Powered by Deep Web Technologies
Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

T-561: IBM and Oracle Java Binary Floating-Point Number Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61: IBM and Oracle Java Binary Floating-Point Number Conversion Denial of Service Vulnerability T-561: IBM and Oracle Java Binary Floating-Point Number Conversion Denial of Service...

2

T-561: IBM and Oracle Java Binary Floating-Point Number Conversion Denial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61: IBM and Oracle Java Binary Floating-Point Number Conversion 61: IBM and Oracle Java Binary Floating-Point Number Conversion Denial of Service Vulnerability T-561: IBM and Oracle Java Binary Floating-Point Number Conversion Denial of Service Vulnerability February 21, 2011 - 7:00am Addthis PROBLEM: IBM and Oracle Java Binary Floating-Point Number Conversion Denial of Service Vulnerability. PLATFORM: The following Java products are affected: Java SE: Oracle JDK and JRE 6 Update 23 and prior for Windows, Solaris, and Linux Oracle JDK 5.0 Update 27 and prior for Solaris 9 Oracle SDK 1.4.2_29 and prior for Solaris 8 IBM JDK 6 Update SR9 and prior IBM JDK 5 Update SR12-FP3 and prior IBM JDK 1.4.2 Update SR13-FP8 and prior Java for Business: Oracle JDK and JRE 6 Update 23 and prior for Windows, Solaris, and Linux Oracle JDK and JRE 5.0 Update 27 and prior for Windows, Solaris, and Linux

3

A comparison of floating point and logarithmic number systems for FPGAs.  

SciTech Connect

There have been many papers proposing the use of logarithmic numbers (LNS) as an alternative to floating point because of simpler multiplication, division and exponentiation computations. However, this advantage comes at the cost of complicated, inexact addition and subtraction, as well as the need to convert between the formats. In this work, we created a parameterized LNS library of computational units and compared them to an existing floating point library. Specifically, we considered multiplication, division, addition, subtraction, and format conversion to determine when one format should be used over the other and when it is advantageous to change formats during a calculation.

Hauck, Scott (University of Washington, Seattle, WA); Wood, Aaron (University of Washington, Seattle, WA); Beauchamp, Michael (University of Washington, Seattle, WA); Haselman, Michael (University of Washington, Seattle, WA); Hemmert, K. Scott; Underwood, Keith Douglas

2005-02-01T23:59:59.000Z

4

Improving Floating Point Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Improving Floating Point Compression through Binary Masks Leonardo A. Bautista Gomez Argonne National Laboratory Franck Cappello Argonne National Laboratory Abstract-Modern scientific technology such as particle accel- erators, telescopes and supercomputers are producing extremely large amounts of data. That scientific data needs to be processed using systems with high computational capabilities such as supercomputers. Given that the scientific data is increasing in size at an exponential rate, storing and accessing the data is becoming expensive in both, time and space. Most of this scientific data is stored using floating point representation. Scientific applications executed in supercomputers spend a large amount of CPU cycles reading and writing floating point values, making data compression techniques an interesting way to increase computing efficiency.

5

Strategies for sharing a floating point unit between SPEs  

E-Print Network (OSTI)

Floating Point Unit . . . . . . . . . . . . . . . . . . .compliant floating point unit”. In DATE ’06: Proceedings offor sharing a Floating Point Unit between SPEs A Thesis

Lugo Martinez, Jose E.

2010-01-01T23:59:59.000Z

6

Improvements in floating point addition/subtraction operations  

DOE Patents (OSTI)

Apparatus is described for decreasing the latency time associated with floating point addition and subtraction in a computer, using a novel bifurcated, pre-normalization/post-normalization approach that distinguishes between differences of floating point exponents.

Farmwald, P.M.

1984-02-24T23:59:59.000Z

7

Performance Evaluation of Decimal Floating-Point Arithmetic Michael J. Schulte, Nick Lindberg, and Anitha Laxminarain  

E-Print Network (OSTI)

arithmetic is available from http://mesa.ece.wisc.edu and http://www2.hursley.ibm.com/decimal/. 2. Decimal¢£¨% G¡4£¦¥¨§4© ¦¡¤£2% ¡&EX¨9¦§¨¦ Y 0B14§¨© 3¦% ¡ 4£ T¡4V¨£45 `Ha a b¨c d ef¨b gBh b¨i p¦d eq 4r. and J. L. White, "How to Print Floating- Point Numbers Accurately," Proceedings of the ACM SIGPLAN 1990

Schulte, Mike

8

Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint  

DOE Green Energy (OSTI)

The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

2012-04-01T23:59:59.000Z

9

Quantifying the Impact of Single Bit Flips on Floating Point Arithmetic  

SciTech Connect

In high-end computing, the collective surface area, smaller fabrication sizes, and increasing density of components have led to an increase in the number of observed bit flips. If mechanisms are not in place to detect them, such flips produce silent errors, i.e. the code returns a result that deviates from the desired solution by more than the allowed tolerance and the discrepancy cannot be distinguished from the standard numerical error associated with the algorithm. These phenomena are believed to occur more frequently in DRAM, but logic gates, arithmetic units, and other circuits are also susceptible to bit flips. Previous work has focused on algorithmic techniques for detecting and correcting bit flips in specific data structures, however, they suffer from lack of generality and often times cannot be implemented in heterogeneous computing environment. Our work takes a novel approach to this problem. We focus on quantifying the impact of a single bit flip on specific floating-point operations. We analyze the error induced by flipping specific bits in the most widely used IEEE floating-point representation in an architecture-agnostic manner, i.e., without requiring proprietary information such as bit flip rates and the vendor-specific circuit designs. We initially study dot products of vectors and demonstrate that not all bit flips create a large error and, more importantly, expected value of the relative magnitude of the error is very sensitive on the bit pattern of the binary representation of the exponent, which strongly depends on scaling. Our results are derived analytically and then verified experimentally with Monte Carlo sampling of random vectors. Furthermore, we consider the natural resilience properties of solvers based on the fixed point iteration and we demonstrate how the resilience of the Jacobi method for linear equations can be significantly improved by rescaling the associated matrix.

Elliott, James J [ORNL; Mueller, Frank [North Carolina State University; Stoyanov, Miroslav K [ORNL; Webster, Clayton G [ORNL

2013-08-01T23:59:59.000Z

10

Generating and executing programs for a floating point single instruction multiple data instruction set architecture  

DOE Patents (OSTI)

Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA) are provided. A computer program product comprising a computer recordable medium having a computer readable program recorded thereon is provided. The computer readable program, when executed on a computing device, causes the computing device to receive one or more instructions and execute the one or more instructions using logic in an execution unit of the computing device. The logic implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA), based on data stored in a vector register file of the computing device. The vector register file is configured to store both scalar and floating point values as vectors having a plurality of vector elements.

Gschwind, Michael K

2013-04-16T23:59:59.000Z

11

Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions  

SciTech Connect

This paper presents the results of a preliminary study on the hydrodynamics of a moored floating-point absorber (FPA) wave energy system under extreme wave conditions.

Yu, Y.; Li, Y.

2011-10-01T23:59:59.000Z

12

RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

RANS Simulation of the Heave RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber Preprint Y. Yu and Y. Li To be presented at ISOPE 2011 Maui, Hawaii June 19-24, 2011 Conference Paper NREL/CP-5000-50980 March 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,

13

RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber: Preprint  

DOE Green Energy (OSTI)

A preliminary study on a two-body floating wave absorbers is presented in this paper. A Reynolds-Averaged Navier-Stokes computational method is applied for analyzing the hydrodynamic heave response of the absorber in operational wave conditions. The two-body floating wave absorber contains a float section and a submerged reaction section. For validation purposes, our model is first assumed to be locked. The two sections are forced to move together with each other. The locked single body model is used in a heave decay test, where the RANS result is validated with the experimental measurement. For the two-body floating point absorber simulation, the two sections are connected through a mass-spring-damper system, which is applied to simulate the power take-off mechanism under design wave conditions. Overall, the details of the flow around the absorber and its nonlinear interaction with waves are investigated, and the power absorption efficiency of the two-body floating wave absorber in waves with a constant value spring-damper system is examined.

Yu, Y.; Li, Y.

2011-03-01T23:59:59.000Z

14

Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions  

NLE Websites -- All DOE Office Websites (Extended Search)

Preliminary Results of a RANS Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions Y. Yu and Y. Li Presented at the 30 th International Conference on Ocean, Offshore, and Arctic Engineering Rotterdam, The Netherlands June 19 - 24, 2011 Conference Paper NREL/CP-5000-50967 October 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

15

High energy SEU test results for the commercially available MIPS R3000 microprocessor and R3010 floating point unit  

Science Conference Proceedings (OSTI)

Single event upset (SEU) cross sections and total dose hardness of commercially available MIPS R3000 microprocessors (CPU) and R3010 floating point units (FPU) were obtained by exposing these parts to 256 MeV protons from the linear accelerator (LINAC) at the Los Alamos Meson Physics Facility (LAMPF). Parts from several manufacturers were tested. The CPUs and FPUs were tested dynamically during radiation exposure with specially designed assembly language codes which exercised a subset of the available instructions in order to simulate the actual operation of each part. Cross sections derived from the SEU data were used to calculate expected upset rate for a 500-km orbit during quiet solar conditions, the King 1972 solar flare, and the August 4, 1972, event modeled by Adams et al. 16 refs., 16 figs., 3 tabs.

Shaeffer, D.L.; Kimbrough, J.R.; Denton, S.M.; Kaschimitter, J.L.; Wilburn, J.W.; Davis, R.W.; Colella, N.J. (Lawrence Livermore National Lab., CA (United States)); Holtkamp, D.B. (Los Alamos National Lab., NM (United States))

1991-08-15T23:59:59.000Z

16

High energy proton SEU test results for the commercially available MIPS R3000 microprocessor and R3010 floating point unit  

SciTech Connect

This paper reports on proton single event upset (SEU) cross sections and proton total dose hardness of commercially available MIPS R3000 microprocessors (CPU) and R3010 floating point units (FPU) that were obtained by exposing these parts to 256 MeV protons from the linear accelerator (LINAC) at the Los Alamos Meson Physics Facility (LAMPF). Parts from several manufacturers were tested. The CPUs and FPUs were tested dynamically during radiation exposure with specially designed assembly language codes which exercised a subset of the available instructions. Cross sections derived from the SEU data were used to calculate expected upset rates for a 500-km, 60-degree inclination, orbit during quiet solar conditions and during the August 4, 1972, King solar flare event.

Shaeffer, D.L.; Kimbrough, J.R.; Denton, S.M.; Kaschmiter, J.L.; Wilburn, J.W.; Davis, R.W.; Colella, N.J. (Lawrence Livermore National Lab., CA (United States)); Holtkamp, D.B. (Los Alamos National Lab., NM (United States))

1991-12-01T23:59:59.000Z

17

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

T-561: IBM and Oracle Java Binary Floating-Point Number Conversion Denial of Service Vulnerability IBM and Oracle Java products contain a vulnerability that could allow an...

18

Number  

Office of Legacy Management (LM)

' ' , /v-i 2 -i 3 -A, This dow'at consists ~f--~-_,_~~~p.~,::, Number -------of.-&--copies, 1 Series.,-a-,-. ! 1 THE UNIVERSITY OF ROCHESTER 1; r-.' L INTRAMURALCORRESPONDENCE i"ks' 3 2.. September 25, 1947 Memo.tor Dr. A. H, Dovdy . From: Dr. H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical F!orks, Mayvood, New Jersey one of 2 plants in the U.S.A. engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. Survey conditions of eeosure of personnel associated vith these chemical processes. 3. Obtain samples of atmospheric contaminants in the plant, as

19

Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera  

E-Print Network (OSTI)

The measurement of photon-number statistics of fields composed of photon pairs, generated in spontaneous parametric down-conversion and detected by an intensified CCD camera is described. Final quantum detection efficiencies, electronic noises, finite numbers of detector pixels, transverse intensity spatial profiles of the detected beams as well as losses of single photons from a pair are taken into account in a developed general theory of photon-number detection. The measured data provided by an iCCD camera with single-photon detection sensitivity are analyzed along the developed theory. Joint signal-idler photon-number distributions are recovered using the reconstruction method based on the principle of maximum likelihood. The range of applicability of the method is discussed. The reconstructed joint signal-idler photon-number distribution is compared with that obtained by a method that uses superposition of signal and noise and minimizes photoelectron entropy. Statistics of the reconstructed fields are identified to be multi-mode Gaussian. Elements of the measured as well as the reconstructed joint signal-idler photon-number distributions violate classical inequalities. Sub-shot-noise correlations in the difference of the signal and idler photon numbers as well as partial suppression of odd elements in the distribution of the sum of signal and idler photon numbers are observed.

Jan Perina Jr; Ondrej Haderka; Martin Hamar; Vaclav Michalek

2012-02-07T23:59:59.000Z

20

Theorem Proving with the Real Numbers  

E-Print Network (OSTI)

This thesis discusses the use of the real numbers in theorem proving. Typically, theorem provers only support a few `discrete' datatypes such as the natural numbers. However the availability of the real numbers opens up many interesting and important application areas, such as the verification of floating point hardware and hybrid systems. It also allows the formalization of many more branches of classical mathematics, which is particularly relevant for attempts to inject more rigour into computer algebra systems. Our work is conducted in a version of the HOL theorem prover. We describe the rigorous definitional construction of the real numbers, using a new version of Cantor's method, and the formalization of a significant portion of real analysis. We also describe an advanced derived decision procedure for the `Tarski subset' of real algebra as well as some more modest but practically useful tools for automating explicit calculations and routine linear arithmetic reasoning. Finally,...

John Robert Harrison

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Development of a catalyst for conversion of syngas-derived materials to isobutylene. Quarterly report number 19, October 1--December 31, 1995  

DOE Green Energy (OSTI)

The goals of this project are to develop a catalyst and process for the conversion of syngas to isobutanol. After identification and optimization of key catalyst and process characteristics, the commercial potential of the process is to be evaluated by an economic analysis. From independent process variable studies to investigate the conversion of a methanol/ethanol feed to isobutanol, the best performance to date has been achieved with the 2% Pt on Zn/Mn/Zr oxide catalyst. Using Hyprotech Hysim v2.5 process simulation software, and considering both gas and liquid recycle loops in the process flow diagram, the overall carbon conversion is 98% with 22% selectivity to isobutanol. The expected production of isobutanol is 92 MT/day from 500 MT/day of methanol and 172 MT/day of ethanol feed. An additional 13 MT/day of isobutryaldehyde intermediate is recovered in the liquid product and vent streams. Because of the low selectivity (22%) of the methanol conversion catalyst to isobutanol, the process is uneconomical, even if the isobutanol is valued as a solvent ($903/MT) and not as isobutylene for MTBE production ($352/MT).

Spehlmann, B.C.

1996-07-01T23:59:59.000Z

22

Unit Conversion  

Science Conference Proceedings (OSTI)

Unit Conversion. ... Unit Conversion Example. "If you have an amount of unit of A, how much is that in unit B?"; Dimensional Analysis; ...

2012-12-04T23:59:59.000Z

23

A Compact DSP Core with Static Floating-Point Arithmetic  

Science Conference Proceedings (OSTI)

A multimedia system-on-a-chip (SoC) usually contains one or more programmable digital signal processors (DSP) to accelerate data-intensive computations. But most of these DSP cores are designed originally for standalone applications, and they must have ...

Tay-Jyi Lin; Hung-Yueh Lin; Chie-Min Chao; Chih-Wei Liu; Chih-Wei Jen

2006-02-01T23:59:59.000Z

24

MIPS Assembler Exercise "Integer Implementation of Floating-Point Addition"  

E-Print Network (OSTI)

it to .Mfc When both parents guard the eggs simultaneously, mor- tality is reduced to a fraction equal and guard broods "sequentially"). However, in most fish and certain insects, males can keep mating and collecting additional eggs while continuing to guard broods obtained earlier (i.e., males guard "overlapping

Bakos, Jason D.

25

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 3, April 1--June 30, 1997  

DOE Green Energy (OSTI)

This quarter the project focused primarily in two basic areas. Approximately 60% of the time was applied at continuing to manufacture and test alternate designs of the diesel prechamber and its associated auxiliary equipment. Approximately 23% time was applied to the hydraulic actuation of the gas injector and the design work of applying the gas injector to the engines cylinder liner. The remaining 17% time was spread over a number of areas two of which include the completion of knock detection system and test facility calibration and service.

NONE

1997-06-30T23:59:59.000Z

26

Conversion Factor  

Gasoline and Diesel Fuel Update (EIA)

Conversion Factor (Btu per cubic foot) Production Marketed... 1,110 1,106 1,105 1,106 1,109 Extraction Loss ......

27

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

28

Precious Metals Conversion Information  

Science Conference Proceedings (OSTI)

Precious Metals Conversion Information. The Office of Weights and Measures (OWM) has prepared a Conversion Factors ...

2012-11-21T23:59:59.000Z

29

Context: Destruction/Conversion  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Context: Destruction/Conversion. ... Process for Conversion of Halon 1211.. Tran, R.; Kennedy, EM; Dlugogorski, BZ; 2000. ...

2011-11-17T23:59:59.000Z

30

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

W _7405-eng- 4B QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvint r UCRL-9 533 QUANrUM CONVERSION IN PHWOSYNTHESIS * Melvinitself. The primary quantum conversion act is an ionization

Calvin, Melvin

2008-01-01T23:59:59.000Z

31

Produced Conversion Coatings  

Science Conference Proceedings (OSTI)

Chemical conversion coatings are commonly applied to Mg alloys as paint bases and in some cases as stand-alone protection. Traditional conversion coatings ...

32

Library Conversion Tool  

Science Conference Proceedings (OSTI)

Library Conversion Tool. ... The LIB2NIST mass spectral data conversion program consists of the following files (which are contained in a ZIP archive): ...

2013-06-24T23:59:59.000Z

33

Conversion of Legacy Data  

Science Conference Proceedings (OSTI)

... Conversion of Legacy Data. Conversion of legacy data can be one of the most difficult and challenging components in an SGML environment. ...

34

Biofuel Conversion Process  

Energy.gov (U.S. Department of Energy (DOE))

The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers...

35

Conversion Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Plan Conversion Plan This template is used to document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation...

36

Technical Support to SBIR Phase II Project: Improved Conversion of Cellulose Waste to Ethanol Using a Dual Bioreactor System: Cooperative Research and Development Final Report, CRADA Number CRD-08-310  

DOE Green Energy (OSTI)

Over-dependence on fossil fuel has spurred research on alternative energy. Inedible plant materials such as grass and corn stover represent abundant renewable natural resources that can be transformed into biofuel. Problems in enzymatic conversion of biomass to sugars include the use of incomplete synergistic enzymes, end-product inhibition, and adsorption and loss of enzymes necessitating their use in large quantities. Technova Corporation will develop a defined consortium of natural microorganisms that will efficiently break down biomass to energy-rich soluble sugars, and convert them to cleaner-burning ethanol fuel. The project will also develop a novel biocatalytic hybrid reactor system dedicated to this bioprocess, which embodies recent advances in nanotechnology. NREL will participate to develop a continuous fermentation process.

Zhang, M.

2013-04-01T23:59:59.000Z

37

Conversion Between Implicit - CECM  

E-Print Network (OSTI)

Conversion Between Implicit and Parametric Representation of Differential Varieties. Xiao-Shan Gao, Institute of Systems Science, Chinese Academy of ...

38

Ocean Thermal Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

39

Beneficial Conversion Features or Contingently Adjustable Conversion  

E-Print Network (OSTI)

1. An entity may issue convertible debt with an embedded conversion option that is required to be bifurcated under Statement 133 if all of the conditions in paragraph 12 of that Statement are met. An embedded conversion option that initially requires separate Copyright © 2008, Financial Accounting Standards Board Not for redistribution Page 1accounting as a derivative under Statement 133 may subsequently no longer meet the conditions that would require separate accounting as a derivative. A reassessment of whether an embedded conversion option must be bifurcated under Statement 133 is required each reporting period. When an entity is no longer required to bifurcate a conversion option pursuant to Statement 133, there are differing views on how an entity should recognize that change.

Bifurcation Criteria; Fasb Statement No; Stock Purchase Warrants

2006-01-01T23:59:59.000Z

40

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Biofuel Conversion Processes Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biofuel Conversion Processes The conversion of...

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Iterated multidimensional wave conversion  

Science Conference Proceedings (OSTI)

Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

Brizard, A. J. [Dept. Physics, Saint Michael's College, Colchester, VT 05439 (United States); Tracy, E. R.; Johnston, D. [Dept. Physics, College of William and Mary, Williamsburg, VA 23187-8795 (United States); Kaufman, A. N. [LBNL and Physics Dept., UC Berkeley, Berkeley, CA 94720 (United States); Richardson, A. S. [T-5, LANL, Los Alamos, NM 87545 (United States); Zobin, N. [Dept. Mathematics, College of William and Mary, Williamsburg, VA 23187-8795 (United States)

2011-12-23T23:59:59.000Z

42

Developing objective measures of foreign-accent conversion  

Science Conference Proceedings (OSTI)

Various methods have recently appeared to transform foreign-accented speech into its native-accented counterpart. Evaluation of these accent conversion methods requires extensive listening tests across a number of perceptual dimensions. This article ... Keywords: accent conversion, foreign accent recognition, speaker recognition, voice conversion

Daniel Felps; Ricardo Gutierrez-Osuna

2010-07-01T23:59:59.000Z

43

Polymeric and Conversion Coatings  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... Ongoing research reveals that the search for appropriate conversion ... of the coated alloy was ~ 250 mV more noble compared to bare alloy.

44

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin Januaryas it occurs in modern photosynthesis can only take place inof the problem or photosynthesis, or any specific aspect of

Calvin, Melvin

2008-01-01T23:59:59.000Z

45

Catalytic conversion of biomass.  

E-Print Network (OSTI)

?? Catalytic processes for conversion of biomass to transportation fuels have gained an increasing attention in sustainable energy production. The biomass can be converted to… (more)

Calleja Aguado, Raquel

2013-01-01T23:59:59.000Z

46

Resource-constrained multiprocessor synthesis for floating-point applications on FPGAs  

Science Conference Proceedings (OSTI)

Although state-of-the-art field-programmable gate arrays offer exciting new opportunities in exploring low-cost high-performance architectures for data-intensive scientific applications, they also present serious challenges. Multiprocessor-on-programmable-chip, ... Keywords: FPGA design and synthesis, Multiprocessor-on-programmable-chip, heterogeneous multiprocessors, mixed-mode parallel processing, resource-constrained optimization

Xiaofang Wang; Pallav Gupta

2011-10-01T23:59:59.000Z

47

Co-synthesis of FPGA-based application-specific floating point simd accelerators  

Science Conference Proceedings (OSTI)

The constant push for feature richness in mobile and embedded devices has significantly increased computational demand. However, stringent energy constraints typically remain in place. Embedding processor cores in FPGAs offers a path to having customized ... Keywords: co-synthesis, custom instructions, simd

Andrei Hagiescu; Weng-Fai Wong

2011-02-01T23:59:59.000Z

48

Chemical Conversion Coating  

Science Conference Proceedings (OSTI)

Table 16   Applications of aluminum using chemical conversion coatings...doors 6063 Acrylic paint (b) Cans 3004 Sanitary lacquer Fencing 6061 None applied Chromate conversion coatings Aircraft fuselage skins 7075 clad with 7072 Zinc chromate primer Electronic chassis 6061-T4 None applied Cast missile bulkhead 356-T6 None applied Screen 5056 clad with 6253 Clear varnish...

