Powered by Deep Web Technologies
Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

T-561: IBM and Oracle Java Binary Floating-Point Number Conversion Denial  

Broader source: Energy.gov (indexed) [DOE]

61: IBM and Oracle Java Binary Floating-Point Number Conversion 61: IBM and Oracle Java Binary Floating-Point Number Conversion Denial of Service Vulnerability T-561: IBM and Oracle Java Binary Floating-Point Number Conversion Denial of Service Vulnerability February 21, 2011 - 7:00am Addthis PROBLEM: IBM and Oracle Java Binary Floating-Point Number Conversion Denial of Service Vulnerability. PLATFORM: The following Java products are affected: Java SE: Oracle JDK and JRE 6 Update 23 and prior for Windows, Solaris, and Linux Oracle JDK 5.0 Update 27 and prior for Solaris 9 Oracle SDK 1.4.2_29 and prior for Solaris 8 IBM JDK 6 Update SR9 and prior IBM JDK 5 Update SR12-FP3 and prior IBM JDK 1.4.2 Update SR13-FP8 and prior Java for Business: Oracle JDK and JRE 6 Update 23 and prior for Windows, Solaris, and Linux Oracle JDK and JRE 5.0 Update 27 and prior for Windows, Solaris, and Linux

2

Overview o floating point  

E-Print Network [OSTI]

condition codes and branches are same as for single-precision o absolute value and negation can Co-processor o Integer, BCD, and floating point representations o floating point have sign instructions) or even popped twice (FCOMPP) o tests set condition codes: - C0: less or unordered

Biagioni, Edoardo S.

3

Improving Floating Point Compression  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improving Improving Floating Point Compression through Binary Masks Leonardo A. Bautista Gomez Argonne National Laboratory Franck Cappello Argonne National Laboratory Abstract-Modern scientific technology such as particle accel- erators, telescopes and supercomputers are producing extremely large amounts of data. That scientific data needs to be processed using systems with high computational capabilities such as supercomputers. Given that the scientific data is increasing in size at an exponential rate, storing and accessing the data is becoming expensive in both, time and space. Most of this scientific data is stored using floating point representation. Scientific applications executed in supercomputers spend a large amount of CPU cycles reading and writing floating point values, making data compression techniques an interesting way to increase computing efficiency.

4

T-561: IBM and Oracle Java Binary Floating-Point Number Conversion...  

Broader source: Energy.gov (indexed) [DOE]

could enter a repetitive loop, becoming unresponsive. PatchesSoftware Downloads Patch Availability Table IBM has released fixes at the following links: PM32177 ; PM32175 ;...

5

IEEE Standard unifies arithmetic model Floating points  

E-Print Network [OSTI]

calls this quantity eps, which is short for machine epsilon. eps = 2^(­52) What is the output? a = 4/3 b of eps. The approximate decimal value of eps is 2.2204 · 10-16 . Either eps/2or eps can be called is rounded to the nearest floating-point number is eps/2. The maximum relative spacing between numbers is eps

Beron-Vera, Francisco Javier

6

Evaluating Energy Efficiency of Floating Point Matrix Multiplication on FPGAs  

E-Print Network [OSTI]

Evaluating Energy Efficiency of Floating Point Matrix Multiplication on FPGAs Kiran Kumar Matam, prasanna}@usc.edu Abstract--Energy efficiency has emerged as one of the key performance metrics in scientific computing. In this work, we evaluate the energy efficiency of floating point matrix multipli

Prasanna, Viktor K.

7

Compositional analysis of floating-point linear numerical filters  

E-Print Network [OSTI]

Compositional analysis of floating-point linear numerical filters David Monniaux CNRS / Laboratoire filters are used in a variety of applications (sound treatment, control/command, etc.), implemented experience with the Astr´ee static analyzer [3] is that precise analysis of the numerical behavior

Monniaux, David

8

A Combined Decimal and Binary Floating-point Divider  

E-Print Network [OSTI]

to most recent decimal divider designs, which are based on the Binary Coded Decimal (BCD) encoding, our Integer Decimal (BID) encoding. DPD is a compressed form of the Binary Coded Decimal (BCD) encoding on the BCD encoding [3],[4],[5], using the DPD encoding for floating-point and the BCD encoding for fixed

Nannarelli, Alberto

9

Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint  

SciTech Connect (OSTI)

The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

2012-04-01T23:59:59.000Z

10

A bit-serial floating point multiply/add architecture for signal processing applications  

E-Print Network [OSTI]

Add . . . . . . . . . . 5 I I I . DESIGN CONSIDERATIONS . . . . . ~, ~ ~ ~ ~ ~ 8 State of the Art e . 8 The Floating Point Format. . . . ~ . ~ ~ . 14 The Bit-Serial Architectures . . . . . . . 19 Pipelined Architecture for a Serial Data Path... Point Muit'Iplier Block Diagram 12 3. General Sequentiaf Multiplier Block Diagram . 13 4. Bit-Serfal Multiplier Block Diagram 15 5. IEEE 32-bit Floating Point Format. . . . . . 17 6. Reduced Floating Point Format 18 7. The Bit-Serial Architecture...

Williams, Bertrand Jeffery

2012-06-07T23:59:59.000Z

11

Floating point only SIMD instruction set architecture including compare, select, Boolean, and alignment operations  

DOE Patents [OSTI]

Mechanisms for implementing a floating point only single instruction multiple data instruction set architecture are provided. A processor is provided that comprises an issue unit, an execution unit coupled to the issue unit, and a vector register file coupled to the execution unit. The execution unit has logic that implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA). The floating point vector registers of the vector register file store both scalar and floating point values as vectors having a plurality of vector elements. The processor may be part of a data processing system.

Gschwind, Michael K. (Chappaqua, NY)

2011-03-01T23:59:59.000Z

12

Experimental Wave Tank Test for Reference Model 3 Floating-Point...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experimental Wave Tank Test for Reference Model 3 Floating- Point Absorber Wave Energy Converter Project Y.-H. Yu, M. Lawson, and Y. Li National Renewable Energy Laboratory M....

13

HIGHER RADIX FLOATING-POINT REPRESENTATIONS FOR FPGA-BASED ARITHMETIC  

E-Print Network [OSTI]

will provide an order of magnitude greater sustained floating-point throughput than conventional processors [1 materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory

14

A rapid-approximation floating-point mathematics package for the INTEL 8080 microprocessor  

E-Print Network [OSTI]

or floating-point format for maximum storage utilization. However, values output for human interpreta- tion should normally be in the Binary Coded Decimal (BCD), the Extended Binary Coded Decimal Interchange Code (EBCDIC), or the American Standard Code... be formatted in the BCD representation code. Second, externally stored numeric data must be in the logarithmic format. Additionally, operands must be con- verted to the floating-point format before all addition or subtraction operations. The mathematics...

Cariker, Earnest Allan

2012-06-07T23:59:59.000Z

15

Generating and executing programs for a floating point single instruction multiple data instruction set architecture  

DOE Patents [OSTI]

Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA) are provided. A computer program product comprising a computer recordable medium having a computer readable program recorded thereon is provided. The computer readable program, when executed on a computing device, causes the computing device to receive one or more instructions and execute the one or more instructions using logic in an execution unit of the computing device. The logic implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA), based on data stored in a vector register file of the computing device. The vector register file is configured to store both scalar and floating point values as vectors having a plurality of vector elements.

Gschwind, Michael K

2013-04-16T23:59:59.000Z

16

Software Aspects of IEEE Floating-Point Computations for Numerical Applications in High Energy Physics  

ScienceCinema (OSTI)

Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided About the speaker Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2 years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.

None

2011-10-06T23:59:59.000Z

17

A flexible floating-point wavelet transform and wavelet packet processor  

Science Journals Connector (OSTI)

The richness of wavelet transformation is known in many fields. There exist different classes of wavelet filters that can be used depending on the application. In this paper, we propose an IEEE 754 floating-point lifting-based wavelet processor that ...

Andre Guntoro; Manfred Glesner

2009-04-01T23:59:59.000Z

18

RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RANS Simulation of the Heave RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber Preprint Y. Yu and Y. Li To be presented at ISOPE 2011 Maui, Hawaii June 19-24, 2011 Conference Paper NREL/CP-5000-50980 March 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,

19

Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Preliminary Results of a RANS Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions Y. Yu and Y. Li Presented at the 30 th International Conference on Ocean, Offshore, and Arctic Engineering Rotterdam, The Netherlands June 19 - 24, 2011 Conference Paper NREL/CP-5000-50967 October 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

20

Volume 28A, number 2 PHYSICS LETTERS 4 November 1968 HIGH ENERGY K CONVERSION COEFFICIENTS  

E-Print Network [OSTI]

Volume 28A, number 2 PHYSICS LETTERS 4 November 1968 HIGH ENERGY K CONVERSION COEFFICIENTS C. 0V) Fig. 1. Theoretical values for K conversion coefficients for 2 = 48. gamma-ray transition energies 1 and Astronomy: Louisiana State University, Baton Rouge, Louisiana. USA Received 21 September 1968 High energy K

O'Connell, Robert F.

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

How colors influence numbers: Photon statistics of parametric down-conversion  

Science Journals Connector (OSTI)

Parametric down-conversion (PDC) is a technique of ubiquitous experimental significance in the production of nonclassical, photon-number-correlated twin beams. Standard theory of PDC as a two-mode squeezing process predicts and homodyne measurements observe a thermal photon number distribution per beam. Recent experiments have obtained conflicting distributions. In this article, we explain the observation by an a priori theoretical model solely based on directly accessible physical quantities. We compare our predictions with experimental data and find excellent agreement.

Wolfgang Mauerer; Malte Avenhaus; Wolfram Helwig; Christine Silberhorn

2009-11-10T23:59:59.000Z

22

84Unit Conversions Energy, Power, Flux Energy is measured in a number of ways depending on what property is being  

E-Print Network [OSTI]

property is being represented. Total Energy - Joules and ergs - The total amount of energy in various forms is left on for 1 hour: Convert its energy consumption of 5 watt-hours to Joules. 1 Joule 3,600 sec 5 Watt84Unit Conversions ­ Energy, Power, Flux Energy is measured in a number of ways depending on what

23

VOLUME54, NUMBER9 PHYSICAL REVIEW LETTERS 4 MARCH1985 Conversion of Wave Energy to Magnetic Field Energy in a Plasma Torus  

E-Print Network [OSTI]

VOLUME54, NUMBER9 PHYSICAL REVIEW LETTERS 4 MARCH1985 Conversion of Wave Energy to Magnetic Field into plasma heating so that the conversion efficiency of rf energy to po- loidal field energy, given. Evidently, P,JP- 1. This points to a regime for efficient energy conversion except for two further effects

Karney, Charles

24

Comparison of x ray computed tomography number to proton relative linear stopping power conversion functions using a standard phantom  

SciTech Connect (OSTI)

Purpose: Adequate evaluation of the results from multi-institutional trials involving light ion beam treatments requires consideration of the planning margins applied to both targets and organs at risk. A major uncertainty that affects the size of these margins is the conversion of x ray computed tomography numbers (XCTNs) to relative linear stopping powers (RLSPs). Various facilities engaged in multi-institutional clinical trials involving proton beams have been applying significantly different margins in their patient planning. This study was performed to determine the variance in the conversion functions used at proton facilities in the U.S.A. wishing to participate in National Cancer Institute sponsored clinical trials. Methods: A simplified method of determining the conversion function was developed using a standard phantom containing only water and aluminum. The new method was based on the premise that all scanners have their XCTNs for air and water calibrated daily to constant values but that the XCTNs for high density/high atomic number materials are variable with different scanning conditions. The standard phantom was taken to 10 different proton facilities and scanned with the local protocols resulting in 14 derived conversion functions which were compared to the conversion functions used at the local facilities. Results: For tissues within 300 XCTN of water, all facility functions produced converted RLSP values within 6% of the values produced by the standard function and within 8% of the values from any other facility's function. For XCTNs corresponding to lung tissue, converted RLSP values differed by as great as 8% from the standard and up to 16% from the values of other facilities. For XCTNs corresponding to low-density immobilization foam, the maximum to minimum values differed by as much as 40%. Conclusions: The new method greatly simplifies determination of the conversion function, reduces ambiguity, and in the future could promote standardization between facilities. Although it was not possible from these experiments to determine which conversion function is most appropriate, the variation between facilities suggests that the margins used in some facilities to account for the uncertainty in converting XCTNs to RLSPs may be too small.

Moyers, M. F., E-mail: MFMoyers@roadrunner.com [Shanghai Proton and Heavy Ion Center, Shanghai, China 201321 (China)

2014-06-15T23:59:59.000Z

25

Conversion of the energy-subtracted CT number to electron density based on a single linear relationship: an experimental verification using a clinical dual-source CT scanner  

Science Journals Connector (OSTI)

In radiotherapy treatment planning, the conversion of the computed tomography (CT) number to electron density is one of the main processes that determine the accuracy of patient dose calculations. However, in general, the CT number and electron density of tissues cannot be interrelated using a simple one-to-one correspondence. This study aims to experimentally verify the clinical feasibility of an existing novel conversion method proposed by the author of this note, which converts the energy-subtracted CT number (?HU) to the relative electron density (?e) via a single linear relationship by using a dual-energy CT (DECT). The ?HU?econversion was performed using a clinical second-generation dual-source CT scanner operated in the dual-energy mode with tube potentials of 80kV and 140kV with and without an additional tin filter. The ?HU?ecalibration line was obtained from the DECT image acquisition for tissue substitutes in an electron density phantom. In addition, the effect of object size on ?HU?econversion was also experimentally investigated. The plot of the measured ?HU versus nominal ?evalues exhibited a single linear relationship over a wide ?erange from 0.00 (air) to 2.35 (aluminum). The ?HU?econversion performed with the tin filter yielded a lower dose and more reliable ?evalues that were less affected by the object-size variation when compared to the corresponding values obtained for the case without the tin filter.

Masayoshi Tsukihara; Yoshiyuki Noto; Takahide Hayakawa; Masatoshi Saito

2013-01-01T23:59:59.000Z

26

CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"  

SciTech Connect (OSTI)

The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.

Norris, Rober [ORNL] [ORNL; Paulauskas, Felix [ORNL] [ORNL; Naskar, Amit [ORNL] [ORNL; Kaufman, Michael [ORNL] [ORNL; Yarborough, Ken [ORNL] [ORNL; Derstine, Chris [The Dow Chemical Company] [The Dow Chemical Company

2013-10-01T23:59:59.000Z

27

Photoelectrochemical solar energy conversion  

Science Journals Connector (OSTI)

In the present paper the progress in the field of solar energy conversion for the production of electricity and storable ... critically analyzed in view of their stability and conversion efficiency. A number of factors

Rdiger Memming

1988-01-01T23:59:59.000Z

28

Number  

Office of Legacy Management (LM)

' ' , /v-i 2 -i 3 -A, This dow'at consists ~f--~-_,_~~~p.~,::, Number -------of.-&--copies, 1 Series.,-a-,-. ! 1 THE UNIVERSITY OF ROCHESTER 1; r-.' L INTRAMURALCORRESPONDENCE i"ks' 3 2.. September 25, 1947 Memo.tor Dr. A. H, Dovdy . From: Dr. H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical F!orks, Mayvood, New Jersey one of 2 plants in the U.S.A. engaged in the production of thorium compounds. The purpose of the trip vas to: l 1. Learn the type of chemical processes employed in the thorium industry (thorium nitrate). 2. Survey conditions of eeosure of personnel associated vith these chemical processes. 3. Obtain samples of atmospheric contaminants in the plant, as

29

Avatar augmented online conversation  

E-Print Network [OSTI]

One of the most important roles played by technology is connecting people and mediating their communication with one another. Building technology that mediates conversation presents a number of challenging research and ...

Vilhjlmsson, Hannes Hgni

2003-01-01T23:59:59.000Z

30

Abstract. --Practical problems encountered in a number of advanced technology applications, particularly those related to energy conversion, are discussed. Refractory ionic compounds which are  

E-Print Network [OSTI]

, particularly those related to energy conversion, are discussed. Refractory ionic compounds which are abundant, b) high temperature gas turbine blades, c) insulators in controlled thermonuclear reactors, and d how important it nance and vibronic spectra were first studied in these is to use the insight

Boyer, Edmond

31

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Single-Chip Wavelength Conversion Using a  

E-Print Network [OSTI]

wavelength conversion. The InP-InGaAsP offset quantum-well shallow- ridge technology platform has been shown been thinned, and individual bars SGDBRSOA EAM PINSOA Receiver RLoad Transmitter in out InP/InGaAsP to 10 GHz. Index Terms-- Electro-absorption modulators (EAMs), offset quantum well, sampled grating

Coldren, Larry A.

32

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 1, September 1--December 31, 1996  

SciTech Connect (OSTI)

Energy Conversions Incorporated has made substantial progress on the EMD-710 dual-fuel test cell in the first quarter of the project. The project is on schedule and has not met with any major roadblocks that would derail the planned timetable. Please note that much of the work done started before the funding arrived, and therefore those items are not included in the financial expenditures for the quarter.

NONE

1997-01-08T23:59:59.000Z

33

Distinguished Mathematics Professors Named  

E-Print Network [OSTI]

Thus, a successful system needs to use floating-point arithmetic for testing whether answers ... transformed into the floating-point number nearest to .1, which is.

2005-06-02T23:59:59.000Z

34

Parallel solver for semidefinite programming problem having sparse ...  

E-Print Network [OSTI]

Since the computation cost for floating-point multiplications is generally greater ... is approximately proportional to the number of floating-point multiplications.

2010-09-14T23:59:59.000Z

35

Conversion Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

36

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan

2012-01-01T23:59:59.000Z

37

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 2, January 1--March 31, 1997  

SciTech Connect (OSTI)

Energy Conversions Incorporated has continued to work on the EMD-710 dual-fuel test cell in the second quarter of the project. The project is on schedule and is sticking to their original timeline. The tasks performed and percent complete are spark prechamber work--50% done; diesel prechamber work--50% done; gas compressor--100% complete; port injection work--50% complete; hydraulic gas inlet valve work--30% complete; knock board modifications--75% complete; test documentation--50% complete; record data from navy generator and offshore rigs--50% complete and single cylinder testing--50% complete. The authors continued to do much of their parts testing on single cylinder gas operation. The single cylinder testing will likely continue throughout the 710 development.

NONE

1997-04-11T23:59:59.000Z

38

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 3, April 1--June 30, 1997  

SciTech Connect (OSTI)

This quarter the project focused primarily in two basic areas. Approximately 60% of the time was applied at continuing to manufacture and test alternate designs of the diesel prechamber and its associated auxiliary equipment. Approximately 23% time was applied to the hydraulic actuation of the gas injector and the design work of applying the gas injector to the engines cylinder liner. The remaining 17% time was spread over a number of areas two of which include the completion of knock detection system and test facility calibration and service.

NONE

1997-06-30T23:59:59.000Z

39

Develop the dual fuel conversion system for high output, medium speed diesel engines. Quarterly report number 4, July--September, 1997  

SciTech Connect (OSTI)

This quarter started out with fresh ability to perform sustained engine operation on gas because of the successful operation of the gas compressor last quarter. The authors have completed baseline tests recording emissions and efficiency numbers. This gives the authors data that they have never before been able to acquire in the facility. In addition to the baseline data they have recorded data with a host of additional engine variables. These variables include the adjustments of ignition timing, air fuel ratio, air inlet temperatures and some propane seeding of the injected gas. With the background data on record they will be able to properly measure the level of positive impact that the port gas injection system provides. The remaining time in this quarter has been focused on completing the application of the port style gas injection system. The next steps in this project all pivot on the application of this port injection system. They have also progressed in the evaluation of the cylinder/engine monitoring system.

NONE

1997-09-23T23:59:59.000Z

40

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

Thermionic Solar Energy Conversion SLAC National Accelerator Laboratory Award Number: CPS 25659 | April 15, 2013 | Melosh * Fabricate heterostructure semiconductor cathodes based...

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Resource Limits and Conversion Efficiency with Implications for Climate Change  

E-Print Network [OSTI]

Repowering Project, Clean Coal Topical Report Number 20,P. and Nel, H. G. 2004, Clean coal conversion options using

Croft, Gregory Donald

2009-01-01T23:59:59.000Z

42

Conversion Electrons of Radium D  

Science Journals Connector (OSTI)

The conversion electrons of radium D have been studied with thin sources on thin backings in a beta-ray spectrograph using calibrated photographic emulsions. The number of conversion electrons due to the 47-kev gamma-ray has been measured to be 745 per hundred disintegrations. The L:M:N ratio is 1:0.26:0.077. This implies a complex decay scheme for radium D, since earlier results give 3.5 unconverted 47-kev gamma-rays per hundred disintegrations.

Lawrence Cranberg

1950-01-15T23:59:59.000Z

43

Cost Effective Bioethanol via Acid Pretreatment of Corn Stover, Saccharification, and Conversion via a Novel Fermentation Organism: Cooperative Research and Development Final Report, CRADA Number: CRD-12-485  

SciTech Connect (OSTI)

This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scale the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.

Dowe, N.

2014-05-01T23:59:59.000Z

44

BETO Conversion Program  

Broader source: Energy.gov [DOE]

Breakout Session 2AConversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing BETO Conversion Program Bryna Berendzen, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

45

Solar Thermoelectric Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

46

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

a novel method of solar energy conversion that can lead tofundamentals of plasmonic energy conversion are reviewed in3. Plasmonic energy conversion fundamentals Surface plasmons

Clavero, Cesar

2014-01-01T23:59:59.000Z

47

Nx-TEC: Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

(MSE), ZX Shen (SIMES), Roger Howe (EE) Nx-TEC: Next-Generation Thermionic Solar Energy Conversion SLAC National Accelerator Laboratory Award Number:CPS 25659 Start date:...

48

Designing Semiconductor Metal Oxides for Photoelectrochemical Energy Conversion  

Science Journals Connector (OSTI)

Innovative materials hold the key for renewable energy conversion. In this talk, we will introduce our recent progress in semiconducting metal oxides, which underpin a number of...

Wang, Lianzhou

49

Iterated multidimensional wave conversion  

SciTech Connect (OSTI)

Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

Brizard, A. J. [Dept. Physics, Saint Michael's College, Colchester, VT 05439 (United States); Tracy, E. R.; Johnston, D. [Dept. Physics, College of William and Mary, Williamsburg, VA 23187-8795 (United States); Kaufman, A. N. [LBNL and Physics Dept., UC Berkeley, Berkeley, CA 94720 (United States); Richardson, A. S. [T-5, LANL, Los Alamos, NM 87545 (United States); Zobin, N. [Dept. Mathematics, College of William and Mary, Williamsburg, VA 23187-8795 (United States)

2011-12-23T23:59:59.000Z

50

Symbolic-Algebraic Computations in a Modeling Language for ...  

E-Print Network [OSTI]

Nov 26, 1999 ... tation for floating-point numbers described in the IEEE (1985) arithmetic ... and rounding of a decimal string to a floating-point interval of width at...

1910-00-91T23:59:59.000Z

51

View  

E-Print Network [OSTI]

Oct 29, 2008 ... serial machine in floating point is well below our needs. 3 Notation. We are given an m d design matrix P of floating point numbers and an.

2008-10-28T23:59:59.000Z

52

Processing and Conversion  

Broader source: Energy.gov [DOE]

The strategic goal of Conversion Research and Development (R&D) is to develop technologies for converting feedstocks into commercially viable liquid transportation fuels, as well as bioproducts...

53

Algae Harvest Energy Conversion  

Science Journals Connector (OSTI)

Resolution of many workshops on algae harvest energy conversion is that low productivity, high capital intensity ... and maintenance, respiration, and photoinhibition are few factors militating against viability ...

Yung-Tse Hung Ph.D.; P.E.; DEE; O. Sarafadeen Amuda Ph.D.

