National Library of Energy BETA

Sample records for flood fighting research

  1. Flood Fighting Research Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Jump to: navigation, search Basic Specifications Facility Name Flood Fighting Research Facility Overseeing Organization United States Army Corp of Engineers (ERDC)...

  2. The fight to save the university research reactors

    SciTech Connect (OSTI)

    Bobeck, L.M.; Perez, P.B.

    1993-10-01

    This article looks at impacts of Nuclear Regulatory Commission actions on nonprofit educational reactors. In mid-July the NRC issued a ruling on fee policy, which eliminated the historical fee exemeption for nonprofit research reactors. The ensuing regulatory fees placed an economic burden on these facilities which was likely to close many of them. On September 13, the NRC agreed to reconsider this rule. In part this reflects that this rule had an impact on a larger user base than just research reactors. The article summarizes this problem, and tries to put it in perspective for the reader.

  3. New EM Plan Calls for Research, Technology to Help Fight Mercury Contamination

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. ‚Äď EM has released a new plan to address mercury contamination that advocates for research and technology development to resolve key technical uncertainties with the pollutant in environmental remediation, facility deactivation and decommissioning, and tank waste processing.

  4. Distillation Column Flooding Predictor

    SciTech Connect (OSTI)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictorô is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictorô works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the columnís approach to flood. But column delta-pressure is more an inference of the columnís approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much ďleft on the tableĒ when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictorô, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency Ė which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictorô operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictorô utilizes the mathematical first derivative of certain column variables to identify the columnís pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpointís proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictorô is implemented as closed-loop advanced control strategy on the plantís distributed control system (DCS), thus automating control of the column at its hydraulic limit.

  5. Breaking a Pocket of Resistance in the Fight Against Cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breaking a Pocket of Resistance in the Fight Against Cancer Breaking a Pocket of Resistance in the Fight Against Cancer Print Thursday, 12 December 2013 11:55 ras protein The new...

  6. Using weeds to fight wastes

    SciTech Connect (OSTI)

    1992-10-01

    Researchers at Los Alamos National Laboratory and New Mexico State University have discovered that jimson weed and wild tomato plants can remove the toxic wastes in wastewater associated with the production of trinitrotoluene (TNT). According to Wolfgang F. Mueller of New Mexico State, tissue-cultured cells of jimson weed rapidly absorb and break down toxic and carcinogenic elements in {open_quotes}pink water,{close_quotes} a by-product of the manufacture of TNT. Mueller and his colleagues have found similar results with the wild tomato plant.

  7. Fight over fuel additive rekindled

    SciTech Connect (OSTI)

    Stringer, J.

    1996-03-20

    Ethyl and EPA are trading punches over EPA`s doubts about the safety of Ethyl`s gasoline additive methylcyclopentadienyl manganese (MMT). Late last week, EPA released a statement reaffirming its position that there has not been enough research on health effects of MMT and asking gas stations to label pumps that contain the additive so consumers will be aware they are using it. Responding to that statement, Ethyl has written Administrator Carol Browner asking why she appears to be supporting the Environmental Defense Fund`s (EDF; Washington) campaign against MMT and advocating the delay of the additive use in light of its known emission-reducing characteristics. The tension began in the early `90s, when the EPA refused to allow Ethyl to market MMT and required it to perform more long-term health studies. Last October a court ordered the agency to grant Ethyl approval to use MMT in nonreformulated gasoline.

  8. Inflatable partition for fighting mine fires

    DOE Patents [OSTI]

    Conti, Ronald S.; Lazzara, Charles P.

    1995-01-01

    The seal is a lightweight, inflatable, bag which may be inflated by a portable air generator and is used to seal a burning mine passage. A collapsible tube-like aperture extends through the seal and allows passage of high expansion foam through the seal in a feed tube. The foam fills the passageway and extinguishes the fire. In other embodiments, the feed tubes incorporate means to prevent collapse of the aperture. In these embodiments a shroud connects the feed tube to a foam generator. This seal allows creation of a high expansion foam fire fighting barrier even in upward sloping passages.

  9. Why We Fight -- Celebrating Women's Equality Day | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why We Fight -- Celebrating Women's Equality Day August 26, 2013 - 12:07pm Addthis Our ... we watch more women than men go to college, excel academically and enter the labor pool. ...

  10. Iran Thomas Auditorium, 8600 Fighting Cancer with Nanoparticle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 13, 2011 4:00 pm Iran Thomas Auditorium, 8600 Fighting Cancer with Nanoparticle Medicines Mark E. Davis Chemical Engineering California Institute of Technology CNMS D D I I...

  11. DOE Laboratories Help Develop Promising New Cancer Fighting Drug,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vemurafenib | Department of Energy Laboratories Help Develop Promising New Cancer Fighting Drug, Vemurafenib DOE Laboratories Help Develop Promising New Cancer Fighting Drug, Vemurafenib August 18, 2011 - 1:03pm Addthis Powerful X-Rays Enable Development of Successful Treatment for Melanoma and Other Life-Threatening Diseases WASHINGTON, DC - Powerful X-ray technology developed at the U.S. Department of Energy's (DOE's) national laboratories is revealing new insights into diseases ranging

  12. EECBG Success Story: Saving Gas While Fighting Crime in Tallahassee |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Gas While Fighting Crime in Tallahassee EECBG Success Story: Saving Gas While Fighting Crime in Tallahassee March 20, 2012 - 9:16am Addthis Police cars in Tallahassee, FL are using EECBG funding from the Recovery Act to reduce idle time and save fuel and taxpayer money. | Courtesy of Tallahassee Police Department Police cars in Tallahassee, FL are using EECBG funding from the Recovery Act to reduce idle time and save fuel and taxpayer money. | Courtesy of Tallahassee

  13. Data Association and Bullet Tracking Algorithms for the Fight Sight Experiment

    SciTech Connect (OSTI)

    Breitfeller, E; Roberts, R

    2005-10-07

    Previous LLNL investigators developed a bullet and projectile tracking system over a decade ago. Renewed interest in the technology has spawned research that culminated in a live-fire experiment, called Fight Sight, in September 2005. The experiment was more complex than previous LLNL bullet tracking experiments in that it included multiple shooters with simultaneous fire, new sensor-shooter geometries, large amounts of optical clutter, and greatly increased sensor-shooter distances. This presentation describes the data association and tracking algorithms for the Fight Sight experiment. Image processing applied to the imagery yields a sequence of bullet features which are input to a data association routine. The data association routine matches features with existing tracks, or initializes new tracks as needed. A Kalman filter is used to smooth and extrapolate existing tracks. The Kalman filter is also used to back-track bullets to their point of origin, thereby revealing the location of the shooter. It also provides an error ellipse for each shooter, quantifying the uncertainty of shooter location. In addition to describing the data association and tracking algorithms, several examples from the Fight Sight experiment are also presented.

  14. National Flood Insurance Act | Open Energy Information

    Open Energy Info (EERE)

    the Federal Insurance Administration and made flood insurance available for the first time. The Flood Disaster Protection Act of 1973 made the purchase of flood insurance...

  15. PHOTOS: 11 Carbon-Fighting Energy Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHOTOS: 11 Carbon-Fighting Energy Technologies PHOTOS: 11 Carbon-Fighting Energy Technologies April 22, 2016 - 10:15am Addthis SCALING NEW HEIGHTS WITH WIND ENERGY 1 of 11 SCALING NEW HEIGHTS WITH WIND ENERGY Wind is here to stay as a mainstream power source in the United States, providing 4.4 percent of total electricity generation. As of 2014, there were more than 65,000 megawatts of utility-scale wind power deployed across 39 states -- enough to generate electricity for more than 16 million

  16. 11 Carbon-Fighting Energy Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Carbon-Fighting Energy Technologies 11 Carbon-Fighting Energy Technologies Addthis SCALING NEW HEIGHTS WITH WIND ENERGY 1 of 11 SCALING NEW HEIGHTS WITH WIND ENERGY Wind is here to stay as a mainstream power source in the United States, providing 4.4 percent of total electricity generation. As of 2014, there were more than 65,000 megawatts of utility-scale wind power deployed across 39 states -- enough to generate electricity for more than 16 million households. This upswing, thanks in part to

  17. Fighting with South-Facing Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fighting with South-Facing Windows Fighting with South-Facing Windows June 13, 2011 - 3:20pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory You know, back when it was cold out (and, this being Colorado, that was last month), my south-facing windows were awesome. They let in tons of light and kept the entire place snug and warm. I barely even needed to break out the blankets! But Colorado's weather likes to mess with you, so it recently decided that it was done with

  18. Fighting fire with fire | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fighting fire with fire Fighting fire with fire Posted: July 30, 2015 - 3:46pm Y-12 fire fighter Capt. John Fife drags a 165-pound dummy for 100 feet to simulate a fire victim rescue as part of Fit for Duty training. As surprising as this fact may be, heart attack and stroke cause more than half of all line-of-duty firefighter deaths. To counter this trend, fire departments nationally - including Pantex and Y-12 fire departments - have adopted occupational fitness programs. The percentage of

  19. Using Nanotechnology to Fight Friction and Wear | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Using Nanotechnology to Fight Friction and Wear Tiny diamonds wrapped in graphene help achieve "superlubricity," in which friction drops to near zero. Graphene "nanoscrolls" could greatly reduce friction in engines and other machines. PDF icon diamond-graphene_lubricants

  20. Thanks to Our Neighbors in Fighting Fire on INL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Textiles (2010 MECS) Textiles (2010 MECS) Manufacturing Energy and Carbon Footprint for Textiles Sector (NAICS 313-316) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Textiles More Documents & Publications MECS 2006 - Textiles

    Thanks to Our Neighbors in Fighting Fire on INL Idaho Bureau of Homeland Security view of the Twin Buttes Wildland fire

  1. LANL completes high-priority flood and erosion control work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab completes priority erosion controls LANL completes high-priority flood and erosion control work Crews installed 600 feet of water diversion barriers and removed more than 1,200 cubic yards of sediment in anticipation of flash flooding. July 11, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics

  2. Improving Gas Flooding Efficiency

    SciTech Connect (OSTI)

    Reid Grigg; Robert Svec; Zheng Zeng; Alexander Mikhalin; Yi Lin; Guoqiang Yin; Solomon Ampir; Rashid Kassim

    2008-03-31

    This study focuses on laboratory studies with related analytical and numerical models, as well as work with operators for field tests to enhance our understanding of and capabilities for more efficient enhanced oil recovery (EOR). Much of the work has been performed at reservoir conditions. This includes a bubble chamber and several core flood apparatus developed or modified to measure interfacial tension (IFT), critical micelle concentration (CMC), foam durability, surfactant sorption at reservoir conditions, and pressure and temperature effects on foam systems.Carbon dioxide and N{sub 2} systems have been considered, under both miscible and immiscible conditions. The injection of CO2 into brine-saturated sandstone and carbonate core results in brine saturation reduction in the range of 62 to 82% brine in the tests presented in this paper. In each test, over 90% of the reduction occurred with less than 0.5 PV of CO{sub 2} injected, with very little additional brine production after 0.5 PV of CO{sub 2} injected. Adsorption of all considered surfactant is a significant problem. Most of the effect is reversible, but the amount required for foaming is large in terms of volume and cost for all considered surfactants. Some foams increase resistance to the value beyond what is practical in the reservoir. Sandstone, limestone, and dolomite core samples were tested. Dissolution of reservoir rock and/or cement, especially carbonates, under acid conditions of CO2 injection is a potential problem in CO2 injection into geological formations. Another potential change in reservoir injectivity and productivity will be the precipitation of dissolved carbonates as the brine flows and pressure decreases. The results of this report provide methods for determining surfactant sorption and can be used to aid in the determination of surfactant requirements for reservoir use in a CO{sub 2}-foam flood for mobility control. It also provides data to be used to determine rock permeability changes during CO{sub 2} flooding due to saturation changes, dissolution, and precipitation.

  3. Federal Flood Risk Management Standard

    Broader source: Energy.gov [DOE]

    The Federal Flood Risk Management Standard builds upon Executive Order (E.O.) 11988 and is to be incorporated into existing Federal department and agency processes used to implement E.O. 11988.

  4. Oilfield flooding polymer

    DOE Patents [OSTI]

    Martin, Fred D.; Hatch, Melvin J.; Shepitka, Joel S.; Donaruma, Lorraine G.

    1986-01-01

    A monomer, polymers containing the monomer, and the use of the polymer in oilfield flooding is disclosed. The subject monomer is represented by the general formula: ##STR1## wherein: n is an integer from 0 to about 4; m is an integer from 0 to about 6; a is an integer equal to at least 1 except where m is equal to 0, a must equal 0 and where m is equal to 1, a must equal 0 or 1; p is an integer from 2 to about 10; b is an integer equal to at least 1 and is of sufficient magnitude that the ratio b/p is at least 0.2; and q is an integer from 0 to 2. The number of hydroxy groups in the monomer is believed to be critical, and therefore the sum of (a+b) divided by the sum (m+p) should be at least 0.2. The moieties linked to the acrylic nitrogen can be joined to provide a ringed structure.

  5. Flood Disaster Protection Act of 1973 | Open Energy Information

    Open Energy Info (EERE)

    Flood Disaster Protection Act of 1973Legal Abstract The National Flood Insurance Program (NFIP) is administered primarily under two statutes: the National Flood...

  6. Federal Flood Risk Management Standard (2015)

    Broader source: Energy.gov [DOE]

    The Federal Flood Risk Management Standard (FFRMS (2015)) expands upon E.O. 11988, Floodplain Management, (1977) by directing that federal agencies use a higher vertical flood elevation and...

  7. Los Alamos plants willows for flood recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants willows Los Alamos plants willows for flood recovery The Laboratory's Corrective Actions Program (CAP) planted nearly 10,000 willows to help preserve the Pueblo Canyon wetland after damage from September 2013 floods. June 18, 2014 In a flood recovery effort designed to stop further erosion in Pueblo Canyon, in April, Los Alamos planted nearly 10,000 willows along the stream banks surrounding the wetland. In a flood recovery effort designed to stop further erosion in Pueblo Canyon, Los

  8. National Institute for Petroleum and Energy Research quarterly technical report, July 1--September 30, 1992. Volume 2, Energy production research

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Volume II includes: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  9. A NEW GENERATION CHEMICAL FLOODING SIMULATOR

    SciTech Connect (OSTI)

    Gary A. Pope; Kamy Sepehrnoori; Mojdeh Delshad

    2005-01-01

    The premise of this research is that a general-purpose reservoir simulator for several improved oil recovery processes can and should be developed so that high-resolution simulations of a variety of very large and difficult problems can be achieved using state-of-the-art algorithms and computers. Such a simulator is not currently available to the industry. The goal of this proposed research is to develop a new-generation chemical flooding simulator that is capable of efficiently and accurately simulating oil reservoirs with at least a million gridblocks in less than one day on massively parallel computers. Task 1 is the formulation and development of solution scheme, Task 2 is the implementation of the chemical module, and Task 3 is validation and application. In this final report, we will detail our progress on Tasks 1 through 3 of the project.

  10. United States and Mexico to Partner in Fight Against Nuclear Smuggling |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mexico to Partner in Fight Against Nuclear Smuggling United States and Mexico to Partner in Fight Against Nuclear Smuggling April 16, 2007 - 12:36pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman and Mexican Minister of Finance and Public Credit Agustin Carstens today signed an agreement to help detect and prevent the smuggling of nuclear and other radioactive material. Under the Megaports agreement, the Department of Energy's National Nuclear

  11. Flooded First Street at Y-12 Plant | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flooded First Street at ... Flooded First Street at Y-12 Plant Vehicles negotiate flooded First Street at Y-12 Plant

  12. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil ...

  13. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil target for proof-of-concept actinium-225 production In addition to our routine isotope products, the LANL Isotope Program is focused on developing the next suite of isotopes and services to meet the Nation's emerging needs. The LANL Isotope Program's R&D strategy is focused on four main areas (see

  14. Irrigation, Navigation Flood Control and Recreation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irrigation,-Navigation-Flood-Control-and-Recreation- Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand...

  15. FEMA - National Flood Insurance Program Elevation Certificate...

    Open Energy Info (EERE)

    and Instructions Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: FEMA - National Flood Insurance Program Elevation Certificate and Instructions...

  16. Laboratory methods for enhanced oil recovery core floods

    SciTech Connect (OSTI)

    Robertson, E.P.; Bala, G.A.; Thomas, C.P.

    1994-03-01

    Current research at the Idaho National Engineering Laboratory (INEL) is investigating microbially enhanced oil recovery (MEOR) systems for application to oil reservoirs. Laboratory corefloods are invaluable in developing technology necessary for a field application of MEOR. Methods used to prepare sandstone cores for experimentation, coreflooding techniques, and quantification of coreflood effluent are discussed in detail. A technique to quantify the small volumes of oil associated with laboratory core floods is described.

  17. Research

    SciTech Connect (OSTI)

    1999-10-01

    Subjects covered in this section are: (1) PCAST panel promotes energy research cooperation; (2) Letter issued by ANS urges funding balance in FFTF restart consideration and (3) FESAC panel releases report on priorities and balance.

  18. Geek-Up[04.01.2011]: A Discovery to Fight Cancer and Other Diseases |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4.01.2011]: A Discovery to Fight Cancer and Other Diseases Geek-Up[04.01.2011]: A Discovery to Fight Cancer and Other Diseases April 1, 2011 - 5:52pm Addthis Two structures of the Mre11-Rad50 complex were solved independently and overlaid, further revealing a flexible hinge in Rad50 near the Mre11 binding site | Courtesy of Lawrence Berkeley National Laboratory Two structures of the Mre11-Rad50 complex were solved independently and overlaid, further revealing a flexible

  19. How the U.S. and Canada are Fighting Climate Change Together | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy the U.S. and Canada are Fighting Climate Change Together How the U.S. and Canada are Fighting Climate Change Together March 10, 2016 - 4:57pm Addthis President Obama and Canadian Prime Minister Justin Trudeau at the White House in Washington. | Photo courtesy of the Government of Canada. President Obama and Canadian Prime Minister Justin Trudeau at the White House in Washington. | Photo courtesy of the Government of Canada. Melanie A. Kenderdine Melanie A. Kenderdine Director of

  20. #YearOfAction: Four Ways the Energy Department is Fighting Climate Change |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy YearOfAction: Four Ways the Energy Department is Fighting Climate Change #YearOfAction: Four Ways the Energy Department is Fighting Climate Change January 30, 2014 - 11:00am Addthis "Climate change is a fact." Recap this moment -- and others about climate change -- from President Obama's 2014 State of the Union address in the video above. | Video compilation by Matty Greene, Energy Department. Marissa Newhall Marissa Newhall Director of Digital Strategy and

  1. Determining Hydrological Controls on Flood Frequency | U.S. DOE...

    Office of Science (SC) Website

    Aerial view of homes inundated with water following a 2011 flood in Minot, N.D. ... to better understand the relationship between annual water balance and flood frequency. ...

  2. Vermont Flood Hazard Area and River Corridor Rule | Open Energy...

    Open Energy Info (EERE)

    compliance with National Flood Insurance Program (NFIP) criteria and enhance flood resilience. (b) Avoid and minimize the loss of life and property, the disruption of commerce,...

  3. National Institute for Petroleum and Energy Research quarterly technical report, July 1--September 30, 1992

    SciTech Connect (OSTI)

    Gall, Bonnie L.; Liave, Feliciano M.; Noll, Leo A.

    1992-12-01

    Volume II includes: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  4. DOE Laboratories Help Develop Promising New Cancer Fighting Drug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... In showing the structures of diseased and disease-causing molecular machines at their ... ranging from advanced energy research and materials science to biology and medicine. ...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2007 Floods Not a Complete Washout in U.S. Great Plains Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Lamb PJ, DH Portis, and A Zangvil. 2012. "Investigation of Large-Scale Atmospheric Moisture Budget and Land Surface Interactions over U.S. Southern Great Plains including for CLASIC (June 2007)." Journal of

  6. Development of cost-effective surfactant flooding technology. Final report

    SciTech Connect (OSTI)

    Pope, G.A.; Sepehrnoori, K.

    1996-11-01

    Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also available in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.

  7. MSHA (Mine Safety and Health Administration) approved mine rescue - training module (coal): fires, fire fighting, and explosions. Mine rescue team series

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Mine rescue teams frequently must fight fires and guard against the propagation of fires or explosions during a rescue and recovery operation. The team's ability to fight fires depends a great deal on hands-on experience with different fire fighting agents and equipment. The team's work includes an assessment of fire conditions, mine fire gases and other potential hazards associated with fire fighting activity. This training module covers the underlying principles of the fire triangle and the different methods for controlling, containing and extinguishing fires in a mine. The manual also covers fire-fighting equipment, considerations involved in a sealing operation and the cause-effect of explosions.

  8. Improvements in fast-response flood modeling: desktop parallel computing and domain tracking

    SciTech Connect (OSTI)

    Judi, David R; Mcpherson, Timothy N; Burian, Steven J

    2009-01-01

    It is becoming increasingly important to have the ability to accurately forecast flooding, as flooding accounts for the most losses due to natural disasters in the world and the United States. Flood inundation modeling has been dominated by one-dimensional approaches. These models are computationally efficient and are considered by many engineers to produce reasonably accurate water surface profiles. However, because the profiles estimated in these models must be superimposed on digital elevation data to create a two-dimensional map, the result may be sensitive to the ability of the elevation data to capture relevant features (e.g. dikes/levees, roads, walls, etc...). Moreover, one-dimensional models do not explicitly represent the complex flow processes present in floodplains and urban environments and because two-dimensional models based on the shallow water equations have significantly greater ability to determine flow velocity and direction, the National Research Council (NRC) has recommended that two-dimensional models be used over one-dimensional models for flood inundation studies. This paper has shown that two-dimensional flood modeling computational time can be greatly reduced through the use of Java multithreading on multi-core computers which effectively provides a means for parallel computing on a desktop computer. In addition, this paper has shown that when desktop parallel computing is coupled with a domain tracking algorithm, significant computation time can be eliminated when computations are completed only on inundated cells. The drastic reduction in computational time shown here enhances the ability of two-dimensional flood inundation models to be used as a near-real time flood forecasting tool, engineering, design tool, or planning tool. Perhaps even of greater significance, the reduction in computation time makes the incorporation of risk and uncertainty/ensemble forecasting more feasible for flood inundation modeling (NRC 2000; Sayers et al. 2000).

  9. gas_flooding | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    illustrates a nitrogen-CO2 flood. This and other cross-sectional illustrations of EOR methods that are in the public domain are available free from NETL. photo of a CO2...

  10. Aqueous flooding methods for tertiary oil recovery

    DOE Patents [OSTI]

    Peru, Deborah A.

    1989-01-01

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  11. Oil recovery by nitrogen flooding. Final report

    SciTech Connect (OSTI)

    Ronde, H.; Hagoort, J.

    1992-03-01

    The general objective of the project is the Establishment of technical and economic design criteria and evaluation tools for oil and condensate recovery by Nitrogen Injection. The main objective has been divided into the following specific objectives: Determination of the effect of oil composition on the oil recovery; Investigation of the pros and cons of slim-tube experiments as a tool for the design and evaluation of nitrogen flooding; Measurement and calculation of the minimum miscibility pressures (MMP) for nitrogen flooding.