49

NUCLEAR CONVERSION APPARATUS  

DOE Patents (OSTI)

A nuclear conversion apparatus is described which comprises a body of neutron moderator, tubes extending therethrough, uranium in the tubes, a fluid- circulating system associated with the tubes, a thorium-containing fluid coolant in the system and tubes, and means for withdrawing the fluid from the system and replacing it in the system whereby thorium conversion products may be recovered.

Seaborg, G.T.

1960-09-13T23:59:59.000Z

50

Solar Thermal Conversion  

DOE Green Energy (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

51

ADEPT: Efficient Power Conversion  

SciTech Connect

ADEPT Project: In today’s increasingly electrified world, power conversion—the process of converting electricity between different currents, voltage levels, and frequencies—forms a vital link between the electronic devices we use every day and the sources of power required to run them. The 14 projects that make up ARPA-E’s ADEPT Project, short for “Agile Delivery of Electrical Power Technology,” are paving the way for more energy efficient power conversion and advancing the basic building blocks of power conversion: circuits, transistors, inductors, transformers, and capacitors.

None

2011-01-01T23:59:59.000Z

52

Direct energy conversion systems  

SciTech Connect

The potential importance of direct energy conversion to the long-term development of fusion power is discussed with stress on the possibility of alleviating waste heat problems. This is envisioned to be crucial for any central power station in the 21st century. Two approaches to direct conversion, i.e., direct collection and magnetic expansion, are reviewed. While other techniques may be possible, none have received sufficient study to allow evaluation. It is stressed that, due to the intimate connection between the type of fusion fuel, the confinement scheme, direct conversion, and the coupling technique, all four element must be optimized simultaneously for high overall efficiency.

Miley, G.H.

1978-01-01T23:59:59.000Z

53

Hydrothermal Energy Conversion Technology  

SciTech Connect

The goal of the Hydrothermal Program is to develop concepts which allow better utilization of geothermal energy to reduce the life-cycle cost of producing electricity from liquid-dominated, hydrothermal resources. Research in the program is currently ongoing in three areas: (1) Heat Cycle Research, which is looking at methods to increase binary plant efficiencies; (2) Materials Development, which is developing materials for use in geothermal associated environments; and (3) Advanced Brine Chemistry, with work taking place in both the brine chemistry modeling area and waste disposal area. The presentations during this session reviewed the accomplishments and activities taking place in the hydrothermal energy conversion program. Lawrence Kukacka, Brookhaven National Laboratory, discussed advancements being made to develop materials for use in geothermal applications. This research has identified a large number of potential materials for use in applications from pipe liners that inhibit scale buildup and reduce corrosion to elastomers for downhole use. Carl J. Bliem, Idaho National Engineering Laboratory, discussed preparations currently underway to conduct field investigations of the condensation behavior of supersaturated turbine expansions. The research will evaluate whether the projected 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Eugene T. Premuzic, Brookhaven National Laboratory, discussed advancements being made using biotechnology for treatment of geothermal residual waste; the various process options were discussed in terms of biotreatment variables. A treatment scenario and potential disposal costs were presented. John H. Weare, University of California, San Diego, discussed the present capabilities of the brine chemistry model he has developed for geothermal applications and the information it can provide a user. This model is available to industry. The accomplishments from the research projects presented in this session have been many. It is hoped that these accomplishments can be integrated into industrial geothermal power plant sites to assist in realizing the goal of reducing the cost of energy produced from the geothermal resource.

Robertson, David W.; LaSala, Raymond J.

1992-03-24T23:59:59.000Z

54

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

55

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

56

Solar Hydrogen Conversion Background  

E-Print Network (OSTI)

Solar Hydrogen Conversion Background: The photoelectrochemical production of hydrogen has drawn properties In order to develop better materials for solar energy applications, in-depth photoelectrochemical simulated solar irradiance. Hydrogen production experiments are conducted in a sealed aluminum cell

Raftery, Dan

57

Photovoltaic Cell Conversion Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity....

58

Structured luminescence conversion layer  

SciTech Connect

An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

2012-12-11T23:59:59.000Z

59

Case Number:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Name of Petitioner: Name of Petitioner: Date of Filing: Case Number: Department of Energy Washington, DC 20585 JUL 2 2 2009 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Appeal Dean P. Dennis March 2, 2009 TBA-0072 Dean D. Dennis filed a complaint of retaliation under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. Mr. Dennis alleged that he engaged in protected activity and that his employer, National Security Technologies, LLC (NSTec ), subsequently terminated him. An Office of Hearings and Appeals (OHA) Hearing Officer denied relief in Dean P. Dennis, Case No. TBH-0072, 1 and Mr. Dennis filed the instant appeal. As discussed below, the appeal is denied. I. Background The DOE established its Contractor Employee Protection Program to "safeguard public

60

JOB NUMBER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . . . . . . . . .: LEAVE BLANK (NARA use only) JOB NUMBER N/-&*W- 9d - 3 DATE RECEIVED " -1s - 9 J - NOTIFICATION TOAGENCY , In accordance with the provisions of 44 U.S.C. 3303a the disposition request. including amendments, is ap roved except , . l for items that may be marke,, ,"dis osition not approved" or "withdrawn in c o i m n 10. 4. NAME OF PERSON WITH WHOM TO CONFER 5 TELEPHONE Jannie Kindred (202) 5&-333 5 - 2 -96 6 AGENCYCERTIFICATION -. ~ - I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the records roposed for disposal are not now needed for the business of this agency or wiRnot be needed after t G t r & s s d ; and that written concurrence from

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

KPA Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supports CMM-SW Level 3 Supports CMM-SW Level 3 Mapping of the DOE Information Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM-SW) level 3. Date: September 2002 Page 1 KPA Number KPA Activity SEM Section SEM Work Product SQSE Web site http://cio.doe.gov/sqse ORGANIZATION PROCESS FOCUS OPF-1 The software process is assessed periodically, and action plans are developed to address the assessment findings. Chapter 1 * Organizational Process Management * Process Improvement Action Plan * Methodologies ! DOE Methodologies ! SEM OPF-2 The organization develops and maintains a plan for its software process development and improvement activities. Chapter 1 * Organizational Process Management * Process Improvement

62

Overview of coal conversion  

SciTech Connect

The structure of coal and the processes of coal gasification and coal liquefaction are reviewed. While coal conversion technology is not likely to provide a significant amount of synthetic fuel within the next several years, there is a clear interest both in government and private sectors in the development of this technology to hedge against ever-diminishing petroleum supplies, especially from foreign sources. It is evident from this rather cursory survey that there is some old technology that is highly reliable; new technology is being developed but is not ready for commercialization at the present state of development. The area of coal conversion is ripe for exploration both on the applied and basic research levels. A great deal more must be understood about the reactions of coal, the reactions of coal products, and the physics and chemistry involved in the various stages of coal conversion processes in order to make this technology economically viable.

Clark, B.R.

1981-03-27T23:59:59.000Z

63

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

64

Direct conversion technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

1992-01-07T23:59:59.000Z

65

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

66

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conservation Technologies thrust area supports initiatives that enhance the core competencies of the Lawrence Livermore National Laboratory (LLNL) Engineering Directorate in the area of solid-state power electronics. Through partnerships with LLNL programs, projects focus on the development of enabling technologies for existing and emerging programs that have unique power conversion requirements. This year, a multi-disciplinary effort was supported which demonstrated solid-state, high voltage generation by using a dense, monolithic photovoltaic array. This effort builds upon Engineering's strengths in the core technology areas of power conversion, photonics, and microtechnologies.

Haigh, R E

1998-01-01T23:59:59.000Z

67

Direct Conversion Technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

Back, L.H.; Fabris, G.; Ryan, M.A.

1992-07-01T23:59:59.000Z

68

Mode conversion studies in TFTR  

SciTech Connect

Mode converted Ion Bernstein Waves (IBW) have important potential applications in tokamak reactors. These applications include on or off axis electron heating and current drive and the channeling of alpha particle power for both current drive and increased reactivity. Efficient mode conversion electron heating with a low field side antenna, with both on and off axis power deposition, has been demonstrated for the first time in TFTR in D{sup 3}He-{sup 4}He plasmas. Up to 80% of the Ion Cyclotron Range of Frequency (ICRF) power is coupled to electrons at the mode conversion surface. Experiments during deuterium and tritium neutral beam injection (NBI) indicate that good mode conversion efficiency can be maintained during NBI if sufficient {sup 3}He is present. No evidence of strong alpha particle heating by the IBW is seen. Recent modeling indicates that if the mode converted IBW is preferentially excited off the horizontal midplane then the resultant high poloidal mode number wave may channel alpha particle power to either electrons or ions. In TFTR both the propagation of the IBW and its effect on the alpha particle population is being investigated. Experiments with 2 MW of ICRF power launched with {+-} 90{degree} antenna phasing for current drive show that electron heating and sawtooth activity depend strongly on the direction of the launched wave. The noninductively driven current could not be experimentally determined in these relatively high plasma current, short pulse discharges. Experiments at higher RF power and lower plasma current are planned to determine on and off axis current drive efficiency.

Majeski, R.; Fisch, N.J.; Adler, H.

1995-03-01T23:59:59.000Z

69

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

70

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

71

Links to on-line unit conversions  

Science Conference Proceedings (OSTI)

... Basic physical quantities. General unit, currency, and temperature conversion. ... Many conversions, including unusual and ancient units. ...

72

Model Energy Conversion Efficiency of Biological Systems  

Science Conference Proceedings (OSTI)

MML Researchers Model Energy Conversion Efficiency of Biological Systems. Novel, highly efficient energy conversion ...

2013-03-15T23:59:59.000Z

73

Photovoltaic Energy Conversion  

E-Print Network (OSTI)

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Buy Solar Energy Stocks? Make Photovoltaics your Profession! #12;Challenges Make solar cells more and fossil fuel depletion problems! #12;Photovoltaics: Explosive Growth #12;Take Advantage of Solar Megatrend

Glashausser, Charles

74

ENERGY CONVERSION Spring 2011  

E-Print Network (OSTI)

in this course: Week 1: Review Week 2: Entropy and exergy Week 3: Power cycles, Otto and Diesel Week 4 resources including: wind, wave energy conversion devices, and fuel cell technologies Week12: Introduction will work in groups as assigned. Experiment: Diesel Engine Assessment: Projects 20% Lab Reports

Bahrami, Majid

75

Solar energy conversion.  

SciTech Connect

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

76

MHK Technologies/Mobil Stabilized Energy Conversion Platform | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Mobil Stabilized Energy Conversion Platform MHK Technologies/Mobil Stabilized Energy Conversion Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Mobil Stabilized Energy Conversion Platform.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Reciprocating Device Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Stabilized Energy Conversion Platform SECOP consists of submersible hulls supporting a raised work platform containing a number of AMI s reciprocating electric generators Technology Dimensions Device Testing Date Submitted 34:44.5 << Return to the MHK database homepage Retrieved from

77

Question detection in spoken conversations using textual conversations  

Science Conference Proceedings (OSTI)

We investigate the use of textual Internet conversations for detecting questions in spoken conversations. We compare the text-trained model with models trained on manually-labeled, domain-matched spoken utterances with and without prosodic features. ...

Anna Margolis; Mari Ostendorf

2011-06-01T23:59:59.000Z

78

NETL: Gasification Systems - Conversion and Fouling  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion and Fouling Conversion and Fouling NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 3 Project Description The objective for this NETL in-house conversion and fouling project is to improve the reliability, availability and maintainability (RAM) of gasification plants by providing tools that can be used to evaluate the impact that fuel properties have on slag and refractory interaction, and to reduce plugging and fouling throughout the syngas cooling system. Utilizing these tools will aid in minimizing plugging and fouling-increasing overall plant efficiency due to improved heat transfer in heat exchangers. Particle deposition experimental schematic Particle deposition experimental schematic (click to enlarge) Project Details Program Background and Project Benefits

79

Energy Conversion | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion Group Energy Conversion Group The Energy Conversion Group offers advanced technical solutions to achieve reduced fossil fuel use in geothermal power and building energy applications. Focus is on advanced materials, biofuel end use, combustion and system concepts. We seek to continuously improve the capabilities of relevant research tools being applied in collaborative initiatives to achieving these goals. Capabilities The group conducts research in a number of energy-related areas. These include advanced materials for geothermal energy, applications of biofuels and alternative fuels, efficiency in heating/cooling equipment, advanced oil burner development and particulate emissions for wood boilers. Advanced Materials for Geothermal Energy Supercritical carbon dioxide has properties midway between a gas and a

80

Measurements and models of wide area TCP conversations  

SciTech Connect

This paper describes measurements of all the wide area network TCP conversations between the Lawrence Berkeley Laboratory (LBL) and the rest of the world for the months of November, 1990, and March, 1991. Some 500,000 conversations were recorded, encompassing 11 different major protocols. We look at aggregate characteristics of these conversations, both overall and by TCP protocol (e.g., smtp, ftp), computing the distributions of amount of data transferred, network bandwidth used, conversion lifetimes and conversation interarrival times. Temporal traffic variation is also investigated, showing the variation of number of active conversations and network bandwidth utilization over periods of 24 hours, 7 days and 30 days. Long term variation is also investigated by separately analyzing November and March data (which reveals a 10--20% increase in almost all aggregate traffic characteristics in just four months). We classify each conversation geographically and discover that the connectivity of the conversations were remarkably rich, including traffic to 48 of the 50 states in the US and 23 foreign countries. Finally, we develop a number of models for describing conversations of the various protocols. From these models we can more readily assess how each protocol is used and how the use changes as network utilization grows.

Paxson, V.

1991-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

82

Session: Energy Conversion  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

1992-01-01T23:59:59.000Z

83

Natural gas conversion process  

Science Conference Proceedings (OSTI)

The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.

Not Available

1992-01-01T23:59:59.000Z

84

DUF6 Conversion Facility EISs  

NLE Websites -- All DOE Office Websites (Extended Search)

Sign Me Up Search: OK Button DUF6 Guide DU Uses DUF6 Management and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home Conversion Facility EISs...

85

Conversion of Questionnaire Data  

SciTech Connect

During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

Powell, Danny H [ORNL; Elwood Jr, Robert H [ORNL

2011-01-01T23:59:59.000Z

86

Conversion factors for energy equivalents  

Science Conference Proceedings (OSTI)

... Conversion factors for energy equivalents, For your convenience, you may convert energies online below. Or display factors as: ...

87

Energy Conversion/Fuel Cells  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Energy Conversion/Fuel Cells. Sponsorship, MS&T Organization.

88

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

89

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network (OSTI)

notably energy conversion. As research continues in thisnanowires for energy conversion. Chemical Reviews, 2010.for solar energy conversion. Physical Review Letters, 2004.

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

90

: Package gov.nist.nlpir.irf.conversion  

Science Conference Proceedings (OSTI)

gov.nist.nlpir.irf.conversion Classes Ascii2HtmlConverter ConversionRule ConversionRules IrfConverter Sgml2AppDocConverter.

91

Battery Chargers | Electrical Power Conversion and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery Chargers | Electrical Power Conversion and Storage Battery Chargers | Electrical Power Conversion and Storage 625 West A Street | Lincoln, NE 68522-1794 | LesterElectrical.com P: 402.477.8988 | F: 402.441.3727, 402.474.1769 (Sales) MEMORANDUM TO: United States Department of Energy (DOE), Via Email, expartecommunications@hq.doe.gov FROM: Spencer Stock, Product Marketing Manager, Lester Electrical DATE: June 18, 2012 RE: Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 On Monday, June 11, 2012, representatives from Lester Electrical and Ingersoll Rand met with DOE to discuss the Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Battery Chargers and External Power Supplies, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57.

92

Zinc phosphate conversion coatings  

DOE Patents (OSTI)

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

93

Glossary Term - Atomic Number  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Previous Term (Alpha Particle) Glossary Main Index Next Term (Avogadro's Number) Avogadro's Number Atomic Number Silver's atomic number is 47 The atomic number is equal to...

94

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

95

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

96

Catalytic Conversion of Bioethanol to Hydrocarbons ...  

Conventional biomass to hydrocarbon conversion is generally not commercially feasible, due to costs of the conversion process.

97

Basis of conversion factors for energy equivalents  

Science Conference Proceedings (OSTI)

... Basis of conversion factors for energy equivalents Conversion factors for energy equivalents are derived from the following relations: ...

98

Conversion factors for energy equivalents: All factors  

Science Conference Proceedings (OSTI)

... Conversion factors for energy equivalents Return to online conversions. Next page of energy equivalents. Definition of uncertainty ...

99

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

Newton, M. A.

1997-02-01T23:59:59.000Z

100

Quantum optical waveform conversion  

E-Print Network (OSTI)

Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

Kielpinski, D; Wiseman, HM

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Wideband Wavelength Conversion Using Cavity ...  

Science Conference Proceedings (OSTI)

... The researchers use the interaction of two ... bands that are frequently used in telecommunications. ... conversion should be possible using the same ...

2013-08-27T23:59:59.000Z

102

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOENETL-20051217 U.S. Department of Energy Office of Fossil Energy National Energy...

103

Thermal Conversion Factor Source Documentation  

U.S. Energy Information Administration (EIA)

national annual quantity-weighted average conversion factors for conventional, reformulated, and oxygenated motor gasolines (see Table A3). The factor ...

104

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from the EERE Bioenergy Technologies Office. Thermochemical Conversion Processes Heat energy and chemical catalysts can be used to break down biomass into intermediate compounds...

105

PRIMARY QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

Reactions in,Bacterial Photosynthesis. I, Nature of lightReactions in Bacterial Photosynthesis. 111. Reactions ofQUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin and G. M.

Calvin, Melvin; Androes, G.M.

1962-01-01T23:59:59.000Z

106

Alternative Fuels Data Center: Conversion Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversion Regulations Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Conversion Regulations on AddThis.com... Conversion Regulations All vehicle and engine conversions must meet standards instituted by the U.S. Environmental Protection Agency (EPA), the National Highway Traffic Safety Administration (NHTSA), and state agencies like the California Air Resources Board (CARB).

107

MEDICAL IMAGE CONVERSION Peter Stanchev  

E-Print Network (OSTI)

MEDICAL IMAGE CONVERSION Peter Stanchev Institute of Mathematics, Bulgarian Academy of Sciences with the problem of converting medical images from one format to another. In solving it the structure of the most commonly used medical image formats are studied and analysed. A mechanism for medical image file conversion

Stanchev, Peter

108

Visualization components for persistent conversations  

Science Conference Proceedings (OSTI)

An appropriately designed interface to persistent, threaded conversations could reinforce socially beneficial behavior by prominently featuring how frequently and to what degree each user exhibits such behaviors. Based on the data generated by the Netscan ... Keywords: Usenet, asynchronous threaded discussions, newsgroup, persistent conversation, social cyberspaces, visualization

Marc A. Smith; Andrew T. Fiore

2001-03-01T23:59:59.000Z

109

Alcohol fuel conversion apparatus  

Science Conference Proceedings (OSTI)

This patent describes an alcohol fuel conversion apparatus for internal combustion engines comprising: fuel storage means for containing an alcohol fuel; primary heat exchange means in fluid communication with the fuel storage means for transferring heat to pressurized alcohol contained within the heat exchange means; a heat source for heating the primary heat exchange means; pressure relief valve means in closed fluid communication with the primary heat exchange means for releasing heated pressurized alcohol into an expansion chamber; converter means including the expansion chamber in fluid communication with the pressure relief valve means for receiving the heated pressurized alcohol and for the vaporization of the alcohol; fuel injection means in fluid communication with the converter means for injecting vaporized alcohol into the cylinders of an internal combustion engine for mixing with air within the cylinders for proper combustion; and pump means for pressurized pumping of alcohol from the 23 fuel storage means to the primary heat exchanger means, converter means, fuel injector means, and to the engine.

Carroll, B.I.

1987-12-08T23:59:59.000Z

110

$?- e$ Conversion With Four Generations  

E-Print Network (OSTI)

We study $\\mu - e$ conversion with sequential four generations. A large mass for the fourth generation neutrino can enhance the conversion rate by orders of magnitude. We compare constraints obtained from $\\mu - e$ conversion using experimental bounds on various nuclei with those from $\\mu \\to e \\gamma$ and $\\mu \\to e\\bar e e$. We find that the current bound from $\\mu - e$ conversion with Au puts the most stringent constraint in this model. The relevant flavor changing parameter $\\lambda_{\\mu e} = V^*_{\\mu 4}V_{e4}^{}$ is constrained to be less than $1.6\\times 10^{-5}$ for the fourth generation neutrino mass larger than 100 GeV. Implications for future $\\mu -e$ conversion, $\\mu \\to e\\gamma$ and $\\mu \\to e\\bar e e$ experiments are discussed.

N. G. Deshpande; T. Enkhbat; T. Fukuyama; X. -G. He; L. -H. Tsai; K. Tsumura

2011-06-25T23:59:59.000Z

111

BSA 06-01: ASIC for Clockless Analog-to-Digital Conversion  

BSA 06-01: ASIC for Clockless Analog-to-Digital Conversion. BNL Reference Number: BSA 06-01. Patent Status: U.S. Patent Number 7,187,316 was issued on March 6, 2007

112

Octane Number Prediction in a Reforming Plant  

Science Conference Proceedings (OSTI)

In this work a neural network for the prediction of the complex and non-linear behavior of a Catalytic Reforming of a refinery has been developed. In a fuel, refinery reforming is a conversion process to increase octane number (RON) of the desulphurated ...

E. Chibaro

2000-07-01T23:59:59.000Z

113

Glossary Term - Avogadro's Number  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic Number Previous Term (Atomic Number) Glossary Main Index Next Term (Beta Decay) Beta Decay Avogadro's Number Avogadro's number is the number of particles in one mole of a...

114

Management and Uses Conversion Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Conversion DOE is planning to build two depleted UF6 conversion facilities, and site-specific environmental impact statements (EISs) to evaluate project alternatives. The Final Plan for Conversion and the Programmatic EIS The eventual disposition of depleted UF6 remains the subject of considerable interest within the U.S. Congress, and among concerned citizens and other stakeholders. Congress stated its intentions in Public Law (P. L.) 105-204, signed by the President in July 1998. P. L. 105-204 required DOE to develop a plan to build two depleted UF6 conversion facilities, one each at Portsmouth, Ohio, and Paducah, Kentucky. DOE submitted the required plan, Final Plan for the Conversion of Depleted Uranium Hexafluoride, to Congress in July 1999. This document provided a discussion of DOE's technical approach and schedule to implement this project. Although much of the information provided in this report is still valid, a few aspects of this plan have changed since its publication.