2010-01-01T23:59:59.000Z

54

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network [OSTI]

QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin Januaryas it occurs in modern photosynthesis can only take place inof the problem or photosynthesis, or any specific aspect of

Calvin, Melvin

2008-01-01T23:59:59.000Z

55

Photovoltaic Energy Conversion  

E-Print Network [OSTI]

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Make solar cells more efficient Theoretical energy conversion efficiency limit of single junction-bandgap photons are not absorbed: Carrier relaxation to band edges: Photon energy exceeding bandgap is lost

Glashausser, Charles

56

Technical Support to SBIR Phase II Project: Improved Conversion of Cellulose Waste to Ethanol Using a Dual Bioreactor System: Cooperative Research and Development Final Report, CRADA Number CRD-08-310  

SciTech Connect (OSTI)

Over-dependence on fossil fuel has spurred research on alternative energy. Inedible plant materials such as grass and corn stover represent abundant renewable natural resources that can be transformed into biofuel. Problems in enzymatic conversion of biomass to sugars include the use of incomplete synergistic enzymes, end-product inhibition, and adsorption and loss of enzymes necessitating their use in large quantities. Technova Corporation will develop a defined consortium of natural microorganisms that will efficiently break down biomass to energy-rich soluble sugars, and convert them to cleaner-burning ethanol fuel. The project will also develop a novel biocatalytic hybrid reactor system dedicated to this bioprocess, which embodies recent advances in nanotechnology. NREL will participate to develop a continuous fermentation process.

Zhang, M.

2013-04-01T23:59:59.000Z

57

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Jones and w.s. Fong, Biomass Conversion of Biomass to Fuels11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII RonaldLBL-11902 Biomass Energy Conversion in Hawaii Ronald 1.

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

58

Wave Energy Conversion Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

59

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

60

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network [OSTI]

of applications, notably energy conversion. As researchnanowires for energy conversion. Chemical Reviews, 2010.Implications for solar energy conversion. Physical Review

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

62

Structured luminescence conversion layer  

DOE Patents [OSTI]

An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

2012-12-11T23:59:59.000Z

63

Conversion Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation of new and converted filesdatabases; coordinates the...

64

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

of solar energy into electricity in photovoltaic cells orsolar energy conversion aimed at photovoltaic applicationsenergy conversion, opening a new venue for photovoltaic and

Clavero, Cesar

2014-01-01T23:59:59.000Z

65

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

of carriers allows maintaining the energy conversionenergy conversion 8 Timescale of charge separation, carrierin this energy conversion method, i.e. carrier regeneration

Clavero, Cesar

2014-01-01T23:59:59.000Z

66

Absolute Factorization of Bivariate Polynomials with Floating Point Coe cients Andr Galligo and Stephen M. Watt  

E-Print Network [OSTI]

and Stephen M. Watt University of Nice-Sophia Antipolis Given a polynomial px y of degree d and complex oating

Watt, Stephen M.

67

Solving Constraints on the Invisible Bits of the Intermediate Result for Floating-Point Verification  

E-Print Network [OSTI]

Solving Constraints on the Invisible Bits of the Intermediate Result for Floating as the invisible bits. We deal with corner cases that can only be defined via constraints on the intermediate on the invisible bits and the sticky bit, find two inputs for the operation that yield an intermediate result

California at Davis, University of

68

Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project  

SciTech Connect (OSTI)

The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

2015-01-01T23:59:59.000Z

69

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

70

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

71

MHK Technologies/Mobil Stabilized Energy Conversion Platform | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Mobil Stabilized Energy Conversion Platform MHK Technologies/Mobil Stabilized Energy Conversion Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Mobil Stabilized Energy Conversion Platform.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Reciprocating Device Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Stabilized Energy Conversion Platform SECOP consists of submersible hulls supporting a raised work platform containing a number of AMI s reciprocating electric generators Technology Dimensions Device Testing Date Submitted 34:44.5 << Return to the MHK database homepage Retrieved from

72

Energy Conversion to Electricity  

Science Journals Connector (OSTI)

30 May 1974 research-article Energy Conversion to Electricity D. Clark...continuing growth in the demand for energy, and of electricity as the route...the electricity share of the total energy market and of the substitution of electricity...

1974-01-01T23:59:59.000Z

73

Solar Energy Conversion  

Science Journals Connector (OSTI)

If solar energy is to become a practical alternative to fossil fuels we must have efficient ways to convert photons into electricity fuel and heat. The need for better conversion technologies is a driving force behind many recent developments in biology materials and especially nanoscience.

George W. Crabtree; Nathan S. Lewis

2008-01-01T23:59:59.000Z

74

Campus Conversations: CLIMATE CHANGE  

E-Print Network [OSTI]

review and input from scholars with expertise in climate change and communication. #12; Welcome Thank youCampus Conversations: CLIMATE CHANGE AND THE CAMPUS Southwestern Pennsylvania Program booklet is an adaptation and updating of Global Warming and Climate Change, a brochure developed in 1994

Attari, Shahzeen Z.

75

Solar energy conversion.  

SciTech Connect (OSTI)

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

76

NETL: Gasification Systems - Conversion and Fouling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Fouling Conversion and Fouling NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 3 Project Description The objective for this NETL in-house conversion and fouling project is to improve the reliability, availability and maintainability (RAM) of gasification plants by providing tools that can be used to evaluate the impact that fuel properties have on slag and refractory interaction, and to reduce plugging and fouling throughout the syngas cooling system. Utilizing these tools will aid in minimizing plugging and fouling-increasing overall plant efficiency due to improved heat transfer in heat exchangers. Particle deposition experimental schematic Particle deposition experimental schematic (click to enlarge) Project Details Program Background and Project Benefits

77

Energy Conversion | Global and Regional Solutions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Conversion Group Energy Conversion Group The Energy Conversion Group offers advanced technical solutions to achieve reduced fossil fuel use in geothermal power and building energy applications. Focus is on advanced materials, biofuel end use, combustion and system concepts. We seek to continuously improve the capabilities of relevant research tools being applied in collaborative initiatives to achieving these goals. Capabilities The group conducts research in a number of energy-related areas. These include advanced materials for geothermal energy, applications of biofuels and alternative fuels, efficiency in heating/cooling equipment, advanced oil burner development and particulate emissions for wood boilers. Advanced Materials for Geothermal Energy Supercritical carbon dioxide has properties midway between a gas and a

78

Wind energy conversion system  

DOE Patents [OSTI]

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

79

Session: Energy Conversion  

SciTech Connect (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

1992-01-01T23:59:59.000Z

80

Conversion of Questionnaire Data  

SciTech Connect (OSTI)

During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

Powell, Danny H [ORNL] [ORNL; Elwood Jr, Robert H [ORNL] [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network [OSTI]

Nanowires and Nanotubes for Energy Conversion By MelissaNanowires and Nanotubes for Energy Conversion by MelissaNanowires and Nanotubes for Energy Conversion by Melissa

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

82

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

83

Advanced Conversion Roadmap Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Conversion Roadmap Workshop DOE introduction slides to the Advanced Conversion Roadmap Workshop webinar. ctabwebinardoe.pdf More Documents & Publications Conversion...

84

Battery Chargers | Electrical Power Conversion and Storage  

Broader source: Energy.gov (indexed) [DOE]

Battery Chargers | Electrical Power Conversion and Storage Battery Chargers | Electrical Power Conversion and Storage 625 West A Street | Lincoln, NE 68522-1794 | LesterElectrical.com P: 402.477.8988 | F: 402.441.3727, 402.474.1769 (Sales) MEMORANDUM TO: United States Department of Energy (DOE), Via Email, expartecommunications@hq.doe.gov FROM: Spencer Stock, Product Marketing Manager, Lester Electrical DATE: June 18, 2012 RE: Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 On Monday, June 11, 2012, representatives from Lester Electrical and Ingersoll Rand met with DOE to discuss the Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Battery Chargers and External Power Supplies, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57.

85

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network [OSTI]

energy conversion . . . . . . . . . . . . . . . . . . . . . . . . . .other pyroelectric energy conversion methods . . . . Chapter6 Pyroelectric Energy Conversion using PLZT and

Lee, Felix

2012-01-01T23:59:59.000Z

86

Issues related to wind energy conversion systems  

Science Journals Connector (OSTI)

There is growing interest in the development of more sustainable electricity systems employing renewable, low-emission resources. In this context, the number of wind power generators installed in the world is increasing, and there are strong indicators that such growth should continue in the next decades. The intensity of wind power expansion depends on different factors related to technical, economic, environmental, governmental, and regulatory issues. This paper presents an overview on various issues related to wind energy conversion systems.

Walmir Freitas; Ahmed Faheem Zobaa; Jose C.M. Vieira; James S. McConnach

2005-01-01T23:59:59.000Z

87

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

88

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

Sugama, T.

1997-02-18T23:59:59.000Z

89

22 - Conversion Factors  

Science Journals Connector (OSTI)

Abstract This chapter details the viscosity and pressure conversion chart. To convert absolute or dynamic viscosity from one set of units to another, one must locate the given set of units in the left-hand column then multiply the numerical value by the factor shown horizontally to the right-hand side, under the set of units desired. The chapter also explains that to convert kinematic viscosity from one set of units to another, one must locate the given set of units in the left-hand column and multiply the numerical value by the factor shown horizontally to the right-hand side, under the set of units desired. The chapter also defines how the conversion from natural gas to other fuels has progressed from possibility to reality for many companies and will become necessary for many others in months and years ahead. Fuels that are considered practical replacements for gas include coal, heavy fuel oils, middle distillates (such as kerosinetypeturbo fuel and burner fuel oils) and liquefied petroleum gas.

2014-01-01T23:59:59.000Z

90

Energy conversion system  

DOE Patents [OSTI]

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

91

Energy conversion system  

DOE Patents [OSTI]

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

92

Here  

E-Print Network [OSTI]

point numbers), and 'f64vector' (vector of 64 bit floating point numbers). The external representation of bytevectors is similar to normal vectors but with the...

1999-03-06T23:59:59.000Z

93

540.ps.gz  

E-Print Network [OSTI]

2 must operate correctly on the real numbers non-representable in the. floating point form. Instead of such real numbers, we use thin intervals bounded by...

94

Wind energy conversion system  

SciTech Connect (OSTI)

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

95

Quantum optical waveform conversion  

E-Print Network [OSTI]

Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

D Kielpinski; JF Corney; HM Wiseman

2010-10-11T23:59:59.000Z

96

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

97

Biochemical Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by enhancing fuel yields in integrated biorefineries which combine conversion types with heat and power efficiencies to produce fuel and products. Lignocellulose (mainly lignin,...

98

Energy conversion by gravitational waves  

Science Journals Connector (OSTI)

... out that if such particles are charged, the accelerations will constitute a mechanism for the conversion of gravitational ... of gravitational energy into electromagnetic ...

H. BONDI; F. A. E. PIRANI

1988-03-17T23:59:59.000Z

99

Alternative Fuels Data Center: Conversion Regulations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversion Regulations Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Conversion Regulations on AddThis.com... Conversion Regulations All vehicle and engine conversions must meet standards instituted by the U.S. Environmental Protection Agency (EPA), the National Highway Traffic Safety Administration (NHTSA), and state agencies like the California Air Resources Board (CARB).

100

5, 35333559, 2005 Catalytic conversion  

E-Print Network [OSTI]

measurement technique, employing selective gas- phase catalytic conversion of methanol to formaldehyde it the second most abundant organic trace gas after methane. Methanol can play an important role in upper tropoACPD 5, 3533­3559, 2005 Catalytic conversion of methanol to formaldehyde S. J. Solomon et al. Title

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Management and Uses Conversion Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Conversion Depleted UF6 Conversion DOE is planning to build two depleted UF6 conversion facilities, and site-specific environmental impact statements (EISs) to evaluate project alternatives. The Final Plan for Conversion and the Programmatic EIS The eventual disposition of depleted UF6 remains the subject of considerable interest within the U.S. Congress, and among concerned citizens and other stakeholders. Congress stated its intentions in Public Law (P. L.) 105-204, signed by the President in July 1998. P. L. 105-204 required DOE to develop a plan to build two depleted UF6 conversion facilities, one each at Portsmouth, Ohio, and Paducah, Kentucky. DOE submitted the required plan, Final Plan for the Conversion of Depleted Uranium Hexafluoride, to Congress in July 1999. This document provided a discussion of DOE's technical approach and schedule to implement this project. Although much of the information provided in this report is still valid, a few aspects of this plan have changed since its publication.

102

EPA Redesigns Conversion Certification Policies  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EPA Redesigns EPA Redesigns Conversion Certification Policies At a recent meeting held in Washington, DC, officials from the U.S. Environmental Protection Agency (EPA) opened dialogue about proposed changes to its emission certification policies that affect alternative fuel vehicles (AFVs). "We are trying to accommo- date the Energy Policy Act (EPAct) and Executive Order requirements while trying to change enforce- ment policies and guidance with respect to conversions," said Rich Ackerman of EPA's Enforcement Office. The meeting, attended by representatives of more than 60 organizations, was held to discuss actions addressing AFV emission certification. Specifically, topics included * Conversion emissions perfor- mance data * Status of environmental laws pertaining to alternative fuel

103

Thermal Conversion Process (TCP) Technology  

Broader source: Energy.gov (indexed) [DOE]

Changing World Technologies' Changing World Technologies' Thermal Conversion Process Commercial Demonstration Plant DOE/EA 1506 Weld County, Colorado December 2004 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE 1617 Cole Boulevard Golden, Colorado 80401 Thermal Conversion Process (TCP) Technology Commercial Demonstration - Weld County, CO TABLE OF CONTENTS Environmental Assessment Thermal Conversion Process (TCP) Technology Commercial Demonstration Project Weld County, Colorado SUMMARY............................................................................................................................. S-1 1.0 INTRODUCTION.........................................................................................................1-1 1.1. National Environmental Policy Act and Related Procedures...........................1-1

104

paper2  

E-Print Network [OSTI]

cision. The costs and accuracies are compared. The code includes lines to count the flops (number of floating point operations) for all the steps and subroutines.

2014-01-21T23:59:59.000Z

105

On large scale unconstrained optimization problems and higher ...  

E-Print Network [OSTI]

columns marked dense, banded and skyline refers to the matrix structure and the tensor induced by the structure of the matrix. Table 1. Number of floating point...

2008-08-29T23:59:59.000Z

106

?-OPTIMIZATION SCHEMES AND L-BIT PRECISION ...  

E-Print Network [OSTI]

industry is the IEEE Standard for Binary Floating-Point Arithmetic [6, 13, 19]. Another reason why expressing numbers with L-bit precision seems realistic is that...

2004-09-05T23:59:59.000Z

107

On the impact of symmetry-breaking constraints on spatial Branch ...  

E-Print Network [OSTI]

floating point computations. Another approach consists in finding a relationship between the number of circles and the structure of the packings (patterns): if.

2011-04-12T23:59:59.000Z

108

Hyper-sparsity in the revised simplex method and how to exploit it  

E-Print Network [OSTI]

Oct 8, 2002 ... to be applied (unless there is an improbable amount of cancellation). Indeed the number of floating point operations required to perform these...

1910-40-10T23:59:59.000Z

109

mrg32k3a.scm  

E-Print Network [OSTI]

... In addition, it is assumed that floating point literals can be ; read and there is some arithmetics with inexact numbers. ; ; However, for advancing the state of the

110

MAPLE demo 4  

E-Print Network [OSTI]

p. 409 / 11abc. Make only one plot of your favorite approximate solution. REMARKS: evalf( ) evaluates to be the floating point real number form of its argument.

1998-07-20T23:59:59.000Z

111

errors  

E-Print Network [OSTI]

... Cant Find Variable Mentioned in NEXT Statement 136 Floating Point Overflow (Number too Large) 137 No Corresponding GOSUB for this RETURN statement...

112

Optimization Online - Block Structured Quadratic Programming for ...  

E-Print Network [OSTI]

Sep 11, 2009 ... We give a detailed account on the required number of floating point operations, depending on the process dimensions. Finally we demonstrate...

Christian Kirches

2009-09-11T23:59:59.000Z

113

Photovoltaic and photoelectrochemical conversion of solar energy  

Science Journals Connector (OSTI)

...multiple carrier generation...renewable energy|solar energy conversion|photovoltaic...photovoltaic energy conversion process...minority carriers in the p-type...efficiency carrier multiplication...for solar energy conversion. Phys...

2007-01-01T23:59:59.000Z

114

Alternative Fuels Data Center: Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversions Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversions on AddThis.com... Vehicle Conversions Photo of converted to run on propane. What kinds of conversions are available? Natural Gas Propane Electric Hybrid Ethanol An aftermarket conversion is a vehicle or engine modified to operate using

115

Alternative Fuels Data Center: Propane Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Conversions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Conversions Related Information Conversion Basics Regulations Vehicle conversions provide alternative fuel options beyond what is

116

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

117

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 UNIT NUMBER UNIT NAME Rubble oile 41 REGULATORY STATUS: AOC LOCATION: Butler Lake Dam, West end of Butler Lake top 20 ft wide, 10 ft APPROXIMATE DIMENSIONS: 200 ft long, base 30...

118

Chemical Conversions of Natural Precursors  

Science Journals Connector (OSTI)

Many products from the flavour industry are primary products from renewable resources or secondary products obtained by chemical conversions of the primary products. In general these secondary products are key...

Peter H. van der Schaft

2007-01-01T23:59:59.000Z

119

Solar Energy Conversion Efficiency Project  

Science Journals Connector (OSTI)

Report of a discussion on possible collaborative experimentation to test and refine biomass production models based on the conversion of solar energy by plant stands, and to evaluate alternative models.

J. S. Pereira; J. J. Landsberg

1989-01-01T23:59:59.000Z

120

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy Csar Clavero Plasma

Clavero, Cesar

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Conversion Devices | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Energy Conversion Devices Place: Rochester Hills, MI Website: http:www.energyconversiondev References: Energy Conversion Devices1...

122

Enhancing The Mode Conversion Efficiency In JET Plasmas With Multiple Mode Conversion Layers  

SciTech Connect (OSTI)

The constructive interference effect described by Fuchs et al. [1] shows that the mode conversion and thereby the overall heating efficiency can be enhanced significantly when an integer number of fast wave wavelengths can be folded in between the high field side fast wave cutoff and the ion-ion hybrid layer(s) at which the ion Bernstein or ion cyclotron waves are excited. This effect was already experimentally identified in ({sup 3}He)-D plasmas [2] and was recently tested in ({sup 3}He)-H JET plasmas. The latter is an 'inverted' scenario, which differs significantly from the ({sup 3}He)-D scenarios since the mode-conversion layer is positioned between the low field side edge of the plasma and the ion-cyclotron layer of the minority {sup 3}He ions (whereas the order in which a wave entering the plasma from the low field side encounters these layers is inverted in a 'regular' scenario), and because much lower {sup 3}He concentrations are needed to achieve the mode-conversion heating regime. The presence of small amounts of {sup 4}He and D in the discharges gave rise to an additional mode conversion layer on top of the expected one associated with {sup 3}He-H, which made the interpretation of the results more complex but also more interesting: Three different regimes could be distinguished as a function of X[{sup 3}He], and the differing dynamics at the various concentrations could be traced back to the presence of these two mode conversion layers and their associated fast wave cutoffs. Whereas (1-D and 2-D) numerical modeling yields quantitative information on the RF absorptivity, recent analytical work by Kazakov [3] permits to grasp the dominant underlying wave interaction physics.

Van Eester, D.; Lerche, E.; Ongena, J. [LPP-ERM/KMS, Association Euratom-'Belgian State', TEC Partner, Brussels (Belgium); Johnson, T.; Hellsten, T. [Fusion Plasma Physics, Association Euratom-VR, KTH, Stockholm (Sweden); Mayoral, M.-L.; Beaumont, P.; Blackman, T.; Brennan, D.; Brett, A.; Coffey, I.; Coyne, A.; Felton, R.; Giroud, C.; Jacquet, P.; Kiptily, V.; Knipe, S.; Monakhov, I.; Noble, C.; Pangioni, L. [Euratom-CCFE Fusion Association, Culham Science Centre (United Kingdom)

2011-12-23T23:59:59.000Z

123

Affect Transfer by Metaphor for an Intelligent Conversational Agent  

E-Print Network [OSTI]

Affect Transfer by Metaphor for an Intelligent Conversational Agent Alan Wallington and Rodrigo with a number of `worked examples'. Alan Wallington School of Computer Science, University of Birmingham, Birmingham B152TT, e-mail: Alan. Wallington@dunelm.org.uk,A.M.Wallington@cs.bham.ac.uk Rodrigo Agerri School

Lee, Mark

124

Abstract: Wind Energy Conversion Systems (WECS) produce fluctuating output power, which may cause voltage fluctuations and  

E-Print Network [OSTI]

Abstract: Wind Energy Conversion Systems (WECS) produce fluctuating output power, which may cause, solar energy conversion, virtual test bed simulation. Preprint Order Number: PE-531EC (02- plying its market-clearing mechanism. This mechanism determines the accepted and unaccepted energy bids

Gross, George

125

Recirculation in multiple wave conversions  

SciTech Connect (OSTI)

A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

2008-07-30T23:59:59.000Z

126

MUTUAL CONVERSION SOLAR AND SIDEREAL  

E-Print Network [OSTI]

TABLES FOR THE MUTUAL CONVERSION OF SOLAR AND SIDEREAL TIME BY EDWARD SANG, F.R.S.E. EDINBURGH in the third example. Sang converts 3.27 seconds of solar time into 3.26 seconds of sidereal time. But sidereal time elapses faster than solar time, and the correct value is 3.28 sec- onds. In the fourth example

Roegel, Denis

127

HELIOPHYSICS II. ENERGY CONVERSION PROCESSES  

E-Print Network [OSTI]

of a solar flare 11 2.3.1 Flare luminosity and mechanical energy 11 2.3.2 The impulsive phase (hard X with the term "solar flare" dominate our thinking about energy conversion from magnetic storage to other forms approaches to the problems involved in phys- ically characterizing the solar atmosphere; see also the lecture

Hudson, Hugh

128

Alternative Fuels Data Center: Vehicle Conversion Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Conversion Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversion Basics on AddThis.com... Vehicle Conversion Basics Photo of a Ford Transit Connect converted to run on compressed natural gas. A Ford Transit Connect converted to run on compressed natural gas. A converted vehicle or engine is one modified to use a different fuel or

129

Case Number:  

Broader source: Energy.gov (indexed) [DOE]

Name of Petitioner: Name of Petitioner: Date of Filing: Case Number: Department of Energy Washington, DC 20585 JUL 2 2 2009 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Appeal Dean P. Dennis March 2, 2009 TBA-0072 Dean D. Dennis filed a complaint of retaliation under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. Mr. Dennis alleged that he engaged in protected activity and that his employer, National Security Technologies, LLC (NSTec ), subsequently terminated him. An Office of Hearings and Appeals (OHA) Hearing Officer denied relief in Dean P. Dennis, Case No. TBH-0072, 1 and Mr. Dennis filed the instant appeal. As discussed below, the appeal is denied. I. Background The DOE established its Contractor Employee Protection Program to "safeguard public

130

JOB NUMBER  

Broader source: Energy.gov (indexed) [DOE]

. . . . . . . . . .: LEAVE BLANK (NARA use only) JOB NUMBER N/-&*W- 9d - 3 DATE RECEIVED " -1s - 9 J - NOTIFICATION TOAGENCY , In accordance with the provisions of 44 U.S.C. 3303a the disposition request. including amendments, is ap roved except , . l for items that may be marke,, ,"dis osition not approved" or "withdrawn in c o i m n 10. 4. NAME OF PERSON WITH WHOM TO CONFER 5 TELEPHONE Jannie Kindred (202) 5&-333 5 - 2 -96 6 AGENCYCERTIFICATION -. ~ - I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the records roposed for disposal are not now needed for the business of this agency or wiRnot be needed after t G t r & s s d ; and that written concurrence from

131

KPA Number  

Broader source: Energy.gov (indexed) [DOE]

Supports CMM-SW Level 3 Supports CMM-SW Level 3 Mapping of the DOE Information Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM-SW) level 3. Date: September 2002 Page 1 KPA Number KPA Activity SEM Section SEM Work Product SQSE Web site http://cio.doe.gov/sqse ORGANIZATION PROCESS FOCUS OPF-1 The software process is assessed periodically, and action plans are developed to address the assessment findings. Chapter 1 * Organizational Process Management * Process Improvement Action Plan * Methodologies ! DOE Methodologies ! SEM OPF-2 The organization develops and maintains a plan for its software process development and improvement activities. Chapter 1 * Organizational Process Management * Process Improvement

132

Photovoltaic and photoelectrochemical conversion of solar energy  

Science Journals Connector (OSTI)

...photoelectrochemical conversion of solar energy Michael Gratzel * * ( michael...industry, have dominated photovoltaic solar energy converters. These systems have...promising perspectives. renewable energy|solar energy conversion|photovoltaic...

