scientific evidence indicates that mean sea level will continue to rise at an increasing rate over the next century. Thus, ...

  11. Risk Assessment and Management for Interconnected and Interactive Critical Flood Defense Systems

    E-Print Network [OSTI]

    Hamedifar, Hamed

    2012-01-01T23:59:59.000Z

    terminals, offshore platforms, and nuclear power plants [offshore, and nuclear systems. For example, in the case of a nuclear power plant,

  12. Enhanced Oil Recovery in High Salinity High Temperature Reservoir by Chemical Flooding

    E-Print Network [OSTI]

    Bataweel, Mohammed Abdullah

    2012-02-14T23:59:59.000Z

    Studying chemical enhanced oil recovery (EOR) in a high-temperature/high-salinity (HT/HS) reservoir will help expand the application of chemical EOR to more challenging environments. Until recently, chemical EOR was not recommended at reservoirs...

  13. Design against nature : flooding, water supply, and public space in Los Angeles

    E-Print Network [OSTI]

    Thelander, Max William

    2012-01-01T23:59:59.000Z

    Starting in the late 19th century, Southern California saw the first of several waves of explosive population growth that have resulted in today's mega-region. While many early settlers were attracted by the city's famous ...

  14. CSMRI Flood Plain Characterization Work Plan Page 1 November 21, 2006

    E-Print Network [OSTI]

    .S. Army Corps of Engineers' Section 404 permit, to conduct soil segregation. The results indicated, based on Section 404 Permit guidance, provided in Appendix B, no permit will be required, because

  15. A flood-based information flow analysis and network minimization method for gene regulatory networks

    E-Print Network [OSTI]

    Pavlogiannis, Andreas; Mozhayskiy, Vadim; Tagkopoulos, Ilias

    2013-01-01T23:59:59.000Z

    tend to have high interconnectivity, complex topologies andSince feedback and high interconnectivity is common in gene

  16. What You Should Do If Your Water Well Has Been Flooded

    E-Print Network [OSTI]

    systems or wastewater treatment plants, manure, pesticides or fertilizer applied to cropland://www.tceq.state.tx.us/assets/public/compliance/compliance_support/qa/sdwa_lab_list.pdf Homeowners can

  17. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave VanderGriend; Eric Mork; Paul Cantrell

    2003-03-31T23:59:59.000Z

    Progress is reported for the period from January 1, 2003 to March 31, 2003. A water supply well was permitted, drilled, and completed in the shallow, fresh-water, Dakota Sandstone. The pumphouse has been put in place and the long-term injection equipment is being set-up. Although the short-term injectivity test was cut short by power failure following an ice storm, results indicate the well exhibits sufficient injectivity to proceed with the long-term injectivity test, which will start in the beginning of the second quarter. The CO2 Project No.10 and No.12 wells were reworked and the Lansing-Kansas City (LKC) ''C'' interval in both wells isolated. The CO2 Project No.16 well was drilled deeper, cored in the LKC ''C'' and ''G'' zones, and cased to the ''C'' zone and will be perforated and stimulated in the beginning of second quarter. Initial wireline log analysis and examination of the core indicate that the porosity of the ''C'' zone in this location may be lower than in other parts of the pattern by 3-5 porosity units. Log analysis indicates water saturations are near 60% consistent with predicted residual oil saturation to waterflood modeling. Lower porosities may indicate lower permeability may also be present. Core analysis is being conducted and results will be available in the first week of the second quarter. A draft letter agreement has been presented to FLOCO2 Company for supply of CO2 storage and injection pump equipment.

  18. Effect of reservior heterogeneities on waterflood and EOR chemical flood performance

    SciTech Connect (OSTI)

    Tomutsa, L.; Knight, J.

    1988-10-01T23:59:59.000Z

    Simulations were performed to study the capability of a modified version of the black oil simulator BOAST to handle reservoir heterogeneities of the type encountered in the barrier bar depositional system studied in the geoscience research program being performed for the Department of Energy as project BE1. The cases studied consisted of two-dimensional and three-dimensional simulations of layered reservoirs with different permeability contracts between the layers, different vertical permeability/horizontal permeability ratios and continuous and discontinuous shale layers. Software was developed to show graphically the residual oil saturation in the reservoir grid blocks at selected time intervals during the simulation. BOAST was modified for the residual oil saturation displays as well as for graphical displays of production rates and cumulative production versus time of oil, water and gas. 40 refs., 32 figs., 9 tabs.

  19. Post Waterflood CO{sub 2} Miscible Flood in Light Oil Fluvial-Dominated Deltaic Reservoirs

    SciTech Connect (OSTI)

    NONE

    1996-04-30T23:59:59.000Z

    Texaco terminated the CO{sub 2} purchase agreement with Cardox due to the declining production from the project during 1995. This decision was supported by the DOE and the Exploration and Production Technology Department (EPTD) who developed the model to simulate reservoir performance. Texaco is planning to continue recycling produced CO{sub 2} to recover the remaining 400 MBO from the Marg Area 1 reservoir. Currently one well is remaining on production Kuhn {number_sign}15R after the second producing well Kuhn {number_sign}38 sanded up. Changing the water and CO{sub 2} injection patterns should improve the sweep efficiency and restore production from other existing wells.

  20. Post Waterflood C02 Miscible Flood in Light Oil Fluvial-Dominated Deltaic Reservoirs

    SciTech Connect (OSTI)

    John Augustine

    1998-01-13T23:59:59.000Z

    Only one well remains in production in the Port Neches CO2 project; Kuhn #14. Production from this project is approaching economic limit and the project is nearing termination at this point. The work over to return Kuhn #38 to production failed and the well is currently shut in. All produced CO2 is currently being reinjected in the reservoir. The CO2 recycled volume is 2 MMCFD.