115

Barn ConversionBarn Conversion DiscussionDiscussion  

E-Print Network (OSTI)

B.G.S.A.C Stats ·· 2500 square foot insulated pole barn2500 square foot insulated pole barn ·· concrete neededhouse the system needed ·· Is the conversion cost worthIs the conversion cost worth while when compared installedNo vapor barrier installed ·· Rains in barnRains in barn ·· Up to 75 gallons per dayUp to 75

116

EPA Redesigns Conversion Certification Policies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EPA Redesigns EPA Redesigns Conversion Certification Policies At a recent meeting held in Washington, DC, officials from the U.S. Environmental Protection Agency (EPA) opened dialogue about proposed changes to its emission certification policies that affect alternative fuel vehicles (AFVs). "We are trying to accommo- date the Energy Policy Act (EPAct) and Executive Order requirements while trying to change enforce- ment policies and guidance with respect to conversions," said Rich Ackerman of EPA's Enforcement Office. The meeting, attended by representatives of more than 60 organizations, was held to discuss actions addressing AFV emission certification. Specifically, topics included * Conversion emissions perfor- mance data * Status of environmental laws pertaining to alternative fuel

117

Thermal Conversion Process (TCP) Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changing World Technologies' Changing World Technologies' Thermal Conversion Process Commercial Demonstration Plant DOE/EA 1506 Weld County, Colorado December 2004 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE 1617 Cole Boulevard Golden, Colorado 80401 Thermal Conversion Process (TCP) Technology Commercial Demonstration - Weld County, CO TABLE OF CONTENTS Environmental Assessment Thermal Conversion Process (TCP) Technology Commercial Demonstration Project Weld County, Colorado SUMMARY............................................................................................................................. S-1 1.0 INTRODUCTION.........................................................................................................1-1 1.1. National Environmental Policy Act and Related Procedures...........................1-1

118

Alternative Fuels Data Center: Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversions on AddThis.com... Vehicle Conversions Photo of converted to run on propane. What kinds of conversions are available? Natural Gas Propane Electric Hybrid Ethanol An aftermarket conversion is a vehicle or engine modified to operate using

119

Ocean Thermal Energy Conversion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Ocean Thermal Energy Conversion August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in...

120

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

DOE-EPA Working Group on Ocean TherUial Energy Conversion,Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversion

Sands, M.Dale

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Propane Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Conversions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Conversions Related Information Conversion Basics Regulations Vehicle conversions provide alternative fuel options beyond what is

122

Cosmopolitanism - Conversation with Stuart Hall  

E-Print Network (OSTI)

Conversation between Stuart Hall and Pnina Werbner on the theme of Cosmopolitanism (to be shown at the Association of Social Anthropologists Silver Jubilee conference in 2006), in March 2006...

Hall, Stuart

2006-09-27T23:59:59.000Z

123

Tidal Conversion by Supercritical Topography  

E-Print Network (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

Balmforth, Neil J.

124

Conversion to the Metric System  

U.S. Energy Information Administration (EIA)

Appendix C Conversion to the Metric System Public Law 100–418, the Omnibus Trade and Competitiveness Act of 1988, states: “It is the declared policy of the United ...

125

Tidal Conversion by Supercritical Topography  

Science Conference Proceedings (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of periodic obstructions; a ...

Neil J. Balmforth; Thomas Peacock

2009-08-01T23:59:59.000Z

126

Conversion coefficients for superheavy elements  

E-Print Network (OSTI)

In this paper we report on internal conversion coefficients for Z = 111 to Z = 126 superheavy elements obtained from relativistic Dirac-Fock (DF) calculations. The effect of the atomic vacancy created during the conversion process has been taken into account using the so called "Frozen Orbital" approximation. The selection of this atomic model is supported by our recent comparison of experimental and theoretical conversion coefficients across a wide range of nuclei. The atomic masses, valence shell electron configurations, and theoretical atomic binding energies required for the calculations were adopted from a critical evaluation of the published data. The new conversion coefficient data tables presented here cover all atomic shells, transition energies from 1 keV up to 6000 keV, and multipole orders of 1 to 5. A similar approach was used in our previous calculations [1] for Z = 5 - 110.

T. Kibédi; M. B. Trzhaskovskaya; M. Gupta; A. E. Stuchbery

2011-03-03T23:59:59.000Z

127

Unsupervised modeling of Twitter conversations  

Science Conference Proceedings (OSTI)

We propose the first unsupervised approach to the problem of modeling dialogue acts in an open domain. Trained on a corpus of noisy Twitter conversations, our method discovers dialogue acts by clustering raw utterances. Because it accounts for the sequential ...

Alan Ritter; Colin Cherry; Bill Dolan

2010-06-01T23:59:59.000Z

128

Double Precision Computation of the Logistic Map Depends on Computational Modes of the Floating-point Processing Unit  

E-Print Network (OSTI)

Today's most popular CPU can operate in two different computational modes for double precision computations. This fact is not very widely recognized among scientific computer users. The present paper reports the differences the modes bring about using the most thoroughly studied system in chaos theory, the logistic map. Distinct virtual periods due to finite precision come about depending on the computational modes for the parameter value corresponding to fully developed chaos. For other chaotic regime various virtual periods emerge depending on the computational modes and the mathematical expressions of the map. Differences in the bifurcation diagrams due to the modes and the expressions are surveyed exhaustively. A quantity to measure those differences is defined and calculated.

Michiro Yabuki; Takashi Tsuchiya

2013-05-14T23:59:59.000Z

129

Biological conversion of synthesis gas  

DOE Green Energy (OSTI)

A continuous stirred tank reactor with and without sulfur recovery has been operated using Chlorobium thiosulfatophilum for the conversion of H[sub 2]S to elemental sulfur. In operating the reactor system with sulfur recovery, a gas retention time of 40 min was required to obtain a 100 percent conversion of H[sub 2]S to elemental sulfur. Essentially no SO[sub 4][sup 2[minus

Clausen, E.C.

1993-04-10T23:59:59.000Z

130

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Energy Conversion The Solid State Energy Conversion R&D activity is focused on developing advanced thermoelectric technologies for utilizing engine waste heat by...

131

Documents: Disposal of DUF6 Conversion Products  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Conversion Products Search Documents: Search PDF Documents View a list of all documents Disposal of DUF6 Conversion Products PDF Icon Engineering Analysis for Disposal of...

132

Fast Conversion Algorithms for Orthogonal Polynomials - Computer ...  

E-Print Network (OSTI)

Nov 13, 2008 ... a known conversion algorithm from an arbitrary orthogonal basis to the ... Fast algorithms, transposed algorithms, basis conversion, orthogonal.

133

Photocatalytic Conversion of Carbon Dioxide to Methanol.  

E-Print Network (OSTI)

??The photocatalytic conversion of carbon dioxide (CO2) to methanol was investigated. The procedure for the carbon dioxide conversion was carried out using a small scale… (more)

Okpo, Emmanuel

2009-01-01T23:59:59.000Z

134

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion to someone by E-mail Share Vehicle Technologies Office: Solid State Energy Conversion on Facebook Tweet about Vehicle Technologies Office: Solid State Energy...

135

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Conversion A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when...

136

Energy Conversion – Photovoltaic, Concentrating Solar Power, and ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2012. Symposium, Energy Conversion – Photovoltaic, Concentrating Solar Power, and  ...

137

Biochemical Conversion Pilot Plant (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

Not Available

2012-06-01T23:59:59.000Z

138

Frequency Conversion of Entangled State  

E-Print Network (OSTI)

The quantum characteristics of sum-frequency process in an optical cavity with an input signal optical beam, which is a half of entangled optical beams, are analyzed. The calculated results show that the quantum properties of the signal beam can be maintained after its frequency is conversed during the intracavity nonlinear optical interaction. The frequency-conversed output signal beam is still in an entangled state with the retained other half of initial entangled beams. The resultant quantum correlation spectra and the parametric dependences of the correlations on the initial squeezing factor, the optical losses and the pump power of the sum-frequency cavity are calculated. The proposed system for the frequency conversion of entangled state can be used in quantum communication network and the calculated results can provide direct references for the design of experimental systems.

Aihong Tan; Xiaojun Jia; Changde Xie

2006-03-01T23:59:59.000Z

139

Gaussian random number generators  

Science Conference Proceedings (OSTI)

Rapid generation of high quality Gaussian random numbers is a key capability for simulations across a wide range of disciplines. Advances in computing have brought the power to conduct simulations with very large numbers of random numbers and with it, ... Keywords: Gaussian, Random numbers, normal, simulation

David B. Thomas; Wayne Luk; Philip H.W. Leong; John D. Villasenor

2007-11-01T23:59:59.000Z

140

MINING NUCLEAR TRANSIENT DATA THROUGH SYMBOLIC CONVERSION  

Science Conference Proceedings (OSTI)

Dynamic Probabilistic Risk Assessment (DPRA) methodologies generate enormous amounts of data for a very large number of simulations. The data contain temporal information of both the state variables of the simulator and the temporal status of specific systems/components. In order to measure system performances, limitations and resilience, such data need to be carefully analyzed with the objective of discovering the correlations between sequence/timing of events and system dynamics. A first approach toward discovering these correlations from data generated by DPRA methodologies has been performed by organizing scenarios into groups using classification or clustering based algorithms. The identification of the correlations between system dynamics and timing/sequencing of events is performed by observing the temporal distribution of these events in each group of scenarios. Instead of performing “a posteriori” analysis of these correlations, this paper shows how it is possible to identify the correlations implicitly by performing a symbolic conversion of both continuous (temporal profiles of simulator state variables) and discrete (status of systems and components) data. Symbolic conversion is performed for each simulation by properly quantizing both continuous and discrete data and then converting them as a series of symbols. After merging both series together, a temporal phrase is obtained. This phrase preserves duration, coincidence and sequence of both continuous and discrete data in a uniform and consistent manner. In this paper it is also shown that by using specific distance measures, it is still possible to post-process such symbolic data using clustering and classification techniques but in considerably less time since the memory needed to store the data is greatly reduced by the symbolic conversion.

Diego MAndelli; Tunc Aldemir; Alper Yilmaz; Curtis Smith

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Conversion and Storage Program  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

142

Conversion of the Barotropic Tide  

Science Conference Proceedings (OSTI)

Using linear wave theory, the rate at which energy is converted into internal gravity waves by the interaction of the barotropic tide with topography in an ocean is calculated. Bell's formula for the conversion rate is extended to the case of an ...

Stefan G. Llewellyn Smith; W. R. Young

2002-05-01T23:59:59.000Z

143

Statistics of multiphoton events in spontaneous parametric down-conversion  

E-Print Network (OSTI)

We present an experimental characterization of the statistics of multiple photon pairs produced by spontaneous parametric down-conversion realized in a nonlinear medium pumped by high-energy ultrashort pulses from a regenerative amplifier. The photon number resolved measurement has been implemented with the help of a fiber loop detector. We introduce an effective theoretical description of the observed statistics based on parameters that can be assigned direct physical nterpretation. These parameters, determined for our source from the collected experimental data, characterize the usefulness of down-conversion sources in multiphoton interference schemes that underlie protocols for quantum information processing and communication.

Wojciech Wasilewski; Czeslaw Radzewicz; Robert Frankowski; Konrad Banaszek

2008-05-12T23:59:59.000Z

144

Alternative Fuels Data Center: Vehicle Conversion Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Conversion Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversion Basics on AddThis.com... Vehicle Conversion Basics Photo of a Ford Transit Connect converted to run on compressed natural gas. A Ford Transit Connect converted to run on compressed natural gas. A converted vehicle or engine is one modified to use a different fuel or

145

Quantum Random Number Generator  

Science Conference Proceedings (OSTI)

... trusted beacon of random numbers. You could conduct secure auctions, or certify randomized audits of data. One of the most ...

2013-08-30T23:59:59.000Z

146

Biofuel Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

147

DUF6 Conversion Facility EIS Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Conversion Facility EISs Schedule The final EISs for the DUF6 Conversion Facilities have been completed, and are available through this web site. The RODs are...

148

Conversion of Levulinic Acid to Methyl Tetrahydrofuran ...  

Biomass and Biofuels Conversion of Levulinic Acid to Methyl Tetrahydrofuran Pacific Northwest National Laboratory. Contact PNNL About This Technology ...

149

EFFECT OF DENTAL POLYMER DEGREE OF CONVERSION ...  

Science Conference Proceedings (OSTI)

Effect of Dental Polymer Degree of Conversion on Oral Biofilms. Alison Kraigsley, Sheng Lin-Gibson, Nancy J. Lin. National ...

150

Conversion of Levulinic Acid to Methyl Tetrahydrofuran ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Conversion of Levulinic Acid to Methyl Tetrahydrofuran. Battelle ...

151

Energy Storage, Transport, and Conversion in CNST  

Science Conference Proceedings (OSTI)

Energy Storage, Transport, and Conversion in CNST. Nanotribology ... Theory and Modeling of Materials for Renewable Energy. Nanostructures ...

2013-05-02T23:59:59.000Z

152

Appendix B Metric and Thermal Conversion Tables  

U.S. Energy Information Administration (EIA)

2011 U.S. Energy Information Administration | Natural Gas Annual 193 Appendix B Metric and Thermal Conversion Tables

153

High resolution A/D conversion based on piecewise conversion at lower resolution  

SciTech Connect

Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

Terwilliger, Steve (Albuquerque, NM)

2012-06-05T23:59:59.000Z

154

NREL-Ocean Energy Thermal Conversion | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Thermal Conversion Jump to: navigation, search Logo: NREL-Ocean Energy Thermal Conversion Name NREL-Ocean Energy Thermal Conversion AgencyCompany Organization...

155

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

156

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

Thermal Energy Conversion Conference. Ocean Systems Branch,Thermal Energy Conversion Conference. Ocean Systems Branch,thermal energy conversion, June 18, 1979. Ocean Systems

Sands, M. D.

2011-01-01T23:59:59.000Z

157

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Nanoporous Thermal-to-Electrical Energy Conversion System (hand, the indirect energy conversion systems tend to beIn a direct energy conversion system, heat can be converted

Lim, Hyuck

2011-01-01T23:59:59.000Z

158

CATALYTIC CONVERSION OF SOLVENT REFINED COAL TO LIQUID PRODUCTS  

E-Print Network (OSTI)

and Friedman, S. ,"Conversion of Anthraxylon - Kinetics ofiv- LBL 116807 CATALYTIC CONVERSION OF SOLVENT REFINED COALand Mechanisms of Coal Conversion to Clean Fuel,iI pre-

Tanner, K.I.

2010-01-01T23:59:59.000Z

159

STRIPPING OF PROCESS CONDENSATES FROM SOLID FUEL CONVERSION  

E-Print Network (OSTI)

Aqueous from Fossil Fuel Conversion Processes", ~l:;_£J. _and Pollution Control in Coal Conversion Processes", U. s.By-Product Waters from Coal Conversion Processes", American

Hill, Joel David

2013-01-01T23:59:59.000Z

160

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL ASSESSMENTOcean Thermal Energy Conversion Draft Programmatic Environ-Ocean Thermal Energy Conversion. U.S. DOE Assistant Secre-

Sands, M.Dale

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NREL: Biomass Research - Biochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Capabilities Biochemical Conversion Capabilities NREL researchers are working to improve the efficiency and economics of the biochemical conversion process by focusing on the most challenging steps in the process. Biochemical conversion of biomass to biofuels involves three basic steps: Converting biomass to sugar or other fermentation feedstock through: Pretreatment Conditioning and enzymatic hydrolysis Enzyme development. Fermenting these biomass-derived feedstocks using: Microorganisms for fermentation. Processing the fermentation product to produce fuel-grade ethanol and other fuels, chemicals, heat, and electricity by: Integrating the bioprocess. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the biochemical conversion

162

Biomass thermochemical conversion program: 1987 annual report  

DOE Green Energy (OSTI)

The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1988-01-01T23:59:59.000Z

163

Biomass thermochemical conversion program. 1985 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1986-01-01T23:59:59.000Z

164

Formation of alcohol conversion catalysts  

DOE Patents (OSTI)

The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

Wachs, Israel E. (Bridgewater, NJ); Cai, Yeping (Louisville, KY)

2001-01-01T23:59:59.000Z

165

Biomass Thermochemical Conversion Program: 1986 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1987-01-01T23:59:59.000Z

166

Texas Natural Gas Number of Industrial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of...

167

Biological conversion of synthesis gas  

DOE Green Energy (OSTI)

Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. R. rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H[sub 2]0 [yields] CO[sub 2] + H[sub 2]. C. thiosulfatophilum is also a H[sub 2]S and COS to elemental sulfur. The growth of R. rubrum may be satisfactorily carried out at 25[degree] and 30[degree]C, while CO uptake and thus the conversion of CO best occurs at temperatures of either 30[degree], 32[degree] or 34[degree]C. The rate of conversion of COs and H[sub 2]O to CO[sub 2] and H[sub 2]S may be modeled by a first order rate expression. The rate constant at 30[degree]C was found to be 0.243 h[sup [minus]1]. The growth of C. thiosulfatophilum may be modeled in terms of incoming light intensity using a Monod equation: [mu] = [sub 351] + I[sub o]/[sup 0.152]I[sub o]. Comparisons of the growth of R. rubrum and C. thiosulfatophilum shows that the specific growth rate of C. thiosulfatophilum is much higher at a given light intensity.

Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

1992-03-01T23:59:59.000Z

168

Number | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number More Documents & Publications Analysis of Open Office of Inspector General Recommendations, OAS-L-08-07 Policy and International Affairs (WFP) Open Government Plan 2.0...

169

Expected Frobenius numbers  

E-Print Network (OSTI)

We show that for large instances the order of magnitude of the expected Frobenius number is (up to a constant depending only on the dimension) given by its lower bound.

Aliev, Iskander; Hinrichs, Aicke

2009-01-01T23:59:59.000Z

170

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

of Novel Energy Conversion and Storage Systems By Andrewof Novel Energy Conversion and Storage Systems by Andrew

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

171

Microturbine Power Conversion Technology Review  

SciTech Connect

In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to accept a varying dc voltage source. The study will also look at technical issues pertaining to the interconnection and coordinated/compatible operation of multiple microturbines. It is important to know today if modifications to provide improved operation and additional services will entail complete redesign, selected component changes, software modifications, or the addition of power storage devices. This project is designed to provide a strong technical foundation for determining present technical needs and identifying recommendations for future work.

Staunton, R.H.

2003-07-21T23:59:59.000Z

172

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOE/NETL-2005/1217 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory April 2005 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

173

Power conversion apparatus and method  

DOE Patents (OSTI)

A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

Su, Gui-Jia (Knoxville, TN)

2012-02-07T23:59:59.000Z

174

Cleanup of hydrocarbon conversion system  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of a substantially contaminant-free second hydrocarbon feed using a second reforming catalyst, in a catalytic-reforming system having equipment contaminated through contact with a contaminant-containing prior feed. It comprises: contacting the first hydrocarbon feed in the catalytic-reforming system at first reforming conditions with a first reforming catalyst until contaminant removal from the conversion system is substantially completed and the system is contaminant-free; thereafter replacing the first reforming catalyst in the contaminant-free catalytic-reforming system with a second reforming catalyst; and thereafter contacting the second hydrocarbon feed in the contaminant-free catalytic-reforming system with the second reforming catalyst at second reforming conditions.

Peer, R.L.; Russ, M.B.

1990-07-10T23:59:59.000Z

175

Energy Calculator- Common Units and Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

176

Documents: DUF6 Conversion EIS Supporting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Conversion EIS DUF6 Conversion EIS Search Documents: Search PDF Documents View a list of all documents NEPA Compliance: DUF6 Conversion EIS Supporting Documents PDF Icon Notice of Change in National Environmental Policy Act (NEPA) Compliance Approach for the Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project 38 KB details PDF Icon Press Release: DOE Seeks Public Input for Depleted Uranium Hexafluoride Environmental Impact Statement 90 KB details PDF Icon Advance Notice of Intent To Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 52 KB details PDF Icon Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 60 KB details PDF Icon Overview: Depleted Uranium Hexafluoride (DUF6) Management Program

177

DUF6 Conversion Facility EIS Alternatives  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternatives Alternatives Depleted UF6 Conversion Facility EIS Alternatives Alternatives included in the Depleted UF6 Conversion Facility EISs. Proposed Action The proposed action evaluated in each EIS is to construct and operate a conversion facility at each site for conversion of the DOE DUF6 inventory. The time period considered is a construction period of approximately 2 years, an operational period of 25 years at Paducah and 18 years at Portsmouth, and the decontamination and decommissioning (D&D) of the facility of about 3 years. The EISs assess the potential environmental impacts from the following proposed activities: Construction, operation, maintenance, and D&D of the proposed DUF6 conversion facility at each site; Transportation of uranium conversion products and waste materials to a disposal facility;

178

Introduction to Solar Photon Conversion  

SciTech Connect

The efficient and cost-effective direct conversion of solar photons into solar electricity and solar fuels is one of the most important scientific and technological challenges of this century. It is estimated that at least 20 terawatts of carbon-free energy (1 and 1/2 times the total amount of all forms of energy consumed today globally), in the form of electricity and liquid and gaseous fuels, will be required by 2050 in order to avoid the most serious consequences of global climate change and to ensure adequate global energy supply that will avoid economic chaos. But in order for solar energy to contribute a major fraction of future carbon-free energy supplies, it must be priced competitively with, or perhaps even be less costly than, energy from fossil fuels and nuclear power as well as other renewable energy resources. The challenge of delivering very low-cost solar fuels and electricity will require groundbreaking advances in both fundamental and applied science. This Thematic Issue on Solar Photon Conversion will provide a review by leading researchers on the present status and prognosis of the science and technology of direct solar photoconversion to electricity and fuels. The topics covered include advanced and novel concepts for low-cost photovoltaic (PV) energy based on chemistry (dye-sensitized photoelectrodes, organic and molecular PV, multiple exciton generation in quantum dots, singlet fission), solar water splitting, redox catalysis for water oxidation and reduction, the role of nanoscience and nanocrystals in solar photoconversion, photoelectrochemical energy conversion, and photoinduced electron transfer. The direct conversion of solar photons to electricity via photovoltaic (PV) cells is a vital present-day commercial industry, with PV module production growing at about 75%/year over the past 3 years. However, the total installed yearly averaged energy capacity at the end of 2009 was about 7 GW-year (0.2% of global electricity usage). Thus, there is potential for the PV industry to grow enormously in the future (by factors of 100-300) in order for it to provide a significant fraction of total global electricity needs (currently about 3.5 TW). Such growth will be greatly facilitated by, and probably even require, major advances in the conversion efficiency and cost reduction for PV cells and modules; such advances will depend upon advances in PV science and technology, and these approaches are discussed in this Thematic Issue. Industrial and domestic electricity utilization accounts for only about 30% of the total energy consumed globally. Most ({approx}70%) of our energy consumption is in the form of liquid and gaseous fuels. Presently, solar-derived fuels are produced from biomass (labeled as biofuels) and are generated through biological photosynthesis. The global production of liquid biofuels in 2009 was about 1.6 million barrels/day, equivalent to a yearly output of about 2.5 EJ (about 1.3% of global liquid fuel utilization). The direct conversion of solar photons to fuels produces high-energy chemical products that are labeled as solar fuels; these can be produced through nonbiological approaches, generally called artificial photosynthesis. The feedstocks for artificial photosynthesis are H{sub 2}O and CO{sub 2}, either reacting as coupled oxidation-reduction reactions, as in biological photosynthesis, or by first splitting H{sub 2}O into H{sub 2} and O{sub 2} and then reacting the solar H{sub 2} with CO{sub 2} (or CO produced from CO2) in a second step to produce fuels through various well-known chemical routes involving syngas, water gas shift, and alcohol synthesis; in some applications, the generated solar H{sub 2} itself can be used as an excellent gaseous fuel, for example, in fuel cells. But at the present time, there is no solar fuels industry. Much research and development are required to create a solar fuels industry, and this Thematic Issue presents several reviews on the relevant solar fuels science and technology. The first three manuscripts relate to the daunting problem of producing

Nozik, A.; Miller, J.