  12. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration Isotope production agreement benefits medical patients Thursday, March 19, 2015 - 12:24pm Medical patients, both locally and potentially nationwide, should be the beneficiaries of the first-ever public-private partnership agreement between National Security Technologies, LLC (NSTec), and Henderson, Nevada-based Global Medical Isotope Systems, LLC (GMIS). The agreement on research and development aims to enable production of an essential radioactive isotope used in

  13. Why We Fight -- Celebrating Women's Equality Day | Department of Energy

    Energy Savers [EERE]

    Energy Whole Algae Hydrothermal Liquefaction Technology Pathway Whole Algae Hydrothermal Liquefaction Technology Pathway This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks. PDF icon

  14. [National Institute for Petroleum and Energy Research] 1991 annual report, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This Annual Report provides research accomplishments, publications, and presentations resulting from the FY91 research conducted under the following Base Program projects: reservoir assessment and characterization; TORIS research support; three-phase relative permeability; imaging techniques applied to the study of fluids in porous media; development of improved microbial flooding methods; development of improved surfactant flooding methods; development of improved alkaline flooding methods; development of improved mobility- control methods; gas flooding; mobility control and sweep improvement in gas flooding; thermal processes for light oil recovery; thermal processes for heavy oil recovery; thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom- containing compounds; and development of analytical methodology for analysis of heavy crudes.

  15. LANL closes road, trails for safety reasons; flooding and erosion control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    work under way Road, trails closed for safety reasons LANL closes road, trails for safety reasons; flooding and erosion control work under way Closure is in response to the increased fire risk and danger of flash flooding. July 8, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  16. Analysis of Flood Hazards for the Materials and Fuels Complex at the Idaho National Laboratory Site

    SciTech Connect (OSTI)

    Skaggs, Richard; Breithaupt, Stephen A.; Waichler, Scott R.; Kim, Taeyun; Ward, Duane L.

    2010-11-01

    Researchers at Pacific Northwest National Laboratory conducted a flood hazard analysis for the Materials and Fuels Complex (MFC) site located at the Idaho National Laboratory (INL) site in southeastern Idaho. The general approach for the analysis was to determine the maximum water elevation levels associated with the design-basis flood (DBFL) and compare them to the floor elevations at critical building locations. Two DBFLs for the MFC site were developed using different precipitation inputs: probable maximum precipitation (PMP) and 10,000 year recurrence interval precipitation. Both precipitation inputs were used to drive a watershed runoff model for the surrounding upland basins and the MFC site. Outflows modeled with the Hydrologic Engineering Centers Hydrologic Modeling System were input to the Hydrologic Engineering Centers River Analysis System hydrodynamic flood routing model.

  17. Collaboration drives achievement in protein structure research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein structure research Collaboration drives achievement in protein structure research By tracking down how bacterial defense systems work, the scientists can potentially fight infectious diseases and genetic disorders. September 15, 2014 Thomas Terwilliger Thomas Terwilliger Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "It is tremendously exciting working with researchers around the world, helping them apply the software and algorithms that we have developed to

  18. Fuel cell flooding detection and correction

    DOE Patents [OSTI]

    DiPierno Bosco, Andrew; Fronk, Matthew Howard

    2000-08-15

    Method and apparatus for monitoring an H.sub.2 -O.sub.2 PEM fuel cells to detect and correct flooding. The pressure drop across a given H.sub.2 or O.sub.2 flow field is monitored and compared to predetermined thresholds of unacceptability. If the pressure drop exists a threshold of unacceptability corrective measures are automatically initiated.

  19. [National Institute for Petroleum and Energy Research] quarterly technical report, October 1--December 31, 1992. Volume 2, Energy production research

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    Accomplishments for the past quarter are described for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  20. Evaluation and Enhancement of Carbon Dioxide Flooding Through Sweep Improvement

    SciTech Connect (OSTI)

    Hughes, Richard

    2009-09-30

    Carbon dioxide displacement is a common improved recovery method applied to light oil reservoirs (30-45{degrees}API). The economic and technical success of CO{sub 2} floods is often limited by poor sweep efficiency or large CO{sub 2} utilization rates. Projected incremental recoveries for CO{sub 2} floods range from 7% to 20% of the original oil in place; however, actual incremental recoveries range from 9% to 15% of the original oil in place, indicating the potential for significant additional recoveries with improved sweep efficiency. This research program was designed to study the effectiveness of carbon dioxide flooding in a mature reservoir to identify and develop methods and strategies to improve oil recovery in carbon dioxide floods. Specifically, the project has focused on relating laboratory, theoretical and simulation studies to actual field performance in a CO{sub 2} flood in an attempt to understand and mitigate problems of areal and vertical sweep efficiency. In this work the focus has been on evaluating the status of existing swept regions of a mature CO{sub 2} flood and developing procedures to improve the design of proposed floods. The Little Creek Field, Mississippi has been studied through laboratory, theoretical, numerical and simulation studies in an attempt to relate performance predictions to historical reservoir performance to determine sweep efficiency, improve the understanding of the reservoir response to CO{sub 2} injection, and develop scaling methodologies to relate laboratory data and simulation results to predicted reservoir behavior. Existing laboratory information from Little Creek was analyzed and an extensive amount of field data was collected. This was merged with an understanding of previous work at Little Creek to generate a detailed simulation study of two portions of the field ‚Äď the original pilot area and a currently active part of the field. This work was done to try to relate all of this information to an understanding of where the CO{sub 2} went or is going and how recovery might be improved. New data was also generated in this process. Production logs were run to understand where the CO{sub 2} was entering the reservoir related to core and log information and also to corroborate the simulation model. A methodology was developed and successfully tested for evaluating saturations in a cased-hole environment. Finally an experimental and theoretical program was initiated to relate laboratory work to field scale design and analysis of operations. This work found that an understanding of vertical and areal heterogeneity is crucial for understanding sweep processes as well as understanding appropriate mitigation techniques to improve the sweep. Production and injection logs can provide some understanding of that heterogeneity when core data is not available. The cased-hole saturation logs developed in the project will also be an important part of the evaluation of vertical heterogeneity. Evaluation of injection well/production well connectivities through statistical or numerical techniques were found to be as successful in evaluating CO{sub 2} floods as they are for waterfloods. These are likely to be the lowest cost techniques to evaluate areal sweep. Full field simulation and 4D seismic techniques are other possibilities but were beyond the scope of the project. Detailed simulation studies of pattern areas proved insightful both for doing a ‚Äúpost-mortem‚ÄĚ analysis of the pilot area as well as a late-term, active portion of the Little Creek Field. This work also evaluated options for improving sweep in the current flood as well as evaluating options that could have been successful at recovering more oil. That simulation study was successful due to the integration of a large amount of data supplied by the operator as well as collected through the course of the project. While most projects would not have the abundance of data that Little Creek had, integration of the available data continues to be critical for both the design and evaluation stages of CO{sub 2} floods. For cases where data availability is limited, running injection/production logs and/or running cased-hole saturation tools to provide an indication of vertical heterogeneity will be important.

  1. Kids vs. Mercury: Food fight at the creek | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kids vs. Mercury: Food ... Kids vs. Mercury: Food fight at the creek Posted: May 7, 2014 - 5:26pm | Y-12 Report | Volume 10, Issue 2 | 2014 For years Y-12 has dealt with environmental mercury contamination from historical manufacturing processes. The potential for mercury to seep into nearby streams and harm aquatic life is a continuing issue. To combat the issue, Y-12 recently opened its doors and a local creek to sharp, energetic sixth-grade innovators who have developed a proprietary

  2. Responding to Terrorist Incidents in Your Community: Flammable-Liquid Fire Fighting Techniques for Municipal and Rural Firefighters

    SciTech Connect (OSTI)

    Denise Baclawski

    2010-03-08

    The University of Nevada, Reno Fire Science Academy (FSA) applied for grant funding to develop and deliver programs for municipal, rural, and volunteer firefighters. The FSA specializes in preparing responders for a variety of emergency events, including flammable liquid fires resulting from accidents, intentional acts, or natural disasters. Live fire training on full scale burnable props is the hallmark of FSA training, allowing responders to practice critical skills in a realistic, yet safe environment. Unfortunately, flammable liquid live fire training is often not accessible to municipal, rural, or volunteer firefighters due to limited department training budgets, even though most department personnel will be exposed to flammable liquid fire incidents during the course of their careers. In response to this training need, the FSA developed a course during the first year of the grant (Year One), Responding to Terrorist Incidents in Your Community: Flammable-Liquid Fire Fighting Techniques for Municipal and Rural Firefighters. During the three years of the grant, a total of 2,029 emergency responders received this training. In Year Three, two new courses, a train-the-trainer for Responding to Terrorist Incidents in Your Community and Management of Large-Scale Disasters for Public Officials were developed and pilot tested during the Real-World Disaster Management Conference held at the FSA in June of 2007. Two research projects were conducted during Years Two and Three. The first, conducted over a two year period, evaluated student surveys regarding the value of the flammable liquids training received. The second was a needs assessment conducted for rural Nevada. Both projects provided important feedback and a basis for curricula development and improvements.

  3. ORNL research could lead to new treatment for Parkinson's

    ScienceCinema (OSTI)

    Boyd Evans

    2010-01-08

    Parkinson's disease can be debilitating, and right now, there is no cure. But soon, there could be one more way doctors can help fight off the symptoms of that disease, along with stroke and brain tumors. It's all because of research conducted over the past five years at the Oak Ridge National Laboratory.

  4. ORNL research could lead to new treatment for Parkinson's

    SciTech Connect (OSTI)

    Boyd Evans

    2009-08-12

    Parkinson's disease can be debilitating, and right now, there is no cure. But soon, there could be one more way doctors can help fight off the symptoms of that disease, along with stroke and brain tumors. It's all because of research conducted over the past five years at the Oak Ridge National Laboratory.

  5. LANL closes road, trails for safety reasons; flooding and erosion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    closed for safety reasons LANL closes road, trails for safety reasons; flooding and erosion control work under way Closure is in response to the increased fire risk and...

  6. DOE specification: Flooded-type lead-acid storage batteries

    SciTech Connect (OSTI)

    1996-08-01

    This document contains a ``fill-in-the-blanks`` guide specification for procurement of flooded-type lead-acid storage batteries, for uninterruptible power supply applications.

  7. Reviewing the success of intentional flooding of the Grand Canyon

    SciTech Connect (OSTI)

    Wirth, B.D.

    1997-04-01

    A description and evaluation of the results of an intentional flooding experiment at the Grand Canyon are described. The purpose of the 7-day release of flood waters from the Glen Canyon Dam was to determine if managed floods have the ability to predictably restore the riverine environment. A summary of environmental conditions leading to the experiment is provided and flood results are listed. Initial results showed significant improvement in the size and number of the river`s beaches, creation of backwater habitat for endangered species, and no adverse impact to the trout fishery, Indian cultural sites, and other resources.

  8. Vermont Flood Hazard Area and River Corridor Protection Procedure...

    Open Energy Info (EERE)

    other jurisdictions on the regulatory measures necessary to avoid the endangerment of the health, safety, and welfare of the public and of riparian owners during flooding2; (5)...

  9. 05679_ChemFlood | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bridging the Gap between Chemical Flooding and Independent Oil Producers Last Reviewed 12152012 DE-NT0005679 Goal The goal of this project is to design efficient chemical ...

  10. Vermont Flood Hazard Area and River Corridor General Permit Applicatio...

    Open Energy Info (EERE)

    the developer should provide a map generated from the ANR Natural Resources Atlas showing the river corridor and flood hazard area; A written description of the...

  11. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis

    Broader source: Energy.gov [DOE]

    Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by B&W Technical Services, Pantex and Pro2Serve October, 2011

  12. Vermont Agency of Natural Resources Flood Hazard Area & River...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Vermont Agency of Natural Resources Flood Hazard Area & River Corridor...

  13. FEMA - National Flood Insurance Program webpage | Open Energy...

    Open Energy Info (EERE)

    webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: FEMA - National Flood Insurance Program webpage Abstract This webpage provides information on...

  14. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis

    Office of Environmental Management (EM)

    Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by and October, 2011 Presentation Outline I. Introductions II. Pantex III. 10 Year Update IV. Final ...

  15. [National Institute for Petroleum and Energy Research] quarterly technical report for April--June 30, 1993. Volume 2, Energy Production Research

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    Progress reports are presented for: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology. Chemical flooding includes; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; and surfactant-enhanced alkaline flooding field project. Gas displacement research covers: gas flooding performance prediction improvement; and mobility control, profile modification, and sweep improvement in gas flooding. Thermal recovery research includes: thermal processes for light oil recovery; thermal processes for heavy oil recovery; feasibility study of heavy oil recovery in the Midcontinent region: Oklahoma, Kansas, and Missouri; simulation analysis of steam-foam projects; and organization of UNITAR 6th International Conference on Heavy Crude and Tar Sands. Geoscience technology covers: three-phase relative permeability; and imaging techniques applied to the study of fluids in porous media. Resource assessment technology includes: reservoir assessment and characterization; TORIS research support; upgrade the BPO Crude Oil Analysis Data Base; compilation and analysis of outcrop data from the Muddy and Almond Formations; and horizontal well production from fractured reservoir. Microbial Technology covers: development of improved microbial flooding methods; and microbial-enhanced waterflooding field project.

  16. September 2013 Storm and Flood Assessment Report

    SciTech Connect (OSTI)

    Walterscheid, J. C.

    2015-12-21

    Between September 10 and 17, 2013, New Mexico and Colorado received a historically large amount of precipitation (Figure 1). This report assesses the damage caused by flooding along with estimated costs to repair the damage at Los Alamos National Laboratory (the Laboratory) on the Pajarito Plateau. Los Alamos County, New Mexico, received between 200% and 600% of the normal precipitation for this time period (Figure 2), and the Laboratory received approximately 450% percent of its average precipitation for September (Figure 3). As a result, the Laboratory was inundated with rain, including the extremely large, greater-than-1000-yr return period event that occurred between September 12 and 13 (Table 1). With saturated antecedent soil conditions from the September 10 storm, when the September 12 to September 13 storm hit, the flooding was disastrous to the Laboratory’s environmental infrastructure, including access roads, gage stations, watershed controls, control measures installed under the National Pollutant Discharge Elimination System Permit (hereafter, the Individual Permit), and groundwater monitoring wells (Figures 4 through 21). From September 16 to October 1, 2013, the Laboratory completed field assessments of environmental infrastructure and generated descriptions and estimates of the damage, which are presented in spreadsheets in Attachments 1 to 4 of this report. Section 2 of this report contains damage assessments by watershed, including access roads, gage stations, watershed controls, and control measures installed under the Individual Permit. Section 3 contains damage assessments of monitoring wells by the groundwater monitoring groups as established in the Interim Facility-Wide Groundwater Monitoring Plan for Monitoring Year 2014. Section 4 addresses damage and loss of automated samplers. Section 5 addresses sediment sampling needs, and Section 6 is the summary of estimated recovery costs from the significant rain and flooding during September 2013.

  17. Argonne National Laboratory Research Highlights 1988

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The research and development highlights are summarized. The world's brightest source of X-rays could revolutionize materials research. Test of a prototype insertion device, a key in achieving brilliant X-ray beams, have given the first glimpse of the machine's power. Superconductivity research focuses on the new materials' structure, economics and applications. Other physical science programs advance knowledge of material structures and properties, nuclear physics, molecular structure, and the chemistry and structure of coal. New programming approaches make advanced computers more useful. Innovative approaches to fighting cancer are being developed. More experiments confirm the passive safety of Argonne's Integral Fast Reactor concept. Device simplifies nuclear-waste processing. Advanced fuel cell could provide better mileage, more power than internal combustion engine. New instruments find leaks in underground pipe, measure sodium impurities in molten liquids, detect flaws in ceramics. New antibody findings may explain ability to fight many diseases. Cadmium in cigarettes linked to bone loss in women. Programs fight deforestation in Nepal. New technology could reduce acid rain, mitigate greenhouse effect, enhance oil recovery. Innovative approaches transfer Argonne-developed technology to private industry. Each year Argonne educational programs reach some 1200 students.

  18. [National Institute for Petroleum and Energy Research] quarterly technical report, October 1--December 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    Accomplishments for the past quarter are described for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  19. National Institute for Petroleum and Energy Research annual report for October 1, 1991--September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This Annual Report provides research accomplishments, publications, resulting from the FY92 research conducted under the following Base Program projects: reservoir assessment and characterization; TORIS research support; three-phase relative permeability; imaging techniques applied to the study of fluids in porous media; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; development of improved microbial flooding methods; gas flooding performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; thermal processes for light oil recovery; thermal processes for heavy oil recovery; thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds; and development of analytical methodology for analysis of heavy crudes.

  20. War without end. Michel T. Halbouty's fight for American energy security

    SciTech Connect (OSTI)

    Donahue, J.

    1987-01-01

    In these pages are the drama and tension of Halbouty's role as ''Ronald Reagan's Energy Guru'' - his leadership of Candidate Reagan's Energy Policy Advisory group and President-Elect Reagan's Transition Team on Energy. His creation and direction of the Circum-Pacific Council for Energy and Mineral Resources, an organization that has advanced exploration and development of the total energy and mineral wealth of the nations fronting the Pacific, and is credited with creating a rapport between them that the U.S. State Department could not have established. His work on behalf of Indian tribes whose oil lands had been systematically plundered for 20 years. His fight against oil companies' ''Retrenchment'' programs and the so-called ''Corporate Raiders.'' His struggle against an ''Oil Import Tax,'' which he reasoned would be detrimental to America's economy and security. His strong advocacy of his plan to make America energy self-sufficient and free her from OPEC bondage. His enduring affection for and the benefactions of his Alma Mater, Texas A and M University, and students he found worthy of support. His confrontations with and his opinions of the world's ''movers and shakers'' and their varying philosophies. And a potpourri of thoughts, ideas and sentiments of an American original who became a legend in his own time.

  1. Quality assurance flood source and method of making

    DOE Patents [OSTI]

    Fisher, Darrell R [Richland, WA; Alexander, David L [West Richland, WA; Satz, Stanley [Surfside, FL

    2002-12-03

    Disclosed is a is an improved flood source, and method of making the same, which emits an evenly distributed flow of energy from a gamma emitting radionuclide dispersed throughout the volume of the flood source. The flood source is formed by filling a bottom pan with a mix of epoxy resin with cobalt-57, preferably at 10 to 20 millicuries and then adding a hardener. The pan is secured to a flat, level surface to prevent the pan from warping and to act as a heat sink for removal of heat from the pan during the curing of the resin-hardener mixture.

  2. New Executive Order Establishes a Federal Flood Risk Management Standard

    Broader source: Energy.gov [DOE]

    President Obama signed Executive Order (E.O.) 13690, Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input, on January 30, 2015.

  3. New Executive Order Establishes a Federal Flood Risk Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (E.O.) 13690, Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input, on January 30, 2015. The new E.O. ...

  4. Title 10 Chapter 45 Connecticut River Flood Control Compact ...

    Open Energy Info (EERE)

    5 Connecticut River Flood Control Compact Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 10 Chapter 45 Connecticut River...

  5. Willows Aid Flood Recovery in Los Alamos Desert

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. ‚Äď Los Alamos National Laboratory‚Äôs Associate Directorate of Environmental Programs (ADEP) has been busy with various flood recovery activities since last fall.¬†

  6. Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences:

    Office of Scientific and Technical Information (OSTI)

    Nashville, Tennessee (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences: Nashville, Tennessee Citation Details In-Document Search Title: Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences: Nashville, Tennessee Many cities are located at or near the confluence of streams where availability of water resources may be enhanced to sustain user needs while also posing an increased

  7. Flooding Experiments and Modeling for Improved Reactor Safety

    SciTech Connect (OSTI)

    Solmos, M., Hogan, K.J., VIerow, K.

    2008-09-14

    Countercurrent two-phase flow and ‚Äúflooding‚ÄĚ phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge line can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing.

  8. Polymer flood of the Rapdan pool

    SciTech Connect (OSTI)

    Pitts, M.J.; Surkalo, H.; Wyatt, K.; Campbell, T.A.

    1995-08-01

    A polymer-flood project in the Rapdan field is documented from laboratory design and numerical simulation to production performance and projected economics. The Rapdan field produces 10-mPa{center_dot}s oil from the Upper Shaunavon sand at a reservoir temperature of 55 C. Average permeability is 0.114 {mu}m{sup 2}, average porosity is 18%, and Dykstra-Parsons coefficient is 0.8. The field was discovered in 1953, and waterflood began in 1962. In January 1986, a polymer pilot was initiated in a portion of the field with a PV of 456 {times} 10{sup 4} m{sup 3}. The pilot consists of 13 producers and 5 injectors drilled on 162 {times} 10{sup 3}-m{sup 2} spacing. By December 1994, 43% PV, of a 21-mPa{center_dot}s polymer solution had been injected into a confined, central five spot (Wells 12-12 and 12-12A). The oil cut increased from a stable value of 8% during the waterflood to a peak value of 25%. The corresponding daily oil production increased from 8 to 28 m{sup 3}/d at an oil cut of 36%. Production rate has declined from 140 m{sup 3}/d in 1991 to 106 m{sup 3}/d in December 1994, with a corresponding oil-cut decline from 25% to 20%.

  9. POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING

    SciTech Connect (OSTI)

    Douglas Arnell; Malcolm Pitts; Jie Qi

    2004-11-01

    A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals in these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical-rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.

  10. Bridging the Gap between Chemical Flooding and Independent Oil Producers

    SciTech Connect (OSTI)

    Stan McCool; Tony Walton; Paul Whillhite; Mark Ballard; Miguel Rondon; Kaixu Song; Zhijun Liu; Shahab Ahmed; Peter Senior

    2012-03-31

    Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increased with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.

  11. ORISE Undergraduate Student Research Experiences: Christopher Tomkins-Tinch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Christopher Tomkins-Tinch Intern leverages data to support rapid response to biological threats Christopher Tomkins-Tinch Christopher Tomkins-Tinch's research conducted at Oak Ridge National Laboratory's Undergraduate Co-op program could help the U.S. government fight biological weapons of mass destruction. Click image to enlarge. In his spare time, Christopher Tomkins-Tinch is a do-it-yourselfer, who likes to take things apart. This past summer, he gained knowledge to help him put together the

  12. Case Studies of the ROZ CO2 Flood and the Combined ROZ/MPZ CO2 Flood at the Goldsmith Landreth Unit, Ector County, Texas. Using ''Next Generation'' CO2 EOR Technologies to Optimize the Residual Oil Zone CO2 Flood

    SciTech Connect (OSTI)

    Trentham, Robert C.; Melzer, L. Stephen; Kuuskraa, Vello; Koperna, George

    2015-06-30

    The technology for CO2 Enhanced Oil Recovery (CO2 EOR) has significantly advanced since the earliest floods were implemented in the 1970s. At least for the Permian Basin region of the U.S., the oil recovery has been now been extended into residual oil zones (ROZs) where the mobile fluid phase is water and immobile phase is oil. But the nature of the formation and fluids within the ROZs has brought some challenges that were not present when flooding the MPZs. The Goldsmith-Landreth project in the Permian Basin was intended to first identify the most pressing issues of the ROZs floods and, secondly, begin to address them with new techniques designed to optimize a flood that commingled the MPZ and the ROZ. The early phase of the research conducted considerable reservoir and fluid characterization work and identified both technical and commercial challenges of producing the enormous quantities of water when flooding the ROZs. It also noted the differing water compositions in the ROZ as compared to the overlying MPZs. A new CO2 gas lift system using a capillary string was successfully applied during the project which conveyed the CO2 to the deeper and differing ROZ reservoir conditions at Goldsmith and added a second capillary string that facilitated applying scale inhibitors to mitigate the scaling tendencies of the mixing ROZ and MPZ formation waters. The project also undertook a reservoir modeling effort, using the acquired reservoir characterization data, to history match both the primary and water flood phases of the MPZ and to establish the initial conditions for a modeling effort to forecast response of the ROZ to CO2 EOR. With the advantage of many profile logs acquired from the operator, some concentration on the original pattern area for the ROZ pilot was accomplished to attempt to perfect the history match for that area. Several optional scenarios for producing the ROZ were simulated seeking to find the preferred mode of producing the two intervals. Finally, the project attempted to document for the first time the production performance of commingled MPZ and ROZ CO2 EOR project at the nearby Seminole San Andres Unit. The analysis shows that over 10,000 bopd can be shown to be coming from the ROZ interval, a zone that would have produced no oil under primary or water flood phases. A similar analysis was done for the GLSAU project illustrating that 2000 bopd of incremental EOR oil is currently being produced. The results of the modeling work would suggest that 800 bopd can be attributed to the ROZ alone at GLSAU.