  1. E-Print Network 3.0 - alkaline flooding formulations Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twente Collection: Mathematics 58 1 -SUBTIDAL 2 -INTERTIDAL RB ROCK UB UNCONSOLIDATED AB AQUATIC BED RF -REEF OW -OPEN WATER AB AQUATIC BED RF REEF RS ROCKY SHORE US...

  2. E-Print Network 3.0 - alkaline flooding Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    < 1 2 3 4 5 > >> Page: << < 1 2 3 4 5 > >> 21 1 -SUBTIDAL 2 -INTERTIDAL RB ROCK UB UNCONSOLIDATED AB AQUATIC BED RF -REEF OW -OPEN WATER AB AQUATIC BED RF REEF RS ROCKY SHORE US...

  3. Scale-up of miscible flood processes for heterogeneous reservoirs. Second annual report

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1995-03-01T23:59:59.000Z

    Progress is reported for a comprehensive investigation of the scaling behavior of gas injection processes in heterogeneous reservoirs. The interplay of phase behavior, viscous fingering, gravity segregation, capillary imbibition and drainage, and reservoir heterogeneity is examined in a series of simulations and experiments. Use of streamtube to model multiphase flow is demonstrated to be a fast and accurate approach for displacements that are dominated by reservoir heterogeneity. The streamtube technique is particularly powerful for multiphase compositional displacements because it represents the effects of phase behavior with a one-dimensional flow and represents the effects of heterogeneity through the locations of streamtubes. A new approach for fast calculations of critical tie-lines directly from criticality conditions is reported. A global triangular structure solution for four-component flow systems, whose tie-lies meet at the edge of a quaternary phase diagram or lie in planes is presented. Also demonstrated is the extension of this solution to multicomponent systems under the same assumptions. The interplay of gravity, capillary and viscous forces on final residual oil saturation is examined experimentally and theoretically. The analysis of vertical equilibrium conditions for three-phase gravity drainage shows that almost all oil can be recovered from the top part of a reservoir. The prediction of spreading and stability of thin film is performed to investigate three-phase gravity drainage mechanisms. Finally, experimental results from gravity drainage of crude oil in the presence of CO{sub 2} suggest that gravity drainage could be an efficient oil recovery process for vertically fractured reservoirs.

  4. Scale-up of miscible flood processes. Quarterly report, July 1, 1993--September 30, 1993

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1993-12-31T23:59:59.000Z

    Progress is reported for a comprehensive investigation of the scaling behavior of gas injection processes in heterogeneous reservoirs. The interplay of phase behavior, viscous fingering, gravity segregation, capillary imbibition and drainage, and reservoir heterogeneity is examined in a series of simulations and experiments. Compositional and first-contact miscible simulations of viscous fingering and gravity segregation are compared to show that the two techniques can give very different results. Also, analyzed are two-dimensional and three-dimensional flows in which gravity segregation and viscous fingering interact. The simulations show that 2D and 3D flows can differ significantly. A comparison of analytical solutions for three-component two-phase flow with experimental results for oil/water/alcohol systems is reported. While the experiments and theory show reasonable agreement, some differences remain to be explained. The scaling behavior of the interaction of gravity segregation and capillary forces is investigated through simulations and through scaling arguments based on analysis of the differential equations. The simulations show that standard approaches do not agree well with results of low IFT displacements. The scaling analyses, however, reveal flow regimes where capillary, gravity, or viscous forces dominate the flow.

  5. LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING

    SciTech Connect (OSTI)

    William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Seung Soon Jang; Shiang-Tai Lin; Prabal Maiti; Yongfu Wu; Stefan Iglauer; Xiaohang Zhang

    2004-09-01T23:59:59.000Z

    This report provides a summary of the work performed in this 3-year project sponsored by DOE. The overall objective of this project is to identify new, potentially more cost-effective surfactant formulations for improved oil recovery (IOR). The general approach is to use an integrated experimental and computational chemistry effort to improve our understanding of the link between surfactant structure and performance, and from this knowledge, develop improved IOR surfactant formulations. Accomplishments for the project include: (1) completion of a literature review to assemble current and new surfactant IOR ideas, (2) Development of new atomistic-level MD (molecular dynamic) modeling methodologies to calculate IFT (interfacial tension) rigorously from first principles, (3) exploration of less computationally intensive mesoscale methods to estimate IFT, Quantitative Structure Property Relationship (QSPR), and cohesive energy density (CED) calculations, (4) experiments to screen many surfactant structures for desirable low IFT and solid adsorption behavior, and (5) further experimental characterization of the more promising new candidate formulations (based on alkyl polyglycosides (APG) and alkyl propoxy sulfate surfactants). Important findings from this project include: (1) the IFT between two pure substances may be calculated quantitatively from fundamental principles using Molecular Dynamics, the same approach can provide qualitative results for ternary systems containing a surfactant, (2) low concentrations of alkyl polyglycoside surfactants have potential for IOR (Improved Oil Recovery) applications from a technical standpoint (if formulated properly with a cosurfactant, they can create a low IFT at low concentration) and also are viable economically as they are available commercially, and (3) the alkylpropoxy sulfate surfactants have promising IFT performance also, plus these surfactants can have high optimal salinity and so may be attractive for use in higher salinity reservoirs. Alkylpropoxy sulfate surfactants are not yet available as large volume commercial products. The results presented herein can provide the needed industrial impetus for extending application (alkyl polyglycoside) or scaling up (alkylpropoxy sulfates) of these two promising surfactants for enhanced oil recovery. Furthermore, the advanced simulations tools presented here can be used to continue to uncover new types of surfactants with promising properties such as inherent low IFT and biodegradability.

