Powered by Deep Web Technologies
Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Float level switch for a nuclear power plant containment vessel  

DOE Patents (OSTI)

This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

Powell, J.G.

1993-11-16T23:59:59.000Z

2

Float level switch for a nuclear power plant containment vessel  

DOE Patents (OSTI)

This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

Powell, James G. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

3

Floating Power Plant A S FPP | Open Energy Information  

Open Energy Info (EERE)

Power Plant A S FPP Power Plant A S FPP Jump to: navigation, search Name Floating Power Plant A/S (FPP) Address Stenholtsvej 27 Place Fredensborg, Denmark Zip DK-3480 Sector Wind energy Product Fredensborg-based company commercialising developments in the wave and wind energy sectors. Poseidon is the company's core development being tested at the site of an existing Dong offshore wind plant. Phone number 45 3391 9120 Website http://www.poseidonorgan.com Coordinates 55.978295°, 12.402055° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.978295,"lon":12.402055,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

Floating power optimization studies for the cooling system of a geothermal power plant  

DOE Green Energy (OSTI)

The floating power concept was studied for a geothermal power plant as a method of increasing the plant efficiency and decreasing the cost of geothermal power. The stored cooling concept was studied as a method of reducing the power fluctuations of the floating power concept. The studies include parametric and optimization studies for a variety of different types of cooling systems including wet and dry cooling towers, direct and indirect cooling systems, forced and natural draft cooling towers, and cooling ponds. The studies use an indirect forced draft wet cooling tower cooling system as a base case design for comparison purposes.

Shaffer, C.J.

1977-08-01T23:59:59.000Z

5

Floating dry cooling: a competitive alternative to evaporative cooling in a binary cycle geothermal power plant  

DOE Green Energy (OSTI)

The application of the floating cooling concept to non-evaporative and evaporative atmospheric heat rejection systems was studied as a method of improving the performance of geothermal powerplants operating upon medium temperature hydrothermal resources. The LBL thermodynamic process computer code GEOTHM is used in the case study of a 50 MWe isobutane binary cycle power plant at Heber, California. It is shown that operating a fixed capacity plant in the floating cooling mode can generate significantly more electrical energy at a higher thermodynamic efficiency and reduced but bar cost for approximately the same capital investment. Floating cooling is shown to benefit a plant which is dry cooled to an even greater extent than the same plant operating with an evaporative heat rejection system. Results of the Heber case study indicate that a dry floating cooling geothermal binary cycle plant can produce energy at a bus bar cost which is competitive with the cost of energy associated with evaporatively cooled systems.

Pines, H.S.; Green, M.A.; Pope, W.L.; Doyle, P.A.

1978-07-01T23:59:59.000Z

6

MHK Technologies/IVEC Floating Wave Power Plant | Open Energy Information  

Open Energy Info (EERE)

IVEC Floating Wave Power Plant IVEC Floating Wave Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage IVEC Floating Wave Power Plant.jpg Technology Profile Primary Organization Ivec Pty Ltd Technology Resource Click here Wave Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description FWP design is based on an array of linked OWC s or chambers Similar to the cylinders of a combustion engine each FWP chamber has inlet low pressure flaps valves and outlet high pressure flaps valves As a wave passes through the FWP the water level and thus the air pressure within each chamber oscillates depending on its position within the wave cycle Mooring Configuration single point

7

MHK Technologies/Floating anchored OTEC plant | Open Energy Information  

Open Energy Info (EERE)

anchored OTEC plant anchored OTEC plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating anchored OTEC plant.jpg Technology Profile Primary Organization LAUSDEO Incorporated Technology Resource Click here OTEC Technology Type Click here OTEC - Closed Cycle Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Anchored floating OTEC plant Small volume above ocean surface so that device can avoid damage due to severe weather Water depth must exceed 600 meters Prefer to use power line to transmit electricity to shore facility Can use electrolysis to produce hydrogen and transport hydrogen to floating or shore facility Mooring Configuration The preferred mooring configuration is gravity base with three bottom weights The weights can be at depths up to 3000 meters

8

Solar Power for Autonomous Floats  

Science Conference Proceedings (OSTI)

Advances in low-power instrumentation and communications now often make energy storage the limiting factor for long-term autonomous oceanographic measurements. Recent advances in photovoltaic cells, with efficiencies now close to 30%, make solar ...

Eric A. DAsaro

2007-07-01T23:59:59.000Z

9

Marine pastures: a by-product of large (100 megawatt or larger) floating ocean-thermal power plants. Final report  

DOE Green Energy (OSTI)

The potential biological productivity of an open-sea mariculture system utilizing the deep-sea water discharged from an ocean-thermal energy conversion (OTEC) plant was investigated. In a series of land-based studies, surface water was used to inoculate deep water and the primary production of the resultant blooms was investigated. Each cubic meter of deep water can produce approximately 2.34 g of phytoplankton protein, and that an OTEC plant discharging deep water at a rate of 4.5 x 10/sup 4/ m/sup 3/ min/sup -1/ could produce 5.3 x 10/sup 7/ kg of phytoplankton protein per 350-day year. A series of land-based shellfish studies indicated that, when fed at a constant rate of 1.83 x 10/sup -3/ g of protein per second per 70-140 g of whole wet weight, the clam, Tapes japonica, could convert the phytoplankton protein-nitrogen into shellfish meat protein-nitrogen with an efficiency of about 33 per cent. Total potential wet meat weight production from an OTEC plant pumping 4.5 x 10/sup 4/ m/sup 3/ min/sup -1/ is approximately 4.14 x 10/sup 8/ kg for a 350-day year. Various factors affecting the feasibility of open-sea mariculture are discussed. It is recommended that future work concentrate on a technical and economic analysis. (WDM)

Laurence, S.; Roels, O.A.

1976-08-31T23:59:59.000Z

10

MHK Technologies/MORILD 2 Floating Tidal Power System | Open Energy  

Open Energy Info (EERE)

MORILD 2 Floating Tidal Power System MORILD 2 Floating Tidal Power System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MORILD 2 Floating Tidal Power System.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/Morild 2 Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Hydra Tidal´s Morild II tidal power plant technology at-a-glance: - A unique and patented floating tidal power plant - Prototype has an installed effect of 1,5 MW - Turbine diameter of 23 meters - Each turbine is pitchable - 4 turbines with a total of 8 turbine blades - Unique wooden turbine blades - The MORILD II can be anchored at different depths, thus it can be positioned in spots with ideal tidal stream conditions - The plant carries a sea vessel verification, and is both towable and dockable - The floating installation enables maintenance in surface position, and on site - The MORILD II will be remotely operated, and has on-shore surveillance systems - Technology patented for all relevant territories The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

11

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

12

Marine pastures: a by-product of large (100 megawatt or larger) floating ocean thermal power plants. Progress report, February 1, 1976--April 30, 1976  

DOE Green Energy (OSTI)

Computer programs have been developed to define the temperature increase which would be needed to bring deep-ocean water into density equilibrium with surface water for locations where data are available. A series of continuous-flow studies on phytoplankton blooms resulting from mixtures of 80 percent deep and 20 percent surface water in 2000-liter concrete culturing vessels (''reactors'') has been completed. A quantitative determination of nutrient utilization and flow through a combined primary and secondary trophic level system has been completed. This study utilized the clam Tapes semidecussata, fed from phytoplankton grown in 80 percent deep and 20 percent surface water. An analysis of the fate of the deep water discharged from a floating OTEC plant indicates that horizontal containment of the resulting deep water: surface water mixture is necessary if conditions optimal for open-sea mariculture are to obtain. The design of a small open-ocean ''pool'' is in the final stages of completion. A combined mussel/oyster/clam system is in the final stages of design and will be placed in the ocean during April 1976. (WDM)

Roels, O.A.

1976-01-01T23:59:59.000Z

13

Marine pastures: a by-product of large (100 megawatt or larger) floating ocean thermal power plants. Progress report, February 1, 1976--April 30, 1976  

SciTech Connect

Computer programs have been developed to define the temperature increase which would be needed to bring deep-ocean water into density equilibrium with surface water for locations where data are available. A series of continuous-flow studies on phytoplankton blooms resulting from mixtures of 80 percent deep and 20 percent surface water in 2000-liter concrete culturing vessels (''reactors'') has been completed. A quantitative determination of nutrient utilization and flow through a combined primary and secondary trophic level system has been completed. This study utilized the clam Tapes semidecussata, fed from phytoplankton grown in 80 percent deep and 20 percent surface water. An analysis of the fate of the deep water discharged from a floating OTEC plant indicates that horizontal containment of the resulting deep water: surface water mixture is necessary if conditions optimal for open-sea mariculture are to obtain. The design of a small open-ocean ''pool'' is in the final stages of completion. A combined mussel/oyster/clam system is in the final stages of design and will be placed in the ocean during April 1976. (WDM)

Roels, O.A.

1976-01-01T23:59:59.000Z

14

Floating LNG plant will stress reliability and safety  

SciTech Connect

Mobil has developed a unique floating LNG plant design after extensive studies that set safety as the highest priority. The result is a production, storage and offloading platform designed to produce 6 million tons per year of LNG and up to 55,000 bpd of condensate from 1 Bcfd of feed gas. All production and off-loading equipment is supported by a square donut-shaped concrete hull, which is spread-moored. The hull contains storage tanks for 250,000 m{sup 3} of LNG, 6540,000 bbl of condensate and ballast water. Both LNG and condensate can be directly offloaded to shuttle tankers. Since the plant may be moved to produce from several different gas fields during its life, the plant and barge were designed to be generic. It can be used at any location in the Pacific Rim, with up to 15% CO{sub 2}, 100 ppm H{sub 2}S, 55 bbl/MMcf condensate and 650 ft water depth. It can be modified to handle other water depths, depending upon the environment. In addition, it is much more economical than an onshore grassroots LNG plant, with potential capital savings of 25% or more. The paper describes the machinery, meteorology and oceanography, and safety engineering.

Kinney, C.D.; Schulz, H.R.; Spring, W.

1997-07-01T23:59:59.000Z

15

Low power interconnect design for fpgas with bidirectional wiring using nanocrystal floating gate devices (abstract only)  

Science Conference Proceedings (OSTI)

New architectures for the switch box and connection block are proposed for use in an energy efficient field programmable gate array (FPGA) with bidirectional wiring. Power-hungry SRAMs are replaced by non-volatile nanocrystal floating gate (NCFG) devices ... Keywords: bidirectional wiring, connection block, floating gate, fpga, high speed, low power, nanocrystal, switch box

Daniel Schinke; Wallace Shep Pitts; Neil Di Spigna; Paul Franzon

2011-02-01T23:59:59.000Z

16

Power plant  

SciTech Connect

A two stroke internal combustion engine is described that has at least one cylinder within which a piston reciprocates. The engine is joined to a gearbox which includes a ring gear. A pair of gears having diameters half that of the ring gear move within the latter. At least one of the pair of gears is connected to a piston by a pin extending between the piston and the periphery of said gear. An additional pair of gears are fixed to respective ones of the first-mentioned gear pair and are operatively joined to a pinion to which a drive shaft is secured. A turbine and filter arrangement is positioned on the side of the engine opposite the gearbox whereby exhaust gases from the engine are directed to the turbine to develop power at an output drive shaft joined to the turbine and to filter pollutants from the gases.

Finn, H.I. Jr.

1978-10-24T23:59:59.000Z

17

Sunrise II Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sunrise Power Company, LLC (Sunrise), has planned the modification of an existing power plant project to increase its generation capacity by 265 megawatts by 2003. The initial...

18

New baseload power plants  

Science Conference Proceedings (OSTI)

This is a listing of 221 baseload power plant units currently in the planning stage. The list shows the plant owner, capacity, fuel, engineering firm, constructor, major equipment suppliers (steam generator, turbogenerator, and flue gas desulfurization system), partner, and date the plant is to be online. This data is a result of a survey by the journal of power plant owners.

Not Available

1994-04-01T23:59:59.000Z

19

Power Plant Cycling Costs  

Science Conference Proceedings (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

20

Floating plant for offshore liquefaction, temporary storage and loading of LNG  

SciTech Connect

A floating plant is disclosed for offshore liquefaction, temporary storage and loading of lng, made as a semi-submersible platform with storage tanks for lng arranged in the submerged section of the platform. The storage tanks are independent spherical tanks which are supported inside the submerged section of the platform and completely surrounded thereby.

Kvamsdal, R.

1980-05-13T23:59:59.000Z

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NUCLEAR POWER PLANT  

DOE Patents (OSTI)

A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

1963-05-14T23:59:59.000Z

22

New baseload power plants  

Science Conference Proceedings (OSTI)

This is a tabulation of the results of this magazines survey of current plans for new baseload power plants. The table lists the unit name, capacity, fuel, engineering firm, constructor, suppliers for steam generator, turbine generator and flue gas desulfurization equipment, date due on-line, and any non-utility participants. The table includes fossil-fuel plants, nuclear plants, geothermal, biomass and hydroelectric plants.

Not Available

1993-04-01T23:59:59.000Z

23

Power Plant Closure Guidebook  

Science Conference Proceedings (OSTI)

Organizations that are planning to decommission an aged power plant face a host of issues that must be addressed and many tasks that must be properly executed in order to ensure a successful closure of the facility.

2010-10-20T23:59:59.000Z

24

Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint  

DOE Green Energy (OSTI)

The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

2012-04-01T23:59:59.000Z

25

NETL: Power Plant Improvement Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

PPII Major Demonstrations Power Plant Improvement Initiative (PPII) The Power Plant Improvement Initiative (PPII) was established in October 2000 to further the commercial-scale...

26

A 40 MWe floating OTEC plant at Punta Tuna, Puerto Rico  

SciTech Connect

A development project leading to a closed-cycle ocean thermal energy conversion (OTEC) pilot plant is considered. In connection with this project, a plan was submitted for design, construction, deployment, start-up, and operation of a 40 MWe floating electric generating plant at Punta Tuna, Puerto Rico. Attention is given to the OTEC concept, organizational aspects related to the project, the major problems regarding the OTEC program, and the commercialization plan. Questions of design philosophy are examined, taking into account the need for efficient heat exchangers, the minimization of water flow, the importance of achieving maximized efficiency, and requirements for environmental safety.

Dambly, B.W.

1981-01-01T23:59:59.000Z

27

Power Plant Cycling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

28

MHK Technologies/Morild Power Plant | Open Energy Information  

Open Energy Info (EERE)

Morild Power Plant Morild Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Morild Power Plant.jpg Technology Profile Primary Organization Hydra Tidal Energy Technology AS Project(s) where this technology is utilized *MHK Projects/MORILD Demonstration Plant Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Morild power plant is a floating, moored construction based on the same principle as horizontal axis wind turbines. The plant has 4 two-blade underwater turbines and can utilize the energy potential in tidal and ocean currents. The 4 turbines transmit power via hydraulic transmission to 2 synchronous generators. Can be pitched 180 degrees to utilize energy in both directions. A cable from the transformer on the prototype to shore transfers energy.

29

Kakkonda Geothermal Power Plant  

SciTech Connect

A brief general description is given of a geothermal resource. Geothermal exploration in the Takinoue area is reviewed. Geothermal drilling procedures are described. The history of the development at the Takinoue area (the Kakkonda Geothermal Power Plant), and the geothermal fluid characteristics are discussed. The technical specifications of the Kakkonda facility are shown. Photographs and drawings of the facility are included. (MHR)

DiPippo, R.

1979-01-01T23:59:59.000Z

30

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

31

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

32

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

33

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

34

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

35

Florida Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

36

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

37

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

38

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

39

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

40

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

42

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

43

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

44

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

45

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

46

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

47

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

48

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

49

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

50

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

51

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

52

IMPROVEMENTS IN POWER PLANT  

SciTech Connect

A power plant for nuclear reactors is designed for improved cycle efficiency. In addition to the usual heat exchanger for heat transfer from gaseous reactor coolant to water for vaporization, a second heat exchanger is provided between the first heat exchanger and a point betwveen the intermediate- pressure and low-pressure turbine stages. In this way, interstage reheating of the steam is obtained without passage of the steam back to the first heat exchanger. (D.L.C.) Research Reactors

Peters, M.C.

1961-10-11T23:59:59.000Z

53

NEUTRONIC REACTOR POWER PLANT  

DOE Patents (OSTI)

This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

Metcalf, H.E.

1962-12-25T23:59:59.000Z

54

Saguargo Solar Power Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Saguargo Solar Power Plant Solar Power Plant Saguargo Solar Power Plant Solar Power Plant Jump to: navigation, search Name Saguargo Solar Power Plant Solar Power Plant Facility Saguargo Solar Power Plant Sector Solar Facility Type Concentrating Solar Power Facility Status In Service Developer Solargenix Location Red Rock, Arizona Coordinates 32.54795°, -111.292887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.54795,"lon":-111.292887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

NETL: Power Plant Improvement Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Performance Summaries Power Plant Improvement Initiative (PPII) Project Performance Summaries Project Performance Summaries are written after project completion. These...

56

LIFE Power Plant Fusion Power Associates  

E-Print Network (OSTI)

LIFE Power Plant Fusion Power Associates December 14, 2011 Mike Dunne LLNL #12;NIf-1111-23714.ppt LIFE power plant 2 #12;LIFE delivery timescale NIf-1111-23714.ppt 3 #12;Timely delivery is enabled near-term, NIF based, NIC-derivative fusion performance § 3 allows small, thin Fresnel lenses ­ enables

57

A LUNAR POWER PLANT  

SciTech Connect

A concept of a nuclear power plant to be assembled on earth and operated on the moon is presented. The two principal design objectives are reliability and high specific power. Wherever there is an incompatibility between these two objectives, the decision favors reliability. The design is based on the premise that the power plant must be designed on the basis of current technology and with a minimum amount of research and development. The principal components consist of a fast reactor in a direct cycle with a mercury-vapor turbine. The high- frequency generator, hydrogen compressor for the generator cooling system, mercury-recirculating pump, and condensate pump are on an extension of the turbine shaft. Ths mercury vapor is condensed and the hydrogen cooled in wing radiators. The reactor is of a construction quite similar to EBR-I Mark IlI for which there is a large amount of operating experience. The radiator is a vertical tube-and-fin type built in concentric cylindrical sections of increseing diameter. The curved headers are connected by swivel joints so that, upon arrival, the radiator can be quickly unfolded from the compact cylindrical package it formed during transportation. (auth)

Armstrong, R.H.; Carter, J.C.; Hummel, H.H.; Janicke, M.J.; Marchaterre, J.F.

1960-12-01T23:59:59.000Z

58

Next Generation Geothermal Power Plants  

Science Conference Proceedings (OSTI)

This report analyzes several approaches to reduce the costs and enhance the performance of geothermal power generation plants. Electricity supply planners, research program managers, and engineers evaluating geothermal power plant additions or modifications can use this report to compare today's geothermal power systems to several near- and long-term future options.

1996-04-05T23:59:59.000Z

59

ATOMIC POWER PLANT  

DOE Patents (OSTI)

This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

Daniels, F.

1957-11-01T23:59:59.000Z

60

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2...

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

62

Development of Virtual Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Virtual Power Plants We are working in the emerging intersection between information, computation, and complexity Applications * Design * Environmental modeling * Controls with...

63

Research Addressing Power Plant Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Power Plant Water Management to Minimize Water Use while Providing Reliable Electricity Generation Water and Energy 2 Water and Energy are inextricably linked. Because...

64

MEASUREMENT OF POWER PLANT EXHAUST ...  

Science Conference Proceedings (OSTI)

... by tracking propagation of acoustic plane waves in a ... of the robustness of plane wave propagation to ... for GHG monitoring in power plant stacks and ...

65

Fossil Energy Power Plant Desk  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Power Plant Desk Reference Revision 1: Bituminous Coal and Natural Gas to Electricity October 18, 2011 DOENETL-20111516 Preliminary - Do Not Cite or Quote Fossil...

66

Uniform power plant identification system  

Science Conference Proceedings (OSTI)

In the seventies in the Federal Republic of Germany a uniform power plant identification system (Kraftwerks-Kennzeichen-System, KKS) was developed and introduced. It allows to keep the identification by all engineering disciplines from planning to waste management for any type of power plant. The paper explains the historical development, the structure and the application of this system.

Christiansen, W. (RWE Energie AG, Hauptverwaltung, Essen (DE)); Pannenbacker, K. (GABO mbH, Erlangen (DE)); Popp, H. (Siemens AG, Bereich Anlagentechnik, Erlangen (DE)); Seltmann, A. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

67

NETL Water and Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Water and Power Plants Review Water and Power Plants Review A review meeting was held on June 20, 2006 of the NETL Water and Power Plants research program at the Pittsburgh NETL site. Thomas Feeley, Technology Manager for the Innovations for Existing Plants Program, gave background information and an overview of the Innovations for Existing Plants Water Program. Ongoing/Ending Projects Alternative Water Sources Michael DiFilippo, a consultant for EPRI, presented results from the project "Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities". John Rodgers, from Clemson University, presented results from the project "An Innovative System for the Efficient and Effective Treatment of Non-traditional Waters for Reuse in Thermoelectric Power Generation".

68

The Thermodynamic and Cost Benefits of Floating Cooling Systems  

E-Print Network (OSTI)

Historically, a fixed cooling concept is used in the design of evaporative heat rejection systems for process and power plants. In the fixed cooling mode, a plant is designed for maximum output at the design summer wet bulb temperature. The application of a floating cooling concept to evaporative heat rejection systems can have significant impact on improving plant performance. The floating cooling concept refers to the optimization of yearly plant output and energy consumption by taking advantage of seasonal wet bulb temperature fluctuations. The maximum plant output occurs at the average winter wet bulb temperature. Floating cooling is especially suited to base load power plants located in regions with large daily and seasonal wet bulb temperature variations. An example for a geothermal power plant is included in this paper.

Svoboda, K. J.; Klooster, H. J.; Johnnie, D. H., Jr.

1983-01-01T23:59:59.000Z

69

Next Generation Geothermal Power Plants  

SciTech Connect

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a giv

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

70

Next Generation Geothermal Power Plants  

DOE Green Energy (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

71

Owners of nuclear power plants  

Science Conference Proceedings (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

72

Asbury power plant, Asbury, Missouri  

Science Conference Proceedings (OSTI)

The Asbury power plant in rural southwest Missouri is off the beaten path in more ways than one. Three years ago, Empire District Electric Co., the plant's owner/operator, began mixing pieces of discarded tires into its coal fuel supply. Each ensuing year, without compromising local air quality, the plant has rid the area of millions of tires that otherwise would have ended up in a landfill. For demonstrating that a blight can be made right, Asbury is one of Power's 2005 top plants. 2 figs., 1 tab.