2007-01-01T23:59:59.000Z

133

Grounded Situation Models for Situated Conversational Assistants  

E-Print Network [OSTI]

A Situated Conversational Assistant (SCA) is a system with sensing, acting and speech synthesis/recognition abilities, which engages in physically situated natural language conversation with human partners and assists them ...

Mavridis, Nikolaos

2007-01-01T23:59:59.000Z

134

Biofuel Conversion Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

135

Photochemical conversion and storage of solar energy  

Science Journals Connector (OSTI)

Photochemical conversion and storage of solar energy ... In this article, the author considers the use of inorganic photochemical reactions for the conversion and storage of solar energy. ... HOMO?LUMO energy difference values compared ... ...

Charles Kutal

1983-01-01T23:59:59.000Z

136

The National Conversion Pilot Project  

SciTech Connect (OSTI)

The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process.

Roberts, A.V. [BNFL, Inc., Golden, CO (United States)

1995-12-31T23:59:59.000Z

137

Methanol conversion to higher hydrocarbons  

SciTech Connect (OSTI)

Several indirect options exist for producing chemicals and transportation fuels from coal, natural gas, or biomass. All involve an initial conversion step to synthesis gas (CO and H{sub 2}). Presently, there are two commercial technologies for converting syngas to liquids: Fischer-Tropsch, which yields a range of aliphatic hydrocarbons with molecular weights determined by Schulz-Flory kinetics, and methanol synthesis. Mobil`s diversity of technology for methanol conversion gives the methanol synthesis route flexibility for production of either gasoline, distillate or chemicals. Mobil`s ZSM-5 catalyst is the key in several processes for producing chemicals and transportation fuels from methanol: MTO for light olefins, MTG for gasoline, MOGD for distillates. The MTG process has been commercialized in New Zealand since 1985, producing one-third of the country`s gasoline supply, while MTO and MOGD have been developed and demonstrated at greater than 100 BPD scale. This paper will discuss recent work in understanding methanol conversion chemistry and the various options for its use.

Tabak, S.A. [Mobil Research and Development Corp., Princeton, NJ (United States). Central Research Lab.

1994-12-31T23:59:59.000Z

138

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean depths of 20 m (surface water) and 1,000 m. OTEC Ocean Thermal Energy Conversion, the process Energy Conversion. At first, OTEC plantships providing electricity, via submarine power cables, to shore

139

3. Energy conversion, balances, efficiency, equilibrium  

E-Print Network [OSTI]

1/124 3. Energy conversion, balances, efficiency, equilibrium (Introduction to Thermodynamics) Ron h�dm, h = u + p/ Picture: SEHB06 56/124 3.5: Energy balances; Conversion work work, work heat 96/124 Energy conversion heat work /1 "the essential rules" Picture:IO06 #12;97/124 Energy

Zevenhoven, Ron

140

Energy Conversion Technologies 1.0 Introduction  

E-Print Network [OSTI]

1 Energy Conversion Technologies 1.0 Introduction In these notes, we describe the infrastructure. By "energy conversion," we mean the conversion of energy into some form of electric energy. By "available now that is available to be considered in the generation and planning functions. We classify this information by Energy

McCalley, James D.

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

GUIDED ANGLER FISH ANNUAL CONVERSION FACTORS  

E-Print Network [OSTI]

GUIDED ANGLER FISH ANNUAL CONVERSION FACTORS FOR THE 2014 FISHING YEAR NOAA FISHERIES, ALASKA via the GAF electronic reporting system. If no GAF were harvested in a year, the conversion factor is the first calendar year that GAF regulations will be in effect. Therefore, the conversion factors are based

142

Ionic Liquids as Solvents for Catalytic Conversion of Lignocellulosic Feedstocks  

E-Print Network [OSTI]

to the development of biomass conversion technologies, it isefficient and selective biomass conversion technologies is athe conversion of both carbohydrate components of biomass.

Dee, Sean Joseph

2012-01-01T23:59:59.000Z

143

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

1980. Ocean Thermal Energy Conversion Draft ProgrammaticPlan. Ocean Thermal Energy Conversion. U.S. DOE Assistantl OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL ASSESSMENT

Sands, M.Dale

2013-01-01T23:59:59.000Z

144

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

E-Print Network [OSTI]

cost and improve the energy conversion efficiency, to enableefficiency solar energy conversion devices. AcknowledgementsPhotoelectrochemical Energy Conversion Neil P. Dasgupta and

Dasgupta, Neil

2014-01-01T23:59:59.000Z

145

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network [OSTI]

of Steady-State Energy Conversion. Applied ScientificElectrokinetic energy conversion efficiency in nanofluidicElectrokinetic energy conversion efficiency in nanofluidic

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

146

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of ocean thermal energy conversion technology. U.S. DOE.ocean thermal energy conversion. A preliminary engineeringCompany. Ocean thermal energy conversion mission analysis

Sands, M. D.

2011-01-01T23:59:59.000Z

147

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion (OTEC) plants byFifth Ocean Thermal Energy Conversion Conference, February1980. Ocean thermal energy conversion (OTEC) pilot plant

Sullivan, S.M.

2014-01-01T23:59:59.000Z

148

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants byfield of ocean thermal energy conversion discharges. I~. L.Sixth Ocean Thermal Energy conversion Conference. June 19-

Sullivan, S.M.

2014-01-01T23:59:59.000Z

149

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Nanoporous Thermal-to-Electrical Energy Conversion System (of Wasted Energy : Thermal to Electrical Energy Conversion AArticles: 1. Thermal to electrical energy conversion , Yu

Lim, Hyuck

2011-01-01T23:59:59.000Z

150

2008 Guidelines to Defra's GHG Conversion Factors Guidelines to Defra's GHG Conversion Factors  

E-Print Network [OSTI]

with the standard conversion factors at Annex 1. If, however, you export energy or heat to another business (or2008 Guidelines to Defra's GHG Conversion Factors 2008 Guidelines to Defra's GHG Conversion Factors yellow = Calculation results Page 1 of 15 #12;2008 Guidelines to Defra's GHG Conversion Factors Annex 1

151

NREL: Biomass Research - Biochemical Conversion Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biochemical Conversion Capabilities Biochemical Conversion Capabilities NREL researchers are working to improve the efficiency and economics of the biochemical conversion process by focusing on the most challenging steps in the process. Biochemical conversion of biomass to biofuels involves three basic steps: Converting biomass to sugar or other fermentation feedstock through: Pretreatment Conditioning and enzymatic hydrolysis Enzyme development. Fermenting these biomass-derived feedstocks using: Microorganisms for fermentation. Processing the fermentation product to produce fuel-grade ethanol and other fuels, chemicals, heat, and electricity by: Integrating the bioprocess. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the biochemical conversion

152

Conversion of Solar to Electrical Energy  

Science Journals Connector (OSTI)

A photovoltaic device has been developed which converts solar radiation directly into electrical energy with an over-all efficiency of 11%. This consists of a p-n junction formed by gaseous diffusion near the front surface of a silicon plate. In full sunlight a single cell furnishes approximately 30 ma of short circuit current per square centimeter of surface 0.6 v of open circuit voltage and 12 mw of power into a matched load per square centimeter of surface. Like other electric batteries individual cells may be connected in series or parallel to obtain an increase in terminal voltage or current. The spectral response is a maximum near 0.7 and the long wavelength cutoff is at approximately 1.1 . The efficiency of this new siliconp-n junctionphotovoltaic cell is greater by a factor of 20 than that previously reported for other types of photocells and makes the conversion of the sun's energy directly into electricity possible for a number of interesting applications. A Bell System field trial at Americus Georgia in which solar batteries are used to power a rural carrier telephone communication system is described. A number of other possible applications for this new solar energy converter are discussed.

G. L. Pearson

1957-01-01T23:59:59.000Z

153

Conversion of raw carbonaceous fuels  

DOE Patents [OSTI]

Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

Cooper, John F. (Oakland, CA)

2007-08-07T23:59:59.000Z

154

2011 Biomass Program Platform Peer Review: Thermochemical Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an...

155

Energy Calculator- Common Units and Conversions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

156

Documents: DUF6 Conversion EIS Supporting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DUF6 Conversion EIS DUF6 Conversion EIS Search Documents: Search PDF Documents View a list of all documents NEPA Compliance: DUF6 Conversion EIS Supporting Documents PDF Icon Notice of Change in National Environmental Policy Act (NEPA) Compliance Approach for the Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project 38 KB details PDF Icon Press Release: DOE Seeks Public Input for Depleted Uranium Hexafluoride Environmental Impact Statement 90 KB details PDF Icon Advance Notice of Intent To Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 52 KB details PDF Icon Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 60 KB details PDF Icon Overview: Depleted Uranium Hexafluoride (DUF6) Management Program

157

DUF6 Conversion Facility EIS Alternatives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternatives Alternatives Depleted UF6 Conversion Facility EIS Alternatives Alternatives included in the Depleted UF6 Conversion Facility EISs. Proposed Action The proposed action evaluated in each EIS is to construct and operate a conversion facility at each site for conversion of the DOE DUF6 inventory. The time period considered is a construction period of approximately 2 years, an operational period of 25 years at Paducah and 18 years at Portsmouth, and the decontamination and decommissioning (D&D) of the facility of about 3 years. The EISs assess the potential environmental impacts from the following proposed activities: Construction, operation, maintenance, and D&D of the proposed DUF6 conversion facility at each site; Transportation of uranium conversion products and waste materials to a disposal facility;

158

Advanced Coal Conversion Process Demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOE/NETL-2005/1217 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory April 2005 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

159

Power conversion apparatus and method  

DOE Patents [OSTI]

A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

Su, Gui-Jia (Knoxville, TN)

2012-02-07T23:59:59.000Z

160

Thermophotovoltaic Energy Conversion for Space  

Science Journals Connector (OSTI)

Heat is converted to electricity by using a heated surface (the emitter) that radiates infrared (IR) photons to an adjacent low bandgap photovoltaic cell (typically made with binary, ternary, or quaternary semiconductors such as InGaAs, GaSb, InAs, or InGaAsSb), which converts these IR photons to electricity. ... Solid-state TPV energy conversion uses photovoltaic devices in the form of a p?n diode to convert radiant thermal photons directly into electricity. ... The overall system efficiency of a TPV system is the product of factors attributable to the TPV cell efficiency, the spectral filter, and the cell module factor which includes effects of parasitic photon absorption in the nonactive diode area and is defined as the total photonic energy absorbed in the active diode area divided by the total photonic energy absorption. ...

V. L. Teofilo; P. Choong; J. Chang; Y.-L. Tseng; S. Ermer

2008-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

will enable energy-efficient biochemical conversion of lignocellulosic biomass into biofuels that are compatible with today's vehicles and infrastructure. Photos (clockwise from...

162

Solar Energy, Its Conversion and Utilization  

Science Journals Connector (OSTI)

The basis of the discussions is the University of Florida Solar Energy and Energy Conversion Laboratory with its Solar House and its Solar-Electric Car.

Erich A. Farber

1974-01-01T23:59:59.000Z

163

Economic Considerations of Biomass Conversion Processes  

Science Journals Connector (OSTI)

Earlier chapters have described various biomass conversion processes and processing procedures. This chapter provides a systematic method of estimating biomass process economics and determining the revenue requir...

Fred A. Schooley

1981-01-01T23:59:59.000Z

164

LED Street Lighting Conversion Workshop Presentations  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

165

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

166

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Broader source: Energy.gov (indexed) [DOE]

Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

167

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

or otherwise restricted information Project ID ace47lagrandeur Automotive Waste Heat Conversion to Power Program- 2009 Hydrogen Program and Vehicle Technologies Program...

168

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

Start Date: Oct '04 Program End date: Oct '10 Percent Complete: 80% 2 Automotive Waste Heat Conversion to Power Program- Vehicle Technologies Program Annual Merit Review- June...

169

Developing Functionalized Graphene Materials for Biomass Conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing Functionalized Graphene Materials for Biomass Conversion The goal of this research is to develop low cost catalysts based on graphene-derived nanomaterials, and use them...

170

Surreptitious interception of conversations with lasers  

Science Journals Connector (OSTI)

Methods are described for surreptitiously intercepting conversations by reflecting a low-power laser beam from a window pane. The essential components and optical configurations of...

Mims III, Forrest M

1985-01-01T23:59:59.000Z

171

Project Profile: Brayton Solar Power Conversion System  

Broader source: Energy.gov [DOE]

Brayton Energy, under the CSP R&D FOA, is looking to demonstrate the viability and economics of a new concentrating solar thermal power conversion system.

172

Energy Conversion, an Energy Frontier Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electricity, will become increasingly important. Indeed enhancements in efficiencies of energy conversion technologies that are readily adaptable in any environment will con-...

173

Energy Conversion, an Energy Frontier Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

most pressing problems. Indeed, our success at discovering new paradigms for efficient energy conversion, with minimal environmental impact, will largely determine humankind's...

174

Solid-State Energy Conversion Overview  

Broader source: Energy.gov (indexed) [DOE]

eere.energy.gov 1 Solid-State Energy Conversion Overview John W. Fairbanks Department of Energy Vehicle Technologies Annual Merit Review June 11, 2010 Vehicle Technologies Program...

175

Conversion Technologies for Advanced Biofuels ? Carbohydrates...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

balance measurements Biological Conversion of Sugars to Hydrocarbons - R&D Activities Energy Efficiency & Renewable Energy eere.energy.gov 5 Feedstocks Organism design for...

176

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

Microscale-enhanced thermionic emitters will enable high-efficiency, solar-to-electrical conversion by taking advantage of both heat and light. Image from Stanford University...

177

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

178

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

179

Thermochemical Conversion Related Links | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

website's Information Resources section. Some key publications are: Using Heat and Chemistry to Make Fuel and Power: Thermochemical Conversion (January 2011) Thermochemical...

180

Personal Dose Equivalent Conversion Coefficients For Photons To 1 GEV  

SciTech Connect (OSTI)

The personal dose equivalent, H{sub p}(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity Effective Dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk where personal dosemeters are usually worn and in this instance a suitable approximation is a 30 cm X 30 cm X 15 cm slab-type phantom. For this condition the personal dose equivalent is denoted as H{sub p,slab}(d) and the depths, d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several MeV, however, data to higher energies are limited. In this work conversion coefficients up to 1 GeV have been calculated for H{sub p,slab}(10) and H{sub p,slab}(3) using both the kerma approximation and by tracking secondary charged particles. For H{sub p}(0.07) the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H{sub p,slab}(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared to the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection (ICRP) guidance.

Veinot, K. G.; Hertel, N. E.

2010-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Conversion DevicesEnergy Conversion Devices Fuel Cell Electrocatalyst Development Program  

E-Print Network [OSTI]

for several groups of electrocatalysts ECD PEMFC Catalyst Development Evaluation programs exist for severalEnergy Conversion Devices PEMFC Electrocatalyst Development Program Contact information: Dr. Peter Faguy pfaguyEnergy Conversion DevicesEnergy Conversion Devices Fuel Cell Electrocatalyst Development Program

182

Gene conversion in the rice genome  

E-Print Network [OSTI]

. Over 60% of the conversions we detected were between chromosomes. We found that the inter-chromosomal conversions distributed between chromosome 1 and 5, 2 and 6, and 3 and 5 are more frequent than genome average (Z-test, P < 0.05). The frequencies...

Xu, Shuqing; Clark, Terry; Zheng, Hongkun; Vang, SÃ ¸ ren; Li, Ruiqiang; Wong, Gane Ka-Shu; Wang, Jun; Zheng, Xiaoguang

2008-02-25T23:59:59.000Z

183

Approaches for biological and biomimetic energy conversion  

Science Journals Connector (OSTI)

...biological and biomimetic energy conversion 10.1073...that are related to energy conversion: specifically...synthetic and/or hybrid devices is still...systems that produce energy in an efficient...costs are related to infrastructure, such as supporting...inverters, and grid connections. For...

David A. LaVan; Jennifer N. Cha

2006-01-01T23:59:59.000Z

184

Parameterizing energy conversion on rough topography  

E-Print Network [OSTI]

Parameterizing energy conversion on rough topography using bottom pressure sensors to measure form and mixing U0 Form drag pressure Tidal energy conversion Form drag causes: - internal wave generation - eddy Sound, WA Point Three Tree Previous work McCabe et al., 2006 > Measured the internal form drag

Warner, Sally

185

The efficiency of conversion of energy in an electric-discharge light-gas accelerator of bodies  

Science Journals Connector (OSTI)

The results are given of investigation of the processes of energy transfer in a power supply-projectile system, ... the working gas and a number of other factors on the efficiency of energy conversion. It is foun...

A. V. Budin; V. A. Kolikov; F. G. Rutberg

2008-06-01T23:59:59.000Z

186

Application of Planck's law to thermionic conversion  

SciTech Connect (OSTI)

A simple, highly accurate, mathematical model of heat-to-electricity conversion is developed from Planck's law for the distribution of the radiant exitance of heat at a selected temperature. An electrical power curve is calculated by integration of the heat law over a selected range of electromagnetic wavelength corresponding to electrical voltage. A novel wavelength-voltage conversion factor, developed from the known wavelength-electron volt conversion factor, establishes the wavelength ({lambda}) for the integration. The Planck law is integrated within the limits {lambda} to 2{lambda}. The integration provides the ideal electrical power that is available from heat at the emitter temperature. When multiplied by a simple ratio, the calculated ideal power closely matches published thermionic converter experimental data. The thermal power model of thermionic conversion is validated by experiments with thermionic emission of ordinary electron tubes. A theoretical basis for the heat law based model of thermionic conversion is found in linear oscillator theory.

Caldwell, F.

1998-07-01T23:59:59.000Z

187

Conversion of Units of Measurement Gordon S. Novak Jr. \\Lambda  

E-Print Network [OSTI]

by the programmer; this can be both burdensome and error­prone, since the conversion factors used by the programmer guidelines for use of SI units and tables of conversion factors. Several books provide conversion factors, the accuracy of the conversion factors, and the algorithms that some books present for unit conversion

Novak Jr., Gordon S.

188

Utilizing Nature's Designs for Solar Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nature's Designs for Solar Energy Conversion Nature's Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature... ...build with chemistry ANL Photosynthesis Group Fundamental Studies  Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles  Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy Multi-molecular: Artificial systems for H 2 photocatalysis  Limitations:  Large solvent, molecular dependencies  Diffusion  Lifetimes  Uncontrolled back-reactions  Most PS contain noble metals  Organic solvent/high proton

189

Who is Responsible for the DUF6 Conversion Facility EISs?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Who is Responsible Who is Responsible Who Is Responsible for the Depleted UF6 Conversion Facility EISs? The U.S. DOE Office of Environmental Management is preparing the two Depleted UF6 Conversion Facility EISs, with assistance from Argonne National Laboratory. Responsibilities The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for preparation of the Depleted UF6 Conversion EIS. Argonne National Laboratory is assisting EM in preparation of the EIS. About the Office of Environmental Management (EM) In 1989, the Department of Energy created the Office of Environmental Management (EM) to mitigate the risks and hazards posed by the legacy of nuclear weapons production and research. Although the nation continues to maintain an arsenal of nuclear weapons, as well as some production capability, the United States has embarked on new missions. The most ambitious and far ranging of these missions is dealing with the environmental legacy of the Cold War. Like most industrial and manufacturing operations, the nuclear complex has generated waste, pollution, and contamination. However, many problems posed by its operations are unique. They include unprecedented amounts of contaminated waste, water, and soil, and a vast number of contaminated structures that will remain radioactive for thousands of years.

190

Paducah DUF6 Conversion Final EIS - Appendix G: Consultation Letters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX G: CONSULTATION LETTERS Consultation Letters G-2 Paducah DUF 6 Conversion Final EIS Consultation Letters G-3 Paducah DUF 6 Conversion Final EIS U.S. DEPARTMENT OF ENERGY LETTERS TO STATE AGENCIES AND RECOGNIZED NATIVE AMERICAN GROUPS Consultation Letters G-4 Paducah DUF 6 Conversion Final EIS Consultation Letters G-5 Paducah DUF 6 Conversion Final EIS Consultation Letters G-6 Paducah DUF 6 Conversion Final EIS Consultation Letters G-7 Paducah DUF 6 Conversion Final EIS Consultation Letters G-8 Paducah DUF 6 Conversion Final EIS Consultation Letters G-9 Paducah DUF 6 Conversion Final EIS Consultation Letters G-10 Paducah DUF 6 Conversion Final EIS Consultation Letters G-11 Paducah DUF 6 Conversion Final EIS Consultation Letters G-12 Paducah DUF 6 Conversion Final EIS

191

Micro Electret Energy Harvesting Device with Analogue Impedance Conversion Circuit  

E-Print Network [OSTI]

Micro Electret Energy Harvesting Device with Analogue Impedance Conversion Circuit Yuji Suzuki1 using a low-power-consumption impedance conversion circuit. Key words: Energy harvesting, Electret, CYTOP, Parylene spring, Impedance conversion 1. INTRODUCTION Energy harvesting from environmental

Kasagi, Nobuhide

192

Health Risks Associated with Conversion of Depleted UF6  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Conversion DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Conversion A discussion of health risks associated with conversion of depleted UF6 to another chemical form. General Health Risks of Conversion The potential environmental impacts, including potential health risks, associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This section discusses in general the types of health risks associated with the conversion process. The conversion of depleted UF6 to another chemical form will be done in an industrial facility dedicated to the conversion process. Conversion will involve the handling of depleted UF6 cylinders. Hazardous chemicals, such

193

NREL: Biomass Research - Thermochemical Conversion Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Capabilities Conversion Capabilities NREL researchers are developing gasification and pyrolysis processes for the cost-effective thermochemical conversion of biomass to biofuels. Gasification-heating biomass with about one-third of the oxygen necessary for complete combustion-produces a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis-heating biomass in the absence of oxygen-produces a liquid bio-oil. Both syngas and bio-oil can be used directly or can be converted to clean fuels and other valuable chemicals. Areas of emphasis in NREL's thermochemical conversion R&D are: Gasification and fuel synthesis R&D Pyrolysis R&D Thermochemical process integration. Gasification and Fuel Synthesis R&D Get the Adobe Flash Player to see this video.

194

NREL: Biomass Research - Biochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biochemical Conversion Projects Biochemical Conversion Projects A photo of a woman looking at the underside of a clear plastic tray. The tray has a grid of small holes to hold sample tubes. An NREL researcher examines a sample tray used in the BioScreen C, an instrument used to monitor the growth of microorganisms under different conditions. NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting these biomass intermediates using biocatalysts (microorganisms including yeast and bacteria) Processing the fermentation product to yield fuel-grade ethanol and other fuels. Among the current biochemical conversion RD&D projects at NREL are: Pretreatment and Enzymatic Hydrolysis

195

Depleted UF6 Conversion facility EIS Topics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Topics Topics Depleted UF6 Conversion Facility EIS Topics A listing of topics included in the Depleted UF6 Conversion Facility EISs. DOE addressed the following environmental issues when assessing the potential environmental impacts of the alternatives in the two site-specific EISs. DOE solicited comment from the Federal agencies, Native American tribes, state and local governments, and the general public on these and any other issues as part of the public scoping process: Potential impacts on health from DUF6 conversion activities, including potential impacts to workers and the public from exposure to radiation and chemicals during routine and accident conditions for the construction, operation, maintenance, and decontamination and decommissioning of DUF6 conversion facilities.

196

Overview of Capabilities Conversion System Technology  

E-Print Network [OSTI]

cycles Heat exchanger design and optimization TES Material Integration & Optimization: Solar power plantOverview of Capabilities Conversion System Technology - Power System Demonstrations - Systems Conceptual Design/Trade Space Exploration - Simulation Modeling for Manufacturing - Hybrid Energy Systems

Lee, Dongwon

197

Summer Series 2012 - Conversation with Omar Yaghi  

ScienceCinema (OSTI)

Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

Omar Yaghi

2013-06-24T23:59:59.000Z

198

Ris Energy Report 2 Bioenergy conversion  

E-Print Network [OSTI]

6.3 Risø Energy Report 2 Bioenergy conversion There is a wide range of technologies to derive operate automatically and are in many regions an economic alternative, e.g. Austria and Finland

199

Analyzing Biomass Conversion into Liquid Hydrocarbons  

Science Journals Connector (OSTI)

Variants of the FischerTropsch producer-gas conversion into liquid hydrocarbons are analyzed under the ... is attained in the reactions occurring in the biomass gasification. When the raw material is wood ... th...