  13. Human-Induced Climate Change Reduces Chance of Flooding in Okavango...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Africa.gif Why it Matters: The...

  14. Human-induced climate change reduces chance of flooding in Okavango...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-induced climate change reduces chance of flooding in Okavango Delta Human-induced climate change reduces chance of flooding in Okavango Delta March 27, 2014 University of ...

  15. DOE-SPEC-3018-96; Flooded-Type Lead-Acid Storage Batteries

    Office of Environmental Management (EM)

    DOE SPECIFICATION FLOODED-TYPE LEAD-ACID STORAGE BATTERIES U.S. Department of Energy FSC ... of flooded-type lead-acid storage batteries, organized as follows: &21; Parts 1 through ...

  16. [National Institute for Petroleum and Energy Research], monthly progress report for March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    Accomplishments for the month of April are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nigrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant- enhanced alkaline flooding field project; process- engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams of oil production symposium; technology transfer to independent producers; compilations and analysis of outcrop data from the Muddy and Almond formations; and horizontal well production from fractured reservoirs.

  17. National Institute for Petroleum and Energy Research monthly progress report, May 1993

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    Accomplishments for the month of May are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels Research covers: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteratom-containing compounds. Supplemental Government Program covers: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; DOE education initiative project; field application of foams for oil production symposium; technology transfer to independent producers; compilation and analysis of outcrop data from the Muddy and Almond formations; implementation of oil and gas technology transfer initiative; horizontal well production from fractured reservoirs; and chemical EOR workshop.

  18. Mobility control and scaleup for chemical flooding. Annual report, October 1981-September 1982

    SciTech Connect (OSTI)

    Pope, G.A.

    1984-11-01

    The ongoing objectives of this project are: (1) to determine quantitatively the effects of dispersion, relative permeabilities, apparent viscosity and inaccessible pore volume on micellar/polymer flooding, and (2) to develop numerical simulators which incorporate these and other features of the process, so that mobility control design and scaleup of the micellar/polymer flooding process can be better accomplished. Section 2 of this report includes the results for capillary desaturation experiments for low tension fluids in Berea. These results show that some residual brine remains during microemulsion flooding even at the highest capillary number obtained in this experiment. Section 2 also includes more extensive results from the dispersion and relative permeability experiments. This section also includes data which extends the dispersion and relative permeability results from the case of two-phase flow to include initial results of three-phase flow at steady state. Section 3 is a complete description of our updated simulator. Section 4 describes and gives the results of an oil recovery experiment. Section 5 compares the results of this oil recovery experiment with our simulator. The agreement is the best obtained so far. Section 6 compares our simulator with a Sloss experiment reported by Gupta. Again, the agreement is good and demonstrates the capability of the improved simulator to account for the separation of alcohol and surfactant. Section 7 contains the results of several 2-D areal simulations involving new features of the 2-D simulator reported last year. Section 8 is a list of some of the major conclusions of this simulation research. Section 9 is an SPE paper combining the results of Senol with Walsh, a Ph.D. student of Lake and Schechter. Her polymer experiments were interpreted using Walsh's geochemical simulator. 133 references, 118 figures, 21 tables.

  19. Solar equipment ravaged by floods gets new life

    Broader source: Energy.gov [DOE]

    Mounting the electrical equipment for a solar array 12 feet off the ground on the side of an art studio building seemed like a safe height at first: it would be well above the 100-year-flood mark and out of reach of vandals.

  20. Real-time Global Flood Estimation using Satellite-based Precipitation and a Coupled Land Surface and Routing Model

    SciTech Connect (OSTI)

    Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George; Li, Hongyi; Wang, Jianjian

    2014-04-09

    A community land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model system, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood-monitoring parameters for the latitude-band 50{degree sign}N-50{degree sign}S at relatively high spatial (~12km) and temporal (3-hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Statistical results are slightly better for the research-quality input and significantly better for longer duration events (three-day events vs. one-day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is ~0.9 and the false alarm ratio is ~0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1,121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30¬ļS-30¬ļN) gives positive daily Nash-Sutcliffe CoefÔ¨Ācients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. There were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

  1. Sandia National Laboratories: Research: Biodefense

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biodefense Creating novel tools for detecting and fighting disease Raptor Infectious diseases and bioterrorism events may seem like very different phenomena-but both share enormous...

  2. Research Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Techniques Research Techniques Print Coming Soon

  3. Managing Floods and Resources at the Arroyo Las Positas

    SciTech Connect (OSTI)

    Sanchez, L; Van Hattem, M; Mathews, S

    2002-03-05

    Engineers and water resource professionals are challenged with protecting facilities from flood events within environmental resource protection, regulatory, and economic constraints. One case in point is the Arroyo Las Positas (ALP), an intermittent stream that traverses the Lawrence Livermore National Laboratory (LLNL) in Livermore, California. Increased runoff from post-drought rainfall, upstream development, and new perennial discharges from LLNL activities have resulted in increased dry weather flows and wetland vegetation. These new conditions have recently begun to provide improved habitat for the federally threatened California red-legged frog (Rana aurora draytonii; CRLF), but the additional vegetation diminishes the channel's drainage capacity and increases flood risk. When LLNL proposed to re-grade the channel to reestablish the 100-year flood capacity, traditional dredging practices were no longer being advocated by environmental regulatory agencies. LLNL therefore designed a desilting maintenance plan to protect LLNL facility areas from flooding, while minimizing impacts to wetland resources and habitat. The result was a combination of structural upland improvements and the ALP Five Year Maintenance Plan (Maintenance Plan), which includes phased desilting in segments so that the entire ALP is desilted after five years. A unique feature of the Maintenance Plan is the variable length of the segments designed to minimize LLNL's impact on CRLF movement. State and federal permits also added monitoring requirements and additional constraints on desilting activities. Two years into the Maintenance Plan, LLNL is examining the lessons learned on the cost-effectiveness of these maintenance measures and restrictions and reevaluating the direction of future maintenance activities.

  4. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis

    Office of Environmental Management (EM)

    Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by and October, 2011 Presentation Outline I. Introductions II. Pantex III. 10 Year Update IV. Final Results V. July 2010 Event VI. Emergency Planning VII.What's Next Pantex The Pantex Plant, located 17 miles northeast of Amarillo, Texas, in Carson County, is charged with maintaining the safety, security and reliability of the nation's nuclear weapons stockpile. Worked performed at Pantex supports three core missions. *

  5. GIS-BASED PREDICTION OF HURRICANE FLOOD INUNDATION

    SciTech Connect (OSTI)

    JUDI, DAVID; KALYANAPU, ALFRED; MCPHERSON, TIMOTHY; BERSCHEID, ALAN

    2007-01-17

    A simulation environment is being developed for the prediction and analysis of the inundation consequences for infrastructure systems from extreme flood events. This decision support architecture includes a GIS-based environment for model input development, simulation integration tools for meteorological, hydrologic, and infrastructure system models and damage assessment tools for infrastructure systems. The GIS-based environment processes digital elevation models (30-m from the USGS), land use/cover (30-m NLCD), stream networks from the National Hydrography Dataset (NHD) and soils data from the NRCS (STATSGO) to create stream network, subbasins, and cross-section shapefiles for drainage basins selected for analysis. Rainfall predictions are made by a numerical weather model and ingested in gridded format into the simulation environment. Runoff hydrographs are estimated using Green-Ampt infiltration excess runoff prediction and a 1D diffusive wave overland flow routing approach. The hydrographs are fed into the stream network and integrated in a dynamic wave routing module using the EPA's Storm Water Management Model (SWMM) to predict flood depth. The flood depths are then transformed into inundation maps and exported for damage assessment. Hydrologic/hydraulic results are presented for Tropical Storm Allison.

  6. National Institute for Petroleum and Energy Research 1989 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    Research programs on reservoir rocks petroleum, and enhanced recovery are briefly presented. Topics include: Geotechnology; reservoir assessment and characterization; TORIS Research Support; three phase relative permeability; static pore structure analysis of reservoir rocks; effects of pore structure on oil/contaminants ganglia distribution; development of improved microbial flooding methods; development of improved surfactant flooding systems; development of improved alkaline flooding methods; development of improved mobility-control methods; gas miscible displacement; development of improved immiscible gas displacement methodology; thermal processes for light oil recovery; thermal processes for heavy oil recovery; an application of natural isotopes in groundwater for solving environmental problems; processing and thermodynamics research; thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds; in situ hydrogenation; and fuel chemistry.

  7. Pint-sized plants pack a punch in fight against heavy metals

    SciTech Connect (OSTI)

    Boyd, V.

    1996-05-01

    USDA researchers are experimenting with plants that naturally scavenge heavy metals such as cadmium and zinc from the soil. Known as hyperaccumulators, the plants can store up to 2.5% of their dry weight in heavy metals in leaves without yield reductions. They can be grown, harvested, and dried. The dried material is then burned, and the metal ore can be recovered. As well as discussing the history of hyperaccumulators, this article focuses on the plant pennycress and work on improving its metal uptake.

  8. EO 13690: Establishing a Federal Flood Risk Management Standard and a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process for Further Soliciting and Considering Stakeholder Input (2015) | Department of Energy 690: Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input (2015) EO 13690: Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input (2015) Executive Order (E.O.) 13690, Establishing a Federal Flood Risk Management Standard [FFRMS] and a Process for Further

  9. (National Institute for Petroleum and Energy Research) monthly progress report for April 1992

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved alkaline flooding methods, surfactant flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Programs covers; field projects in microbial-enhanced waterflooding and surfactant-enhanced alkaline flooding; feasibility study of heavy oil recovery in the midcontinent region -- Oklahoma, Kansas, and Missouri; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; and process-engineering property measurements on heavy petroleum components.

  10. [National Institute for Petroleum and Energy Research] monthly progress report for April 1992

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved alkaline flooding methods, surfactant flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Programs covers; field projects in microbial-enhanced waterflooding and surfactant-enhanced alkaline flooding; feasibility study of heavy oil recovery in the midcontinent region -- Oklahoma, Kansas, and Missouri; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; and process-engineering property measurements on heavy petroleum components.

  11. Natural Phenomena Hazards Modeling Project: Flood hazard models for Department of Energy sites

    SciTech Connect (OSTI)

    Savy, J.B.; Murray, R.C.

    1988-05-01

    For eight sites, the evaluation of flood hazards was considered in two steps. First, a screening assessment was performed to determine whether flood hazards may impact DOE operations. The screening analysis consisted of a preliminary flood hazard assessment that provides an initial estimate of the site design basis. The second step involves a review of the vulnerability of on-site facilities by the site manager; based on the results of the preliminary flood hazard assessment and a review of site operations, the manager can decide whether flood hazards should be considered a part of the design basis. The scope of the preliminary flood hazard analysis was restricted to evaluating the flood hazards that may exist in proximity to a site. The analysis does not involve an assessment of the potential of encroachment of flooding at specific on-site locations. Furthermore, the screening analysis does not consider localized flooding at a site due to precipitation (i.e., local run-off, storm sewer capacity, roof drainage). These issues were reserved for consideration by the DOE site manager. 9 refs., 18 figs.

  12. E.O. 13690 (2015): Establishing a Federal Flood Risk Management...

    Broader source: Energy.gov (indexed) [DOE]

    On January 30, 2015, President Obama signed an Executive Order (E.O.) 13690, Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and...

  13. Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment

    SciTech Connect (OSTI)

    Gerald Sehlke; Paul Wichlacz

    2010-12-01

    This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: ‚ÄĘ Determination of the design basis flood (DBFL) ‚ÄĘ Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

  14. Surfactant-enhanced alkaline flooding field project. Annual report

    SciTech Connect (OSTI)

    French, T.R.; Josephson, C.B.

    1993-12-01

    The Tucker sand from Hepler field, Crawford County, Kansas, was characterized using routine and advanced analytical methods. The characterization is part of a chemical flooding pilot test to be conducted in the field, which is classified as a DOE Class I (fluvial-dominated delta) reservoir. Routine and advanced methods of characterization were compared. Traditional wireline logs indicate that the reservoir is vertically compartmentalized on the foot scale. Routine core analysis, X-ray computed tomography (CT), minipermeameter measurement, and petrographic analysis indicate that compartmentalization and lamination extend to the microscale. An idealized model of how the reservoir is probably structured (complex layering with small compartments) is presented. There was good agreement among the several methods used for characterization, and advanced characterization methods adequately explained the coreflood and tracer tests conducted with short core plugs. Tracer and chemical flooding tests were conducted in short core plugs while monitoring with CT to establish flow patterns and to monitor oil saturations in different zones of the core plugs. Channeling of injected fluids occurred in laboratory experiments because, on core plug scale, permeability streaks extended the full length of the core plugs. A graphic example of how channeling in field core plugs can affect oil recovery during chemical injection is presented. The small scale of compartmentalization indicated by plugs of the Tucker sand may actually help improve sweep between wells. The success of field-scale waterflooding and the fluid flow patterns observed in highly heterogeneous outcrop samples are reasons to expect that reservoir flow patterns are different from those observed with short core plugs, and better sweep efficiency may be obtained in the field than has been observed in laboratory floods conducted with short core plugs.

  15. Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report

    SciTech Connect (OSTI)

    Aglan, H.

    2005-08-04

    The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair of field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.

  16. Fight corrosion with plastic

    SciTech Connect (OSTI)

    Khaladkar, P.

    1995-10-01

    As chemical processors run plants longer to meet goals for increased production at lower costs, and use higher temperatures and higher throughputs to boost performance, there are more rigorous requirements for durable, corrosion-resistant equipment. Plastics, elastomers and composites help meet this need by protecting carbon steel equipment, and by providing materials of construction for components and structures. They can preserve product purity and quality by preventing contamination. Of the many polymers and composites that have proven useful for managing corrosion of chemical process equipment, most fit into three categories: barrier linings and coatings; self-supporting structures, which can be made of composites or solid polymers in tanks, piping, valves, pumps and other equipment; and other products, such as seals, gaskets, adhesives and caulks. The paper describes all three types and also remarks on the need for failure analysis.

  17. Genome patent fight erupts

    SciTech Connect (OSTI)

    Roberts, L.

    1991-10-11

    At a Congressional briefing while describing a new project to sequence partially every gene active in the human brain, it was made known that the National Institutes of Health was planning to file patent applications on 1,000 of these sequences a month. The scheme has engendered a firestorm of criticism from genome scientists and project officials alike. The critics argue that these sequences probably can't be patented in the first place - and even if they can, they shouldn't be. The plan would undercut patent protection for those who labor long and hard at the real task of elucidating the function of the proteins encoded by the genes, thereby driving industry away from developing inventions based on that work.

  18. Fighting Antiobiotic Resistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2009 1 December 2009 Short-Term Energy Outlook December 8, 2009 Release Highlights Ôāß EIA expects the price of West Texas Intermediate (WTI) crude oil will average about $76 per barrel this winter (October-March). The forecast for the monthly average WTI price dips to $75 early next year then rises to $82 per barrel by December 2010, assuming U.S. and world economic conditions continue to improve. EIA's forecast assumes that U.S. real gross domestic product (GDP) grows by 1.9 percent

  19. Next Generation Surfactants for Improved Chemical Flooding Technology

    SciTech Connect (OSTI)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.

  20. Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America

    SciTech Connect (OSTI)

    Prasad, Rajiv; Hibler, Lyle F.; Coleman, Andre M.; Ward, Duane L.

    2011-11-01

    The purpose of this document is to describe approaches and methods for estimation of the design-basis flood at nuclear power plant sites. Chapter 1 defines the design-basis flood and lists the U.S. Nuclear Regulatory Commission's (NRC) regulations that require estimation of the design-basis flood. For comparison, the design-basis flood estimation methods used by other Federal agencies are also described. A brief discussion of the recommendations of the International Atomic Energy Agency for estimation of the design-basis floods in its member States is also included.

  1. NREL Fights Corrosion to Cut Costs in CSP Plants (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL investigates how best to protect tanks and piping used for thermal energy storage and heat transfer fluids. Molten salts and supercritical carbon dioxide (s-CO 2 ) are thermal energy storage (TES) and heat transfer fluids (HTFs) that are good candidates for next-generation concentrating solar power (CSP) plants. However, these fluids are corrosive, and combined with extreme operating temperatures, can damage tanks and piping. To increase the lifetime of such vessels, they must be composed

  2. Research Mentors

    Broader source: Energy.gov [DOE]

    Research mentors are scientists and engineers committed to support and guide the applicant's research activities during the Research Award. Research mentors must be currently conducting or...

  3. Natural Phenomena Hazards Modeling Project: Preliminary flood hazards estimates for screening Department of Energy sites, Albuquerque Operations Office

    SciTech Connect (OSTI)

    McCann, M.W. Jr.; Boissonnade, A.C.

    1988-05-01

    As part of an ongoing program, Lawrence Livermore National Laboratory (LLNL) is directing the Natural Phenomena Hazards Modeling Project (NPHMP) on behalf of the Department of Energy (DOE). A major part of this effort is the development of probabilistic definitions of natural phenomena hazards; seismic, wind, and flood. In this report the first phase of the evaluation of flood hazards at DOE sites is described. Unlike seismic and wind events, floods may not present a significant threat to the operations of all DOE sites. For example, at some sites physical circumstances may exist that effectively preclude the occurrence of flooding. As a result, consideration of flood hazards may not be required as part of the site design basis. In this case it is not necessary to perform a detailed flood hazard study at all DOE sites, such as those conducted for other natural phenomena hazards, seismic and wind. The scope of the preliminary flood hazard analysis is restricted to evaluating the flood hazards that may exist in proximity to a site. The analysis does involve an assessment of the potential encroachment of flooding on-site at individual facility locations. However, the preliminary flood hazard assessment does not consider localized flooding at a site due to precipitation (i.e., local run-off, storm sewer capacity, roof drainage). These issues are reserved for consideration by the DOE site manager. 11 refs., 84 figs., 61 tabs.

  4. POST WATERFLOOD CO2 MISCIBLE FLOOD IN LIGHT OIL FLUVIAL DOMINATED DELTAIC RESERVOIR

    SciTech Connect (OSTI)

    Tim Tipton

    2004-04-06

    Texaco Exploration and Production Inc. (TEPI) and the US Department of Energy (DOE) entered into a cost sharing cooperative agreement to conduct an Enhanced Oil Recovery demonstration project at Port Neches. The field is located in Orange County near Beaumont, Texas, and shown in Appendix A. The project would demonstrate the effectiveness of the CO{sub 2} miscible process in Fluvial Dominated Deltaic reservoirs. It would also evaluate the use of horizontal CO{sub 2} injection wells to improve the overall sweep efficiency and determine the recovery efficiency of CO{sub 2} floods in waterflooded and partial waterdrive reservoirs. Texaco's objective on this project was (1) to utilize all available technologies, and to develop new ones, and (2) to design a CO{sub 2} flood process which is cost effective and can be applied to many other reservoirs throughout the US. A database of potential reservoirs for the gulf coast region was developed by LSU, using a screening model developed by Texaco Research Center in Houston. A PC-based CO{sub 2} screening model was developed and the aforementioned database generated to show the utility of this technology throughout the US. Finally, the results and the information gained from this project was disseminated throughout the oil industry via a series of SPE papers and industry open forums. Reservoir characterization efforts for the Marginulina sand shown in Appendix C, were accomplished utilizing conventional and advanced technologies including 3-D seismic. Sidewall and conventional cores were cut and analyzed, lab tests were conducted on reservoir fluids and reservoir voidage was monitored as shown in Appendices B through M. Texaco has utilized the above data to develop a Stratamodel to best describe and characterize the reservoir and to use it as input for the compositional simulator. The compositional model was revised several times to integrate the new data from the 3-D seismic and field performance under CO{sub 2} injection, to ultimately develop an accurate economic model. The Port Neches CO{sub 2} Project concentrated upon the tertiary oil recoveries, to be obtained from two sections of the reservoir, which were at different stages of depletion. The large waterflooded fault block had an average remaining oil saturation of 31% while the small partial waterdrive fault block had an oil saturation of 43%.

  5. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOE Patents [OSTI]

    Johnson, Jr., James S.; Westmoreland, Clyde G.

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  6. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOE Patents [OSTI]

    Johnson, J.S. Jr.; Westmoreland, C.G.

    1980-08-20

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  7. Alvord (3000-ft Strawn) LPG flood: design and performance evaluation

    SciTech Connect (OSTI)

    Frazier, G.D.; Todd, M.R.

    1982-01-01

    Mitchell Energy Corporation has implemented a LPG-dry gas miscible process in the Alvord (3000 ft Strawn) Unit in Wise County, Texas utilizing the DOE tertiary incentive program. The field had been waterflooded for 14 years and was producing near its economic limit at the time this project was started. This paper presents the results of the reservoir simulation study that was conducted to evaluate pattern configuration and operating alternatives so as to maximize LPG containment and oil recovery performance. Several recommendations resulting from this study were implemented for the project. Based on the model prediction, tertiary oil recovery is expected to be between 100,000 and 130,000 bbls, or about 7 percent of th oil originally in place in the Unit. An evaluation of the project performance to date is presented. In July of 1981 the injection of a 16% HPV slug of propane was completed. Natural gas is being used to drive the propane slug. A peak oil response of 222 BOPD was achieved in August of 1981 and production has since been declining. The observed performance of the flood indicates that the actual tertiary oil recovered will reach the predicted value, although the project life will be longer than expected. The results presented in this paper indicate that, without the DOE incentive program, the economics for this project would still be uncertain at this time.

  8. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    SciTech Connect (OSTI)

    1997-10-01

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  9. Laboratory researcher Joel Rowland to receive DOE Early Career Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rowland to receive DOE Early Career Award Laboratory researcher Joel Rowland to receive DOE Early Career Award Rowland's research was recognized by DOE for incorporating hydrological controls on carbon cycling in flood plain ecosystems into Earth System Models. May 8, 2014 Joel Rowland Joel Rowland Contact Steve Sandoval Communications Office (505) 665-9206 Email "Joel contributed to the vitality of our Laboratory as a postdoc and continues to provide an innovative and intellectual spark as

  10. Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 74, Quarter ending March 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    Accomplishments for the past quarter are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; field demonstrations in high-priority reservoir classes; and novel technology. A list of available publication is also provided.

  11. Contracts for field projects and supporting research on enhanced oil recovery. Progress review quarter ending September 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    Progress reports are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and field demonstrations in high-priority reservoir classes. A list of available publications is also included.

  12. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 71, quarter ending June 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    Progress reports are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; and novel technology. A list of available publication is also provided.