Wicker, K.

2005-08-01T23:59:59.000Z

73

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

74

Turbine power plant system  

SciTech Connect

A turbine power plant system consisting of three sub-systems; a gas turbine sub-system, an exhaust turbine sub-system, and a steam turbine sub-system. The three turbine sub-systems use one external fuel source which is used to drive the turbine of the gas turbine sub-system. Hot exhaust fluid from the gas turbine sub-system is used to drive the turbines of the exhaust turbine sub-system and heat energy from the combustion chamber of the gas turbine sub-system is used to drive the turbine of the steam turbine sub-system. Each sub-system has a generator. In the gas turbine sub-system, air flows through several compressors and a combustion chamber and drives the gas turbine. In the exhaust turbine sub-system, hot exhaust fluid from the gas turbine sub-system flows into the second passageway arrangement of first and fourth heat exchangers and thus transfering the heat energy to the first passageway arrangement of the first and fourth heat exchangers which are connected to the inlets of first and second turbines, thus driving them. Each turbine has its own closed loop fluid cycle which consists of the turbine and three heat exchangers and which uses a fluid which boils at low temperatures. A cooler is connected to a corresponding compressor which forms another closed loop system and is used to cool the exhaust fluid from each of the two above mentioned turbines. In the steam turbine sub-system, hot fluid is used to drive the steam turbine and then it flows through a fluid duct, to a first compressor, the first fluid passageway arrangement of first and second heat exchangers, the second passageway of the first heat exchanger, the combustion chamber of the gas turbine where it receives heat energy, and then finally to the inlet of the steam turbine, all in one closed loop fluid cycle. A cooler is connected to the second passageway of the second heat exchanger in a closed loop fluid cycle, which is used to cool the turbine exhaust.

Papastavros, D.

1985-03-05T23:59:59.000Z

75

Nuclear power plant design analysis  

SciTech Connect

Information concerning the engineering aspects of the design of commercial nuclear power plants is presented. Topics discussed include: electric utility economics; nuclear plant cconomics; thermal-transport systems and core design; nuclear analysis methods; safcty requirements; fuel-system analysis; dcsign considerations; and optimization approaches. (DCC)

Sesonske, A.

1973-01-01T23:59:59.000Z

76

Troubleshooting power plant controls  

SciTech Connect

Using an example from an 80 MW cogeneration plant working at near capacity on a hot day, the paper illustrates the steps involved in troubleshooting a maintenance problem. It discusses identification of the problem, the planning involved in the identification of the problem, development of proof of an hypothesis, human factors, implementing effective solutions, and determination of the root cause.

Alley, S.D. [ANNA, Inc., Annapolis, MD (United States)

1995-05-01T23:59:59.000Z

77

Power Quality Aspects in a Wind Power Plant: Preprint  

SciTech Connect

Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

2006-01-01T23:59:59.000Z

78

ALARA at nuclear power plants  

SciTech Connect

Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

Baum, J.W.

1990-01-01T23:59:59.000Z

79

Financing Solar Thermal Power Plants  

DOE Green Energy (OSTI)

The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised i n debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

Price, H. W.; Kistner, R.

1999-11-01T23:59:59.000Z

80

Fiberglass plastics in power plants  

Science Conference Proceedings (OSTI)

Fiberglass reinforced plastics (FRPs) are replacing metal in FGDs, stacks, tanks, cooling towers, piping and other plant components. The article documents the use of FRP in power plants since the 1970s. The largest volume of FRP in North American power plants is for stack liners and ductwork. Absorber vessel shells and internal components comprise the third largest use. The most common FRP absorber vessels are known as jet bubbling reactors (JBRs). One of the largest JBRs at a plant on the Ohio River removes 99% of sulphur dioxide from high sulphur coal flue gas. FRPs last twice as long as wood structures when used for cooling towers and require less maintenance. 1 tab., 2 photos.

Kelley, D. [Ashland Performance Materials (United States)

2007-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Power plant | OpenEI  

Open Energy Info (EERE)

Power plant Power plant Dataset Summary Description No description given. Source Environmental Protection Agency (EPA) Date Released January 26th, 2009 (5 years ago) Date Updated June 07th, 2010 (4 years ago) Keywords eGrid eGRID2007 EIA Electricity emissions epa Power plant Data application/zip icon eGRID2007_Version1-1.zip (zip, 18.7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

82

Geothermal Power Plants in China  

DOE Green Energy (OSTI)

Nine small experimental geothermal power plants are now operating at six sites in the People's Republic of China. These range in capacity from 50 kW to 3MW, and include plants of the flash-steam and binary type. All except two units utilize geofluids at temperatures lower than 100 C. The working fluids for the binary plants include normal- and iso-butane, ethyl chloride, and Freon. The first geothermal plant came on-line in 1970, the most recent ones in 1979. Figure 1 shows the location of the plants. Major cities are also shown for reference. Table 1 contains a listing of the plants and some pertinent characteristics. The total installed capacity is 5,186 kW, of which 4,386 kW is from flash-steam units. In the report, they given an example of the results of exploratory surveys, and show system diagrams, technical specifications, and test results for several of the power plants.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

83

Power Plant Baghouse Survey 2010  

Science Conference Proceedings (OSTI)

As particulate emission regulations become more stringent, the use of baghouses (also known as fabric filters) for particulate control on coal-fired boilers in the power generation industry has increased significantly in the past several years. With the potential for Maximum Achievable Control Technology requirements for air toxics being considered by the U.S. Environmental Protection Agency, power plants may be required to add sorbents to control mercury, trace metals and acid gases, further increasing ...

2010-12-31T23:59:59.000Z

84

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects ..-.. --__- _".-.-l--_--l -_._ _- --- ~~~. . ..~ CONTENTS Page - - I NTRODUCTI ON 1 Purpose 1 Docket Contents 1 Exhibit I: Summary of Activities at Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania I-l Exhibit II: Documents Supporting the Certification of Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania iii II-1 . . .- .__.^ I ^_... _.-__^-____-. - CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

85

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon Nuclear" "PPL Susquehanna Unit 1, Unit 2","2,450","18,516",23.8,"PPL Susquehanna LLC" "Peach Bottom Unit 2, Unit 3","2,244","18,759",24.1,"Exelon Nuclear" "Three Mile Island Unit 1",805,"6,634",8.5,"Exelon Nuclear"

86

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

Science Conference Proceedings (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

87

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

88

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

89

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

90

Internal combustion electric power hybrid power plant  

SciTech Connect

An internal combustion-electric motor hybrid power plant for an automotive vehicle is disclosed. The power plant includes an internal combustion engine and a direct current electric motor generator which are connected to a drive shaft for the vehicle. A clutch mechanism is provided to connect the internal combustion engine, the direct current electric motor generator and the drive shaft for selectively engaging and disengaging the drive shaft with the internal combustion engine and the motor generator. A storage battery is electrically connected to the motor generator to supply current to and receive current therefrom. Thermoelectric semi-conductors are arranged to be heated by the waste heat of the internal combustion engine. These thermoelectric semi-conductors are electrically connected to the battery to supply current thereto. The thermoelectric semi-conductors are mounted in contact with the outer surfaces of the exhaust pipe of the internal combustion engine and also with the outer surfaces of the cylinder walls of the engine.

Cummings, T.A.

1979-04-10T23:59:59.000Z

91

World electric power plants database  

SciTech Connect

This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

NONE

2006-06-15T23:59:59.000Z

92

Steam Reheat in Nuclear Power Plants.  

E-Print Network (OSTI)

??In this work, reheating steam from a commercial nuclear power plant is explored in order to increase efficiency and power output. A thermal source in (more)

Marotta, Paul John

2012-01-01T23:59:59.000Z

93

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

94

Energeticals power plant engineering | Open Energy Information  

Open Energy Info (EERE)

Energeticals power plant engineering Energeticals power plant engineering Jump to: navigation, search Name energeticals power plant engineering Place München, Bavaria, Germany Zip 81371 Sector Biomass, Geothermal energy Product Planning, design, installation and operation of turnkey plants for heat and electricity generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References energeticals power plant engineering[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. energeticals power plant engineering is a company located in München, Bavaria, Germany . References ↑ "[ energeticals power plant engineering]" Retrieved from "http://en.openei.org/w/index.php?title=Energeticals_power_plant_engineering&oldid=344770

95

Integrated Coal Gasification Power Plant Credit (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

96

Modeling water use at thermoelectric power plants  

E-Print Network (OSTI)

The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

Rutberg, Michael J. (Michael Jacob)

2012-01-01T23:59:59.000Z

97

SLAC National Accelerator Laboratory - Power Plants: Scientists...  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plants: Scientists Use X-ray Laser to Probe Engines of Photosynthesis By Glenn Roberts Jr. June 6, 2012 The molecular power plants that carry out photosynthesis are at the...

98

UNDERSTANDING ENTRAINMENT AT COASTAL POWER PLANTS  

E-Print Network (OSTI)

Thermal power plants larger than 50 megawatts (MW) are required to obtain a California Energy Commission UNDERSTANDING ENTRAINMENT AT COASTAL POWER PLANTS: INFORMING A PROGRAM TO STUDY Landing Power Plant (at center). Image from the U.S. Army Corps of Engineers Digital Visual Library. #12

99

Tracking New Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

New Coal-Fired Power Plants New Coal-Fired Power Plants (data update 1/13/2012) January 13, 2012 National Energy Technology Laboratory Office of Strategic Energy Analysis & Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to provide an overview of proposed new coal-fired power plants that are under development. This report may not represent all possible plants under consideration but is intended to illustrate the potential that exists for installation of new coal-fired power plants. Additional perspective has been added for non-coal-fired generation additions in the U.S. and coal-fired power plant activity in China. Experience has shown that public announcements of power plant developments do not provide an accurate representation of eventually

100

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network (OSTI)

Efficiency Investments to Power Plants J. Koorney, A.H.Efficiency Investments to Power Plants Jonathan Koorney,Pollution, and Avoid Power Plant Construction. Testimony

Koomey, J.G.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Float-in powerhouses  

Science Conference Proceedings (OSTI)

The nation's inland waterway system affords a means of transporting large objects limited only by channel depth, size of locks and bridge clearances. The concept of prefabricating standardized, hydroelectric powerhouses at shipyards, transporting them along the inland waterways and installing them at navigation dams without powerhouses was examined for the McClellan-Kerr Arkansas River Navigation system. It was found that construction costs for the float-in design was very close to those of conventional sitebuilt design. Experience at Greenup Dam on the Ohio River where a float-in powerhouse has been installed indicated that construction time could be reduced if the float-in design was used. This time saving, use of standardized designs and construction of the float-in module at a shipyard may offer advantages that should be examined in more detailed when the power potential of the nation's low navigation dams is assessed.

Makela, G.A.

1983-06-01T23:59:59.000Z

102

Power Plant Baghouse Survey 2011  

Science Conference Proceedings (OSTI)

The requirement to reduce stack particulate matter (PM) emissions is one of the key challenges for coal-fired power plants, in light of the proposed Maximum Achievable Control Technology (MACT) ruling for hazardous air pollutants (HAPs) issued by the U.S. Environmental Protection Agency on March 16, 2011. The proposed MACT ruling may require that total PM, including condensable and filterable PM, be maintained at 0.03 lb/MMBtu. A final HAPs ruling is expected in December 2011. As particulate emission reg...

2011-12-06T23:59:59.000Z

103

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

104

Coal Power Plant Database | Open Energy Information  

Open Energy Info (EERE)

Power Plant Database Power Plant Database Jump to: navigation, search Name Coal Power Plant Database Data Format Excel Spreadsheet, Excel Pivot Table, Access Database Geographic Scope United States TODO: Import actual dataset contents into OpenEI The Coal Power Plant Database (CPPDB) is a dataset which "consolidates large quantities of information on coal-fired power plants in a single location."[1] It is produced by the National Energy Technology Laboratory (NETL). External links 2007 Edition Excel Spreadsheet Excel Pivot Table Access Database User's Manual (PDF) References ↑ "User's Manual: Coal Power Plant Database" Retrieved from "http://en.openei.org/w/index.php?title=Coal_Power_Plant_Database&oldid=273301" Categories: Datasets Articles with outstanding TODO tasks

105

Sabotage at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

Purvis, James W.

1999-07-21T23:59:59.000Z

106

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary Cycle Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators.

107

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing

108

Wood Burning Combined Cycle Power Plant  

E-Print Network (OSTI)

A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas turbine combined cycle system that obtains its heat input from a high temperature, high pressure ceramic air heater burning wood waste products as a fuel. This paper presents the results of the design study including the cycle evaluation and a description of the major components of the power plant. The cycle configuration is based on maximum fuel efficiency with minimum capital equipment risk. The cycle discussion includes design point performance of the power plant. The design represents a significant step forward in wood-fueled power plants.

Culley, J. W.; Bourgeois, H. S.

1984-01-01T23:59:59.000Z

109

Dirty kilowatts: America's most polluting power plants  

SciTech Connect

In 2006, the US EPA tracked more than 1,400 fossil-fired power plants of varying sizes through its Acid Rain Program. This report ranks each of the 378 largest plants (generating at least 2 million megawatt-hours in 2006) for which both the most recent EPA emissions data and Energy Information Administration (EIA) electric generation data are available. The report ranks each plant based on emission rates, or pounds of pollutant for each megawatt-hour (or million megawatt-hours, in the case of mercury) the plant produced. It ranks the top fifty power plants polluters for sulfur dioxide, nitrogen oxides, carbon dioxide, and mercury. A complete listing of all 378 plants is included as Appendix A. Appendix B contains overheads of an NETL presentation: Tracking new coal-fired power plants - coal's resurgence in electric power generation, 24 January 2007. The 12 states with the heaviest concentrations of the dirtiest power plants, in terms of total tons of carbon dioxide emitted, are: Texas (five, including two of the top 10 dirtiest plants); Pennsylvania (four); Indiana (four, including two of the top 10 dirtiest plants); Alabama (three); Georgia (three, including two of the top three dirtiest plants); North Carolina (three); Ohio (three); West Virginia (three); Wyoming (two); Florida (two); Kentucky (two); and New Mexico (two). Carbon dioxide emissions from power plants are now at roughly 2.5 billion tons per year. Power plants are responsible for about 30%-40% of all man-made CO{sub 2} emissions in the USA. Power plants, especially those that burn coal, are by far the largest single contributor of SO{sub 2} pollution in the United States. Power plant mercury emissions remain steady as compared to previous years. A searchable database ranking 378 U.S. power plants on carbon dioxide, sulfur dioxide, nitrogen oxide and mercury pollution is available online at http://www.dirtykilowatts.org. 22 refs., 8 tabs., 2 apps.

NONE

2007-07-15T23:59:59.000Z

110

Power Plant Optimization Demonstration Projects Cover Photos:  

NLE Websites -- All DOE Office Websites (Extended Search)

5 SEPTEMBER 2007 5 SEPTEMBER 2007 Power Plant Optimization Demonstration Projects Cover Photos: * Top left: Coal Creek Station * Top right: Big Bend Power Station * Bottom left: Baldwin Energy Complex * Bottom right: Limestone Power Plant A report on four projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * Tampa Electric Company * Pegasus Technologies * NeuCo. , Inc.  Power Plant Optimization Demonstration Projects Executive Summary .......................................................................................4 Background: Power Plant Optimization ......................................................5 Lignite Fuel Enhancement Project ...............................................................8

111

Balance of Plant Corrosion Issues in Aging Nuclear Power Plants  

Science Conference Proceedings (OSTI)

... number of times, can be used to forecast the most probable number of leaks. ... Conditions for Long Term Operation of Nuclear Power Plants in Sweden.

112

Control system for cogenerative power plants  

Science Conference Proceedings (OSTI)

The paper presents a distributed control system for the realization of cogenerative supply of electricity and heat and, in given case, for their combination with waste heat recovery, particularly in combined (gas-steam) cycle industrial power plants. ... Keywords: cogenerative gas power plant, control of distributed parameter systems, distribution management system, electric power systems, optimization, process control, real time systems, simulation

Florin Hartescu

2008-08-01T23:59:59.000Z

113

Floating Cars  

E-Print Network (OSTI)

land- scape of destroyed cars provides a stark illustrationTHE ACCESS ALMANAC Floating Cars BY DANIEL BALDWIN HESS S Uof the excessive number of cars in the United States, where

Hess, Daniel Baldwin

2006-01-01T23:59:59.000Z

114

Wind Power Plant Monitoring Project Annual Report  

DOE Green Energy (OSTI)

The intermittent nature of the wind resource, together with short-term power fluctuations, are the two principal issues facing a utility with wind power plants in its power grid. To mitigate these issues, utilities, wind power plant developers, and operators need to understand the nature of wind power fluctuations and how they affect the electrical power system, as well as to analyze ancillary service requirements with real wind power plant output data. To provide the necessary data, NREL conducted a study to collect at least 2 years of long-term, high-frequency (1-hertz [Hz]) data from several medium- to large-scale wind power plants with different wind resources, terrain features, and turbine types. Researchers then analyzed the data for power fluctuations, frequency distribution of wind power (by deriving a probability distribution function of wind power plant output variations), spatial and temporal diversity of wind power, and wind power capacity credit issues. Results of these analyses can provide data on the potential effects of wind power plants on power system regulation.

Wan, Y.

2001-07-11T23:59:59.000Z

115

Requirements for Power Plant and Power Line Development (Wisconsin) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requirements for Power Plant and Power Line Development (Wisconsin) Requirements for Power Plant and Power Line Development (Wisconsin) Requirements for Power Plant and Power Line Development (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Wisconsin Program Type Siting and Permitting Provider Public Service Commission of Wisconsin

116

Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of TMDLs on Impacts of TMDLs on Coal-Fired Power Plants April 2010 DOE/NETL-2010/1408 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The

117

Efficiency combined cycle power plant  

SciTech Connect

This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

Pavel, J.; Meyers, G.A.; Baldwin, T.S.

1990-06-12T23:59:59.000Z

118

Conceptual design of ocean thermal energy conversion (OTEC) power plants in the Philippines  

SciTech Connect

Extensive temperature readings were obtained to determine suitable OTEC power plant sites in the Philippines. An analysis of temperature profiles reveals that surface seawater is in the range of 25 to 29{degree}C throughout the year while seawater at 500 to 700 m depth remains at a low temperature of 8 to 4{degree}C, respectively. In this article, 14 suitable sites within the Philippine seas are suggested. Conceptual designs for a 5-MW onland-type and a 25-MW floating-type OTEC power plant are proposed. Optimum conditions are determined and plant specifications are computed. Cost estimates show that a floating-type 25-MW OTEC power plant can generate electricity at a busbar power cost of 5.33 to 7.57 cents/kW {times} h while an onshore type 5-MW plant can generate electricity at a busbar cost of 14.71 to 18.09 cents/kW {times} h.

Haruo Uehara; Dilao, C.O.; Tsutomu Nakaoka (Saga Univ. (Japan))

1988-01-01T23:59:59.000Z

119

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

120

The parabolic trough power plants Andasol 1 to 3 The largest solar power plants in the world  

E-Print Network (OSTI)

The parabolic trough power plants Andasol 1 to 3 The largest solar power plants in the world and solar-thermal power plants The first parabolic trough power plants in Europe ­ the world's largest solar

Laughlin, Robert B.

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

122

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

123

Nuclear power plants: structure and function  

SciTech Connect

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

124

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

125

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Materials in Nuclear Power Plant Construction - TMS  

Science Conference Proceedings (OSTI)

139th Annual Meeting & Exhibition. February 14 - 18, 2010, Washington State Convention Center, Seattle, Washington USA. Materials in Nuclear Power. Plant ...

127

NETL: Power Plant Improvement Initiative (PPII)  

NLE Websites -- All DOE Office Websites (Extended Search)

PPII Map Clean Coal Demonstrations Power Plant Improvement Initiative (PPII) Project Location Map Place mouse cursor over state for and select the project you are interested in....

128

Increasing Power Plant Efficiency: Lignite Fuel Enhancement ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing Power Plant Efficiency: Lignite Fuel Enhancement (Completed March 31, 2010) Project Description The objectives of this project are to demonstrate a unique system for...

129

Methodology for Scaling Fusion Power Plant Availability  

Science Conference Proceedings (OSTI)

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

Lester M. Waganer

2011-01-04T23:59:59.000Z

130

Organizational learning at nuclear power plants  

E-Print Network (OSTI)

The Nuclear Power Plant Advisory Panel on Organizational Learning provides channels of communications between the management and organization research projects of the MIT International Program for Enhanced Nuclear Power ...

Carroll, John S.

1991-01-01T23:59:59.000Z

131

TS Power Plant, Eureka County, Nevada  

SciTech Connect

Not all coal-fired power plants are constructed by investor-owned utilities or independent power producers selling to wholesale markets. When Newmont Mining Corp. recognised that local power supplies were inadequate and too expensive to meet long-term electricity needs for its major gold- and copper-mining operations in northern Nevada, it built its own generation. What is more, Newmont's privately owned 200-MW net coal-fired plant features power plant technologies that will surely become industry standards. Newmont's investment in power and technology is also golden: the capital cost will be paid back in about eight years. 4 figs.

Peltier, R. [DTE Energy Services (United States)

2008-10-15T23:59:59.000Z

132

Next Generation Geothermal Power Plants: 2012 Update  

Science Conference Proceedings (OSTI)

The intent of this report is to provide an update of historical and current trends in geothermal power plant technology, extending the previous Next Generation Geothermal Power Plant (NGGPP) report originally developed by EPRI in 1996.BackgroundIn its 1996 study, EPRI evaluated a number of technologies with the potential to lower the cost of geothermal power production or to expand cost effective power production to lower temperature resources, thus opening ...