V. D. Meshcheryakov; V. A. Kirillov

2002-09-01T23:59:59.000Z

200

Chapter 13 - Heterogeneous Catalysts and Biomass Conversion  

Science Journals Connector (OSTI)

Abstract The application of heterogeneous catalysts to conversion processes based on biomasses is described and discussed. The role of heterogeneous catalysts in the development of renewable industrial chemistry is emphasized.

Guido Busca

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

CO2 Conversion to CH4  

Science Journals Connector (OSTI)

A power-to-gas technology that converts renewable energy to methane...16]. Conversion of renewable energy, that is, solar or wind, into fuel is an easy way to store solar energy, characterized by low energy densi...

V. Barbarossa; C. Bassano; P. Deiana; G. Vanga

2013-01-01T23:59:59.000Z

202

Energy Balances for Biomass Conversion Systems  

Science Journals Connector (OSTI)

Biomass conversion systems of any type, irrespective of ... measured on a consistent scale which identifies the energy efficiency of the process and of the overall system. Accurate energy balances, as well as mat...

Raphael Katzen

1983-01-01T23:59:59.000Z

203

Energy conversions of a desert depression  

Science Journals Connector (OSTI)

This work is concerned with the energy conversions of a developing atmospheric system in subtropical ... and temporal variations of various components of the energy budget are presented in a detailed analysis. T...

H. Abdel Basset

2001-04-01T23:59:59.000Z

204

The Conversion of Waste to Energy  

E-Print Network [OSTI]

Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining...

John, T.; Cheek, L.

1980-01-01T23:59:59.000Z

205

Energy Conversion, an Energy Frontier Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 Awards ... 12 S p r I N g 2 0 1 1 Intermediate Band Solar Energy Conversion in ZnTe:O and ZnTeZnSe Affordable photovoltaic solar cells are highly...

206

Principles of photoelectrochemical, solar energy conversion  

Science Journals Connector (OSTI)

Photoelectrochemical devices for conversion of solar energy into both electrical energy and chemical energy are discussed with emphasis on how the ... parameters as band gap, doping level, minority carrier lifeti...

M. A. Butler; D. S. Ginley

1980-01-01T23:59:59.000Z

207

Materials aspects of photoelectrochemical energy conversion  

Science Journals Connector (OSTI)

Stabilization of the light-harvesting semiconductor electrode is a key factor in the design of a photoelectrochemical (PEC) system for solar energy conversion. Approaches to circumvent the problem of PEC...

K. Rajeshwar

1985-01-01T23:59:59.000Z

208

Status of Solar Thermal Conversion in China  

Science Journals Connector (OSTI)

China has an abundant solar energy resource. Solar thermal conversion systems have been studied for more than 25 years and solar thermal industry has been developing since 1990s....2 solar collectors were sold a...

Yin Zhiqiang

2009-01-01T23:59:59.000Z

209

Network Analysis of Photovoltaic Energy Conversion  

Science Journals Connector (OSTI)

Photovoltaic energy conversion in photovoltaic cells has been analyzed by the detailed balance approach or by thermodynamic arguments. Here we introduce a network representation to analyze the performance of such systems once a suitable kinetic model (...

Mario Einax; Abraham Nitzan

2014-11-03T23:59:59.000Z

210

Assessment of ocean thermal energy conversion  

E-Print Network [OSTI]

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

211

Summer Series 2012 - Conversation with Kathy Yelick  

ScienceCinema (OSTI)

Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

Kathy Yelick

2013-06-24T23:59:59.000Z

212

Atlantic Biomass Conversions Inc | Open Energy Information  

Open Energy Info (EERE)

Conversions Inc Conversions Inc Jump to: navigation, search Name Atlantic Biomass Conversions Inc Place Frederick, Maryland Sector Biomass Product Atlantic Biomass Conversions is working on a system and a genetically modified bacteria to convert sugar beet pulp waste into methanol. Coordinates 45.836395°, -98.507249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.836395,"lon":-98.507249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

E-Print Network 3.0 - advanced conversion technologies Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

establish efficient clean energy systems, we offer education Summary: * Advanced Energy Conversion * Highly Qualified Energy Conversion * Functional Energy Conversion...

214

Lattice effect in solid state internal conversion  

SciTech Connect (OSTI)

The effect of the crystal lattice on nuclear fusion reactions p+d{yields}{sup 3}He taking place in internal conversion channels is studied. Fusionable particles solved in the investigated crystalline material form a sublattice. Fusion reaction is generated by a flux of incoming fusionable particles. The calculated cross sections are compared with those of an ordinary fusion reaction. The internal conversion coefficients are also calculated.

Kalman, Peter; Keszthelyi, Tamas [Budapest University of Technology and Economics, Department of Experimental Physics, Budafoki ut 8. F. I.I.10, H-1521 Budapest (Hungary)

2009-03-15T23:59:59.000Z

215

Optomechanical conversion by mechanical turbines  

E-Print Network [OSTI]

, Photomobile polymer materials: towards light-driven plastic motors, Angew. Chem. Int. Ed. 47, 4986 (2008). [2] Y. Geng, P. L. Almeida, S. N. Fernandes, C. Cheng, P. Palffy-Muhoray, and M. H. Godinho, A cellulose liquid crystal motor: a steam engine... design of a mechanical, turbine-based engine using photo-active liquid crystal elastomers to extract mechanical work from light. Its efficiency is estimated to be 40%. PACS numbers: 61.30.-v, 61.41.+e, 83.80.Va, 88.40.-j I. INTRODUCTION We propose a...

Kneevi?, Milo; Warner, Mark

2014-10-30T23:59:59.000Z

216

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Conversion

217

The Southern California Conversion Technology Demonstration Project | Open  

Open Energy Info (EERE)

The Southern California Conversion Technology Demonstration Project The Southern California Conversion Technology Demonstration Project Jump to: navigation, search Tool Summary Name: The Southern California Conversion Technology Demonstration Project Agency/Company /Organization: The Southern California Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website Website: www.socalconversion.org/resources.html Cost: Free The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L. A. County. Overview The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L.

218

First-of-its-Kind Carbon Capture and Conversion Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas...

219

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

220

Novel Energy Conversion Equipment for Low Temperature Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop...

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

WEC up! Energy Department Announces Wave Energy Conversion Prize...  

Broader source: Energy.gov (indexed) [DOE]

WEC up Energy Department Announces Wave Energy Conversion Prize Administrator WEC up Energy Department Announces Wave Energy Conversion Prize Administrator September 24, 2014 -...

222

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

223

Potential Impacts of Hydrokinetic and Wave Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

224

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The...

225

Process Design and Economics for the Conversion of Lignocellulosic...  

Broader source: Energy.gov (indexed) [DOE]

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion...

226

2011 Biomass Program Platform Peer Review: Biochemical Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent...

227

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

228

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of biomass to fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

229

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

230

Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversions to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle...

231

Conversation/Culture Partner Program Would you like to help  

E-Print Network [OSTI]

Conversation/Culture Partner Program Would you like to help another student improve their English different cultures; *Help another student improve their conversation English; and *Assist another student

Thomas, Andrew

232

Left Coast Electric Formerly Left Coast Conversions | Open Energy...  

Open Energy Info (EERE)

Left Coast Electric Formerly Left Coast Conversions Jump to: navigation, search Name: Left Coast Electric (Formerly Left Coast Conversions) Place: California Sector: Services...

233

Golden Fuel Systems formerly Greasel Conversions Inc | Open Energy...  

Open Energy Info (EERE)

Golden Fuel Systems formerly Greasel Conversions Inc Jump to: navigation, search Name: Golden Fuel Systems (formerly Greasel Conversions Inc) Place: Drury, Montana Zip: 65638...

234

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

235

Evaluation of Thermal to Electrical Energy Conversion of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

236

Single-step conversion of cellulose to 5-hydroxymethylfurfural...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatileplatform chemical. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a...

237

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner of landfill gas plant. References: Penrose Landfill Gas Conversion LLC1 This article is a stub....

238

Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel and Alternative Fuel and Conversion Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Conversion Definitions

239

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

240

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conversion efficiency for non-tracking converters must be reasonably independent of light incidence angle. To improve energy conversion efficiency with photonic design and...

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

U.S. domestic reactor conversion program  

SciTech Connect (OSTI)

The RERTR U.S. Domestic Conversion program continues in its support of the Global Treat Reduction Initiative (GTRI) to convert seven U.S reactors to low enriched uranium (LEU) by 2010. These reactors are located at the University of Florida, Texas A and M University, Purdue University, Washington State University, Oregon State University, the University of Wisconsin, and the Idaho National Laboratory. The reactors located at the University of Florida and Texas A and M Nuclear Science Center were successfully converted to LEU in September of 2006 through an integrated and collaborative effort involving INL, Argonne National Laboratory (ANL), DOE (headquarters and the field office), the Nuclear Regulatory Commission (NRC), the universities, and the contractors involved in analyses, fuel design and fabrication, and spent nuclear fuel (SNF) shipping and disposition. With this work completed and in anticipation of other impending conversion projects, a meeting was established to engage the project participants in a structured discussion to capture the lessons learned. The objectives of this meeting were to document the observations, insights, issues, concerns, and ideas of those involved in the reactor conversions so that future efforts could be conducted with greater effectiveness, efficiency, and with fewer challenges. The lessons learned from completing the University of Florida and Texas A and M conversions, the Purdue reactor conversion status, and an overview of the upcoming reactor conversions will be presented at the meeting. (author)

Meyer, Dana M.; Woolstenhulme, Eric C. [Idaho National Laboratory, Idaho Falls, Idaho 83415 (United States)

2008-07-15T23:59:59.000Z

242

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

clean and efficient energy conversion in power systems," inSteam Power Plant," in Energy conversion, YG Goswami and Fazeotropic mixture energy conversion," Energy Conversion and

Ho, Tony

2012-01-01T23:59:59.000Z

243

Alternative Fuels Data Center: Natural Gas Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Laws & Incentives Natural Gas Vehicle Conversions Related Information Conversion Basics

244

A New Complexity Result on Solving the Markov Decision Problem  

E-Print Network [OSTI]

Oct 1, 2004 ... Examples of the first are fixed-precision floating-point numbers. Any such number is stored in a fixed amount of memory (usually 32 or 64 bits).

2004-10-03T23:59:59.000Z

245

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle (AFV) Conversion Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

246

Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Aftermarket Electric Aftermarket Electric Vehicle (EV) Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on AddThis.com... More in this section...

247

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion Registration to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on AddThis.com... More in this section... Federal State

248

Environmental Risks Associated with Conversion of Depleted UF6  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Conversion Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Conversion A general discussion of the potential environmental impacts associated with depleted UF6 conversion activities. Impacts Analyzed in the PEIS The potential environmental impacts associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This page discusses in general the types of impacts that might be associated with the conversion process based on the PEIS analysis. The PEIS evaluated the potential environmental impacts for representative conversion facilities. Conversion to uranium oxide and uranium metal were considered. Potential impacts were evaluated for a representative site, and

249

Paducah DUF6 Conversion Final EIS - Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS SUMMARY 1 S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the Federal Register (FR) on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF 6 conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in

250

Overview of coal conversion process instrumentation  

SciTech Connect (OSTI)

A review of standard instrumentation used in the processing industries is given, and the applicability of this instrumentation to measurements in mixed phase media and hostile environments such as those encountered in coal conversion processes is considered. The major projects in coal conversion sponsored by the US Department of Energy are briefly reviewed with schematics to pinpoint areas where the standard instrumentation is inadequate or altogether lacking. The next report in this series will provide detailed requirements on the instruments needed for these processes, will review new instruments which have recently become commercially available but are not yet considered standard instrumentation, and report on the status of new instruments which are being developed and, in some cases, undergoing tests in coal conversion plants.

Liptak, B. G.; Leiter, C. P.

1980-05-01T23:59:59.000Z

251

Lower Hybrid to Whistler Wave Conversion  

SciTech Connect (OSTI)

In this presentation we discuss recent work concerning the conversion of whistler waves to lower hybrid waves (as well as the inverse process). These efforts have been motivated by the issue of attenuation of upward propagating whistler waves in the ionosphere generated by VLF transmitters on the ground, i.e., the 'Starks 20 db' problem, which affects the lifetimes of energetic electrons trapped in the geomagnetic field at low magnetic altitude (L). We discuss recent fluid and kinetic plasma simulations as well as ongoing experiments at UCLA to quantify linear and nonlinear mode conversion of lower hybrid to whistler waves.

Winske, Dan [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

252

Unit Conversion Factors Quantity Equivalent Values  

E-Print Network [OSTI]

Unit Conversion Factors Quantity Equivalent Values Mass 1 kg = 1000 g = 0.001 metric ton = 2.921 inHg at 0 C Energy 1 J = 1 N·m = 107 ergs = 107 dyne·cm = 2.778?10-7 kW·h 1 J = 0.23901 cal = 0·R 10.73 psia·ft3 lbmol·R 62.36 liter·torr mol·K 0.7302 ft3·atm lbmol·R Temperature Conversions: T

Ashurst, W. Robert

253

Laser spectroscopy of primary energy conversion in  

Science Journals Connector (OSTI)

A review is given of the current status of research on primary processes of energy conversion in photosynthesis. The structural and functional organization of photosynthetic apparatus of higher plants is considered. A description is given of laser probing methods, applications of high-speed optical shutters, and picosecond spectrofluorometry involving the use of image converters. A functional scheme of primary energy conversion by Rhodopseudomonas sphaeroides bacteria is given for the 10?1210?4 sec range of time intervals. Some nonlinear processes resulting from intense excitation of the pigment apparatus of photosynthesizing organisms are considered.

V Z Pashchenko; L B Rubin

1978-01-01T23:59:59.000Z

254

Effects of a random spatial variation of the plasma density on the mode conversion in cold, unmagnetized, and stratified plasmas  

SciTech Connect (OSTI)

We study the effects of a random spatial variation of the plasma density on the mode conversion of electromagnetic waves into electrostatic oscillations in cold, unmagnetized, and stratified plasmas. Using the invariant imbedding method, we calculate precisely the electromagnetic field distribution and the mode conversion coefficient, which is defined to be the fraction of the incident wave power converted into electrostatic oscillations, for the configuration where a numerically generated random density variation is added to the background linear density profile. We repeat similar calculations for a large number of random configurations and take an average of the results. We obtain a peculiar nonmonotonic dependence of the mode conversion coefficient on the strength of randomness. As the disorder increases from zero, the maximum value of the mode conversion coefficient decreases initially, then increases to a maximum, and finally decreases towards zero. The range of the incident angle in which mode conversion occurs increases monotonically as the disorder increases. We present numerical results suggesting that the decrease of mode conversion mainly results from the increased reflection due to the Anderson localization effect originating from disorder, whereas the increase of mode conversion of the intermediate disorder regime comes from the appearance of many resonance points and the enhanced tunneling between the resonance points and the cutoff point. We also find a very large local enhancement of the magnetic field intensity for particular random configurations. In order to obtain high mode conversion efficiency, it is desirable to restrict the randomness close to the resonance region.

Jung Yu, Dae [School of Space Research, Kyung Hee University, Yongin 446-701 (Korea, Republic of)] [School of Space Research, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Kihong [Department of Energy Systems Research, Ajou University, Suwon 443-749 (Korea, Republic of)] [Department of Energy Systems Research, Ajou University, Suwon 443-749 (Korea, Republic of)

2013-12-15T23:59:59.000Z

255

Materials by numbers: Computations as tools of discovery  

Science Journals Connector (OSTI)

...conversation with her tutor: God's truth, Septimus, if there...the ability to study many-particle systems (i.e., a large number...Spatial and Temporal Scales If God created the world, his...of multimillion interacting particles, are possible; refs. 87...

Uzi Landman

2005-01-01T23:59:59.000Z

256

DIEGO FAZI Mailing address: Solar Energy Conversion Group Chemical Sciences & Engineering Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DIEGO FAZI DIEGO FAZI Mailing address: Solar Energy Conversion Group Chemical Sciences & Engineering Division Bldg 200, Room E105 Argonne National Laboratory 9700 South Cass Ave. Argonne IL 60439-4831 E-mail addresses: dfazi@anl.gov Office Number: 630-252-5796 Fax: 630-252-9289 Personal Pages: http://faculty.wcas.northwestern.edu/diego-fazi/ http://www.fazid.org Research Interests Diego Fazi comes from a theoretical Physics background and he performed research in gravitational-wave astronomy within the project LIGO from 2005 to 2012. In October 2012 Dr. Fazi joined the CSE division at Argonne as a postdoctoral appointee in the Solar Conversion

257

Power Conversion APEX Interim Report November, 1999  

E-Print Network [OSTI]

, the combined efficiency of the topping cycle and bottoming cycle will be less than the single cycle along. POWER CONVERSION 17.1 Steam Cycle Different steam cycles have been well developed. A study by EPRI summarized the various advanced steam cycles which maybe available for an advanced coal power plant

California at Los Angeles, University of

258

Solar energy conversion by chloroplast photoelectrochemical cells  

Science Journals Connector (OSTI)

... the photochemical cell has proved advantageous because of their ease of preparation and their power conversion efficiency of close to 1 %. Fig. l Time course of potential development. ... h even after the light was turned off, illustrated the system's ability to store energy. The ability of the cell to generate a voltage is equivalent to a generator ...

Ravindra Bhardwaj; Rong L. Pan; Elizabeth L. Gross

1981-01-29T23:59:59.000Z

259

On the Energy Conversion during Geostrophic Adjustment  

Science Journals Connector (OSTI)

It is found that for a continuously stratified fluid which remains so during the geostrophic adjustment, the energy conversion ratio ? (??KE/?PE) is , in contrast to the value of ? for a two-layer fluid. Since the two-layer fluid is an ...

Hsien Wang Ou

1986-12-01T23:59:59.000Z

260

Soft materials for linear electromechanical energy conversion  

E-Print Network [OSTI]

We briefly review the literature of linear electromechanical effects of soft materials, especially in synthetic and biological polymers and liquid crystals (LCs). First we describe results on direct and converse piezoelectricity, and then we discuss a linear coupling between bending and electric polarization, which maybe called bending piezoelectricity, or flexoelectricity.

Antal Jakli; Nandor Eber

2014-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ocean Thermal Energy Conversion Mostly about USA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion History Mostly about USA 1980's to 1990's and bias towards Vega or other energy carriers to be delivered to shore... 13luisvega@hawaii.edu #12;US Federal Government OTEC period estimated at 3 to 4 years. #12;luisvega@hawaii.edu 20 Energy Carriers · OTEC energy could

262

Defect Tolerant Semiconductors for Solar Energy Conversion  

Science Journals Connector (OSTI)

Defect Tolerant Semiconductors for Solar Energy Conversion ... He obtained his Ph.D. in Physics at Paris-Sud University where he modeled Hot Carrier Solar Cells by means of Ensemble Monte Carlo methods. ... These surface energies are significantly lower compared to 96 and 102 meV/2 for (1010) and (1120) low energy nonpolar GaN surfaces respectively. ...

Andriy Zakutayev; Christopher M. Caskey; Angela N. Fioretti; David S. Ginley; Julien Vidal; Vladan Stevanovic; Eric Tea; Stephan Lany

2014-03-13T23:59:59.000Z

263

2009 Thermochemical Conversion Platform Review Report  

Broader source: Energy.gov [DOE]

This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Programs Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

264

2009 Biochemical Conversion Platform Review Report  

Broader source: Energy.gov [DOE]

This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Programs Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

265

Existing potato markers and marker conversions  

E-Print Network [OSTI]

Existing potato markers and marker conversions Walter De Jong PAA Workshop August 2009 1 #12;What of us will continue to use agarose gels for years to come #12;Example of a potato marker 4 PVY (Ryadg) ­ Kasai et al. 2000 Genome 43:1-8 allele specific amplification of a diagnostic product - potatoes

Douches, David S.

266

Elements of number theory  

E-Print Network [OSTI]

The dissertation argues for the necessity of a morphosemantic theory of number, that is, a theory of number serviceable both to semantics and morphology. The basis for this position, and the empirical core of the dissertation, ...

Harbour, Daniel, 1975-

2003-01-01T23:59:59.000Z

267

Alternative Fuels Data Center: Alternative Fuel School Bus Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

School Bus Conversion Research to someone by E-mail School Bus Conversion Research to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Google Bookmark Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Delicious Rank Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel School Bus Conversion Research on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel School Bus Conversion Research

268

Alternative fuel information: Facts about CNG and LPG conversion  

SciTech Connect (OSTI)

As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

O`Connor, K.

1994-06-01T23:59:59.000Z

269

Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production  

SciTech Connect (OSTI)

Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

Hemme, Christopher [University of Oklahoma; Mouttaki, Housna [University of Oklahoma; Lee, Yong-Jin [University of Oklahoma, Norman; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; He, Zhili [University of Oklahoma; Wu, Liyou [University of Oklahoma, Norman; Van Nostrand, Joy [University of Oklahoma, Norman; Henrissat, Bernard [Universite d'Aix-Marseille I & II; HE, Qiang [ORNL; Lawson, Paul A. [University of Oklahoma, Norman; Tanner, Ralph S. [University of Oklahoma, Norman; Lynd, Lee R [Thayer School of Engineering at Dartmouth; Wiegel, Juergen [University of Georgia, Athens, GA; Fields, Dr. Matthew Wayne [Montana State University; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Schadt, Christopher Warren [ORNL; Stevenson, Bradley S. [University of Oklahoma, Norman; McInerney, Michael J. [University of Oklahoma, Norman; Yang, Yunfeng [ORNL; Dong, Hailiang [Miami University, Oxford, OH; Xing, Defeng [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ren, Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology; Ding, Shi-You [National Energy Renewable Laboratory; Himmel, Michael E [National Renewable Energy Laboratory (NREL); Taghavi, Safiyh [Brookhaven National Laboratory (BNL)/U.S. Department of Energy; Van Der Lelie, Daniel [Brookhaven National Laboratory (BNL); Rubin, Edward M. [U.S. Department of Energy, Joint Genome Institute; Zhou, Jizhong [University of Oklahoma

2010-01-01T23:59:59.000Z

270

Requisites to realize high conversion efficiency of solar cells utilizing carrier multiplication  

Science Journals Connector (OSTI)

We have calculated the limiting conversion efficiency of solar cells utilizing carrier multiplication (CM), using the detailed balance theory. The solar cells were assumed to comprise quantum dots (QDs) embedded in another material. It has been elucidated that three requisites must be fulfilled, so that a sufficient number of photons in the solar spectrum contribute to CM, resulting in significantly higher conversion efficiency than the values of conventional cells. These requisites are as follows: (1) the effective mass of electrons in the \\{QDs\\} should be much lighter than that of holes, so that the threshold photon energy above which CM can occur is close to the energy gap of the QDs. In this respect, InAs is a promising candidate for the QD material, but PbSe and Si are not. (2) The potential barrier height for electrons in the QDs, which determines the upper limit of the quantum yield of photon-to-carrier conversion (?limit), should be slightly larger than the energy gap of the \\{QDs\\} to achieve a ?limit value of 2, when the solar cells are used under the non-concentrated insolation. InAs \\{QDs\\} embedded in AlxGa1?xAsySb1?y is a possible candidate to fulfill these two criteria. A higher barrier does not contribute to generation of more carriers, but likely disturbs electron transport. In contrast, under the concentrated insolation, a potential barrier slightly higher than twice the energy gap to achieve a ?limit value of 3 leads to higher conversion efficiency. (3) The quantum yield of photon-to-carrier conversion as a function of photon energy should rise as steeply as possible at the threshold photon energy. The experimentally observed quantum yield with a sloping rise leads to little improvement in conversion efficiency due to CM, under the non-concentrated insolation. Although it could be improved under the concentrated insolation, the conversion efficiency cannot reach the limiting value for triple-junction solar cells.