  13. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  14. Research Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Gallery Research Gallery Exhibits in this gallery capture Laboratory's leading-edge research in many areas of science and technology to help solve national problems...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Area of Research: Journal Reference: N/A

  16. Electron Flood Charge Compensation Device for Ion Trap Secondary Ion Mass Spectrometry

    SciTech Connect (OSTI)

    Appelhans, Anthony David; Ward, Michael Blair; Olson, John Eric

    2002-11-01

    During secondary ion mass spectrometry (SIMS) analyses of organophosphorous compounds adsorbed onto soils, the measured anion signals were lower than expected and it was hypothesized that the low signals could be due to sample charging. An electron flood gun was designed, constructed and used to investigate sample charging of these and other sample types. The flood gun was integrated into one end cap of an ion trap secondary ion mass spectrometer and the design maintained the geometry of the self-stabilizing extraction optics used in this instrument. The SIMION ion optics program was used to design the flood gun, and experimental results agreed with the predicted performance. Results showed the low anion signals from the soils were not due to sample charging. Other insulating and conducting samples were tested using both a ReO4- and a Cs+ primary ion beam. The proximity of the sample and electron source to the ion trap aperture resulted in generation of background ions in the ion trap via electron impact (EI) ionization during the period the electron gun was flooding the sample region. When using the electron gun with the ReO4- primary beam, the required electron current was low enough that the EI background was negligible; however, the high electron flood current required with the Cs+ beam produced background EI ions that degraded the quality of the mass spectra. The consequences of the EI produced cations will have to be evaluated on a sample-by-sample basis when using electron flood. It was shown that the electron flood gun could be intentionally operated to produce EI spectra in this instrument. This offers the opportunity to measure, nearly simultaneously, species evaporating from a sample, via EI, and species bound to the surface, via SIMS.

  17. Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

    SciTech Connect (OSTI)

    Brown, Lewis R.; Pittman Jr., Charles U.; Lynch, F. Leo; Vadie, A. Alex; French, W. Todd

    2003-02-10

    The objective of this project was to determine if the effectiveness of a microbial permeability profile modification technique can be improved through polymer flooding.

  18. Single well surfactant test to evaluate surfactant floods using multi tracer method

    DOE Patents [OSTI]

    Sheely, Clyde Q.

    1979-01-01

    Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.

  19. Investigation of Containment Flooding Strategy for Mark-III Nuclear Power Plant with MAAP4

    SciTech Connect (OSTI)

    Su Weinian; Wang, S.-J.; Chiang, S.-C

    2005-06-15

    Containment flooding is an important strategy for severe accident management of a conventional boiling water reactor (BWR) system. The purpose of this work is to investigate the containment flooding strategy of the Mark-III system after a reactor pressure vessel (RPV) breach. The Kuosheng Power Plant is a typical BWR-6 nuclear power plant (NPP) with Mark-III containment. The Severe Accident Management Guideline (SAMG) of the Kuosheng NPP has been developed based on the BWR Owners Group (BWROG) Emergency Procedure and Severe Accident Guidelines, Rev. 2. Therefore, the Kuosheng NPP is selected as the plant for study, and the MAAP4 code is chosen as the tool for analysis. A postulated specific station blackout sequence for the Kuosheng NPP is cited as a reference case for this analysis. Because of the design features of Mark-III containment, the debris in the reactor cavity may not be submerged after an RPV breach when one follows the containment flooding strategy as suggested in the BWROG generic guideline, and the containment integrity could be challenged eventually. A more specific containment flooding strategy with drywell venting after an RPV breach is investigated, and a more stable plant condition is achieved with this strategy. Accordingly, the containment flooding strategy after an RPV breach will be modified for the Kuosheng SAMG, and these results are applicable to typical Mark-III plants with drywell vent path.

  20. Origin of Scale-Dependent Dispersivity and Its Implications For Miscible Gas Flooding

    SciTech Connect (OSTI)

    Steven Bryant; Russ Johns; Larry Lake; Thomas Harmon

    2008-09-30

    Dispersive mixing has an important impact on the effectiveness of miscible floods. Simulations routinely assume Fickian dispersion, yet it is well established that dispersivity depends on the scale of measurement. This is one of the main reasons that a satisfactory method for design of field-scale miscible displacement processes is still not available. The main objective of this project was to improve the understanding of the fundamental mechanisms of dispersion and mixing, particularly at the pore scale. To this end, microsensors were developed and used in the laboratory to measure directly the solute concentrations at the scale of individual pores; the origin of hydrodynamic dispersion was evaluated from first principles of laminar flow and diffusion at the grain scale in simple but geometrically completely defined porous media; techniques to use flow reversal to distinguish the contribution to dispersion of convective spreading from that of true mixing; and the field scale impact of permeability heterogeneity on hydrodynamic dispersion was evaluated numerically. This project solved a long-standing problem in solute transport in porous media by quantifying the physical basis for the scaling of dispersion coefficient with the 1.2 power of flow velocity. The researchers also demonstrated that flow reversal uniquely enables a crucial separation of irreversible and reversible contributions to mixing. The interpretation of laboratory and field experiments that include flow reversal provides important insight. Other advances include the miniaturization of long-lasting microprobes for in-situ, pore-scale measurement of tracers, and a scheme to account properly in a reservoir simulator (grid-block scale) for the contributions of convective spreading due to reservoir heterogeneity and of mixing.

  1. Scale-up of miscible flood processes for heterogeneous reservoirs. Final report

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1996-04-01

    Results of a wide-ranging investigation of the scaling of gas injection processes are reported. The research examines how the physical mechanisms at work during a gas injection project interact to determine process performance. In particular, the authors examine: the interactions of equilibrium phase behavior and two-phase flow that determine local displacement efficiency and minimum miscibility pressure, the combined effects of viscous fingering, gravity segregation and heterogeneity that control sweep efficiency in 2- and 3-dimensional porous media, the use of streamtube/streamline methods to create very efficient simulation technique for multiphase compositional displacements, the scaling of viscous, capillary and gravity forces for heterogeneous reservoirs, and the effects of the thin films and spreading behavior on three-phase flow. The following key results are documented: rigorous procedures for determination of minimum miscibility pressure (MMP) or minimum miscibility enrichment (MME) for miscibility have been developed for multicomponent systems; the complex dependence of MMP`s for nitrogen/methane floods on oil and injection gas composition observed experimentally is explained for the first time; the presence of layer-like heterogeneities strongly influences the interplay of gravity segregation and viscous fingering, as viscous fingers adapt to preferential flow paths and low permeability layers restrict vertical flow; streamtube/streamline simulation techniques are demonstrated for a variety of injection processes in 2 and 3 dimensions; quantitative scaling estimates for the transitions from capillary-dominated to gravity-dominated to viscous-dominated flows are reported; experimental results are given that demonstrate that high pressure CO{sub 2} can be used to generate low IFT gravity drainage in fractured reservoirs if fractures are suitably connected; and the effect of wetting and spreading behavior on three-phase flow is described. 209 refs.

  2. Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for 2001-2006 Office of Science Abstracts Database Research Highlights Summaries Research Highlights Members of ARM's science team are major contributors to radiation and cloud research. ARM investigators publish about 150 refereed journal articles per year, and ARM data are used in many studies published by other scientific

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotstayn, L., Commonwealth Scientific and Industrial Research Organization Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Rotstayn, L.,...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese Researchers Report Reliable Method for Monitoring Soil Moisture Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Surface Properties...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing and Comparing the Modified Anomalous Diffraction Approximation Submitter: Mitchell, D. L., Desert Research Institute Area of Research: Cloud DistributionsCharacterizations...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Schmid, B., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: ARM Climate Research...

  7. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research Projects Joint Los Alamos National LaboratoryUCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Ensemble Simulation with the ARM IOP Data Submitter: Xu, K., NASA - Langley Research Center Area of Research: General Circulation and Single Column ModelsParameterizations ...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Measurements Validate New Satellite Multilayer Cloud Remote Sensing Method Submitter: Minnis, P., NASA - Langley Research Center Area of Research: Cloud Distributions...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Terrestrial Radiation Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Area of Research: General Circulation and Single Column Models...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fog and Rain in the Amazon For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight The diurnal and seasonal...

  12. Human-induced climate change reduces chance of flooding in Okavango Delta

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-induced climate change reduces chance of flooding in Okavango Delta Human-induced climate change reduces chance of flooding in Okavango Delta March 27, 2014 University of Cape Town: Berkeley Lab / NERSC: Riana Geldenhuys Linda Vu Office Tel: +27 21 650 4846 | Mobile: +27 82 460 5554 Office Tel: +1 510 533 5502 riana.geldenhuys@uct.ac.za lvu@lbl.gov OkavangoDeltainnorthernBotswana.jpg This image is a compilation of three images from Envisat's radar and shows where southwestern Africa's

  13. Contracts for field projects and supporting research on enhanced oil recovery, October--December 1992. Progress review No. 73, quarter ending December 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Accomplishments for this quarter ending December 31, 1992 are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; reservoir classes; and novel technology.

  14. Contracts for field projects and supporting research on enhanced oil recovery, July--September 1992. Progress review No. 72, quarter ending September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    Accomplishments for the past quarter are presented for the following tasks: Chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; and novel technology. A list of available publication is also provided.

  15. Research Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Mission Research Mission NETL's Office of Research & Development is a national resource for fossil energy research and development, with a mission to create and expand the knowledge base that enables the safe, sustainable utilization of our abundant, domestic energy resources. In support of that mission, the onsite research effort: Develops solutions to key barriers to the implementation of emerging energy technologies. Explores transformational new concepts for next generation

  16. Proof-of-Concept Demonstrations for Computation-Based Human Reliability Analysis. Modeling Operator Performance During Flooding Scenarios

    SciTech Connect (OSTI)

    Joe, Jeffrey Clark; Boring, Ronald Laurids; Herberger, Sarah Elizabeth Marie; Mandelli, Diego; Smith, Curtis Lee

    2015-09-01

    The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program has the overall objective to help sustain the existing commercial nuclear power plants (NPPs). To accomplish this program objective, there are multiple LWRS ‚Äúpathways,‚ÄĚ or research and development (R&D) focus areas. One LWRS focus area is called the Risk-Informed Safety Margin and Characterization (RISMC) pathway. Initial efforts under this pathway to combine probabilistic and plant multi-physics models to quantify safety margins and support business decisions also included HRA, but in a somewhat simplified manner. HRA experts at Idaho National Laboratory (INL) have been collaborating with other experts to develop a computational HRA approach, called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER), for inclusion into the RISMC framework. The basic premise of this research is to leverage applicable computational techniques, namely simulation and modeling, to develop and then, using RAVEN as a controller, seamlessly integrate virtual operator models (HUNTER) with 1) the dynamic computational MOOSE runtime environment that includes a full-scope plant model, and 2) the RISMC framework PRA models already in use. The HUNTER computational HRA approach is a hybrid approach that leverages past work from cognitive psychology, human performance modeling, and HRA, but it is also a significant departure from existing static and even dynamic HRA methods. This report is divided into five chapters that cover the development of an external flooding event test case and associated statistical modeling considerations.

  17. Groundwater, Legacy Soil Cleanup and Flood Recovery Top Lab’s Accomplishments

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. ‚Äď Top 2014 accomplishments of the Los Alamos National Laboratory‚Äôs EM-supported Environmental Programs included remediation of chromium in groundwater, completion of a legacy contaminant soil cleanup project, and rapid recovery from a 1,000-year rain event that caused widespread flooding.

  18. Researchers develop a new mathematical tool for analyzing and...

    National Nuclear Security Administration (NNSA)

    Security Enterprise support nation's preparedness NNSA's work aids in fight against cancer NASA features LLNL star-formation simulations Consortium Led by University of...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPartICus Submitter: Mishra, S., DOE - SunShot Initiative, AAAS S&T Policy Fellow Mitchell, D. L., Desert Research Institute Area of Research: General Circulation and Single...

  20. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas Our Vision National User Facilities Research Areas In Focus Global Solutions ‚áí Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Biosciences The Biosciences Area forges multidisciplinary teams to solve national challenges in energy, environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three divisions and is enabled by Berkeley

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Thermodynamics Affect Radiative Impact of Deep Convective Cloud Systems Submitter: Jensen, M., Brookhaven National Laboratory Area of Research: Atmospheric...

  2. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LaboratoryNational Security Education Center Menu NSEC Educational Programs Los Alamos Dynamics Summer School Science of Signatures Advanced Studies Institute Judicial Science School SHM Data Sets and Software Research Projects Current Projects Past Projects Publications NSEC ¬Ľ Engineering Institute ¬Ľ Research Projects ¬Ľ Joint Los Alamos National Laboratory/UCSD research projects Past Research Projects Previous collaborations between Los Alamos National Laboratory and the University of

  3. Research Facility,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy Research Experience in Carbon Sequestration 2013 Now Accepting Applications Research Experience in Carbon Sequestration 2013 Now Accepting Applications March 12, 2013 - 1:43pm Addthis Washington, DC - Graduate students and early career professionals can gain hands-on field research experience in areas related to carbon capture and storage (CCS) by participating in the Research Experience in Carbon Sequestration (RECS) program. The initiative, supported by DOE's Office

  4. Current Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and Analysis Computing Center (TRACC) features a state-of-the-art massively parallel computer system, advanced scientific visualization capability, high-speed network

  5. Research Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL Research Library: delivering essential knowledge services for national security sciences since 1947 About the Research Library Mission We deliver agile, responsive knowledge services, connecting people with information, technology and resources. Vision Essential knowledge services for national security sciences. The Research Library provides extensive collections of books, journals, databases, patents and technical reports and offers literature searching, training and outreach services. The

  6. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect (OSTI)

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses were used to better understand porosity and permeability trends in the region and to characterize barriers and define flow units. Diagenetic alterations that impact porosity and permeability include development of quartz overgrowths, sutured quartz grains, dissolution of feldspar grains, formation of clay mineral coatings on grains, and calcite cementation. Many of these alterations are controlled by facies. Mapping efforts identified distinct flow units in the northern part of the field showing that the Pennsylvanian Bridgeport consists of a series of thick incised channel fill sequences. The sandstones are about 75-150 feet thick and typically consist of medium grained and poorly sorted fluvial to distributary channel fill deposits at the base. The sandstones become indistinctly bedded distributary channel deposits in the main part of the reservoir before fining upwards and becoming more tidally influenced near their top. These channel deposits have core permeabilities ranging from 20 md to well over 1000 md. The tidally influenced deposits are more compartmentalized compared to the thicker and more continuous basal fluvial deposits. Fine grained sandstones that are laterally equivalent to the thicker channel type deposits have permeabilities rarely reaching above 250 md. Most of the unrecovered oil in Lawrence Field is contained in Pennsylvanian Age Bridgeport sandstones and Mississippian Age Cypress sandstones. These reservoirs are highly complex and compartmentalized. Detailed reservoir characterization including the development of 3-D geologic and geocellular models of target areas in the field were completed to identify areas with the best potential to recover remaining reserves including unswept and by-passed oil. This project consisted of tasks designed to compile, interpret, and analyze the data required to conduct reservoir characterization for the Bridgeport and Cypress sandstones in pilot areas in anticipation of expanded implementation of ASP flooding in Lawrence Field. Geologic and geocellular modeling needed for reservoir characterization and reservoir simulation were completed as prerequisites for design of efficient ASP flood patterns. Characterizing the complex reservoir geology that identifies the geologic conditions that will optimize oil recoveries for expansion of the ASP pilots in the Bridgeport and Cypress sandstones to other areas of Lawrence Field is the primary objective of this project. It will permit evaluation of efficiency of oil recovery from Bridgeport and Cypress sandstone reservoirs using ASP technology. Additionally evaluation of similar Pennsylvanian and Chesterian reservoirs shows that it is likely that ASP flood technology can be successfully applied to similar reservoirs in the Illinois Basin as well as to other U.S. reservoirs. Chemical flooding was introduced in stages with the first flood initiated in 2010 and a second offset pilot project initiated during 2011. Rex Energy Corporation is reporting a positive response on its ASP Middagh pilot project in the Pennsylvanian Bridgeport B reservoir, Lawrence Field. Oil response in the 15 acre flood has continued to show an increase in oil cut from 1% to 12%. Total pattern production increased from 16 BOPD and stabilized at a range of 65-75 BOPD in the last three months of 2011. Peak production rose to 100 + BOPD. Oil cut in the pilot increased for 1.0% to ~ 12.0% with an individual well showing oil cuts greater than 20%. A second, 58 acre pilot (Perkins-Smith) adjacent to and likely in communication with the Middagh pilot has been initiated. Preliminary brine injection has been implemented and ASP injection was initiated in mid-2012. Response is expected by mid-2013 with peak recovery expected by late 2013. Rex Energy is projecting full scale expansion with the next step of development being a 351 acre project scheduled to begin in mid-2013. Preliminary development has been initiated in this Delta Unit area located in the south half of section 32, T4N, R12W.

  7. UNIRIB: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Mission Focus Photo Courtesy of Oak Ridge National Laboratory The central mission focus of the University Radioactive Ion Beam (UNIRIB) consortium is to perform nuclear physics research, and provide training and education. UNIRIB member universities have gained decades of frontline research experience through the use of the world-class facilities at Oak Ridge National Laboratory (ORNL) and other national laboratories across the United States. The UNIRIB consortium is tasked by the U.S.

  8. Environmental Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dist. Category UC-l 1, 13 DE@ 010764 Health & Environmental Research Summary of Accomplishments Prepared by Office of Energy Research /U.S. Department of Energy Washington, D.C. 20585 Reprinted April 1984 Published by Technical Information Center/U.S. Department of Energy The purpose of this brief narrative is to foster an awareness of a publicly funded health and environmental research program chartered nearly forty years ago, of its contributions toward the national goal of safe and

  9. PNNL: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research at PNNL Research is our business With an unwavering focus on our missions, scientists and engineers at PNNL deliver science and technology. We conduct basic research that advances the frontiers of science. We translate discoveries into tools and technologies in science, energy, the environment and national security. For more than four decades, our experts have teamed with government, industry and academia to tackle some of the toughest problems facing our nation. The result: We're

  10. Research | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Researching energy systems and technologies-and the science behind them-for a future powered by clean energy. Subscribe Stay connected with the latest news and research breakthroughs from NREL. Sign up now Photo of the U.S. Department of Energy's Energy Systems Integration Facility at NREL. Energy Systems Integration Facility The only facility in the nation focused on utility-scale clean energy grid integration. Learn More National Bioenergy Center National Center for Photovoltaics

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Partial Mechanistic Understanding of the North American Monsoon Download a printable PDF Submitter: Erfani, E., Desert Research Institute Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Erfani E and DL Mitchell. 2014. "A partial mechanistic understanding of the North American monsoon." Journal of Geophysical Research - Atmospheres, 119(23), 10.1002/2014JD022038. a) Dependence of

  12. Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights Research Highlights Highlighting some of the extraordinary work in Chemistry Division Contact Us Division Leader David Morris Deputy Division Leader Mark McCleskey (505) 667-4457 Deputy Division Leader (acting) George Havrilla Division Office (505) 667-4457 Email 2016 Physicist wins early-career award for isotope work 5/12 LANL researchers shine more light on the mechanism of one of the most efficient artificial catalytic reactions developed to date 4/20 3D-printing

  13. Researchers - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Programs Research, Development, Test, and Evaluation Forty-eight final optic assemblies are symmetrically distributed around the upper and lower hemispheres of the target chamber of the National Ignition Facility at Lawrence Livermore National Laboratory The Office of Research, Development, Test, and Evaluation directs research, development, computer simulation, and inertial confinement fusion activities to maintain the safety, security and effectiveness of the nuclear weapons

  14. Research Approach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Approach Research Approach NETL's onsite research approach is based on integrating simulation tools with targeted experimental validation at real-life conditions in the lab and in the field. Simulation tools increase confidence in designs, thereby reducing the risk associated with incorporating multiple innovative technologies, realizing scale-up, and predicting the behavior and properties of real materials. The scientific underpinnings encoded into these models also ensure that

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Back to Basics: Theoretical Studies on Storm Clouds and Implications for Modeling For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Storms associated with deep convection are a key component of weather and climate. For example, they produce a large share of precipitation that falls to the Earth's surface, and their anvil shields act as a thermal blanket on the planet. To understand the behavior of these storms, researchers

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Models Download a printable PDF Submitter: Iacono, M. J., Atmospheric & Environmental Research, Inc. Delamere, J. S., Tech-X Corporation Mlawer, E. J., Atmospheric & Environmental Research, Inc. Collins, W. D., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Radiative Processes Journal Reference: Iacono, MJ, JS Delamere, EJ

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climatology of Aerosol Optical Depth in North-Central Oklahoma: 1992-2008 Download a printable PDF Submitter: Michalsky, J. J., Cooperative Institute for Research in Environmental Sciences Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Michalsky J, F Denn, C Flynn, G Hodges, P Kiedron, A Koontz, J Schlemmer, and SE Schwartz. 2010. "Climatology of aerosol optical depth in north-central Oklahoma: 1992-2008." Journal of Geophysical Research -

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Differences Between Tropical and Trade-Wind Shallow Cumuli Download a printable PDF Submitter: Ghate, V. P., Argonne National Laboratory Area of Research: Vertical Velocity Working...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nucleation Events Download a printable PDF Submitter: McMurry, P. ., University of Minnesota Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal ...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Australian Wet Seasons as Revealed by ARM Disdrometer Research Facilities (Darwin, Australia)." Journal of Applied Meteorology and Climatology, , http:dx.doi.org10.1175...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Research Facility located near Lamont, Oklahoma. Measurements from ARM Raman lidar and Doppler radar instruments were used to both initialize and evaluate the model. A...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Doppler spectra. Over the North Slope of Alaska, researchers used cloud radar Doppler velocity spectra, lidar backscattering coefficients and depolarization ratios, and...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zhang, Q., University of California, Davis Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Lose Download a printable PDF Submitter: Laskin, A., Pacific Northwest National Laboratory Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: NA...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Westwater, E. R., University of Colorado Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference:...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties, Radiative Processes...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Xie, S., Lawrence Livermore National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Xie...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Sea Spray on the Thermodynamics of the Hurricane Boundary Layer Download a printable PDF Submitter: Khain, A., The Hebrew University of Jerusalem Area of Research:...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of MBL Cloud Properties over the Azores Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Radiation Processes Working Group(s): Cloud...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... data collected from 18 flights during FIRE-ACE, the researchers analyzed measurements of drop and ice crystal particle size distribution, water content, and icing rate. ...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: de Boer, G., University of Colorado, BoulderCIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: de...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to improve the representation of the autoconversion process in atmospheric models. This research also reveals major deficiencies of existing empirical schemes (see the figure)....