2012-12-13T23:59:59.000Z

133

DIRECT FUEL CELL/TURBINE POWER PLANT  

SciTech Connect

The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

Hossein Ghezel-Ayagh

2003-05-27T23:59:59.000Z

134

Deming Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Deming Solar Plant Solar Power Plant Deming Solar Plant Solar Power Plant Jump to: navigation, search Name Deming Solar Plant Solar Power Plant Facility Deming Solar Plant Sector Solar Facility Type Photovoltaic Developer New Solar Ventures/ Solar Torx 50/50 Location New Mexico Coordinates 34.9727305°, -105.0323635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9727305,"lon":-105.0323635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Prescott Airport Solar Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Prescott Airport Solar Plant Solar Power Plant Prescott Airport Solar Plant Solar Power Plant Jump to: navigation, search Name Prescott Airport Solar Plant Solar Power Plant Facility Prescott Airport Solar Plant Sector Solar Facility Type Photovoltaic Developer APS Location Prescott, Arizona Coordinates 34.5400242°, -112.4685025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5400242,"lon":-112.4685025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Arrangement for hydroelectric power plants  

SciTech Connect

Hydroelectric power plant contains a flow tube for the water, an inlet tube leading to the flow tube and a discharge tube leading from the flow tube. In the flow tube a turbine is arranged to be driven by the flowing water and which via a drive shaft drives an electric generator. Accentuated sub-divisioning as between mechanical unit and portions of an installation nature is provided. The turbine and generator are located in the direct vicinity of each other and together with the drive shaft form a unit which in its entirety is situate in the flow tube and arranged to be traversed by flowing water. The unit is so arranged that the turbine can be in contact with the water flow while the generator has a watertight enclosure into which the drive shaft extends through a watertight bushing. Furthermore an electric cable for transmitting the electricity produced is connected. The installation components, the said tubes, are made from prefabricated concrete components. The flow tube is essentially vertical and exhibits a support for the unit and, at its upper end, an aperture through which the unit can be lowered.

Osterberg, T.V.

1984-03-13T23:59:59.000Z

137

Power Plant Practices to Ensure Cable Operability  

Science Conference Proceedings (OSTI)

Installation practices as well as environmental conditions affect the operability of electrical cables in power plants. This report evaluates operability criteria for nuclear power plant cables, good practices for cable installation, and cable maintenance and surveillance. As a reference source for utility practices, this report suggests potential improvements that could benefit the industry.

1992-05-02T23:59:59.000Z

138

Lessons learned from existing biomass power plants  

DOE Green Energy (OSTI)

This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

Wiltsee, G.

2000-02-24T23:59:59.000Z

139

FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES  

E-Print Network (OSTI)

and coolant. Lithium eutectic compounds such as lithium-lead (Li17Pb83), aqueous solutions of lithium salts groups have an aver- sion to large power plants in their back yards. As a whole, improved power plants for a burning fusion plasma (Meade, 1996). The next large ex- perimental device is ITER (Baker, 1996) which

Najmabadi, Farrokh

140

Power Transformer Application for Wind Plant Substations  

Science Conference Proceedings (OSTI)

Wind power plants use power transformers to step plant output from the medium voltage of the collector system to the HV or EHV transmission system voltage. This paper discusses the application of these transformers with regard to the selection of winding configuration, MVA rating, impedance, loss evaluation, on-load tapchanger requirements, and redundancy.

Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bloethe, W.G. [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Goltz, B. [IEEE PES Wind Plant Collector System Design Working Group; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Niemira, J. [IEEE PES Wind Plant Collector System Design Working Group; Nuckles, K. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Reza, M [IEEE PES Wind Plant Collector System Design Working Group; Richardson, B. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Schoene, Jens [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Snyder, Isabelle B [ORNL; Starke, Michael R [ORNL; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group; Zahalka, G. [IEEE PES Wind Plant Collector System Design Working Group

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine Mile Point Nuclear Station Unit 1, Unit 2","1,773","14,239",34.0,"Nine Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants

142

Residential Solar Thermal Power Plant  

Solar power is a renewable source of energy that involves no fossil fuel combustion, and releases no greenhouse gases. In the past, solar power has not been ...

143

Wind Power Plant SCADA and Controls  

SciTech Connect

Modern Wind Power Plants (WPPs) contain a variety of intelligent electronic devices (IEDs), Supervisory Control and Data Acquisition (SCADA) and communication systems. This paper discusses the issues related to a typical WPP's SCADA and Control. Presentation topics are: (1) Wind Turbine Controls; (2) Wind Plant SCADA, OEM SCADA Solutions, Third-Party SCADA Solutions; (3) Wind Plant Control; and (4) Security and Reliability Compliance.

Badrzadeh, Babak [IEEE PES Wind Plant Collector System Design Working Group; Castillo, Nestor [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Janakiraman, R. [IEEE PES Wind Plant Collector System Design Working Group; Kennedy, R. [IEEE PES Wind Plant Collector System Design Working Group; Klein, S. [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Vargas, L. [IEEE PES Wind Plant Collector System Design Working Group

2011-01-01T23:59:59.000Z

144

Combined power plants -- Past, present, and future  

Science Conference Proceedings (OSTI)

The early history of combined power plants is described, together with the birth of the CCGT plant (the combined cycle gas turbine). Sustained CCGT development in the 1970s and 1980s, based on sound thermodynamic considerations, is outlined. Finally more recent developments and future prospects for the combined gas turbine/steam turbine combined plant are discussed.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1995-10-01T23:59:59.000Z

145

Power Quality Investigation of a Manufacturing Plant  

Science Conference Proceedings (OSTI)

This case study summarizes the findings and results of a power quality (PQ) audit performed at a manufacturing plant to harden the plant processes to external PQ disturbances. Recommendations were made by EPRI and implemented by the manufacturer. The result was a significant improvement in immunity of the plant processes to voltage sags.

2007-12-31T23:59:59.000Z

146

Thermal spray applications for power plant components  

Science Conference Proceedings (OSTI)

Power plants usually are located near water and many are in salt water environments. Corrosion occurring in these environments is a problem often solved with thermal spray coatings. The use of thermal spray aluminum and zinc in three power plants for various components is reviewed. Special emphasis is on the cooling tower at the Seabrook, New Hampshire plant. A guide to selection of the coating and process also is given.

Sampson, E.R.

2000-03-01T23:59:59.000Z

147

DIRECT FUEL/CELL/TURBINE POWER PLANT  

SciTech Connect

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Hossein Ghezel-Ayagh

2004-05-01T23:59:59.000Z

148

DIRECT FUEL/CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Hossein Ghezel-Ayagh

2004-05-01T23:59:59.000Z

149

Nuclear Power Plant Concrete Structures  

Science Conference Proceedings (OSTI)

A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

Basu, Prabir [International Atomic Energy Agency (IAEA)] [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF)] [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

150

Desalination Study of Florida Power & Light Power Plants  

Science Conference Proceedings (OSTI)

This report documents a project sponsored jointly by EPRI and Florida Power & Light (FPL) to determine the viability of converting existing power plants to large-scale, dual-purpose cogeneration of power and fresh water from desalination. Of four desalination processes studied, reverse osmosis offered the lowest product water cost.

1992-12-18T23:59:59.000Z

151

Groundwater Protection Guidelines for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The nuclear power industry has entered into a voluntary initiative to implement groundwater monitoring programs at all nuclear power plant sites. This EPRI guideline provides essential technical guidance to nuclear power utilities on the necessary elements of a sound groundwater protection program.

2008-01-10T23:59:59.000Z

152

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing (except water vapor) is emitted to the atmosphere. Resources below 400°F

153

DIRECT FUEL CELL/TURBINE POWER PLANT  

SciTech Connect

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

Hossein Ghezel-Ayagh

2004-11-01T23:59:59.000Z

154

Direct FuelCell/Turbine Power Plant  

SciTech Connect

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

155

Direct FuelCell/Turbine Power Plant  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

156

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

Hossein Ghezel-Ayagh

2004-11-01T23:59:59.000Z

157

Design optimization of IGCC power plants  

SciTech Connect

Integrated gasification-combined-cycle (IGCC) power plants have the potential for providing performance and cost improvements over conventional coal-fired steam power plants with flue-gas desulfurization. The major design options for IGCC power plants include the following: oxygen-blown versus air-blown gasification processes; entrained-flow, fluidized-bed, or fixed-bed gasifier; coal-slurry feed versus coal-dry feed; hot versus cold fuel-gas cleanup; gas turbine alternatives; and, design alternatives for the Heat Recovery Steam Generator (HRSG). This paper summarizes some results from these studies. The advanced thermoelectric techniques used at Tennessee Technological University (TTU) are very powerful tools for evaluating and optimizing IGCC power plants.

Tsatsaronis, G.; Lin, L.; Pisa, J.; Tawfik, T. (Tennessee Technological Univ., Cookeville, TN (United States))

1992-01-01T23:59:59.000Z

158

Capital cost models for geothermal power plants  

SciTech Connect

A computer code, titled GEOCOST, has been developed at Battelle, Pacific Northwest Laboratories, to rapidly and systematically calculate the potential costs of geothermal power. A description of the cost models in GEOCOST for the geothermal power plants is given here. Plant cost models include the flashed steam and binary systems. The data sources are described, along with the cost data correlations, resulting equations, and uncertainties. Comparison among GEOCOST plant cost estimates and recent A-E estimates are presented. The models are intended to predict plant costs for second and third generation units, rather than the more expensive first-of-a-kind units.

Cohn, P.D.; Bloomster, C.H.

1976-07-01T23:59:59.000Z

159

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2mo Callaway Unit 1 1,190 8,996 100.0 Union Electric Co 1 Plant 1 Reactor Owner Note: Totals may not equal sum of components due to independent rounding.

160

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2ct Millstone Unit 2, Unit 3 2,103 16,750 100.0 Dominion Nuclear Conn Inc 1 Plant 2 Reactors Owner Note: Totals may not equal sum of components due to independent ...

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2ar Arkansas Nuclear One Unit 1, Unit 2 1,835 15,023 100.0 Entergy Arkansas Inc 1 Plant 2 Reactors Owner Note: Totals may not equal sum of ...

162

Power Plant Wastewater Treatment Technology Review Report  

Science Conference Proceedings (OSTI)

Assessing power plant water management options means screening an increasing number of wastewater treatment technologies. This report provides engineers with detailed information on treatment process performance, economics, and applications to complete rapid, yet meaningful, technology screening evaluations.

1997-01-01T23:59:59.000Z

163

Atmospheric considerations for central receiver power plants  

DOE Green Energy (OSTI)

This report documents the results of a study of the effects of atmospheric attenuation, turbulent scattering, and the use of cooling towers on the performance of solar thermal central receiver power plants.

Henderson, R.G.; Pitter, R.L.

1979-06-01T23:59:59.000Z

164

Brawley Power Plant Abandoned | Open Energy Information  

Open Energy Info (EERE)

Abandoned Abandoned Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Brawley Power Plant Abandoned Abstract N/A Authors California Division of Oil, Gas and and Geothermal Resources Published Journal Geothermal Hot Line, 1985 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Brawley Power Plant Abandoned Citation California Division of Oil, Gas, and Geothermal Resources. 1985. Brawley Power Plant Abandoned. Geothermal Hot Line. 15(2):76-77. Retrieved from "http://en.openei.org/w/index.php?title=Brawley_Power_Plant_Abandoned&oldid=682727" Categories: References Uncited References Geothermal References What links here Related changes Special pages Printable version Permanent link Browse properties

165

NETL: Coal-Fired Power Plants (CFPPs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Sources Coal-Fired Power Plants (CFPPs) Where is the coal in the United States? Coal Across the U.S. The U.S. contains coal resources in various places. The coal occurs...

166

Existing Coal-fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Vulnerabilities for Existing Coal-fired Power Plants August 2010 DOENETL-20101429 Disclaimer This report was prepared as an account of work sponsored by an agency of the...

167

PV Power Plants Conference USA 2012  

Energy.gov (U.S. Department of Energy (DOE))

The 4th PV Power Plants conference will cover relevant topics for successful project development and sustainable business. This year's event will have an additional focus on certain distributed...

168

Parabolic Trough Solar Thermal Electric Power Plants  

DOE Green Energy (OSTI)

Although many solar technologies have been demonstrated, parabolic trough solar thermal electric power plant technology represents one of the major renewable energy success stories of the last two decades.

Not Available

2003-06-01T23:59:59.000Z

169

Quality control during construction of power plants  

SciTech Connect

This paper traces the background and examines the necessity for a program to control quality during the construction phase of a power plant. It also attempts to point out considerations for making these programs cost effective.

Hartstern, R.F.

1982-03-01T23:59:59.000Z

170

Region 8: 1977 power plant summary  

SciTech Connect

This document provides summary information on power generation facilities located in the U.S. EPA, Region VIII states of Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming. When available, plant specific information is presented.

Parker, G.E.; Boulter, G.

1978-07-01T23:59:59.000Z

171

Experience curves for power plant emission control technologies  

E-Print Network (OSTI)

1/2, 2004 Experience curves for power plant emission controlcoal-fired electric power plants. In particular, we focus on2004) Experience curves for power plant emission control

Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

2007-01-01T23:59:59.000Z

172

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

D. , The Central Reciever Power Plant: An Environmental,of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of Storage

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

173

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F. Baldwin.a central solar thermal power plant. A variety of heliostatSTORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F. Baldwin.

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

174

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

175

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

176

Advanced Cooling Options for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Alternative power plant cooling systems exist that offer significant opportunity for reducing the amount of water used in power plant cooling. These systems include direct dry cooling using air-cooled condensers, indirect dry cooling using air-cooled heat exchangers paired with water-cooled surface condensers, and a variety of hybrid systems incorporating both dry and wet cooling elements. The water savings afforded by the use of these systems, however, comes at a price in the form of more expensive ...

2013-11-27T23:59:59.000Z

177

Nuclear power plant construction activity, 1988  

SciTech Connect

Nuclear Power Plant Construction Activity 1988 presents cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1988. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

1989-06-14T23:59:59.000Z

178

Nuclear Power Plant NDE Challenges Past, Present, and Future  

Science Conference Proceedings (OSTI)

The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship

S. R. Doctor

2007-01-01T23:59:59.000Z

179

OUT Success Stories: Solar Trough Power Plants  

DOE Green Energy (OSTI)

The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

Jones, J.

2000-08-05T23:59:59.000Z

180

Parabolic Trough Organic Rankine Cycle Power Plant  

DOE Green Energy (OSTI)

Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NREL: Technology Transfer - First Hybrid CSP-Coal Power Plant ...  

First Hybrid CSP-Coal Power Plant is Fired Up in Colorado July 23, 2010. On June 30, Xcel Energy began operating an experimental power plant near ...

182

Pages that link to "Coal Power Plant Database" | Open Energy...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal Power Plant Database" Coal Power Plant Database Jump to: navigation, search What...

183

Changes related to "Coal Power Plant Database" | Open Energy...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal Power Plant Database" Coal Power Plant Database Jump to: navigation, search This is...

184

DOE Announces Loan Guarantee Applications for Nuclear Power Plant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis...

185

Miniature Hydroelectric Power Plant : EnergySmart School Inventors  

NLE Websites -- All DOE Office Websites (Extended Search)

Miniature Hydroelectric Power Plant EnergySmart School Inventors EnergySmart School Inventors Miniature Hydroelectric Power Plant Michael Torrey Inventor: Michael Torrey The...

186

Power Plant and Industrial Fuel Use Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Electricity Advisory Committee Technology Development Electricity Policy Coordination and...

187

Zhangbei Guotou Wind Power Plant | Open Energy Information  

Open Energy Info (EERE)

Zhangbei Guotou Wind Power Plant Jump to: navigation, search Name Zhangbei Guotou Wind Power Plant Place Beijing Municipality, China Zip 100037 Sector Wind energy Product A company...

188

Utility Power Plant Construction (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Power Plant Construction (Indiana) Utility Power Plant Construction (Indiana) Eligibility Construction InstallerContractor MunicipalPublic Utility Rural Electric...

189

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network (OSTI)

EFFICIENCY INVESTMENTS TO POWER PLANTS: APPLICATIONS TOEFFICIENCY INVESTMENTS TO POWER PLANTS: APPLICATIONS TOEfficiency Investments to Power Plants: Applications to

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

190

Power Plant Electrical Reference Series, Volume 2: Power Transformers  

Science Conference Proceedings (OSTI)

This comprehensive and practical guide to electric power apparatus and electrical phenomena provides an up-to-date source book for power plant managers, engineers, and operating personnel. Aiding in the recognition and prevention of potential problems, the 16-volume guide can help utilities save staff time and reduce operating expenses.

1988-05-01T23:59:59.000Z

191

Nuclear power plant construction activity 1987  

SciTech Connect

This annual report published by the Energy Information Administration (EIA) presents data on nuclear power plant construction activity. The previous report, Nuclear Power Plant Construction Activity 1986, included data for units that, as of December 31, 1986, were (1) in the construction pipeline, (2) canceled, or (3) commercial operation as of December 31, 1986. The data in this report, which were collected on Form EIA-254, ''Semiannual Report on Status of Reactor Construction,'' update the data in the previous report to be current as of December 31, 1987. Three types of information are included: plant characteristics and ownership; construction costs; and construction schedules and milestone dates.

1988-06-09T23:59:59.000Z

192

Aspects of thermal power plant automation  

Science Conference Proceedings (OSTI)

Thermal electric power plant is a set of facilities/equipment interconnected, designed to produce electricity or heat and power, by converting chemical energy of a fuel. This paper analyze the energy production stations, both turbine and steam generator ... Keywords: modeling and simulation, the Ovation System

Marius-Constantin Popescu; Nikos Mastorakis

2010-03-01T23:59:59.000Z

193

PROPOSED AMENDMENT TO THE NUCLEAR POWER PLANT  

E-Print Network (OSTI)

NOTE TO EDITORS: The Nuclear Regulatory Commission has received two reports from its independent Advisory Committee on Reactor Safeguards. The attached reports, in the form of letters, comment on a proposed amendment to the NRC's rule on license renewal for nuclear power plants and a proposed revision to the decommissioning rule for nuclear power reactors. Attachments:

T. S. Kress

1995-01-01T23:59:59.000Z

194

A Power Plant for the Home  

Science Conference Proceedings (OSTI)

The use of energy in American homes is still being developed for better efficiency. The idea of having a power plant in your home's basement instead is a consideration. Combined heat and power (CHP) systems can utilize up to 90 percent of a fossil fuel's ...

P. P. Predd

2007-04-01T23:59:59.000Z

195

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

Hossein Ghezel-Ayagh

2003-05-22T23:59:59.000Z

196

Monitoring Biological Activity at Geothermal Power Plants  

Science Conference Proceedings (OSTI)

The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

Peter Pryfogle

2005-09-01T23:59:59.000Z

197

Power Plant Dams (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Plant Dams (Kansas) Power Plant Dams (Kansas) Power Plant Dams (Kansas) < Back Eligibility Commercial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Water Buying & Making Electricity Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment This act states the provisions for erection and maintenance of dams. When any person, corporation or city may be desirous of erecting and maintaining a milldam or dam for generating power across any watercourse, the party so desiring to do the same may run the stream over the land of any other person by ditching or otherwise, and he, she or it may obtain the right to erect and maintain said dam and keep up and maintain the necessary ditches

198

Embrittlement of Power Plant Steels  

Science Conference Proceedings (OSTI)

Plant operators seek to adopt approaches that can minimize costs, prevent forced outages, and maximize safety and reliability. Rigorous life assessment methodologies have been developed over the years and are commonly employed to determine component integrity and life. Such assessments examine key operational characteristics including: elevated temperature exposure, cycling operation, loading, environmental exposure, etc., to determine remaining life. Many of these characteristics can have a ...

2013-12-19T23:59:59.000Z

199

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2mi Donald C Cook Unit 1, Unit 2 2,069 15,646 52.8 Indiana Michigan Power Co Fermi Unit 2 1,085 7,738 26.1 Detroit Edison Co Palisades Unit 1 793 ...

200

Plant Support Engineering: Elastomer Handbook for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

On a daily basis, engineers and maintenance personnel make judgments regarding the capabilities, degradation, and longevity of elastomeric material and its compatibility with other materials. Although most applications of elastomers in nuclear power plants are not unique to the industry, there is an extra emphasis in certain applications with regard to reliability, quality, and resistance to nuclear-plant-specific environments. Existing resources on elastomers are extensive, but they are not tailored to ...

2007-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Floating vessel  

SciTech Connect

The invention relates to a floating vessel which may be used in oil recovery. The assembly consists of a vertical column having a relatively small diameter. The column has a buoyancy capacity and is supplied with a ballast section having a larger diameter at its end. An upper structure is movably connected to the column. The column and the ballast chamber determine the limits of a shaft. The shaft is open at its lower end and is supplied with means to let fluid into the shaft over a relatively large area. (8 claims)

1974-05-14T23:59:59.000Z

202

Projected thermodynamic efficiencies of fusion power plants  

DOE Green Energy (OSTI)

Estimated thermal efficiencies of proposed fusion power plant concepts are compared to the efficiencies of nonfusion power plants. Present trends in electrical power generation are also discussed. The fusion reactor system designs will have about the same thermal efficiencies as present day power plants using steam if these designs require the collection of thermal energy at the blanket and the transfer of that energy to a heat exchanger or boiler using the current technology. Two general methods should be pursued for increasing the thermal efficiencies of fusion power plants and thereby reducing the amount of waste heat. Methods should be developed for increasing the temperatures of the reactor coolants since the maximum attainable thermal efficiency of systems using coolants can be increased only by increasing the coolant temperatures. Second, advanced power recovery systems such as potassium topping turbines, MHD, and direct conversion should be developed since such systems avoid the limits on steam systems due to excessive operating pressures at high temperatures. Direct conversion is particularly attractive because it avoids the theoretical Carnot limit on thermal efficiency when heat is converted to electrical energy.

McKinnon, M.A.

1976-09-01T23:59:59.000Z

203

power plant | OpenEI Community  

Open Energy Info (EERE)

plant plant Home Kyoung's picture Submitted by Kyoung(155) Contributor 12 November, 2012 - 09:17 Legal Reviews are Underway BHFS Legal review permitting power plant roadmap transmission The legal review of the Regulatory Roadmap flowcharts and supporting content is well underway and will continue for the next several months with our legal team at [www.bhfs.com Brownstein Hyatt Farber and Schreck]. The BHFS has been meeting with the NREL roadmap team during weekly 2-3 hour meetings to provide comments and suggestions on each flowchart at the federal and state levels. They have had some fantastic recommendations for updates - particularly for Sections 7 and 8 of the roadmap, pertaining to the permitting of power plants and transmission lines. Syndicate content 429 Throttled (bot load)

204

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

Hossein Ghezel-Ayagh

2003-05-23T23:59:59.000Z

205

South Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina nuclear power plants, summer capacity and net generation, 2010" South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc" "Oconee Unit 1, Unit 2, Unit 3","2,538","20,943",40.3,"Duke Energy Carolinas, LLC" "V C Summer Unit 1",966,"8,487",16.3,"South Carolina Electric&Gas Co" "4 Plants 7 Reactors","6,486","51,988",100.0

206

Third International Conference on Improved Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This international conference reviewed advances in materials, components, and designs for coal-fired power plants. Also showcased were results from the EPRI improved power plant project, similar collaborative European projects, and new power plants in Japan. The proceedings' 54 papers contribute to an improved international understanding of advanced coal-fired power plant technology.