2010-11-10T23:59:59.000Z

179

Report number codes  

SciTech Connect

This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

Nelson, R.N. (ed.)

1985-05-01T23:59:59.000Z

180

Ion Stopping Powers and CT Numbers  

SciTech Connect

One of the advantages of ion beam therapy is the steep dose gradient produced near the ion's range. Use of this advantage makes knowledge of the stopping powers for all materials through which the beam passes critical. Most treatment planning systems calculate dose distributions using depth dose data measured in water and an algorithm that converts the kilovoltage X-ray computed tomography (CT) number of a given material to its linear stopping power relative to water. Some materials present in kilovoltage scans of patients and simulation phantoms do not lie on the standard tissue conversion curve. The relative linear stopping powers (RLSPs) of 21 different tissue substitutes and positioning, registration, immobilization, and beamline materials were measured in beams of protons accelerated to energies of 155, 200, and 250 MeV; carbon ions accelerated to 290 MeV/n; and iron ions accelerated to 970 MeV/n. These same materials were scanned with both kilovoltage and megavoltage CT scanners to obtain their CT numbers. Measured RLSPs and CT numbers were compared with calculated and/or literature values. Relationships of RLSPs to physical densities, electronic densities, kilovoltage CT numbers, megavoltage CT numbers, and water equivalence values converted by a treatment planning system are given. Usage of CT numbers and substitution of measured values into treatment plans to provide accurate patient and phantom simulations are discussed.

Moyers, Michael F., E-mail: MFMoyers@roadrunner.co [Department of Proton Therapy, Inc., Colton, CA (United States); Sardesai, Milind [Department of Long Beach Memorial Medical Center, Long Beach, CA (United States); Sun, Sean [Department of City of Hope National Medical Center, Duarte, CA (United States); Miller, Daniel W. [Department of Loma Linda University Medical Center, Loma Linda, CA (United States)

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A Review of Previous Research in Direct Energy Conversion Fission Reactors  

DOE Green Energy (OSTI)

From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this day, but there have been no recent significant programs to develop the technology.

DUONG,HENRY; POLANSKY,GARY F.; SANDERS,THOMAS L.; SIEGEL,MALCOLM D.

1999-09-22T23:59:59.000Z

182

Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search Properties of type "Number" Showing 200 properties using this type. (previous 200) (next 200) A Property:AvgAnnlGrossOpCpcty Property:AvgTempGeoFluidIntoPlant Property:AvgWellDepth B Property:Building/FloorAreaChurchesChapels Property:Building/FloorAreaGroceryShops Property:Building/FloorAreaHealthServices24hr Property:Building/FloorAreaHealthServicesDaytime Property:Building/FloorAreaHeatedGarages Property:Building/FloorAreaHotels Property:Building/FloorAreaMiscellaneous Property:Building/FloorAreaOffices Property:Building/FloorAreaOtherRetail Property:Building/FloorAreaResidential Property:Building/FloorAreaRestaurants Property:Building/FloorAreaSchoolsChildDayCare Property:Building/FloorAreaShops Property:Building/FloorAreaSportCenters

183

Converse, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Converse, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

184

Catalytic Conversion of Bioethanol to Hydrocarbons  

ORNL 2011-G00219/jcn UT-B ID 201002414 08.2011 Catalytic Conversion of Bioethanol to Hydrocarbons Technology Summary A method for catalytically ...

185

Bioenergy Technologies Office: Processing and Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

sugar-rich stream (hydrolyzate) is fed to organisms that ferment the sugars to fuel precursor molecules. The biochemical conversion platform also has a large stake in some...

186

Frequency Conversion Interfaces for Photonic Quantum ...  

Science Conference Proceedings (OSTI)

... by nearly two orders of magnitude while maintaining equal conversion efficiency. ... focused on developing approaches to tune the energy levels of ...

2013-07-02T23:59:59.000Z

187

Novel Nitride-Modified Multielectron Conversion Electrode ...  

Novel Nitride-Modified Multielectron Conversion Electrode Materials for Lithium Ion Batteries Note: The technology described above is an early stage opportunity.

188

Share of Conversion Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In the early to mid 1980’s, Atlantic Basin refiners rapidly expanded their conversion capacity as a consequence of the belief that world crude production would get ...

189

Catalytic Conversion of Bioethanol to Hydrocarbons  

ORNL 2011-G00219/jcn UT-B ID 201002414 08.2011 Catalytic Conversion of Bioethanol to Hydrocarbons Technology Summary A method for catalytically converting an alcohol ...

190

Direct Conversion of Biomass into Transportation Fuels  

Direct Conversion of Biomass into Transportation Fuels . Return to Marketing Summary. Skip footer navigation to end of page. Contacts | Web Site Policies | U.S ...

191

Conversion of Ultra High Performance Carbon Fiber  

Conversion of Ultra High Performance Carbon Fiber Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

192

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

193

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

194

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

195

Conversion factors for energy equivalents: All factors  

Science Conference Proceedings (OSTI)

... Previous page of energy equivalents. Definition of uncertainty notation eg, 123(45) | Basis of conversion factors for energy equivalents. Top. ...

196

Landholders, Residential Land Conversion, and Market Signals  

E-Print Network (OSTI)

465– Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

Margulis, Harry L.

2006-01-01T23:59:59.000Z

197

Using Fractional Numbers of . . .  

E-Print Network (OSTI)

One of the design parameters in closed queueing networks is Np, the number of customers of class p. It has been assumed that Np must be an integer. However, integer choices will usually not achieve the target throughput for each class simultaneously. We use Mean Value Analysis with the Schweitzer-Bard approximation and nonlinear programming to determine the value of Np needed to achieve the production targets exactly, although the values of Np may be fractional. We interpret these values to represent the average number of customers of each class in the network. We implement a control rule to achieve these averages and verify our approach through simulation.

Rajan Suri; Rahul Shinde; Mary Vernon

2005-01-01T23:59:59.000Z

198

CHEMICAL SAFETY Emergency Numbers  

E-Print Network (OSTI)

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

Bolch, Tobias

199

Disjunctive Rado numbers  

Science Conference Proceedings (OSTI)

If L1 and L2 are linear equations, then the disjunctive Rado number of the set {L1, L2} is the least integer n, provided that it exists, such that for every 2-coloring of ... Keywords: Rado, Ramsey, Schur, disjunctive

Brenda Johnson; Daniel Schaal

2005-11-01T23:59:59.000Z

200

A number of organizations,  

E-Print Network (OSTI)

buying power to purchase green power. The city of Chicago has formed an alliance with 47 other local installed solar electric systems on a number of the city's buildings, including the Chicago Center for Green to competition, the city of Chicago and 47 other local government agencies formed the Local Government Power

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Photonic Crystals for Enhancing Thermophotovoltaic Energy Conversion  

DOE Green Energy (OSTI)

Thermophotovoltaics (TPV) converts the radiant energy of a thermal source into electrical energy using photovoltaic cells. TPV has a number of attractive features, including: fuel versatility (nuclear, fossil, solar, etc.), quiet operation, low maintenance, low emissions, light weight, high power density, modularity, and possibility for cogeneration of heat and electricity. Some of these features are highly attractive for military applications (Navy and Army). TPV could also be used for distributed power and automotive applications wherever fuel cells, microturbines, or cogeneration are presently being considered if the efficiencies could be raised to around 30%. This proposal primarily examine approaches to improving the radiative efficiency. The ideal irradiance for the PV cell is monochromatic illumination at the bandgap. The photonic crystal approach allows for the tailoring of thermal emission spectral bandwidth at specific wavelengths of interest. The experimental realization of metallic photonic crystal structures, the optical transmission, reflection and absorption characterization of it have all been carried out in detail and will be presented next. Additionally, comprehensive models of TPV conversion has been developed and applied to the metallic photonic crystal system.

LIN, SHAWN-YU; FLEMING, JAMES G.; MORENO, JOSEPH A.

2003-03-01T23:59:59.000Z

202

Existing and proposed fuel conversion facilities. Summary. [Colorado, Montana, S. Dakota, N. Dakota, Utah, Wyoming  

SciTech Connect

This report provides a summary of existing and proposed coal conversion facilities in addition to hydroelectric plants on a state-by-state basis for the six states (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming) of EPA Region VIII. It identifies the location, facility name, number of units, operating company and other participants, plant capacity, and the fuel type for the various conversion facilities. (GRA)

1976-07-01T23:59:59.000Z

203

South Dakota Natural Gas Number of Commercial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers...

204

South Dakota Natural Gas Number of Residential Consumers (Number...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential...

205

South Dakota Natural Gas Number of Industrial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers...

206

Generative conversation tool for game writers  

Science Conference Proceedings (OSTI)

Conversation is an important part of many games, whether it is there to provide information or entertainment. In the current state of commercial game development, almost all conversation is hand-authored. Further, different authoring approaches are used ... Keywords: authoring tools, dialogue generation, game development

Christina R. Strong; Michael Mateas; Dave Grossman

2009-04-01T23:59:59.000Z

207

Heat to electricity thermoacoustic-magnetohydrodynamic conversion  

E-Print Network (OSTI)

In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

A. A. Castrejon-Pita; G. Huelsz

2006-10-12T23:59:59.000Z

208

Biomass thermal conversion research at SERI  

DOE Green Energy (OSTI)

SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

1980-09-01T23:59:59.000Z

209

1982 annual report: Biomass Thermochemical Conversion Program  

SciTech Connect

This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1983-01-01T23:59:59.000Z

210

1982 annual report: Biomass Thermochemical Conversion Program  

DOE Green Energy (OSTI)

This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1983-01-01T23:59:59.000Z

211

4. TITLE AND SUBTITLE Wind Energy Conversion System 5. FUNDING NUMBERS  

E-Print Network (OSTI)

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to

Jason G. Massey; Alexander Julian; Roberto Cristi; Author(s Jason G. Massey

2009-01-01T23:59:59.000Z

212

Catalytic conversion of light alkanes  

DOE Green Energy (OSTI)

The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

Lyons, J.E.

1992-06-30T23:59:59.000Z

213

Interdigitated photovoltaic power conversion device  

DOE Patents (OSTI)

A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

1999-01-01T23:59:59.000Z

214

Interdigitated photovoltaic power conversion device  

DOE Patents (OSTI)

A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

1999-04-27T23:59:59.000Z

215

ELECTRICAL DISTRICT NUMBER EIGHT  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL DISTRICT NUMBER EIGHT ELECTRICAL DISTRICT NUMBER EIGHT Board of Directors Reply to: Ronald Rayner C. W. Adams James D. Downing, P.E. Chairman Billy Hickman 66768 Hwy 60 Brian Turner Marvin John P.O. Box 99 Vice-Chairman Jason Pierce Salome, AZ 85348 Denton Ross Jerry Rovey Secretary James N. Warkomski ED8@HARCUVARCO.COM John Utz Gary Wood PHONE:(928) 859-3647 Treasurer FAX: (928) 859-3145 Sent via e-mail Mr. Darrick Moe, Regional Manager Western Area Power Administration Desert Southwest Region P. O. Box 6457 Phoenix, AZ 85005-6457 moe@wapa.gov; dswpwrmrk@wapa.gov Re: ED5-Palo Verde Hub Project Dear Mr. Moe, In response to the request for comments issued at the October 6 Parker-Davis Project customer th meeting, and in conjunction with comments previously submitted by the Southwest Public Power

216

Preventive Action Number:  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Preventive Action Report Planning Worksheet 11_0414 1 of 3 8 Preventive Action Report Planning Worksheet 11_0414 1 of 3 EOTA - Business Form Document Title: Preventive Action Report Planning Worksheet Document Number: F-018 Rev 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-008, Corrective/Preventive Action Notify of Changes: EOTA Employees Referenced Document(s): N/A F-018 Preventive Action Report Planning Worksheet 11_0414 2 of 3 Revision History: Rev. Description of Change 08_0613 Initial Release 09_0924 Worksheet modified to reflect External Audit recommendation for identification of "Cause for Potential Nonconformance". Minor editing changes. 11_0414 Added Preventive Action Number block to match Q-Pulse

217

Preventive Action Number:  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Corrective Action Report Planning Worksheet 11_0414 1 of 3 7 Corrective Action Report Planning Worksheet 11_0414 1 of 3 EOTA - Business Form Document Title: Corrective Action Report Planning Worksheet Document Number: F-017 Rev 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-008, Corrective/Preventive Action Notify of Changes: EOTA Employees Referenced Document(s): N/A F-017 Corrective Action Report Planning Worksheet 11_0414 2 of 3 Revision History: Rev. Description of Change 08_0613 Initial Release 11_0414 Added problem statement to first block. F-017 Corrective Action Report Planning Worksheet 11_0414 3 of 3 Corrective Action Report Planning Worksheet Corrective Action Number: Source: Details/Problem Statement: Raised By: Raised Date: Target Date:

218

Finite Neutrosophic Complex Numbers  

E-Print Network (OSTI)

In this book for the first time the authors introduce the notion of real neutrosophic complex numbers. Further the new notion of finite complex modulo integers is defined. For every $C(Z_n)$ the complex modulo integer $i_F$ is such that $2F_i = n - 1$. Several algebraic structures on $C(Z_n)$ are introduced and studied. Further the notion of complex neutrosophic modulo integers is introduced. Vector spaces and linear algebras are constructed using these neutrosophic complex modulo integers.

W. B. Vasantha Kandasamy; Florentin Smarandache

2011-11-01T23:59:59.000Z

219

Superacid catalysis of light hydrocarbon conversion. Sixth quarterly report, January 1, 1995--March 31, 1995  

DOE Green Energy (OSTI)

Iron- and Manganese-promoted sulfated zirconia is a catalyst for the conversion of propane, but the rate of conversion of propane is much less than the rate of conversion of butane. Whereas this catalyst appears to be a good candidate for practical, industrial conversion of butane, it appears to lack sufficient activity for practical conversion of propane. Perhaps more active catalysts will be useful for propane conversion. The propane conversion data reported here provide excellent insights into the chemistry of the catalytic conversions; they are consistent with the inference that the catalyst is a superacid and that the chemistry is analogous to. that determined in superacid solutions by G.A. Olah, who was awarded the most recent Nobel Prize in chemistry for his work. The catalyst was tested for conversion of propane at 1 bar, 200--300{degrees}C and propane partial pressures in the range of 0.01--0.05 bar. At 250{degrees}C, catalysis was demonstrated, as the number of propane molecules converted was at least 1 per sulfate group after 16 days of operation in a continues flow reactor. Propane was converted in high yield to butanes, but the conversions were low, for example being only a fraction of a percent at a space velocity of 9.1 {times} 10{sup {minus}7} mol(g of catalysis {center_dot} s) and 250{degrees}C. Coke formation was rapid. The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

Gates, B.C. [California Univ., Davis, CA (United States). Dept. of Chemical Engineering and Materials Science

1995-08-01T23:59:59.000Z

220

Utilizing Nature's Designs for Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Nature's Designs for Solar Energy Conversion Nature's Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature... ...build with chemistry ANL Photosynthesis Group Fundamental Studies  Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles  Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy Multi-molecular: Artificial systems for H 2 photocatalysis  Limitations:  Large solvent, molecular dependencies  Diffusion  Lifetimes  Uncontrolled back-reactions  Most PS contain noble metals  Organic solvent/high proton

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Conversion & Storage Program, 1993 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1994-06-01T23:59:59.000Z

222

Energy conversion & storage program. 1994 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1995-04-01T23:59:59.000Z

223

Construction Project Number  

NLE Websites -- All DOE Office Websites (Extended Search)

North Execution - (2009 - 2011) North Execution - (2009 - 2011) Construction Project Number 2009 2010 2011 Project Description ANMLPL 0001C 76,675.32 - - Animas-Laplata circuit breaker and power rights CRGRFL 0001C - - 7,177.09 Craig Rifle Bay and transfer bay upgrade to 2000 amps; / Convert CRG RFL to 345 kV out of Bears Ear Sub FGE 0019C - - 39,207.86 Replace 69/25kV transformer KX2A at Flaming Gorge FGE 0020C - - 52,097.12 Flaming Gorge: Replace failed KW2A transformer HDN 0069C 16,638.52 208,893.46 3,704,578.33 Replace failed transformer with KZ1A 250 MVA 230/138kv

224

KPA Activity Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

supports CMM-SW Level 2 supports CMM-SW Level 2 Mapping of the DOE Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM- SW) level 2. Date: September 2002 Page 1 KPA Activity Number KPA Activity SEM Section SME Work Product SQSE Web Site http://cio.doe.gov/sqse REQUIREMENTS MANAGEMENT RM-1 The software engineering group reviews the allocated requirements before they are incorporated in the software project. Chapter 3.0 * Develop High-Level Project Requirements Chapter 4.0 * Establish Functional Baseline * Project Plan * Requirements Specification Document * Requirements Management awareness * Defining Project Requirements RM-2 The software engineering group uses the allocated requirements as the basis for

225

Who is Responsible for the DUF6 Conversion Facility EISs?  

NLE Websites -- All DOE Office Websites (Extended Search)

Who is Responsible Who is Responsible Who Is Responsible for the Depleted UF6 Conversion Facility EISs? The U.S. DOE Office of Environmental Management is preparing the two Depleted UF6 Conversion Facility EISs, with assistance from Argonne National Laboratory. Responsibilities The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for preparation of the Depleted UF6 Conversion EIS. Argonne National Laboratory is assisting EM in preparation of the EIS. About the Office of Environmental Management (EM) In 1989, the Department of Energy created the Office of Environmental Management (EM) to mitigate the risks and hazards posed by the legacy of nuclear weapons production and research. Although the nation continues to maintain an arsenal of nuclear weapons, as well as some production capability, the United States has embarked on new missions. The most ambitious and far ranging of these missions is dealing with the environmental legacy of the Cold War. Like most industrial and manufacturing operations, the nuclear complex has generated waste, pollution, and contamination. However, many problems posed by its operations are unique. They include unprecedented amounts of contaminated waste, water, and soil, and a vast number of contaminated structures that will remain radioactive for thousands of years.

226

Paducah DUF6 Conversion Final EIS - Appendix G: Consultation Letters  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX G: CONSULTATION LETTERS Consultation Letters G-2 Paducah DUF 6 Conversion Final EIS Consultation Letters G-3 Paducah DUF 6 Conversion Final EIS U.S. DEPARTMENT OF ENERGY LETTERS TO STATE AGENCIES AND RECOGNIZED NATIVE AMERICAN GROUPS Consultation Letters G-4 Paducah DUF 6 Conversion Final EIS Consultation Letters G-5 Paducah DUF 6 Conversion Final EIS Consultation Letters G-6 Paducah DUF 6 Conversion Final EIS Consultation Letters G-7 Paducah DUF 6 Conversion Final EIS Consultation Letters G-8 Paducah DUF 6 Conversion Final EIS Consultation Letters G-9 Paducah DUF 6 Conversion Final EIS Consultation Letters G-10 Paducah DUF 6 Conversion Final EIS Consultation Letters G-11 Paducah DUF 6 Conversion Final EIS Consultation Letters G-12 Paducah DUF 6 Conversion Final EIS

227

Health Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Conversion A discussion of health risks associated with conversion of depleted UF6 to another chemical form. General Health Risks of Conversion The potential environmental impacts, including potential health risks, associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This section discusses in general the types of health risks associated with the conversion process. The conversion of depleted UF6 to another chemical form will be done in an industrial facility dedicated to the conversion process. Conversion will involve the handling of depleted UF6 cylinders. Hazardous chemicals, such

228

Helical rays in two-dimensional resonant wave conversion  

E-Print Network (OSTI)

2] D.G. Swanson, Theory of Mode Conversion and Tunneling inin two-dimensional resonant wave conversion Allan N. KaufmanThe process of resonant wave conversion (often called linear

Kaufman, Allan N.; Tracy, Eugene R.; Brizard, Alain J.

2004-01-01T23:59:59.000Z

229

NREL: Biomass Research - Biochemical Conversion Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Projects Biochemical Conversion Projects A photo of a woman looking at the underside of a clear plastic tray. The tray has a grid of small holes to hold sample tubes. An NREL researcher examines a sample tray used in the BioScreen C, an instrument used to monitor the growth of microorganisms under different conditions. NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting these biomass intermediates using biocatalysts (microorganisms including yeast and bacteria) Processing the fermentation product to yield fuel-grade ethanol and other fuels. Among the current biochemical conversion RD&D projects at NREL are: Pretreatment and Enzymatic Hydrolysis

230

Depleted UF6 Conversion facility EIS Topics  

NLE Websites -- All DOE Office Websites (Extended Search)

Topics Topics Depleted UF6 Conversion Facility EIS Topics A listing of topics included in the Depleted UF6 Conversion Facility EISs. DOE addressed the following environmental issues when assessing the potential environmental impacts of the alternatives in the two site-specific EISs. DOE solicited comment from the Federal agencies, Native American tribes, state and local governments, and the general public on these and any other issues as part of the public scoping process: Potential impacts on health from DUF6 conversion activities, including potential impacts to workers and the public from exposure to radiation and chemicals during routine and accident conditions for the construction, operation, maintenance, and decontamination and decommissioning of DUF6 conversion facilities.