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simple Equation Is Good Enough Submitter: Barnard, J., University of Nevada Reno Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Properties Journal...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Paine SN, DD Turner, ...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Roobik" Is Part of the Answer, Not a Puzzle Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): ...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Turner DD. ...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Shupe MD, DD Turner, VP ...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mlawer, E. J., Atmospheric & Environmental Research, Inc. Turner, D. D., National Oceanic ... Journal Reference: Cady-Pereira, K, M Shephard, E Mlawer, D Turner, S Clough, and T ...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Size Distributions with Help from Satellites Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute d'Entremont, R. P., Atmospheric and Environmental...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud-Radiation Effects on Sea Ice Loss Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud DistributionsCharacterizations...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Dust Composition on Cloud Droplet Formation Download a printable PDF Submitter: Chuang, C., Lawrence Livermore National Laboratory Area of Research: Aerosol Properties...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burning on the Prairies Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Long-Term Impacts of Aerosols on the Vertical Development of Clouds and Precipitation Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research:...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Complexity of Arctic Clouds Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Albedo Observations in the Southern Great Plains Submitter: Lamb, P. J., University of Oklahoma Area of Research: Aerosol Properties Working Group(s): Aerosol Journal...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    over the MJO Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: Cloud DistributionsCharacterizations...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Get Organized Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: Cloud Processes Working Group(s): Cloud...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Into the (Cold) Pool Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: General Circulation and Single Column...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and climate change. The study, funded in large part by DOE's Atmospheric System Research program and recently discussed in the Quarterly Journal of the Royal Meteorological...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: NA Figure 1. MFRSR data from the TWP site (970910) Figure 2. Aerosol...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Climate Models Submitter: Zhang, G., University of California, San Diego Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s):...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference:...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Experiment Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Properties Journal...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and GCM Simulations Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Rasch, P., Pacific Northwest National Laboratory Ivanova, D., Embry-Riddle...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Download a printable PDF Submitter: Moffet, R., University of the Pacific Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: O'Brien...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Download a printable PDF Submitter: Alexandrov, M. D., Columbia University Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Applied Optics,...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDF Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Life Cycle Journal...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kulkarni...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Long, C. N., NOAA Global Monitoring DivisionCIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Riihimaki...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Ronfeld, D., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Properties Journal Reference: NA The...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Laskin, A., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Aerosol Life Cycle...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printable PDF Submitter: Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s):...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman Lidar Observations of Aerosol Humidification Near Clouds Submitter: Ferrare, R. A., NASA LaRC Area of Research: Aerosol Properties Working Group(s): Aerosol Journal ...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Successful for Measuring Thickness of Broken Clouds Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Cloud DistributionsCharacterizations ...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP Observations Help Validate Soil Temperature Simulations Download a printable PDF Submitter: Huang, M., Pacific Northwest National Laboratory Area of Research: Surface...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Life Cycle Journal Reference: Zhao Y, GG Mace, and JM Comstock. 2011. "The occurrence of particle ...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Wilson J, D Imre, J Bernek, M Shrivastava, and A Zelenyuk. 2014. "Evaporation ...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K-Distribution Method for a SW Radiative Transfer Model Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anvil cirrus: A comparison between in situ aircraft measurements and ground-based Doppler cloud radar retrievals." Geophysical Research Letters, 41, doi:10.1002...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Doppler Radar to Characterize Cloud Parameters Download a printable PDF Submitter: Kogan, Y., University of Oklahoma - CIMMS Area of Research: Cloud Distributions...

  13. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment ... engineering programs and the pit manufacturing program. STUDENT RESOURCES Precollege ...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Lin, Y., Geophysical Fluid Dynamics Laboratory Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s):...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ARM Data Submitter: Somerville, R. C., Scripps Institution of Oceanography Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s):...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Aerosol Life Cycle,...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fog and Rain in the Amazon Download a printable PDF Submitter: Gentine, P., Columbia University Sobel, A., Columbia University Area of Research: Cloud-Aerosol-Precipitation...

  18. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production Flux of Sea-Spray Aerosol Download a printable PDF Submitter: Schwartz, S. E., Brookhaven National Laboratory Area of Research: Aerosol Properties Working Group(s):...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Sites Enable Assessment of Cluster Analysis for Identifying Cloud Regimes Submitter: Jakob, C., Monash University Area of Research: Cloud DistributionsCharacterizations...

  1. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    SciTech Connect (OSTI)

    Burns, Lyle D.

    2009-04-14

    The problem in CO{sub 2} flooding lies with its higher mobility causing low conformance or sweep efficiency. This is an issue in oilfield applications where an injected fluid or gas used to mobilize and produce the oil in a marginal field has substantially higher mobility (function of viscosity and density and relative permeability) relative to the crude oil promoting fingering and early breakthrough. Conformance is particularly critical in CO{sub 2} oilfield floods where the end result is less oil recovered and substantially higher costs related to the CO{sub 2}. The SPI-CO{sub 2} (here after called ‚ÄúSPI‚ÄĚ) gel system is a unique silicate based gel system that offers a technically effective solution to the conformance problem with CO{sub 2} floods. This SPI gel system remains a low viscosity fluid until an external initiator (CO{sub 2}) triggers gelation. This is a clear improvement over current technologies where the gels set up as a function of time, regardless of where it is placed in the reservoir. In those current systems, the internal initiator is included in the injected fluid for water shut off applications. In this new research effort, the CO{sub 2} is an external initiator contacted after SPI gel solution placement. This concept ensures in the proper water wet reservoir environment that the SPI gel sets up in the precise high permeability path followed by the CO{sub 2}, therefore improving sweep efficiency to a greater degree than conventional systems. In addition, the final SPI product in commercial quantities is expected to be low cost over the competing systems. This Phase I research effort provided ‚Äúproof of concept‚ÄĚ that SPI gels possess strength and may be formed in a sand pack reducing the permeability to brine and CO{sub 2} flow. This SPI technology is a natural extension of prior R & D and the Phase I effort that together show a high potential for success in a Phase II follow-on project. Carbon dioxide (CO{sub 2}) is a major by-product of hydrocarbon combustion for energy, chemical and fertilizer plants. For example, coal fired power plants emit large amounts of CO{sub 2} in order to produce electrical energy. Carbon dioxide sequestration is gaining attention as concerns mount over possible global climate change caused by rising emissions of greenhouse gases. Removing the CO{sub 2} from the energy generation process would make these plants more environmentally friendly. In addition, CO{sub 2} flooding is an attractive means to enhance oil and natural gas recovery. Capture and use of the CO{sub 2} from these plants for recycling into CO{sub 2} flooding of marginal reservoirs provides a ‚Äúdual use‚ÄĚ opportunity prior to final CO{sub 2} sequestration in the depleted reservoir. Under the right pressure, temperature and oil composition conditions, CO{sub 2} can act as a solvent, cleaning oil trapped in the microscopic pores of the reservoir rock. This miscible process greatly increases the recovery of crude oil from a reservoir compared to recovery normally seen by waterflooding. An Enhanced Oil Recovery (EOR) project that uses an industrial source of CO{sub 2} that otherwise would be vented to the atmosphere has the added environmental benefit of sequestering the greenhouse gas.

  2. EO 13690 (2015): Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input

    Broader source: Energy.gov [DOE]

    Executive Order (E.O.) 13690, Establishing a Federal Flood Risk Management Standard [FFRMS] and a Process for Further Soliciting and Considering Stakeholder Input (2015) amends E.O. 11988,...

  3. Research | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Mission Statement The objective of PARC is to understand the basic scientific principles that underpin the efficient functioning of natural photosynthetic antenna systems as a basis for design of biohybrid and bioinspired architectures for next-generation systems for solar-energy conversion. Scientific Themes Through basic scientific research, PARC seeks to understand the principles of light harvesting and energy funneling as applied to The PARC Vision Graphic three

  4. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    SciTech Connect (OSTI)

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2015-05-17

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code called NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins.

  5. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2015-05-17

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code calledmore¬†¬Ľ NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins.¬ę¬†less

  6. Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983

    SciTech Connect (OSTI)

    Linville, B.

    1983-07-01

    Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

  7. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-03-31

    Progress is reported for the period from January 1, 2002 to March 31, 2002. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. While this review process is being conducted, work is proceeding on well testing to obtain reservoir properties and on the VIP reservoir simulation model to improve model prediction and better understand the controls that certain parameters exert on predicted performance. In addition, evaluation of the economics of commercial application in the surrounding area was performed. In a meeting on January 14, 2002 the possibility of staging the demonstration, starting with a 10-acre sub-pattern flood was raised and the decision made to investigate this plan in detail. The influence of carbon dioxide on oil properties and the influence of binary interaction parameters (BIP) used in the VIP simulator were investigated. VIP calculated swelling factors are in good agreement with published values up to 65% mole-fraction CO2. Swelling factor and saturated liquid density are relatively independent of the BIP over the range of BIPs used (0.08-0.15) up to 65% mole-fraction CO2. Assuming a CO2 EOR recovery rate projected as being most likely by current modeling, commercial scale CO2 flooding at $20/BO is possible in the leases in Hall-Gurney field. Relatively small floods (240-320 acres, 4-6 patterns) are economically viable at $20/BO in areas of very high primary and secondary productivity (>14 MBO/net acre recovery). Leases with moderately high primary and secondary productivity (> 10 MBO/net acre recovery) can be economic when combined with high productivity leases to form larger floods (>640 acres, 9 or more patterns).

  8. Impact of Aluminum on Anticipated Corrosion in a Flooded SNF Multi Canister Overpack (MCO)

    SciTech Connect (OSTI)

    DUNCAN, D.R.

    1999-07-06

    Corrosion reactions in a flooded MCO are examined to determine the impact of aluminum corrosion products (from aluminum basket grids and spacers) on bound water estimates and subsequent fuel/environment reactions during storage. The mass and impact of corrosion products were determined to be insignificant, validating the choice of aluminum as an MCO component and confirming expectations that no changes to the Technical Databook or particulate mass or water content are necessary.

  9. Modeling of a Flooding Induced Station Blackout for a Pressurized Water Reactor Using the RISMC Toolkit

    SciTech Connect (OSTI)

    Mandelli, Diego; Prescott, Steven R; Smith, Curtis L; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J; Kinoshita, Robert A

    2011-07-01

    In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observing Warm Clouds in 3D Using ARM Scanning Cloud Radars and a Novel Ensemble Method Download a printable PDF Submitter: Fielding, M. D., University of Reading Area of Research:...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Program Research Improves Longwave Radiative Transfer Models Submitter: Turner, D. D., ... resolution infrared radiance. D.D. Turner, D.C. Tobin, S.A. Clough, P.D. Brown, ...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Climate Models: Results from TC4 and ISDAC Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Mishra, S., DOE - SunShot Initiative, AAAS S&T...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: China S, G Kulkarni, BV Scarnato, N Sharma, M Pekour, JE Shilling, J Wilson, A ...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To Rain or Not to Rain...Aerosols May Be the Answer Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud-Aerosol-Precipitation Interactions...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During MC3E Download a printable PDF Submitter: Pu, Z., University of Utah Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Pu Z and C...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wu D, B Xi, Z...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Modeling Journal Reference: Naud, C, A Del Genio, GG Mace, S Benson, EE Clothiaux, and P Kollias. ...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Properties Journal Reference: Wang X, KN Liou, SS Ou, GG Mace, and M Deng. 2009. "Remote sensing of ...

  19. Caterpillar Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  20. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect (OSTI)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2005-07-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  1. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect (OSTI)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2004-11-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  2. A Framework to Design and Optimize Chemical Flooding Processes

    SciTech Connect (OSTI)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2006-08-31

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  3. Research Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Capabilities Research Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy, to supercomputing. thumbnail of Bioscience At Los Alamos, scientists and engineers are working to unlock many of the mechanisms found in nature to improve humanity's ability to battle diseases, create new forms of environmentally friendly and abundant

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Decade and Counting Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Long CN, SA McFarlane, A Del Genio, P Minnis, TP Ackerman, J Mather, J Comstock, GG Mace, M Jensen, and C Jakob. 2013. "ARM research in the equatorial western Pacific - a decade and counting." Bulletin of the American Meteorological Society, 94(5),

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Campaign Resource Allocation Using Statistical Decision Analysis Download a printable PDF Submitter: Hanlon, C., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Hanlon CJ, JB Stefik, AA Small, J Verlinde, and GS Young. 2013. "Statistical decision analysis for flight decision support: The SPartICus campaign." Journal of Geophysical Research - Atmospheres, , . ACCEPTED. In many atmospheric science field

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pointing Scanning Cloud Radar in the Right Direction Download a printable PDF Submitter: Fielding, M. D., University of Reading Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Fielding MD, JC Chiu, RJ Hogan, and G Feingold. 2013. "3D cloud reconstructions: Evaluation of scanning radar scan strategy with a view to surface shortwave radiation closure." Journal of Geophysical Research -

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Brass Ring of Climate Modeling Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ghan SJ, SJ Smith, M Wang, K Zhang, K Pringle, K Carslaw, J Pierce, S Bauer, and P Adams. 2013. "A simple model of global aerosol indirect effects." Journal of Geophysical Research - Atmospheres, 118, 1-20. The simple model of aerosol effects on clouds

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Digging Into Climate Models' Needs with SPADE Download a printable PDF Submitter: Gustafson, W. I., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Gustafson WI, PL Ma, H Xiao, B Singh, PJ Rasch, and JD Fast. 2013. "The separate physics and dynamics experiment (SPADE) framework for determining resolution awareness: A case study of microphysics." Journal of Geophysical Research -

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Invisible Giants in the Sky Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Photo

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nailing Down Ice in a Cloud Model Download a printable PDF Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Comstock JM, A Protat, SA McFarlane, J Delano√ę, and M Deng. 2013. "Assessment of uncertainty in cloud radiative effects and heating rates through retrieval algorithm differences: Analysis using 3 Years of ARM data at Darwin, Australia." Journal of Geophysical Research -

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Overambitious Other Carbon Submitter: Church, J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Song C, M Gyawali, RA Zaveri, JE Shilling, and WP Arnott. 2013. "Light absorption by secondary organic aerosol from őĪ-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity." Journal of Geophysical Research - Atmospheres, 118, doi:10.1002/jgrd.50767. Time-dependent Mass Absorption

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observational Analysis of Land-Atmosphere Coupling for Climate Model Evaluation Download a printable PDF Submitter: Phillips, T. J., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Phillips TJ and SA Klein. 2014. "Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains." Journal of Geophysical Research -

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBL Aerosol Properties and Their Impact on CCN at the Azores-AMF Site Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Aerosol Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Logan T, B Xi, and X Dong. 2014. "Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores." Journal of Geophysical Research - Atmospheres, 119(8),

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accuracy of GFS and ECMWF Hurricane Sandy Track Forecasts Dependent on Cumulus Parameterization Download a printable PDF Submitter: Bassill, N. P., University of Utah Zipser, E., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Bassill NP. 2014. "Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: Evidence for a dependence on cumulus parameterization." Geophysical Research Letters, ,

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Masters the Misunderstood Mixed-Phase Cloud Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Ovchinnikov M, AS Ackerman, A Avramov, A Cheng, J Fan, AM Fridland, S Ghan, J Harrington, C Hoose, A Korolev, GM McFarquhar, H Morrison, M Paukert, J Savre, BJ Shipway, MD Shupe, A Solomon, and K

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Are Increases in Thunderstorm Activity in Southeast China Related to Air Pollution? Download a printable PDF Submitter: Li, Z., UALBANY Cribb, M. C., University of Maryland Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Yang X and Z Li. 2014. "Increases in thunderstorm activity and relationships with air pollution in southeast China." Journal of Geophysical Research - Atmospheres, 119(4),

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying the Importance of Cold Pool Mechanisms for Convection Triggering Download a printable PDF Submitter: Kuang, Z., Harvard University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Torri G, Z Kuang, and Y Tian. 2015. "Mechanisms for convection triggering by cold pools." Geophysical Research Letters, , . ACCEPTED. Horizontal sections of (left) potential temperature and (right) water vapor specific humidity at 25 m from the model surface.

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observed Relations Between Snowfall Microphysics and Triple-Frequency Radar Observations Download a printable PDF Submitter: Kneifel, S., McGill University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Kneifel S, A von Lerber, J Tiira, D Moisseev, P Kollias, and J Leinonen. 2015. "Observed relations between snowfall microphysics and triple-frequency radar measurements." Journal of Geophysical Research - Atmospheres, 120(12),

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Well Are Shallow Convective Clouds Simulated in the CAM5 Model? Download a printable PDF Submitter: Chandra, A. S., University of Miami Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Chandra AS, C Zhang, SA Klein, and H Ma. 2015. "Low-cloud characteristics over the tropical western Pacific from ARM observations and CAM5 simulations." Journal of Geophysical Research - Atmospheres, 120, 52402, doi:10.1002/2015JD02.

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stereo Photogrammetry Reveals Substantial Drag on Cloud Thermals Download a printable PDF Submitter: Romps, D., Lawrence Berkeley National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Romps DM and R Oktem. 2015. "Stereo photogrammetry reveals substantial drag on cloud thermals." Geophysical Research Letters, , doi:10.1002/2015GL064009. ONLINE. A 14-minute sequence of cloud growth as observed by a camera located at the MAST Academy

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieving Cloud and Aerosol Properties from the ARM Raman Lidar Download a printable PDF Submitter: Thorsen, T., NASA - Langley Research Center Fu, Q., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Thorsen TJ, Q Fu, RK Newsom, DD Turner, and JM Comstock. 2015. "Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, Part I: Feature detection." Journal of

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Ice Nuclei Recycling in the Maintenance of Cloud Ice in Arctic Mixed-phase Stratocumulus Download a printable PDF Submitter: Solomon, A., NOAA/ESRL/Physical Sciences Division Feingold, G., NOAA - Earth System Research Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle Journal Reference: Solomon A, G Feingold, and MD Shupe. 2015. "The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Arctic Mixed-Phase Cloud Structure Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Qiu S, X Dong, B Xi, and F Li. 2015. "Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations." Journal of Geophysical Research - Atmospheres, 120, 10.1002/2014JD023022.

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Particle Projected Area- and Mass-Dimension Expressions for Cirrus Clouds Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Erfani E and DL Mitchell. 2015. "Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing." Atmospheric Chemistry and Physics, 15(20),

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scale-Aware Parameterization of Liquid Cloud Inhomogeneity and Its Impact on Simulated Climate Download a printable PDF Submitter: Zhang, M., Stony Brook University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Xie X and M Zhang. 2015. "Scale-aware parameterization of liquid cloud inhomogeneity and its impact on simulated climate in CESM." Journal of Geophysical Research - Atmospheres, 120(16),

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Fire to Ice Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Kulkarni GR, M Nandasiri, A Zelenyuk, J Beranek, N Madaan, A Devaraj, V Shutthanandan, S Thevuthasan, and T Varga. 2015. "Effects of crystallographic properties on the ice nucleation properties of volcanic ash particles." Geophysical Research Letters, 42(8), doi:10.1002/2015GL063270. Tons of

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Changes Clouds' Ice Crystal Genesis Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Kulkarni GR, K Zhang, C Zhao, M Nandasiri, V Shutthanandan, X Liu, L Berg, and J Fast. 2015. "Ice formation on nitric acid-coated dust particles: Laboratory and modeling studies." Journal of Geophysical Research - Atmospheres, 120(15), doi:10.1002/2014JD022637.

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bell-Shaped Curve Captures Cloud System Variability Submitter: Lamb, P. J., University of Oklahoma Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Journal of Geophysical Research, 110, D18205, doi:10.1029/2005JD006158. Figure 1. Reflectivity standard deviation PDFs, resampled as a function of timescale and contoured by equal values of probability, show an increase in variability with scale. The PDF modes lie mostly along the mean

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Birth and Growth of an Aerosol Download a printable PDF Submitter: Fast, J. ., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A An aerosol particle journey. New modeling approaches developed by a research team led by PNNL show how aerosol particles are born and grow to affect the atmosphere and ultimately climate. Tiny atmospheric aerosols are some of the most highly

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dependence of Entrainment in Shallow Cumulus Convection on Vertical Velocity and Distance to Cloud Edge PI Contact: Kuang, Z., Harvard University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Tian Y and Z Kuang. 2016. "Dependence of entrainment in shallow cumulus convection on vertical velocity and distance to cloud edge." Geophysical Research Letters, , doi:10.1002/2016GL069005. ONLINE. Percentage change in (a) vertical velocity, (b) distance

  11. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Joint Los Alamos National Laboratory/UCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email "Since 2003, LANL has funded numerous collaborative

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Birth and Growth of an Aerosol For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Tiny atmospheric aerosols are some of the most highly studied particles connected with Planet Earth, yet questions remain on how they are formed and how they affect climate. Now Pacific Northwest National Laboratory scientists have developed new approaches to accurately model the birth and growth of these important aerosols. "Most

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying Error in the Radiative Forcing of the First Aerosol Indirect Effect Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Submitted to Geophysical Research Letters, 06-27-2007. Radiative forcing of aerosol indirect as function of CCN number density and LWP in units of W/m2 per 5% IE error. A survey of recently published works shows that values used to represent the magnitude of

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Atmospheric Aerosols Using MFRSR Measurements Download a printable PDF Submitter: Alexandrov, M. D., Columbia University Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Alexandrov, MD, AA Lacis, BE Carlson, and B Cairns. 2007. "Characterization of atmospheric aerosols using MFRSR measurements." (Journal of Geophysical Research 113, DO8204. Sample spectral optical depths of atmospheric constituents in 300 - 900 nm spectral range:

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Science Applications of AERI Measurements Submitter: Smith, W. L., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Cloud Modeling Journal Reference: DeSlover, D. H. 1996. Analysis of Visible and Infrared Cirrus Cloud Optical Properties Using High Spectral Resolution Remote Sensing, M.S. Thesis, University of Wisconsin - Madison. Ho, S.-P. 1997. Atmospheric Profiles From Simultaneous Observations of Upwelling and Downwelling Spectral Radiance, Ph.D.

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model Download a printable PDF Submitter: Zhang, G., University of California, San Diego Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Li, G, and GJ Zhang. 2008. "Understanding biases in shortwave cloud radiative forcing in the National Center for Atmospheric Research Community Atmosphere Model (CAM3) during El

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wide Angle Imaging Lidar: Active Optical Sensor Technology for Ground-Based Probing of Dense Clouds Download a printable PDF Submitter: Davis, A. B., Jet Propulsion Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Davis, AB. 2008. "Multiple-scattering lidar from both sides of the clouds: Addressing internal structure." Journal of Geophysical Research 113, D14S10, doi:10.1029/2007JD009666. Figure 1. Lidar

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minimal Shortwave Anomalous Absorption Found over ACRF Sites Download a printable PDF Submitter: Dong, X., University of North Dakota Minnis, P., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Dong, X, BA Wielicki, B Xi, Y Hu, GG Mace, S Benson, F Rose, S Kato, T Charlock, and P Minnis. 2008. "Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Surprisingly Large Contribution of Small Marine Clouds to Cloud Fraction and Reflectance Download a printable PDF Submitter: Oreopoulos, L., NASA Feingold, G., NOAA - Earth System Research Laboratory Koren, I., Weizmann Institute of Science Remer, L., NASA - GSFC, Laboratory for Atmospheres Area of Research: Clouds with Low Optical [Water] Depths (CLOWD) Working Group(s): Cloud Properties Journal Reference: Koren, I, L Oreopoulos, G Feingold, LA Remer, and O Altaratz. 2008. "How small

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Aerosol Measurements on Cloudy Days: a New Method Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Kassianov, EI, and M Ovtchinnikov. 2008. "On reflectance ratios and aerosol optical depth retrieval in the presence of cumulus clouds." Geophysical Research Letters doi:10.1029/2008GL033231.