1992-09-01T23:59:59.000Z

207

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

Dry-Cooling Tower Power-Generation Subsystem Summary AnGas-Circulation Subsystem The Power-Generation Subsystem Theinsulating plant piping. power-generation heat exchangers.

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

208

Blythe Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Blythe Solar Power Plant Blythe Solar Power Plant Jump to: navigation, search Name Blythe Solar Power Plant Facility Blythe Sector Solar Facility Type Photovoltaic Developer First Solar Location Blythe, California Coordinates 33.6172329°, -114.5891744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.6172329,"lon":-114.5891744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Stateline Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Stateline Solar Power Plant Stateline Solar Power Plant Jump to: navigation, search Name Stateline Solar Power Plant Facility Stateline Sector Solar Facility Type Photovoltaic Developer First Solar Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

Plant Support Engineering: Guidance for Planned Replacement of Large Power Transformers at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Utilities continue to pursue license renewal applications and power uprates, and these initiatives are being undertaken on an aging fleet of nuclear plants. Many plants are facing the necessity of replacing large power transformers to support these initiatives. However, industry expertise to support such activities has diminished since the days of plant construction8212there are fewer qualified vendors and equipment manufacturers, materials and standards might have changed, and licensees are typically no...

2007-11-02T23:59:59.000Z

211

Multisystem Data Integration in Fossil Power Plants  

Science Conference Proceedings (OSTI)

A modern power plant has numerous measurements, control signals, and other data that are used for process control, state indication, plant information, and equipment health monitoring. Much of these data are available in the control system and its associated process historian, but other data can reside in auxiliary systems, such as programmable logic controllers, unconnected (local) instruments, and computerized systems used for combustion monitoring, advanced process control, emissions control, ...

2013-11-27T23:59:59.000Z

212

NREL: TroughNet - Parabolic Trough Power Plant System Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Parabolic Trough Power Plant System Technology Parabolic Trough Power Plant System Technology A parabolic trough solar power plant uses a large field of collectors to supply thermal energy to a conventional power plant. Because they use conventional power cycles, parabolic trough power plants can be hybridized-other fuels can be used to back up the solar power. Like all power cycles, trough power plants also need a cooling system to transfer waste heat to the environment. Parabolic trough power plant technologies include: Direct steam generation Fossil-fired (hybrid) backup Operation and maintenance Power cycles Steam Rankine Organic Rankine Combined Wet and dry cooling Power Cycles A photo of an aerial view of a power plant in the middle of a solar field with rows and rows of parabolic troughs tracking. The cooling towers can be seen with the water plume rising into the air. The white water tanks can be seen in the background.

213

Experience curves for power plant emission control technologies  

E-Print Network (OSTI)

power plant emission control technologies Historical growthpower plant emission control technologies The environmental policy initiatives responsible for the substantial growthfired power plants. E.S. Rubin et al. Historical growth in

Rubin, Edward S.; Yeh, Sonia; Hounshell, David A

2007-01-01T23:59:59.000Z

214

Report on Hawaii geothermal power plant project  

DOE Green Energy (OSTI)

The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

Not Available

1983-06-01T23:59:59.000Z

215

Virtual environments for nuclear power plant design  

SciTech Connect

In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W. [and others

1996-03-01T23:59:59.000Z

216

Slim Holes for Small Power Plants  

DOE Green Energy (OSTI)

Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

Finger, John T.

1999-08-06T23:59:59.000Z

217

Slim Holes for Small Power Plants  

SciTech Connect

Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

Finger, John T.

1999-08-06T23:59:59.000Z

218

Aspects of theta pinch power plant development  

SciTech Connect

An engineering conceptual design study of a fusion power plant based on the theta-pinch concept has recently been completed. This study presented a compatible design for ten major systems. Although the design appears viable, some systems need considerable development to show that they are completely feasible and credible. Interactions between systems prevent implementation of some obvious solutions to the individual problems. Design alternatives, development, and demonstrations, as well as fundamental research required on these systems to make a feasible theta-pinch power plant are discussed. (auth)

Coultas, T.A.; Krakowski, R.A.

1973-01-01T23:59:59.000Z

219

Strategies in tower solar power plant optimization  

E-Print Network (OSTI)

A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

Ramos, A

2012-01-01T23:59:59.000Z

220

Improved Conventional Testing of Power Plant Cables  

Science Conference Proceedings (OSTI)

Factors such as mechanical stress, dust and pollution accumulation, moisture, and thermal aging can cause deterioration and ultimately failure of power, control, and instrumentation cables. This report documents physical, chemical, and electrical tests performed on thermally aged power plant cable, with emphasis on improvements in two major electrical diagnostic techniques: low-frequency insulation analysis to probe the bulk condition of cable insulation and partial discharge testing to detect cracks and...

1996-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mercury Fate in IGCC Power Plants  

Science Conference Proceedings (OSTI)

Integrated Gasification Combined Cycle (IGCC) power plants are an alternative to conventional pulverized coal boilers. In an IGCC facility, coal or other feedstocks are converted to synthetic gas (syngas) at high temperature and pressure. The syngas can be used to produce electrical power in a combined cycle combustion turbine. One of the advantages of IGCC technology is that contaminants can be removed from the syngas prior to combustion, reducing the volume of gas that must be treated and leading to lo...

2006-12-21T23:59:59.000Z

222

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

on June, 1978 prices, AN OVERVIEW OF THE SOLAR POWER PLANTstorage for a solar power plant at a reasonable price usingsolar power plant energy storage for a reasonable price

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

223

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

on the Gross Thermal Efficiency of a Solar Power Plant .and Maintenance* - Net Thermal Efficiency of the Solar PowerMWe Net Thermal Efficiency of the Solar Power Plant,MWe-hr/

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

224

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

225

Power Plant Tolling: Profits at the Point of Convergence?  

Science Conference Proceedings (OSTI)

Power plant tolling is a new concept for the electric power industry that appears to be increasingly used by power plant operators. This report describes how tolling is implemented and the rapid changes occurring in such transactions.

1998-04-20T23:59:59.000Z

226

Report on Hawaii Geothermal Power Plant Project  

DOE Green Energy (OSTI)

The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

Not Available

1983-06-01T23:59:59.000Z

227

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

228

Combined cycle power plant incorporating coal gasification  

DOE Patents (OSTI)

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

229

Utilities expand baseload power plant plans  

Science Conference Proceedings (OSTI)

This article examines the plans being made by electric utilities to expand the number of baseload plants to accommodate increasing power demands. The results of a survey of utility's construction plans is presented. The topics include current construction, construction planning in the Southeast, current baseload technology, nuclear potential, and incorporation of environmental externalities impact in planning.

Smock, R.

1993-04-01T23:59:59.000Z

230

Groundwater Monitoring Guidance for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Recent experience has shown that the initial design of nuclear power plant groundwater characterization programs can have a significant impact upon the resources needed to demonstrate regulatory compliance. This document provides technical experience and lessons learned in designing an optimized groundwater investigation program.

2005-09-06T23:59:59.000Z

231

Direct FuelCell/Turbine Power Plant  

DOE Green Energy (OSTI)

This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the system, was demonstrated. System analyses of 40 MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, were carried out using CHEMCAD simulation software. The analyses included systems for near-term and long-term deployment. A new concept was developed that was based on clusters of one-MW fuel cell modules as the building blocks. The preliminary design of a 40 MW power plant, including the key equipment layout and the site plan, was completed. The process information and operational data from the proof-of-concept tests were used in the design of 40 MW high efficiency DFC/T power plants. A preliminary cost estimate for the 40 MW DFC/T plant was also prepared. Pilot-scale tests of the cascaded fuel cell concept for achieving high fuel utilizations were conducted. The tests demonstrated that the concept has the potential to offer higher power plant efficiency. Alternate stack flow geometries for increased power output and fuel utilization capabilities were also evaluated. Detailed design of the packaged sub-MW DFC/T Alpha Unit was completed, including equipment and piping layouts, instrumentation, electrical, and structural drawings. The lessons learned from the proof-of-concept tests were incorporated in the design of the Alpha Unit. The sub-MW packaged unit was fabricated, including integration of the Direct FuelCell{reg_sign} (DFC{reg_sign}) stack module with the mechanical balance-of-plant and electrical balance-of-plant. Factory acceptance tests of the Alpha DFC/T power plant were conducted at Danbury, CT. The Alpha Unit achieved an unsurpassed electrical efficiency of 58% (LHV natural gas) during the factory tests. The resulting high efficiency in conversion of chemical energy to electricity far exceeded any sub-MW class power generation equipment presently in the market. After successful completion of the factory tests, the unit was shipped to the Billings Clinic in Billings, MT, for field demonstration tests. The DFC/T unit accomplished a major achievement by successfully completing 8000 hours of operation at the Billings site. The Alpha sub-MW DF

Hossein Ghezel-Ayagh

2008-09-30T23:59:59.000Z

232

Nevada geothermal power plant project approved  

Science Conference Proceedings (OSTI)

A proposal to construct and test a 12.5-megawatt geothermal power plant in the Steamboat Hot Springs KGRA in Washoe County, Nevada, has been approved by the Bureau of Land Management (BLM). The power plant could be completed by October 1987. Several stipulations are included in the BLM approval. The stipulations include a program to monitor ground water, surface water, and hydrothermal features to detect any impacts on the hydrology in the Steamboat Hot Springs area. When plant operations are tested, an emission test will be required to verify that noncondensible gas concentrations are within federal and state standards. No geothermal fluid will be discharged on the land's surface. Other stipulations include the special construction of electrical distribution lines to protect birds of prey; the fencing of hazardous areas; and a minimal disturbance of surface areas.

Not Available

1987-07-01T23:59:59.000Z

233

Heber geothermal demonstration power plant. Final report  

DOE Green Energy (OSTI)

The binary power plant is to be a 45 MW net electrical facility deriving energy from the low salinity (14,000 ppM), moderate temperature (360/sup 0/F, 182/sup 0/C) Heber reservoir in Southern California. The optimized baseline design established for the power plant is described, and the design and optimization work that formed the basis for the baseline design is documented. The work accomplished during Phase II, Preliminary Design is also recorded, and a base provided from which detailed plant design could be continued. Related project activities in the areas of licensing, environmental, cost, and schedule are also described. The approach used to establish the Phase II optimized baseline design was to (1) review the EPRI Phase I conceptual design and feasibility studies; (2) identify current design criteria and state-of-the-art technology; and (3) develop a preliminary design optimized to the Heber site based on utiliity standards.

Not Available

1979-06-01T23:59:59.000Z

234

Mohave Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Mohave Solar Power Plant Mohave Solar Power Plant Facility Mojave Solar Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Owner Mojave Solar LLC, Developer Abengoa Solar, Mohave Sun LLC Location Mohave County, Arizona Coordinates 35.017264°, -117.316607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.017264,"lon":-117.316607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Proceedings: 1989 Fossil Power Plant construction conference  

SciTech Connect

EPRI's First International Conference on Fossil Plant Construction was held in Cincinnati, Ohio on August 29--31, 1989. The Conference was attended by approximately 140 people representing 35 utilities, many US architect engineering companies, equipment suppliers and independent power producers. The conference covered world wide developments in fossil plant construction. Included in these proceedings are papers from the following sessions: The Challenge of Demands for New Capacity and Construction; Recent Plant Construction Experience; Construction Experience for New Technologies; Cogeneration Project Experience; Regulatory Requirements for Fossil Plant Construction; Planning, Development and Design; Modular Construction Techniques; Applications of Advanced Computer Technologies; International and Domestic Construction Advances; Management Challenges of Fossil Projects; and Retrofit and Repowering Construction Experience. Individual projects are processed separately for the data bases.

Armor, A.F.; Divakaruni, S.M. (eds.)

1991-07-01T23:59:59.000Z

236

Interactive Trouble Condition Sign Discovery for Hydroelectric Power Plants  

Science Conference Proceedings (OSTI)

Kyushu Electric Power Co.,Inc. collects different sensor data and weather information (hereafter, operation data) to maintain the safety of hydroelectric power plants while the plants are running. It is very rare to occur trouble condition in the plants. ... Keywords: Data Mining, Hydroelectric Power Plant, Support Vector Machine, Trouble Condition Detection

Takashi Onoda; Norihiko Ito; Hironobu Yamasaki

2009-07-01T23:59:59.000Z

237

DIRECT FUELCELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

Hossein Shezel-Ayagh

2005-05-01T23:59:59.000Z

238

DIRECT FUELCELL/TURBINE POWER PLANT  

SciTech Connect

This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

Hossein Shezel-Ayagh

2005-05-01T23:59:59.000Z

239

On Line Power Plant Performance Monitoring  

E-Print Network (OSTI)

Maintaining efficient and reliable plant operation is a prime objective in the generation of power. These are important considerations for utilities and particularly for Independent Power Producers as they become a more significant factor in the energy supply. On Line Performance Monitoring is an effective method to improve operating efficiency, detect and correct off nominal operation and expediently analyze cause and effect component performance relationships. The heart of a Performance Monitor is a modular collection of calculations used to determine performance indices in the power plant. Calculated performance indices are used in numerous applications: 1. To measure actual component performance compared to guaranteed or expected performance 2. To identify controllable operating problems and provide operator guidance in achieving the best operation of the plant 3. To evaluate component performance and deterioration for use in a maintenance program 4. To develop cost data and incremental cost characteristics for the economic operation or dispatch of the unit with other system energy sources 5. To document plant performance compared to base line data for the demonstration of efficient operation and improved availability. This paper will discuss the many advantages associated with a Performance Monitor system, their application, the benefits which may be realized and the potential of this concept with advanced diagnostic capability.

Ahner, D. J.; Priestley, R. R.

1990-06-01T23:59:59.000Z

240

Ahuachapan Geothermal Power Plant, El Salvador  

DOE Green Energy (OSTI)

The Ahuachapan geothermal power plant has been the subject of several recent reports and papers (1-7). This article is a condensation of the author's earlier writings (5-7), and incorporates new information on the geothermal activities in El Salvador obtained recently through a telephone conversation with Ing. R. Caceres of the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) who has been engaged in the design and engineering of the newest unit at Ahuachapan. El Salvador is the first of the Central American countries to construct and operate a geothermal electric generating station. Exploration began in the mid-1960's at the geothermal field near Ahuachapan in western El Salvador. The first power unit, a separated-steam or so-called ''single-flash'' plant, was started up in June 1975, and was followed a year later by an identical unit. In July 1980, the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) will complete the installation of a third unit, a dual-pressure (or ''double-flash'') unit rated at 35 MW. The full Ahuachapan plant will then constitute about 20% of the total installed electric generating capacity of the country. During 1977, the first two units generated nearly one-third of all the electricity produced in El Salvador. C.E.L. is actively pursuing several other promising sites for additional geothermal plants. There is the possibility that eventually geothermal energy will contribute about 450 MW of electric generating capacity. In any event it appears that by 1985 El Salvador should be able to meet its domestic needs for electricity by means of its indigenous geothermal and hydroelectric power plants, thus eliminating any dependence on imported petroleum for power generation.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Environmental impacts of nonfusion power systems. [Data on environmental effects of all power sources that may be competitive with fusion reactor power plants  

DOE Green Energy (OSTI)

Data were collected on the environmental effects of power sources that may be competitive with future fusion reactor power plants. Data are included on nuclear power plants using HTGR, LMBR, GCFR, LMFBR, and molten salt reactors; fossil-fuel electric power plants; geothermal power plants; solar energy power plants, including satellite-based solar systems; wind energy power plants; ocean thermal gradient power plants; tidal energy power plants; and power plants using hydrogen and other synthetic fuels as energy sources.

Brouns, R.J.

1976-09-01T23:59:59.000Z

242

Capacity Value of Concentrating Solar Power Plants  

DOE Green Energy (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

243

NETL: Coal-Fired Power Plants (CFPPs)  

NLE Websites -- All DOE Office Websites (Extended Search)

NOx Sources NOx Sources Coal-Fired Power Plants (CFPPs) Causes of greenhouse gases, Including NOx What is NOx? Environmental Impacts NOx Sources Reduction Efforts Several greenhouse gases, including NOx, are increasing due to human activities in the following areas: Burning of fossil fuel (for example, coal-fired power plants), Logging (mainly contributes to carbon monoxide), Agriculture processes, Use of chlorofluorocarbons (CFC) in holon fire suppression and refrigeration The chart below shows the three major gases contributing to greenhouse gas emissions along with their source by sector. Annual Greenhouse Gas Emissions by Sector Note: This figure was created and copyrighted by Robert A. Rohde from published data and is part of the Global Warming Art project. This image is an original work created for Global Warming Art Permission is granted to copy, distribute and/or modify this image under either:

244

Damage to Power Plants Due to Cycling  

Science Conference Proceedings (OSTI)

The duty cycle for power plants ranges from baseloading or consistently operating at or near fully rated capacity to two-shifting or shutting down during off-peak demand periods. Quantifying the cost of cycling and finding ways to mitigate and control those costs are critical to profitability. European Technology Development Ltd. (ETD) originally prepared and published this report and has agreed to the current revision by EPRI. The report evaluates the effects and implications of cyclic operation on equi...

2001-07-27T23:59:59.000Z

245

Coal gasification power plant and process  

DOE Patents (OSTI)

In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

Woodmansee, Donald E. (Schenectady, NY)

1979-01-01T23:59:59.000Z

246

Seismic Isolation of Nuclear Power Plants  

Science Conference Proceedings (OSTI)

With increasing public concern for seismic safety in general and research findings that indicate that seismic hazards may be larger than expected in many parts of the world, it would be prudent for the nuclear industry to consider more fully the potential benefits, costs, and impediments associated with applying seismic isolation more widely and to identify actions needed to develop practical and cost-effective guidelines for the application of seismic isolation to nuclear power plants (NPPs) and ...

2013-10-28T23:59:59.000Z

247

Fossil Power Plant Components Failure Analysis Guideline  

Science Conference Proceedings (OSTI)

The goal of engineering design is to obviate failures. However, this goal is only partially achievable because of the balance between cost and risk, potential deterioration during service, and the departure of actual operation from design assumptions. Thus, utility engineers are periodically faced with failures that span the gamut of power plant equipment and economic and safety consequences. Reaching a proper conclusion about the failure mechanism and the associated root cause is central to the post-fai...

2009-03-31T23:59:59.000Z

248

Advanced Power Plant Development and Analyses Methodologies  

DOE Green Energy (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

G.S. Samuelsen; A.D. Rao

2006-02-06T23:59:59.000Z

249

Advanced Power Plant Development and Analysis Methodologies  

DOE Green Energy (OSTI)

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

2006-06-30T23:59:59.000Z

250

Nuclear power plant construction activity, 1986  

SciTech Connect

Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

1987-07-24T23:59:59.000Z

251

Metallurgical Guidebook for Fossil Power Plant Boilers  

Science Conference Proceedings (OSTI)

A wide range of steels has been used to manufacture boilers and associated piping components for fossil power plants. Detailed information on the various alloys and component design considerations is contained in applicable specifications and standards, but utility personnel often need to access basic metallurgical information to support decision making for various projects. This guidebook, developed to meet this need, provides information on all of the most common boiler and piping materials.

2008-03-25T23:59:59.000Z

252

Fibrominn Biomass Power Plant Biomass Facility | Open Energy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Fibrominn Biomass Power Plant Biomass Facility Jump to: navigation, search Name Fibrominn Biomass Power...

253

NREL: TroughNet - Parabolic Trough Power Plant Market, Economic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Parabolic Trough Power Plant Market, Economic Assessment and Deployment Parabolic trough technology is the most commercially mature, large-scale solar power technology in the...

254

NETL: News Release - Advanced Coal Dryer Boosts Power Plant Performanc...  

NLE Websites -- All DOE Office Websites (Extended Search)

Release Date: May 24, 2006 Advanced Coal Dryer Boosts Power Plant Performance Latest Project in President's Clean Coal Power Initiative Begins Operations in North Dakota...

255

SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS  

E-Print Network (OSTI)

SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS Piero Baraldi between those used to monitor the reactor coolant pump of a Pressurized Water Reactor (PWR) is considered Monitoring, Empirical Modeling, Power Plants, Safety Critical Nuclear Instrumentation, Autoassociative models

256

Electric Power Reliability in Chemical Plants  

E-Print Network (OSTI)

The quality and reliability of utility-generated electric power is presently receiving a great deal of attention from the chemical and refining industry. What changes have taken place to make electric power reliability a major topic of discussion at plants across the country? Has the quality and reliability of utility-generated power deteriorated over the past five or ten years? Or, has the perception of what constitutes reliable power changed with the advent, installation, and increasing usage of microprocessor-based equipment and controllers? The differing views held by both parties tend to make their relationship adversarial. Both parties have problems with their individuals views and the associated monetary costs, which can be either a loss or a gain. Improved reliability for the chemical plant means less "off spec" product, thereby resulting in more product to sell. Improved reliability for the utility means less customer downtime, thereby resulting in more KWH sales and a higher capacity factor. The biggest limiting factor to solving the actual problems is the dollar cost associated with that solution. Each solution must have a payback period that meets the economic criteria for return on investment for either the industry or the utility.

Cross, M. B.

1989-09-01T23:59:59.000Z

257

Decommissioning Handbook for Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

This handbook lays out the steps necessary to fully decommission a coal-fired power plant. The handbook includes ways to handle permitting, environmental cleanup, site dismantlement, and site remediation, and discusses overall decommissioning costs. It is based on three actual case studies of coal plants recently decommissioned: the Arkwright coal-fired plant of Georgia Power, the Watts Bar coal-fired plant of TVA, and the Port Washington coal-fired plant of Wisconsin Electric Power.

2004-11-04T23:59:59.000Z

258

Analysis of Power Quality Concerns at an Automobile Assembly Plant  

Science Conference Proceedings (OSTI)

This report summarizes the findings of a general power quality (PQ) study for an automobile assembly plant.

2003-12-31T23:59:59.000Z

259

Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE))

NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

260

Advanced Condenser Boosts Geothermal Power Plant Output (Fact ...  

... Indonesia, and Turkey. Promising greater efficiency and reduced costs ADCC technology holds great promise for geothermal power plants seeking ...