  6. Scale-up of miscible flood processes for heterogeneous reservoirs. 1993 annual report

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1994-05-01T23:59:59.000Z

    Progress is reported for a comprehensive investigation of the scaling behavior of gas injection processes in heterogeneous reservoirs. The interplay of phase behavior, viscous fingering, gravity segregation, capillary imbibition and drainage, and reservoir heterogeneity is examined in a series of simulations and experiments. Compositional and first-contact miscable simulations of viscous fingering and gravity segregation are compared to show that the two techniques can give very different results. Also, analyzed are two-dimensional and three-dimensional flows in which gravity segregation and viscous fingering interact. The simulations show that 2D and 3D flows can differ significantly. A comparison of analytical solutions for three-component two-phase flow with experimental results for oil/water/alcohol systems is reported. While the experiments and theory show reasonable agreement, some differences remain to be explained. The scaling behavior of the interaction of gravity segregation and capillary forces is investigated through simulations and through scaling arguments based on analysis of the differential equations. The simulations show that standard approaches do not agree well with results of low IFT displacements. The scaling analyses, however, reveal flow regimes where capillary, gravity, or viscous forces dominate the flow.

  7. Final Independent External Peer Review Report Princeville, North Carolina Flood Risk Management

    E-Print Network [OSTI]

    US Army Corps of Engineers

    in Minority Populations and Low-income Populations," Federal agencies are also required to consider potential disproportional adverse effects or denial of potential benefits of Federal policies and programs to communities Feasibility Study Integrated Feasibility Report and Environmental Assessment Prepared by Battelle Memorial

  8. Experimental Study of Steam Surfactant Flood for Enhancing Heavy Oil Recovery After Waterflooding

    E-Print Network [OSTI]

    Sunnatov, Dinmukhamed

    2010-07-14T23:59:59.000Z

    /W) emulsions can also form under certain conditions with the addition of surfactants and/or alkali mixtures. 10 CHAPTER III EXPERIMENTAL APPARATUS AND PROCEDURE 3.1. Apparatus The experimental equipment for steam surfactant injection used for this work...

  9. Permanganate Treatment of DNAPLs in Reactive Barriers and Source Zone Flooding Schemes

    SciTech Connect (OSTI)

    Dr. Franklin Schwartz; Dr. Hubao Zhang

    2003-12-23T23:59:59.000Z

    Permanganate is a simple and common chemical, which has proven useful in oxidizing common chlorinated solvents. Due to the nature of oxidation, the byproducts and products are much less harmful than those from reduction-type remedial schemes, and the degradation process is rapid. The main goal of this project is to understand oxidative destruction of chlorinated solvents using potassium permanganate. The study has provided a theoretical basis for evaluating the feasibility of in-situ applications, to couple kinetic reaction with transport models, and to develop an appropriate field test for further assessing the approach.

  10. Policy Implications of Permanently Flooded Islands in the Sacramento–San Joaquin Delta

    E-Print Network [OSTI]

    Suddeth, Robyn J.

    2011-01-01T23:59:59.000Z

    Environmental Science and Policy 12:631–643. Kimmerer W,discussions with attorneys and policy-makers familiar withSan Francisco (CA): Public Policy Institute of California.

  11. Atmospheric Momentum Roughness Applied to Stage-Discharge Relationships in Flood Plains

    E-Print Network [OSTI]

    ­Weisbach formula is modified to account for vegetative resistance by application of surface roughness lengths appropriate friction factors. Schlicting 1955 reviews the relationship between the Ni- kuradsse's equivalent 1996 developed and calibrated procedures to estimate flow resistance based on the Colebrook

  12. The effect of cross flow in a stratified reservoir during a water flood

    E-Print Network [OSTI]

    Sommers, Gordon Edmund

    1970-01-01T23:59:59.000Z

    OF SCIENCE August 1970 Major Subject: PETROLEUM ENGINEERING THE EFFECT OF CROSS FLOW IN A STRATIFIED RESERVOIR DURING A WATERFLOOD A Thesis by GORDON EDMUND SOMMERS Approved as to style and content by: (C a'rman of Committee) (Hea of Depart nt...) (Member ) (Member) (Member) (Member) (Member) August 1970 111 ABSTRACT The Effect of Crossflow in a Stratified Reservoir During a Waterflood. (August 1970) Gordon Edmund Sommers, B. S. , Texas A@M University Directed by: Dr. Joseph S. Osoba...

  13. 89BLPCn272octobre/novembre 2008 Instrumentation of a flood zone

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    upon aggregate transport from quarries often located far from construction sites. Gratien VINCESLAS1

  14. Permanganate Treatment of DNAPLs in Reactive Barriers and Source Zone Flooding Schemes - Final Report

    SciTech Connect (OSTI)

    Schwartz, F.W.

    2000-10-01T23:59:59.000Z

    This study provides a detailed process-level understanding of the oxidative destruction of the organic contaminant emphasizing on reaction pathways and kinetics. A remarkable rise in the MnO{sup {minus}} consumption rate with TCA and PCE mixtures proves that the phase transfer catalysts have the ability to increase oxidation rate of DNAPLs either in pure phase or mixtures and that there is significant potential for testing the catalyzed scheme under field conditions. Secondly, as an attempt to enhance the oxidation of DNAPL, we are trying to exploit cosolvency effects, utilizing various alcohol-water mixtures to increase DNAPL solubilization. Preliminary results of cosolvency experiments indicate the enhancement in the transfer of nonaqueous phase TCE to TBA-water solution and the rate of TCE degradation in aqueous phase.

  15. Modeling Reallocation of Reservoir Storage Capacity Between Flood Control and Conservation Purposes

    E-Print Network [OSTI]

    Kim, Tae Jin

    2010-07-14T23:59:59.000Z

    modifications in reservoir storage allocations and related system operations. The research consisted of the following tasks: ? The Brazos River Basin WRAP input dataset from the Texas WAM System (Brazos WAM) has a 1940-1997 hydrologic period...