Yasuhiko Takeda; Tomoyoshi Motohiro

2010-01-01T23:59:59.000Z

271

Paducah DUF6 Conversion Final EIS - Chapter 9: Glossary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS 9 GLOSSARY Accident: An unplanned sequence of events resulting in undesirable consequences, such as the release of radioactive or hazardous material to the environment. Accident consequence assessment: An assessment of the impacts following the occurrence of an accident, independent of the probability of that accident. The environmental impact statement (EIS) provides estimates of the consequences of a number of possible accidents, ranging from those with low probability (rare) to those with relatively high probability (frequent). Accident frequency: The likelihood that a specific accident will occur, that is, the probability of occurrence. If an accident is estimated to happen once every 50 years, the accident frequency is generally reported as

272

Portsmouth DUF6 Conversion Final EIS - Chapter 9: Glossary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 9 GLOSSARY Accident: An unplanned sequence of events resulting in undesirable consequences, such as the release of radioactive or hazardous material to the environment. Accident consequence assessment: An assessment of the impacts following the occurrence of an accident, independent of the probability of that accident. The environmental impact statement (EIS) provides estimates of the consequences of a number of possible accidents, ranging from those with low probability (rare) to those with relatively high probability (frequent). Accident frequency: The likelihood that a specific accident will occur, that is, the probability of occurrence. If an accident is estimated to happen once every 50 years, the accident frequency is generally reported as

273

Eidgenossische Technische Hochschule  

E-Print Network [OSTI]

floating point numbers with more than fifty three bits precision (64-bit double). In response to the demand purposes, but note that its potential for ever larger problems compels us to consider higher precision

Lang, Annika

274

PDF file  

E-Print Network [OSTI]

tude of the perturbations will be taken to be on the order of the square root of the precision of the floating point numbers being used, double precision in this case

William D. Fullmer

2014-10-13T23:59:59.000Z

275

Notes by Brad Lucier about eqv? My goal is to incorporate others ...  

E-Print Network [OSTI]

I will make a few comments: 4.4.1 "Extended" floating-point systems based, e.g., on GMP and MPFR are going to have numbers of the same general form as...

276

View  

E-Print Network [OSTI]

in the primal problem. As it can be seen by the number of floating point operations needed to generate the approximation to the set of efficient points, the strategy.

277

ON A CLASS OF LIMITED MEMORY PRECONDITIONERS FOR ...  

E-Print Network [OSTI]

[2]). Section 3 is mainly concerned with implementation details. An algorithm with complexity in O(k2n) in memory and in number of floating point operations, that.

2008-12-04T23:59:59.000Z

278

A Reliable Affine Relaxation Method for Global Optimization  

E-Print Network [OSTI]

Oct 23, 2012 ... coefficients xi are finite floating-point numbers (we note this with a slight abuse of notation R) and ?i are real variables whose values are...

Ninin, Messine, Hansen

2012-10-23T23:59:59.000Z

279

GloptiPoly 3: moments, optimization and semidefinite programming ...  

E-Print Network [OSTI]

momcon object. 5.6 Floating point numbers (double). Variables in a measure can be assigned numerical values: >> m1 = assign(x,2). Measure 1 on 1 variable: x.

2007-06-28T23:59:59.000Z

280

SciPy IPython IPython:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SciPy SciPy IPython IPython: modern tools for interactive & web-enabled scientific computing Fernando Pérez http://fperez.org, @fperez_org Fernando.Perez@berkeley.edu Helen Wills Neuroscience Institute, UC Berkeley NERSC User Day, LBL, Berkeley, Feb 13, 2013 SciPy IPython Outline 1 Scientific Python 2 IPython: Interactive Python FP (UC Berkeley) IPython 2/13/13 2 / 21 Beyond (Floating Point) Number Crunching Hardware floating point Arbitrary precision integers Rationals Interval arithmetic Symbolic manipulation FORTRAN Extended precision floating point Text processing Databases Graphical user interfaces Web interfaces

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Conversion Materials Through Chemical Synthesis Route  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Materials Through Chemical Synthesis Route Conversion Materials Through Chemical Synthesis Route Speaker(s): Lionel Vayssieres Date: April 27, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Samuel Mao The ability to design anisotropic nanoparticles with tailored aspect ratio and to order them into large 3-D arrays is an important challenge that scientists have to face to create functionalized nanomaterials. Our approach to control the size and shape of nanoparticles as well as the overall texture of nanoparticulate thin films is to tune their direct aqueous hydrolysis-condensation growth onto substrates by monitoring the interfacial thermodynamics of nanocrystals as well as their kinetics of heteronucleation. Growing materials at very low interfacial tension, i.e. at thermodynamically stable conditions, allows the experimental control of

282

Portsmouth DUF6 Conversion Final EIS - Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS SUMMARY 1 S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF 6 stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF 6 from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and

283

Water A magic solvent for biomass conversion  

Science Journals Connector (OSTI)

Abstract Hydrothermal biomass conversion processes provide the opportunity to use feedstocks with high water content for the formation of energy carriers or platform chemicals. The water plays an active role in the processes as solvent, reactant and catalyst or catalyst precursor. In this paper, the different hydrothermal processes of carbonization, gasification and liquefaction are introduced and the specific role of water is discussed for each of them. The high reactivity of the polar components of biomass in hot compressed water and its changing properties with temperature are the key to obtain high selectivities of the desired products. Despite the obvious advantages of hydrothermal conversion examples for industrial applications are rare. The main reason for not commercial application of water in the high temperature state is that there are no products that can be sold with profit and cannot be produced cheaper, with less capital risk, and with more simple processes.

Andrea Kruse; Nicolaus Dahmen

2014-01-01T23:59:59.000Z

284

Novel Hydride Transfer Catalysis for Carbohydrate Conversions  

SciTech Connect (OSTI)

5-Hydroxymethylfurfural (HMF), an important versatile sugar derivative has been synthesized from glucose using catalytic amounts of CrCl2 in 1-ethyl-3-methylimidizolium chloride. Glycerol and glyceraldehyde were tested as sugar model compounds. Glycerol is unreactive and does not interfere with glucose conversion. Glyceraldehyde is reactive and does interfere with glucose conversion in competitive experiments. MnCl2 or FeCl2 catalyze dehydration of glyceraldehyde dimer to form compound I, a cyclic hemiacetal with an exocyclic double bond. Upon aqueous work-up I forms pyruvaldehyde. CrCl2 or VCl3 further catalyze a hydride transfer of I to form lactide. Upon aqueous work-up lactide is converted to lactic acid.

Holladay, John E.; Brown, Heather M.; Appel, Aaron M.; Zhang, Z. Conrad

2008-04-03T23:59:59.000Z

285

Alternative Fuels Data Center: Alternative Fuel Vehicle Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Conversion It is unlawful to tamper with vehicle emissions control systems unless the

286

Advanced Optical Materials for Energy Efficiency and Solar Conversion  

Science Journals Connector (OSTI)

Optical materials and coatings play an important role in determining the efficiency of solar conversion processes. At present the best known ... . Since they are of significant consequence to solar conversion and...

Carl M. Lampert

1987-01-01T23:59:59.000Z

287

Acid catalytic hydrothermal conversion of carbohydrate biomass into useful substances  

Science Journals Connector (OSTI)

The conversion of biomass into resources has gained considerable attention for ... the most effective methods among several processes for conversion of biomass into resources, because water under high temperature...

Yusuke Takeuchi; Fangming Jin; Kazuyuki Tohji

2008-04-01T23:59:59.000Z

288

Magnetic energy storage and conversion in the solar atmosphere  

Science Journals Connector (OSTI)

A review of the theoretical problems associated with preflare magnetic energy storage and conversion is presented. The review consists of three parts; preflare magnetic energy storage, magnetic energy conversion ...

D. S. Spicer

1982-01-01T23:59:59.000Z

289

New Enzyme Speeds Up Biomass-to-Sugar Conversion | Department...  

Energy Savers [EERE]

New Enzyme Speeds Up Biomass-to-Sugar Conversion New Enzyme Speeds Up Biomass-to-Sugar Conversion January 28, 2015 - 1:32pm Addthis Scientists at the Energy Department's National...

290

Direct Conversion of Biomass to Fuel | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Conversion of Biomass to Fuel UGA, ORNL research team engineers microbes for the direct conversion of biomass to fuel July 11, 2014 New research from the University of...

291

Automotive Waste Heat Conversion to Electric Power using Skutterudites...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3 Automotive Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3...

292

Functionalization of Graphene for Efficient Energy Conversion and Storage  

Science Journals Connector (OSTI)

Functionalization of Graphene for Efficient Energy Conversion and Storage ... Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. ...

Liming Dai

2012-10-03T23:59:59.000Z

293

Thermoelectrici Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle 2005...

294

Cross section generation strategy for high conversion light water reactors  

E-Print Network [OSTI]

High conversion water reactors (HCWR), such as the Resource-renewable Boiling Water Reactor (RBWR), are being designed with axial heterogeneity of alternating fissile and blanket zones to achieve a conversion ratio of ...

Herman, Bryan R. (Bryan Robert)

2011-01-01T23:59:59.000Z

295

Pit Disassembly and Conversion Demonstration Environmental Ass  

Broader source: Energy.gov (indexed) [DOE]

August 1998 August 1998 i TABLE OF CONTENTS 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Related National Environmental Policy Act Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.0 PURPOSE AND NEED FOR ACTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Purpose and Need for Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.0 PROPOSED PIT DISASSEMBLY AND CONVERSION DEMONSTRATION . . . . . . . . . . . . . . . . 6 4.0 NO ACTION ALTERNATIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.0 AFFECTED ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1 History and Current Mission of Los Alamos National Laboratory

296

Direct conversion of algal biomass to biofuel  

SciTech Connect (OSTI)

A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

2014-10-14T23:59:59.000Z

297

Nominal Performance Biosphere Dose Conversion Factor Analysis  

SciTech Connect (OSTI)

This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose from drinking water for beta- and photon-emitting radionuclides. Another objective of this analysis was to re-qualify the output of the previous revision (BSC 2003 [DIRS 164403]).

M. Wasiolek

2004-09-08T23:59:59.000Z

298

Flexible Conversion Ratio Fast Reactor Systems Evaluation  

SciTech Connect (OSTI)

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

Neil Todreas; Pavel Hejzlar

2008-06-30T23:59:59.000Z

299

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

E-Print Network [OSTI]

research on conversion and storage of solar energy, with anof the solar resource, energy storage is a critical

Dasgupta, Neil

2014-01-01T23:59:59.000Z

300

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

E-Print Network [OSTI]

of the solar resource, energy storage is a criticalon conversion and storage of solar energy, with an emphasis

Dasgupta, Neil

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Conversion Technologies for Advanced Biofuels Bio-Oil Production  

Broader source: Energy.gov [DOE]

RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels Bio-Oil Production.

302

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office...

303

Method for conversion of .beta.-hydroxy carbonyl compounds  

DOE Patents [OSTI]

A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

Lilga, Michael A. (Richland, WA); White, James F. (Richland, WA); Holladay, Johnathan E. (Kennewick, WA); Zacher, Alan H. (Kennewick, WA); Muzatko, Danielle S. (Kennewick, WA); Orth, Rick J. (Kennewick, WA)

2010-03-30T23:59:59.000Z

304

E2I EPRI Assessment Offshore Wave Energy Conversion Devices  

E-Print Network [OSTI]

E2I EPRI Assessment Offshore Wave Energy Conversion Devices Report: E2I EPRI WP ­ 004 ­ US ­ Rev 1 #12;E2I EPRI Assessment - Offshore Wave Energy Conversion Devices Table of Contents Introduction Assessment - Offshore Wave Energy Conversion Devices Introduction E2I EPRI is leading a U.S. nationwide

305

Chalmers University of Technology Henrik Thunman Department of Energy Conversion  

E-Print Network [OSTI]

Chalmers University of Technology Henrik Thunman Department of Energy Conversion ModellingSpecies #12;Chalmers University of Technology Henrik Thunman Department of Energy Conversion Continuity Department of Energy Conversion MomentumEquation Momentum the forces of movement g x p x u x u x u u t u µ

306

Chalmers University of Technology Henrik Thunman Department of Energy Conversion  

E-Print Network [OSTI]

Chalmers University of Technology Henrik Thunman Department of Energy Conversion Modelling Thunman Department of Energy Conversion Continuity equation 0= + x u t (Conservation of mass) 0 of the volume #12;Chalmers University of Technology Henrik Thunman Department of Energy Conversion Momentum

307

Semiconductor Nanowires for Energy Conversion Allon I. Hochbaum*,  

E-Print Network [OSTI]

Semiconductor Nanowires for Energy Conversion Allon I. Hochbaum*, and Peidong Yang* Department. Introduction: Role of Materials in Energy Conversion 527 2. Why Are Semiconductor Nanowires Special? 527 3 of Materials in Energy Conversion Between 2004 and 2030 the annual global consumption of energy is estimated

Wu, Zhigang

308

Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion  

E-Print Network [OSTI]

Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency Chieh have shown repeatable and consistent electrical outputs with energy conversion efficiency an order for efficient conversion of mechanical energy into electricity. Recent work in the field of nanomaterials has

Lin, Liwei

309

Nominal Performance Biosphere Dose Conversion Factor Analysis  

SciTech Connect (OSTI)

This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1-1). The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states (present day, monsoon, and glacial transition) considered in the TSPA-LA, as well as conversion factors for compliance evaluation with the groundwater protection standards. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose from drinking water for beta- and photon-emitting radionuclides.

M.A. Wasiolek

2005-04-28T23:59:59.000Z

310

RAW MATERIALS EVALUATION AND PROCESS DEVELOPMENT STUDIES FOR CONVERSION OF BIOMASS TO SUGARS AND ETHANOL  

E-Print Network [OSTI]

DEVELOPMENT STUDIES FOR CONVERSION OF BIOMASS TO SUGARS ANDDEVELOPMENT STUDIES FOR CONVERSION OF BIOMASS TO SUGARS ANDof the biomass, (2) the extent of conversion to glucose, (3)

Wilke, C.R.

2011-01-01T23:59:59.000Z

311

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network [OSTI]

Assessment, Ocean Thermal Energy Conversion (OTEC) ProgramOcean Thermal Energy Conversion (OTEC), U.S. Department offor Ocean Thermal Energy Conversion (OTEC) plants. Argonne,

Sullivan, S.M.

2013-01-01T23:59:59.000Z

312

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques  

E-Print Network [OSTI]

Figure 21. (a) Schemes of energy conversion from exothermicand Renewable Energy Conversion by Innovations of Surfacebiointerfaces, and renewable energy conversion chemistry. In

Somorjai, G.A.

2010-01-01T23:59:59.000Z

313

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

and Techniques, Energy Conversion and Management, 39 (11),and Applications, Energy Conversion and Management, 45 ,and direct solar energy conversion to work. Focus should be

Coso, Dusan

2013-01-01T23:59:59.000Z

314

Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /  

E-Print Network [OSTI]

77 5.2 Wind Energy Conversion System . . . . .Optimization and Control in Wind Energy Conversion SystemsAC matrix con- verter for wind energy conversion system, in

Ghaffari, Azad

2013-01-01T23:59:59.000Z

315

Ortho-para conversion of hydrogen at high pressures  

Science Journals Connector (OSTI)

Ortho-para conversion rates in solid H2 measured as a function of pressure up to 58 GPa are examined theoretically. Analyses of the data provide information on the relative role of diffusion versus intrinsic dependences of the conversion rate on ortho concentration. A theory of the conversion has been developed using a closed-form representation of the conversion promoting nuclear magnetic interaction Hss expanded in spherical harmonics. The mechanisms considered include double conversion, excitations in the J=1 and J=2 manifolds as conversion energy sinks, and a possibility of intermediate states from which the conversion energy is dissipated via the strong electrical quadrupole-quadrupole (EQQ) interaction. Conversion rates were evaluated for a total of 12 new channels; the two other channels considered previously for moderate pressures have been reconsidered to account for factors that influence phonon-assisted energy dissipation, the most important being the compression-related decrease of the conversion energy (gap closing). Contributions from the standard one-phonon channels with single and double conversion yield fairly good agreement with low-pressure data. The proposed new channel identified as responsible for the observed conversion acceleration is the one in which the conversion Hamiltonian Hss only initiates conversion driving the system to a temporarily nonequilibrium state from which the conversion energy is dissipated via EQQ coupling into excitations within the J=1 manifold. Our mechanism predicts a strong and abrupt conversion slowdown at still higher compressions. The abrupt decrease in rate observed at a given pressure at longer times (decreasing ortho fractions) can be explained as due to the inability of slow diffusion to restore the random distribution of ortho species and due to the intrinsic inefficiency of the new channel at low c.

Mikhail A. Strzhemechny; Russell J. Hemley; Ho-kwang Mao; Alexander F. Goncharov; Jon H. Eggert

2002-07-10T23:59:59.000Z

316

The number of individuals sampled (n), coefficient values (a, loge(b)), standard errors for values (SE[a], SE[loge(b)]), and correlation coefficient (r2) of the relationship between prosomal width and weight for horseshoe crabs (Limulus polyphemus),  

E-Print Network [OSTI]

conversion factors used to estimate landings Page 238, Equation 1. The y-intercept variable reads "b. These numbers were converted to pounds using various conversion factors. The number of horseshoe Prosomal-width-to-weight relationships in American horseshoe crabs (Limulus polyphemus): examining conversion factors used to estimate

317

EA-1207: Pit Disassembly and Conversion Demonstration Environmental  

Broader source: Energy.gov (indexed) [DOE]

207: Pit Disassembly and Conversion Demonstration Environmental 207: Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities EA-1207: Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities SUMMARY This EA evaluates the potential environmental impacts associated with a proposal to test an integrated pit disassembly and conversion process on a relatively small sample of pits and plutonium metal at the Los Alamos National Laboratory in New Mexico. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 14, 1998 EA-1207: Finding of No Significant Impact Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities August 14, 1998

318

Energy Conversion Devices Inc aka ECD Ovonics | Open Energy Information  

Open Energy Info (EERE)

Conversion Devices Inc aka ECD Ovonics Conversion Devices Inc aka ECD Ovonics Jump to: navigation, search Name Energy Conversion Devices Inc (aka ECD Ovonics) Place Rochester Hills, Michigan Zip 48309 Sector Solar Product Michigan-based materials developer and holding company for thin-film silicon PV manufacturer United Solar Ovonics. References Energy Conversion Devices Inc (aka ECD Ovonics)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Energy Conversion Devices Inc (aka ECD Ovonics) is a company located in Rochester Hills, Michigan . References ↑ "Energy Conversion Devices Inc (aka ECD Ovonics)" Retrieved from "http://en.openei.org/w/index.php?title=Energy_Conversion_Devices_Inc_aka_ECD_Ovonics&oldid=34484

319

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Fund on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

320

Global Waste to Energy Conversion Company GWECC | Open Energy Information  

Open Energy Info (EERE)

Waste to Energy Conversion Company GWECC Waste to Energy Conversion Company GWECC Jump to: navigation, search Name Global Waste to Energy Conversion Company (GWECC) Place Washington, DC Product GWECC is a global alternative energy company headquartered in Washington DC, USA. References Global Waste to Energy Conversion Company (GWECC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Global Waste to Energy Conversion Company (GWECC) is a company located in Washington, DC . References ↑ "Global Waste to Energy Conversion Company (GWECC)" Retrieved from "http://en.openei.org/w/index.php?title=Global_Waste_to_Energy_Conversion_Company_GWECC&oldid=345924" Categories: Clean Energy Organizations

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Tax Credit on AddThis.com... More in this section... Federal State Advanced Search

322

Authoritarianism in the Conversation of Gestures  

E-Print Network [OSTI]

of posture in communication systems." Psychiatry 27: 316-331. Second, P. F., and C. W. Bachman 1964 Social PsyChology. New York: McGraw-Hill. Webb, E. J., D. T. Campbell, R. D. Schwartz, and L. Sechrest 1966 Unobtrusive Measures. Chicago: Rand McNally...AUTHORITARIANISM IN THE CONVERSATION OF GESTURES* Terry R. Herb and Robert F. Elliott, Jr. University of Alabama in Huntsville Current studies of attitudes have relied upon written responses and the most obvious form of communication, the verbal...

Herb, Terry R.; Elliott Jr., Robert E.

1971-10-01T23:59:59.000Z

323

Cohesive means in Slovenian spontaneous dialectal conversations  

E-Print Network [OSTI]

17 Cohesive means in Slovenian spontaneous dialectal conversations1 Danila zuljan kumar Intitut za slovenski jezik Frana Ramova ZRC SAZU, Raziskovalna postaja Nova Gorica, Delpinova 12, SI 5000 Nova Gorica, DZuljan@zrc-sazu.si V... Centre SASA. SCN III/1 [2010], 1734 18 Slavia Centralis 1/2010 Danila Zuljan Kumar 0 Introduction A discourse (or a text as its product) is not a structural unit, like a clause or a sentence. Rather, it is a semantic unit, which means...

Kumar, Danila Zuljan

2010-02-01T23:59:59.000Z

324

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov [DOE]

This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

325

Encapsulation Strategies in Energy Conversion Materials  

Science Journals Connector (OSTI)

For instance, light is converted to electrical energy in photovoltaic devices and back to light in LEDs, electrical energy is converted to chemical energy and vice versa in batteries or fuel cells, light is converted to chemical energy in water splitting catalysts or related systems, or one form of chemical energy is converted to another form over various types of catalysts. ... Thermoelectric materials are an interesting class of energy conversion materials that convert thermal gradients directly to electricity. ... energy densities ranging up to a factor of 5 beyond conventional Li-ion systems. ...

Ferdi Schth

2013-10-24T23:59:59.000Z

326

Fabrication and testing of an infrared spectral control component for thermophotovoltaic power conversion applications  

E-Print Network [OSTI]

Thermophotovoltaic (TPV) power conversion is the direct conversion of thermal radiation to electricity. Conceptually, TPV power conversion is a very elegant means of energy conversion. A thermal source emits a radiative ...

O'Sullivan, Francis M. (Francis Martin), 1980-

2004-01-01T23:59:59.000Z

327

Conversion characteristics of 10 selected oil shales  

SciTech Connect (OSTI)

The conversion behavior of 10 oil shale from seven foreign and three domestic deposits has been studied by combining solid- and liquid-state nuclear magnetic resonance (NMR) measurements with material balance Fischer assay conversion data. The extent of aromatization of aliphatic carbons was determined. Between zero and 42% of the raw shale aliphatic carbon formed aromatic carbon during Fischer assay. For three of the shales, there was more aromatic carbon in the residue after Fisher assay than in the raw shale. Between 10 and 20% of the raw shale aliphatic carbons ended up as aliphatic carbons on the spent shale. Good correlations were found between the raw shale aliphatic carbon and carbon in the oil and between the raw shale aromatic carbon and aromatic carbon on the spent shale. Simulated distillations and molecular weight determinations were performed on the shale oils. Greater than 50% of the oil consisted of the atmospheric and vacuum gas oil boiling fractions. 14 refs., 15 figs., 1 tab.

Miknis, F.P.

1989-08-01T23:59:59.000Z

328

US energy conversion and use characteristics  

SciTech Connect (OSTI)

The long-range goal of the Energy Conversion and Utilization Technology (ECUT) Program is to enhance energy productivity in all energy-use sectors by supporting research on improved efficiency and fuel switching capability in the conversion and utilization of energy. Regardless of the deficiencies of current information, a summary of the best available energy-use information is needed now to support current ECUT program planning. This document is the initial draft of this type of summary and serves as a data book that will present current and periodically updated descriptions of the following aspects of energy use: gross US energy consumption in each major energy-use sector; energy consumption by fuel type in each sector; energy efficiency of major equipment/processes; and inventories, replacement rates, and use patterns for major energy-using capital stocks. These data will help the ECUT program staff perform two vital planning functions: determine areas in which research to improve energy productivity might provide significant energy savings or fuel switching and estimate the actual effect that specific research projects may have on energy productivity and conservation. Descriptions of the data sources and examples of the uses of the different types of data are provided in Section 2. The energy-use information is presented in the last four sections; Section 3 contains general, national consumption data; and Sections 4 through 6 contain residential/commercial, industrial, and transportation consumption data, respectively. (MCW)

Imhoff, C.H.; Liberman, A.; Ashton, W.B.