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Aerosol nucleation in coal-fired power-plant plumes  

Science Conference Proceedings (OSTI)

New-particle nucleation within coal-fired power-plant plumes can have large effects on particle number concentrations

2013-01-01T23:59:59.000Z

262

Engineering Fundamentals - Nuclear Power Plant Materials, Version 2.0  

Science Conference Proceedings (OSTI)

The Engineering Fundamentals - Nuclear Power Plant Materials (EF-Materials) Version 2.0 computer-based training module provides new-hire engineering personnel with an overview of the basic concepts of nuclear power plant materials. Graphics and interactive features are used to enhance learning.EF-Materials covers the basic terms and concepts related to nuclear power plant materials and provides information about the significance of material degradation issues in nuclear power plants. ...

2012-11-30T23:59:59.000Z

263

Computer application for design activity in power plants  

Science Conference Proceedings (OSTI)

Software for Design Activity in Power Plants' helps the Power Plant engineers and managers to manage the development and design activities of equipments in the field of power plants. This paper is basically concerned with the computerization of the design activity of Condenser, vital equipment in Heat Exchanger Unit of Thermal Power Plant required for condensing the steam and for further reclaimable purposes to achieve economy. This software will also provide facilities to maintain user profile and the respective work details.

Giri, Parimal Kumar; Srivastava, Sonam [Apeejay College of Engineering, Sohna, Gurgaon (India)

2010-10-26T23:59:59.000Z

264

Power Plant Considerations for the Reversed-Field Pinch (RFP)  

Science Conference Proceedings (OSTI)

Power Plants, Demo, and Next Steps / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

Ronald L. Miller

265

Hybrid Wet/Dry Cooling for Power Plants (Presentation)  

DOE Green Energy (OSTI)

This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

Kutscher, C.; Buys, A.; Gladden, C.

2006-02-01T23:59:59.000Z

266

Power plants with topping gas turbines and coal gasification planning of new plants and upgrading of existing plants  

Science Conference Proceedings (OSTI)

This paper reports on existing and new power plants improved environmentally and economically by integrating gas turbines in the plant process. The rate of additional firing has an influence on the overall plant efficiency. The influence of the additional firing of natural gas-fired power plants is compared to that of power plants with integrated coal gasification. The differences are explained. The result of the examination lead to recommendations for the design of new plants and for upgrading of existing plants. The advantages of topping gas turbines are shown by examples of new power plants and upgraded plants.

Schoedel, J.; Mertens, K. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

267

Proceedings: EPRI/ESEERCO Workshop on Power Plant Optimization  

Science Conference Proceedings (OSTI)

The growing impetus to reduce costs of NOx compliance and electricity production has accelerated deployment of power plant optimization software in the utility industry. The EPRI/ESEERCO Workshop on Power Plant Optimization provided a forum for utilities to assess available power plant optimization software and review the application experience to date.

1997-08-21T23:59:59.000Z

268

Analysis of nuclear power plant construction costs  

SciTech Connect

The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

1986-01-01T23:59:59.000Z

269

A Lagrangian Float  

Science Conference Proceedings (OSTI)

The design and Operation of neutrally buoyant floats that attempt to track the three-dimensional motion of water parcels in highly turbulent regions of the ocean, such as the upper mixed layer, are described. These floats differ from previous ...

Eric A. D'Asaro; David M. Farmer; James T. Osse; Geoffrey T. Dairiki

1996-12-01T23:59:59.000Z

270

HRSG design method optimizes power plant efficiency  

SciTech Connect

Heat recovery steam generators (HRSGs) are widely used in cogeneration and combined-cycle power plants. simulating the performance of the HRSG system at design and off-design conditions helps the designer optimize the overall plant efficiency. It also helps in the selection of major auxiliary equipment. Conventional simulation of HRSG design and off-design performance is a tedious task, since there are several variables involved. However, with the simplified approach presented in this article, the engineer can acquire information on the performance of the HRSG without actually doing the mechanical design. The engineer does not need to size the tubes or determine the fin configuration. This paper reports that the method also can be used for heat balance studies and in the preparation of the HRSG specification.

Ganapathy, V. (ABCO (US))

1991-05-01T23:59:59.000Z

271

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network (OSTI)

2004. Experience curves for power plant emission controlassessments of fossil fuel power plants with CO 2 capturethe future cost of power plants with CO 2 capture Edward S.

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

272

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa, Ontario: 1999.Concentrated Solar Thermal Power Plants A Thesis submittedConcentrated Solar Thermal Power Plants by Corey Lee Hardin

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

273

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

STORAGE FOR CONCENTRATING SOLAR POWER PLANTS, Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A Thesis

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

274

Parametric design of floating wind turbines  

E-Print Network (OSTI)

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

275

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions  

E-Print Network (OSTI)

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk-emission and efficient gas turbine technology made combined-cycle gas turbine power plants the "resource of choice

276

Turbine power plant with back pressure turbine  

SciTech Connect

A combined gas/steam turbine power plant is disclosed including a gas turbine having a combustion chamber and a steam turbine driven by steam generated with heat from the combustion gases of the gas turbine. The steam is utilized in a technological process downstream of the steam turbine. Relatively small fluctuations in back pressure are compensated by varying a delivery of fuel to the combustion chamber. Relatively large fluctuations in back pressure are compensated by supplying live steam directly to the technological process downstream of the steam turbine. Various devices are provided for conditioning the steam prior to being supplied to the technological process.

Kalt, J.; Kehlhofer, R.

1981-06-23T23:59:59.000Z

277

Steam turbines for cogeneration power plants  

SciTech Connect

Steam turbines for cogeneration plants may carry a combination of industrial, space heating, cooling and domestic hot water loads. These loads are hourly, weekly, and seasonally irregular and require turbines of special design to meet the load duration curve, while generating electric power. Design features and performance characteristics of one of the largest cogeneration turbine units for combined electric generation and district heat supply are presented. Different modes of operation of the cogeneration turbine under variable load conditions are discussed in conjunction with a heat load duration curve for urban heat supply. Problems associated with the retrofitting of existing condensing type turbines for cogeneration applications are identified. 4 refs.

Oliker, I.

1980-04-01T23:59:59.000Z

278

Permitting Guidance for Biomass Power Plants  

Science Conference Proceedings (OSTI)

Biomass power plants could contribute significantly to reaching U.S. targets for renewable energy and greenhouse gas emissions reduction. Achieving these goals will require the construction of many new biomass-fired units, as well as the conversion of existing coal-fired units to biomass combustion or co-fired units. New biomass units will require air, water use, wastewater, and, in some cases, solid waste permits. Existing fossil fuel-fired units that will be converted to dedicated biomass-fired units o...

2011-05-12T23:59:59.000Z

279

Gas turbine-steam power plant  

SciTech Connect

The pressure vessel of the gas turbine-steam power plant is provided with a recuperator and a heat exchanger in order to reduce the temperature of the hot flue gas before separating out gas-entrained particles. The dust separator is connected to the recuperator on a secondary side so that the hot gas can be reheated for delivery to the gas turbine. By cooling the flue gas before entering the separator, use can be made of electrostatic dust filters or cloth filters.

Aguet, E.

1984-07-31T23:59:59.000Z

280

Fuel Cell Power Plant Experience Naval Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

clean clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. FuelCell Energy, Inc. * Premier developer of fuel cell technology - founded in 1969 * Over 50 power installations in North America, Europe, and Asia * Industrial, commercial, utility

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NSR and the Power Plant Improvement Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

SOURCE REVIEW (NSR) and the CLEAN COAL SOURCE REVIEW (NSR) and the CLEAN COAL POWER INITIATIVE (CCPI) Summary Changes which result in increases in emissions of air pollutants from existing industrial facilities, such as power plants, can invoke stringent and costly new regulations. However, it is not the intent of such requirements to present a barrier to the installation of environmentally beneficial pollution control projects, or to projects demonstrating new methods to burn coal cleanly under the DOE Clean Coal Technology Program. Special provisions are included in the Clean Air Act and its implementing regulations to address potential exemptions of such projects from new source review regulations. This paper provides a general review of those provisions, and encourages project managers to

282

Optimization of Auxiliaries Consumption in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Operators of nuclear power plants face significant challenges to produce power more cost-effectively. One approach to producing power more cost-effectively is to reduce power consumption by auxiliary systems in the plant, leading to more power available for the grid. This report provides guidance for assessing auxiliary system performance and recommends approaches to reduce their power consumption. The report also presents results from questionnaires on auxiliary system consumption and, in some cases, ac...

2005-02-08T23:59:59.000Z

283

Productivity Improvement for Fossil Steam Power Plants, 2008  

Science Conference Proceedings (OSTI)

EPRI's Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included many descriptions of advanced techniques and products successfully applied and tested. Many of these have been described in the other EPRI publications: Productivity Improvement for Fossil Steam Power Plants 2005: 100 Hundred Case Studies (1012098), Productivity Improvement for Fossil Steam Power Plants, 2006, (1014598), and Productivity Improvement for Fossil Steam Power Plants, 2007 (10154...

2008-12-24T23:59:59.000Z

284

Nuclear power plant performance assessment pertaining to plant aging in France and the United States  

E-Print Network (OSTI)

The effect of aging on nuclear power plant performance has come under increased scrutiny in recent years. The approaches used to make an assessment of this effect strongly influence the economics of nuclear power plant ...

Guyer, Brittany (Brittany Leigh)

2013-01-01T23:59:59.000Z

285

WindWaveFloat Final Report  

Science Conference Proceedings (OSTI)

Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

Alla Weinstein, Dominique Roddier, Kevin Banister

2012-03-30T23:59:59.000Z

286

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan

2002-04-15T23:59:59.000Z

287

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

288

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

289

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

Science Conference Proceedings (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-10-15T23:59:59.000Z

290

Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems  

SciTech Connect

A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

2008-09-30T23:59:59.000Z

291

Using auxiliary gas power for CCS energy needs in retrofitted coal power plants  

E-Print Network (OSTI)

Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal ...

Bashadi, Sarah (Sarah Omer)

2010-01-01T23:59:59.000Z

292

Electromagnetic Compatibility in Nuclear Power Plants  

SciTech Connect

Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

1999-08-29T23:59:59.000Z

293

Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks  

E-Print Network (OSTI)

Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks Pascal Richter1 of solar power for energy supply is of in- creasing importance. While technical development mainly takes introduce our tool for the optimisation of parameterised solar thermal power plants, and report

Ábrahám, Erika

294

Investment Decisions for Baseload Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Investment Decisions for Investment Decisions for Baseload Power Plants January 29, 2010 402/012910 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United

295

Small power plant reverse trade mission  

DOE Green Energy (OSTI)

This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

Not Available

1989-09-06T23:59:59.000Z

296

Solar power plant: study and design  

SciTech Connect

The main objective of this study is to determine the feasibility of producing electricity from solar energy in Thailand through steam generation using a heliostat, a receiver, and a thermal storage subsystem. The scope of the study covers steam generation from solar thermal energy but does not include site selection or the generation of electricity from the steam. The study included technical considerations, subsystems preliminary design, research experimental design, experimental results, economic study, and conclusions and discussion. Computer simulation is involved, and the results indicate that the simulation models are valid. Hence, design by simulation model is valid. The conclusion is that a solar thermal power plant of 100 KW sub th is technically feasible for Thailand, but not yet economically feasible.

Boonyubol, C.; Choonwatana, P.

1983-02-01T23:59:59.000Z

297

Report on Geothermal Power Plant Cost and Comparative Cost of Geothermal and Coal Fired Steam Power Plants  

DOE Green Energy (OSTI)

This report is to be used by Utah Power and Light Company (UP and L) in making studies of geothermal power plants. The dollars per kilowatt comparison between a geothermal plant and a UP and L coal-fired plant is to be developed. Geothermal gathering system costs and return to owner are to be developed for information.

None

1977-07-01T23:59:59.000Z

298

WindWaveFloat Final Report  

DOE Green Energy (OSTI)

capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

Alla Weinstein, Dominique Roddier, Kevin Banister

2012-03-30T23:59:59.000Z

299

Development of an Equivalent Wind Plant Power-Curve: Preprint  

SciTech Connect

Development of an equivalent wind plant power-curve becomes highly desirable and useful in predicting plant output for a given wind forecast. Such a development is described and summarized in this paper.

Wan, Y. H.; Ela, E.; Orwig, K.

2010-06-01T23:59:59.000Z

300

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Process for Power Plant Flue Gas Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D)...

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Risk-informed incident management for nuclear power plants  

E-Print Network (OSTI)

Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

Smith, Curtis Lee, 1966-

2002-01-01T23:59:59.000Z

302

North Brawley Power Plant Asset Impairment Analysis | Open Energy  

Open Energy Info (EERE)

North Brawley Power Plant Asset Impairment Analysis North Brawley Power Plant Asset Impairment Analysis Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Power Plant Asset Impairment Analysis Author Giza Singer Even Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for North Brawley Power Plant Asset Impairment Analysis Citation Giza Singer Even. North Brawley Power Plant Asset Impairment Analysis [Internet]. [updated 2012;cited 2012]. Available from: http://www.sec.gov/Archives/edgar/data/1296445/000119312512118396/d316623dex991.htm Retrieved from "http://en.openei.org/w/index.php?title=North_Brawley_Power_Plant_Asset_Impairment_Analysis&oldid=682476" Categories: References

303

Florida Electrical Power Plant Siting Act (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrical Power Plant Siting Act (Florida) Electrical Power Plant Siting Act (Florida) Florida Electrical Power Plant Siting Act (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Buying & Making Electricity Solar Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection The Power Plant Siting Act (PPSA) is the state's centralized process for licensing large power plants. One license-a certification- replaces local and state permits. Local governments and state agencies within whose jurisdiction the power plant is to be built participate in the process. For

304

Steam-Electric Power-Plant-Cooling Handbook  

SciTech Connect

The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

1982-02-01T23:59:59.000Z

305

Productivity Improvement for Fossil Steam Power Plants, 2010  

Science Conference Proceedings (OSTI)

The Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included many descriptions of advanced techniques and products, successfully applied and tested. Many of these have been described in the 2005 publication Productivity Improvement for Fossil Steam Plants 2005: 100 Hundred Case Studies (1012098), Productivity Improvement for Fosiil Steam Power Plants 2006, (101459), Productivity Improvement for Fossil Steam Power Plants 2007 (1015445), Productivity Impro...

2011-01-31T23:59:59.000Z

306

Arsenic and Selenium Treatment Technology Summary for Power Plant Wastewaters  

Science Conference Proceedings (OSTI)

This report summarizes the most suitable technologies available for the removal of arsenic and selenium from power plant wastewaters. The information stems from literature searches and the authors' experience in wastewater treatment systems from generally non-power plant sources since there are limited operating experiences for power plant applications. The report lists existing and potential technologies that meet the treatment goals of reducing arsenic and selenium to the levels set for U.S. En...

2004-11-03T23:59:59.000Z

307

Next generation geothermal power plants. Draft final report  

DOE Green Energy (OSTI)

The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

1994-12-01T23:59:59.000Z

308

Solar Two is a concentrating solar power plant that can supply electric power "on demand"  

E-Print Network (OSTI)

Solar Two is a concentrating solar power plant that can supply electric power "on demand time ever, a utility-scale solar power plant can supply elec- tricity when the utility needs it most achievement. The design is based on lessons learned at Solar One, this country's first power tower. Solar One

Laughlin, Robert B.

309

Designing geothermal power plants to avoid reinventing the corrosion wheel  

DOE Green Energy (OSTI)

This paper addresses how designers can take into account, the necessary chemical and materials precautions that other geothermal power plants have learned. Current worldwide geothermal power plant capacity is presented as well as a comparison of steam composition from seven different geothermal resources throughout the world. The similarities of corrosion impacts to areas of the power plants are discussed and include the turbines, gas extraction system, heat rejection system, electrical/electronic systems, and structures. Materials problems and solutions in these corrosion impact areas are identified and discussed. A geothermal power plant design team organization is identified and the efficacy of a new corrosion/materials engineering position is proposed.

Conover, Marshall F.

1982-10-08T23:59:59.000Z

310

Coal stockpiles at electric power plants were above average ...  

U.S. Energy Information Administration (EIA)

Alternative Fuels. Includes ... decline during summer and winter as power plants burn through stocks to meet peak electricity demand for heating and cooling, ...

311

Deep Geothermal Well and Power Plant Project Final Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole...

312

Sensitivity analysis for the outages of nuclear power plants  

E-Print Network (OSTI)

Feb 17, 2012 ... Abstract: Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the...

313

Predicting the Critical Temperatures in Power Plant Steels  

Science Conference Proceedings (OSTI)

Presentation Title, Predicting the Critical Temperatures in Power Plant Steels. Author(s), Lun Wang, ... Failure Analysis of Welded Backup Rolls Failure Mode of...

314

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

How much electricity does a typical nuclear power plant generate? ... tariff, and demand charge data? How is electricity used in U.S. homes?

315

Coal stockpiles at electric power plants were above average ...  

U.S. Energy Information Administration (EIA)

... decline during summer and winter as power plants burn through stocks to meet peak electricity demand for heating and cooling, ... overall heating load in ...

316

Virtual Power Plant Simulation and Control Scheme Design.  

E-Print Network (OSTI)

?? Virtual Power Plant (VPP) is a concept that aggregate Distributed Energy Resources (DER) together, aims to overcome the capacity limits of single DER and (more)

Chen, Zhenwei

2012-01-01T23:59:59.000Z

317

Magnetic Detection of Microstructure Change in Power Plant Steels  

E-Print Network (OSTI)

Pump Cooling water Cooling water Electrical output Condenser Reheat Coal Boiler Superheater Ash HP IP/LP Figure 2.1: Schematic of a power plant steam cycle. After Cole, 2000. towards further increases (Masuyama, 2001). Steam turbines may be expected... . 2 Chapter 2 Microstructural Evolution in Power Plant Steels 2.1 Power plant operation In power plant, heat energy from fuel combustion or nuclear fission is used to produce jets of steam. The kinetic energy of the steam is converted to electrical...

Yardley, Victoria Anne

2003-07-12T23:59:59.000Z

318

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas Gas Technology Institute (GTI) will develop a membrane separation technology to recover water...

319

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Study of the Use of Saline Formations for Combined Thermoelectric Power Plant Water Needs and Carbon Sequestration at a Regional-Scale Sandia National Laboratories (SNL) and the...

320

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant...

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

322

(USC) Power Plant Development and High Temperature Materials ...  

Science Conference Proceedings (OSTI)

For further improvement of thermal efficiency and decreasing CO2 emission China intents to develop the advanced USC power plant with the...

323

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

including: assessment of the availability and proximity of impaired waters at twelve power plant locations spanning the major geographic regions of the continental 48 states;...

324

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

- Lehigh University This project determines the feasibility of using low grade power plant waste heat to dry lignite and sub-bituminous coals before they are burned in...

325

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

in Cooling Towers GE Global Research will develop treatment technologies to enable power plant use of non-traditional waters. Using effective treatment methods to make...

326

NETL: News Release - Abraham Announces Pollution-Free Power Plant...  

NLE Websites -- All DOE Office Websites (Extended Search)

February 27, 2003 Abraham Announces Pollution-Free Power Plant of the Future 1 Billion 'Living Prototype' to Showcase Cutting-Edge Technologies to Advance President's Climate...

327

Overview of Trends in Nuclear Power Plant Sensors and Instrumentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Nuclear Power Plant Sensors and Instrumentation SASAN BAKTIARI Nuclear Engineering Division Argonne National Laboratory Ph: (630) 252-8982 bakhtiati@anl.gov Abstract -...

328

POWER PLANT WATER USAGE AND LOSS STUDY - Final  

NLE Websites -- All DOE Office Websites (Extended Search)

POWER PLANT WATER USAGE AND LOSS STUDY August 2005 Revised May 2007 Prepared for: The United States Department of Energy National Energy Technology Laboratory DOE Gasification...

329

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

was to identify cost saving alternatives to the current coal- fired power plant cooling process using non-traditional water sources such as coal mine discharges....

330

A Small, Clean, Stable Fusion Power Plant ---- Inventor Samuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Small, Clean, Stable Fusion Power Plant ---- Inventor Samuel A. Cohen This invention discloses improvements in magnetic fusion reactor design and operational modes that reduce...

331

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

332

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

333

Capturing Carbon from Existing Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

scrubbing technology (7, 8). The modifi cations are focused primarily on extensive thermal integration of the CO 2 -capture system with the power plant and develop- ment of...

334

North Brawley Power Plant Placed in Service; Currently Generating...  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for North Brawley Power Plant Placed in Service; Currently Generating 17 MW;...

335

Need for process/radiochemists at nuclear power plants  

SciTech Connect

Viewgraphs are presented concerning the operating requirements for chemists at nuclear power plants. The number of positions available, job duties, and training requirements are reviewed.

Wymer, R.G.; Skrable, K.W.; Alexander, E.L.

1984-01-01T23:59:59.000Z

336

Simplified Methodology for Designing Parabolic Trough Solar Power Plants.  

E-Print Network (OSTI)

??The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for the (more)

Vasquez Padilla, Ricardo

2011-01-01T23:59:59.000Z

337

Simplified Methodology for Designing Parabolic Trough Solar Power Plants.  

E-Print Network (OSTI)

?? The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for (more)

Vasquez Padilla, Ricardo

2011-01-01T23:59:59.000Z

338

Transient Stability of the Grid with a Wind Power Plant  

Science Conference Proceedings (OSTI)

This paper reports on an investigation of the impact of wind power plant penetration on the transient stability of the grid. Transient stability for different faults is investigated via simulation. A wind power plant with 22 turbines operated in variable speed mode will be used as the subject of the study. As a comparison, we replace the wind power plant with a conventional wind power plant (synchronous generator) and compare the results for the same faults. We also consider the effect of different locations.

Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

2009-03-15T23:59:59.000Z

339

Optical Gas Sensors for Advanced Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

Presentation Title, Optical Gas Sensors for Advanced Coal-Fired Power Plants. Author(s), Paul Ohodnicki, Congjun Wang, Douglas Kauffman, Kristi Kauffman,...

340

What is the efficiency of different types of power plants ...  

U.S. Energy Information Administration (EIA)

Average annual heat rates for specific types of fossil-fuel generators and nuclear power plants for most recent year available.

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Changes related to "Geothermal/Power Plant" | Open Energy Information  

Open Energy Info (EERE)

pages linked to the given page instead Go 27 June 2013 (diff | hist) . . GRRSection 7 - Power Plant Siting, Construction, and Regulation Overview; 09:25 . . (+481) . ....