  16. A Probabilistic Model of Flooding Loads on Transverse Watertight Bulkheads in the Event of Hull Damage

    E-Print Network [OSTI]

    Bhattacharya, Baidurya

    of Shipping, Houston, Texas, USA Floating System Engineering Department, Technip-Coflexip, Houston, Texas reflect those of the authors and not necessarily those of the American Bureau of Shipping or of Technip

  17. NON-STRUCTURAL FLOOD MANAGEMENT SOLUTIONS FOR THE LOWER FRASER VALLEY,

    E-Print Network [OSTI]

    , awkward decision-analysis frameworks, social costs and the difficulty of policy making under uncertainty. This approach reduces risk, increases long-term economic gains and improves the environment British Columbia including technical tools, policy objectives, policy instruments, policy paradigms, and best practices

  18. Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC HistoryVeteransto getEmployeeHuman

  19. Human-induced climate change reduces chance of flooding in Okavango Delta

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC HistoryVeteransto getEmployeeHumanHuman-induced

  20. EO 13690: Establishing a Federal Flood Risk Management Standard and a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1:EnergyDecemberof Energy87: Preserve America

  1. Green Infrastructure and Flood Resiliency-Land Use Management as an

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: GuidanceNotGrand Coulee-CrestonAmericanApp

  2. Title Flood Assessment at the Proposed Area 6 Liquid Waste Treatment System - DOE/NV Test

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA Review of

  3. In the past, disaster management used to only include support for hurricanes, floods, tornados, and earthquakes

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofThe full text of what is refered to as the

  4. DOE-SPEC-3018-96; Flooded-Type Lead-Acid Storage Batteries

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContracttoAugustSPEC-3018-96 August 1996 DOE

  5. Barriers for steelhead (Oncorhynchus mykiss) smolt migration through the lower flood channel of Alameda Creek

    E-Print Network [OSTI]

    Cervantes-Yoshida, Kristina

    2009-01-01T23:59:59.000Z

    fish, the East Bay Regional Park District found large predatory largemouth bass (fish, especially in pools with large invasive fishes such as pikeminnow and bass (

  6. Artificial Geothermal Energy Potential of Steam-flooded Heavy Oil Reservoirs.

    E-Print Network [OSTI]

    Limpasurat, Akkharachai

    2011-01-01T23:59:59.000Z

    ??This study presents an investigation of the concept of harvesting geothermal energy that remains in heavy oil reservoirs after abandonment when steamflooding is no longer… (more)

  7. Hydrologic investigation of concrete flood control channel at UC Berkeley’s Richmond Field Station

    E-Print Network [OSTI]

    Davis, Courtney; Nichols, Patrick

    2004-01-01T23:59:59.000Z

    Federal Interagency Stream Restoration Working Group. 1998,http://www.usda.gov/stream_restoration/newtofc.htm U.S.The Federal Interagenc y Stream Restoration Working Group,

  8. Estimated Benefits of IBWC Rio Grande Flood-Control Projects in the United States

    E-Print Network [OSTI]

    reservoirs, dams, hydroelectric energy-generation facilities, floodways, and levees downstream of Caballo Reservoir in New Mexico. The international boundary between the United States (U.S.) and Mexico is over 1 is characterized by fifteen pairs of sister cities sustained by agriculture, import-export trade, service

  9. Floods in the Nueces, Guadalupe, Lavaca and Mission river basins: magnitude and frequency

    E-Print Network [OSTI]

    Caffey, James Enoch

    1956-01-01T23:59:59.000Z

    from the formula (N + I)/M, where N equals number of years effective record and M aguals relative magnitude of the event, beginning with the highest as I down to the lowest as a number equal to N, This formula 1 ~ used in this study, The plotting...

  10. An interdisciplinary approach to characterize flash flood occurrence frequency for mountainous Southern California

    E-Print Network [OSTI]

    Carpenter, Theresa Marie Modrick

    2011-01-01T23:59:59.000Z

    with drainage area ranging from 15 to 3000 km 2 , thefrom 13 to 3000 km 2 in accumulated drainage area. The small

  11. On Combining Duty-cycling with Network Coding in Flood-based Sensor Networks

    E-Print Network [OSTI]

    Chandanala, Roja Ramani

    2012-02-14T23:59:59.000Z

    of coding, there are periods of time when a node does not benefit from overhearing coded packets being transmitted. We seek to precisely determine these periods of time, and let nodes that do not benefit from these ?useless? packets to sleep. Our solution...] is an instance of NetCode. We describe its operation in detail because we aim to analytically demonstrate, in the sections that follow, that the introduction of our smart duty-cycle does not come with any major overhead. The operation of NetCode is depicted...

  12. LANL closes road, trails for safety reasons; flooding and erosion control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs & GraduatesReducing SelectLANLwork under

  13. Flooded First Street at Y-12 Plant | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | NationalFlipping the switch

  14. Solar equipment ravaged by floods gets new life | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPVSolar Viewed asat the cost

  15. Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event

    E-Print Network [OSTI]

    Grossman, Ethan L.

    November 2012; revised 14 October 2012; accepted 21 November 2012. [1] Rising CO2 concentration the adjacent shelf contributed to northern Gulf shelf waters changing from a net sink to a net source of CO2 in the water can be exchanged with the atmosphere with approximately ~100 Tg of CO2 degassed from U.S. streams

  16. the drains, causing flooding and health risks. In 2007, the prevalence

    E-Print Network [OSTI]

    Richner, Heinz

    , and poor soil permeability often disabled #12;select sanitation systems suited to the settlement of the environ- ment and residents' sanitation needs. In Hatsady Tai, residents completed surveys and met with district authori- ties and sanitation experts to discuss their needs. A gender-balanced group of about 60

  17. Evaluation of EOR Potential by Gas and Water Flooding in Shale Oil Reservoirs.

    E-Print Network [OSTI]

    Chen, Ke

    2013-01-01T23:59:59.000Z

    ??The demand for oil and natural gas will continue to increase for the foreseeable future; unconventional resources such as tight oil, shale gas, shale oil… (more)