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detection and Retrieval of Cirrus Clouds in the Tropics from AIRS: Validation from ARM Data Submitter: Yue, Q., Jet Propulsion Laboratory/California Institute of Technology Liou, K., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Yue Q and KN Liou. 2009. "Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra." Geophysical Research Letters, 36, L05810,

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Influence of Parameterized Ice Habit on Simulated Mixed-Phase Arctic Clouds Download a printable PDF Submitter: Harrington, J. Y., Pennsylvania State University Avramov, A., Columbia University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Avramov A and JY Harrington. 2010. "Influence of parameterized ice habit on simulated mixed phase Arctic clouds." Journal of Geophysical Research - Atmospheres, 115, D03205,

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds Brighten Up the Sky Near Them Download a printable PDF Submitter: Varnai, T., University of Maryland, Baltimore County/JCEST Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Varnai T and A Marshak. 2009. "MODIS observations of enhanced clear sky reflectance near clouds." Geophysical Research Letters, 36, L06807, doi:10.1029/2008GL037089. Figure 1. Illustration of clouds enhancing the

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Ground-Based Millimeter-Wave Observations During RHUBC I Submitter: Cimini, D., CETEMPS - Dipartimento di Fisica Westwater, E. R., University of Colorado Payne, V., Jet Propulsion Laboratory/California Institute of Technology Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Exner, M., Radiometrics Corporation Cadeddu, M. P., Argonne National Laboratory Area of Research: Radiation Processes Working Group(s):

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Method for Retrieving Cloud Heights from Satellite Data Download a printable PDF Submitter: Chang, F., Science Systems and Applications, Inc. Minnis, P., NASA - Langley Research Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Chang F, P Minnis, B Lin, MM Khaiyer, R Palikonda, and DA Spangenberg. 2010. "A modified method for inferring cloud top height using GOES-12 imager 10.7- and 13.3-¬Ķm data." Journal of

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, EI Kassianov, CN Long, and DL Mills. 2011. "Surface summertime radiative forcing by shallow cumuli at the ARM SGP." Journal of Geophysical Research - Atmospheres, 116, D01202, 10.1029/2010JD014593. Histogram of hourly average shortwave

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adoption of RRTMG in the NCAR CAM5 and CESM1 Global Climate Models Download a printable PDF Submitter: Iacono, M. J., Atmospheric & Environmental Research, Inc. Collins, W. D., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A Figure 1. Shortwave cloud forcing for three versions of the NCAR Community Atmosphere Model (CAM) with CERES

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations of the First Aerosol Indirect Effect in Shallow Cumuli Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Berg LK, CM Berkowitz, JC Barnard, G Senum, and SR Springston. 2011. "Observations of the first aerosol indirect effect in shallow cumuli." Geophysical Research Letters, 38, L03809, 10.1029/2010GL046047. Mean value of (a)

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cumuli Impact on Solar Radiation at Surface: Spectral Changes Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, J Barnard, LK Berg, CN Long, and C Flynn. 2011. "Shortwave spectral radiative forcing of cumulus clouds from surface observations." Geophysical Research Letters, 38, L07801,

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Possible Impact of Homogeneous Freezing Nucleation on in Situ Measurements Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Mishra, S., DOE - SunShot Initiative, AAAS S&T Policy Fellow Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mitchell DL, S Mishra, and RP Lawson. 2011. Cirrus Clouds and Climate Engineering: New Findings on Ice Nucleation and Theoretical

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Putting the Pieces Together Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Fan J, S Ghan, M Ovchinnikov, X Liu, P Rasch, and A Korolev. 2011. "Representation of arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study." Journal of Geophysical Research - Atmospheres, 116,

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Science Applications of AERI Measurements: 1997 Progress Submitter: Smith, W. L., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Cloud Modeling Journal Reference: N/A Figure 1. Figs. 1a and 1b contain rms differences from 72 radiosondes for AERI retrievals (blue), GOES retrievals (black), and AERI+GOES retrievals (red) for temperature and mixing ratio respectively during the 1997 Water Vapor IOP. A measure of meteorological the variability of the

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Recent Evaluation of the MT_CKD Model of Continuum Absorption Download a printable PDF Submitter: Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi:

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution + Storm Clouds = Warmer Atmosphere Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Fan J, D Rosenfeld, Y Ding, L Leung, and Z Li. 2012. "Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection." Geophysical Research Letters, 39, L09806,

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How to Catch Aerosols in the Act Download a printable PDF Submitter: Wang, M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wang M, S Ghan, X Liu, TS L'Ecuyer, K Zhang, H Morrison, M Ovchinnikov, R Easter, R Marchand, D Chand, Y Qian, and JE Penner. 2012. "Constraining cloud lifetime effects of aerosols using A-Train satellite observations." Geophysical Research Letters, 39, L15709, doi:

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Invisible" Giants in the Sky Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Daily averaged values of (a, b) the direct

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying the Magnitude of Anomalous Solar Absorption Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Figure 1 Spurred by a series of articles published in 1995 claiming solar absorption in cloudy atmospheres far exceeded model predictions, Atmospheric Radiation Measurement (ARM) Program researchers at the Southern Great Plains (SGP) site in Oklahoma

  18. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-06-30

    Progress is reported for the period from July 1, 2002 to September 30, 2002. Assessment of the demonstration site has defined many aspects of the reservoir. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. Further analysis of the pilot site by the partners has indicated that a staged demonstration is considered optimal. A phased approach to implementation of the demonstration is proposed to reduce the risk of uncertainties as to whether the reservoir has basic properties (connectivity and ability to pressure-up) conducive to a meaningful CO2 flood demonstration. The proposed plan is to flood a 10+-acre pattern. The results of this small flood will be used to evaluate the viability of performing a larger-scale ({approx}60-acre) demonstration and will be used by the partners to decide their role in a larger-scale demonstration. The 10+-acre pattern requires the least up-front expense to all parties to obtain the data required to accurately assess the viability and economics of CO2 flooding in the L-KC and of a larger-scale demonstration. In general, the following significant modifications to the original Statement of Work are proposed: (1) The proposed plan would extend the period of Budget Period 1 to May 7, 2003. (2) Redefine the period of Budget Period 2 from 3/7/01-3/7/05 to 5/7/03-3/7/08. (3) Redefine the period of Budget Period 3 from 3/7/05-3/7/06 to 3/7/08-3/7/09. (4) To allow initial verification of the viability of the process before proceeding into the flood demonstration, move activities involved with preparing wells in the flood pattern (Task 5.1), repressurizing the pattern (Task 5.2), and constructing surface facilities (Task 5.3) from Budget Period 2 to Budget Period 1. (5) Allow US Energy Partners (USEP) to be a supplier of carbon dioxide from the ethanol plant in Russell, Kansas. (6) Change the pilot flood pattern, including the number and location of wells involved in the pilot. (7) Expenses are shifted from Budget Period 2 to Budget Period 1 to cover costs of additional reservoir characterization. All modified activities and tasks would maintain the existing required industry match of 55% in Budget Period 1, 65% in Budget Period 2, and 90% in Budget Period 3. Carbon dioxide supplied by the USEP ethanol facility would be valued such that the total cost of CO2 delivered to the demonstration site injection wellhead would not exceed the $3.00/MCF cost of supplying CO2 from Guymon, OK. Total cost of the modified project is $4,415,300 compared with $5,388,064 in the original project. The modified project would require no additional funding from US DOE.

  19. Breakthrough: Fighting Cancer with Nanoparticles

    ScienceCinema (OSTI)

    Rozhkova, Elena

    2013-04-19

    Argonne nanoscientist Elena Rozhkova is studying ways to enlist nanoparticles to treat brain cancer. This nano-bio technology may eventually provide an alternative form of therapy that targets only cancer cells and does not affect normal living tissue. Read more at http://1.usa.gov/JAXh7Q.

  20. Fridges to fight childhood disease

    SciTech Connect (OSTI)

    Lerner, T.

    1983-04-01

    A solar-powered refrigerator/freezer has been installed in a medical center in Bhoorbaral, India. The installation and performance of the refrigerator/freezer are described.

  1. Bit makers fight to survive

    SciTech Connect (OSTI)

    Brezovec, D.

    1983-04-01

    Competition is fierce amongst the manufacturers of roof drill bits, and testing and machining techniques have improved to design bits that last longer. Information is given in tabulated form on various models and their USA manufacturers. Diamond bits for roof drilling are discussed.

  2. Fight over clean air begins

    SciTech Connect (OSTI)

    Smith, R.J.

    1981-01-01

    The outcome of a clash in Congress will affect autos, synfuels, utilities, and the steel industry, to list just a few.

  3. Patching genes to fight disease

    SciTech Connect (OSTI)

    Holzman, D.

    1990-09-03

    The National Institutes of Health has approved the first gene therapy experiments, one of which will try to cure cancer by bolstering the immune system. The applications of such therapy are limited, but the potential aid to people with genetic diseases is great.

  4. Breakthrough: Fighting Cancer with Nanoparticles

    SciTech Connect (OSTI)

    Rozhkova, Elena

    2012-01-01

    Argonne nanoscientist Elena Rozhkova is studying ways to enlist nanoparticles to treat brain cancer. This nano-bio technology may eventually provide an alternative form of therapy that targets only cancer cells and does not affect normal living tissue. Read more at http://1.usa.gov/JAXh7Q.

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China's Aerosol Malady Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Qiu Y, Q Wang, and F Hu. 2012. "Shouxian aerosol radiative properties measured by DOE AMF and compared with CERES-MODIS." Advanced Materials Research, 518-523(2), doi:10.4028/www.scientific.net/AMR.518-523.1973. Tiananmen tower enveloped by heavy fog and haze in January 2013. Many of

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Madden-Julian Oscillation Heating: to Tilt or Not to Tilt Download a printable PDF Submitter: Schumacher, C., Texas A&M University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lappen C and C Schumacher. 2014. "The role of tilted heating in the evolution of the MJO." Journal of Geophysical Research - Atmospheres, , 10.1002/2013JD020638. ACCEPTED. In this figure, November through April wavenumber frequency spectrum of OLR (colors) and 850

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of CERES-MODIS Cloud Retrievals Using the Azores Data Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Xi B, P Minnis, and S Sun-Mack. 2014. "Comparison of marine boundary layer cloud properties from CERES-MODIS edition 4 and DOE ARM AMF measurements at the Azores." Journal of Geophysical Research - Atmospheres, 119, doi:10.1002/2014JD021813. Figure 1. The ARM

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Warming Due to Soot and Smoke? Maybe Not. Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Penner, J.E., S.Y. Zhang, and C.C. Chuang, Soot and smoke aerosol may not warm climate, J. Geophys. Res., 108(D21), 4657, doi:10.1029/2003JD003409, 2003. New research results from the Department of Energy's Atmospheric Radiation Measurement (ARM) Program suggest that fossil fuel soot emissions and biomass smoke may

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Program Achieves Milestone in Global Cloud Properties Research Submitter: Revercomb, H. E., University of Wisconsin, Madison Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Knuteson, R.O., Best, F.A., Dedecker, R.G., Feltz, W.F., Revercomb, H.E., and Tobin, D.C., 2004: "10 Years of AERI Data from the DOE ARM Southern Great Plains Site," In Proceedings from the Fourteenth ARM Science Team Meeting, U.S. Department of Energy,Washington,

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bimodal CCN Spectra Download a printable PDF Submitter: Hudson, J. G., Desert Research Institute Area of Research: Cloud Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A Figure 1. Differential CCN concentrations (per cm3) against critical supersaturation (Sc) for MASE below cloud CCN spectra for each of the 8 modal categories. (a) cat 1, (b) cat 2, (c) cat 3, (d) cat 4, (e) cat 5, (f) cat 6, (g) cat 7, (h) cat 8. Sc in percent for, Hoppel minima are

  11. RESEARCH QUARTERLY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESEARCH QUARTERLY First Quarter 2015 Th 90 Ac 89 Pa 91 U 92 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lr 103 Glenn T. Seaborg Institute for Transactinium Science/Los Alamos National Laboratory Actinide Research Quarterly About the cover The crystalline structure of plutonium in its elemental form, and in molecules and compounds with other elements, is the basis for understanding the intriguing chemistry, physics, and engineering of plutonium molecules and compounds. Colored

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM M-PACE Data Used to Evaluate and Improve Arctic Mixed-Phase Clouds Simulated in Climate Models Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Xie, S, J Boyle, SA Klein, X Liu, and S Ghan. 2008. "Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE." Journal of Geophysical Research 113,

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Apparent Bluing of Aerosols Near Clouds Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marshak, A, G Wen, JA Coakley, LA Remer, NG Loeb, and RF Cahalan. 2008. "A simple model of the cloud adjacency effect and the apparent bluing of aerosols near clouds." Journal of Geophysical Research 113, D14S17, doi: 10.1029/2007JD009196. (upper panel) A schematic

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Sensing of Mineral Dust Using AERI Download a printable PDF Submitter: Hansell, R. A., University of California, Los Angeles Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Hansell R, KN Liou, SC Ou, SC Tsay, Q Ji, and JS Reid. 2008. "Remote sensing of mineral dust aerosol using AERI during the UAE2: A modeling and sensitivity study." Journal of Geophysical Research - Atmospheres, 113, D18202, doi:10.1029/2008JD010246. BT sensitivity to dust

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Term Observations of Convective Boundary Layer Using Insect Returns at SGP Download a printable PDF Submitter: Chandra, A. S., McGill University Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Chandra AS, P Kollias, SE Giangrande, and SA Klein. 2010. "Long-term observations of the convective boundary layer using insect radar returns at the SGP ARM Climate Research Facility." Journal of Climate, 23, 5699-5714. Example of time-height mapping

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving the Treatment of Radiation in Climate Models Download a printable PDF Submitter: Delamere, J. S., Tech-X Corporation Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Delamere JS, SA Clough, VH Payne, EJ Mlawer, DD Turner, and RR Gamache. 2010. "A far-infrared radiative closure study in the Arctic: Application to water vapor." Journal of Geophysical Research - Atmospheres, 115, D17106, 10.1029/2009JD012968. The

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predicting Arctic Sea Ice Loss Download a printable PDF Submitter: Liu, X., University of Wyoming Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Liu X, S Xie, J Boyle, SA Klein, X Shi, Z Wang, W Lin, SJ Ghan, M Earle, PS Liu, and A Zelenyuk. 2011. "Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations." Journal of Geophysical Research, 116, D00T11,

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Method for Three-Dimensional Imaging of Cirrus Clouds Submitter: Liou, K., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Liou, K.N, S.C. Ou, Y. Takano, J. Roskovensky, G.G. Mace, K. Sassen, and M. Poellot, 2002: "Remote sensing of three-dimensional inhomogeneous cirrus clouds using satellite and mm-wave cloud radar data," Geophysical Research Letters 29(9): 1360. Figure 1 ARM Data

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partly Cloudy with a Chance of Aerosol Download a printable PDF Submitter: Chand, D., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Chand D, R Wood, SJ Ghan, M Wang, M Ovchinnikov, PJ Rasch, S Miller, B Schichtel, and T Moore. 2012. "Aerosol optical depth increase in partly cloudy conditions." Journal of Geophysical Research, 117, D17207, doi:10.1029/2012JD017894. The sky can appear nearly clear or

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Short and the Long of Storms: Tracing a Deep Convective System's Life in the Midlatitude Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, X Dong, B Xi, S McFarlane, A Kennedy, B Lin, and P Minnis. 2012. "Life cycle of midlatitude deep convective systems in a Lagrangian framework." Journal of Geophysical Research - Atmospheres, 117(D23), D23201,

  1. Errvironmentaf Research

    Office of Legacy Management (LM)

    online at www.sciencedirect.com Environmental Research 10 1 (2006) 3 4 4 1 Errvironmentaf Research Do scientists and fishermen collect the same size fish? Possible implications for exposure assessment Joanna urger^^^^', Michael ~ o c h f e l d ~ ~ ~ , Sean Christian W. ~ e i t n e r ~ . ~ , Stephen ~ e w e t t ~ , Daniel SnigarofP, Ronald snigarofff, Tim Starnrng, Shawn ~ a r ~ e f , Max ~ o b e r ~ * , Heloise chenelotd, Robert patrickh, Conrad D. volzi, James ~ e s t o d 'Division of Life

  2. Postdoctoral Research Awards Annual Research Meeting: Brandon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brandon Mercado Postdoctoral Research Awards Annual Research Meeting: Brandon Mercado Poster Presentation at 2012 EERE Annual Research Meeting, Postdoctoral Research Awards, from ...

  3. Postdoctoral Research Awards Annual Research Meeting: Padmaja...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Padmaja Gunda Postdoctoral Research Awards Annual Research Meeting: Padmaja Gunda Poster Presentation at 2012 EERE Annual Research Meeting, Postdoctoral Research Awards, from the ...

  4. Postdoctoral Research Awards Annual Research Meeting: Joseph...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joseph Mondloch Postdoctoral Research Awards Annual Research Meeting: Joseph Mondloch Postdoctoral Research Awards Annual Research Meeting: Joseph Mondloch poster presentation. PDF ...

  5. Green River Formation water flood demonstration project. Report for the period October 1992--March 1994

    SciTech Connect (OSTI)

    Pennington, B.I.; Lomax, J.D.; Neilson, D.L.; Deo, M.D.

    1994-12-01

    The current project targeted three fluvial deltaic reservoirs in the Uinta Basin, Utah. In primary recovery, the performance of the Monument Butte unit was typical of an undersaturated reservoir whose initial pressure was close to the bubble point pressure. The unit was producing at a rate of 40 stb/day when the water flood was initiated. The unit has been producing at more than 300 stb/day for the past four years. The reservoir characteristics of Monument Butte were established in the geologic characterization study. The reservoir fluid properties were measured in the engineering study. Results of a comprehensive reservoir simulation study using these characteristics provided excellent match with the field production data. Extended predictions using the model showed that it would be possible to recover a total of 20--25% of the oil in place. In the Travis unit, logs from the newly drilled 14a-28 showed extensively fractured zones. A new reservoir was discovered and developed on the basis of the information provided by the formation micro imaging logs. This reservoir also behaved in a manner similar to undersaturated reservoirs with initial reservoir pressures close to the reservoir fluid bubble point. The water flood activity was enhanced in the Travis unit. Even through the reservoir continued to be gradually pressurized, the water flood in the Travis unit appeared to be significantly affected by existing or created fractures. A dual-porosity, dual permeability reservoir model provided a good match with the primary production history. The well drilled in the Boundary unit did not intersect any producible zones, once again illustrating the unique challenges to developing fluvial deltaic reservoirs.

  6. Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-09-01

    Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

  7. ASU EFRC - Center researchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center researchers Chad Simmons Academic Professional Gerdenis Kodis Research Assistant Professor Raimund Fromme Faculty Research Associate Yuichi Terazono Faculty Research...

  8. ARM - Funded Research Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Proposals Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional &...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagnosing Raindrop Evaporation, Breakup, and Coalescence in Vertical Radar Observations PI Contact: Williams, C. R., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Williams CR. 2016. "Reflectivity and Liquid Water Content Vertical Decomposition Diagrams to Diagnose Vertical Evolution of Raindrop Size Distributions." Journal of Atmospheric and Oceanic Technology, 33(3), doi: 10.1175/jtech-d-15-0208.1. Example of

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical Piggybacking: Understanding the Coupling Between Cloud Dynamics and Microphysics PI Contact: Grabowski, W., NCAR Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Grabowski WW. 2014. "Extracting microphysical impacts in large-eddy simulations of shallow convection." Journal of the Atmospheric Sciences, 71(12), 10.1175/JAS-D-14-0231.1. Grabowski WW. 2015. "Untangling microphysical

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regime Dependence of Cloud Water Variability Observed at the ARM Sites PI Contact: Ahlgrimm, M., European Centre for Medium-Range Weather Forecasts Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Ahlgrimm M and RM Forbes. 2016. "Regime dependence of cloud condensate variability observed at the Atmospheric Radiation Measurement sites." Quarterly Journal Royal Meteorological Society, ,

  12. Research Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities /collaboration/_assets/images/icon-collaboration.jpg Research Opportunities Partnering with respected universities, LANL Centers provide exceptional educational opportunities and support staff recruitment, revitalization, and retention. Center for Nonlinear Studies¬Ľ Quantum Institute¬Ľ Energy Security Center¬Ľ Seaborg Institute¬Ľ Center for Space and Earth Science¬Ľ TOP STORIES - highlights of our science, people, technologies close Science on the Hill: Why space weather matters

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Aerosols in Fair-Weather Clouds During CHAPS Download a printable PDF Submitter: Shrivastava, M., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Shrivastava M, LK Berg, J Fast, R Easter, A Laskin, WI Gustafson, Y Liu, and CM Berkowitz. 2013. "Modeling aerosols and their interactions with shallow cumuli during the 2007 CHAPS field study." Journal of

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fair-Weather Clouds Hold Dirty Secret Download a printable PDF Submitter: Shrivastava, M., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Shrivastava MB, JD Fast, RC Easter, WI Gustafson, RA Zaveri, JL Jimenez, P Saide, and A Hodzic. 2011. "Modeling organic aerosols in a megacity: Comparison of simple and complex representations of the volatility basis set

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistics of Vertical Velocities from Monsoonal Convection with Verification Download a printable PDF Submitter: Collis, S. M., Argonne National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Collis S, A Protat, PT May, and C Williams. 2013. "Statistics of storm updraft velocities from TWP-ICE including verification with profiling measurements." Journal of Applied Meteorology and Climatology, 52(8), 10.1175/jamc-d-12-0230.1. A

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Controls the Vertical Extent of Continental Shallow Cumulus? Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Zhang Y and SA Klein. 2013. "Factors controlling the vertical extent of fair-weather shallow cumulus clouds over land: investigation of diurnal-cycle observations collected at the ARM Southern Great Plains site." Journal of the Atmospheric Sciences,

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Importance of Environmental Instability to the Sensitivity of the Rimed Ice Species in Convection Download a printable PDF Submitter: Van Weverberg, K., Brookhaven National Laboratory Vogelmann, A. M., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K. 2013. "Impact of environmental instability on convective precipitation uncertainty associated with the nature of the rimed ice species in a bulk microphysics

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Different Strokes for Different Folks-Not Any More, Say Scientists at the UK Met Office Submitter: Morcrette, C., Met Office Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Morcrette CJ, EJ O'Connor, and JC Petch. 2012. "Evaluation of two cloud parametrization schemes using ARM and Cloud-Net observations." Quarterly Journal Royal Meteorological Society, 138(665), doi:10.1002/qj.969. Errors

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Finer Mesh to Improve Cloud Representation in Climate Models? Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Boutle IA, SJ Abel, PG Hill, and CJ Morcrette. 2013. "Spatial variability of liquid cloud and rain: observations and microphysical effects." Quarterly Journal Royal Meteorological Society, , doi:10.1002/qj.2140. Different sizes of water droplets as well as varying water

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Survey over West Africa Reveals Climate Impact of Mid-Level Clouds Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Bouniol D, F Couvreux, PH Kamsu-Tamo, M Leplay, F Guichard, F Favot, and EJ O'Connor. 2012. "Diurnal and seasonal cycles of cloud occurrences, types, and radiative impact over West Africa." Journal of Applied Meteorology and Climatology, 51(3),

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Ice Cloud Simulations Using Scripps Single Column Model (SCM) Reveal Range of Model Uncertainties Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: McFarquhar, G.M., S. Iacobellis, R.C.J. Somerville. SCM Simualtions of Tropical Ice Clouds Using Observationally Based Parameterizations of Microphysics, Journal of Climate: Vol 15, No. 11, pp.

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Microphysics Parameterization in Simulating Tropical Mesoscale Convective Systems Download a printable PDF Submitter: Van Weverberg, K., Brookhaven National Laboratory Vogelmann, A. M., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K, AM Vogelmann, W Lin, EP Luke, AT Cialella, P Minnis, MM Khaiyer, ER Boer, and MP Jensen. 2013. "The role of cloud microphysics parameterization in the simulation

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Application of Linear Programming Techniques to ARM Polarimetric Radar Processing Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, R McGraw, and L Lei. 2013. "An application of linear programming to polarimetric radar differential phase processing." Journal of Atmospheric and Oceanic Technology, , . ACCEPTED. C-band scanning ARM precipitation radar

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights Into Deep Convective Core Vertical Velocities Using ARM UHF Wind Profilers Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, S Collis, J Straka, A Protat, C Williams, and S Krueger. 2013. "A summary of convective core vertical velocity properties using ARM UHF wind profilers in Oklahoma." Journal of Applied Meteorology and Climatology, ,

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linking Ice Nucleation to Aerosols and Its Impact on CAM5 Simulated Arctic Clouds and Radiation Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Xie S, X Liu, C Zhao, and Y Zhang. 2013. "Sensitivity of CAM5 simulated arctic clouds and radiation to ice nucleation parameterization." Journal of Climate, 26(16),

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildfires Lead to More Warming Than Climate Models Predict, a New Mexico Fire Study Reports Download a printable PDF Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: China S, C Mazzoleni, K Gorkowski, AC Aiken, and MK Dubey. 2013. "Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles." Nature Communications, 4, 2122, doi:10.1038/ncomms3122.