1982-02-01T23:59:59.000Z

329

Ocean energy conversion systems annual research report  

SciTech Connect (OSTI)

Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

Not Available

1981-03-01T23:59:59.000Z

330

Photon-ALP conversions inside AGN  

E-Print Network [OSTI]

An intriguing possibility to partially circumvent extragalactic background light (EBL) absorption in very-high-energy (VHE) observations of blazars is that photons convert into axion-like particles (ALPs) $\\gamma \\to a$ inside or close to a blazar and reconvert into photons $a \\to \\gamma$ in the Milky Way magnetic field. This idea has been put forward in 2008 and has attracted a considerable interest. However, while the probability for the back-conversion $a \\to \\gamma$ has been computed in detail (using the maps of the Galatic magnetic field), regretfully no realistic estimate of the probability for the conversion $\\gamma \\to a$ inside a blazar has been performed, in spite of the fact that the present-day knowledge allows this task to be accomplished in a reliable fashion. We present a detailed calculation that fills this gap, considering both types of blazars, namely BL Lac objects (BL Lacs) and flat spectrum radio quasars (FSRQ) with their specific structural and environmental properties. We also include t...

Tavecchio, F; Roncadelli, M

2014-01-01T23:59:59.000Z

331

arXiv:physics/0302084v124Feb2003 Alignment-to-orientation conversion and nuclear quadrupole resonance  

E-Print Network [OSTI]

, California 94720-1460 (Dated: February 24, 2003) The role of alignment-to-orientation conversion (AOC) in nuclear quadrupole resonance (NQR) is discussed. AOC is shown to be the mechanism responsible are drawn between NQR and AOC in atomic physics. PACS numbers: 76.60.Gv, 32.80.Bx Polarization is a generic

Budker, Dmitry

332

Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search Properties of type "Number" Showing 200 properties using this type. (previous 200) (next 200) A Property:AvgAnnlGrossOpCpcty Property:AvgTempGeoFluidIntoPlant Property:AvgWellDepth B Property:Building/FloorAreaChurchesChapels Property:Building/FloorAreaGroceryShops Property:Building/FloorAreaHealthServices24hr Property:Building/FloorAreaHealthServicesDaytime Property:Building/FloorAreaHeatedGarages Property:Building/FloorAreaHotels Property:Building/FloorAreaMiscellaneous Property:Building/FloorAreaOffices Property:Building/FloorAreaOtherRetail Property:Building/FloorAreaResidential Property:Building/FloorAreaRestaurants Property:Building/FloorAreaSchoolsChildDayCare Property:Building/FloorAreaShops Property:Building/FloorAreaSportCenters

333

Implications of Fast Reactor Transuranic Conversion Ratio  

SciTech Connect (OSTI)

Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (burners) do not have blankets; the cases above CR=1 (breeders) have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is attractive for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

2010-11-01T23:59:59.000Z

334

Enzymantic Conversion of Coal to Liquid Fuels  

SciTech Connect (OSTI)

The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

Richard Troiano

2011-01-31T23:59:59.000Z

335

ALARA notes, Number 8  

SciTech Connect (OSTI)

This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

Khan, T.A.; Baum, J.W.; Beckman, M.C. [eds.] [eds.

1993-10-01T23:59:59.000Z

336

CHROMOSOME NUMBERS IN MAMMALS  

Science Journals Connector (OSTI)

...variables for which the double inte-gral does not exist: R. L. JEFFERY. On the number of elements in a group which have a power in...society will meet at Columbia University, MA ay 2, 1925. W. BENJAMIN FITE Acting Secretary 424 SCIENCE

Theophilus S. Painter

1925-04-17T23:59:59.000Z

337

Baryon Number Violation  

E-Print Network [OSTI]

This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Present and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.

K. S. Babu; E. Kearns; U. Al-Binni; S. Banerjee; D. V. Baxter; Z. Berezhiani; M. Bergevin; S. Bhattacharya; S. Brice; R. Brock; T. W. Burgess; L. Castellanos; S. Chattopadhyay; M-C. Chen; E. Church; C. E. Coppola; D. F. Cowen; R. Cowsik; J. A. Crabtree; H. Davoudiasl; R. Dermisek; A. Dolgov; B. Dutta; G. Dvali; P. Ferguson; P. Fileviez Perez; T. Gabriel; A. Gal; F. Gallmeier; K. S. Ganezer; I. Gogoladze; E. S. Golubeva; V. B. Graves; G. Greene; T. Handler; B. Hartfiel; A. Hawari; L. Heilbronn; J. Hill; D. Jaffe; C. Johnson; C. K. Jung; Y. Kamyshkov; B. Kerbikov; B. Z. Kopeliovich; V. B. Kopeliovich; W. Korsch; T. Lachenmaier; P. Langacker; C-Y. Liu; W. J. Marciano; M. Mocko; R. N. Mohapatra; N. Mokhov; G. Muhrer; P. Mumm; P. Nath; Y. Obayashi; L. Okun; J. C. Pati; R. W. Pattie Jr.; D. G. Phillips II; C. Quigg; J. L. Raaf; S. Raby; E. Ramberg; A. Ray; A. Roy; A. Ruggles; U. Sarkar; A. Saunders; A. Serebrov; Q. Shafi; H. Shimizu; M. Shiozawa; R. Shrock; A. K. Sikdar; W. M. Snow; A. Soha; S. Spanier; G. C. Stavenga; S. Striganov; R. Svoboda; Z. Tang; Z. Tavartkiladze; L. Townsend; S. Tulin; A. Vainshtein; R. Van Kooten; C. E. M. Wagner; Z. Wang; B. Wehring; R. J. Wilson; M. Wise; M. Yokoyama; A. R. Young

2013-11-21T23:59:59.000Z

338

CHEMICAL SAFETY Emergency Numbers  

E-Print Network [OSTI]

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 Risk and Safety Manager 5535 Security 7058 #12;- 3 - FOREWORD This reference manual outlines the safe

Bolch, Tobias

339

Ocean Thermal Energy Conversion Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

340

Energy Conversion and Thermal Efficiency Sales Tax Exemption | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Water Heating Maximum Rebate None Program Info State Ohio Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Ohio Department of Taxation Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed, constructed, or installed after December 31, 1974. Qualifying energy conversion facilities are those that are used for the

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Ocean Thermal Energy Conversion Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Thermal Energy Conversion Basics Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when the temperature difference between the warmer, top layer of the ocean and the colder, deep ocean water is about 36°F (20°C). These conditions exist in tropical coastal areas, roughly between the Tropic of Capricorn and the Tropic of Cancer. To bring the cold water to the surface, ocean thermal energy conversion plants require an expensive, large-diameter intake pipe, which is submerged a mile or more into the ocean's depths. Some energy experts believe that if ocean thermal energy conversion can become cost-competitive with conventional power technologies, it could be

342

Photovoltaic Cell Conversion Efficiency Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Conversion Efficiency Basics Conversion Efficiency Basics Photovoltaic Cell Conversion Efficiency Basics August 20, 2013 - 2:58pm Addthis The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity. Improving this conversion efficiency is a key goal of research and helps make PV technologies cost-competitive with more traditional sources of energy. Factors Affecting Conversion Efficiency Much of the energy from sunlight reaching a PV cell is lost before it can be converted into electricity. But certain characteristics of solar cell materials also limit a cell's efficiency to convert the sunlight it receives. Wavelength of Light Light is composed of photons-or packets of energy-that range in

343

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky  

Broader source: Energy.gov (indexed) [DOE]

59: Uranium Hexafluoride Conversion Facility at the Paducah, 59: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site Summary This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold. This EIS also considers a no action alternative that assumes continued storage of DUF6 at the Paducah site. A

344

Carbohydrate derivedpseudolignin can retard cellulose biological conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbohydrate Carbohydrate Derived-Pseudo-Lignin Can Retard Cellulose Biological Conversion Rajeev Kumar, 1,2,3 Fan Hu, 3,4 Poulomi Sannigrahi, 3,4 Seokwon Jung, 3,4 Arthur J. Ragauskas, 3,4 Charles E. Wyman 1,2,3 1 Center for Environmental Research and Technology, Bourns College of Engineering, 1084 Columbia Avenue, Riverside, California 92507; telephone: 951-781-5668; fax: 951-781-5790; e-mail: rajeev.dartmouth@gmail.com 2 Department of Chemical and Environmental Engineering, Bourns College of Engineering, 446 Winston Chung Hall, 900 University Avenue, Riverside, California 92507 3 BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6422 4 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia ABSTRACT: Dilute acid as well as water only (hydrother- mal) pretreatments often lead to a significant

345

Paducah DUF6 Conversion Final EIS - Notation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS xxv NOTATION The following is a list of acronyms and abbreviations, chemical names, and units of measure used in this document. Some acronyms used only in tables may be defined only in those tables. GENERAL ACRONYMS AND ABBREVIATIONS AEA Atomic Energy Act of 1954 AEC U.S. Atomic Energy Commission AIHA American Industrial Hygiene Association ALARA as low as reasonably achievable ANL Argonne National Laboratory ANP Advanced Nuclear Power (Framatone ANP, Inc.) ANSI American National Standards Institute AQCR Air Quality Control Region BLS Bureau of Labor Statistics CAA Clean Air Act CEQ Council on Environmental Quality CERCLA Comprehensive Environmental Response, Compensation, and Liability Act of 1980 CFR Code of Federal Regulations CRMP cultural resource management plan

346

Apparatus and method for pyroelectric power conversion  

DOE Patents [OSTI]

Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected.

Olsen, Randall B. (Olivenhain, CA)

1984-01-01T23:59:59.000Z

347

Glasses for solar energy conversion systems  

Science Journals Connector (OSTI)

Solar technologies are projected to increase tremendously over the next 10 years. Glasses are playing an important role as transparent materials of photovoltaic (PV) cells and concentrating solar power (CSP) systems. Glasses are materials of short energy payback time and environmental compatibility suitable for sustainable energy concepts. The paper reviews recent solar applications. Surface structuring and coating of glasses are shown to improve energy efficiency for solar conversion systems substantially. Encapsulated glass-to-glass PV modules and solar photocatalytic glass surfaces are identified as elements of a green architecture combining renewable power generating and destruction of air pollutants of urban environments. Emerging solar technologies for power generation, including transparent PV modules, solar chimney and thermoelectric systems may become significant areas of future solar glass applications.

J. Deubener; G. Helsch; A. Moiseev; H. Bornhft

2009-01-01T23:59:59.000Z

348

(Biotechnology for the conversion of lignocellulosics)  

SciTech Connect (OSTI)

This report summarizes the results of the traveler's participation in the International Energy Agency (IEA) Network planning meeting for Biotechnology for the Conversion of Lignocellulosics,'' held at the Institut Francais du Petrole (IFP), Rueil-Malmaison, France. It also summarizes the results of discussions held at Aston University, Birmingham, UK, with Dr. Martin Beevers with whom the traveler is attempting to initiate a collaborative research project that will be beneficial to ongoing research programs at Oak Ridge National Laboratory (ORNL). The itinerary for the trip is given in Appendix A; the names of the people contacted are listed in Appendix B. Also, pertinent information about the Institut Francais du Petrole is attached (Appendix C). 1 tab.

Woodward, J.

1990-10-25T23:59:59.000Z

349

Theory of nuclear-spin conversion in ethylene  

Science Journals Connector (OSTI)

A theoretical analysis of nuclear-spin conversion in ethylene 13CCH4 has been performed. The conversion rate was found to be ?310-4 s-1/Torr, which is in qualitative agreement with the recently obtained experimental value. It was shown that the ortho-para mixing in 13CCH4 is dominated by spin-rotation coupling. Mixing of only two pairs of ortho-para levels was found to contribute significantly to the spin conversion.

P. L. Chapovsky and E. Ilisca

2001-05-16T23:59:59.000Z

350

Energy Conversion and Transmission Facilities (South Dakota) | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Public Utilities Commission This legislation applies to energy conversion facilities designed for or capable of generating 100 MW or more of electricity, wind energy facilities with a combined capacity of 100 MW, certain transmission facilities, and

351

Plasmonic enhancement of catalysis and solar energy conversion.  

E-Print Network [OSTI]

??This thesis is dedicated to exploring the potential applications of plasmonic metal nanoparticles and understanding their fundamental enhancement mechanisms. Photocatalysis and solar energy conversion are (more)

Hung, Wei Hsuan

2011-01-01T23:59:59.000Z

352

Biological Conversion of Sugars to Hydrocarbons Technology Pathway...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with...

353

1 Conversational Agents 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  

E-Print Network [OSTI]

Contents 1 Conversational Agents 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Technical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Natural

Lester, James C.

354

ELCAP Data Assembly and Conversion Project: Report on File Contents  

E-Print Network [OSTI]

............................................................................................................................................4 ELCAP Raw Hourly Load Data FilesELCAP Data Assembly and Conversion Project: Report on File Contents December 14, 2012 Regional ...............................................................................................2 ELCAP Data Files

355

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

Science Journals Connector (OSTI)

Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for...

Neil P. Dasgupta; Peidong Yang

2014-06-01T23:59:59.000Z

356

Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...  

Broader source: Energy.gov (indexed) [DOE]

Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. ctabwebinarcarbohydrates...

357

Catalytic Conversion of Biomass-derived Feedstock (HMF) into...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Technologies Industrial Technologies Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Catalytic Conversion of Biomass-derived Feedstock...

358

Process Design and Economics for Biochemical Conversion of Lignocellul...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover Process Design and Economics for Biochemical...

359

A Single Multi-Functional Enzyme for Efficient Biomass Conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search A Single Multi-Functional Enzyme for Efficient Biomass Conversion National Renewable Energy...

360

CONVERSION OF DOE TECHNICAL STANDARDS TO NON-GOVERNMENT STANDARDS  

Broader source: Energy.gov [DOE]

PurposeThis procedure provides guidance on the conversion of DOE Technical Standards to Voluntary Consensus Standards (VCSs), also referred to as non-Government standards.

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

academia and government to discuss new technologies for redefining the limits of solar energy conversion efficiency. download flyer Invited Speakers Include: Harry...

362

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

government gathered together and discussed new technologies for redefining the limits of solar energy conversion efficiency. The program featured invited talks, a poster session,...

363

Automotive Waste Heat Conversion to Power Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

-- Washington D.C. ace47lagrandeur.pdf More Documents & Publications Automotive Waste Heat Conversion to Power Program 2008 DOE FCVT Merit Review: BSST Waste Heat Recovery...

364

Liquid Metal MHD Energy Conversion in Fusion Reactors  

Science Journals Connector (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 1519, 1986)

L. Blumenau; H. Branover; A. El-Boher; E Spero; S. Sukoriansky; G. Talmage; E. Greenspan

365

Dependence of surface plasmon polarization conversion on the grating pitch  

Science Journals Connector (OSTI)

A polarization conversion of linearly polarized light incident on a cross-corrugated metal surface may occur due to the optical energy exchange between the surface plasmon (SP)...

Sabat, Ribal Georges; Rochon, Nathan; Rochon, Paul

2010-01-01T23:59:59.000Z

366

Multiple-junction quantum cascade photodetectors for thermophotovoltaic energy conversion  

Science Journals Connector (OSTI)

The use of intersubband transitions in quantum cascade structures for thermophotovoltaic energy conversion is investigated numerically. The intrinsic cascading scheme, spectral...

Yin, Jian; Paiella, Roberto

2010-01-01T23:59:59.000Z

367

University Reactor Conversion Lessons Learned Workshop for Purdue University Reactor  

SciTech Connect (OSTI)

The Department of Energys Idaho National Laboratory, under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at Purdue University Reactor. With this work completed and in anticipation of other impending conversion projects, the INL convened and engaged the project participants in a structured discussion to capture the lessons learned. The lessons learned process has allowed us to capture gaps, opportunities, and good practices, drawing from the project teams experiences. These lessons will be used to raise the standard of excellence, effectiveness, and efficiency in all future conversion projects.

Eric C. Woolstenhulme; Dana M. Hewit

2008-09-01T23:59:59.000Z

368

Plasmonic and High Index Nanostructures for Efficient Solar Energy Conversion  

Science Journals Connector (OSTI)

I will discuss the use of nanometallic and high-index dielectric nanostructures in boosting the energy conversion efficiency of photovoltaic and photo-electrochemical cells.

Brongersma, Mark L

369

Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources  

Broader source: Energy.gov [DOE]

Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado.

370

Research Program - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

We investigate the molecular and structural origins of energy conversion (absorption, carrier generation and recombination processes, transport) phenomena in organic and hybrid...

371

Research Program - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In the Inorganic PV thrust, we develop nanostructured materials architectures for solar energy conversion by engineering absorption and transport properties not available in the...

372

An overview of the progress in photoelectrochemical energy conversion  

Science Journals Connector (OSTI)

An overview of the progress in photoelectrochemical energy conversion ... Kinetic studies of carrier transport and recombination at the n-silicon methanol interface ...

Bruce Parkinson

1983-01-01T23:59:59.000Z

373

Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bryna Berendzen Office of the Biomass Program U.S. Department of Energy Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Report-Out Webinar February 9,...

374

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the...

375

Science Highlights- Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 - Abstracts and Highlight Slides Efficiency of Thermoelectric Energy Conversion in Biphenyl-dithiol Junctions: Effect of Electron-Phonon Interactions Plasmonic Backscattering...

376

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy...

377

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center...

378

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: Solar Spectrum Control and Conversion RG Leader: John Rogers Affiliated PIs: Paul Alivisatos, Harry Atwater, Paul Braun, Mark Brongersma, Jennifer Dionne, Shanhui Fan, Ralph...

379

Direct Conversion of Light into Work - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Solar Thermal Industrial Technologies Industrial Technologies Find More Like This Return to Search Direct Conversion of Light into Work Lawrence Berkeley National...

380

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Project Overview 2 * Start: October 2011 * End: September 2015 * Percent complete -...

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Si as part of RG-3 research efforts (Chris Gladden, LBNL) The Scientific Vision of the "Light-Material Interactions in Energy Conversion Energy Frontier Research Center"...

382

District Wide Geothermal Heating Conversion Blaine County School...  

Broader source: Energy.gov (indexed) [DOE]

Conversion Blaine County School District This project will impact the geothermal energy development market by showing that ground source heat pump systems using production...

383

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Caltech Harry Atwater Introduction to the Workshop on Fundamental Challenges in Solar Energy Conversion Harry A. Atwater, Caltech Eli Yablonovitch Fundamental Limits to Light...

384

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Millikan Board Room map California Institute of Technology Pasadena, CA The Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Center...

385

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Energy Steven Chu visits Caltech labs For more information or questions about the Light-Material Interactions in Energy Conversion Energy Frontier Research Center, please...

386

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

broad importance in many thermal conversion and efficiency applications beyond solar energy. The RG3 team is establishing fundamental principles for thermal photon harvesting...

387

CHEMICAL TRAPPING OF A PRIMARY QUANTUM CONVERSION PRODUCT IN PHOTOSYNTHESIS  

E-Print Network [OSTI]

CONVERSION PRODUCT I N PHOTOSYNTHESIS G e r a l d A. C o r kthe two light acts of photosynthesis. Potassium Ecrricyanide

Corker, Gerald A.; Klein, Melvin P.; Calvin, Melvin.

2008-01-01T23:59:59.000Z

388

ELECTRICAL DISTRICT NUMBER EIGHT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ELECTRICAL DISTRICT NUMBER EIGHT ELECTRICAL DISTRICT NUMBER EIGHT Board of Directors Reply to: Ronald Rayner C. W. Adams James D. Downing, P.E. Chairman Billy Hickman 66768 Hwy 60 Brian Turner Marvin John P.O. Box 99 Vice-Chairman Jason Pierce Salome, AZ 85348 Denton Ross Jerry Rovey Secretary James N. Warkomski ED8@HARCUVARCO.COM John Utz Gary Wood PHONE:(928) 859-3647 Treasurer FAX: (928) 859-3145 Sent via e-mail Mr. Darrick Moe, Regional Manager Western Area Power Administration Desert Southwest Region P. O. Box 6457 Phoenix, AZ 85005-6457 moe@wapa.gov; dswpwrmrk@wapa.gov Re: ED5-Palo Verde Hub Project Dear Mr. Moe, In response to the request for comments issued at the October 6 Parker-Davis Project customer th meeting, and in conjunction with comments previously submitted by the Southwest Public Power

389

Preventive Action Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Preventive Action Report Planning Worksheet 11_0414 1 of 3 8 Preventive Action Report Planning Worksheet 11_0414 1 of 3 EOTA - Business Form Document Title: Preventive Action Report Planning Worksheet Document Number: F-018 Rev 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-008, Corrective/Preventive Action Notify of Changes: EOTA Employees Referenced Document(s): N/A F-018 Preventive Action Report Planning Worksheet 11_0414 2 of 3 Revision History: Rev. Description of Change 08_0613 Initial Release 09_0924 Worksheet modified to reflect External Audit recommendation for identification of "Cause for Potential Nonconformance". Minor editing changes. 11_0414 Added Preventive Action Number block to match Q-Pulse

390

Preventive Action Number:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Corrective Action Report Planning Worksheet 11_0414 1 of 3 7 Corrective Action Report Planning Worksheet 11_0414 1 of 3 EOTA - Business Form Document Title: Corrective Action Report Planning Worksheet Document Number: F-017 Rev 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: P-008, Corrective/Preventive Action Notify of Changes: EOTA Employees Referenced Document(s): N/A F-017 Corrective Action Report Planning Worksheet 11_0414 2 of 3 Revision History: Rev. Description of Change 08_0613 Initial Release 11_0414 Added problem statement to first block. F-017 Corrective Action Report Planning Worksheet 11_0414 3 of 3 Corrective Action Report Planning Worksheet Corrective Action Number: Source: Details/Problem Statement: Raised By: Raised Date: Target Date:

391

Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system  

DOE Patents [OSTI]

This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

Dziendziel, Randolph J. (Middle Grove, NY); DePoy, David Moore (Clifton Park, NY); Baldasaro, Paul Francis (Clifton Park, NY)

2007-01-23T23:59:59.000Z

392

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

SciTech Connect (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoas conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

393

The United States pit disassembly and conversion project -- Meeting the MOX fuel specification  

SciTech Connect (OSTI)

The US is actively involved in demonstrating the disassembly of nuclear weapons pits to an unclassified form readied for disposition. The MOX option is the most likely path forward for plutonium that originated from nuclear weapon pits. The US demonstration line for pit disassembly and conversion is known as ARIES, the advanced recovery and integrated extraction system. The ARIES demonstration line is being used to gather data in an integrated fashion of the technologies needed for pit disassembly and conversion. These activities include the following modules: pit bisection, hydride-dehydride, oxide conversion, canning, electrolytic decontamination, and nondestructive assay (NDA). Pit bisection swages in a pit in half. Hydride-dehydride converts the pit plutonium metal to an unclassified metal button. To convert the plutonium metal to an oxide the US is investigating a number of options. The primary oxide conversion approach involves variations of combining plutonium hydriding and subsequent oxidation. Another approach is to simply oxidize the metal under controlled conditions-direct metal oxidation (DMO). To remove the gallium from the plutonium oxide, a thermal distillation approach is being used. These pyrochemical approaches will substantially reduce the wastes produced for oxide conversion of weapon plutonium, compared to traditional aqueous processing. The packaging of either the plutonium metal or oxide to long term storage criteria involves the canning and electrolytic decontamination modules. The NDA suite of instruments is then used to assay the material in the containers, which enables international verification without the need to open the containers and repackage them. All of these processes are described.

Nelson, T.O.; James, C.A.; Kolman, D.G.

1998-12-31T23:59:59.000Z

394

Internal conversion coefficients of high multipole transitions: Experiment and theories  

SciTech Connect (OSTI)

A compilation of the available experimental internal conversion coefficients (ICCs), {alpha}{sub T}, {alpha}{sub K}, {alpha}{sub L}, and ratios K/L and K/LM of high multipole (L > 2) transitions for a number of elements in the range 21 {<=} Z {<=} 94 is presented. Our listing of experimental data includes 194 data sets on 110 E3 transitions, 10 data sets on 6 E4 transitions, 11 data sets on 7 E5 transitions, 38 data sets on 21 M3 transitions, and 132 data sets on 68 M4 transitions. Data with less than 10% experimental uncertainty have been selected for comparison with the theoretical values of Hager and Seltzer [R.S. Hager, E.C. Seltzer, Nucl. Data Tables A 4 (1968) 1], Rosel et al. [F. Roesel, H.M. Fries, K. Alder, H.C. Pauli, At. Data Nucl. Data Tables 21 (1978) 91], and BRICC. The relative percentage deviations (%{delta}) have been calculated for each of the above theories and the averages (%{delta}-bar) are estimated. The Band et al. [I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor Jr., P.O. Tikkanen, S. Raman, At. Data Nucl. Data Tables 81 (2002) 1] tables, using the BRICC interpolation code, are seen to give theoretical ICCs closest to experimental values.