  18. An interdisciplinary approach to characterize flash flood occurrence frequency for mountainous Southern California

    E-Print Network [OSTI]

    Carpenter, Theresa Marie Modrick

    2011-01-01T23:59:59.000Z

    Sespe Creek 11119500 Carpinteria Creek 11124500 Santa Cruz11113500 Santa Paula Creek, Santa Paula 11119500 CarpinteriaCreek, Carpinteria 11120000 Atascadero Creek, Goleta

  19. Arsenic species in soil solution and plant uptake of arsenic under flooded conditions

    E-Print Network [OSTI]

    Onken, Blake Morgan

    1988-01-01T23:59:59.000Z

    , fresh and salt waters, and soils. Sources of As in the environment include the weathering of As bearing minerals, stack gases from smelters, fly ash from coal burning plants, and the application of various agriculturally important compounds... Arsenic is present in over 200 naturally occurring minerals and is commonly found in conjunction with iron, copper, and cobalt ores, as well as sedimentary deposits such as coal. Arsenic is released to the environment with the weathering, burning...

  20. Risk Assessment and Management for Interconnected and Interactive Critical Flood Defense Systems

    E-Print Network [OSTI]

    Hamedifar, Hamed

    2012-01-01T23:59:59.000Z

    G.E. (2004) How useful is quantitative risk assessment?Risk Analysis Vol. 24 No. 3, pp. 515-520 Atwater, BF (Quantitative and qualitative risk analyses – the safety of

  1. Multi-Hybrid Power Vehicles with Cost Effective and Durable Polymer Electrolyte

    SciTech Connect (OSTI)

    Bose, Anima

    2014-02-28T23:59:59.000Z

    Anima Bose, the principal investigator of the project, originally proposed to develop composite membranes to operate PEMFCs at much higher temperatures than 80{degrees}C and to alleviate the flooding problems often encountered in Nafion menmbrane containing fuel cells. The PI has successfully created composite membranes by blending small quantities of octasilane-poss (OSP) with Nafion. The composite membranes exhibited temperature tolerance up to 110{degrees}C without scarifying cell performance as determined by polarization curves and proton conductivity measurements. These membranes also exhibited superior water management performance as evident from the lack of flooding. Furthermore, these fuel cells performed well under reduced humidities. Structural and thermal analyses revealed that these Nafion-octasilane composite membranes are homogenous at concentrations up to 3 wt% of the OSP and that the siloxane offers additional thermal stability.

  2. Insulating polymer concrete

    DOE Patents [OSTI]

    Schorr, H. Peter (Douglaston, NY); Fontana, Jack J. (Shirley, NY); Steinberg, Meyer (Melville, NY)

    1987-01-01T23:59:59.000Z

    A lightweight insulating polymer concrete formed from a lightweight closed cell aggregate and a water resistance polymeric binder.

  3. "LIFE OF FIELD" DEVELOPMENT DECISIONS, DOE-SUPPORTED SIMULATION SOFTWARE

    E-Print Network [OSTI]

    Thompson, Anne

    , Polymer flooding, ASP or lower concentration flooding, and CO2). WHO SHOULD ATTEND Petroleum Engineers"LIFE OF FIELD" DEVELOPMENT DECISIONS, DOE-SUPPORTED SIMULATION SOFTWARE AS A DECISION SUPPORT TOOL, and ultimately enhanced oil recovery (EOR) processes. DOE-developed simulation software packages

  4. Nanoporous polymer electrolyte

    DOE Patents [OSTI]

    Elliott, Brian (Wheat Ridge, CO); Nguyen, Vinh (Wheat Ridge, CO)

    2012-04-24T23:59:59.000Z

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  5. Mechanics of amorphous polymers and polymer gels

    E-Print Network [OSTI]

    Chester, Shawn Alexander

    2011-01-01T23:59:59.000Z

    Many applications of amorphous polymers require a thermo-mechanically coupled large-deformation elasto-viscoplasticity theory which models the strain rate and temperature dependent response of amorphous polymeric materials ...

  6. Radioluminescent polymer lights

    SciTech Connect (OSTI)

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1990-09-01T23:59:59.000Z

    The preparation of radioluminescent light sources where the tritium is located on the aryl-ring in a polymer has been demonstrated with deuterium/tritium substitution. This report discusses tests, results, and future applications of radioluminescent polymers. 10 refs. (FI)

  7. PREDICTIVE MODELS

    SciTech Connect (OSTI)

    Ray, R.M. (DOE Bartlesville Energy Technology Technology Center, Bartlesville, OK (United States))

    1986-12-01T23:59:59.000Z

    PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1) chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2) carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3) in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4) polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5) steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

  8. PREDICTIVE MODELS. Enhanced Oil Recovery Model

    SciTech Connect (OSTI)

    Ray, R.M. [DOE Bartlesville Energy Technology Technology Center, Bartlesville, OK (United States)

    1992-02-26T23:59:59.000Z

    PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2 carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3 in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4 polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5 steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

  9. Silvered polymer reflectors

    SciTech Connect (OSTI)

    Schissel, P.; Neidlinger, H.H.; Czanderna, A.W.

    1985-03-01T23:59:59.000Z

    One of the principal objectives of the Solar Thermal Research Program is to develop silvered polymer films for constructing durable, low-cost, lightweight concentrating collectors for high temperature solar thermal systems. The mirrors are characterized for their solar-weighted (air mass 1.5) reflectance and exposed to environmental degradation. Photodegradation of polymers has also been studied using Fourier transform infrared spectroscopy supplemented with surface analysis characterization. Results are discussed for extruded films, ultraviolet effects, metallization, and the effects of polymer additives. (LEW)

  10. Sulfonated polyphenylene polymers

    DOE Patents [OSTI]

    Cornelius, Christopher J. (Albuquerque, NM); Fujimoto, Cy H. (Albuquerque, NM); Hickner, Michael A. (Albuquerque, NM)

    2007-11-27T23:59:59.000Z

    Improved sulfonated polyphenylene compositions, improved polymer electrolyte membranes and nanocomposites formed there from for use in fuel cells are described herein. The improved compositions, membranes and nanocomposites formed there from overcome limitations of Nafion.RTM. membranes.