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Impact of Instrument Selection and Sampling on Cloud Fraction at the ARM Southern Great Plains Site Download a printable PDF Submitter: Kennedy, A. D., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Kennedy AD, X Dong, and B Xi. 2013. "Cloud Fraction at the ARM SGP Site: Instrument and sampling considerations from 14 years of ARSCL." Theoretical and Applied Climatology (Springer), 115(1-2),

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modified Climate Model Better Replicates Global Rainfall Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Song X, GJ Zhang, and JF Li. 2012. "Evaluation of microphysics parameterization for convective clouds in the NCAR Community Atmosphere Model CAM5." Journal of Climate, 25(24), doi:10.1175/JCLI-D-11-00563.1. Rainfall in the

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Tall Order: Climate Models Fall Short in Predicting African Sahel Rainfall Download a printable PDF Submitter: Roehrig, R., Meteo-France CNRM/GMME/MOANA Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Roehrig R, D Bouniol, F Guichard, F Hourdin, and JL Redelsperger. 2013. "The present and future of the West African Monsoon: A process-oriented assessment of CMIP5 simulations along

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Comes the Thunder: Precursors to Local Rainfall in the West African Monsoon Download a printable PDF Submitter: Roeder, L. R., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Dione C, M Lothon, D Badiane, B Campistron, F Couvreau, F Guichard, and S Sall. 2013. "Phenomenology of Sahelian convection observed in Niamey during the early monsoon." Quarterly Journal Royal Meteorological Society, , . ACCEPTED.

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Addressing the "Light Precipitation Problem" in the ECMWF Global Model Download a printable PDF Submitter: Ahlgrimm, M., European Centre for Medium-Range Weather Forecasts Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Ahlgrimm M and R Forbes. 2013. "Improving the representation of low clouds and drizzle in the ECMWF model based on ARM observations from the Azores." Monthly Weather Review,

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determining the Future of CO2 Using an Earth System Model Download a printable PDF Submitter: Keppel-Aleks, G., University of Michigan Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol Life Cycle Journal Reference: Keppel-Aleks G, JT Randerson, K Lindsay, BB Stephens, JK Moore, SC Doney, PE Thornton, NM Mahowald, FM Hoffman, C Sweeney, PP Tans, PO Wennberg, and SC Wofsy. 2013. "Atmospheric carbon dioxide variability in the Community

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground Stations Likely Get a Boost from Satellites to Estimate Carbon Dioxide Emissions Download a printable PDF Submitter: Roeder, L. R., Pacific Northwest National Laboratory Area of Research: Surface Properties Working Group(s): Aerosol Life Cycle Journal Reference: Basu S, S Guerlet, A Butz, S Houweling, OP Hasekamp, I Aben, PB Krummel, LP Steele, RL Langenfelds, MS Torn, SC Biraud, B Stephens, A Andrews, and D Worthy. 2013. "Global CO2 fluxes estimated from GOSAT retrievals of total

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All Mixed Up-Probing Large and Small Scale Turbulence Structures in Continental Stratocumulus Clouds Download a printable PDF Submitter: Fang, M., University of Miami Albrecht, B. A., University of Miami Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Fang M, BA Albrecht, VP Ghate, and P Kollias. 2013. "Turbulence in continental stratocumulus, Part I: External forcings and turbulence structures." Boundary-Layer Meteorology, 149(454),

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Does Glyoxal Contribute Significantly to Regional SOA Formation? Download a printable PDF Submitter: Knote, C., Atmospheric Chemistry Division Hodzic, A., NCAR Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Knote C, A Hodzic, J Jimenez, R Volkamer, JJ Orlando, S Baidar, J Brioude, J Fast, DR Gentner, AH Goldstein, PL Hayes, BW Knighton, H Oetjen, A Setyan, H Stark, R Thalman, G Tyndall, R Washenfelder, E Waxman, and Q Zhang. 2014. "Simulation of

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Stratocumulus Clouds: Turbulence-Raidation-Thermodynamics Coupling Download a printable PDF Submitter: Ghate, V. P., Argonne National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Ghate VP, BA Albrecht, MA Miller, A Brewer, and CW Fairall. 2014. "Turbulence and radiation in stratocumulus-topped marine boundary layers: A case study from VOCALS-REx." Journal of Applied Meteorology and Climatology, 53, 117-135. Figure 1.

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial Aerosol Concentration Is Key Contributor to Low-Level Cloud Reflectivity Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Penner, J., Dong, X., Chen. Y., Observational evidence of a change in radiative forcing due to the indirect aerosol effect, Nature, Vol. 427, 15 January 2004. Cloud optical depth, as determined from the parcel model, is indicated by the dots. Red lines show best fit data of cloud liquid

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most Systematic Errors in Climate Models Appear in Only a Few Days of Model Integration Download a printable PDF Submitter: Ma, H., Lawrence Livermore National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Ma H, S Xie, SA Klein, KD Williams, JS Boyle, S Bony, H Douville, S Fermepin, B Medeiros, S Tyteca, M Watanabe, and DL Williamson. 2014. "On the correspondence between mean forecast errors and climate errors in

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reality Check: Estimates for Human-Caused Methane Emissions in the U.S. Appear Off by 50% Download a printable PDF Submitter: Biraud, S. C., Lawrence Berkeley National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Miller SM, SC Wofsy, AM Michalak, EA Kort, AE Andrews, SC Biraud, EJ Dlugokencky, J Elszkeiwicz, ML Fischer, G Janssens-Maenhout, BR Miller, JB Miller, SA Montzka, T Nehrkorn, and C Sweeney. 2013. "Anthropogenic emissions

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Winter Frost Flowers Have Negligible Influence on Cloud Longwave Warming Download a printable PDF Submitter: Xu, L., University of California, San Diego Russell, L. M., Scripps Institution of Oceanography Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Xu L, LM Russell, RC Somerville, and PK Quinn. 2013. "Frost flower aerosol effects on Arctic wintertime longwave cloud radiative forcing."

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-scale Variations of Decade-long Cloud Fractions from Six Different Platforms over the SGP Download a printable PDF Submitter: Wu, W., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Wu W, Y Liu, MP Jensen, T Toto, MJ Foster, and CN Long. 2014. "A comparison of multiscale variations of decade-long cloud fractions from six different platforms over the Southern Great Plains in the United

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Organic Molecules Explaining New Particle Growth in the Boreal Forest Download a printable PDF Submitter: Thornton, J., University of Washington Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Ehn M, JA Thornton, E Kleist, M Sipila, H Junninen, I Pullinen, M Springer, F Rubach, R Tillmann, B Lee, F Lopez-Hilfiker, S Andres, I Acir, M Rissanen, T Jokinen, S Schobesberger, J Kangasluoma, J Kontkanen, T Nieminen, T Kurten, LB Nielsen, S Jorgensen, HG

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Which Absorption Model Should Be Used for Supercooled Liquid Water in the Microwave? Download a printable PDF Submitter: Kneifel, S., McGill University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Kneifel S, S Redl, E Orlandi, U Löhnert, MP Cadeddu, DD Turner, and M Chen. 2014. "Absorption properties of supercooled liquid water between 31 and 225 GHz: evaluation of absorption models using ground-based observations." Journal of Applied

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Emergence of Open Source Software for the Weather Radar Community Download a printable PDF Submitter: Collis, S. M., Argonne National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Heistermann M, S Collis, MJ Dixon, SE Giangrande, JJ Helmus, B Kelley, J Koistinen, DB Michelson, P Markus, T Pfaff, and DB Wolff. 2014. "The Emergence of Open Source Software for the Weather Radar Community."

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Merging Cloud and Precipitation Radar Data Provides a Better View of Tropical Rain Clouds Download a printable PDF Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, SA McFarlane, C Schumacher, S Ellis, J Comstock, and N Bharadwaj. 2014. "Constructing a merged cloud-precipitation radar dataset for tropical convective clouds during the DYNAMO/AMIE experiment at Addu Atoll."

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Uncover Combustion Mechanism to Better Predict Warming by Wildfires Download a printable PDF Submitter: Dubey, M. K., Los Alamos National Laboratory Donahue, N., Carnegie Mellon University Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Saleh R, E Robinson, D Tkacik, A Ahern, S Liu, A Aiken, R Sullivan, A Presto, M Dubey, R Yokelson, N Donahue, and A Robinson. 2014. "Brownness of organics in aerosols from biomass burning linked to

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase State and Physical Properties of Ambient and Lab Generated Aerosols: X-ray Microscopy Download a printable PDF Submitter: OBrien, R. E., Lawrence Berkeley National Laboratory Gilles, M., Lawrence Berkeley National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: O'Brien RE, A Neu, SA Epstein, AC MacMillan, B Wang, ST Kelly, SA Nizkorodov, A Laskin, RC Moffet, and MK Gilles. 2014. "Physical properties of ambient and

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Concentration Retrieval in Stratiform Mixed-Phase Clouds Using Cloud Radar Measurements Download a printable PDF Submitter: Zhang, D., University of Wyoming Wang, Z., University of Wyoming Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Zhang D, Z Wang, A Heymsfield, J Fan, and T Luo. 2014. "Ice concentration retrieval in stratiform mixed-phase clouds using cloud radar reflectivity measurements and 1-D ice-growth model simulations." Journal

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Anatomy and Physics of ZDR Columns Submitter: Kumjian, M., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kumjian MR, AP Khain, N Benmoshe, E Ilotoviz, AV Ryzhkov, and VT Phillips. 2014. "The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model." Journal of Applied Meteorology and Climatology, 53(7),

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Theory of Time-dependent Freezing and Its Application to Investigation of Formation of Hail Download a printable PDF Submitter: Khain, A., The Hebrew University of Jerusalem Phillips, V., University of Leeds Area of Research: Cloud Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Phillips VT, A Khain, N Benmoshe, E Ilotoviz, and A Ryzhkov. 2014. "Theory of time-dependent freezing. II: Scheme for freezing raindrops and simulations by a cloud model

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observations of Tracking Clouds Using Scanning ARM Cloud Radars Download a printable PDF Submitter: Borque, P., McGill University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Borque P, P Kollias, and S Giangrande. 2014. "First observations of tracking clouds using scanning ARM cloud radars." Journal of Applied Meteorology and Climatology, , . ONLINE. A 2.5-hour long observing sequence from 25 May 2011 of (a) the Total Sky Imager (TSI)

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: an ARM Mobile Facility Deployment Download a printable PDF Submitter: Wood, R., University of Washington Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A Composite seasonal cycles of (a) cloud droplet concentration retrieved using a variety of methods; (b) surface measured cloud condensation nuclei concentrations at four supersaturations.

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growing More Effective Ways to Measure Climate Change Download a printable PDF Submitter: Maseyk, K. S., Universite Pierre et Marie Curie, Paris 6 Area of Research: Surface Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Maseyk K, JA Berry, D Billesbach, JE Campbell, MS Torn, M Zahniser, and U Seibt. 2014. "Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains." Proceedings of the National Academy of

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hail Generation and Melting in Deep Convective Clouds from the Perspective of Dual-polarization Download a printable PDF Submitter: Ryzhkov, A., National Severe Storms Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Ryzhkov AV, MR Kumjian, SM Ganson, and AP Khain. 2014. "Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling." Journal of Applied Meteorology and

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of Climate Model Ice Cloud Properties Download a printable PDF Submitter: Eidhammer, T., NCAR Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Eidhammer T, H Morrison, A Bansemer, A Gettelman, and AJ Heymsfield. 2014. "Comparison of ice cloud properties simulated by the Community Atmosphere Model (CAM5) with in situ observations." Atmospheric Chemistry and Physics, 14(18), doi:10.5194/acp-14-10103-2014. Mass weighted terminal fall

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Dust as Component Minerals in the Community Atmosphere Model Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Scanza R, N Mahowald, S Ghan, CS Zender, JF Kok, Y Zhang, and S Albani. 2015. "Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing."

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overly Intense Convective Updrafts Exposed as a Significant Contributor to Model Biases Submitter: Varble, A., University of Utah Zipser, E., University of Utah Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Varble A, EJ Zipser, AM Fridlind, P Zhu, AS Ackerman, J Chaboureau, S Collis, J Fan, A Hill, and B Shipway. 2014. "Evaluation of cloud-resolving and limited area model simulations using TWP-ICE observations. Part 1: Deep convective updraft

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding the Causes for Consistently Low Biased Stratiform Rainfall in Models Submitter: Varble, A., University of Utah Zipser, E., University of Utah Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Varble A, EJ Zipser, AM Fridlind, P Zhu, AS Ackerman, J Chaboureau, J Fan, A Hill, B Shipway, and C Williams. 2014. "Evaluation of cloud-resolving and limited area model simulations using TWP-ICE observations. 2. Precipitation microphysics." Journal of

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Filling Gaps Within Instrument Records Submitter: Kennedy, A. D., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Kennedy AD, X Dong, and B Xi. 2015. "Cloud fraction at the ARM SGP site: reducing uncertainty with self-organizing maps." Theoretical and Applied Climatology, , . ONLINE. Example of a large, 40x30 (1200 class) SOM generated from 14 years of synoptic states provided by the North American

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite Inference of Thermals and Cloud Base Updraft Speeds Download a printable PDF Submitter: Zheng, Y., University of Maryland Area of Research: Vertical Velocity Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Zheng Y, D Rosenfeld, and Z Li. 2015. "Satellite inference of thermals and cloud base updraft speeds based on retrieved surface and cloud base temperatures." Journal of the Atmospheric Sciences, , . ONLINE. Validation of satellite-estimated

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intersecting Cold Pools: Convective Cloud Organization by Cold Pools over Tropical Ocean Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, S Hagos, AK Rowe, CD Burleyson, MN Martini, and SP de Szoeke. 2015. "Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign." Journal of Advances in

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Precipitating Cumulus Congestus Observed by the ARM Radar Suite During the MC3E Field Campaign Download a printable PDF Submitter: Mechem, D. B., University of Kansas Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mechem DB, SE Giangrande, CS Wittman, P Borque, T Toto, and P Kollias. 2015. "Insights from modeling and observational evaluation of a precipitating continental cumulus event observed

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Uncertainties in Ice Particle Size Distributions Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: McFarquhar GM, T Hsieh, M Freer, JR Mascio, and BF Jewett. 2015. "The characterization of ice hydrometeor gamma size distributions as volumes in N0/lambda/mu phase space: implications for microphysical process modeling." Journal of

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regime Analysis to Identify the Contribution of Clouds to Surface Temperature Errors in GCMs Submitter: Van Weverberg, K., Met Office Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K, CJ Morcrette, H Ma, SA Klein, and JC Petch. 2015. "Using regime analysis to identify the contribution of clouds to surface temperature errors in weather and climate models." Quarterly Journal Royal

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Absorption of Primary Organic Aerosol Paper Named ACS Editors' Choice Download a printable PDF Submitter: Lu, Z., Argonne National Laboratory Streets, D. ., Argonne National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Lu Z, DG Streets, E Winijkul, F Yan, Y Chen, TC Bond, Y Feng, MK Dubey, S Liu, JP Pinto, and GR Carmichael. 2015. "Light absorption properties and radiative effects of primary organic aerosol emissions."

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Water the Key to Arctic Cloud Radiative Closure Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Shupe MD, DD Turner, A Zwink, MM Thieman, EJ Mlawer, and T Shippert. 2015. "Deriving Arctic cloud microphysics at Barrow, Alaska: Algorithms, results, and radiative closure." Journal of Applied Meteorology and Climatology, 54(7),

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Prediction and Climate Simulation: a Meeting of the Models Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Phillips, T. J. G.L. Potter, D.L. Williamson, R.T. Cederwall, J.S. Boyle, M. Fiorino, J.J. Hnilo, J.G. Olson, S. Xie, J.J. Yio, Evaluating Parameterizations in General Circulation Models: Climate Simulation Meets Weather Prediction, Bulletin

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sticky Thermals: Evidence for a Dominant Balance Between Buoyancy and Drag in Cloud Updrafts Download a printable PDF Submitter: Romps, D., Lawrence Berkeley National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Romps DM and AB Charn. 2015. "Sticky thermals: Evidence for a dominant balance between buoyancy and drag in cloud updrafts." Journal of the Atmospheric Sciences, , doi:10.1175/JAS-D-15-0042.1. ONLINE. Hill's vortex (shown

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Deeper Look Into Shallow Boundary Layer Clouds Submitter: Bretherton, C. S., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Bretherton, C. S., J. R. McCaa, and H. Grenier. A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results, Monthly Weather Review, 132(1), 864-882, 2004, doi:

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Haze: Effect of Anthropogenic and Biomass Burning Aerosols Transported from Europe to the Arctic Download a printable PDF Submitter: Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Marelle L, J Raut, JL Thomas, KS Law, B Quennehen, G Ancellet, J Pelon, A Schwarzenboeck, and JD Fast. 2015. "Transport of anthropogenic and biomass burning aerosols from Europe to the

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three-Dimensional Constrained Variational Analysis: Approach and Application Download a printable PDF Submitter: Zhang, M., Stony Brook University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Tang S and M Zhang. 2015. "Three-dimensional constrained variational analysis: Approach and application to analysis of atmospheric diabatic heating and derivative fields during an ARM SGP intensive observational period." Journal of Geophysical

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Out with the Old, in with the New: McICA to Replace Traditional Cloud Overlap Assumptions Submitter: Pincus, R., NOAA - CIRES Climate Diagnostics Center Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Modeling Journal Reference: Pincus, R., R. Hemler, and S.A. Klein, 2006: Using Stochastically Generated Subcolumns to Represent Cloud Structure in a Large-Scale Model. Mon. Wea. Rev., 134, 3644-3656. As shown by the difference between the two panels, the

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Good Is Not Enough: Improving Measurements of Atmospheric Particles Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, LK Berg, M Pekour, J Barnard, D Chand, C Flynn, M Ovchinnikov, A Sedlacek, B Schmid, J Shilling, J Tomlinson, and J Fast. 2015. "Airborne aerosol in situ measurements during TCAP: A closure study of total scattering."

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Program Surface Measurements for Aerosol Profiles Shown to Represent Integrated Column Measurements Submitter: Andrews, E., University of Colorado Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Andrews, E., P. J. Sheridan, J. A. Ogren, and R. Ferrare (2004), In situ aerosol profiles over the Southern Great Plains cloud and radiation test bed site: 1. Aerosol optical properties, J. Geophys. Res., 109, D06208, doi:10.1029/2003JD004025. Delle Monache, L., K.

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Improved Hindcast Approach for Evaluation and Diagnosis of Physical Processes in GCMs Download a printable PDF Submitter: Ma, H., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Ma H, C Chuang, SA Klein, M Lo, Y Zhang, S Xie, X Zheng, P Ma, Y Zhang, and TJ Phillips. 2015. "An improved hindcast approach for evaluation and

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds' Role in Sunlight Stopping Download a printable PDF Submitter: Burleyson, C. D., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Burleyson CD, CN Long, and JM Comstock. 2015. "Quantifying diurnal cloud radiative effects by cloud type in the Tropical Western Pacific." Journal of Applied Meteorology and Climatology, , doi:10.1175/JAMC-D-14-0288.1. ONLINE. Sunlight streaks through clouds over the

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Observations Validate Climate Model for Tropical Cirrus Clouds Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Comstock, J.M., C. Jakob, Evaluation of tropical cirrus cloud properties derived from ECMWF model output and ground based measurements over Nauru Island, 2004, Geophys. Res. Ltr, Vol.31, L10106, doi:10.1029/2004GL019539. Composite

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continuous Dataset of Water Vapor Measurements Throws Water on Assumptions of Cirrus Cloud Formation Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Comstock, J. M., T. P. Ackerman, and D. D. Turner, 2004: Evidence of high ice supersaturation in cirrus clouds using ARM Raman lidar measurements. Geophys. Res. Letters, doi:10.1029/2004GL019705. To illustrate their

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A "Little" Respect: Droplet Nucleation Finally Included in Global Climate Model Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Reflection of sunlight by clouds simulated with predicted droplet number with (dark blue) and without (green) the autoconversion feedback agrees remarkably well with the reflection

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probabilistic Approach Useful for Evaluating Cloud System Models Submitter: Jakob, C., Monash University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Jakob, C., R. Pincus, C. Hannay, and K.M. Xu (2004). Use of cloud radar observations for model evaluation: A probabilistic approach, J. Geophys. Res., 109, D03202, doi:10.1029/2003JD003473. In evaluating climate models, time and space represent key challenges

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Regulation Strikes a Balance Between Hydrological Cycle, Radiation Processes, and Intraseasonal Dynamic Variations Submitter: Stephens, G. L., Colorado State University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Stephens, Graeme L., Webster, Peter J., Johnson, Richard H., Engelen, Richard, L'Ecuyer, Tristan. 2004: Observational Evidence for the Mutual Regulation of the Tropical Hydrological Cycle and Tropical

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Splitting the Solar Spectrum: Sometimes Less Is Better Than More Submitter: Pawlak, D. T., Pennsylvania State University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Pawlak, DT, EJ Clothiaux, MF Modest, and JNS Cole. 2004. Full-Spectrum Correlated-k Distribution for Shortwave Atmospheric Radiative Transfer. Journal of the Atmospheric Sciences 61: 2588-2601. Of all the physical and dynamical calculations

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Lightens Up Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Wild, M., H. Gilgen, A. Roesch, A. Ohmura, C. N. Long, E. G. Dutton, B. Forgan, A. Kallis, V. Russak, and A. Tsvetkov, (2005): From dimming to brightening: Decadal changes in solar radiation at the Earth's surface, Science, 308, Issue 5723, 847-850, [DOI:10.1126/science.1103215] Global distribution of surface observation

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Experiment Results Featured in Technical Journal Submitter: Sheridan, P., U.S. Department of Commerce/NOAA Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Sheridan, P, W Arnott, J Ogren, E Andrews, D Atkinson, D Covert, H Moosmuller, A Petzold, B Schmid, A Strawa, R Varma, and A Virkkula. 2005. "The Reno Aerosol Optics Study: An evaluation of aerosol absorption measurement methods." Aerosol Science and Technology 39(1):1-16. This magnification

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Correction Method for Infrared Detector Confirmed; Error in Clear Sky Bias Condition Remains Unresolved Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: N/A AERI data from January 2004 at the ARM North Slope of Alaska locale shows the observed radiance for two AERI systems with significantly different hot blackbody temperatures. Residuals are within 1% of the ambient radiance

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Processes Make a Big Difference in Model Outcomes Submitter: Cole, J. N., Canadian Centre for Climate Modelling and Analysis Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Cole, J. N. S., H. W. Barker, D. A. Randall, M. F. Khairoutdinov, and E. E. Clothiaux (2005), Global consequences of interactions between clouds and radiation at scales unresolved by global climate models, Geophys. Res. Lett., 32,

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosols Help Clouds Warm Up Arctic Submitter: Lubin, D., National Science Foundation Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Lubin, D., and A.M. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic, Nature, 439, 26 January, 453-456, doi:10.1038/nature04449 In a process known as the first aerosol indirect effect, enhanced aerosol concentrations cause the droplets in a cloud to be smaller and more

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comparison of Integrated Water Vapor Sensors: WVIOP-96 Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 The 1996 Water Vapor Intensive Operations Period (WVIOP-96) was conducted at the SGP CART central facility in September in order to assess the skill of a wide variety of sensors in measuring atmospheric water

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Forecasts Help to Understand Climate Model Biases Submitter: Klein, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Klein, Stephen A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U. S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33,

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On Thin Ice: Retrieval Algorithms for Ice Clouds Examined for Improvements Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: An Intercomparison of Microphysical Retrieval Algorithms for Upper Tropospheric Ice Clouds. Jennifer M. Comstock, Robert d'Entremont, Daniel DeSlover, Gerald G. Mace, Sergey Y. Matrosov, Sally A. McFarlane, Patrick Minnis, David Mitchell,Kenneth

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shallow Clouds Make the Case for Remote Sensing Instrumentation Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: McFarlane, S. A., and W. W. Grabowski (2007). Optical properties of shallow tropical cumuli derived from ARM ground-based remote sensing, Geophys. Res. Lett., 34, L06808, doi:10.1029/2006GL028767. In this figure, the lines indicate theoretical calculations of cloud

  12. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment Collaboration between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email UCSD Faculty and Graduate Students Professor

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative and Thermodynamic Responses to Uncertainty in Aerosol Extinction Profiles Download a printable PDF Submitter: Feng, Y., Argonne National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Feng Y, R Kotamarthi, R Coulter, C Zhao, and M Cadeddu. 2016. "Radiative and Thermodynamic Responses to Aerosol Extinction Profiles during the Pre-monsoon Month over South Asia." Atmospheric Chemistry and Physics, 16(1), 247-264. WRF-Chem

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Download a printable PDF Submitter: Albrecht, B. A., University of Miami Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Albrecht B, M Fang, and V Ghate. 2016. "Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Cloud Radar Observations." Journal of the Atmospheric Sciences, 73(2), 10.1175/JAS-D-15-0147.1.