342

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... the program provided an economic incentive for coal-fired power plants to reduce emissions by installing pollution contro ...

343

Guideline for Online Monitoring of Nuclear Power Plants: Volume 2  

Science Conference Proceedings (OSTI)

This report continues a series of guidelines that assist member utilities in developing an online monitoring (OLM) program for equipment condition assessment at nuclear power plants.

2011-12-16T23:59:59.000Z

344

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network (OSTI)

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant. (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

345

Technology qualification for IGCC power plant with CO2 Capture.  

E-Print Network (OSTI)

?? Summary:This thesis presents the technology qualification plan for the integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture based on DNV recommendations. (more)

Baig, Yasir

2011-01-01T23:59:59.000Z

346

MANAGING MODERNIZATION OF NUCLEAR POWER PLANT INSTRUMENTATION AND CONTROL SYSTEMS  

E-Print Network (OSTI)

Managing modernization of nuclear power plant instrumentation and control systems February 2004The originating Section of this publication in the IAEA was:

unknown authors

2003-01-01T23:59:59.000Z

347

Life cycle assessment of a pumped storage power plant.  

E-Print Network (OSTI)

?? Wind and solar power plants are gaining increasing attention due to low green house gas emissions associated with electricity generation. The installed capacity of (more)

Torres, Octavio

2011-01-01T23:59:59.000Z

348

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

... (kWh). There were 65 nuclear power plants with 104 operating nuclear reactors that generated a total of 790 billion kilowatt-hours (kWh), ...

349

Losses of Offsite Power at U.S. Nuclear Power Plants - 2011  

Science Conference Proceedings (OSTI)

This report describes the loss of offsite power experience at U.S. nuclear power plants during the year 2011 and provides insights into the causes of offsite power losses during the period 20022011.

2012-06-11T23:59:59.000Z

350

DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg  

SciTech Connect

DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

Koshcheev, L. A. [JSC 'NIIPT' (Russian Federation); Shul'ginov, N. G. [JSC 'SO EES' (Russian Federation)

2011-05-15T23:59:59.000Z

351

Optimal operation of a virtual power plant with risk management  

Science Conference Proceedings (OSTI)

In the evolving smart power systems (or smart grids), distributed generators (DG) and virtual power plants (VPP) have major roles in providing electric energy for microgrids. This paper studies the optimal operation of a VPP in a microgrid considering ...

H. Taheri; A. Rahimi-Kian; H. Ghasemi; B. Alizadeh

2012-01-01T23:59:59.000Z

352

Modern Control System Design for Hydro-power Plant.  

E-Print Network (OSTI)

??This thesis addresses dynamic model and advance controller design for entire Hydro-power plant. Although hydro-power has the best payback ratio and the highest efficiency in (more)

Ding, Xibei

2011-01-01T23:59:59.000Z

353

Recent Progress in U.S. Nuclear Power Plant Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Progress in U.S. Nuclear Power Plant Safety Speaker(s): Robert Budnitz Date: April 15, 2010 - 12:00pm Location: 90-3122 The U.S. commercial nuclear-power industry consists...

354

Use of Alternate Water Sources for Power Plant Cooling  

Science Conference Proceedings (OSTI)

This report lays out a framework developed to evaluate the potential use of non-traditional water supplies for cooling new or existing power plants. The report will be of value to environment, generation, and planning managers within power companies.

2008-03-31T23:59:59.000Z

355

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

Accessed May 2008 from www.sce.com 9. The California BiomassCollaborative, Biomass gasification / power generationECONOMIC ANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

356

Modular Trough Power Plant Cycle and Systems Analysis  

DOE Green Energy (OSTI)

This report summarizes an analysis to reduce the cost of power production from modular concentrating solar power plants through a relatively new and exciting concept that merges two mature technologies to produce distributed modular electric power in the range of 500 to 1,500 kWe. These are the organic Rankine cycle (ORC) power plant and the concentrating solar parabolic (CSP) trough technologies that have been developed independent of each other over many years.

Price, H.; Hassani, V.

2002-01-01T23:59:59.000Z

357

GRR/Section 7-CA-b - State Plant Commissioning Process, Small Power Plant  

Open Energy Info (EERE)

7-CA-b - State Plant Commissioning Process, Small Power Plant 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-CA-b - State Plant Commissioning Process, Small Power Plant Exception 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Click to View Fullscreen Contact Agencies California Energy Commission Regulations & Policies California Code of Regulations, Title 20 - Public Utilities and Energy Triggers None specified Click "Edit With Form" above to add content 07CABPlantCommissioningProcessSmallPowerPlantExemption.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

358

Materials for Ultra-Supercritical Steam Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

for Advanced Ultra-Supercritical for Advanced Ultra-Supercritical Steam Power Plants Background The first ultra-supercritical (USC) steam plants in the U.S. were designed, constructed, and operated in the late 1950s. The higher operating temperatures and pressures in USC plants were designed to increase the efficiency of steam plants. However, materials performance problems forced the reduction of steam temperatures in these plants, and discouraged further developmental efforts on low heat-rate units.

359

Program Change Management During Nuclear Power Plant Decommissioning  

Science Conference Proceedings (OSTI)

Decommissioning a nuclear power plant is a complex project, which involves the coordination of several different departments and the management of changing plant conditions, programs, and regulations. As plants meet certain project Milestones, the evolution of such plant programs and regulations can help optimize project execution and cost. This report provides information about these Milestones and the plant departments and programs that change throughout a decommissioning project.

2009-12-11T23:59:59.000Z

360

Korea Hydro & Nuclear Power Co., Ltd. Nuclear Power Plants: Construction and Technology Experience  

Science Conference Proceedings (OSTI)

The Korean nuclear power industry has grown rapidly since Kori Unit 1, the first Korean nuclear power plant (NPP), which began operation in April 1978. Following the technology developments of the nuclear power industry in 1980s, the first standard Korean nuclear plants (Ulchin Units 3 and 4) were constructed in the 1990s. At present, 20 NPP units operate in Korea16 pressurized water reactor (PWR) plants and four pressurized heavy water reactor (PHWR) plants; eight PWR units are under construction. This ...

2011-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Secretary Chu Visits Vogtle Nuclear Power Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vogtle Nuclear Power Plant Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Just over 60 years ago, scientists in Arco, Idaho, successfully used nuclear energy to power four light bulbs, laying the foundation for U.S.

362

Power Plant Research and Siting Program (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Plant Research and Siting Program (Maryland) Power Plant Research and Siting Program (Maryland) Power Plant Research and Siting Program (Maryland) < Back Eligibility Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of Natural Resources The Power Plant Research and Siting Act of 1971 established the Power Plant Research Program (PPRP) to evaluate electric generation issues in the state and recommend responsible, long-term solutions. The program manages a consolidated review of all issues related to power generation in Maryland: it reviews applications, evaluates impacts, and recommends conditions for

363

Honey Lake Hybrid Power Plant Project. Volume 1. Executive summary  

DOE Green Energy (OSTI)

A technical and economic feasibility study of the engineering aspects of a hybrid wood-fired geothermal electrical generating plant is presented. The proposed plant location is in Lassen County, California, near the Wendel Amedee Known Geothermal Resource Area. This power plant uses moderate temperature geothermal fluid to augment the heat supplied from a wood waste fired boiler. This report defines major plant systems for implementation into the plant conceptual design and provides sufficient design information for development of budgetary cost estimates. Emphasis is placed on incorporation of geothermal heat into the power generation process. Plant systems are designed and selected based on economic justification and on proven performance. The culminating economic analysis provides the financial information to establish the incentives for construction of the plant. The study concludes that geothermal energy and energy from wood can be combined in a power generating plant to yield attractive project economics.

Not Available

1982-03-01T23:59:59.000Z

364

Inspection of Nuclear Power Plant Containment Structures  

SciTech Connect

Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

Graves, H.L.; Naus, D.J.; Norris, W.E.

1998-12-01T23:59:59.000Z

365

Energy Department Report Calculates Emissions and Costs of Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Calculates Emissions and Costs of Power Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling. Grid operators typically cycle power plants to accommodate fluctuations in

366

Performance of Autonomous Lagrangian Floats  

Science Conference Proceedings (OSTI)

A truly Lagrangian float would follow all three components of oceanic velocity on all timescales. Progress toward this goal is reviewed by analyzing the performance of nearly Lagrangian floats deployed in a variety of oceanic flows. Two new float ...

Eric A. D'Asaro

2003-06-01T23:59:59.000Z

367

MHK Technologies/Hybrid Float | Open Energy Information  

Open Energy Info (EERE)

Float Float < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid Float.jpg Technology Profile Primary Organization PerpetuWave Power Pty Ltd Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Elongated floats operate parallel to the wave fronts so that maximum energy extraction from the waves is possible by the large cross sectional area of the floats to be immersed in a wave front at once and thence moved upwards with the wave A further major feature of the Technology is the motion of the floats that due to the trailing arm type design move backwards as well as upwards so that the energy in the moving water and of any breaking waves on the floats is transferred to useable energy of the float by forcing the floats backwards as well as upwards This motion mimics the motion of an unattached float on the surface of the water as waves pass This is unique to our technology and combined with the large cross sectional area offered by the float design in the highest pulse loading possible This is repeated a number of times as a wave passes through with a resultant optimum energy extraction from the wave Below the vessel are fixed horizontal staliser plates that limit the r

368

Groundwater Quality at Power Plants in West Virginia  

Science Conference Proceedings (OSTI)

As states develop groundwater regulations, utilities are increasingly being required to examine the effects of all facets of power plant operations on groundwater quality. This report summarizes the results of a four-year study of groundwater quality at 12 power plants in West Virginia.

1999-12-10T23:59:59.000Z

369

Sensor Fault Detection in Power Plants Andrew Kusiak1  

E-Print Network (OSTI)

and Soroush 2003 . Any false reading could lead to di- sastrous outcomes. In a coal-fired power plant, faultySensor Fault Detection in Power Plants Andrew Kusiak1 and Zhe Song2 Abstract: This paper presents approach handles data from temporal processes by periodic updates of the knowledge base. An industrial

Kusiak, Andrew

370

Nuclear Power Plant Fire-Modeling Applications Guide  

Science Conference Proceedings (OSTI)

This report replaces EPRI 1002981, Fire Modeling Guide for Nuclear Power Plant Applications, August 2002, as guidance for fire-modeling practitioners in nuclear power plants (NPPs). The report has benefited from insights gained since 2002 on the predictive capability of selected fire models to improve confidence in the use of fire modeling in NPP decision-making.

2009-12-22T23:59:59.000Z

371

Multivariable model predictive control for a gas turbine power plant  

Science Conference Proceedings (OSTI)

In this brief, constrained multi variable model predictive control (MPC) strategy is investigated for a GE9001E gas turbine power plant. So the rotor speed and exhaust gas temperature are controlled manipulating the fuel command and compressor inlet ... Keywords: ARX, gas turbine, identification, modeling, multivariable control, power plant, predictive control

Hadi Ghorbani; Ali Ghaffari; Mehdi Rahnama

2008-05-01T23:59:59.000Z

372

Groundwater Sampling and Analysis Sourcebook for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This sourcebook provides technical guidance and best practices for groundwater sampling and analysis at nuclear power plants. Robust sampling and analysis protocols are required to ensure accurate characterization of radionuclides in groundwater.BackgroundNuclear power plants implement groundwater protection programs to minimize contamination of on-site soil and groundwater, and to prevent the off-site migration of licensed material through groundwater ...

2012-09-25T23:59:59.000Z

373

Optimization system for operation of gas cogeneration power plant  

Science Conference Proceedings (OSTI)

The paper presents a distributed control system for the realization of cogenerative supply of electricity and heat and, in given case, for their combination with waste heat recovery, particularly in combined (gas-steam) cycle industrial power plants. ... Keywords: cogenerative gas power plant, control of distributed parameter systems, optimization, process control

Ion Miciu

2008-09-01T23:59:59.000Z

374

Data Mining for Soft Sensing Modeling of Power Plant Parameters  

Science Conference Proceedings (OSTI)

As a new modeling thought, the accurate soft sensing model of power plant parameter was established by data mining method, which obtained effective information from the large number of real-time operation data and avoided low accuracy of conventional ... Keywords: data mining, soft sensing, mathematic modeling, power plant parameters, partial least-square regression

Tao Jin; Zhongguang Fu; Gang Liu

2009-08-01T23:59:59.000Z

375

Simulated coal gas MCFC power plant system verification  

DOE Green Energy (OSTI)

The following tasks are included in this project: Commercialization; Power plant development; Manufacturing facilities development; Test facility development; Stack research; and Advanced research and technology development. This report briefly describes the subtasks still to be completed: Power plant system test with reformed natural gas; Upgrading of existing, US government-owned, test facilities; and Advanced MCFC component research.

NONE

1998-02-01T23:59:59.000Z

376

Simulated coal gas MCFC power plant system verification  

DOE Green Energy (OSTI)

This technical progress report summarizes the objectives and progress on the following tasks associated with the project: Commercialization; Power plant development; Manufacturing facilities development; Testing facility development; Stack research; and Advanced research and technology development. The project will demonstrate a 250 kW molten carbonate fuel cell power plant based on the IMHEX stack design concept.

NONE

1998-01-01T23:59:59.000Z

377

Baca geothermal demonstration project. Power plant detail design document  

DOE Green Energy (OSTI)

This Baca Geothermal Demonstration Power Plant document presents the design criteria and detail design for power plant equipment and systems, as well as discussing the rationale used to arrive at the design. Where applicable, results of in-house evaluations of alternatives are presented.

Not Available

1981-02-01T23:59:59.000Z

378

Float Together/ Sink Together? (The Effect of Connectivity on the Power System), The Economic Impact of Terrorist Attacks, edited by  

E-Print Network (OSTI)

The recent mantra for reorganizing power systems in the U.S. has been to extend the geographic scope of control centers to span several states, utilities and/or grid operators, initially for the purpose of expanding the range of economic transfers and more recently to improve operational reliability, in both cases through the reduction of seams at the borders of control areas. In the early days of electric deregulation this push for coordination was in the guise of forming four to five Regional Transmission Organizations (RTO), combining existing power pools and Independent System Operators (ISO), that might dispatch power at least-cost over wide regions of the country. The Federal Energy Regulatory Commission (FERC) also proposed a standard market design (SMD) for all control areas so that neighboring entities could exchange power more effectively, but this initiative has fallen victim to massive states rights battles (Whatever happened to the Commerce Clause of the U.S. Constitution?). Following the August 14, 2003 Northeast blackout, similar calls for far greater regional coordination have been based upon the perceived benefits in terms of greater reliability and reduced susceptibility to cascading disturbances across control area borders.

Richard E. Schuler

2006-01-01T23:59:59.000Z

379

Burner Management System Maintenance Guide for Fossil Power Plant Personnel  

Science Conference Proceedings (OSTI)

Burner Management System Maintenance Guide for Fossil Power Plant Personnel provides fossil plant maintenance personnel with current maintenance information on this system. This report will assist plant maintenance personnel in improving the reliability of and reducing the maintenance costs associated with the burner management system.

2008-03-25T23:59:59.000Z

380

Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents  

Science Conference Proceedings (OSTI)

Nuclear power plants report the amount of radioactivity released through permitted effluent pathways in their plant annual reports. This report provides users with a method for calculating the amount of carbon-14 (14C) generated in a light water reactor (LWR) core and released through plant gaseous effluent pathways.

2010-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Internet-Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at Coal-Fired Power Plants Internet-Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at Coal-Fired Power Plants GIS Catalog Graphic Arthur Langhus Layne, LLC will create an internet-based, geographic information system (GIS) catalog of non-traditional sources of cooling water for coal-fired power plants. The project will develop data to identify the availability of oil and gas produced water, abandoned coal mine water, industrial waste water, and low-quality ground water. By pairing non-traditional water sources to power plant water needs, the research will allow power plants that are affected by water shortages to continue to operate at full-capacity without adversely affecting local communities or the environment. The nationwide catalog will identify the location, water withdrawal, and

382

DOE Signs Cooperative Agreement for New Hydrogen Power Plant | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Signs Cooperative Agreement for New Hydrogen Power Plant DOE Signs Cooperative Agreement for New Hydrogen Power Plant DOE Signs Cooperative Agreement for New Hydrogen Power Plant November 6, 2009 - 12:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) has signed a cooperative agreement with Hydrogen Energy California LLC (HECA) to build and demonstrate a hydrogen-powered electric generating facility, complete with carbon capture and storage, in Kern County, Calif. The new plant is a step toward commercialization of a clean technology that enables use of our country's vast fossil energy resources while addressing the need to reduce greenhouse gas emissions. HECA, which is owned by Hydrogen Energy International, BP Alternative Energy, and Rio Tinto, plans to construct an advanced integrated gasification combined cycle (IGCC) plant that will produce power by

383

HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM  

SciTech Connect

This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

J.L. Justice

1999-03-25T23:59:59.000Z

384

Fossil Power Plant Cost and Performance Trends  

Science Conference Proceedings (OSTI)

This report is one of two companion studies that describe trends in operating costs and reliability of fossil steam plants since 1970. The studies are a foundation for more sophisticated statistical studies aimed at modeling and predicting the impacts of cycling. This report summarizes results for coal-fired steam generating units, contrasting performance across 112 baseload plants, 68 load-following/cycling plants, and 118 plants that varied their operations for at least three years. Annual trends are p...

2006-08-31T23:59:59.000Z

385

Phase IV - Resource Production and Power Plant Construction | Open Energy  

Open Energy Info (EERE)

Phase IV - Resource Production and Power Plant Construction Phase IV - Resource Production and Power Plant Construction Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home GEA Development Phase IV: Resource Production and Power Plant Construction GEA Development Phases The Geothermal Energy Association's (GEA) Geothermal Reporting Terms and Definitions are a guideline for geothermal developers to use when submitting geothermal resource development information to GEA for public dissemination in its annual US Geothermal Power Production and Development Update. GEA's Geothermal Reporting Terms and Definitions serve to increase the consistency, accuracy, and reliability of industry information presented in the development updates. Phase I - Resource Procurement and Identification Phase II - Resource Exploration and Confirmation

386

Work Management Guidelines for Fossil Power Plant Personnel  

Science Conference Proceedings (OSTI)

This report provides overview guidance for implementing or improving the work management process at fossil power plants. The concepts in this report are based on best practices from many power plants at various utilities. Also, recent operations and maintenance assessments revealed that work management processes were in various stages of implementation and not at the generally accepted industry standards. Problems noted during recent assessments included lack of coordination among plant organizations, la...

2008-03-21T23:59:59.000Z

387

Ergonomic Design Handbook for Fossil-Fueled Electric Power Plants  

Science Conference Proceedings (OSTI)

Workers in power plants are exposed to numerous risk factors for musculoskeletal disorders (MSDs). This report addresses those issues of accessibility and maintainability affecting MSDs that can best be addressed in the design phase of power plant construction. The report will interface with two other reports that pertain to existing plants and describe what can be done from a retrofitting or work practices change perspective.

2006-12-07T23:59:59.000Z

388

Productivity Improvement for Fossil Steam Power Plants, 2009  

Science Conference Proceedings (OSTI)

This report assembles case studies on productivity improvement taken from the webside of Productivity Improvement Expert Reviews (PIER) on subjects spanning the power plant from the boiler to the steam turbine, and including the plant auxiliaries and the environmental control equipment. These studies have been critically assessed by technical experts who have discussed the improvements with the power plant staff and judged their potential for future use in the fossil industry. This 2009 report also looks...

2010-01-15T23:59:59.000Z

389

TRI for Power Plants RY2010 Version 1.0  

Science Conference Proceedings (OSTI)

TRI for Power Plants is a powerful, user-friendly tool for estimating, tracking, and reporting releases of chemicals45primarily trace substances45from fossil-fired steam electric plants. The spreadsheet-like tool has been applied by numerous energy companies to increase the efficiency and reduce the costs of TRI-related analyses while enhancing compliance with changing reporting requirements. The software uses a mass balance approach based on fuel input and plant configuration. Fuel inputs include coal, ...

2011-04-15T23:59:59.000Z

390

TRI for Power Plants RY2011 Version 1.0  

Science Conference Proceedings (OSTI)

TRI for Power Plants is a powerful, user-friendly tool for estimating, tracking, and reporting releases of chemicals45primarily trace substances45from fossil-fired steam electric plants. The spreadsheet-like tool has been applied by numerous energy companies to increase the efficiency and reduce the costs of TRI-related analyses while enhancing compliance with changing reporting requirements. The software uses a mass balance approach based on fuel input and plant configuration. Fuel inputs include coal, ...

2012-04-05T23:59:59.000Z

391

MHK Technologies/Sea Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Description A stationary floating plant skims off a small percentage of the surface layer to use as the heat source. For the heat sink, the plant has a large diameter submerged pipe to pump up the heavier frigid water below. A small amount of heat is extracted from the warm water and a lesser amount is put into the cold water. The net difference in energy flow is turned into electricity and fresh water and/or fuels and other useful products. Electricity is transmitted to shore through an underwater cable.The warm surface ocean water is pumped to the boiler, which transfers heat to the working fluid, turning it into a high-pressure vapor. The turbine generator spins as the vapor rushes through it to reach the low-pressure condenser, which is cooled by the nearly freezing water brought up from the ocean depths. After condensing, the working fluid is sent back to the boiler to be reused and to repeat the cycle.

392

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance for Deployment of Mobile Technologies for Nuclear Power Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making,

393

Engineering and Economic Evaluation of Geothermal Power Plants  

Science Conference Proceedings (OSTI)

Geothermal power plants are commercially mature, dispatchable, base-loaded renewable energy sources. Most existing geothermal power plants exploit moderate- to high-temperature geothermal resources greater than 150C. These conditions exist in a few, relatively small geographic areas of the world, but these areas currently host thousands of megawatts of reliable, base-loaded renewable power, with thousands more megawatts in development. According to the Geothermal Resources Council, between 4000 and 7000 ...

2010-12-31T23:59:59.000Z

394

Productivity Improvement for Fossil Steam Power Plants: Industry Case Studies  

Science Conference Proceedings (OSTI)

The "Productivity Improvement Handbook for Fossil Steam Plants," now in its third edition, has included many descriptions of successfully applied advanced techniques and products. In the last few years, an increasingly diverse set of plant case studies have been described in some detail on the website of the Productivity Improvement User Group. This report assembles more than sixty of these case studies on subjects spanning the power plant from the boiler and the steam turbine, through plant auxiliaries ...