Gerl, J. [Gesellschaft fuer Schwerionenforschung, GSI, Planck Strasse 1, D-64291 Darmstadt (Germany); Vijay Sai, K. [Department of Physics, Sri Sathya Sai University, Prasanthinilayam 515134 (India)], E-mail: vjsai.phy.psn@sssu.edu.in; Sainath, M.; Gowrishankar, R.; Venkataramaniah, K. [Department of Physics, Sri Sathya Sai University, Prasanthinilayam 515134 (India)

2008-09-15T23:59:59.000Z

395

Portsmouth DUF6 Conversion Final EIS - Appendix D: Environmental Synopsis for the Depleted UF6 Conversion Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS APPENDIX D: ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT Environmental Synopsis D-2 Portsmouth DUF 6 Conversion Final EIS ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT (Solicitation No. DE-RP05-01OR22717) October 2002 Environmental Assessment Division Argonne National Laboratory Argonne, Illinois Prepared for Office of Site Closure - Oak Ridge Office (EM-32) Office of Environmental Management U.S. Department of Energy Washington, D.C. October 2002 iii CONTENTS 1 INTRODUCTION........................................................................................................... 1 2 BACKGROUND.............................................................................................................

396

Paducah DUF6 Conversion Final EIS - Appendix D: Environmental Synopsis for the Depleted UF6 Conversion Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX D: ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT Environmental Synopsis D-2 Paducah DUF 6 Conversion Final EIS ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT (Solicitation No. DE-RP05-01OR22717) October 2002 Environmental Assessment Division Argonne National Laboratory Argonne, Illinois Prepared for Office of Site Closure - Oak Ridge Office (EM-32) Office of Environmental Management U.S. Department of Energy Washington, D.C. October 2002 iii CONTENTS 1 INTRODUCTION........................................................................................................... 1 2 BACKGROUND............................................................................................................. 3 3

397

Old mills, new condos; sound isolation in mill building conversion projects  

Science Journals Connector (OSTI)

Up and down the New England Coast century?old mill buildings are being converted into condominium and apartment buildings amidst one of the biggest housing booms in recent memory. While the inherent acoustical conflicts in multi?family dwelling are not new (oft?cited HUD guidelines are approaching their 40th birthday) the flood of mill conversions is bringing to light a number of new constructions that architects use to chop former factories into discrete living spaces. This paper will present field?collected data and case studies that illustrate some of the problems and common pitfalls associated with mill building conversion projects. Among the construction details discussed include exposed timber ceilings that run continuously across gypsum board partitions the creative reuse of existing brick walls and some acoustical properties of wood deck construction common to many mill buildings.

2006-01-01T23:59:59.000Z

398

Change in composition and structure of reduced crudes during conversion on contact material  

SciTech Connect (OSTI)

Four Chinese 350{degrees}C+ reduced crude feedstocks were heated thermally in the presence of a contact material at 480-540{degrees}C in a fixed bed reactor. The feed and products were fractionated into eight fractions using normal pentane precipitation and alumina adsorption chromatography and average molecular parameters calculated with a modified Brown-Ladner method. The results obtained show that the conversion of various fractions of the reduced crudes was quite different. The conversion of asphaltic substances was much higher than those of saturates and aromatics. It is shown that the CH{sub 2}/CH{sub 3} ratio, aromaticity and the numbers of aromatic, naphthenic and total ring of heavy products were obviously lower than those of reduced crudes. The effect of temperature on metal, sulfur, nitrogen removal has been also investigated. The data indicate that the removal of weak polar non-porphyrin nickel was larger than that of middle and strong polar nickel complex.

Jixu, L. (China Luoyang, Petrochemical Engineering Co. (CN)); Guohe, Q.; Wenjie, L. (Dept. of Chemical Engineering, East China Petroleum Inst., Dongying, Shandon (CN))

1991-01-01T23:59:59.000Z

399

FAQ 32-What are the potential health risks from conversion of depleted  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conversion of depleted uranium hexafluoride to other forms? conversion of depleted uranium hexafluoride to other forms? What are the potential health risks from conversion of depleted uranium hexafluoride to other forms? Accidental release of UF6 during processing activities could result in injuries. The most immediate hazard from a release would be lung injury or death from inhalation of hydrogen fluoride (HF), a highly corrosive gas formed when UF6 reacts with moisture in air. Uranyl fluoride is also formed. Uranyl fluoride is a particulate that can be dispersed in air and inhaled. Once inhaled, uranyl fluoride is easily absorbed into the bloodstream because it is soluble. If large quantities are inhaled, kidney toxicity will result. Conversion of uranium hexafluoride to oxide or metal may involve hazardous chemicals in addition to UF6; specifically, ammonia (NH3) may be used in the process, and HF may be produced from the process. In the PEIS, the conversion accidents estimated to have the largest potential consequences were accidents involving the rupture of tanks containing either anhydrous HF or ammonia. Such an accident could be caused by a large earthquake. The probability of large earthquakes depends on the location of the facility, and the probability of damage depends on the structural characteristics of the buildings. In the PEIS, the estimated frequency of this type of accident was less than once in one million years. However, if such an extremely unlikely accident did occur, it was estimated that up to 41,000 members of the general public around the conversion facility might experience adverse effects from chemical exposures (mostly mild and temporary effects, such as respiratory irritation or temporary decrease in kidney function). Of these, up to 1,700 individuals might experience irreversible adverse effects (such as lung damage or kidney damage), with the potential for about 30 fatalities. In addition, irreversible or fatal effects among workers very near the accident scene would be possible. (Note: The actual numbers of injuries among the general public would depend on the size and proximity of the population around the conversion facility).

400

Colorado Natural Gas Number of Residential Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Colorado Natural Gas Number of Industrial Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

402

Colorado Natural Gas Number of Commercial Consumers (Number of...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

403

NAME: STUDENT NUMBER (PID): CITY, STATE ZIP: DAYTIME PHONE NUMBER  

E-Print Network [OSTI]

NAME: STUDENT NUMBER (PID): ADDRESS: CITY, STATE ZIP: DAYTIME PHONE NUMBER: CELL PHONE NUMBER of financial institution. 14 Cell Phone Expenses 15 Other ordinary and necessary living expenses. 16 TOTAL (add

404

Connecticut Natural Gas Number of Residential Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

405

Connecticut Natural Gas Number of Commercial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

406

Connecticut Natural Gas Number of Industrial Consumers (Number...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

407

Carbohydrate Derived-Pseudo-Lignin Can Retard Cellulose Biological Conversion  

E-Print Network [OSTI]

ARTICLE Carbohydrate Derived-Pseudo-Lignin Can Retard Cellulose Biological Conversion Rajeev Kumar degradation products, collectively termed as chars and/or pseudo-lignin. In order to understand the factors derived pseudo-lignin on cellulose conversion at the moderate to low enzyme loadings necessary

California at Riverside, University of

408

WHEELS: A CONVERSATIONAL SYSTEM IN THE AUTOMOBILE CLASSIFIEDS DOMAIN  

E-Print Network [OSTI]

WHEELS: A CONVERSATIONAL SYSTEM IN THE AUTOMOBILE CLASSIFIEDS DOMAIN Helen Meng, Senis WHEELS is a conversational system which provides access to a database of eletronic automobile classified users to search through a database of 5,000 automobile classifieds. The current end-to-end system can re

409

Tidal Conversion by Supercritical Topography NEIL J. BALMFORTH  

E-Print Network [OSTI]

are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above and are scattered both up and down). A complicated pattern is found for the dependence of energy conversion on e of internal waves as the barotropic tide flows over topography on the ocean floor has lately received wide

Balmforth, Neil

410

Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion  

E-Print Network [OSTI]

Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion Rajiv Bharadwaj such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels. Lignocellulosic (LC) biomass is an abundant and potentially carbon-neutral resource for production of biofuels

Singh, Anup

411

New process speeds conversion of biomass to fuels  

E-Print Network [OSTI]

- 1 - New process speeds conversion of biomass to fuels February 7, 2013 Fuels synthesis insight forward recently towards transforming biomass-derived molecules into fuels. The team led by Los Alamos published the research. Trash to Treasure "Efficient conversion of non-food biomass into fuels and chemical

412

The Vernissage Corpus: A Conversational Human-Robot-Interaction Dataset  

E-Print Network [OSTI]

scenario involves a humanoid robot NAO1 explaining paintings in a room and then quizzing the participantsThe Vernissage Corpus: A Conversational Human-Robot-Interaction Dataset Dinesh Babu Jayagopi1.wrede, bwrede@techfak}.uni-bielefeld.de Abstract--We introduce a new conversational Human-Robot- Interaction

Gatica-Perez, Daniel

413

Vibrational energy redistribution in glyoxal following internal conversion  

E-Print Network [OSTI]

Vibrational energy redistribution in glyoxal following internal conversion R. Naaman,a) D. M, more than 50% of the energy in S1 is transferred to the ground state by internal conversion 4 June 1979; accepted 10 August 1979) The vibrational redistribution of energy following internal

Zare, Richard N.

414

Internal conversions in Higgs decays to two photons  

SciTech Connect (OSTI)

We evaluate the partial widths for internal conversions in the Higgs decays to two photons. For the Higgs masses of interest at the CERN LHC in the range of 100-150 GeV, the conversions to pairs of fermions represent a significant fraction of Higgs decays.

Firan, Ana; Stroynowski, Ryszard [Department of Physics, Southern Methodist University, Dallas, Texas 75275-0175 (United States)

2007-09-01T23:59:59.000Z

415

Beilstein-Institut Reflections on Energy Conversion in  

E-Print Network [OSTI]

Beilstein-Institut Reflections on Energy Conversion in Biological and Biomimetic Systems Athel by conversion of the heat into work, chemical energy or electrical power, and the inevitable energy losses 2011 Abstract In principle any form of energy (light, electrical, potential, chemical, kinetic energy

416

Plasmon Enhanced Solar-to-Fuel Energy Conversion  

Science Journals Connector (OSTI)

Plasmon Enhanced Solar-to-Fuel Energy Conversion ... As a result, many photoexcited carriers are generated too far from a reactive surface and recombine instead of participating in solar-to-fuel conversion. ... attractive approach is to store solar-converted energy as chem. ...

Isabell Thomann; Blaise A. Pinaud; Zhebo Chen; Bruce M. Clemens; Thomas F. Jaramillo; Mark L. Brongersma

2011-07-12T23:59:59.000Z

417

Indoor Dose Conversion Coefficients for Radon Progeny for Different  

E-Print Network [OSTI]

Indoor Dose Conversion Coefficients for Radon Progeny for Different Ambient Environments K . N . Y ambient environments on the indoor radon dose (in terms of the dose conversion coefficient or DCC of the human respiratory tract. Epidemiological studies of under- ground miners of uranium and other minerals

Yu, K.N.

418

On Transforming Spectral Peaks in Voice Conversion Elizabeth Godoy 1  

E-Print Network [OSTI]

On Transforming Spectral Peaks in Voice Conversion Elizabeth Godoy 1 , Olivier Rosec1 , Thierry.chonavel@telecom-bretagne.eu Abstract This paper explores the benefits of transforming spectral peaks in voice conversion. First, in examining classic GMM- based transformation with cepstral coefficients, we show that the lack of transformed

Paris-Sud XI, Université de

419

Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen  

Science Journals Connector (OSTI)

...methane conversion reached a...1% and ethylene selectivity...made from methanol, which...natural gas conversion (6, 7...16% and ethylene selectivity...based on Mo/zeolites catalyze...the zeolite pores yields benzene...although a small amount of coke...NPs with a size of ~3 to...

Xiaoguang Guo; Guangzong Fang; Gang Li; Hao Ma; Hongjun Fan; Liang Yu; Chao Ma; Xing Wu; Dehui Deng; Mingming Wei; Dali Tan; Rui Si; Shuo Zhang; Jianqi Li; Litao Sun; Zichao Tang; Xiulian Pan; Xinhe Bao

2014-05-09T23:59:59.000Z

420

Microaerobic Conversion of Glycerol to Ethanol in Escherichia coli  

Science Journals Connector (OSTI)

...Microaerobic Conversion of Glycerol to Ethanol in Escherichia coli Matthew S. Wong Mai...significant improvements in the yield of ethanol from glycerol. We have developed a fermentation...microaerobic conversion of glycerol to ethanol by Escherichia coli that presents solutions...

Matthew S. Wong; Mai Li; Ryan W. Black; Thao Q. Le; Sharon Puthli; Paul Campbell; Daniel J. Monticello

2014-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion  

Broader source: Energy.gov (indexed) [DOE]

Y-12 Enriched Uranium Operations Oxide Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Management program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion

422

Documents: Paducah DUF6 Conversion Facility Final EIS and ROD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF6 Final EIS Paducah DUF6 Final EIS Search Documents: Search PDF Documents View a list of all documents Paducah DUF6 Conversion Facility Final EIS and Record of Decision Full text of the Record of Decision and Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site. The full text of the Record of Decision and Paducah DUF6 Conversion Facility Final EIS and ROD is available for downloading or browsing in Adobe Acrobat PDF format through the links below. You may also order a CD-ROM or paper copy of the Depleted UF6 Conversion Facility EISs by submitting a Final EIS Document Request Form. Record of Decision PDF Icon Paducah DUF6 Conversion Facility: Record of Decision 3.6 MB details

423

Documents: Portsmouth DUF6 Conversion Facility Final EIS and ROD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portsmouth DUF6 Final EIS Portsmouth DUF6 Final EIS Search Documents: Search PDF Documents View a list of all documents Portsmouth DUF6 Conversion Facility Final EIS and Record of Decision Full text of the Record of Decision and Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site. The full text of the Record of Decision and Portsmouth DUF6 Conversion Facility Final EIS and ROD is available for downloading or browsing in Adobe Acrobat PDF format through the links below. Record of Decision PDF Icon Portsmouth DUF6 Conversion Facility: Record of Decision 3.8 MB details PDF Icon Portsmouth DUF6 Conversion Facility: Record of Decision: As Published in the Federal Register 82 KB details

424

Wind Energy Conversion Systems (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Conversion Systems (Minnesota) Wind Energy Conversion Systems (Minnesota) Wind Energy Conversion Systems (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Wind Buying & Making Electricity Program Info State Minnesota Program Type Siting and Permitting This section distinguishes between large (capacity 5,000 kW or more) and small (capacity of less than 5,000 kW) wind energy conversion systems (WECS), and regulates the siting of large conversion systems. The statute

425

CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov (indexed) [DOE]

Y-12 Enriched Uranium Operations Oxide Conversion Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Training Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide

426

Solid State Energy Conversion Alliance (SECA) Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL Publications NETL Publications 2001 Conference Proceedings Solid State Energy Conversion Alliance (SECA) Workshop March 29-30, 2001 Table of Contents Disclaimer Papers and Presentations Plenary Session Selected Presentations on Current DOE Work Supporting SECA Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

427

Thermal energy conversion to motive power  

SciTech Connect (OSTI)

Performance evaluations of both ideal and actual organic Rankine cycle (ORC) and steam Rankine cycles (SRC) are presented for systems that may be candidates for Solar Total Energy Systems (STES). Many organic fluids and heat engines (turbines or expanders) are being developed; therefore, performance of a few representative ORCs are evaluated. The electrical power outputs range from several kW to <10 MW with maximum cycle temperatures of 482/sup 0/C (900 F). Conclusions from basic Rankine cycle analyses are that the Carnot cycle concept should not be used as a standard of comparison for different cycle fluids, even when they are operating at the same inlet and exhaust temperatures. The ideal Rankine cycle with the maximum conversion efficiency, when based on exact physical properties of fluids, should provide a better standard for actual cycles. Three sets of maximum (ideal) Rankine cycle efficiency (n/sub r/) curves are estimated for steam and several organic fluids for exhaust temperatures of 38/sup 0/C, 100/sup 0/C, and 149/sup 0/C (100 F, 212 F, and 300F). These curves of n/sub r/ versus peak temperature at the expander inlet are referred to as Criterion Curves for basic Rankine cycles, in which corresponding inlet pressures are selected such that n/sub r/ will be a maximum. Basic cycle efficiencies indicate some fluids preferred for solar total energy applications.

Meador, J.T.

1980-01-01T23:59:59.000Z

428

Probing nuclear matter with jet conversions  

SciTech Connect (OSTI)

We discuss the flavor of leading jet partons as a valuable probe of nuclear matter. We point out that the coupling of jets to nuclear matter naturally leads to an alteration of jet chemistry even at high transverse momentum p{sub T}. In particular, quantum chromodynamics (QCD) jets coupling to a chemically equilibrated quark gluon plasma in nuclear collisions will lead to hadron ratios at high transverse momentum p{sub T} that can differ significantly from their counterparts in p+p collisions. Flavor measurements could complement energy loss as a way to study interactions of hard QCD jets with nuclear matter. Roughly speaking they probe the inverse mean free path 1/{lambda} while energy loss probes the average squared momentum transfer {mu}{sup 2}/{lambda}. We present some estimates for the rate of jet conversions in a consistent Fokker-Planck framework and their impact on future high-p{sub T} identified hadron measurements at RHIC and LHC. We also suggest some novel observables to test flavor effects.

Liu, W. [Cyclotron Institute and Department of Physics, Texas A and M University, College Station, Texas 77843 (United States); Fries, R. J. [Cyclotron Institute and Department of Physics, Texas A and M University, College Station, Texas 77843 (United States); RIKEN/BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973 (United States)

2008-05-15T23:59:59.000Z

429

Process feasibility of DME to olefin conversion  

SciTech Connect (OSTI)

The production of hydrocarbons via a synthetic route has been extensively studied by Mobil through its methanol based Methanol-to-Gasoline (MTG) process. An alternative approach using dimethyl ether (DME) has been developed by the University of Akron -- UA/EPRI DME-to-Hydrocarbons Process. The process feasibility of the production of hydrocarbons from DME has been illustrated in a bench scale, fluidized bed reactor using ZSM-5 type catalyst. In an effort to satisfy the growing demand for olefins as an intermediate chemical feedstocks a mechanistic/kinetic study was developed. The synthesis of olefins has been studied in packed bed micro-reactor using ZSM-5 catalyst. Experimental work has given details of reaction kinetics and mechanism in the conversion of DME to olefins. DME concentration weight hourly space velocity (WHSV), as well as reactor temperature and pressure were investigated in the study. This work was used as a precursor to the production of olefins/hydrocarbons from DME in a fluidized bed reactor. Product gas analysis was performed using an external GC standard method.

Tartamella, T.L.; Fullerton, K.L.; Lee, S. [Univ. of Akron, OH (United States); Kulik, C.J. [Electric Power Research Inst., Palo Alto, CA (United States)

1994-12-31T23:59:59.000Z

430

Construction Project Number  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North Execution - (2009 - 2011) North Execution - (2009 - 2011) Construction Project Number 2009 2010 2011 Project Description ANMLPL 0001C 76,675.32 - - Animas-Laplata circuit breaker and power rights CRGRFL 0001C - - 7,177.09 Craig Rifle Bay and transfer bay upgrade to 2000 amps; / Convert CRG RFL to 345 kV out of Bears Ear Sub FGE 0019C - - 39,207.86 Replace 69/25kV transformer KX2A at Flaming Gorge FGE 0020C - - 52,097.12 Flaming Gorge: Replace failed KW2A transformer HDN 0069C 16,638.52 208,893.46 3,704,578.33 Replace failed transformer with KZ1A 250 MVA 230/138kv

431

KPA Activity Number  

Broader source: Energy.gov (indexed) [DOE]

supports CMM-SW Level 2 supports CMM-SW Level 2 Mapping of the DOE Systems Engineering Methodology to the Software Engineering Institute (SEI) Software Capability Maturity Model (CMM- SW) level 2. Date: September 2002 Page 1 KPA Activity Number KPA Activity SEM Section SME Work Product SQSE Web Site http://cio.doe.gov/sqse REQUIREMENTS MANAGEMENT RM-1 The software engineering group reviews the allocated requirements before they are incorporated in the software project. Chapter 3.0 * Develop High-Level Project Requirements Chapter 4.0 * Establish Functional Baseline * Project Plan * Requirements Specification Document * Requirements Management awareness * Defining Project Requirements RM-2 The software engineering group uses the allocated requirements as the basis for

432

Perfect A/D conversion of entanglement  

E-Print Network [OSTI]

We investigate how entanglement can be perfectly transfered between continuous variable and qubits system. We find that a two-mode squeezed vacuum state can be converted to the product state of an infinitive number of two-qubit states while keeping the entanglement. The reverse process is also possible. The interaction Hamitonian is a kind of non-linear Jaynes-Cumings Hamiltonian.

Xiao-Yu Chen

2005-11-01T23:59:59.000Z

433

Portsmouth DUF6 Conversion Final EIS - Volume 2: Comment and Response Document: Chapter 2: Comment Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 2 COMMENT DOCUMENTS This section provides copies of the actual letters or other documents containing public comments on the draft EISs that were submitted to DOE, including comments extracted from the transcripts of the public hearings. Table 2.1 contains an index of the comment documents by document number. Table 2.2 provides an index of comment documents by the commentors last name. Table 2.3 contains an index of comment documents by company or organization. Individual comments are denoted with vertical lines in the right margin. TABLE 2.1 Index of Commentors by Document Number Document Number Name Company/Organization Page D0001 Driver, Charles M. Individual 2-5 D0002 Kilrod, John Individual 2-7 D0003 Colley, Vina Portsmouth/Piketon Residents for Environmental Safety and Security

434

Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction  

Science Journals Connector (OSTI)

(5, 6) The ideal process to produce biofuels from lignocellulosic biomass would be a single step reactor at short residence times where solid biomass is directly converted into a liquid fuel. ... with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). ... conversion processes that include combustion, gasification, liquefaction, hydrogenation and pyrolysis, have been used to convert the biomass into various energy products. ...

Yu-Ting Cheng; George W. Huber

2011-04-26T23:59:59.000Z

435

Disruptive Event Biosphere Dose Conversion Factor Analysis  

SciTech Connect (OSTI)

This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2004 [DIRS 169671]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis''. The objective of this analysis was to develop the BDCFs for the volcanic ash exposure scenario and the dose factors for calculating inhalation doses during volcanic eruption (eruption phase of the volcanic event). For the volcanic ash exposure scenario, the mode of radionuclide release into the biosphere is a volcanic eruption through the repository with the resulting entrainment of contaminated waste in the tephra and the subsequent atmospheric transport and dispersion of contaminated material in the biosphere. The biosphere process model for this scenario uses the surface deposition of contaminated ash as the source of radionuclides in the biosphere. The initial atmospheric transport and dispersion of the ash as well as its subsequent redistribution by fluvial and aeolian processes are not addressed within the biosphere model. These processes influence the value of the source term that is calculated elsewhere and then combined with the BDCFs in the TSPA model to calculate expected dose to the receptor. Another objective of this analysis was to re-qualify the output of the previous revision (BSC 2003 [DIRS 163958]).

M. Wasiolek

2004-09-08T23:59:59.000Z

436

Conversion of municipal solid waste to hydrogen  

SciTech Connect (OSTI)

LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL`s focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

Richardson, J.H.; Rogers, R.S.; Thorsness, C.B. [and others

1995-04-01T23:59:59.000Z

437

Chapter 24 - Fuel Cells: Energy Conversion Technology  

Science Journals Connector (OSTI)

The drive for fuel cell technology research and development stems from cleanliness of the technology, high chemical to electrical conversion efficiency and versatile applications ranging from large-scale, stand-alone stationary power plant to modular distributed generation systems to advanced mobile auxiliary power units. Portable systems and those that can be carried are also currently being designed for civilian and military markets. Fuel cells are capable of generating electricity with virtually negligible to zero pollution (e.g. SOx, NOx, volatile organic compounds (VOC), particulate matters (PMs)). They also offer a reduced carbon footprint and have the potential to be engineered for zero carbon systems. Despite the potential to meet the pressing needs for clean and efficient fuel cellbased power generation systems, high capital and maintenance cost remains a challenge for large-scale commercialisation and global market entry. Solid oxide fuel cell (SOFC) is one of the most promising fuel cell technologies as it offers significantly higher electrical efficiency as well as co-production of high-quality process heat. The system lifetime, its reliability and cost, however, remain a concern due to the performance degradation with time, commonly associated with the instability of materials in complex operating environment and high exposure temperature (6501000)C. New materials, systems design and operating conditions are being developed to increase the lifetime. Centralised and distributed SOFC power systems in the range of hundreds of kilowatt to megawatt are being considered for integration with advanced coal power plants, hybrid systems integrated with energy storage and carbon-capture technologies to fully exploit the commercial potential.