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ensemble-Constrained Variational Analysis of Atmospheric Forcing Data and Its Application Download a printable PDF Submitter: Zhang, M., Stony Brook University Tang, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Tang S, M Zhang, and S Xie. 2016. "An ensemble constrained variation alanalysis of atmospheric forcing data and its application to evaluate clouds in

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Back to Basics: Theoretical Studies on Storm Clouds and Implications for Modeling Download a printable PDF Submitter: Morrison, H. C., NCAR Lebo, Z., University of Wyoming Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Morrison H. 2016. "Impacts of Updraft Size and Dimensionality on the Perturbation Pressure and Vertical Velocity in Cumulus Convection. Part II: Comparison of Theoretical and Numerical Solutions and Fully Dynamical Simulations."

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Droplet Spectral Shape Sheds New Light on Aerosol-Cloud-Interaction Regimes Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Zhang, M., Stony Brook University Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Chen J, Y Liu, M Zhang, and Y Peng. 2016. "New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Vertical Structure of Cloud Radiative Forcing at the ACRF SGP Revealed by 8 Years of Continuous Measurements Submitter: Mace, G., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Accepted to Journal of Climate, 2007. Figure 1. Cloud occurrence, coverage, radiative forcing, and radiation effects over a composite annual cycle that is derived by averaging all observations collected during a

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Formulation for Representing Cloud-to-Rain Transition in Atmospheric Models Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol, Cloud Modeling, Cloud Properties Journal Reference: Liu, Y., P. H. Daum, R. McGraw, M. Miller, and S. Niu, 2007: Theoretical formulation for autoconversion rate of cloud droplet concentration. Geophys. Res. Lett., 34, L116821, doi:10.1029/2007GL030389

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Water Vapor and Cloud Liquid Water at MCTEX Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Integrated water vapor and cloud liquid water measurements were obtained during the Maritime Continent Thunderstorm Experiment (MCTEX) by Eugene Clothiaux and Tom Ackerman of Penn State University using an ARM

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Climatology of Midlatitude Continental Cloud Properties and Their Impact on the Surface Radiation Budget Submitter: Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Dong, X., P. Minnis, and B. Xi, 2005: A climatology of midlatitude continental clouds from ARM SGP site. Part I: Low-level Cloud Macrophysical, microphysical and radiative properties. J. Climate. 18, 1391-1410. Dong, X., B. Xi, and P.

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Matthews, S., J. M. Hacker, J. Cole, J. Hare, C. N. Long, and R. M. Reynolds, (2007): Modification of the atmospheric boundary layer by a small island: observations from Nauru, MWR, Vol. 135, No. 3, pages 891¬Ė905. Figure 1.

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate? Submitter: Prenni, A. J., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Prenni, A. J., J. Y. Harrington, M. Tjernstrom, P. J. DeMott, A. Avramov, C. N. Long, S. M. Kreidenweis, P. Q. Olsson, and J. Verlinde, (2006): Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate?, BAMS, Vol.88, Iss. 4; pg. 541-550. ACIA, 2004: Impacts of a Warming

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Aerosol Humidity Effects Using the ARM Measurements Submitter: Li, Z., University of Maryland Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Jeong, M.-J., Z. Li, E. Andrews, and S.-C. Tsay (2007). Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site, J. Geophys. Res., 112, D10202, doi:10.1029/2006JD007176. (a)-(j) Column-mean aerosol humidification factor as

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Bulk Parameterization of Giant Cloud Condensation Nuclei Download a printable PDF Submitter: Kogan, Y., University of Oklahoma - CIMMS Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Mechem, D. B., and Y. L. Kogan, 2007: A bulk parameterization of giant CCN. J. Atmos. Sci., conditionally accepted. Mean quantities as a function of GCCN concentration for polluted (squares) and clean (diamonds) background CCN conditions. Radiative

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Use of ARM Products in Reanalysis Applications and IPCC Model Assessment Download a printable PDF Submitter: Walsh, J. E., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Walsh, J. E., W. L. Chapman, and D. H. Portis: Arctic clouds and radiative fluxes in large-scale atmospheric reanalysis. Submitted to the Journal of Climate. Figure 1. Monthly mean cloud fraction is shown here from ARM-observations

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of a New Method for Estimating Evapotranspiration Using ARM Measurements Submitter: Li, Z., University of Maryland Area of Research: Surface Properties Working Group(s): Radiative Processes Journal Reference: Wang, K., P. Wang, Z. Li, M. Cribb, and M. Sparrow (2007). A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature, J. Geophys. Res., 112, D15107, doi:10.1029/2006JD008351. Wang, K., Z. Li, and M. Cribb (2006).

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Significance of Multilayer Cloud Systems in Tropical Convection Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Stephens, GL, and NB Wood. 2007. "Properties of tropical convection observed by millimeter-wave radar systems." Monthly Weather Review 135: 821-842. Storm classifications (derived from k-means clustering analysis) applied to MWR

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with SCAM, CAPT Forecasts and M-PACE Observations Download a printable PDF Submitter: Liu, X., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Liu, X, S Xie, and SJ Ghan. 2007. "Evaluation of a new mixed-Phase cloud microphysics parameterization with the NCAR single column climate model (SCAM) and ARM M-PACE

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Cloud-Resolving Model to Identify the Role of Aerosols on Clouds and Precipitation Download a printable PDF Submitter: GSFC, N., NASA GSFC Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol, Cloud Modeling Journal Reference: Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophy. Res., (accepted). Zeng, X., W.-K. Tao, S.

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Tomography: a Novel Method for Determining 3D Cloud Liquid Water Distribution Download a printable PDF Submitter: Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Huang, D., Y. Liu, and W. Wiscombe, 2007a: Determination of cloud liquid water distribution using 3D cloud tomography. J. Geophys. Res., submitted. Cloud tomography is a novel method for determining cloud water

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Five-Year Statistics of Shallow Clouds at the ACRF SGP Site Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Kassianov, E., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Berg, LK, and EI Kassianov. 2008. "Temporal variability of fair-weather cumulus statistics at the ARM SGP site." Journal of Climate 21, 3344-3358. Figure 1. Five-year mean ARSCL VAP

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intercomparison of Longwave Radiative Heating Algorithms Submitter: Baer, F., University of Maryland Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Baer, F., N. Arsky, J. J. Charney, and R. G. Ellingson. 1996. "Intercomparison of Heating Rates Generated by Global Climate Model Longwave Radiation Codes." J. Geoph. Res., 101, D21, 26589-26603. 30 levels of longwave heating rates for all algorithms

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM QCRad Goes Global Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Long, CN, and Y Shi. 2008. "An automated quality assessment and control algorithm for surface radiation measurements." The Open Atmospheric Science Journal 2: 23-37, doi: 10.2174/1874282300802010023. Figure: QCRad downwelling (top) and upwelling (bottom) longwave (LW) comparison

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Mixed-Phase Clouds from the Ground: a Status Report Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, JS Daniel, G De Boer, EW Eloranta, P Kollias, E Luke, CN Long, DD Turner, and J Verlinde. 2008. "A focus on mixed-phase clouds: The status of ground-ba sed observational methods." Bulletin of the American Meteorological Society,

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Susceptibility Measures Potential Cloud Sensitivity to First Aerosol Indirect Effect Download a printable PDF Submitter: Oreopoulos, L., NASA Platnick, S., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Platnick, S, and L Oreopoulos. 2008. "Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 1. Theoretical analysis and examples from MODIS." Journal of

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Scattering Properties of Aggregates of Bullet Rosettes in Cirrus Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Um, J, and GM McFarquhar. 2007. "Single-scattering properties of aggregates of bullet rosettes in cirrus." Journal of Applied Meteorology and Climatology 46, 757-775. Two images of idealized geometry

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shortwave Absorption in Tropical Clouds Download a printable PDF Submitter: McFarlane, S. A., U.S. Department of Energy Mather, J. H., Pacific Northwest National Laboratory Ackerman, T. P., University of Washington Liu, Z., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: McFarlane, SA, JH Mather, TP Ackerman, and Z Liu. 2008. "Effect of clouds on the vertical distribution of SW absorption in the

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring Climate Model Skill in Producing Present-Day Clouds Download a printable PDF Submitter: Pincus, R., NOAA - CIRES Climate Diagnostics Center Batstone, C., NOAA - CIRES Climate Diagnostics Center Hofmann, R. P., University of Colorado, Boulder/NOAA - ESRL Taylor, K. E., Lawrence Livermore National Laboratory Gleckler, P. J., Lawrence Livermore National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Modeling Journal Reference: Pincus, R, CP Batstone, RJP Hofmann,

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of CloudSat Using ARM, AMF, and CloudNet Observations Download a printable PDF Submitter: Protat, A., Australian Bureau of Meterology May, P. T., Bureau of Meteorology O'Connor, E. J., University of Reading Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Submitted. PDF of cloud reflectivity (upper-left), cloud top height (upper-right), thickness (lower-left), and cloud base height (lower right) as measured by the Darwin

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Simple Algorithm to Find Cloud Optical Depth Applied to Thin Ice Clouds Download a printable PDF Submitter: Barnard, J., University of Nevada Reno Long, C. N., NOAA Global Monitoring Division/CIRES Kassianov, E., Pacific Northwest National Laboratory McFarlane, S. A., U.S. Department of Energy Comstock, J. M., Pacific Northwest National Laboratory Freer, M., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluate the Diurnal Cycle in the Multiscale Modeling Framework Using Satellite and ARM Data Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Zhang, Y, SA Klein, C Liu, B Tian, RT Marchand, JM Haynes, RB McCoy, Y Zhang, and TP Ackerman. 2008. "On the diurnal cycle of deep

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical Variation of Cloud Droplet Size Using Ship and Space-borne R/S Data Download a printable PDF Submitter: Li, Z., University of Maryland Chen, R., University of Maryland Wood, R., University of Washington Chang, F., Science Systems and Applications, Inc. Ferraro, R., NOAA/NESDIS, WWBG Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Chen, R, R Wood, Z Li, R Ferraro, and F Chang. 2008. "Studying the vertical variation of

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of Cirrus Properties and Its Coupling with the State of the Large-Scale Atmosphere Download a printable PDF Submitter: Ivanova, K., Pennsylvania State University Ackerman, T. P., University of Washington Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Ivanova K and TP Ackerman. 2009. "Tracking nucleation-growth-sublimation in cirrus clouds using ARM millimeter wavelength radar observations." Journal of

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating Fractional Sky Cover from Spectral Measurements Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Min, Q., State University of New York, Albany Wang, T., State University of New York, Albany Duan, M., Institute of Atmospheric Physics/Chinese Academy of Science Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Min Q, T Wang, CN Long, and M Duan. 2008. "Estimating fractional sky

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Significant Decadal Brightening over the Continental United States Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Dutton, E. G., NOAA/OAR/ESRL Augustine, J., National Oceanic and Atmospheric Administration Wiscombe, W. J., Brookhaven National Laboratory Wild, M., Institute for Atmospheric and Climate Science - ETH Zurich McFarlane, S. A., U.S. Department of Energy Flynn, C. J., Pacific Northwest National Laboratory Area of Research: Radiation Processes

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Scattering Properties of Aggregates of Plates Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Um J and GM McFarquhar. 2009. "Single-scattering properties of aggregates of plates." Quarterly Journal Royal Meteorological Society, 135(639), 10.1002/qj.378. Aggregates of plates imaged by Cloud

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thawing the Mystery of Extra Ice Crystals Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Ovchinnikov, M., Pacific Northwest National Laboratory Comstock, J. M., Pacific Northwest National Laboratory McFarlane, S. A., U.S. Department of Energy Khain, A., The Hebrew University of Jerusalem Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Fan J, M Ovtchinnikov, JM Comstock, SA McFarlane, and A Khain.

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analyzing the Contribution of Aerosols to an Observed Increase in Direct Normal Irradiance Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Riihimaki, L., Pacific Northwest National Laboratory Vignola, F., University of Oregon Area of Research: Radiation Processes Working Group(s): Aerosol, Radiative Processes Journal Reference: Riihimaki LD, FE Vignola, and CN Long. 2009. "Analyzing the contribution of aerosols to an observed increase in direct normal

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Variations of Meridional Aerosol Distribution and Solar Dimming Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Kishcha, P., Tel-Aviv University Starobinets, B., Tel-Aviv University Kalashnikova, O., Jet Propulsion Laboratory Alpert, P., Tel-Aviv University Area of Research: Radiation Processes Working Group(s): Aerosol, Radiative Processes Journal Reference: Kishcha P, B Starobinets, O Kalashnikova, CN Long, and P Alpert. 2009. "Variations of

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Dimming and Brightening: an Update Beyond 2000 Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Wild, M., Institute for Atmospheric and Climate Science - ETH Zurich Truessel, B., Institute for Atmospheric and Climate Science - ETH Zurich Ohmura, A., Swiss Federal Institute of Technology Koenig-Langlo, G., Alfred Wegener Institute Dutton, E. G., NOAA/OAR/ESRL Tsvetkov, A. V., World Radiation Data Centre Area of Research: Radiation Processes Working

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using the ACRF Shortwave Spectrometer to Study the Transition Between Clear and Cloudy Regions Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Chiu, J., University of Reading Knyazikhin, Y., Boston University Pilewskie, P., University of Colorado Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Chiu C, A Marshak, Y Knyazikhin, P Pilewskie, and W Wiscombe. 2009.

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seasonal Variation of the Physical Properties of Marine Boundary Clouds Download a printable PDF Submitter: Zhang, M., Stony Brook University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Lin W, M Zhang, and NG Loeb. 2009. "Seasonal variation of the physical properties of marine boundary layer clouds off the California coast." Journal of Climate, 22(10), doi:10.1175/2008JCLI2478.1. Image (a). Seasonal

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Cloud Parameterizations in Climate Models: Implications from CAM3 and WRF Simulations Download a printable PDF Submitter: Wang, W., Pacific Northwest National Laboratory Liu, X., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Wang W, X Liu, S Xie, J Boyle, and SA McFarlane. 2009. "Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite Retrievals of Mixed-phase Cloud Properties Download a printable PDF Submitter: Ou, S., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Ou SS, KN Liou, XJ Wang, A Dybdahl, M Mussetto, LD Carey, J Niu, JA Kankiewicz, S Kidder, and TH Von der Haar. 2009. "Retrievals of mixed-phase cloud properties during the National Polar-Orbiting Operational Environmental Satellite System."

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multifractal Analysis of Radiation in Clouds: 5000km to 50cm Submitter: Lovejoy, S., McGill University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Lovejoy, S., D. Schertzer, J. D. Stanway, 2001: "Direct Evidence of planetary scale atmospheric cascade dynamics," Phys. Rev. Lett. 86(22): 5200-5203. Left: Power spectrum of the 5 different aircraft measured liquid water data sets from the FIRE experiment

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPLAT Makes Its Mark in Flying Research Laboratory Download a printable PDF Submitter: Cziczo, D. J., Massachusetts Institute of Technology Ghan, S. J., Pacific Northwest National Laboratory Flynn, C. J., Pacific Northwest National Laboratory Hubbe, J., Pacific Northwest National Laboratory Laskin, A., Pacific Northwest National Laboratory Roeder, L. R., Pacific Northwest National Laboratory Ronfeld, D., Pacific Northwest National Laboratory Schmid, B., Pacific Northwest National Laboratory

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving the Numerical Simulation of Squall Lines Download a printable PDF Submitter: Morrison, H. C., NCAR Thompson, G., NCAR Tatarskii, V., Georgia Institute of Technology Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Morrison HC, G Thompson, and V Tatarskii. 2009. "Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes."

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Profiling Capability of High-Resolution Oxygen A-band Spectroscopy for Stratus Cloud Cover Submitter: Davis, A. B., Jet Propulsion Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Davis AB, IN Polonsky, and A Marshak. 2009. Space-Time Green Functions for Diffusive Radiation Transport, in Application to Active and Passive Cloud Probing. In Light Scattering Reviews, Volume 4, pp. 169-292. Ed. by A.A. Kohkanovsky, Heidelberg,

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detangling Convective Oscillations at ARM Tropical Western Pacific Site: Manus Submitter: Wang, Y., Department of Geography Long, C. N., NOAA Global Monitoring Division/CIRES Mather, J. H., Pacific Northwest National Laboratory Liu, X., Institute of Earth Environment Area of Research: Radiation Processes Working Group(s): Cloud Properties Journal Reference: Wang Y, C Long, J Mather, and X Liu. 2010. "Convective signals from surface measurements at ARM Tropical Western Pacific site:

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Water Vapor Variability by Ground-Based Microwave Radiometry Download a printable PDF Submitter: Kneifel, S., McGill University Crewell, S., University of Cologne Loehnert, U., University of Cologne Schween, J. H., Inst. of Geophysics and Meteorology Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Kneifel S, S Crewell, U Löhnert, and J Schween. 2009. "Investigating water vapor variability by

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Variability of Mesoscale Convective System Anvil Structure from A-train Satellite Data Submitter: Yuan, J., Nanjing University Houze, R., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Yuan J and RA Houze. 2010. "Global variability of mesoscale convective system anvil structure from A-train satellite data." Journal of Climate, 23, 5864-5888. Figure. 1 Annual mean (2007) climatology of anvil

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black Carbon Aerosols and the Third Polar Ice Cap Submitter: Menon, S., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Menon S, D Koch, G Beig, S Sahu, J Fasullo, and D Orlikowski. 2009. "Black carbon aerosols and the third polar ice cap." Atmospheric Chemistry and Physics, 9, 26593-26625. Recent thinning of glaciers over the Himalayas (sometimes referred to as

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCN Activity and Mixing Rules of Isoprene Secondary Organic Aerosol (SOA) and Sulfate Download a printable PDF Submitter: Martin, S. T., Harvard University Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: King SM, T Rosenoern, JH Shilling, Q Chen, Z Wang, G Biskos, KA McKinney, U Poeschl, and ST Martin. 2010. "Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Nucleation Link to Aerosols for Global Models Download a printable PDF Submitter: DeMott, P. J., Colorado State University Liu, X., University of Wyoming Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: DeMott PJ, AJ Prenni, X Liu, SM Kreidenweis, MD Petters, CH Twohy, MS Richardson, T Eidhammer, and DC Rogers. 2010. "Predicting global atmospheric ice nuclei distributions and their impacts on

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanisms Affecting the Transition from Shallow to Deep Convection over Land Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Zhang Y and SA Klein. 2010. "Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Horizontal Resolution on Climate Model Simulations of Tropical Moist Processes Download a printable PDF Submitter: Boyle, J., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Boyle JS and SA Klein. 2010. "Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biases in Column Absorption for Fractal Clouds Submitter: Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marshak, Alexander; Davis, Anthony; Wiscombe, Warren; Ridgway, William; Cahalan, Robert; 1998: "Biases in Shortwave Column Absorption in the Presence of Fractal Clouds," J. Climate 11(3):431-446. Figure 1: Water vapor transmission spectra for solar zenith angle of 60 degree. From the top:

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increased Accuracy for Sky Imager Retrievals Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Long CN. 2010. "Correcting for circumsolar and near-horizon errors in sky cover retrievals from sky images." The Open Atmospheric Science Journal, 4, doi:10.2174/1874282301004010045. Long CN, JM Sabburg, J Calbo, and D Pages. 2006. "Retrieving

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Arctic Clouds Between ECMWF Simulations and ARM Observations at the NSA Download a printable PDF Submitter: Zhao, M., National Oceanic and Atmospheric Administration Wang, Z., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A Figure 1: Monthly-averaged vertical distribution of cloud fraction from the observation (a) and the ECMWF model (b), and their differences (c). Both

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Macrophysical and Microphysical Properties of Deep Convective Clouds as Observed by MODIS Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A Distributions of cloud optical depth from Aqua in four regions. The mean and standard deviation of the distributions are given for each region indicated by latitude and longitude range in each panel. The means and

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating Glaciation Temperature of Deep Convective Clouds with Remote Sensing Data Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A (a) A conceptual diagram of cloud particle size vertical evolution inside a deep convective cloud. (b) Cloud side scanner retrievals of (left) particle size and (right) cloud phase. Homogeneous freezing is inefficient at temperatures

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insight on the Atmosphere's Tiniest Particles Download a printable PDF Submitter: Smith, J., University of California, Irvine McMurry, P. ., University of Minnesota Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Smith JN, KC Barsanti, HR Friedli, M Ehn, M Kulmala, DR Collins, JH Scheckman, BJ Williams, and PH McMurry. 2010. "Observations of aminium salts in atmospheric nanoparticles and possible climatic implications." Proceedings of

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress Towards Climate Projections of Central U.S. Rainfall Using a Global Model with Embedded Explicit Convection Download a printable PDF Submitter: Pritchard, M. S., Scripps Institution of Oceanography Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Pritchard MS, MW Moncrieff, and RC Somerville. 2011. "Orogenic propagating precipitation systems over the US in a global climate model with embedded

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Clouds at Arctic Atmospheric Observatories Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Shupe MD, VP Walden, E Eloranta, T Uttal, JR Campbell, SM Starkweather, and M Shiobara. 2011. "Clouds at Arctic atmospheric observatories, part I: occurrence and macrophysical properties." Journal of Applied Meteorology and Climatology, 50(3), 626-644.

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground-Based Measurements in Support of Liquid-Dependent Ice Nucleation in Arctic Clouds Download a printable PDF Submitter: de Boer, G., University of Colorado, Boulder/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: de Boer G, H Morrison, MD Shupe, and R Hildner. 2011. "Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Microphysics Schemes in Idealized Supercell Thunderstorm Simulations Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Morrison H and JA Milbrandt. 2011. "Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations." Monthly Weather Review, 139, 1103-1130. Near-surface radar reflectivity after

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of CRM Intercomparison Simulations Using TWP-ICE Observations, Part 1 Download a printable PDF Submitter: Varble, A., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Varble AC, AM Fridlind, EJ Zipser, AS Ackerman, J Chaboureau, J Fan, A Hill, SA McFarlane, J Pinty, and B Shipway. 2011. "Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating the Ice Crystal Enhancement Factor in the Tropics Download a printable PDF Submitter: Zeng, X., Morgan State University GSFC, N., NASA GSFC Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Zeng X, W Tao, T Matsui, S Xie, S Lang, M Zhang, DO Starr, and X Li. 2011. "Estimating the ice crystal enhancement factor in the tropics." Journal of the

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dependence of the Single-Scattering Properties of Small Ice Crystals on Idealized Shape Models Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Um J and GM McFarquhar. 2011. "Dependence of the single-scattering properties of small ice crystals on idealized shape