  11. Heavily fluorinated electronic polymers

    E-Print Network [OSTI]

    Lim, Jeewoo

    2011-01-01T23:59:59.000Z

    Building blocks, containing majority fluorine content by weight, for PPEs and PPVs have been synthesized. Some of the monomers were shown to give exclusively fluorous-phase soluble polymers, the syntheses of which were ...

  12. Polymers in disordered environments

    E-Print Network [OSTI]

    V. Blavatska; N. Fricke; W. Janke

    2014-11-18T23:59:59.000Z

    A brief review of our recent studies aiming at a better understanding of the scaling behaviour of polymers in disordered environments is given. The main emphasis is on a simple generic model where the polymers are represented by (interacting) self-avoiding walks and the disordered environment by critical percolation clusters. The scaling behaviour of the number of conformations and their average spatial extent as a function of the number of monomers and the associated critical exponents $\\gamma$ and $\

  13. Ice cap meltdown to cause 22ft floods Ice cap meltdown to cause 22ft floods -Telegraph http://www.telegraph.co.uk/earth/earthnews/3303624/Ice-cap-meltdow...

    E-Print Network [OSTI]

    Stevenson, Paul

    of no return and it were to melt then global sea levels would rise by 22ft and swallow up most of the world sheet. Likewise, global warming may cause a near-permanent El Nino in the Pacific, which would also over animal souvenirs (/earth/main.jhtml?xml=/earth/2007/08/16/eatrade116.xml) Rise of sea levels

  14. Design and implementation of a CO2 flood utilizing advanced reservoirs characterization and horizontal injection wells in a shallow shelf carbonate approaching water floods depletion: Technical progress report, January 1, 1997--March 31, 1997

    SciTech Connect (OSTI)

    Chimahusky, J.S., Casteel, J.F.

    1997-05-01T23:59:59.000Z

    The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO{sub 2}) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. All work this quarter falls within the demonstration project.

  15. The use of radar in detecting flood potential precipitation and its application to the field of hydrology

    E-Print Network [OSTI]

    Tarble, Richard D

    1957-01-01T23:59:59.000Z

    4astiw ?f ths swot basis er baoias share heeuy rais bas fallea. C. 7RRRXWRR PRLTIORS (8 ~ RARAR RCSO AFPLXCARtk Sl RNNMNf Careful ueces wre tabes eeaeeraIaR che yerciasat features of che ra4ar oehees ef each floo4 yro4ueiaR stere. Chsreeteristies...

  16. 5255Federal Register / Vol. 72, No. 23 / Monday, February 5, 2007 / Proposed Rules Flooding source(s)

    E-Print Network [OSTI]

    ). At the boundary with King County ............................... *46 +50 * National Geodetic Vertical Datum above ground Communities affected Effective Modified Snohomish County, Washington, and Incorporated upstream of State Route 522 *42 +47 Snohomish County (Unin- corporated Areas). Approximately 0.4 miles

  17. A technical and economical evaluation of infill drilling and CO?b2?s flooding in three west Texas units

    E-Print Network [OSTI]

    McMillon, Michael Dean, 1965-

    1990-01-01T23:59:59.000Z

    the unit. Obviously infill drilling can accelerate oil production. Actual field experience and previous analysis of reservoir characteristics 5 ~ have also indicated infill drilling results in significant incremental recoveries. The question commonly... to the east. The upper three hundred feet of the Means field is the productive interval. The main structure features two predominant domes (the North Dome and the South Dome) which are separated by a saddle. The most prolific oil production with potential...

  18. The effect of ebb and flood irrigation on medium properties, plant growth and water use of Chrysanthemum morifolium 'Circus'

    E-Print Network [OSTI]

    Perches, Mario

    2012-06-07T23:59:59.000Z

    to provide such benefits as reducing the amount of water used, reducing the incidence of foliar diseases, and reducing the amounts of labor required in plant production (Biernbaum et al. 1988 Hamrick, 1989; de Kreij et al. 1988; Thomas, 1989; Van Os...

  19. Characterizing two-phase flow relative permeabilities in chemical flooding using a pore-scale network model

    E-Print Network [OSTI]

    Liu, Qingjie; Shen, Pingping; Wu, Yu-Shu

    2008-01-01T23:59:59.000Z

    enhanced oil recovery (EOR) techniques have been developedsince the 1970s. In general, EOR methods such as chemicalefficiency. Among the various EOR approaches developed,

  20. Correlation between the precipitation and energy production at hydropower plants to mitigate flooding in the Missouri River Basin

    E-Print Network [OSTI]

    Foley, Rachel (Rachel L.)

    2013-01-01T23:59:59.000Z

    Currently, hydropower plants serve as one source of green energy for power companies. These plants are located in various geographical regions throughout the United States and can be split into three main classifications: ...

  1. Z .The Science of the Total Environment 260 2000 147 157 Temporal and spatial influences of flooding on

    E-Print Network [OSTI]

    Long, Bernard

    : Deline Uranium Team, P.O. Box 173, Deline, NWT Canada , X0E 0G0. 0048-9697r00r$ - see front matter 2000 pronounced in oxygen-depleted zon

  2. Characterizing two-phase flow relative permeabilities in chemical flooding using a pore-scale network model

    E-Print Network [OSTI]

    Liu, Qingjie; Shen, Pingping; Wu, Yu-Shu

    2008-01-01T23:59:59.000Z

    network model, enhanced oil recovery. Corresponding author.many tertiary or enhanced oil recovery (EOR) techniques have

  3. The Oil Debacle in the Gulf of Mexico: An Alternative to the Coming Flood of Offshore Regulations

    E-Print Network [OSTI]

    Griffin, James M.

    been more than 36,000 oil wells drilled in the Gulf. Yet since exploration in the Gulf of Mexico began in the 1950’s, there has been only one accident to compare with BP’s ill-fated Deepwater Horizon. After the blowout of the PEMEX IXTOC I well...