231

Atlantic Biomass Conversions Inc | Open Energy Information  

Open Energy Info (EERE)

Conversions Inc Conversions Inc Jump to: navigation, search Name Atlantic Biomass Conversions Inc Place Frederick, Maryland Sector Biomass Product Atlantic Biomass Conversions is working on a system and a genetically modified bacteria to convert sugar beet pulp waste into methanol. Coordinates 45.836395°, -98.507249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.836395,"lon":-98.507249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Automatic recognition of personality in conversation  

Science Conference Proceedings (OSTI)

The identification of personality by automatic analysis of conversation has many applications in natural language processing, from leader identification in meetings to partner matching on dating websites. We automatically train models of the main five ...

François Mairesse; Marilyn Walker

2006-06-01T23:59:59.000Z

233

Radio frequency dc-dc power conversion  

E-Print Network (OSTI)

THIS THESIS addresses the development of system architectures and circuit topologies for dc-dc power conversion at very high frequencies. The systems architectures that are developed are structured to overcome limitations ...

Rivas, Juan, 1976-

2007-01-01T23:59:59.000Z

234

Energy Conversion Materials Through Chemical Synthesis Route  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Materials Through Chemical Synthesis Route Speaker(s): Lionel Vayssieres Date: April 27, 2004 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Samuel Mao The...

235

Practical Conversion of Pressure to Depth  

Science Conference Proceedings (OSTI)

A conversion formula between pressure and depth is obtained employing the recently adopted equation of state for seawater (Millero et al., 1980). Assuming the ocean of uniform salinity 35 NSU and temperature 0°C the following equation is proposed,...

Peter M. Saunders

1981-04-01T23:59:59.000Z

236

Catalytic Conversion Probabilities for Bipartite Pure States  

E-Print Network (OSTI)

For two given bipartite-entangled pure states, an expression is obtained for the least upper bound of conversion probabilities using catalysis. The attainability of the upper bound can also be decided if that bound is less than one.

S. Turgut

2007-06-25T23:59:59.000Z

237

Assessment of ocean thermal energy conversion  

E-Print Network (OSTI)

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

238

Hybrid staging of geothermal energy conversion process  

DOE Green Energy (OSTI)

Progress in the demonstration of the feasibility of hybrid staging in geothermal energy conversion is described, particularly processes involving the Lysholm engine. The performance limitations of the Lysholm engine were studied. (MHR)

Steidel, R.F. Jr.

1984-05-07T23:59:59.000Z

239

Tidal Conversion at a Submarine Ridge  

Science Conference Proceedings (OSTI)

The radiative flux of internal wave energy (the “tidal conversion”) powered by the oscillating flow of a uniformly stratified fluid over a two-dimensional submarine ridge is computed using an integral-equation method. The problem is characterized ...

François Pétrélis; Stefan Llewellyn Smith; W. R. Young

2006-06-01T23:59:59.000Z

240

NREL: Biomass Research - Thermochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Capabilities Conversion Capabilities NREL researchers are developing gasification and pyrolysis processes for the cost-effective thermochemical conversion of biomass to biofuels. Gasification-heating biomass with about one-third of the oxygen necessary for complete combustion-produces a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis-heating biomass in the absence of oxygen-produces a liquid bio-oil. Both syngas and bio-oil can be used directly or can be converted to clean fuels and other valuable chemicals. Areas of emphasis in NREL's thermochemical conversion R&D are: Gasification and fuel synthesis R&D Pyrolysis R&D Thermochemical process integration. Gasification and Fuel Synthesis R&D Get the Adobe Flash Player to see this video.

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Utah Natural Gas Number of Commercial Consumers (Number of Elements...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

242

Utah Natural Gas Number of Industrial Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

243

Utah Natural Gas Number of Residential Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

244

Illinois Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

245

Wisconsin Natural Gas Number of Industrial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

246

Wisconsin Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

247

Wisconsin Natural Gas Number of Commercial Consumers (Number...  

Annual Energy Outlook 2012 (EIA)

Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

248

California Natural Gas Number of Industrial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

249

California Natural Gas Number of Commercial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

250

Ohio Natural Gas Number of Commercial Consumers (Number of Elements...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

251

Ohio Natural Gas Number of Residential Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

252

Ohio Natural Gas Number of Industrial Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

253

Colorado Natural Gas Number of Industrial Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

254

Colorado Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

255

Colorado Natural Gas Number of Commercial Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

256

Vermont Natural Gas Number of Residential Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

257

Vermont Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

258

Vermont Natural Gas Number of Commercial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

259

Michigan Natural Gas Number of Residential Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

260

Michigan Natural Gas Number of Industrial Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Idaho Natural Gas Number of Industrial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

262

Idaho Natural Gas Number of Commercial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

263

Idaho Natural Gas Number of Residential Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

264

Connecticut Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

265

Hawaii Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

266

Kentucky Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

267

Tennessee Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

268

Maryland Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

269

Louisiana Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

270

Alabama Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

271

Oklahoma Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

272

Alaska Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

273

Kansas Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

274

Illinois Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

275

Maine Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

276

Florida Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

277

Iowa Natural Gas Number of Residential Consumers (Number of Elements...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

278

Georgia Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

279

Arkansas Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

280

Missouri Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Montana Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

282

Nevada Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

283

Mississippi Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

284

Arizona Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

285

Pennsylvania Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

286

Nebraska Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

287

Minnesota Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

288

Massachusetts Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

289

Delaware Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

290

New Mexico Natural Gas Number of Industrial Consumers (Number...  

Annual Energy Outlook 2012 (EIA)

Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

291

New Mexico Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

(Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

292

New Mexico Natural Gas Number of Commercial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

(Number of Elements) New Mexico Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's...

293

Texas Natural Gas Number of Commercial Consumers (Number of Elements...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

294

Texas Natural Gas Number of Residential Consumers (Number of...  

Annual Energy Outlook 2012 (EIA)

Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

295

Surface spontaneous parametric down-conversion  

E-Print Network (OSTI)

Surface spontaneous parametric down-conversion is predicted as a consequence of continuity requirements for electric- and magnetic-field amplitudes at a discontinuity of chi2 nonlinearity. A generalization of the usual two-photon spectral amplitude is suggested to describe this effect. Examples of nonlinear layered structures and periodically-poled nonlinear crystals show that surface contributions to spontaneous down-conversion can be important.

Jan Perina Jr; Antonin Luks; Ondrej Haderka; Michael Scalora

2009-07-21T23:59:59.000Z

296

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Conversion

297

The Southern California Conversion Technology Demonstration Project | Open  

Open Energy Info (EERE)

The Southern California Conversion Technology Demonstration Project The Southern California Conversion Technology Demonstration Project Jump to: navigation, search Tool Summary Name: The Southern California Conversion Technology Demonstration Project Agency/Company /Organization: The Southern California Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website Website: www.socalconversion.org/resources.html Cost: Free The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L. A. County. Overview The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L.

298

Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Conversion Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Conversion Definitions

299

Production and Handling Slide 18: Conversion of Yellow Cake to...  

NLE Websites -- All DOE Office Websites (Extended Search)

last step of the conversion process involves the chemical conversion of uranium tetrafluoride UF4 to uranium hexafluoride UF6 using fluorine F2. Slide 1...

300

Changes related to "Coal Conversion Facility Privilege Tax Exemptions...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal Conversion Facility Privilege Tax Exemptions (North Dakota)" Coal Conversion...

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Pages that link to "Coal Conversion Facility Privilege Tax Exemptions...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal Conversion Facility Privilege Tax Exemptions (North Dakota)" Coal Conversion...

302

CRAD, Safety Basis - Y-12 Enriched Uranium Operations Oxide Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Safety Basis - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to...

303

CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE...

304

CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G...

305

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

306

Focus Area 2 - Biomass Deconstruction and Conversion : BioEnergy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deconstruction and Conversion BESC research in biomass deconstruction and conversion targets CBP by studying model organisms and thermophilic anaerobes to understand novel...

307

Method for the Photocatalytic Conversion of Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

the Photocatalytic Conversion of Gas Hydrates Opportunity Research is currently active on the patented technology "Method for the Photocatalytic Conversion of Gas Hydrates." The...

308

University of Delaware Institute of Energy Conversion | Open...  

Open Energy Info (EERE)

Energy Conversion Jump to: navigation, search Name University of Delaware Institute of Energy Conversion Place Delaware Product String representation "University rese ... dium tin...

309

U-058: Apache Struts Conversion Error OGNL Expression Injection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Apache Struts Conversion Error OGNL Expression Injection Vulnerability U-058: Apache Struts Conversion Error OGNL Expression Injection Vulnerability December 12, 2011 - 9:00am...

310

Conversion of Strontium Sulfate to Strontium Oxalate in Solutions ...  

Science Conference Proceedings (OSTI)

The effect of stirring speed, ammonium oxalate concentration, particle size and temperature on the conversion rate were investigated. During the conversion ...

311

Strategy for conversion of CO2 isotopic measurements to delta ...  

Science Conference Proceedings (OSTI)

... The conversion algorithm described here may utilize user-selected values or the ... The conversions to ?13C and ?18O values are then performed via ...

2013-10-28T23:59:59.000Z

312

North Dakota Energy Conversion and Transmission Facility Siting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) < Back Eligibility...

313

: gov.nist.nlpir.irf.conversion Class Hierarchy  

Science Conference Proceedings (OSTI)

Hierarchy For Package gov.nist.nlpir.irf.conversion. ... Class Hierarchy. class java.lang.Object: class gov.nist.nlpir.irf.conversion.Ascii2HtmlConverter; ...

314

Method for conversion of .beta.-hydroxy carbonyl compounds ...  

A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated ...

315

Portsmouth DUF6 Conversion Final EIS - Appendix H: Contractor...  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF 6 Conversion Final EIS APPENDIX H: CONTRACTOR DISCLOSURE STATEMENT Disclosure Statement H-2 Portsmouth DUF 6 Conversion Final EIS Disclosure Statement H-3 Portsmouth...

316

BPD Conversion in a Thin SiC Buffer Layer  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Power Electronics, Power Conditioning, and Power Conversion. Presentation Title, BPD Conversion in a Thin SiC Buffer ...

317

CONVERSION OF DOE TECHNICAL STANDARDS TO NON-GOVERNMENT STANDARDS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONVERSION OF DOE TECHNICAL STANDARDS TO NON-GOVERNMENT STANDARDS CONVERSION OF DOE TECHNICAL STANDARDS TO NON-GOVERNMENT STANDARDS Purpose This procedure provides guidance on the...

318

EIS-0045: Coal Conversion Program, Continental Forest Industries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

45: Coal Conversion Program, Continental Forest Industries, Combustors 1,2, and 3, Port Wentworth, Chatham County, Georgia EIS-0045: Coal Conversion Program, Continental Forest...

319

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name Penrose Landfill Gas Conversion LLC Place Los Angeles, California Product Owner of landfill gas plant....

320

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

energy conversion systems ..on thermal energy conversion systems As energy demandsefficient energy conversion in power systems," in Thermal

Ho, Tony

2012-01-01T23:59:59.000Z

322

Alternative Fuels Data Center: Natural Gas Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Laws & Incentives Natural Gas Vehicle Conversions Related Information Conversion Basics

323

Number: 305 Most Dangerous Vehicles ...  

Science Conference Proceedings (OSTI)

... top> Number: 314 Marine Vegetation Description: Commercial harvesting of marine vegetation such as algae, seaweed and ...

2002-12-12T23:59:59.000Z

324

Modeling the effects of shear conversion on low grazing angle bottom penetration.  

Science Conference Proceedings (OSTI)

Modeling shear conversion with finite?element/finite?difference codes at a kilohertz and above is difficult due to the number of computational elements needed for such small wavelengths. Typically six to ten nodes per wavelength are required to attain good accuracy. Thus

Stanley A. Chin?Bing; Joseph E. Murphy

1996-01-01T23:59:59.000Z

325

Modeling facial expression of uncertainty in conversational animation  

Science Conference Proceedings (OSTI)

Building animated conversational agents requires developing a fine-grained analysis of the motions and meanings available to interlocutors in face-to-face conversation and implementing strategies for using these motions and meanings to communicate effectively. ... Keywords: embodied conversational agents, face-to-face conversation, facial displays, uncertainty

Matthew Stone; Insuk Oh

2006-04-01T23:59:59.000Z

326

The Effects of Ingot Composition and Conversion on the Mechanical ...  

Science Conference Proceedings (OSTI)

THE EFFECTS OF INGOT COMPOSITION AND CONVERSION ON THE MECHANICAL PROPERTIES AND. MICROSTRUCTURAL RESPONSE OF GTD-

327

Graphene to Graphane: Novel Electrochemical Conversion  

E-Print Network (OSTI)

A novel electrochemical means to generate atomic hydrogen, simplifying the synthesis and controllability of graphane formation on graphene is presented. High quality, vacuum grown epitaxial graphene (EG) was used as starting material for graphane conversion. A home-built electrochemical cell with Pt wire and exposed graphene as the anode and cathode, respectively, was used to attract H+ ions to react with the exposed graphene. Cyclic voltammetry of the cell revealed the potential of the conversion reaction as well as oxidation and reduction peaks, suggesting the possibility of electrochemically reversible hydrogenation. A sharp increase in D peak in the Raman spectra of EG, increase of D/G ratio, introduction of a peak at ~2930 cm-1 and respective peak shifts as well as a sharp increase in resistance showed the successful hydrogenation of EG. This conversion was distinguished from lattice damage by thermal reversal back to graphene at 1000{\\deg}C.

Daniels, Kevin M; Zhang, R; Chowdhury, I; Obe, A; Weidner, J; Williams, C; Sudarshan, T S; Chandrashekhar, MVS

2010-01-01T23:59:59.000Z

328

Energy conversion & storage program. 1995 annual report  

DOE Green Energy (OSTI)

The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

Cairns, E.J.

1996-06-01T23:59:59.000Z

329

Paducah DUF6 Conversion Final EIS - Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS SUMMARY 1 S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the Federal Register (FR) on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF 6 conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in

330

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Conversion Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

331

Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Electric Aftermarket Electric Vehicle (EV) Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on AddThis.com... More in this section...

332

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion Registration to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on AddThis.com... More in this section... Federal State

333

Environmental Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Conversion A general discussion of the potential environmental impacts associated with depleted UF6 conversion activities. Impacts Analyzed in the PEIS The potential environmental impacts associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This page discusses in general the types of impacts that might be associated with the conversion process based on the PEIS analysis. The PEIS evaluated the potential environmental impacts for representative conversion facilities. Conversion to uranium oxide and uranium metal were considered. Potential impacts were evaluated for a representative site, and

334

Lower Hybrid to Whistler Wave Conversion  

Science Conference Proceedings (OSTI)

In this presentation we discuss recent work concerning the conversion of whistler waves to lower hybrid waves (as well as the inverse process). These efforts have been motivated by the issue of attenuation of upward propagating whistler waves in the ionosphere generated by VLF transmitters on the ground, i.e., the 'Starks 20 db' problem, which affects the lifetimes of energetic electrons trapped in the geomagnetic field at low magnetic altitude (L). We discuss recent fluid and kinetic plasma simulations as well as ongoing experiments at UCLA to quantify linear and nonlinear mode conversion of lower hybrid to whistler waves.

Winske, Dan [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

335

Tunable Up-Conversion Photon Detector  

E-Print Network (OSTI)

We introduce a simple approach for a tunable up-conversion detector. This scheme is relevant for both single photon detection or anywhere where low light levels at telecom wavelengths need to be detected with a high degree of temporal resolution or where high count rates are desired. A system combining a periodically poled Lithium niobate waveguide for the nonlinear wavelength conversion and a low jitter Silicon avalanche photodiode are used in conjunction with a tunable pump source. We report more than a ten-fold increase in the detectable bandwidth using this tuning scheme.

R. T. Thew; H. Zbinden; N. Gisin

2008-07-22T23:59:59.000Z

336

Atom-molecule conversion with particle losses  

E-Print Network (OSTI)

Based on the mean-field approximation and the phase space analysis, we study the dynamics of an atom-molecule conversion system subject to particle loss. Starting from the many-body dynamics described by a master equation, an effective nonlinear Schr\\"odinger equation is introduced. The classical phase space is then specified and classified by fixed points. The boundary, which separate different dynamical regimes have been calculated and discussed. The effect of particle loss on the conversion efficiency and the self-trapping is explored.

B. Cui; L. C. Wang; X. X. Yi

2011-03-01T23:59:59.000Z

337

CHANGE OF NAME TIAA Annuity Number CREF Annuity Number TIAA Policy Number  

E-Print Network (OSTI)

CHANGE OF NAME TIAA Annuity Number CREF Annuity Number TIAA Policy Number Social Security Number and only use black or dark blue ink. Return this form to: TIAA-CREF P.O. Box 1264 Charlotte, NC 28201 NOTE City State Zip Code For TIAA-CREF USE ONLY Accepted -- Teachers Insurance and Annuity Association

Snider, Barry B.

338

Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity  

DOE Green Energy (OSTI)

We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

2001-03-07T23:59:59.000Z

339

The Distribution of Ramsey Numbers  

E-Print Network (OSTI)

We prove that the number of integers in the interval [0,x] that are non-trivial Ramsey numbers r(k,n) (3 order of magnitude (x ln x)**(1/2).

Clark, Lane

2013-01-01T23:59:59.000Z

340

Number  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NATIONAL ENERGY POLICY NATIONAL ENERGY POLICY STATUS REPORT on Implementation of NEP Recommendations January, 2005 1 NEP RECOMMENDATIONS: STATUS OF IMPLEMENTATION Chapter 1 1. That the President issue an Executive Order to direct all federal agencies to include in any regulatory action that could significantly and adversely affect energy supplies, distribution, or use, a detailed statement of energy effects and alternatives in submissions to the Office of Management and Budget of proposed regulations covered and all notices of proposed regulations published in the Federal Register. STATUS: IMPLEMENTED. In May 2001, President Bush issued Executive Order 13211 requiring federal agencies to include, in any regulatory action that could significantly and

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Number: 1394 Description: In what ...  

Science Conference Proceedings (OSTI)

... Number: 1752 Description: When was the Oklahoma City bombing? ... name of the plane that dropped the Atomic Bomb on Hiroshima? ...

2003-02-12T23:59:59.000Z

342

Biological conversion of synthesis gas culture development  

DOE Green Energy (OSTI)

Research continues on the conversion of synthesis by shift reactions involving bacteria. Topics discussed here include: biological water gas shift, sulfur gas utilization, experimental screening procedures, water gas shift studies, H{sub 2}S removal studies, COS degradation by selected CO-utilizing bacteria, and indirect COS utilization by Chlorobia. (VC)

Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

1992-03-01T23:59:59.000Z

343

Columbia University Libraries Preservation & Digital Conversion Division  

E-Print Network (OSTI)

Columbia University Libraries Preservation & Digital Conversion Division Disaster Response Manual for Care of Library Materials 2008 Edition #12;CUL Disaster Response Manual 2008 2 TABLE OF CONTENTS page. Disaster Response Coordinators List 31 B. Disaster Supply Center List 32 C. Vendor List 33 D. LSO

Salzman, Daniel

344

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network (OSTI)

Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

Dai, Pengcheng

345

Calcine Conversion Facility alternative concepts engineering studies  

SciTech Connect

The purpose of the engineering study reported is to develop conceptual designs for two alternative facilities for the conversion of high level waste calcine to high level glass. The objectives and design bases of the two concepts (CCF/RSSF and CCF/FRP) are described. No recommendation of one concept in preference to the other is given. (LK)

1975-02-01T23:59:59.000Z

346

DIRECT ENERGY CONVERSION DEVICES. A Literature Search  

SciTech Connect

A bibliography comprising 208 unclassified references is presented on nuclear direct energy conversion devices. Major emphasis is placed on auxiliary power devices suitable for use in satellites including reports on nuclear batteries, thermoelectric cells, thermionic conversron and aspects of the SNAP program. (J.R.D.)

Raleigh, H.D. comp.

1961-03-01T23:59:59.000Z

347

Ris Energy Report 2 Bioenergy conversion  

E-Print Network (OSTI)

Electricity production by SOFC fuel cells is one road to obtain a high efficiency in electricity production. In order to meet this demand in a sustainable way, gasifica- tion and SOFC fuel cell conversion systems gasfication gas has the potential to be used directly in SOFC cells or alternatively steam- reformed

348

On the Energy Conversion during Geostrophic Adjustment  

Science Conference Proceedings (OSTI)

It is found that for a continuously stratified fluid which remains so during the geostrophic adjustment, the energy conversion ratio ? (??KE/?PE) is ½, in contrast to the value of ? for a two-layer fluid. Since the two-layer fluid is an ...

Hsien Wang Ou

1986-12-01T23:59:59.000Z

349

Thermochemical Conversion Pilot Plant (Fact Sheet)  

DOE Green Energy (OSTI)

The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

Not Available

2013-06-01T23:59:59.000Z

350

Biomass Thermochemical Conversion Program. 1984 annual report  

DOE Green Energy (OSTI)

The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1985-01-01T23:59:59.000Z

351

Data Compression with Prime Numbers  

E-Print Network (OSTI)

A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

Gordon Chalmers

2005-11-16T23:59:59.000Z

352

DIEGO FAZI Mailing address: Solar Energy Conversion Group Chemical Sciences & Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

DIEGO FAZI DIEGO FAZI Mailing address: Solar Energy Conversion Group Chemical Sciences & Engineering Division Bldg 200, Room E105 Argonne National Laboratory 9700 South Cass Ave. Argonne IL 60439-4831 E-mail addresses: dfazi@anl.gov Office Number: 630-252-5796 Fax: 630-252-9289 Personal Pages: http://faculty.wcas.northwestern.edu/diego-fazi/ http://www.fazid.org Research Interests Diego Fazi comes from a theoretical Physics background and he performed research in gravitational-wave astronomy within the project LIGO from 2005 to 2012. In October 2012 Dr. Fazi joined the CSE division at Argonne as a postdoctoral appointee in the Solar Conversion

353

Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light  

SciTech Connect

It is revealed that the generation of a coherent wave by frequency conversion of incoherent waves is a characteristic feature of three-wave interaction in a nonlinear medium when angular dispersion of input waves is properly chosen. In this case the combining action of the pairs of spectral components of incoherent waves may result in the cumulative driving of a single plane monochromatic wave in up-conversion and down-conversion processes. As a fundamental result we point out an enhancement of the spectral radiance of the generated wave in comparison with incoherent waves.