2003-11-17T23:59:59.000Z

395

Dimensioning and operating wind-hydrogen plants in power markets  

Science Conference Proceedings (OSTI)

This paper presents a two-step method for dimensioning and time-sequential operation of Wind-hydrogen (H2) plants operating in power markets. Step 1 involves identification of grid constraints and marginal power losses through load flow simulations. ... Keywords: distributed generation, hydrogen, quadratic optimization, renewable energy, weak grids, wind power

Christopher J. Greiner; Magnus Korps; Terje Gjengedal

2008-07-01T23:59:59.000Z

396

Optimal Scheduling of Industrial Combined Heat and Power Plants  

E-Print Network (OSTI)

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices Sumit Mitra , Lige Sun , Ignacio E. Grossmann December 24, 2012 Abstract Combined heat and power companies. However, under-utilization can be a chance for tighter interaction with the power grid, which

Grossmann, Ignacio E.

397

Nevada manufacturer installing geothermal power plant | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles $28.4 million in Recovery Act funding going toward geothermal plant Plant expected to produce 4 MW of electrical power, employ 25 full-time workers Chemetall produces lithium carbonate to customers in a wide range of industries, including for batteries used in electric vehicles, and now the

398

Minnesota Power Plant Siting Act (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Plant Siting Act (Minnesota) Power Plant Siting Act (Minnesota) Minnesota Power Plant Siting Act (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting This Act regulates the siting of large electric power generating plants, which are defined as plants designed for or capable of operating with a

399

Advanced Sensor Diagnostics in Nuclear Power Plant Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensor Diagnostics in Nuclear Power Plant Applications Sensor Diagnostics in Nuclear Power Plant Applications R.B. Vilim Argonne National Laboratory Sensor degradation occurs routinely during nuclear power plant operation and can contribute to reduced power production and less efficient plant operation. Mechanisms include drift of sensor electronics and mechanical components, fouling and erosion of flow meter orifice plates, and general degradation of thermocouples. One solution to this problem is the use of higher quality instrumentation and of physical redundancy. This, however, increases plant cost and does not address the degradation problem in a fundamental way. An alternative approach is to use signal processing algorithms to detect a degraded sensor and to construct a replacement value using an

400

Fuel Cell Power Plants Biofuel Case Study - Tulare, CA  

NLE Websites -- All DOE Office Websites (Extended Search)

clean clean Fuel Cell Power Plants Biofuel Case Study - Tulare, CA DOE-NREL Workshop Golden, CO June 11-13, 2012 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. Integrated Fuel Cell Company 2 Manufacture Sell (direct & via partners) Install Services 1.4 MW plant at a municipal building 2.4 MW plant owned by an Independent power producer 600 kW plant at a food processor 11.2 MW plant - largest fuel cell park in the world Delivering ultra-clean baseload distributed generation globally Growing Market Presence 180 MW installed and in backlog Over 80 Direct FuelCell® plants generating power at more than 50 sites globally Providing:

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

In-line process instrumentation for geothermal power plants  

DOE Green Energy (OSTI)

The economics of geothermal power depend on satisfactory plant reliability of continuous operation. Plant problems and extended downtime due to corrosion failures, scale buildup, or injection well plugging have affected many past geothermal projects. If in-line instrumentation can be developed to alert plant operators to correctable problems, then the cost and reliability of geothermal power will be improved. PNL has completed a problem of development of in-line corrosion and chemical instrumentation for binary cycle plants, and this technology has been used to set up a monitoring program at the Heber Binary Demonstration Power Plant. The current emphasis has shifted to development of particle meters for use on injection lines and CO/sub 2/ and pH probes for use in control of calcite scaling. Plans have been outlined to develop and demonstrate flash plant instrumentation for corrosion monitoring, scaling, steam purity, and injection line particle counting. 2 refs., 17 figs., 1 tab.

Shannon, D.W.; Robertus, R.J.; Sullivan, R.G.; Kindle, C.H.; Pierce, D.D.

1985-05-01T23:59:59.000Z

402

POWER PLANT OPERATIONS REPORT - Energy Information Administration  

U.S. Energy Information Administration (EIA)

This schedule must be completed by plants with a total steam turbine capacity of 10 megawatts and abovethat burn organic fuels. Report only fuels consumed in the ...

403

DOE Announces Loan Guarantee Applications for Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces Loan Guarantee Applications for Nuclear Power Plant DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The applications reflect the intentions of those companies to build 21 new reactors, with some applications covering two reactors at the same site. All five reactor designs that have been certified, or are currently under review for possible certification, by the Nuclear Regulatory Commission (NRC) are

404

Finding Alternative Water Sources for Power Plants with Google Earth |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding Alternative Water Sources for Power Plants with Google Finding Alternative Water Sources for Power Plants with Google Earth Finding Alternative Water Sources for Power Plants with Google Earth May 29, 2013 - 12:07pm Addthis A sample image from the AWSIS system. A sample image from the AWSIS system. Gayland Barksdale Technical Writer, Office of Fossil Energy Sobering news from experts: Rising populations, regional droughts, and decreasing groundwater levels are draining the nation's fresh water supply. And it's not just that we're using that water for our personal consumption; even the electricity we rely on to power our society requires a lot of water. In fact, major energy producers - like coal-fired power plants, which produce about 40 percent of our electricity - require about 150 billion gallons of fresh water per day to produce the electricity we

405

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

The Use of Restored Wetlands to Enhance Power Plant Cooling and Mitigate the Demand on Surface Water Use The Use of Restored Wetlands to Enhance Power Plant Cooling and Mitigate the Demand on Surface Water Use Photo of a Temperate Wetland. Photo of a Temperate Wetland Applied Ecological Services, Inc. (AES) will study the use of restored wetlands to help alleviate the increasing stress on surface and groundwater resources from thermoelectric power plant cooling requirements. The project will develop water conservation and cooling strategies using restored wetlands. Furthermore, the project aims to demonstrate the benefits of reduced water usage with added economic and ecological values at thermoelectric power plant sites, including: enhancing carbon sequestration in the corresponding wetlands; improving net heat rates from existing power generation units; avoiding limitations when low-surface

406

The 2001 Power Plant Improvement Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2001 Power Plant Improvement Initiative 2001 Power Plant Improvement Initiative The 2001 Power Plant Improvement Initiative When U.S. consumers were confronted in 1999 and 2000 with blackouts and brownouts of electric power in major regions of the country, Congress responded by directing the Department of Energy to issue "a general request for proposals for the commercial scale demonstration of technologies to assure the reliability of the nation's energy supply from existing and new electric generating facilities...." The Congress transferred $95 million from previously appropriated funding for the 1986-93 Clean Coal Technology Program. On February 6, 2001, the Energy Department issued a solicitation for proposals under the program it called the "Power Plant Improvement Initiative" (PPII). By the April 19, 2001, deadline, 24 candidate projects

407

Preconstruction of the Honey Lake Hybrid Power Plant  

DOE Green Energy (OSTI)

The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PG E) under existing long-term power sales contracts. Transfer of electricity to the PG E grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 7 tabs.

Not Available

1988-04-30T23:59:59.000Z

408

Preconstruction of the Honey Lake Hybrid Power Plant: Final report  

DOE Green Energy (OSTI)

The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PGandE) under existing long-term power sales contracts. Transfer of electricity to the PGandE grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 4 tabs.

Not Available

1988-04-30T23:59:59.000Z

409

DOE Announces Loan Guarantee Applications for Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantee Applications for Nuclear Power Plant Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The applications reflect the intentions of those companies to build 21 new reactors, with some applications covering two reactors at the same site. All five reactor designs that have been certified, or are currently under review for possible certification, by the Nuclear Regulatory Commission (NRC) are represented in the Part I applications. DOE also has received Part I

410

Finding Alternative Water Sources for Power Plants with Google Earth |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding Alternative Water Sources for Power Plants with Google Finding Alternative Water Sources for Power Plants with Google Earth Finding Alternative Water Sources for Power Plants with Google Earth May 29, 2013 - 12:07pm Addthis A sample image from the AWSIS system. A sample image from the AWSIS system. Gayland Barksdale Technical Writer, Office of Fossil Energy Sobering news from experts: Rising populations, regional droughts, and decreasing groundwater levels are draining the nation's fresh water supply. And it's not just that we're using that water for our personal consumption; even the electricity we rely on to power our society requires a lot of water. In fact, major energy producers - like coal-fired power plants, which produce about 40 percent of our electricity - require about 150 billion gallons of fresh water per day to produce the electricity we

411

An Analysis of One-Second Wind Power Plant Power Fluctuations  

Science Conference Proceedings (OSTI)

An analysis of one-second power data from a group of fifteen 600-kW turbines installed in Hawaii shows that the operation of a wind power plant tends to smooth out the power fluctuations caused by individual turbines. As this EPRI project demonstrates, any change in power over a one-second period results in power levels within plus or minus 5% of the original power level of the original power level of the wind plant, though much larger variations occur in individual turbine output.

1994-09-27T23:59:59.000Z

412

Economic assessment of polymer concrete usage in geothermal power plants  

DOE Green Energy (OSTI)

Results of a study established to review the Heber and Niland, California 50 MWe conceptual geothermal power plants designs and to identify areas where non-metallic materials, such as polymer concrete, can be technically and economically employed are reported. Emphasis was directed toward determining potential economic advantages and resulting improvements in plant availability. It is estimated that use of polymer concrete in the Heber plant will effect a savings of 6.18 mills per KWH in the cost of power delivered to the network, a savings of 9.7%. A similar savings should be effected in the Niland plant.

Not Available

1977-11-01T23:59:59.000Z

413

POWER PLANT WATER USAGE AND LOSS STUDY - Final  

NLE Websites -- All DOE Office Websites (Extended Search)

POWER PLANT WATER USAGE AND LOSS STUDY POWER PLANT WATER USAGE AND LOSS STUDY August 2005 Revised May 2007 Prepared for: The United States Department of Energy National Energy Technology Laboratory DOE Gasification Technology Manager: Gary J. Stiegel DOE Project Manager: James R. Longanbach Project Manager: Michael D. Rutkowski Principal Investigators: Michael G. Klett Norma J. Kuehn Ronald L. Schoff Vladimir Vaysman Jay S. White Power Plant Water Usage and Loss Study i August 2005 TABLE OF CONTENTS TABLE OF CONTENTS ...................................................................................................................... I LIST OF TABLES.............................................................................................................................III

414

Effective method for MHD retrofit of power plants  

DOE Green Energy (OSTI)

Retrofitting existing power plants with an open-cycle MHD system has been re-examined in light of recent developments in the heat and seed recovery technology area. A new retrofit cycle configuration has been developed which provides for a direct gas-gas coupling; also, the MHD topping cycle can be decoupled from the existing plant for either separate or joint operation. As an example, the MHD retrofit concept has been applied to Illinois Power Company's Vermilion Station No. 1, a coal-fired power plant presently in operation. Substantial increases in efficiency have been demonstrated and the economic validity of the MHD retrofit approach has been established.

Berry, G.F.; Dennis, C.B.; Johnson, T.R.; Minkov, V.

1981-10-01T23:59:59.000Z

415

Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

6 FEBRUARY 2008 6 FEBRUARY 2008 Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant * Bottom left: AES Greenidge Power Plant * Bottom right: Presque Isle Power Plant A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Consol Energy * Pegasus Technologies * We Energies  Mercury Control Demonstration Projects Executive Summary ............................................................................ 4 Background ......................................................................................... 5 Mercury Removal Projects ................................................................ 7 TOXECON(tm) Retrofit For Mercury and Multi-Pollutant Control on Three 90-MW Coal-Fired Boilers ........................................7

416

PM-1 NUCLEAR POWER PLANT PROGRAM PARAMETRIC STUDY REPORT  

SciTech Connect

The study deals with narrowing the range of parameters prior to preliminary design of the PM-1, a factory prepackaged, air-transportable, pressurized water nuclear power plant. The plant is to produce 1000 kw of net electrical power and 7 x 10/sup 6/ Btu/hr of space heat that is suitable for use with a central heating system. The data and conclusions resulting from the parametric study will provide the basis for the preliminary design of the PM-1 power plant. (W.D.M.)

Sieg, J.S.

1959-09-01T23:59:59.000Z

417

Energy Department Report Calculates Emissions and Costs of Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Report Calculates Emissions and Costs of Power Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling.

418

Methodology and application of surrogate plant PRA analysis to the Rancho Seco Power Plant: Final report  

Science Conference Proceedings (OSTI)

This report presents the development and the first application of generic probabilistic risk assessment (PRA) information for identifying systems and components important to public risk at nuclear power plants lacking plant-specific PRAs. A methodology is presented for using the results of PRAs for similar (surrogate) plants, along with plant-specific information about the plant of interest and the surrogate plants, to infer important failure modes for systems of the plant of interest. This methodology, and the rationale on which it is based, is presented in the context of its application to the Rancho Seco plant. The Rancho Seco plant has been analyzed using PRA information from two surrogate plants. This analysis has been used to guide development of considerable plant-specific information about Rancho Seco systems and components important to minimizing public risk, which is also presented herein.

Gore, B.F.; Huenefeld, J.C.

1987-07-01T23:59:59.000Z

419

Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants  

E-Print Network (OSTI)

1 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants by Sarah Bashadi and Policy Program #12;2 #12;3 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power-combustion capture retrofits are expected to a near-term option for mitigating CO2 emissions from existing coal

420

Fluid Temperature and Power Estimation of Geothermal Power Plants by a Simplified Numerical Model  

Science Conference Proceedings (OSTI)

This paper presents an estimation of power generated in a given geothermal heat pipe system. Such power generation is basically controlled by the ultimate temperature of fluid flowing through the u-shape pipes and could also be affected by power consumption ... Keywords: energy, geothermal power plant, numerical model, heat conduction, optimum design

Ge Ou; Itai Einav

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Water recovery using waste heat from coal fired power plants.  

Science Conference Proceedings (OSTI)

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

2011-01-01T23:59:59.000Z

422

Micromechanisms with floating pivot  

DOE Patents (OSTI)

A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use floating pivot structures to relieve some of the problems encountered in the use of solid flexible pivots.

Garcia, Ernest J. (Albuquerque, NM)

2001-03-06T23:59:59.000Z

423

Plasma Screen Floating Mount  

Engineers at the Savannah River National Laboratory (SRNL) have invented a new mounting system for flat panel video technology. The plasma screen floating mount is a mounting system proven to eliminate vibration and dampen shock for mobile uses of ...

424

Stabilized floating platforms  

DOE Patents (OSTI)

The subject invention is directed to a floating platform for supporting nuclear reactors and the like at selected offshore sites. The platform is provided with a stabilizer mechanism which significantly reduces the effects of wave action upon the platform and which comprises a pair of relatively small floats attached by rigid booms to the platform at locations spaced therefrom for reducing wave pitch, acceleration, and the resonance period of the wave.

Thomas, David G. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

425

Nove Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Nove Power Plant Biomass Facility Nove Power Plant Biomass Facility Jump to: navigation, search Name Nove Power Plant Biomass Facility Facility Nove Power Plant Sector Biomass Facility Type Landfill Gas Location Contra Costa County, California Coordinates 37.8534093°, -121.9017954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8534093,"lon":-121.9017954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Neal Hot Springs Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Power Plant Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot Springs Geothermal Power Plant Facility Neal Hot Springs Sector Geothermal energy Location Information Location Malheur County, Oregon Coordinates 44.02239°, -117.4631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02239,"lon":-117.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Lesson 7 - Waste from Nuclear Power Plants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Waste from Nuclear Power Plants 7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing Decommissioning Lesson 7 - Waste.pptx More Documents & Publications National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Third National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

428

DOE - Office of Legacy Management -- Shippingport Atomic Power Plant - PA  

Office of Legacy Management (LM)

Shippingport Atomic Power Plant - Shippingport Atomic Power Plant - PA 13 FUSRAP Considered Sites Site: SHIPPINGPORT ATOMIC POWER PLANT (PA.13 ) Eliminated from further consideration under FUSRAP. Designated Name: Not Designated Alternate Name: Duquesne Light Company PA.13-1 Location: 25 miles west of Pittsburgh in Beaver County , Shippingport , Pennsylvania PA.13-2 Evaluation Year: circa 1987 PA.13-3 Site Operations: First commercially operated nuclear power reactor. Joint project (Federal Government an Duquesne Light Company) to demonstrate pressurized water reactor technology and to generate electricity. Plant operated by Duquesne Light Company under supervision of the Office of the DOE Deputy Assistant Secretary for Naval Reactors -- 1957 to October 1982. PA.13-2 Site Disposition: Eliminated - No Authority. DOE chartered Major Project #118, Shippingport Station Decommissioning Project completed cleanup in 1989. PA.13-1

429

DOE Orders Mirant Power Plant to Operate Under Limited Circumstances |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orders Mirant Power Plant to Operate Under Limited Orders Mirant Power Plant to Operate Under Limited Circumstances DOE Orders Mirant Power Plant to Operate Under Limited Circumstances Docket No. EO-05-01. Order No. 202-05-3: Secretary of Energy Samuel W. Bodman today issued an order requiring Mirant Corporation's Potomac River Generating Station in Alexandria, Virginia (Mirant) to immediately resume limited operation. The order will help provide electric reliability for Washington, D.C., and will do so at the lowest reasonable impact to the environment. DOE Orders Mirant Power Plant to Operate Under Limited Circumstances More Documents & Publications Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant Compliance Plan

430

North Brawley Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Brawley Geothermal Power Plant Brawley Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home North Brawley Geothermal Power Plant General Information Name North Brawley Geothermal Power Plant Facility North Brawley Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.015046°, -115.542267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.015046,"lon":-115.542267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Sauder Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sauder Power Plant Biomass Facility Sauder Power Plant Biomass Facility Jump to: navigation, search Name Sauder Power Plant Biomass Facility Facility Sauder Power Plant Sector Biomass Location Fulton County, Ohio Coordinates 41.5719341°, -84.1435136° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5719341,"lon":-84.1435136,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Stowe Power Production Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Stowe Power Production Plant Biomass Facility Stowe Power Production Plant Biomass Facility Jump to: navigation, search Name Stowe Power Production Plant Biomass Facility Facility Stowe Power Production Plant Sector Biomass Facility Type Landfill Gas Location Montgomery County, Pennsylvania Coordinates 40.2290075°, -75.3878525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2290075,"lon":-75.3878525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of Pulsed Electrical Fields for Advanced Cooling in Coal-Fired Power Plants Application of Pulsed Electrical Fields for Advanced Cooling in Coal-Fired Power Plants Drexel University is conducting research with the overall objective of developing technologies to reduce freshwater consumption at coal-fired power plants. The goal of this research is to develop a scale-prevention technology based on a novel filtration method and an integrated system of physical water treatment in an effort to reduce the amount of water needed for cooling tower blowdown. This objective is being pursued under two coordinated, National Energy Technology Laboratory sponsored research and development projects. In both projects, pulsed electrical fields are employed to promote the precipitation and removal of mineral deposits from power plant cooling water, thereby allowing the water to be recirculated for longer periods of time before fresh makeup water has to be introduced into the cooling water system.

434

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Water Management Power Plant Water Management A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Impaired Water as Cooling Water in Coal-Based Power Plants – Nalco Company Example of Pipe Scaling The overall objective of this project, conducted by Nalco Company in partnership with Argonne National Laboratory, is to develop advanced-scale control technologies to enable coal-based power plants to use impaired water in recirculating cooling systems. The use of impaired water is currently challenged technically and economically due to additional physical and chemical treatment requirements to address scaling, corrosion, and biofouling. Nalco's research focuses on methods to economically manage scaling issues (see Figure 1). The overall approach uses synergistic

435

Experience curves for power plant emission control technologies  

E-Print Network (OSTI)

and nitrogen oxides (NO x ) from coal-fired electric powerReferences Soud, H.N. (1994) FGD Installations on Coal-FiredPlants, IEA Coal Research, London. Soud, H. (2001) Personal

Rubin, Edward S.; Yeh, Sonia; Hounshell, David A

2007-01-01T23:59:59.000Z

436

Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

at www.nrel.govpublications. Contract No. DE-AC36-08GO28308 Hybrid Cooling for Geothermal Power Plants Final ARRA Project Report Desikan Bharathan Technical Report NREL...

437

Feasibility study of a VirtualPower Plant for Ludvika.  

E-Print Network (OSTI)

?? This thesis is a feasibility study of avirtual power plant (VPP) in centralSweden and part of a project withInnoEnergy Instinct and STRI. The VPPconsists (more)

Lundkvist, Johanna

2013-01-01T23:59:59.000Z

438

EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010  

Energy.gov (U.S. Department of Energy (DOE))

Presentation to the Electricity Advisory Committe on October 29, 2010by the US Environmental Protection Agency Office of Air and Radiation on Reducing Pollution from Power Plants and the need for...

439

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Extraction From Coal-Fired Power Plant Flue Gas-Energy & Environmental Research Center (EERC) Coal occurs naturally with water present (3-60 weight %), and the combustion...

440

Development of Biometric Membrane for Near Zero PC Power Plant...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic memBrane for near Zero pc power plant emissions Background CO 2 capture is the largest single cost element of the Carbon Capture and Sequestration (CCS) program,...

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

would otherwise be evaporated from the stack. This water would then be available for power plant operations such as cooling tower or flue gas desulfurization make-up water. An...

442

Overview of Chamber and Power Plant Designs for IFE  

E-Print Network (OSTI)

as primary coolant minimizing need for leak tight blanket structures. · Vacuum boundary was separate from · Z-IFE "Z-Inertial Fusion Energy: Power Plant Final Report FY 2006" SANDIA REPORT SAND2006

443

A CCA-compliant nuclear power plant simulator kernel  

Science Conference Proceedings (OSTI)

This paper presents a parallel, component-oriented nuclear power plant simulator kernel. It is based on the high-performance computing oriented Common Component Architecture. The approach takes advantage of both the component paradigm and the parallel ...

Manuel Daz; Daniel Garrido; Sergio Romero; Bartolom Rubio; Enrique Soler; Jos M. Troya

2005-05-01T23:59:59.000Z

444

Towards reactive scheduling for large-scale virtual power plants  

Science Conference Proceedings (OSTI)

Concerning distributed energy management, virtual power plants are a frequently discussed topic. Although there are several different approaches to the coordination of distributed energy resources in this context, the inherent dynamics of this complex ...