  4. Relationship between rice growth and soil solution phosphorus concentration in five flooded Gulf Coast soils of Texas

    E-Print Network [OSTI]

    Elkhattari, Sayed Khalil

    1973-01-01T23:59:59.000Z

    . The clay percentages are 17. 9, 46. 9, 30. 2, 26. 2 and 36. 8 for Katy fsl, Lake Charles (I) c, Edna fsl, Crowley fsl and Lake Charles (II) c, re- spectively. All five soils are acid with initial pM values ranging from 5. 6 ? 6. 4. The study... 32 42 46 50 58 V SUMMARY AND CONCLUSIONS 70 LITERATURE CITED 75 APPENDIX 82 VITA 91 LIST OF TABLES Table Page 1 ~ Some chemical and physical properties of soils used in study 2. Changes in soil solution pH during 42 days of soil...

  5. Eruption and emplacement of flood basalt. An example from the large-volume Teepee Butte Member, Columbia River Basalt Group

    SciTech Connect (OSTI)

    Reidel, S.P. (Washington State Univ., Pullman (United States)); Tolan, T.L. (Portland State Univ., OR (United States))

    1992-12-01T23:59:59.000Z

    Flows of the Teepee Butte Member, Grande Ronde Basalt, issued from a vent system in southeastern Washington, northeastern Oregon, and western Idaho. Three distinct basalt flows were erupted: the Limekiln Rapids flow, the Joseph Creek flow, and the Pruitt Draw flow. Together these mappable flows cover more than 52,000 km[sup 2] and have a volume exceeding 5,000 km[sup 3]. A portion of the vent system for the Joseph Creek flow is exposed in cross section in Joseph Canyon, Washington; it is one of the best preserved Columbia River Basalt Group vent complexes known. The vent complex is about 1 km in cross section, 30 m high, and composed of deposits characteristic of Hawaiian-type volcanism. The vent is asymmetrical; the eastern rampart consists of intercalated pyroclastic deposits and thin pahoehoe flows; the western rampart is composed wholly of pahoehoe flows. Flows of the Teepee Butte Member are compositionally homogeneous and were emplaced as sheet flows, each having several local flow units. Our study supports the importance of linear vent systems and the westward Palouse Slope, along with the large-volume lava flows, in controlling the distribution of Columbia River Basalt Group flows. Other factors, including the number of active fissure segments and topography, modified the shape of the flows and the number of flow units. 45 refs., 19 figs., 2 tabs.

  6. Characterizing two-phase flow relative permeabilities in chemical flooding using a pore-scale network model

    E-Print Network [OSTI]

    Liu, Qingjie; Shen, Pingping; Wu, Yu-Shu

    2008-01-01T23:59:59.000Z

    water mixtures through unconsolidated sands, Trans. AIME,a water-oil system in unconsolidated rocks to exhibit 20 to

  7. An investigation of parameters affecting oil recovery efficiency of carbon dioxide flooding in cross-sectional reservoirs

    SciTech Connect (OSTI)

    Almalik, M.S.

    1988-01-01T23:59:59.000Z

    Low oil recovery efficiency is attributed to low vertical and areal sweep efficiency. The major causes of the low recovery efficiencies may be classified into three categories: (1) gravity segregation, (2) reservoir heterogeneity, and (3) unstable viscous fingering. Water alternate with gas (WAG) injection processes have been employed in field operations to improve the recovery efficiency and cut the cost of gas injection. The purpose of this study is to investigate the effects of reservoir and process parameters on the oil recovery efficiency of carbon dioxide WAG processes in cross-sectional reservoirs. To accomplish this, a two-dimensional compositional numerical simulator was developed. The simulator was functional and verified in this study. The simulator was then used to generate simulation data for studying the effects of seven dimensionless parameters on the oil recovery efficiency: (1) reservoir length to height ratio, (2) sine of the reservoir dip angle, (3) vertical to horizontal permeability ratio, (4) gravity to viscosity ratio (GVR), (5) injection rate, (6) water to gas (WAG) injection ration, and (7) pore volumes injected. Results of the investigation showed that oil recovery efficiency as a percentage of the oil place (OIP) is affected to different degrees by the seven parameters. Two correlations of the oil recovery efficiency versus the seven dimensionless parameters were established. The first was established for pore volumes injection ranging from 0 to 1.0 and the second from 0 to 0.7. The second correlation showed better agreement with the simulation results. The correlations will provide useful information in the design of the carbon dioxide WAG processes in cross-sectional reservoirs.

  8. Seasonal characteristics of flood regimes across the AlpineCarpathian range J. Parajka a,j,*, S. Kohnov b

    E-Print Network [OSTI]

    Poggi, Davide

    Meteorological Administration 97, Soseaua Bucuresti-Ploiesti, 013686 Bucharest, Romania e Department of Land, Bucharest, Romania g Sektion Gewässerbewirtschaftung Abt. Wasser, Papiermühlestrasse 172, CH-3063 Ittigen of various hydrological processes and its spatial properties has recently attracted renewed interest

  9. InSAR observations of aseismic slip associated with an earthquake swarm in the Columbia River flood basalts

    E-Print Network [OSTI]

    's Hanford Site. Data from the seismic network along with interferometric synthetic aperture radar (In detected nearly 40 years ago in and around the Hanford Nuclear Site located in the eastern YFB [Pitt, 1971; Malone et al., 1975] (Figure 1). The Wooded Island area of Hanford has been a source of persistent

  10. BEHAVIOR OF SURFACTANT MIXTURE AT SOLID/LIQUID AND OIL/LIQUID INTERFACE IN CHEMICAL FLOODING SYSTEMS

    SciTech Connect (OSTI)