Piskarskas, A.; Pyragaite, V.; Stabinis, A. [Department of Quantum Electronics, Vilnius University, Sauletekio Avenue 9, Building 3, LT-10222 Vilnius (Lithuania)

2010-11-15T23:59:59.000Z

354

Survey and conceptual flow sheets for coal conversion plant handling-preparation and ash/slag removal operations  

Science Conference Proceedings (OSTI)

This study was undertaken at the request of the Fossil Fuel Processing Division of the Department of Energy. The report includes a compilation of conceptual flow sheets, including major equipment lists, and the results of an availability survey of potential suppliers of equipment associated with the coal and ash/slag operations that will be required by future large coal conversion plant complexes. Conversion plant flow sheet operations and related equipment requirements were based on two representative bituminous coals - Pittsburgh and Kentucky No. 9 - and on nine coal conversion processes. It appears that almost all coal handling and preparation and ash/slag removal equipment covered by this survey, with the exception of some coal comminution equipment, either is on hand or can readily be fabricated to meet coal conversion plant capacity requirements of up to 50,000 short tons per day. Equipment capable of handling even larger capacities can be developed. This approach appears to be unjustified, however, because in many cases a reasonable or optimum number of trains of equipment must be considered when designing a conversion plant complex. The actual number of trains of equipment selected will be influenced by the total requied capacity of the complex, the minimum on-line capacity that can be tolerated in case of equipment failure, reliability of specific equipment types, and the number of reactors and related feed injection stations needed for the specific conversion process.

Zapp, F.C.; Thomas, O.W.; Silverman, M.D.; Dyslin, D.A.; Holmes, J.M.

1980-03-01T23:59:59.000Z

355

Java PathFinder A Translator from Java to Promela  

E-Print Network (OSTI)

nterrupts, and perhaps most importantly: thread operations. Among major concepts not translated are: packages, method overloading and overriding, method recursion, strings, and floating point numbers. Finally, the class library is not translated. References

Klaus Havelund

1999-01-01T23:59:59.000Z

356

SciPy IPython IPython:  

NLE Websites -- All DOE Office Websites (Extended Search)

SciPy SciPy IPython IPython: modern tools for interactive & web-enabled scientific computing Fernando Pérez http://fperez.org, @fperez_org Fernando.Perez@berkeley.edu Helen Wills Neuroscience Institute, UC Berkeley NERSC User Day, LBL, Berkeley, Feb 13, 2013 SciPy IPython Outline 1 Scientific Python 2 IPython: Interactive Python FP (UC Berkeley) IPython 2/13/13 2 / 21 Beyond (Floating Point) Number Crunching Hardware floating point Arbitrary precision integers Rationals Interval arithmetic Symbolic manipulation FORTRAN Extended precision floating point Text processing Databases Graphical user interfaces Web interfaces

357

Alternative fuel information: Facts about CNG and LPG conversion  

DOE Green Energy (OSTI)

As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

O`Connor, K.

1994-06-01T23:59:59.000Z

358

Alternative Fuels Data Center: Alternative Fuel School Bus Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Conversion Research to someone by E-mail School Bus Conversion Research to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Google Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Delicious Rank Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel School Bus Conversion Research

359

Novel Nuclear Powered Photocatalytic Energy Conversion  

DOE Green Energy (OSTI)

The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.

White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

2005-08-29T23:59:59.000Z

360

OPTIMAL POWER DISPATCH AND CONVERSION IN SYSTEMS WITH MULTIPLE ENERGY CARRIERS  

E-Print Network (OSTI)

This paper introduces a general optimization approach for power dispatch and conversion in power systems that include multiple energy carriers such as electricity, natural gas, and district heating. The classical Economic Dispatch method is modified in order to account for certain system properties, such as the possibility of conversion between the different energy carriers, or local overproduction and power feedback to the grid. In this work both a system model as well as an optimization approach are developed which are suitable for the integration of an arbitrary number of energy carriers. Analytical results show how the optimal conversion of power affects the marginal prices related to the different energy carriers. Finally the proposed optimization procedure is demonstrated in numerical examples.

Martin Geidl; Göran Andersson

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths  

E-Print Network (OSTI)

We report an experiment demonstrating quantum frequency conversion of weak light pulses compatible with atomic quantum memories to telecommunication wavelengths. We use a PPLN nonlinear waveguide to convert weak coherent states at the single photon level with a duration of 30ns from a wavelength of 780nm to 1552nm. We measure a maximal waveguide internal (external) conversion efficiency eta_int = 0.41 (eta_ext = 0.25), and we show that the signal to noise ratio (SNR) is good enough to reduce the input photon number below 1. In addition, we show that the noise generated by the pump beam in the crystal is proportional to the spectral bandwidth of the device, suggesting that narrower filtering could significantly increase the SNR. Finally, we demonstrate that the quantum frequency converter can operate in the quantum regime by converting a time-bin qubit and measuring the qubit fidelity after conversion.

Xavier Fernandez-Gonzalvo; Giacomo Corrielli; Boris Albrecht; Marcelli Grimau; Matteo Cristiani; Hugues de Riedmatten

2013-08-05T23:59:59.000Z

362

Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production  

SciTech Connect

Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

Hemme, Christopher [University of Oklahoma; Mouttaki, Housna [University of Oklahoma; Lee, Yong-Jin [University of Oklahoma, Norman; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; He, Zhili [University of Oklahoma; Wu, Liyou [University of Oklahoma, Norman; Van Nostrand, Joy [University of Oklahoma, Norman; Henrissat, Bernard [Universite d' Aix-Marseille I & II; HE, Qiang [ORNL; Lawson, Paul A. [University of Oklahoma, Norman; Tanner, Ralph S. [University of Oklahoma, Norman; Lynd, Lee R [Thayer School of Engineering at Dartmouth; Wiegel, Juergen [University of Georgia, Athens, GA; Fields, Dr. Matthew Wayne [Montana State University; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Schadt, Christopher Warren [ORNL; Stevenson, Bradley S. [University of Oklahoma, Norman; McInerney, Michael J. [University of Oklahoma, Norman; Yang, Yunfeng [ORNL; Dong, Hailiang [Miami University, Oxford, OH; Xing, Defeng [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ding, Shi-You [National Energy Renewable Laboratory; Himmel, Michael E [National Renewable Energy Laboratory (NREL); Taghavi, Safiyh [Brookhaven National Laboratory (BNL)/U.S. Department of Energy; Van Der Lelie, Daniel [Brookhaven National Laboratory (BNL); Rubin, Edward M. [U.S. Department of Energy, Joint Genome Institute; Zhou, Jizhong [University of Oklahoma

2010-01-01T23:59:59.000Z

363

Paducah DUF6 Conversion Final EIS - Chapter 9: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS 9 GLOSSARY Accident: An unplanned sequence of events resulting in undesirable consequences, such as the release of radioactive or hazardous material to the environment. Accident consequence assessment: An assessment of the impacts following the occurrence of an accident, independent of the probability of that accident. The environmental impact statement (EIS) provides estimates of the consequences of a number of possible accidents, ranging from those with low probability (rare) to those with relatively high probability (frequent). Accident frequency: The likelihood that a specific accident will occur, that is, the probability of occurrence. If an accident is estimated to happen once every 50 years, the accident frequency is generally reported as

364

Portsmouth DUF6 Conversion Final EIS - Chapter 9: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 9 GLOSSARY Accident: An unplanned sequence of events resulting in undesirable consequences, such as the release of radioactive or hazardous material to the environment. Accident consequence assessment: An assessment of the impacts following the occurrence of an accident, independent of the probability of that accident. The environmental impact statement (EIS) provides estimates of the consequences of a number of possible accidents, ranging from those with low probability (rare) to those with relatively high probability (frequent). Accident frequency: The likelihood that a specific accident will occur, that is, the probability of occurrence. If an accident is estimated to happen once every 50 years, the accident frequency is generally reported as

365

Portsmouth DUF6 Conversion Final EIS - Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS SUMMARY 1 S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF 6 stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF 6 from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and

366

Energy Conversion Materials Through Chemical Synthesis Route  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Materials Through Chemical Synthesis Route Conversion Materials Through Chemical Synthesis Route Speaker(s): Lionel Vayssieres Date: April 27, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Samuel Mao The ability to design anisotropic nanoparticles with tailored aspect ratio and to order them into large 3-D arrays is an important challenge that scientists have to face to create functionalized nanomaterials. Our approach to control the size and shape of nanoparticles as well as the overall texture of nanoparticulate thin films is to tune their direct aqueous hydrolysis-condensation growth onto substrates by monitoring the interfacial thermodynamics of nanocrystals as well as their kinetics of heteronucleation. Growing materials at very low interfacial tension, i.e. at thermodynamically stable conditions, allows the experimental control of

367

Thermal Conversion of Methane to Acetylene  

DOE Green Energy (OSTI)

This report describes the experimental demonstration of a process for the direct thermal conversion of methane to acetylene. The process utilizes a thermal plasma heat source to dissociation products react to form a mixture of acetylene and hydrogen. The use of a supersonic expansion of the hot gas is investigated as a method of rapidly cooling (quenching) the product stream to prevent further reaction or thermal decomposition of the acetylene which can lower the overall efficiency of the process.

Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

2000-01-01T23:59:59.000Z

368

The Conversion of Waste to Energy  

E-Print Network (OSTI)

Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining the facilities. Each application requires a careful approach tailored to the installation, but some general design and economic principles do exist. Several waste to energy projects will be discussed to illustrate these principles.

John, T.; Cheek, L.

1980-01-01T23:59:59.000Z

369

Materials for coal conversion and utilization  

Science Conference Proceedings (OSTI)

The Sixth annual conference on materials for coal conversion and utilization was held October 13-15, 1981 at the National Bureau of Standards Gaithersburg, Maryland. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the Gas Research Institute and the National Bureau of Standards. Fifty-eight papers from the proceedings have been entered individually into EDB and ERA; four papers had been entered previously from other sources. (LTN)

None,

1981-01-01T23:59:59.000Z

370

Pit Disassembly and Conversion Demonstration Environmental Ass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 1998 August 1998 i TABLE OF CONTENTS 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Related National Environmental Policy Act Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.0 PURPOSE AND NEED FOR ACTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Purpose and Need for Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.0 PROPOSED PIT DISASSEMBLY AND CONVERSION DEMONSTRATION . . . . . . . . . . . . . . . . 6 4.0 NO ACTION ALTERNATIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.0 AFFECTED ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1 History and Current Mission of Los Alamos National Laboratory

371

Efficient quantum computing using coherent photon conversion  

E-Print Network (OSTI)

Single photons provide excellent quantum information carriers, but current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed single photons, while linear-optics gates are inherently probabilistic. Here, we introduce a deterministic scheme for photonic quantum information. Our single, versatile process---coherent photon conversion---provides a full suite of photonic quantum processing tools, from creating high-quality heralded single- and multiphoton states free of higher-order imperfections to implementing deterministic multiqubit entanglement gates and high-efficiency detection. It fulfils all requirements for a scalable photonic quantum computing architecture. Using photonic crystal fibres, we experimentally demonstrate a four-colour nonlinear process usable for coherent photon conversion and show that current technology provides a feasible path towards deterministic operation. Our scheme, based on interacting bosonic fields, is not restricted to optical systems, but could also be implemented in optomechanical, electromechanical and superconducting systems which exhibit extremely strong intrinsic nonlinearities.

N. K. Langford; S. Ramelow; R. Prevedel; W. J. Munro; G. J. Milburn; A. Zeilinger

2011-06-10T23:59:59.000Z

372

MHD mode conversion in a stratified atmosphere  

E-Print Network (OSTI)

Mode conversion in the region where the sound and Alfven speeds are equal is a complex process, which has been studied both analytically and numerically, and has been seen in observations. In order to further the understanding of this process we set up a simple, one-dimensional model, and examine wave propagation through this system using a combination of analytical and numerical techniques. Simulations are carried out in a gravitationally stratified atmosphere with a uniform, vertical magnetic field for both isothermal and non-isothermal cases. For the non-isothermal case a temperature profile is chosen to mimic the steep temperature gradient encountered at the transition region. In all simulations, a slow wave is driven on the upper boundary, thus propagating down from low-beta to high-beta plasma across the mode-conversion region. In addition, a detailed analytical study is carried out where we predict the amplitude and phase of the transmitted and converted components of the incident wave as it passes through the mode-conversion region. A comparison of these analytical predictions with the numerical results shows good agreement, giving us confidence in both techniques. This knowledge may be used to help determine wave types observed and give insight into which modes may be involved in coronal heating.

A. M. Dee McDougall; Alan W. Hood

2008-08-01T23:59:59.000Z

373

Natural gas conversion process. Sixth quarterly report  

Science Conference Proceedings (OSTI)

The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.

Not Available

1992-12-01T23:59:59.000Z

374

Flexible Conversion Ratio Fast Reactor Systems Evaluation  

Science Conference Proceedings (OSTI)

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

Neil Todreas; Pavel Hejzlar

2008-06-30T23:59:59.000Z

375

Alternative Fuels Data Center: Alternative Fuel Vehicle Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Conversion It is unlawful to tamper with vehicle emissions control systems unless the

376

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

for the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary1978. 'Open cycle thermal energy converS1on. A preliminary

Sands, M. D.

2011-01-01T23:59:59.000Z

377

Cross section generation strategy for high conversion light water reactors  

E-Print Network (OSTI)

High conversion water reactors (HCWR), such as the Resource-renewable Boiling Water Reactor (RBWR), are being designed with axial heterogeneity of alternating fissile and blanket zones to achieve a conversion ratio of ...

Herman, Bryan R. (Bryan Robert)

2011-01-01T23:59:59.000Z

378

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

for the commercialization of ocean thermal energy conversionR. E. Hathaway. Open cycle ocean thermal energy conversion.of sewage effluent in an ocean current. Inst. of Tech. ,

Sands, M. D.

2011-01-01T23:59:59.000Z

379

Production and Handling Slide 8: Conversion of Yellow Cake to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Yellow Cake to UF6 Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Conversion of Yellow Cake to UF6 Refer to...

380

Production and Handling Slide 10: Conversion of Yellow Cake to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Yellow Cake to UF6 Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Conversion of Yellow Cake to UF6 Refer to...

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Production and Handling Slide 12: Conversion of Yellow Cake to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Yellow Cake to UF6 Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Conversion of Yellow Cake to UF6 Refer to...

382

A Parameterization of Broadband Conversion Factors for METEOSAT Visible Radiances  

Science Conference Proceedings (OSTI)

The conversion of radiances measured by the METEOSAT visible channel into broadband radiances can be performed as long as the appropriate conversion factors are known. A simple model allowing a spectral description of the optical properties of ...

J. Stum; B. Pinty; D. Ramond

1985-12-01T23:59:59.000Z

383

Conversation on the Future of the Wind Industry | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversation on the Future of the Wind Industry Conversation on the Future of the Wind Industry Addthis Speakers Secretary Steven Chu, Senator Mark Udall Duration 50:26 Topic...

384

Paducah DUF6 Conversion Final EIS - Chapter 3: Affected Environment...  

NLE Websites -- All DOE Office Websites (Extended Search)

conversion facility at the Paducah site for conversion of the Paducah DUF 6 cylinder inventory. Section 3.1 presents a detailed description of the affected environment for the...

385

Resource Limits and Conversion Efficiency with Implications for Climate Change  

E-Print Network (OSTI)

3.3 Fischer-Tropsch Synthesis of Liquid Fuels . 3.3.1Conversion in the U.S. – Fischer-Tropsch Synthesis, NaturalConversion in the U.S. – Fischer-Tropsch Synthesis, Natural

Croft, Gregory Donald

2009-01-01T23:59:59.000Z

386

Status of conversion of NE standards to national consensus standards  

SciTech Connect

This report is a summary of the activities that have evolved to effect conversion of nuclear energy standards to national consensus standards, and the status of current conversion activities.

Hudson, R.C.; McKee, R.O.

1989-03-01T23:59:59.000Z

387

Dynamic virtual credit card numbers  

Science Conference Proceedings (OSTI)

Theft of stored credit card information is an increasing threat to e-commerce.We propose a dynamic virtual credit card number scheme that reduces the damage caused by stolen credit card numbers. A user can use an existing credit card account to generate ... Keywords: credit card theft, e-commerce

Ian Molloy; Jiangtao Li; Ninghui Li

2007-02-01T23:59:59.000Z

388

Electro-mechanical energy conversion system having a permanent ...  

Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

389

Integrating and Piloting Lignocellulose Biomass Conversion Technology (Presentation)  

DOE Green Energy (OSTI)

Presentation on NREL's integrated biomass conversion capabilities. Presented at the 2009 Advanced Biofuels Workshop in Denver, CO, Cellulosic Ethanol session.

Schell, D. J.

2009-06-15T23:59:59.000Z

390

Elements of Power Conversion Integration in Group-III Nitride ...  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Power Electronics, Power Conditioning, and Power Conversion ... Potential Ceramic Dielectrics for Air Force Applications.

391

WATER CONSUMPTION OF ENERGY RESOURCE EXTRACTION, PROCESSING, AND CONVERSION  

E-Print Network (OSTI)

A review of the literature for estimates of water intensity of energyresource extraction, processing to fuels, and conversion to electricity

Erik Mielke; Laura Diaz Anadon; Venkatesh Narayanamurti; Erik Mielke; Laura Diaz Anadon; Venkatesh Narayanamurti

2010-01-01T23:59:59.000Z

392

Method for conversion of .beta.-hydroxy carbonyl compounds  

DOE Patents (OSTI)

A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

Lilga, Michael A. (Richland, WA); White, James F. (Richland, WA); Holladay, Johnathan E. (Kennewick, WA); Zacher, Alan H. (Kennewick, WA); Muzatko, Danielle S. (Kennewick, WA); Orth, Rick J. (Kennewick, WA)

2010-03-30T23:59:59.000Z

393

Spontaneous parametric down-conversion photon sources are scalable in the asymptotic limit for boson-sampling  

E-Print Network (OSTI)

Boson-sampling has emerged as a promising avenue towards post-classical optical quantum computation, and numerous elementary demonstrations have recently been performed. Spontaneous parametric down-conversion is the mainstay for single-photon state preparation, the technique employed in most optical quantum information processing implementations to-date. Here we present a simple architecture for boson-sampling based on multiplexed parameteric down-conversion and demonstrate that the architecture is limited only by the post-selected detection efficiency. That is, given that detection efficiencies are sufficiently high to enable post-selection, photon-number errors in the down-converters are sufficiently low as to guarantee correct boson-sampling most of the time. Thus, we show that parametric down-conversion sources will not present a bottleneck for future boson-sampling implementations. Rather, photodetection efficiency is the limiting factor and thus future implementations may continue to employ down-conversion sources.

Keith R. Motes; Jonathan P. Dowling; Peter P. Rohde

2013-07-31T23:59:59.000Z

394

ON THE NORMALITY OF NUMBERS Adrian Belshaw  

E-Print Network (OSTI)

, Texaco, and Shell gasifiers, Fischer-Tropsch synthesis, SNG production, and synthesis gas production by simulation of coal and NG conversion to hydrogen, FT fuels, SNG, synthesis gas and power. - Glen Tomlinson--Mechanical engineer--Simulation of coal and NG conversion systems for production of power, FT, SNG, syngas, hydrogen

395

Brown Abroad: An Empirical Analysis of Foreign Judicial Citation and the Metaphor of Cosmopolitan Conversation  

E-Print Network (OSTI)

use of foreign law as a cosmopolitan conversation is moreappropriate. Cosmopolitan conversation has led to forms ofproduct resulting from cosmopolitan conversation. Another

Lyke, Sheldon Bernard

2012-01-01T23:59:59.000Z

396

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

a working molecular solar energy conversion system where noEnergy Storage and Conversion System ..74Thermal (MOST) Energy Storage and Conversion System In this

Coso, Dusan

2013-01-01T23:59:59.000Z

397

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

and Techniques,” Energy Conversion and Management, 39 (11),Applications,” Energy Conversion and Management, 45 , pp.2011, “Low-grade Heat Conversion into Power Using Organic

Coso, Dusan

2013-01-01T23:59:59.000Z

398

The Conversion of the Palace of the Republic, 2004-2005, A Technology of Changing Atmospheres  

E-Print Network (OSTI)

A. Markus, Building Conversion and Rehabilitation: DesigningBerg, 2005). Steinmetz: The Conversion of the Palace of thea documentary of the conversion projects in Amelie Deuflhard

Steinmetz, Hanna

2010-01-01T23:59:59.000Z

399

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) sites to identify thethermal energy conversion (OTEC) program; preoperationalOCEAN THERHAL _ENERGY _CONVERSION(OTEC) --:siTE IN PUERTO

Ryan, Constance J.

2013-01-01T23:59:59.000Z

400

The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion  

E-Print Network (OSTI)

to mesenchymal conversion Ole William Petersen * , Helgaalso become clear that conversions towards the mesenchymalconsequences of such a conversion. It is clear that defining

Petersen, Ole William

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network (OSTI)

Thermal Energy Conversion (OTEC) Program PreoperationalOcean Thermal Energy Conversion (OTEC), U.S. Department ofOregon State University. Conversion Power Plants. Corvallis,

Sullivan, S.M.

2013-01-01T23:59:59.000Z

402

California Natural Gas Number of Residential Consumers (Number of Elements)  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Number of Natural Gas Residential

403

EA-1207: Pit Disassembly and Conversion Demonstration Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

207: Pit Disassembly and Conversion Demonstration Environmental 207: Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities EA-1207: Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities SUMMARY This EA evaluates the potential environmental impacts associated with a proposal to test an integrated pit disassembly and conversion process on a relatively small sample of pits and plutonium metal at the Los Alamos National Laboratory in New Mexico. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 14, 1998 EA-1207: Finding of No Significant Impact Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities August 14, 1998

404

High Conversion of Coal to Transportation Fuels for the Future With Low HC Gas Production  

DOE Green Energy (OSTI)

An announced objective of the Department of Energy in funding this work, and other current research in coal liquefaction, is to produce a synthetic crude from coal at a cost lower than $30.00 per barrel (Task A). A second objective, reflecting a recent change in direction in the synthetic fuels effort of DOE, is to produce a fuel which is low in aromatics, yet of sufficiently high octane number for use in the gasoline- burning transportation vehicles of today. To meet this second objective, research was proposed, and funding awarded, for conversion of the highly-aromatic liquid product from coal conversion to a product high in isoparaffins, which compounds in the gasoline range exhibit a high octane number (Task B).

Alex G. Oblad; Wendell H. Wiser

1996-07-01T23:59:59.000Z

405

Ocean Thermal Energy Conversion: An overview  

DOE Green Energy (OSTI)

Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

Not Available

1989-11-01T23:59:59.000Z

406

Sixteenth thermochemical conversion contractors' meeting: proceedings  

Science Conference Proceedings (OSTI)

The research activities sponsored by the Biomass Thermochemical Conversion Program are directed toward exploiting the unique natural properties of biomass. Currently, this research can be divided into three areas: innovative direct combustion technology; gasification technology; and liquid fuels technology. These proceedings describe on-going projects in each of these categories. In an effort to provide a broader perspective of biomass research sponsored by DOE, brief overview descriptions of the Short Rotation Woody Crops Program and microalgae research sponsored by the Aquatic Species Program are given at the beginning of these proceedings. Separate abstracts have been prepared for each project description for inclusion in the Energy Data Base. (DMC)

Not Available

1984-08-01T23:59:59.000Z

407

Energy conversion device with improved seal  

DOE Patents (OSTI)

An energy conversion device comprising an improved sealing member adapted to seal a cation-permeable casing to the remainder of the device. The sealing member comprises a metal substrate which (i) bears a nonconductive and corrosion resistant coating on the major surface to which said casing is sealed, and (ii) is corrugated so as to render it flexible, thereby allowing said member to move relative to said casing without cracking the seal therebetween. Corrugations may be circumferential, radial, or both radial and circumferential so as to form dimples. The corrugated member may be in form of a bellows or in a substantially flat form, such as a disc.