Manoj K. Mahapatra; Prabhakar Singh

2014-01-01T23:59:59.000Z

438

Biomass Thermochemical Conversion Program. 1983 Annual report  

SciTech Connect (OSTI)

Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1984-08-01T23:59:59.000Z

439

Disruptive Event Biosphere Doser Conversion Factor Analysis  

SciTech Connect (OSTI)

The purpose of this report was to document the process leading to, and the results of, development of radionuclide-, exposure scenario-, and ash thickness-specific Biosphere Dose Conversion Factors (BDCFs) for the postulated postclosure extrusive igneous event (volcanic eruption) at Yucca Mountain. BDCF calculations were done for seventeen radionuclides. The selection of radionuclides included those that may be significant dose contributors during the compliance period of up to 10,000 years, as well as radionuclides of importance for up to 1 million years postclosure. The approach documented in this report takes into account human exposure during three different phases at the time of, and after, volcanic eruption. Calculations of disruptive event BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. The pathway analysis included consideration of different exposure pathway's contribution to the BDCFs. BDCFs for volcanic eruption, when combined with the concentration of radioactivity deposited by eruption on the soil surface, allow calculation of potential radiation doses to the receptor of interest. Calculation of radioactivity deposition is outside the scope of this report and so is the transport of contaminated ash from the volcano to the location of the receptor. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA), in which doses are calculated to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

M. Wasiolek

2000-12-28T23:59:59.000Z

440

Nominal Performance Biosphere Dose Conversion Factor Analysis  

SciTech Connect (OSTI)

The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

Wasiolek, Maryla A.

2000-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

North Dakota Energy Conversion and Transmission Facility Siting Act (North  

Broader source: Energy.gov (indexed) [DOE]

Dakota Energy Conversion and Transmission Facility Siting Act Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Line Extension Analysis

442

Demonstrating Energy Conversion with Piezoelectric Crystals and a Paddle Fan  

Science Journals Connector (OSTI)

A simple energy conversion systemparticularly the conversion of mechanical energy into electrical energy by using shaker flashlightshas recently been presented. 1 This system uses hand generators consisting of a magnet in a tube with a coil wrapped around it and acts as an ac source when the magnet passes back and forth through the coil. Additionally this system includes an LED a capacitor a switch and a full-wave bridge rectifier. We were inspired by this work to design a simpler demonstrator made for teaching energy conversion concepts to science students using piezoelectric material. 2 3

Prissana Rakbamrung; Chatchai Putson

2014-01-01T23:59:59.000Z

443

Recent Advances in Catalytic Conversion of Ethanol to Chemicals  

SciTech Connect (OSTI)

With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

Sun, Junming; Wang, Yong

2014-04-30T23:59:59.000Z

444

On neutron numbers and atomic masses  

Science Journals Connector (OSTI)

On neutron numbers and atomic masses ... Assigning neutron numbers, correct neutron numbers, and atomic masses and nucleon numbers. ...

R. Heyrovsk

1992-01-01T23:59:59.000Z

445

Further test of internal-conversion theory with a measurement in (197)Pt  

E-Print Network [OSTI]

decay scheme is dominated by a single transition that can convert in the atomic K shell, and a spectrum of K x rays and ? rays is recorded for its decay, then the K-shell internal conversion coefficient for that transition is given by ?K?K = NK N...? ? #4;? #4;K , (1) where ?K is the fluorescence yield; NK and N? are the total numbers of observed K x rays and ? rays, respectively; and #4;K and #4;? are the corresponding detector efficiencies. Fluorescence yields have been well measured...

Nica, N.; Hardy, John C.; Iacob, V. E.; Goodwin, J.; Balonek, C.; Hernberg, M.; Nolan, J.; Trzhaskovskaya, M. B.

2009-01-01T23:59:59.000Z

446

Design and Performance of Linear Biomechanical Energy Conversion Devices Penglin Niu, Student Member  

E-Print Network [OSTI]

Design and Performance of Linear Biomechanical Energy Conversion Devices Penglin Niu, Student, energy conversion, synchronous rectifier, voltage tripler, energy harvesting, human power. I investigated motions as energy sources for biomechanical energy conversion [1-7]. Until recently, most efforts

Chapman, Patrick

447

Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry  

Science Journals Connector (OSTI)

...associated with solar energy conversion in a non-intense...clear that solar energy conversion could be invaluable...to 30 per cent conversion efficiency are...breakdown of our energy needs (DECC...biggest single factor. This is critical...

2013-01-01T23:59:59.000Z

448

VOICE CONVERSION BASED ON NON-NEGATIVE MATRIX FACTORIZATION USING PHONEME-CATEGORIZED DICTIONARY  

E-Print Network [OSTI]

VOICE CONVERSION BASED ON NON-NEGATIVE MATRIX FACTORIZATION USING PHONEME-CATEGORIZED DICTIONARY using Non-negative matrix factorization (NMF) is employed for spectral conversion between different conversion, sparse representation, non- negative matrix factorization, sub-dictionary 1. INTRODUCTION

Takiguchi, Tetsuya

449

Availability Assessment of Carbonaceous Biomass in California as a Feedstock for Thermo-chemical Conversion to Synthetic Liquid Fuel  

E-Print Network [OSTI]

is available for biomass conversion technologies, animalor residual biomass materials for conversion into valuableCalifornias biomass resources is based on conversion as

Valkenburg, C; Norbeck, J N; Park, C S

2005-01-01T23:59:59.000Z

450

MHK Technologies/Direct Energy Conversion Method DECM | Open Energy  

Open Energy Info (EERE)

Conversion Method DECM Conversion Method DECM < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Energy Conversion Method DECM.jpg Technology Profile Primary Organization Trident Energy Ltd Project(s) where this technology is utilized *MHK Projects/TE4 Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Description The Direct Energy Conversion Method DECM device has four major components 1 linear generators that convert straight line mechanical motion directly into electricity 2 floats placed in the sea to capture wave energy through a rising and falling action which drives linear generators resulting in the immediate generation of electricity 3 a sea platform used to support the floats and generators and 4 a conventional anchoring system to moor the rig

451

Portsmouth DUF6 Conversion Final EIS - Chapter 3: Affected Environment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 3 AFFECTED ENVIRONMENT This EIS considers the proposed action of building and operating a conversion facility at the Portsmouth site for conversion of the Portsmouth and ETTP DUF 6 cylinder inventories. Section 3.1 presents a detailed description of the affected environment for the Portsmouth site. Because the option of shipping cylinders from the ETTP site in Oak Ridge, Tennessee, to the Portsmouth site for conversion is part of the proposed action, a detailed description of the affected environment for the ETTP site is provided in Section 3.2. 3.1 PORTSMOUTH SITE The Portsmouth site is located in Pike County, Ohio, approximately 22 mi (35 km) north of the Ohio River and 3 mi (5 km) southeast of the town of Piketon (Figure 3.1-1). The two

452

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Broader source: Energy.gov (indexed) [DOE]

DOE Selects Contractor for Depleted Hexafluoride Conversion Project DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

453

US, Russian Federation Sign Joint Statement on Reactor Conversion |  

Broader source: Energy.gov (indexed) [DOE]

US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion June 26, 2012 - 12:00pm Addthis News Media Contact (202) 586-4940 This release is cross-posted from NNSA.energy.gov. MOSCOW - The U.S. and Russian Federation jointly announced today that the first stage of work defined in the Implementing Agreement between the Russian State Corporation for Atomic Energy (Rosatom) and the Department of Energy (DOE) Regarding Cooperation in Concluding Feasibility Studies of the Conversion of Russian Research Reactors of Dec. 7, 2010, has been completed. The announcement comes at the close of the most recent session of the Working Group on Nuclear Energy and Nuclear Security under the U.S.-Russia bilateral Presidential Commission, co-chaired by Daniel

454

Paducah DUF6 Conversion Final EIS - Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS v CONTENTS COVER SHEET.................................................................................................................... iii NOTATION .......................................................................................................................... xxv ENGLISH/METRIC AND METRIC/ENGLISH EQUIVALENTS..................................... xxx SUMMARY .......................................................................................................................... S-1 S.1 Introduction........................................................................................................... S-1 S.1.1 Background Information........................................................................... S-1

455

Methane Gas Conversion Property Tax Exemption | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Program Info Start Date 01/01/2008 (retroactive) State Iowa Program Type Property Tax Incentive Rebate Amount 100% exemption for 10 years Provider Iowa Economic Development Authority '''''Note: This exemption is only available to facilities operated in connection or conjunction with a publicly-owned sanitary landfill. The exemption was available to other entities only for systems placed in service by December 31, 2012. Systems in place before this date are eligible to receive the property tax exemption for 10 years.''''' Under Iowa's methane gas conversion property tax exemption, real and

456

Data Domain to Model Domain Conversion Package | Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Domain to Model Domain Conversion Package Data Domain to Model Domain Conversion Package Data Domain to Model Domain Conversion Package The Data Domain to Model Domain Conversion Package project will develop methods and implement a novel approach for generating data ensembles by using the latest available statistical modeling tools and knowledge of relevant physical and chemical process to develop climatologically aware methods for processing ACRF and other spatially sparse data sets. Data collected at the Atmospheric Radiation Measurement Program Climate Research Facility (ACRF) sites are employed mainly in column radiation models, to validate the models and develop new parameterizations. Currently, no single methodology can be used with data collected at the spatial scale of the ACRF sites or from specific AmeriFlux locations, to

457

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Broader source: Energy.gov (indexed) [DOE]

Contractor for Depleted Hexafluoride Conversion Project Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

458

US, Russian Federation Sign Joint Statement on Reactor Conversion |  

Broader source: Energy.gov (indexed) [DOE]

US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion US, Russian Federation Sign Joint Statement on Reactor Conversion June 26, 2012 - 12:00pm Addthis News Media Contact (202) 586-4940 This release is cross-posted from NNSA.energy.gov. MOSCOW - The U.S. and Russian Federation jointly announced today that the first stage of work defined in the Implementing Agreement between the Russian State Corporation for Atomic Energy (Rosatom) and the Department of Energy (DOE) Regarding Cooperation in Concluding Feasibility Studies of the Conversion of Russian Research Reactors of Dec. 7, 2010, has been completed. The announcement comes at the close of the most recent session of the Working Group on Nuclear Energy and Nuclear Security under the U.S.-Russia bilateral Presidential Commission, co-chaired by Daniel

459

Predicted thermochemistry for chemical conversions of5-hydroxymethylf...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Predicted thermochemistry for chemical conversions of 5-hydroxymethylfurfural Authors: Assary, R.S., Redfernb, P.C., Hammondd, J.R., Greeley, J., Curtiss, L.A. The thermochemistry...

460

Alternative Value Chains for Biomass Conversion to Chemicals  

Science Journals Connector (OSTI)

Whereas biomass conversion is widely envisioned to proceed via platform molecules that are employed as building blocks to produce chemicals, an alternative value chain is proposed that ... and cost effective rout...

Pierre Gallezot

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Workshop on Conversion Technologies for Advanced Biofuels - Bio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program U.S. Department of Energy Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Report-Out Webinar February 9, 2012 2 Energy Efficiency & Renewable Energy...

462

Workshop on the Fundamentals of Thermochemical Biomass Conversion  

Science Journals Connector (OSTI)

For the purposes of this workshop the term fundamentals was taken to mean the basic science (of a chemical and physical nature) underlying the engineering side of thermochemical biomass conversion. The variety ...

M. A. Connor; J. P. Diebold; K. Sjstrm

1997-01-01T23:59:59.000Z

463

Rule-Based Generation of Thermochemical Routes to Biomass Conversion  

Science Journals Connector (OSTI)

Biomass conversion to fuels and chemicals involves a multitude of oxygen-containing compounds and thermochemical reaction routes. A detailed elucidation of the process chemistry is, thus, a key step in understanding the reaction mechanisms and designing ...

Srinivas Rangarajan; Aditya Bhan; Prodromos Daoutidis

2010-06-03T23:59:59.000Z

464

Raconteur : intelligent assistance for conversational storytelling with media libraries  

E-Print Network [OSTI]

People who are not professional storytellers sometimes have difficulty putting together a coherent and engaging story, even when it is about their own experiences. However, consider putting the same person in a conversation ...

Chi, Pei-Yu, S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

465

Coal Conversion Facility Privilege Tax Exemptions (North Dakota)  

Broader source: Energy.gov [DOE]

Coal Conversion Facility Privilege Tax Exemptions are granted under a variety of conditions through the North Dakota Tax Department. Privilege tax, which is in lieu of property taxes on the...

466

Energy from the Biological Conversion of Solar Energy [and Discussion  

Science Journals Connector (OSTI)

7 February 1980 research-article Energy from the Biological Conversion of Solar Energy [and Discussion] N. K. Boardman M...are well designed for the collection and storage of solar energy. Moreover, photosynthetic organisms show...

1980-01-01T23:59:59.000Z

467

Theoretical investigation of solar energy conversion and water oxidation catalysis  

E-Print Network [OSTI]

Solar energy conversion and water oxidation catalysis are two great scientific and engineering challenges that will play pivotal roles in a future sustainable energy economy. In this work, I apply electronic structure ...

Wang, Lee-Ping

2011-01-01T23:59:59.000Z

468

Synthetic biology and biomass conversion: a match made in heaven?  

Science Journals Connector (OSTI)

...Y. 2007 Harnessing energy from plant biomass. Curr. Opin. Chem...processes for conversion of biomass to useful products...Biodegradation, Environmental Biomass Biotechnology methods...Biology methods Ecology Energy-Generating Resources...

2009-01-01T23:59:59.000Z

469

Quantum Solar Energy Conversion and Application to Organic Solar Cells  

Science Journals Connector (OSTI)

When studying the limits of solar energy conversion, either by thermal or quantum processes, the sun has traditionally been treated as a blackbody (thermal equilibrium) radiator with surface temperature 5 800 ...

Gottfried H. Bauer; Peter Wrfel

2003-01-01T23:59:59.000Z

470

Perceptions and Expressions of Social Presence During Conversations on Twitter  

E-Print Network [OSTI]

Computer-mediated environments such as social media create new social climates that impact communication interactions in un-mediated environments. This study examined social variables during conversations on Twitter through a qualitative document...

Pritchett, Kelly

2012-02-14T23:59:59.000Z

471

Advanced Energy Conversion LLC AEC | Open Energy Information  

Open Energy Info (EERE)

LLC AEC Jump to: navigation, search Name: Advanced Energy Conversion LLC (AEC) Place: New York Zip: 12020 Product: R&D company focused on power electronics, motion control systems...

472

Magnetic energy conversion, magnetospheric substorms and solar flares  

Science Journals Connector (OSTI)

... The magnetospheric substorm has been thought to be the manifestation of a sudden conversion of the magnetic ... of the magnetic energy stored in the magnetotail before substorm onset. It has been believed that solar flares ...

S.-I. Akasofu

1980-03-20T23:59:59.000Z

473

Optimization of Oxygen Purity for Coal Conversion Energy Reduction  

E-Print Network [OSTI]

The conversion of coal into gaseous and liquid fuels and chemical feedstock will require large quantities of oxygen. This oxygen will be produced in large multi-train air separation plants which will consume about 350 kilowatt hours of energy...

Baker, C. R.; Pike, R. A.

1982-01-01T23:59:59.000Z

474

Science Highlights- Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emission in Type-II GaSbGaAs Quantum Dots and Prospects for intermediate band solar energy conversion Angular Selective Semi-Transparent Photovoltaics Mechanisms of Nanorod...

475

Research Program - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thrust of CSTEC focuses on fundamental transport processes that govern solid state energy conversion, i.e., how the charge and energy flow through the atomic lattice or an...

476

Science Highlights- Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Physics Letters, 97, 171908 (2010) Sb2Te3 is a key material for thermoelectric energy conversion technology. We have found that the crystal structure of Sb2Te3 thin...

477

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

SciTech Connect (OSTI)

Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

Dasgupta, Neil; Yang, Peidong

2013-01-23T23:59:59.000Z

478

Energy Down-Conversion and Thermalization in Metal Absorbers  

Science Journals Connector (OSTI)

There are the two significant factors associated with down-conversion phonons. The first is the dependence of the energy loss on the distance of the absorption ... from the escape interface. A photon of energy E....

A. Kozorezov

2012-05-01T23:59:59.000Z

479

Jet conversions in a quark-gluon plasma  

Science Journals Connector (OSTI)

Quark and gluon jets traversing through a quark-gluon plasma not only lose their energies but also can undergo flavor conversions. The conversion rates via the elastic q(q)g?gq(q) and the inelastic qq?gg scatterings are evaluated in the lowest order in QCD. Including both jet energy loss and conversions in the expanding quark-gluon plasma produced in relativistic heavy ion collisions, we have found a net of quark jets to gluon jets. This reduces the difference between the nuclear modification factors for quark and gluon jets in central heavy ion collisions and thus enhances the p/?+ and p/?- ratios at high transverse momentum. However, a much larger net quark-to-gluon jet conversion rate than the one given by the lowest order QCD is needed to account for the observed similar ratios in central Au+Au and p+p collisions at the same energy. Implications of our results are discussed.

W. Liu; C. M. Ko; B. W. Zhang

2007-05-04T23:59:59.000Z

480

Wrapping Up: Our Conversation on Increasing Diversity in STEM...  

Broader source: Energy.gov (indexed) [DOE]

Our Conversation on Increasing Diversity in STEM Education and the Workforce March 5, 2013 - 9:43am Addthis Watch our science and tech experts answer questions and share advice...

Note: This page contains sample records for the topic "floating-point number conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

screens for ocean thermal energy conversion power plants.cold deep-ocean waters to produce electric power via eitherOffice of Solar Power Applications. Division of Ocean Energy

Sullivan, S.M.

2014-01-01T23:59:59.000Z

482

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of an open cycle ocean thermal difference power plant. M.S.screens for ocean thermal energy conversion power plants.1958. Ocean cooling water system for 800 MW power station.

Sands, M. D.

2011-01-01T23:59:59.000Z

483

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

screens for ocean thermal energy conversion power plants.cold deep-ocean waters to produce electric power via eitherpower from the temperature differential between warm surface and cold deep-ocean

Sullivan, S.M.

2014-01-01T23:59:59.000Z

484

Power conversion architecture for grid interface at high switching frequency  

E-Print Network [OSTI]

This paper presents a new power conversion architecture for single-phase grid interface. The proposed architecture is suitable for realizing miniaturized ac-dc converters operating at high frequencies (HF, above 3 MHz) and ...

Lim, Seungbum

485

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Get Involved The LMI-EFRC is a synergistic, engaged team of researchers devoted to light management for solar energy conversion. If you are interested in learning more about the...

486

Thermoelectric Conversion of Wate Heat to Electricity in an IC...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Presentation given at the 16th...

487

Y-12 fulfills major milestone in fuel conversion commitment for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fulfills major ... Y-12 fulfills major milestone in fuel conversion commitment for Jamaican research reactor Posted: June 3, 2014 - 4:42pm The Y-12 National Security Complex...

488

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which authors are part of the LMI-EFRC: "A.A.A. was supported as part of the DOE "Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under...

489

Control strategies for supercritical carbon dioxide power conversion systems  

E-Print Network [OSTI]

The supercritical carbon dioxide (S-C02) recompression cycle is a promising advanced power conversion cycle which couples well to numerous advanced nuclear reactor designs. This thesis investigates the dynamic simulation ...

Carstens, Nathan, 1978-

2007-01-01T23:59:59.000Z

490

CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion  

Broader source: Energy.gov (indexed) [DOE]

DOE Oversight - Y-12 Enriched Uranium Operations Oxide DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a DOE independent oversight assessment of the Y-12 Site Office's programs for oversight of its contractors at the Y-12 Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications

491

In Conversation with Jim Schuck: Nano-optics  

ScienceCinema (OSTI)

Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.

Jim Schuck and Alice Egan

2010-01-08T23:59:59.000Z

492

WEC up! Energy Department Announces Wave Energy Conversion Prize Administrator  

Office of Energy Efficiency and Renewable Energy (EERE)

The Water Power Program today awarded $6.5 million to a Prize Administration Team for the development and execution of the Energy Departments Wave Energy Conversion (WEC) Prize Competition. The WEC Prize will continue to advance marine and hydrokinetic (MHK) technology as a viable source for Americas clean energy future, in part by providing an opportunity for developers to test their innovative wave energy conversion (WEC) devices in a wave generating basin.

493

Conversion of Biomass Syngas to DME Using a Microchannel Reactor  

Science Journals Connector (OSTI)

Conversion of Biomass Syngas to DME Using a Microchannel Reactor ... The purpose of the research discussed here is to develop such a process capable of converting syngas generated from gasification of dispersed biomass resources. ... MeOH was converted to water and hydrocarbons, with up to 70% selectivity to C2-4 olefins, at 100% conversion, over ZSM-5 class zeolite catalysts modified with P compds. ...

Jianli Hu; Yong Wang; Chunshe Cao; Douglas C. Elliott; Don J. Stevens; James F. White

2005-02-18T23:59:59.000Z

494

High conversion efficiency ultraviolet fiber Raman oscillator--amplifier system  

SciTech Connect (OSTI)

High efficiency UV frequency conversion by stimulated Raman scattering in a XeCl (lambda = 308-nm) excimer laser-pumped multimode fiber is presented. The system consists of a first piece of fiber as a Stokes generator and a second as a power amplifier. Power conversion efficiencies up to 80% have been measured. Uses of fiber Raman amplifiers in the near UV are also discussed.

Pini, R.; Salimbeni, R.; Vannini, M.; Haider, A.F.M.Y.; Lin, C.

1986-04-01T23:59:59.000Z

495

Neutrino conversions in cosmological gamma-ray burst fireballs  

E-Print Network [OSTI]

We study neutrino conversions in a recently envisaged source of high-energy neutrinos (E \\geq 10^6 GeV), that is, in the vicinity of cosmological Gamma-Ray Burst fireballs (GRB). We consider the effects of flavor and spin-flavor conversions and point out that in both situations, a some what higher than estimated high energy tau neutrino flux from GRBs is expected in new km^2 surface area under water/ice neutrino telescopes.

H. Athar

2000-04-20T23:59:59.000Z

496

Conversion of methane and acetylene into gasoline range hydrocarbons  

E-Print Network [OSTI]

CONVERSION OF METHANE AND ACETYLENE INTO GASOLINE RANGE HYDROCARBONS A Thesis by AMMAR ALKHAWALDEH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 2000 Major Subject: Chemical Engineering CONVERSION OF METHANE AND ACETYLENE INTO GASOLINE RANGE HYDROCARBONS A Thesis by AMMAR ALKHAWALDEH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

Alkhawaldeh, Ammar

2012-06-07T23:59:59.000Z

497

E-Print Network 3.0 - alternate power conversion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Since then, energy conversion and power system operation experiments were unified... and energy conversions. In modern facilities of energy con- ... Source: Gedra, Thomas - School...

498

RAW MATERIALS EVALUATION AND PROCESS DEVELOPMENT STUDIES FOR CONVERSION OF BIOMASS TO SUGARS AND ETHANOL  

E-Print Network [OSTI]

Effect of Cellulose Conversion on Ethanol Cost. ReferencesBioconversion of Cellulose and Production of Ethanol," LBL-to the ethanol cost assuming a complete cellulose conversion

Wilke, C.R.

2011-01-01T23:59:59.000Z

499

E-Print Network 3.0 - alkane conversion chemistry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conversion chemistry Search Powered by Explorit Topic List Advanced Search Sample search results for: alkane conversion chemistry Page: << < 1 2 3 4 5 > >> 1 BERKELEY CATALYSIS...

500

NATURE BIOTECHNOLOGY VOLUME 26 NUMBER 2 FEBRUARY 2008 169 How biotech can transform biofuels  

E-Print Network [OSTI]

NATURE BIOTECHNOLOGY VOLUME 26 NUMBER 2 FEBRUARY 2008 169 How biotech can transform biofuels Lee R, biotechnological solutions should focus on optimizing the conversion of biomass to sugars. Enthusiasm for using- tional biotechnological paths to producing energy also receiving attention. The proposi- tion that energy

California at Riverside, University of