    Prof. P. Somasundaran

    2002-03-01T23:59:59.000Z

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Preliminary ultra-filtration tests suggest that two kinds of micelles may exist in binary surfactant mixtures at different concentrations. Due to the important role played in interfacial processes by micelles as determined by their structures, focus of the current work is on the delineation of the relationship between such aggregate structures and chemical compositions of the surfactants. A novel analytical centrifuge application is explored to generate information on structures of different surfactants aggregates. In this report, optical systems, typical output of the analytical ultracentrifuge results and four basic experiments are discussed. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. The partial specific volume was calculated to be 0.920. Four softwares: Optima{trademark} XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The sedimentation coefficient and aggregation number of NP-10 micelles obtained using the first three softwares at 25 C are 209, 127, and 111, respectively. The last one is closest to the result from Light Scattering. The reason for the differences in numbers obtained using the three softwares is discussed. Based on these tests, Svedberg and SEDFIT analysis are chosen for further studies. This approach using the analytical ultracentrifugation offers an unprecedented opportunity now to obtain important information on mixed micelles and their role in interfacial processes.

  11. Making Sense of New Orleans Flood Trauma Recovery: Ethics, Research Design, and Policy Considerations for Future Disasters

    E-Print Network [OSTI]

    Kunkel, Adrianne; Dennis, Michael Robert; Woods, Gillian; Schrodt, Paul

    2006-12-01T23:59:59.000Z

    This article details the justification and plans of a research team for studying and helping evacuees of Hurricane Katrina from New Orleans to recover by encouraging experimental participants to disclose information about ...

  12. Characterizing two-phase flow relative permeabilities in chemical flooding using a pore-scale network model

    E-Print Network [OSTI]

    Liu, Qingjie; Shen, Pingping; Wu, Yu-Shu

    2008-01-01T23:59:59.000Z

    operations in oil reservoirs and (2) provide relativedevelopment of oil and gas from existing reservoirs hasoil recovery rates from different types of reservoirs, which

  13. Correlation between the precipitation and energy production at hydropower plants to mitigate flooding in the Missouri River Basin .

    E-Print Network [OSTI]

    Foley, Rachel (Rachel L.)

    2013-01-01T23:59:59.000Z

    ??Currently, hydropower plants serve as one source of green energy for power companies. These plants are located in various geographical regions throughout the United States… (more)

  14. OPTIMIZING GEO-CELLULAR RESERVOIR MODELING IN A BRAIDED RIVER INCISED VALLEY FILL: POSTLE FIELD, TEXAS COUNTY, OKLAHOMA

    E-Print Network [OSTI]

    fill sandstones. EOR practices, in the form water flood and CO2 miscible flooding in the field have led

  15. Antithrombogenic Polymer Coating.

    DOE Patents [OSTI]

    Huang, Zhi Heng (San Ramon, CA); McDonald, William F. (Utica, OH); Wright, Stacy C. (Flint, MI); Taylor, Andrew C. (Ann Arbor, MI)

    2003-01-21T23:59:59.000Z

    An article having a non-thrombogenic surface and a process for making the article are disclosed. The article is formed by (i) coating a polymeric substrate with a crosslinked chemical combination of a polymer having at least two amino substituted side chains, a crosslinking agent containing at least two crosslinking functional groups which react with amino groups on the polymer, and a linking agent containing a first functional group which reacts with a third functional group of the crosslinking agent, and (ii) contacting the coating on the substrate with an antithrombogenic agent which covalently bonds to a second functional group of the linking agent. In one example embodiment, the polymer is a polyamide having amino substituted alkyl chains on one side of the polyamide backbone, the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl, the linking agent is a polyhydrazide and the antithrombogenic agent is heparin.

  16. POLYMER ELECTROLYTE FUEL CELLS

    E-Print Network [OSTI]

    Petta, Jason

    POLYMER ELECTROLYTE FUEL CELLS: The Gas Diffusion Layer Johannah Itescu Princeton University PRISM REU #12;PEM FUEL CELLS: A little background information I. What do fuel cells do? Generate electricity through chemical reaction #12;PEM FUEL CELLS: A little background information -+ + eHH 442 2 0244 22 He

  17. Sedimentation of Knotted Polymers

    E-Print Network [OSTI]

    Joonas Piili; Davide Marenduzzo; Kimmo Kaski; Riku Linna

    2012-12-20T23:59:59.000Z

    We investigate the sedimentation of knotted polymers by means of stochastic rotation dynamics, a molecular dynamics algorithm that takes hydrodynamics fully into account. We show that the sedimentation coefficient s, related to the terminal velocity of the knotted polymers, increases linearly with the average crossing number n_c of the corresponding ideal knot. To the best of our knowledge, this provides the first direct computational confirmation of this relation, postulated on the basis of experiments in "The effect of ionic conditions on the conformations of supercoiled DNA. I. sedimentation analysis" by Rybenkov et al., for the case of sedimentation. Such a relation was previously shown to hold with simulations for knot electrophoresis. We also show that there is an accurate linear dependence of s on the inverse of the radius of gyration R_g^-1, more specifically with the inverse of the R_g component that is perpendicular to the direction along which the polymer sediments. When the polymer sediments in a slab, the walls affect the results appreciably. However, R_g^-1 remains to a good precision linearly dependent on n_c. Therefore, R_g^-1 is a good measure of a knot's complexity.

  18. Solid polymer electrolyte compositions

    DOE Patents [OSTI]

    Garbe, James E. (Stillwater, MN); Atanasoski, Radoslav (Edina, MN); Hamrock, Steven J. (St. Paul, MN); Le, Dinh Ba (St. Paul, MN)

    2001-01-01T23:59:59.000Z

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  19. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

    1994-01-01T23:59:59.000Z

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  20. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01T23:59:59.000Z

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.