Miller, Gerald R. (Salt Lake City, UT); Virkar, Anil V. (Midvale, UT)

1980-01-01T23:59:59.000Z

408

Carbon aerogel electrodes for direct energy conversion  

DOE Patents (OSTI)

A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA)

1997-01-01T23:59:59.000Z

409

Carbon aerogel electrodes for direct energy conversion  

DOE Patents (OSTI)

A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.

Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

1997-02-11T23:59:59.000Z

410

Energy Conversion Devices Inc aka ECD Ovonics | Open Energy Information  

Open Energy Info (EERE)

Conversion Devices Inc aka ECD Ovonics Conversion Devices Inc aka ECD Ovonics Jump to: navigation, search Name Energy Conversion Devices Inc (aka ECD Ovonics) Place Rochester Hills, Michigan Zip 48309 Sector Solar Product Michigan-based materials developer and holding company for thin-film silicon PV manufacturer United Solar Ovonics. References Energy Conversion Devices Inc (aka ECD Ovonics)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Energy Conversion Devices Inc (aka ECD Ovonics) is a company located in Rochester Hills, Michigan . References ↑ "Energy Conversion Devices Inc (aka ECD Ovonics)" Retrieved from "http://en.openei.org/w/index.php?title=Energy_Conversion_Devices_Inc_aka_ECD_Ovonics&oldid=34484

411

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Fund on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

412

Global Waste to Energy Conversion Company GWECC | Open Energy Information  

Open Energy Info (EERE)

Waste to Energy Conversion Company GWECC Waste to Energy Conversion Company GWECC Jump to: navigation, search Name Global Waste to Energy Conversion Company (GWECC) Place Washington, DC Product GWECC is a global alternative energy company headquartered in Washington DC, USA. References Global Waste to Energy Conversion Company (GWECC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Global Waste to Energy Conversion Company (GWECC) is a company located in Washington, DC . References ↑ "Global Waste to Energy Conversion Company (GWECC)" Retrieved from "http://en.openei.org/w/index.php?title=Global_Waste_to_Energy_Conversion_Company_GWECC&oldid=345924" Categories: Clean Energy Organizations

413

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Tax Credit on AddThis.com... More in this section... Federal State Advanced Search

414

Hybrid staging of geothermal energy conversion processes  

SciTech Connect

A hybrid system consists of two or more energy conversion processes. This study examines the use of three energy conversion machines in hybrid systems: the conventional single-phase turbine, and the two-phase expanders known as the Lysholm engine and the radial outflow reaction turbine. Two hybrid systems are presented. The first is a two-stage, single-flash system with the Lysholm engine as the first stage, and a separator and conventional turbine as the second stage. The second system adds a radial outflow reaction turbine to recover a part of the energy rejected in the second stage. A theoretical specific power of 41.3 kW.s/lb is predicted for the two-stage, single-flash hybrid system. The addition of the radial outflow rotary turbine increases performance to 44.8 kW.s/lb. Both are superior to the double-flash system, with a specific power of 37.8 kW.s/lb. In addition, the hybrid system offers operating flexibility.

Steidel, R.F.

1978-09-01T23:59:59.000Z

415

Dense ceramic membranes for methane conversion  

DOE Green Energy (OSTI)

This report focuses on a mechanism for oxygen transport through mixed- oxide conductors as used in dense ceramic membrane reactors for the partial oxidation of methane to syngas (CO and H{sub 2}). The in-situ separation of O{sub 2} from air by the membrane reactor saves the costly cryogenic separation step that is required in conventional syngas production. The mixed oxide of choice is SrCo{sub 0.5}FeO{sub x}, which exhibits high oxygen permeability and has been shown in previous studies to possess high stability in both oxidizing and reducing conditions; in addition, it can be readily formed into reactor configurations such as tubes. An understanding of the electrical properties and the defect dynamics in this material is essential and will help us to find the optimal operating conditions for the conversion reactor. In this paper, we discuss the conductivities of the SrFeCo{sub 0.5}O{sub x} system that are dependent on temperature and partial pressure of oxygen. Based on the experimental results, a defect model is proposed to explain the electrical properties of this system. The oxygen permeability of SrFeCo{sub 0.5}O{sub x} is estimated by using conductivity data and is compared with that obtained from methane conversion reaction.

Balachandran, U.; Mieville, R.L.; Ma, B. [Argonne National Lab., IL (United States); Udovich, C.A. [Amoco Oil Co., Naperville, IL (United States)

1996-05-01T23:59:59.000Z

416

Advanced Stirling conversion systems for terrestrial applications  

DOE Green Energy (OSTI)

Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. Free-piston Stirling activities which are directed toward a dynamic power source for the space application are being conducted. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear powered. Generic free-piston technology is currently being developed for use with a residential heat pump under an Interagency Agreement. Also, an overview is presented of proposed conceptual designs for the Advanced Stirling Conversion System (ASCS) using a free-piston Stirling engine and a liquid metal heat pipe receiver. Power extraction includes both a linear alternator and hydraulic output capable of delivering approximately 25 kW of electrical power to the electric utility grid. Target cost of the engine/alternator is 300 dollars per kilowatt at a manufacturing rate of 10,000 units per year. The design life of the ASCS is 60,000 h (30 y) with an engine overhaul at 40,000 h (20 y). Also discussed are the key features and characteristics of the ASCS conceptual designs.

Shaltens, R.K.

1987-01-01T23:59:59.000Z

417

US energy conversion and use characteristics  

SciTech Connect

The long-range goal of the Energy Conversion and Utilization Technology (ECUT) Program is to enhance energy productivity in all energy-use sectors by supporting research on improved efficiency and fuel switching capability in the conversion and utilization of energy. Regardless of the deficiencies of current information, a summary of the best available energy-use information is needed now to support current ECUT program planning. This document is the initial draft of this type of summary and serves as a data book that will present current and periodically updated descriptions of the following aspects of energy use: gross US energy consumption in each major energy-use sector; energy consumption by fuel type in each sector; energy efficiency of major equipment/processes; and inventories, replacement rates, and use patterns for major energy-using capital stocks. These data will help the ECUT program staff perform two vital planning functions: determine areas in which research to improve energy productivity might provide significant energy savings or fuel switching and estimate the actual effect that specific research projects may have on energy productivity and conservation. Descriptions of the data sources and examples of the uses of the different types of data are provided in Section 2. The energy-use information is presented in the last four sections; Section 3 contains general, national consumption data; and Sections 4 through 6 contain residential/commercial, industrial, and transportation consumption data, respectively. (MCW)

Imhoff, C.H.; Liberman, A.; Ashton, W.B.

1982-02-01T23:59:59.000Z

418

Ocean energy conversion systems annual research report  

DOE Green Energy (OSTI)

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

419

Document ID Number: RL-721  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Document ID Number: Document ID Number: RL-721 REV 4 NEPA REVIEW SCREENING FORM DOE/CX-00066 I. Project Title: Nesting Bird Deterrent Study at the 241-C Tank Farm CX B3.8, "Outdoor Terrestrial Ecological and Environmental Research" II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): Washington River Protection Solutions LLC (WRPS) will perform an outdoor, terrestrial ecological research study to attempt to control and deter nesting birds at the 241-C Tank Farm. This will be a preventative study to test possible methods for controlling &/or minimizing the presence and impacts of nesting birds inside the tank farm. A nesting bird

420

Stochastic Low Reynolds Number Swimmers  

E-Print Network (OSTI)

As technological advances allow us to fabricate smaller autonomous self-propelled devices, it is clear that at some point directed propulsion could not come from pre-specified deterministic periodic deformation of the swimmer's body and we need to develop strategies to extract a net directed motion from a series of random transitions in the conformation space of the swimmer. We present a theoretical formulation to describe the "stochastic motor" that drives the motion of low Reynolds number swimmers based on this concept, and use it to study the propulsion of a simple low Reynolds number swimmer, namely, the three-sphere swimmer model. When the detailed-balanced is broken and the motor is driven out of equilibrium, it can propel the swimmer in the required direction. The formulation can be used to study optimal design strategies for molecular-scale low Reynolds number swimmers.

Ramin Golestanian; Armand Ajdari

2009-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Theory of quantum frequency conversion and type-II parametric down-conversion in the high-gain regime  

E-Print Network (OSTI)

Frequency conversion (FC) and type-II parametric down-conversion (PDC) processes serve as basic building blocks for the implementation of quantum optical experiments: type-II PDC enables the efficient creation of quantum states such as photon-number states and Einstein-Podolsky-Rosen-states (EPR-states). FC gives rise to technologies enabling efficient atom-photon coupling, ultrafast pulse gates and enhanced detection schemes. However, despite their widespread deployment, their theoretical treatment remains challenging. Especially the multi-photon components in the high-gain regime as well as the explicit time-dependence of the involved Hamiltonians hamper an efficient theoretical description of these nonlinear optical processes. In this paper, we investigate these effects and put forward two models that enable a full description of FC and type-II PDC in the high-gain regime. We present a rigorous numerical model relying on the solution of coupled integro-differential equations that covers the complete dynamics of the process. As an alternative, we develop a simplified model that, at the expense of neglecting time-ordering effects, enables an analytical solution. While the simplified model approximates the correct solution with high fidelity in a broad parameter range, sufficient for many experimental situations, such as FC with low efficiency, entangled photon-pair generation and the heralding of single photons from type-II PDC, our investigations reveal that the rigorous model predicts a decreased performance for FC processes in quantum pulse gate applications and an enhanced EPR-state generation rate during type-II PDC, when EPR squeezing values above 12 dB are considered.

Andreas Christ; Benjamin Brecht; Wolfgang Mauerer; Christine Silberhorn

2012-10-31T23:59:59.000Z

422

Undergraduate Catalog Phone Numbers & Address  

E-Print Network (OSTI)

Interest Research Exemption Programs 11 ReglsJrationPeriod III 6 Group (WashPIRG) 14 Faculty Number 9 State NaUonal Guard ' . , Full-Time Student Requirements __'_ 9 Service and Research Credit 10 Tuition notice. All announcements in the Time Schedule are subject to change without notice and do not constitute

Kelly, Scott David

423

MOTOR POOL RESERVATIONS Reservation Number:_______________  

E-Print Network (OSTI)

MOTOR POOL RESERVATIONS Reservation Number:_______________ Evanston campus: Chicago campus: 2020: 312/503-9243 E-mail: motor-pool@northwestern.edu E-mail: motor-pool@northwestern.edu Hours: 8:00 a reservations require the "Organization Authorization for University Vehicles" form to be faxed to Motor Pool

Shull, Kenneth R.

424

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques  

E-Print Network (OSTI)

Biointerfaces, and Renewable Energy Conversion bychemistry) and develop renewable energy based processes.biointerfaces, and renewable energy conversion chemistry. In

Somorjai, G.A.

2010-01-01T23:59:59.000Z

425

Implications of Fast Reactor Transuranic Conversion Ratio  

SciTech Connect

Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (“burners”) do not have blankets; the cases above CR=1 (“breeders”) have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is “attractive” for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

2010-11-01T23:59:59.000Z

426

Enzymantic Conversion of Coal to Liquid Fuels  

DOE Green Energy (OSTI)

The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

Richard Troiano

2011-01-31T23:59:59.000Z

427

Carbohydrate derivedpseudolignin can retard cellulose biological conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbohydrate Carbohydrate Derived-Pseudo-Lignin Can Retard Cellulose Biological Conversion Rajeev Kumar, 1,2,3 Fan Hu, 3,4 Poulomi Sannigrahi, 3,4 Seokwon Jung, 3,4 Arthur J. Ragauskas, 3,4 Charles E. Wyman 1,2,3 1 Center for Environmental Research and Technology, Bourns College of Engineering, 1084 Columbia Avenue, Riverside, California 92507; telephone: 951-781-5668; fax: 951-781-5790; e-mail: rajeev.dartmouth@gmail.com 2 Department of Chemical and Environmental Engineering, Bourns College of Engineering, 446 Winston Chung Hall, 900 University Avenue, Riverside, California 92507 3 BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6422 4 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia ABSTRACT: Dilute acid as well as water only (hydrother- mal) pretreatments often lead to a significant

428

Paducah DUF6 Conversion Final EIS - Notation  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS xxv NOTATION The following is a list of acronyms and abbreviations, chemical names, and units of measure used in this document. Some acronyms used only in tables may be defined only in those tables. GENERAL ACRONYMS AND ABBREVIATIONS AEA Atomic Energy Act of 1954 AEC U.S. Atomic Energy Commission AIHA American Industrial Hygiene Association ALARA as low as reasonably achievable ANL Argonne National Laboratory ANP Advanced Nuclear Power (Framatone ANP, Inc.) ANSI American National Standards Institute AQCR Air Quality Control Region BLS Bureau of Labor Statistics CAA Clean Air Act CEQ Council on Environmental Quality CERCLA Comprehensive Environmental Response, Compensation, and Liability Act of 1980 CFR Code of Federal Regulations CRMP cultural resource management plan

429

Modeling and analysis of energy conversion systems  

DOE Green Energy (OSTI)

An investigation was conducted to assess the need for and the feasibility of developing a computer code that could model thermodynamic systems and predict the performance of energy conversion systems. To assess the market need for this code, representatives of a few industrial organizations were contacted, including manufacturers, system and component designers, and research personnel. Researchers and small manufacturers, designers, and installers were very interested in the possibility of using the proposed code. However, large companies were satisfied with the existing codes that they have developed for their own use. Also, a survey was conduced of available codes that could be used or possibly modified for the desired purpose. The codes were evaluated with respect to a list of desirable features, which was prepared as a result of the survey. A few publicly available codes were found that might be suitable. The development, verification, and maintenance of such a code would require a substantial, ongoing effort. 21 refs.

Den Braven, K.R. (Idaho Univ., Moscow, ID (USA). Dept. of Mechanical Engineering); Stanger, S. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-10-01T23:59:59.000Z

430

(Biotechnology for the conversion of lignocellulosics)  

DOE Green Energy (OSTI)

This report summarizes the results of the traveler's participation in the International Energy Agency (IEA) Network planning meeting for Biotechnology for the Conversion of Lignocellulosics,'' held at the Institut Francais du Petrole (IFP), Rueil-Malmaison, France. It also summarizes the results of discussions held at Aston University, Birmingham, UK, with Dr. Martin Beevers with whom the traveler is attempting to initiate a collaborative research project that will be beneficial to ongoing research programs at Oak Ridge National Laboratory (ORNL). The itinerary for the trip is given in Appendix A; the names of the people contacted are listed in Appendix B. Also, pertinent information about the Institut Francais du Petrole is attached (Appendix C). 1 tab.

Woodward, J.

1990-10-25T23:59:59.000Z

431

Apparatus and method for pyroelectric power conversion  

DOE Patents (OSTI)

Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected.

Olsen, Randall B. (Olivenhain, CA)

1984-01-01T23:59:59.000Z

432

Apparatus and method for pyroelectric power conversion  

DOE Patents (OSTI)

Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance are disclosed. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected. 12 figs.

Olsen, R.B.

1984-01-10T23:59:59.000Z

433

Advanced Coal Conversion Process Demonstration (Project)  

DOE Green Energy (OSTI)

This report contains a description of technical progress made on the Advanced Coal Conversion Process Demonstration Project (ACCP). The project is a US Department of Energy Innovative Clean Coal Technology Project. The cooperative agreement defining the project is between DOE and the Rosebud SynCoal Partnership RSCP. The RSCP is a partnership between Western Energy Company (WECo), a subsidiary of Entech, Montana Power's non-utility group, and NRG, a subsidiary of Northern States Power. The ACCP is a method of upgrading low ranked coals by reducing the moisture and sulfur content and increasing the heating value. The facility is being constructed at WECo's Rosebud No. 6 coal mine, west of Colstrip, Montana. This report contains both a history of the process development and a report of technical progress made since the beginning of the Clean Coal 1 cooperative agreement.

Not Available

1991-07-01T23:59:59.000Z

434

Materials challenges in advanced coal conversion technologies  

SciTech Connect

Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

Powem, C.A.; Morreale, B.D. [National Energy Technology Laboratory, Albany, OR (United States)

2008-04-15T23:59:59.000Z

435

Compact harsh environment energy conversion systems  

E-Print Network (OSTI)

The quest for energy is leading the industry into drilling deeper wells. Typically, a temperature gradient of 1°C/150 ft can be expected, with bottom hole temperatures reaching beyond 200°C in many areas of the world. Moreover, the increased recovery benefits and cost reductions possible with the use of horizontal and multilateral wells has triggered a need for higher power energy conversion systems in bottom hole assemblies, such as rotary steerable tools and downhole tractors. The concepts developed throughout this work address some of these new needs. This research investigated improvements, novel solutions and considerations that will lead to significant advantages in terms of reliability, extended temperature operation, increased power capability and reduced size and cost of compact harsh environment energy conversion systems. Improvements to both the electromechanical subsystem and the power electronic subsystem are introduced. Air gap viscous losses were shown to a have a significant effect on the optimal design of submersible PM (permanent magnet) machines, and a design procedure to account for this loss component in the design was developed. The application of a dual winding exterior rotor PM machine in a downhole environment enabled a significant increase in the application’s torque capability, provided protection against generator winding over voltage, and reduced parts count. Comprehensive switching device qualification, testing, and simulation lead to a simple failure mitigation technique for the operation of the most suitable devices at elevated temperature. A flying capacitor multilevel inverter was then successfully constructed and temperature tested. A novel motor drive concept suited for elevated temperature oil filled environment applications concluded the research.

Ahmed, Shehab

2007-05-01T23:59:59.000Z

436

Unconditional conversion between quantum particles and waves  

E-Print Network (OSTI)

Wave-particle duality is a basic notion of quantum mechanics, which has largely contributed to many debates on the foundations of quantum theory. Besides this fundamental aspect of the wave-particle nature of quantum systems, recently, it turned out that, in order to construct more advanced and efficient protocols in quantum communication and information processing, it is also beneficial to combine continuous-wave and discrete-particle features in a so-called hybrid fashion. However, in traditional, quantum optical complementarity tests, monitoring the light waves would still happen in an effectively particle-like fashion, detecting the fields click by click. Similarly, close-to-classical, wave-like coherent states, as readily available from standard laser sources, or other Gaussian states generated through nonlinear optical interactions, have been so far experimentally converted into non-classical quantum superpositions of distinct waves only in a conditional fashion. Here we experimentally demonstrate the deterministic conversion of a single-photon state into a quantum superposition of two weak coherent states with opposite phases - a Schrodinger kitten state - and back. Conceptually different from all previous experiments, as being fully reversible, this can be interpreted as a quantum gate, connecting the complementary regimes of particle-like and wave-like light fields in a unitary fashion, like in a quantum computation. Such an unconditional conversion is achieved by means of a squeezing operation, demonstrating a fundamental feature of any quantum system: particle-like and wave-like properties can be reversibly altered, with no need for filtering out either through detection.

Yoshichika Miwa; Jun-ichi Yoshikawa; Noriaki Iwata; Mamoru Endo; Petr Marek; Radim Filip; Peter van Loock; Akira Furusawa

2012-09-13T23:59:59.000Z

437

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

438

Energy Conversion and Thermal Efficiency Sales Tax Exemption | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Water Heating Maximum Rebate None Program Info State Ohio Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Ohio Department of Taxation Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed, constructed, or installed after December 31, 1974. Qualifying energy conversion facilities are those that are used for the

439

Ocean Thermal Energy Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

440

Photovoltaic Cell Conversion Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Efficiency Basics Conversion Efficiency Basics Photovoltaic Cell Conversion Efficiency Basics August 20, 2013 - 2:58pm Addthis The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity. Improving this conversion efficiency is a key goal of research and helps make PV technologies cost-competitive with more traditional sources of energy. Factors Affecting Conversion Efficiency Much of the energy from sunlight reaching a PV cell is lost before it can be converted into electricity. But certain characteristics of solar cell materials also limit a cell's efficiency to convert the sunlight it receives. Wavelength of Light Light is composed of photons-or packets of energy-that range in

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

59: Uranium Hexafluoride Conversion Facility at the Paducah, 59: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site Summary This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold. This EIS also considers a no action alternative that assumes continued storage of DUF6 at the Paducah site. A

442

LEU conversion status of US research reactors, September 1996  

SciTech Connect

This paper summarizes the conversion status of research and test reactors in the United States from the use of fuels containing highly- enriched uranium (HEU, greater than or equal to 20%) to the use of fuels containing low-enriched uranium (LEU, < 20%). Estimates of the uranium densities required for conversion are made for reactors with power levels greater than or equal to 1 MW that are not currently involved in the LEU conversion process.

Matos, J.E.

1996-10-07T23:59:59.000Z

443

Photon - Axion Conversion Cross Sections in a Resonant Cavity  

E-Print Network (OSTI)

Photon - axion conversions in the resonant cavity with the lowest mode are considered in detail by the Feynman diagram method. The differential cross sections are presented and numerical evaluations are given. It is shown that there is a resonant conversion for the considered process, in which the conversion cross sections are much larger than those of the wave guide in the same conditions. Some estimates for experimental conditions are given from our results.