Martin Trschel; Hans-Jrgen Appelrath

2009-09-01T23:59:59.000Z

445

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA)

snpt3ny6122 581 4,948 97.2 PWR R E Ginna Nuclear Power Plant Unit Summer Capacity (MW) Net Generation (Thousand MWh) Summer Capacity Factor (Percent) Type

446

Mapping complexity sources in nuclear power plant domains  

E-Print Network (OSTI)

Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical for ensuring safe performance of both operators and the entire system. New ...

Sasangohar, Farzan

447

Coal stockpiles at electric power plants were above average ...  

U.S. Energy Information Administration (EIA)

Increased competition between fuels as well as a warm winter 2011-12 led to lower consumption of coal and, thus, higher coal stockpiles at electric power plants in ...

448

Trace metal particulates in coal-fired power plant emissions.  

E-Print Network (OSTI)

??Since coal-fired power plants produce approximately 50% of U.S. energy, the toxic and environmental damaging effects of this energy source are important. Trace metals are (more)

Marett, Lanette Simone

2007-01-01T23:59:59.000Z

449

Coal stocks at power plants are likely sufficient despite river ...  

U.S. Energy Information Administration (EIA)

As of March 31, 2011, EIA estimates that coal-fired power plants in States identified in the map had an average of a two-to-three month supply of coal on hand.

450

NETL: News Release - Making Tomorrow's Coal-Fired Power Plants...  

NLE Websites -- All DOE Office Websites (Extended Search)

May 4, 2001 Making Tomorrow's Coal-Fired Power Plants Cleaner and More Efficient August 21, 2001 DOE Selects 5 New Research Projects to Improve Combustors, Reduce Pollutants, and...

451

Marsh Road Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Marsh Road Power Plant Biomass Facility Marsh Road Power Plant Biomass Facility Jump to: navigation, search Name Marsh Road Power Plant Biomass Facility Facility Marsh Road Power Plant Sector Biomass Facility Type Landfill Gas Location San Mateo County, California Coordinates 37.4337342°, -122.4014193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4337342,"lon":-122.4014193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

How Gas Turbine Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

453

Microbial activities in forest soils exposed to chronic depositions from a lignite power plant  

E-Print Network (OSTI)

around a coal-burning power plant: a case study in the Czechdepositions from a lignite power plant Susanne Klose 1* ,DEPOSITIONS FROM A LIGNITE POWER PLANT Susanne Klose 1* ,

Klose, Susanne; Wernecke, K D; Makeschin, F

2004-01-01T23:59:59.000Z

454

The Guy at the Controls: Labor Quality and Power Plant Efficiency  

E-Print Network (OSTI)

Controls: Labor Quality and Power Plant Efficiency July 2007Controls: Labor Quality and Power Plant E ciency James B.on the fuel e ciency of power plants. Although electricity

Bushnell, Jim B; Wolfram, Catherine D

2007-01-01T23:59:59.000Z

455

Microbial activities in forest soils exposed to chronic depositions from a lignite power plant  

E-Print Network (OSTI)

deposition from coal-fired power plants probably had akm downwind of a coal-fired power plant (sites Ia, II, andterm emissions from coal-fired power plants to forest soils

Klose, Susanne; Wernecke, K D; Makeschin, F

2004-01-01T23:59:59.000Z

456

Microbial activities in forest soils exposed to chronic depositions from a lignite power plant  

E-Print Network (OSTI)

around a coal-burning power plant: a case study in the Czechfrom coal-fired power plants probably had a positive effectdepositions from a lignite power plant Susanne Klose 1* ,

Klose, Susanne; Wernecke, K D; Makeschin, F

2004-01-01T23:59:59.000Z

457

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

458

Hybrid solar central receiver for combined cycle power plant  

DOE Patents (OSTI)

A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

Bharathan, D.; Bohn, M.S.; Williams, T.A.

1995-05-23T23:59:59.000Z

459

Hybrid solar central receiver for combined cycle power plant  

DOE Patents (OSTI)

A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

1995-01-01T23:59:59.000Z

460

Maintenance Work Package Planning Guidance for Fossil Power Plant Personnel  

Science Conference Proceedings (OSTI)

The work management process is one of the core business processes for operation and maintenance of fossil power plants. The preparation of work packages is a key element of this overall process. The purpose of this report is to provide guidance to power plant personnel regarding work package quality, by providing a consistent approach for administrative control, achieving an appropriate level-of-detail, ensuring an acceptable level-of-use, work package format, and application.

2005-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Initial Requirements for Wireless Sensors in Power Plant Applications  

Science Conference Proceedings (OSTI)

This EPRI technical update report is a product of an effort to examine the suitability of certain wireless technology for deployment in a power plant environment. Specifically, the report details some of the initial processes involved in gathering requirements for wireless sensors, and presents some initial results.BackgroundPower plant equipment and systems require instrumentation to operate efficiently, to detect and prevent equipment faults, and to support ...

2013-09-13T23:59:59.000Z

462

Nickel Speciation Measurements at Oil-Fired Power Plants  

Science Conference Proceedings (OSTI)

Nickel in power plant stack gas emissions may be present in several forms, including nickel subsulfide, a known carcinogen. To test for nickel subsulfide, EPRI performed flue gas measurements at four oil-fired power plants, representing a range of fuel sulfur levels as well as NOx and particulate control technologies. This report summarizes the field measurements to determine the form (or speciation) of nickel flue gas emissions. Utilities can use the results to conduct health risk assessments and suppor...

1999-01-05T23:59:59.000Z

463

Preliminary assessment of the modular block power plant concept  

SciTech Connect

Adding capacity to coal-fired plants in small increments of an overall integrated program may be the solution to the 10-year lead time required for the construction of a new plant. A preliminary study evaluates the technical and economic feasibility of a modular natural gas and coal-fired combined-cycle power plant which can be installed in three distinct phases. The plant sizes are suitable for large industrial and utility applications. The Modular Block Power Plant (MBPP) concept offers the advantages of phase construction, lower capital cost, lower cost electricity, lower air emissions, lower water requirements, and reduced solid waste discharge. Other advantages include part load availability, reduced coal inventory requirements, and easier plant siting. 11 figures, 4 tables.

1984-01-01T23:59:59.000Z

464

Gas Fired Power Plants: Investment Timing, Operating Flexibility and Abandonment  

E-Print Network (OSTI)

Many firms are considering investment in gas fired power plants. We consider a firm holding a license, i.e. an option, to build a gas fired power plant. The operating cash flows from the plant depend on the spark spread, defined as the difference between the unit price of electricity and cost of gas. The plant produces electricity when the spark spread exceeds emission costs, otherwise the plant is ramped down and held idle. The owner has also an option to abandon the plant and realize the salvage value of the equipment. We compute optimal entry and exit threshold values for the spark spread. Also the effects of emission costs on the value of installing CO2 capture technology are analyzed.

Stein-erik Fleten; Erkka Nskkl

2003-01-01T23:59:59.000Z

465

Selection of power plant elements for future space electric power systems  

SciTech Connect

A study on the type of nuclear reactor power plants that should be developed for future space missions is described. After careful consideration of power plant configuration weights, sizes, reliabilities, safety, development cost and time, the configuration selected to be pursued was a heat-pipe reactor design with thermoelectric converters and heat-pipe radiator.

Buden, D.

1979-01-01T23:59:59.000Z

466

Floating Windfarms Corporation | Open Energy Information  

Open Energy Info (EERE)

Windfarms Corporation Windfarms Corporation Jump to: navigation, search Name Floating Windfarms Corporation Place Houston, Texas Zip 77060 Sector Wind energy Product Texas-based offshore wind power developer that uses floating and non-floating vertical axis wind turbines to generate power. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

Nuclear Power Plant Emergency Diesel Generator Tanks 1  

E-Print Network (OSTI)

Nuclear power provides about 20 % of the total electricity generated in the United States. In 2005, this was about 782 Billion kWh of the total electricity generation (EIA 2006). 2 As with fossil-fueled electricity generating plants, electricity in a nuclear power plant is produced by heated steam that drives a turbine generator. In a nuclear power plant, however, nuclear fission reactions in the core produce heat that is absorbed by a liquid that flows through the system and is converted to steam. Nuclear power plants are highly efficient and have become more so over the last 25 years. Operational efficiency (also referred to as plant performance or electricity production) can be measured by the capacity factor. The capacity factor is the ratio of the actual amount of electricity generated to the maximum possible amount that could be generated in a given period of time usually a year. Today, nuclear power plants operate at an average 90 % capacity factor (compared to 56 % in 1980) (EIA 2006a). Thus, although nuclear generating capacity has remained roughly constant since 1990, at about 99 gigawatts (or about 10 % of the total U.S. electric generating capacity), the amount of electricity produced has increased 33 % since that time because of increased capacity utilization. Nuclear plants have the highest capacity factors of

unknown authors

2006-01-01T23:59:59.000Z

468

Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Risk Insurance for Nuclear Power Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy August 4, 2006 - 8:42am Addthis ATLANTA, GA - After touring Georgia Power and speaking to its employees, U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced completion of the final rule that establishes the process for utility companies building the next six new nuclear power plants in the United States to qualify for a portion of $2 billion in federal risk insurance. The rule will be available on DOE's web site soon. "Providing federal risk insurance is an important step in speeding the nuclear renaissance in this country," Secretary Bodman said. "Companies

469

Qinshan: China`s first nuclear power plant  

SciTech Connect

Plant design, startup, and operation of the Qinshan-1 nuclear power plant in China are outlined in this article. Qinshan-1 is a 300 MW(e) pressurized water reactor designed and constructed in China. Approximately 70 percent of the equipment was also made in China. Findings of a preoperational safety inspection by the International Atomic Energy Agency are summarized.

NONE

1992-08-01T23:59:59.000Z

470

Data Mining for Monitoring Loose Parts in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Monitoring the mechanical impact of a loose (detached or drifting) part in the reactor coolant system of a nuclear power plant is one of the essential functions for operation and maintenance of the plant.Large data tables are generated during this monitoring ...

J. W. Guan; David A. Bell

2000-10-01T23:59:59.000Z

471

Atmospheric Deposition of Tritium at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Tritium source terms at nuclear power plants consist of several sources that include plant vents and cooling impoundments, cooling towers, and treatment ponds. Cooling lakes and reservoirs can be sources of airborne tritium. Methods are presented for estimating these source terms and predicting resulting deposition of tritium using metrological models and for estimating infiltration of tritium using hydrogeological models.

2010-12-16T23:59:59.000Z

472

Welding and Fabrication Critical Factors for New Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Welding and fabrication processes employed for manufacture of critical nuclear power plant components may adversely affect material performance and can potentially increase susceptibility to known degradation mechanisms. This report identifies important welding and fabrication processes for specific materials, assesses their effects on potential degradation mechanisms, and identifies process enhancements that can improve long-term asset management of new nuclear plant components.

2009-12-08T23:59:59.000Z

473

Emissions estimation for lignite-fired power plants in Turkey  

SciTech Connect

The major gaseous emissions (e.g. sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology is used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants without electrostatic precipitators and flue-gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%. 39 refs., 13 figs., 10 tabs.

Nurten Vardar; Zehra Yumurtaci [Yildiz Technical University Mechanical Engineering Faculty, Istanbul (Turkey)

2010-01-15T23:59:59.000Z

474

Neural management for heat and power cogeneration plants  

Science Conference Proceedings (OSTI)

This paper deals with the problem of finding the optimum load allocation on machines and apparatuses in complex Cogeneration Heat and Power (CHP) plants. A methodology based on Neural Networks (NN) has been developed. A database has been populated by ... Keywords: CHP, Diagnosis, Neural networks, Optimisation, Plant models

Giovanni Cerri; Sandra Borghetti; Coriolano Salvini

2006-10-01T23:59:59.000Z

475

Review of Polyimide Insulated Wire in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Because of its toughness and other desirable properties, Kapton insulated wire has been test-qualified for use in nuclear power plants; however, failures of this material in military aircraft have raised safety questions. This report identifies the conditions of proper use and handling that will ensure reliable functioning of the wire under nuclear plant operating and accident conditions.

1991-03-01T23:59:59.000Z

476

Model Predictive Control of Integrated Gasification Combined Cycle Power Plants  

SciTech Connect

The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

B. Wayne Bequette; Priyadarshi Mahapatra

2010-08-31T23:59:59.000Z

477

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

478

Productivity Improvement for Fossil Steam Power Plants, 2007  

Science Conference Proceedings (OSTI)

The Productivity Improvement Handbook for Fossil Steam Plants (1006315), now in its third edition, has included descriptions of advanced techniques and products, successfully applied and tested. Many of these have been described in the 2005 publication Productivity Improvement for Fossil Steam Plants 2005: 100 Hundred Case Studies (1012098) and in Productivity Improvement for Fossil Steam Power Plants 2006 (1014598). Since then, further productivity improvement case studies have been reviewed on the Prod...

2007-12-21T23:59:59.000Z

479

A Dynamical Systems Model for Nuclear Power Plant Risk Management  

Science Conference Proceedings (OSTI)

This report provides a mathematical dynamical systems model of the effect of plant processes and programs on nuclear plant safety. That is, it models the safety risk management process. Responses of this model to postulated changes in performance and coupling parameters were verified to be in accordance with experience from years of commercial nuclear power plant operation. A preliminary analysis of the model was performed using the techniques of dynamical systems theory to determine regions of operation...

2003-10-31T23:59:59.000Z

480

Calibration of Radiation Monitors at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Radiation monitors are installed in nuclear power plants to indicate to operators the levels of radioactivity in various processes and at specific plant locations. Plant personnel depend on radiation monitors for accurate and precise data in order to make informed decisions and take appropriate actions during normal, abnormal, and design basis events. As with all electronic measurement systems, error can be introduced by changing environmental conditions, aging components, and replaced parts. The radiati...

2005-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "floating power plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Prediction of power output of a coal-fired power plant by artificial neural network  

Science Conference Proceedings (OSTI)

Accurate modeling of thermal power plant is very useful as well as difficult. Conventional simulation programs based on heat and mass balances represent plant processes with mathematical equations. These are good for understanding the processes but usually ... Keywords: ANN model, Coal-fired boiler, Extrapolation, Interpolation, Real plant data, Steam turbine

J. Smrekar; D. Pandit; M. Fast; M. Assadi; Sudipta De

2010-07-01T23:59:59.000Z

482

Nuclear Power Plant Containment Pressure Boundary Research  

SciTech Connect

Research to address aging of the containment pressure boundary in light-water reactor plants is summarized. This research is aimed at understanding the significant factors relating occurrence of corrosion, efficacy of inspection, and structural capacity reduction of steel containment and liners of concrete containment. This understanding will lead to improvements in risk-informed regulatory decision making. Containment pressure boundary components are described and potential aging factors identified. Quantitative tools for condition assessments of aging structures to maintain an acceptable level of reliability over the service life of the plant are discussed. Finally, the impact of aging (i.e., loss of shell thickness due to corrosion) on steel containment fragility for a pressurized water reactor ice-condenser plant is presented.

Cherry, J.L.; Chokshi, N.C.; Costello, J.F.; Ellingwood, B.R.; Naus, D.J.

1999-09-15T23:59:59.000Z

483

Battery charging in float vs. cycling environments  

SciTech Connect

In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

COREY,GARTH P.

2000-04-20T23:59:59.000Z

484

Low-Rank Coal Grinding Performance Versus Power Plant Performance  

SciTech Connect

The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

Rajive Ganguli; Sukumar Bandopadhyay

2008-12-31T23:59:59.000Z

485

Map of Solar Power Plants/Data | Open Energy Information  

Open Energy Info (EERE)

Solar Power Plants/Data Solar Power Plants/Data < Map of Solar Power Plants Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus AV Solar Ranch I Solar Power Plant Photovoltaics NextLight Renewable Power Antelope Valley, California 230 MW230,000 kW 230,000,000 W 230,000,000,000 mW 0.23 GW 2.3e-4 TW Agua Caliente Solar Power Plant Photovoltaics NextLight Renewable Power Yuma County, Arizona 280 MW280,000 kW 280,000,000 W 280,000,000,000 mW 0.28 GW 2.8e-4 TW Agua Caliente Solar Project Utility scale solar First Solar Yuma County, Arizona 290 MW290,000 kW 290,000,000 W 290,000,000,000 mW

486

Fault Analysis at a Wind Power Plant for One Year of Observation: Preprint  

DOE Green Energy (OSTI)

This paper analyzes the fault characteristics observed at a wind power plant, and the behavior of the wind power plant under fault events.

Muljadi, E.; Mills, Z.; Foster, R.; Conto, J.; Ellis, A.

2008-07-01T23:59:59.000Z

487

Cost and carbon emissions of coal and combined cycle power plants...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost and carbon emissions of coal and combined cycle power plants in India: international implications Title Cost and carbon emissions of coal and combined cycle power plants in...

488

Estimating Ammonia Emissions from Stationary Power Plants  

Science Conference Proceedings (OSTI)

This report provides a methodology that can be used to estimate ammonia releases from fossil fuel-fired, electrical power generation facilities for the purpose of reporting under the U.S. Environmental Protection Agencys Toxic Release Inventory (TRI) program.

2009-04-15T23:59:59.000Z

489

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management Carnegie Mellon University, in a joint effort with the University of Pittsburgh, is conducting a study of the use of treated municipal wastewater as cooling system makeup for coal fired power plants. This project builds upon a study sponsored by the U.S. Department of Energy entitled, "Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants," which showed that treated municipal wastewater is the most common and widespread source in the United States. Data analysis revealed that 81 percent of power plants proposed for construction by the Energy Information Administration (EIA) would have sufficient cooling water supply from one to two publicly owned treatment works (POTW) within a 10-mile radius, while 97 percent of the proposed power plants would be able to meet their cooling water needs with one to two POTWs within 25 miles of these plants. Thus, municipal wastewater will be the impaired water source most likely to be locally available in sufficient and reliable quantities for power plants. Results of initial studies indicate that it is feasible to use secondary treated municipal wastewater as cooling system makeup. The biodegradable organic matter, ammonia-nitrogen, and phosphorus in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, although current research is demonstrating that these problems can be controlled through aggressive chemical management. It is currently unclear whether tertiary treatment of municipal waste water prior to its re-use can be a cost-effective option to aggressive chemical management of the bulk cooling water volume.

490

Use of expert systems in nuclear power plants  

SciTech Connect

The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs.

Uhrig, R.E.

1989-01-01T23:59:59.000Z

491

Growing role for power-plant modeling  

SciTech Connect

The use of models is described in nuclear plant design as an aid in planning construction, training operating and maintenance personnel, and eliminating construction and operational problems. Model types discussed include preliminary models, general arrangement models, site models, specific design or study models, construction models, and final design models. (DG)

Hickman, R.S.; Munguia, A.J.; Askwith, H.H.

1976-06-01T23:59:59.000Z

492

Feasibility Study: Power Plant Relocation Proposal  

E-Print Network (OSTI)

to relocate the heating and cooling plant and to abandon the cogeneration system. B. Program and Facilities two gas fired boilers that produce 100,000 and 150,000 lbs per hour of steam, and three absorption chillers with a total combined capacity of 3,270 tons. Absorption chillers use steam to produce chilled

Colorado at Boulder, University of

493

Winter study of power plant effects  

Science Conference Proceedings (OSTI)

As a part of DOE's Meteorological Effects of Thermal Energy Releases (METER) program a field study was undertaken at the Bowen Electric Generating Plant (Plant Bowen) in December 1979. The study was a joint endeavor of Battelle Pacific Northwest Laboratories (PNL), Pennsylvania State University (PSU), and Oak Ridge National Laboratory (ORNL) with the main objective of determining the effects of the plant's smokestack effluents on aerosol characteristics and precipitation chemistry. Other objectives included studies of cooling tower temperature and humidity (T/h) plumes and drift drop concentrations. Conducted over a period of three weeks, the study involved an instrumented aircraft, pilot balloons, a tethered balloon system, a dense network of wetfall chemistry collectors and numerous ground- and tower-based meteorological instruments. Rainfall samples collected during the precipitation event of December 13, 1979, revealed some evidence of plume washout. The tethered balloon flights rarely detected the faint presence of the T/h plumes while the airborne measurements program concentrated on the study of SO/sub 2/ to sulfate conversion. A series of plume observations confirmed the suitability of the plant's windset for plume direction determinations.

Patrinos, A.A.N.

1980-10-01T23:59:59.000Z

494

Evaluation of Stormwater as a Resource for Power Plant Cooling  

Science Conference Proceedings (OSTI)

This report evaluates the potential to use stormwater runoff in lieu of withdrawals from a freshwater body to meet water needs of different power plant processes. The report will be of value to environment, generation, and planning managers within power companies.

2010-12-13T23:59:59.000Z

495

Wind Power Plant Prediction by Using Neural Networks: Preprint  

DOE Green Energy (OSTI)

This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

2012-08-01T23:59:59.000Z

496

Financial and ratepayer impacts of nuclear power plant regulatory reform  

SciTech Connect

Three reports - ''The Future Market for Electric Generating Capacity,'' ''Quantitative Analysis of Nuclear Power Plant Licensing Reform,'' and ''Nuclear Rate Increase Study'' are recent studies performed by the Los Alamos National Laboratory that deal with nuclear power. This presents a short summary of these three studies. More detail is given in the reports.

Turpin, A.G.

1985-01-01T23:59:59.000Z

497

Mercury Removal Characteristics of Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

The standard Ontario Hydro Method (OHM) was used into the flue gas mercury sampling before and after fabric filter (FF)/ electrostatic precipitator (ESP) locations in coal-fired power stations in China, and then various mercury speciation, Hg0, Hg2+ ... Keywords: coal-fired power plant, mercury, fabric filter, electrostatic precipitator

Yang Liguo, Fan Xiaoxu, Duanyu Feng, Wang Yunjun

2013-01-01T23:59:59.000Z

498

Power Plant Electrical Reference Series, Volume 1: Electric Generators  

Science Conference Proceedings (OSTI)

This comprehensive and practical guide to electric power apparatus and electrical phenomena provides an up-to-date source book for power plant managers, engineers, and operating personnel. Aiding in the recognition and prevention of potential problems, the 16-volume guide can help utilities save staff time and reduce operating expenses.

1988-05-01T23:59:59.000Z

499

An integrated computer model of a solar updraft power plant  

Science Conference Proceedings (OSTI)

Renewable energy technologies are generally complex, requiring nonlinear simulation concepts. This holds true especially for solar updraft power plants, the scope of this treatment, which starts with a short introduction into their functioning. Then ... Keywords: Excel-Solver, Fast computer algorithms, Simulation of nonlinear processes, Solar electricity generation, Solar updraft