Dang Van Soa; Hoang Ngoc Long; Le Nhu Thuc

2006-11-20T23:59:59.000Z

444

RIN Number 1904-AB68  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Procurement of Energy Efficient Products Federal Procurement of Energy Efficient Products RIN NUMBER: 1904-AB68 CLOSING DATE: August 20, 2007 COMMENT NUMBER DATE RECEIVED/ DATE OF LETTER NAME & TITLE OF COMMENTATOR AFFILIATION & ADDRESS OF COMMENTATOR 1 ? 7/31/07 Edwin Pinero Federal Environmental Executive Office of the Federal Environmental Executive 1200 Pennsylvania Avenue, NW Mail Code 1600J Washington, DC 20460 2 8/8/07 (e-mail) Bob Null President Arkansas Lamp Manufacturing bnull@arkansaslamp.com 3 8/10/07 (e-mail) Dawn Gunning Environmental Program Manager Department of Justice Dawn.M.Gunning@usdoj.gov 4 8/14/07 8/14/07 Kyle Pitsor Vice President, Government Relations National Electrical Manufacturers Association 1300 North 17th Street, Suite 1752 Rosslyn, VA 22209

445

RIN Number 1904-AB68  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RULEMAKING TITLE: Federal Procurement of Energy Efficient Products RULEMAKING TITLE: Federal Procurement of Energy Efficient Products RIN NUMBER: 1904-AB68 CLOSING DATE: August 20, 2007 COMMENT NUMBER DATE RECEIVED/ DATE OF LETTER NAME & TITLE OF COMMENTATOR AFFILIATION & ADDRESS OF COMMENTATOR 1 ? 7/31/07 Edwin Pinero Federal Environmental Executive Office of the Federal Environmental Executive 1200 Pennsylvania Avenue, NW Mail Code 1600J Washington, DC 20460 2 8/8/07 (e-mail) Bob Null President Arkansas Lamp Manufacturing bnull@arkansaslamp.com 3 8/10/07 (e-mail) Dawn Gunning Environmental Program Manager Department of Justice Dawn.M.Gunning@usdoj.gov 4 8/14/07 8/14/07 Kyle Pitsor Vice President, Government Relations National Electrical Manufacturers Association 1300 North 17th Street, Suite 1752

446

RL·721 Document ID Number:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Document ID Number: Document ID Number: REV 3 NEPA REVIEW SCREENING FORM DOE/CX-00045 . J.proj(;l~t Titl~: - - - -- - - - - - - - - - - - - - - - - - -- --------- ------_. . _ - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - LIMITED FIREBREAK MAINTENANCE ON THE HANFORD SITE DURING CALENDAR YEAR 2012 II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions· e.g., acres displaced/disturbed, excavation length/depth, etc.): The Department of Energy (DOE) proposes to perform firebreak maintenance in selected areas of the Hanford Site during calendar year 2012 with limited use of physical, chemical, and prescribed burning methods. Prescribed burning will be performed by the Hanford Fire Department under approved burn plans and permits; and only in previously disturbed

447

Energy Conversion and Transmission Facilities (South Dakota) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Public Utilities Commission This legislation applies to energy conversion facilities designed for or capable of generating 100 MW or more of electricity, wind energy facilities with a combined capacity of 100 MW, certain transmission facilities, and

448

Public Involvement Opportunities for the DUF6 Conversion Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Comment Form The public comment period for the Supplement Analysis for Disposal of Depleted Uranium Oxide Conversion Product Generated from DOE's Inventory of Depleted...

449

Surface Tension Mediated Conversion of Light to Work  

taics for conversion to electricity, solar thermal for water heating, ... and solar water splitting to produce hydrogen and oxygen.1 Though useful, ...

450

NETL: Third Annual Solid State Energy Conversion Alliance (SECA...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Conference Proceedings Third Annual Solid State Energy Conversion Alliance (SECA) Workshop March 21-22, 2002 Table of Contents Disclaimer Papers and Presentations Disclaimer This...

451

Advanced Energy Conversion LLC AEC | Open Energy Information  

Open Energy Info (EERE)

Energy Conversion LLC (AEC) Place New York Zip 12020 Product R&D company focused on power electronics, motion control systems and embedded control. References Advanced Energy...

452

TRANSITION METAL CATALYZED BIOMASS CONVERSION AND POLYMER SYNTHESIS.  

E-Print Network (OSTI)

??I have mainly worked on two areas during my graduate study in Dr. Ayusman Sen’s group. One is about transition metal catalyzed biomass conversion to… (more)

Yang, Weiran

2010-01-01T23:59:59.000Z

453

Power Conversion Apparatus and Method for Hybrid Electric and ...  

ORNL 2010-G01079/jcn UT-B ID 200701874 Power Conversion Apparatus and Method for Hybrid Electric and Electric Vehicle Engines Technology Summary

454

A Process for the Conversion of Cyclic Amines Into Lactams ...  

Ames Laboratory researchers have developed a process for the conversion of cyclic amines into lactams, which may have utility for the production of nylons and other ...

455

Chromium Alloys for More Efficient Fossil Energy Conversion ...  

Science Conference Proceedings (OSTI)

Abstract Scope, In order to improve efficiency and reduce environmental emissions in fossil energy conversion systems, new technologies such as oxy- fuel gas ...

456

Power conversion effectiveness and generation | Open Energy Informatio...  

Open Energy Info (EERE)

Linked Data Page Edit History Share this page on Facebook icon Twitter icon Power conversion effectiveness and generation Jump to: navigation, search Retrieved from...

457

September 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

September 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III...

458

Coal Conversion Facility Privilege Tax Exemptions (North Dakota...  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Coal Conversion Facility Privilege Tax Exemptions (North Dakota) This is the approved...

459

Chromium-free Conversion Coating for Electroplated Zinc-nickel  

Science Conference Proceedings (OSTI)

Presentation Title, Chromium-free Conversion Coating for Electroplated Zinc- nickel. Author(s), Melissa L. Klingenberg, Clayton Drees, Elizabeth Berman, ...

460

Paducah DUF6 Conversion Final EIS - Appendix B: Estimation of...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Gill et al. 1997). Because the DUF 6 autoclaves would operate at approximately 95C, testing should be conducted either prior to or during the conversion facility startup...

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Portsmouth DUF6 Conversion Final EIS - Appendix B: Issues Associated...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Gill et al. 1997). Because the DUF 6 autoclaves would operate at approximately 95C, testing should be conducted either prior to or during the conversion facility startup...

462

Cellulase Enzymes for the Conversion of Biomass to ...  

Cellulase Enzymes for the Conversion of Biomass to Biofuels and Chemicals Improvements to Saccharification Enzymes allow for a faster, more stable and ...

463

Formation of Vanadate Conversion Coating on AZ31 Magnesium Alloy  

Science Conference Proceedings (OSTI)

In the present investigation, a chromate-free, corrosion-resistant conversion coating using vanadium based solution was applied to AZ31 magnesium alloy.

464

Liquid Metal MHD Energy Conversion in Fusion Reactors  

Science Conference Proceedings (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

L. Blumenau; H. Branover; A. El-Boher; E Spero; S. Sukoriansky; G. Talmage; E. Greenspan

465

Conversion of glycerol to 1,3-propanediol under Haloalkaline ...  

Conversion of glycerol to 1,3-propanediol under Haloalkaline Conditions Note: The technology described above is an early stage opportunity. Licensing rights to this ...

466

Jayasumana ”Performance tradeoffs of shared limited range wavelength conversion schemes  

E-Print Network (OSTI)

Abstract — Performance of all-optical switches that employee different types of limited-range wavelength converters (LRWC) are investigated. Previous work has shown that there is a remarkable improvement in blocking probability while using LRWC over full range conversion, but has not considered the coincident effect of conversion resources sharing. We consider the case where an incoming wavelength can be converted to a range of outgoing wavelengths, where d is the range of conversion. The simulation results demonstrate that the performance improvement obtained by full range wavelength conversion can almost be achieved by using a fractional ranged ranged LRWC. I.

Fahad A. Al-zahrani; Abdulgader A. Habiballa; Ayman G. Fayoumi; Anura P. Jayasumana

2005-01-01T23:59:59.000Z

467

In-Situ MHD Energy Conversion for Fusion  

Science Conference Proceedings (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

R. B. Campbell; M. A. Hoffman; B. G. Logan

468

Formation of Self-assembled Monolayers on Cerium Conversion ...  

Science Conference Proceedings (OSTI)

In a previous research, we investigated the surface treatment of AZ31 magnesium alloy using cerium conversion coating. The anticorrosion properties could be ...

469

Catalytic conversion of cellulose to liquid hydrocarbon fuels ...  

Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

470

A Study of Conversion Reactions Using Electron Energy Loss  

Science Conference Proceedings (OSTI)

In this study, conversion mechanism in NiO was studied using high resolution transmission electron microscopy and electron energy loss spectroscopy (EELS).

471

Novel Energy Conversion Equipment for Low Temperature Geothermal...  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy...

472

Groebner Basis Conversion with FGLM - CECM - Simon Fraser ...  

E-Print Network (OSTI)

Groebner Basis Conversion with FGLM. Roman Pearce, MITACS project. Simon Fraser University. The FGLM algorithm of Faugere, Gianni, Lazard and Mora, ...

473

Audit Report on "Depleted Uranium Hexafluoride Conversion," DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Audit Report on "Depleted Uranium Hexafluoride Conversion," DOEIG-0642 Audit Report on "Depleted Uranium Hexafluoride...

474

Follow-up of Depleted Uranium Hexafluoride Conversion, IG-0751...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Follow-up of Depleted Uranium Hexafluoride Conversion, IG-0751 Follow-up of Depleted Uranium Hexafluoride...

475

Method for conversion of beta-hydroxy carbonyl compounds - Energy ...  

Conversion products find use, e.g., ... United States Patent ... as operator of Pacific Northwest National Laboratory under U.S. Department of Energy Contract DE ...

476

Process Design and Economics for Biochemical Conversion of Lignocellul...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

conversion, and sustainability. As part of its involvement in the program, the National Renewable Energy Laboratory (NREL) investigates the production economics of these...

477

Optimization Online - User's Manual for SparseCoLO: Conversion ...  

E-Print Network (OSTI)

Feb 16, 2009 ... User's Manual for SparseCoLO: Conversion Methods for Sparse Conic-form Linear Optimization Problems. K. Fujisawa(fujisawa ***at*** ...

478

January 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

January 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Energy Technology Perspectives 2012: Executive Summary Portuguese version NONE Energy...

479

Most Viewed Documents - Energy Storage, Conversion, and Utilization...  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002)...

480

Advanced Materials for Energy Conversion II TABLE OF CONTENTS  

Science Conference Proceedings (OSTI)

This Table of Contents is from Advanced Materials for Energy Conversion II ... Energy Crisis – Fact or Fiction? [pp. .... W.-M. Chien, A. Price and D. Chandra.

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

CHEMICAL TRAPPING OF A PRIMARY QUANTUM CONVERSION PRODUCT IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

CONVERSION PRODUCT I N PHOTOSYNTHESIS G e r a l d A. C o r kthe two light acts of photosynthesis. Potassium Ecrricyanide

Corker, Gerald A.; Klein, Melvin P.; Calvin, Melvin.

2008-01-01T23:59:59.000Z

482

Combination process for the conversion of heavy distillates to LPG  

SciTech Connect

Maximum conversion of heavy distillates to LPG is achieved through a combination process involving two-stage hydrocracking. 9 claims, no drawings.

Hilfman, L.

1976-06-15T23:59:59.000Z

483

Domestic U.S. Reactor Conversions: Fact Sheet | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Reactor Conversions: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

484

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

Science Conference Proceedings (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

485

Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

Dziendziel, Randolph J. (Middle Grove, NY); DePoy, David Moore (Clifton Park, NY); Baldasaro, Paul Francis (Clifton Park, NY)

2007-01-23T23:59:59.000Z

486

Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents (OSTI)

This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

Dziendziel, Randolph J. (Middle Grove, NY); Baldasaro, Paul F. (Clifton Park, NY); DePoy, David M. (Clifton Park, NY)

2010-09-07T23:59:59.000Z

487

Managing long term communications: Conversation and contact management. to appear HICCS 2002, Managing long term communications: Conversation and contact  

E-Print Network (OSTI)

Contact management is an important part of everyday work. People exchange business cards to try to enter each other’s contact lists. Local businesses provide refrigerator magnets and calendars so they will be called on when a particular need arises. People who use the telephone extensively are selective about who they add to their speed dial lists. Contact management and conversation management are linked. Many busy professionals discourage voice calls and messages, because email enables them to better manage their time, conversations, and contacts. People also spend large amounts of time transcribing voicemail, browsing email archives and writing todo lists – all of these activities are intended to help track the content and status of outstanding conversations. Together, these practices reveal some of the complexities of contact and conversation management. We investigated contact and conversation management by carrying out twenty semi-structured interviews with professionals in assorted fields. Key properties of technologically-mediated conversations identified were: (1) they are extended in time, which means (2) people typically engage in multiple concurrent conversations, and (3) conversations often involve multiple participants. These properties led to a significant memory load for our informants: they spoke of the difficulty of keeping tracking of conversational content and status, as well as the identity, contact information, and expertise of their conversational partners. People respond to these problems by trying to make key aspects of their conversations persistent; however, with current support tools, this strategy meets with mixed success. Building on the findings of our study, we present a new support tool that aids in managing contacts and conversation status.

Steve Whittaker; Quentin Jones; Loren Terveen

2002-01-01T23:59:59.000Z

488

84Unit Conversions Energy, Power, Flux Energy is measured in a number of ways depending on what property is being  

E-Print Network (OSTI)

, and are operating for 8 hours during the day? Space Math http://spacemath.gsfc.nasa.gov #12;Answer Key 84 Problem 1 for electricity is the watt-hour (Wh), which can be written as 1 watt x 1 hour. How many megajoules equal 1

489

Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335  

DOE Green Energy (OSTI)

The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

Netter, J.

2013-08-01T23:59:59.000Z

490

Course Number and Title: EML 4930/5930, Sustainable Energy Conversion Systems II Term & Year: Spring 2006  

E-Print Network (OSTI)

design. [1, 3] 3. To provide understanding of solar air-conditioning and refrigeration system design [1-conditioning and refrigeration system [1, 4] 4. Be able to understand the physics of solar cells [1] 5. Be able to design issues [3] 9. Be able to design and analyze a PEM based fuel cell stack 3] 10. Be able to carry out

Krothapalli, Anjaneyulu

491

Estimation of wind characteristics at potential wind energy conversion sites  

DOE Green Energy (OSTI)

A practical method has been developed and applied to the problem of determining wind characteristics at candidate wind energy conversion sites where there are no available historical data. The method uses a mass consistent wind flow model (called COMPLEX) to interpolate between stations where wind data are available. The COMPLEX model incorporates the effects of terrain features and airflow. The key to the practical application of COMPLEX to the derivation of wind statistics is the model's linearity. This allows the input data sets to be resolved into orthogonal components along the set of eigenvectors of the covariance matrix. The solution for each eigenvector is determined with COMPLEX; the hourly interpolated winds are then formed from linear combinations of these solutions. The procedure requires: acquisition and merger of wind data from three to five stations, application of COMPLEX to each of the seven to 11 (depending on the number of stations for which wind data are available) eigenvectors, reconstruction of the hourly interpolated winds at the site from the eigenvector solutions, and finally, estimating the wind characteristics from the simulated hourly values. The report describes the methodology and the underlying theory. Possible improvements to the procedure are also discussed.

Not Available

1979-10-01T23:59:59.000Z

492

Method for in situ biological conversion of coal to methane  

DOE Patents (OSTI)

A method and apparatus are provided for the in situ biological conversion of coal to methane comprising culturing on a coal-containing substrate a consortium of microorganisms capable of degrading the coal into methane under suitable conditions. This consortium of microorganisms can be obtained from an underground cavity such as an abandoned mine which underwent a change from being supplied with sewage to where no sewage was present, since these conditions have favored the development of microorganisms capable of using coal as a carbon source and converting coal to methane. The consortium of microorganisms obtained from such abandoned coal mines can be isolated and introduced to hard-to-reach coal-containing substrates which lack such microorganisms and which would otherwise remain unrecoverable. The present invention comprises a significant advantage in that useable energy can be obtained from a number of abandoned mine sites or other areas wherein coal is no longer being recovered, and such energy can be obtained in a safe, efficient, and inexpensive manner.

Volkwein, Jon C. (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

493

Estimation of wind characteristics at potential wind energy conversion sites  

SciTech Connect

A practical method has been developed and applied to the problem of determining wind characteristics at candidate wind energy conversion sites where there are no available historical data. The method uses a mass consistent wind flow model (called COMPLEX) to interpolate between stations where wind data are available. The COMPLEX model incorporates the effects of terrain features and airflow. The key to the practical application of COMPLEX to the derivation of wind statistics is the model's linearity. This allows the input data sets to be resolved into orthogonal components along the set of eigenvectors of the covariance matrix. The solution for each eigenvector is determined with COMPLEX; the hourly interpolated winds are then formed from linear combinations of these solutions. The procedure requires: acquisition and merger of wind data from three to five stations, application of COMPLEX to each of the seven to 11 (depending on the number of stations for which wind data are available) eigenvectors, reconstruction of the hourly interpolated winds at the site from the eigenvector solutions, and finally, estimating the wind characteristics from the simulated hourly values. The report describes the methodology and the underlying theory. Possible improvements to the procedure are also discussed.

1979-10-01T23:59:59.000Z

494

Portsmouth DUF6 Conversion Final EIS - Appendix D: Environmental Synopsis for the Depleted UF6 Conversion Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS APPENDIX D: ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT Environmental Synopsis D-2 Portsmouth DUF 6 Conversion Final EIS ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT (Solicitation No. DE-RP05-01OR22717) October 2002 Environmental Assessment Division Argonne National Laboratory Argonne, Illinois Prepared for Office of Site Closure - Oak Ridge Office (EM-32) Office of Environmental Management U.S. Department of Energy Washington, D.C. October 2002 iii CONTENTS 1 INTRODUCTION........................................................................................................... 1 2 BACKGROUND.............................................................................................................

495

Paducah DUF6 Conversion Final EIS - Appendix D: Environmental Synopsis for the Depleted UF6 Conversion Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX D: ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT Environmental Synopsis D-2 Paducah DUF 6 Conversion Final EIS ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT (Solicitation No. DE-RP05-01OR22717) October 2002 Environmental Assessment Division Argonne National Laboratory Argonne, Illinois Prepared for Office of Site Closure - Oak Ridge Office (EM-32) Office of Environmental Management U.S. Department of Energy Washington, D.C. October 2002 iii CONTENTS 1 INTRODUCTION........................................................................................................... 1 2 BACKGROUND............................................................................................................. 3 3

496

Thermo-chemical energy conversion and storage. Final report  

DOE Green Energy (OSTI)

Research support for the cyclohexane/benzene heat pipe development program at Sandia Laboratories is reported. The apparent kinetics of the gas-phase catalytic dehydrogenation of cyclohexane to benzene in an internally recirculated (gradientless) reactor over the temperature range from 500 to 800/sup 0/F at 1 atm at various space velocities was studied. A kinetic model was developed based on a reversible mass-action rate expression and a catalyst effectiveness factor which is able to correlate both the conversion and reaction rate data very well over the temperature range 500 to 750/sup 0/F. The data taken at 800/sup 0/F appear to be qualitatively and quantitatively different than the data taken at the lower temperatures. It is not as yet clear, whether this can be attributed to a change in kinetic mechanism or some reversible alteration of the catalyst surface at the higher temperature. The formation of side products in this system over the same temperature range was also studied. Both the number and amount of side product(s) formed increases with increasing temperature and residence time. Over the temperature range from 500 to 600/sup 0/F the side products produced appear to be strongly related to the presence of low molecular weight unsaturated hydrocarbon impurities in the (reagent grade) cyclohexane feed and it is possible that no side products would be formed were it not for the presence of these impurities. At temperatures above 600/sup 0/F, both the number and amount of side product(s) produced increases markedly. A test loop was designed and partially fabricated which will permit the study of the effects of long term continuous cycling of the system on catalyst activity and side product formation.

Ritter, A.B.; DeLancey, G.B.; Schneider, J.; Silla, H.

1978-09-01T23:59:59.000Z

497

Direct Energy Conversion for Fast Reactors  

DOE Green Energy (OSTI)

Thermoelectric generators (TEG) are a well-established technology for compact low power output long-life applications. Solid state TEGs are the technology of choice for many space missions and have also been used in remote earth-based applications. Since TEGs have no moving parts and can be hermetically sealed, there is the potential for nuclear reactor power systems using TEGs to be safe, reliable and resistant to proliferation. Such power units would be constructed in a manner that would provide decades of maintenance-free operation, thereby minimizing the possibility of compromising the system during routine maintenance operations. It should be possible to construct an efficient direct energy conversion cascade from an appropriate combination of solid-state thermoelectric generators, with each stage in the cascade optimized for a particular range of temperature. Performance of cascaded thermoelectric devices could be further enhanced by exploitation of compositionally graded p-n couples, as well as radial elements to maximize utilization of the heat flux. The Jet Propulsion Laboratory in Pasadena has recently reported segmented unicouples that operate between 300 and 975 K and have conversion efficiencies of 15 percent [Caillat, 2000]. TEGs are used in nuclear-fueled power sources for space exploration, in power sources for the military, and in electrical generators on diesel engines. Second, there is a wide variety of TE materials applicable to a broad range of temperatures. New materials may lead to new TEG designs with improved thermoelectric properties (i.e. ZT approaching 3) and significantly higher efficiencies than in designs using currently available materials. Computational materials science (CMS) has made sufficient progress and there is promise for using these techniques to reduce the time and cost requirements to develop such new TE material combinations. Recent advances in CMS, coupled with increased computational power afforded by the Accelerated Strategic Computing Initiative (ASCI), should improve the speed and decrease the cost of developing new TEGs. The system concept to be evaluated is shown in Figure 1. Liquid metal is used to transport heat away from the nuclear heat source and to the TEG. Air or liquid (water or a liquid metal) is used to transport heat away from the cold side of the TEG. Typical reactor coolants include sodium or eutectic mixtures of lead-bismuth. These are coolants that have been used to cool fast neutron reactors. Heat from the liquid metal coolant is rejected through the thermal electric materials, thereby producing electrical power directly. The temperature gradient could extend from as high as 1300 K to 300 K, although fast reactor structural materials (including those used to clad the fuel) currently used limit the high temperature to about 825K.

Brown, N.; Cooper, J.; Vogt, D.; Chapline, G.; Turchi, P.; Barbee Jr., T.; Farmer, J.

2000-07-01T23:59:59.000Z

498

The Scalable Parallel Random Number Generators (SPRNG) ...  

Science Conference Proceedings (OSTI)

... Random Number Generators (SPRNG) Library is a widely used tool for random number generation on high-performance computing platforms. ...

2011-05-04T23:59:59.000Z

499

Impact of thermal pretreatment on the fast pyrolysis conversion of Southern Pine  

Science Conference Proceedings (OSTI)

Background: Thermal pretreatment of biomass ranges from simple (nondestructive) drying to more severe treatments that cause devolatization, depolymerization and carbonization. These pretreatments have demonstrated promise for transforming raw biomass into feedstock material that has improved milling, handling, storage and conversion properties. In this work, southern pine material was pretreated at 120, 180, 230 and 270 degrees C, and then subjected to pyrolysis tests in a continuous-feed bubbling-fluid bed pyrolysis system. Results: High pretreatment temperatures were associated with lower specific grinding energies, higher grinding rates and lower hydrogen and oxygen contents. Higher pretreatment temperatures were also correlated with increased char production, decreased total acid number and slight decrease in the oxygen content of the pyrolysis liquid fraction. Conclusion: Thermal pretreatment has both beneficial and detrimental impacts on fast pyrolysis conversion of pine material to bio-oil, and the effect of thermal pretreatment on upgrading of pyrolysis bio-oil requires further attention.

Tyler L. Westover; Manunya Phanphanich; Micael L. Clark; Sharna R. Rowe; Steven E. Egan; Christopher T Wright; Richard D. Boardman; Alan H. Zacher

2013-01-01T23:59:59.000Z

500

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation